District I
1625 N. French Dr., Hobbs, NM 88240
District II
811 S. First St., Artesia, NM 88210
District III
1000 Rio Brazos Road, Aztec, NM 87410
District IV
1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

| Incident ID    | nAPP2301837404 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## **Release Notification**

## **Responsible Party**

| Responsible Party: Chevron U.S.A., Inc.   |               |                          | OGRID: 4323                      |            |                                                     |                                           |  |
|-------------------------------------------|---------------|--------------------------|----------------------------------|------------|-----------------------------------------------------|-------------------------------------------|--|
| Contact Nan                               | ne: Catherin  | e Smith                  |                                  |            | Contact Telephone: 432-967-9487                     |                                           |  |
| Contact email: catherinesmith@chevron.com |               |                          | Incident # nAPP230183740         | 04         |                                                     |                                           |  |
| Contact mail                              | ling address: | :6301 Deauville B        | lvd Midland, TX                  | 79706      |                                                     |                                           |  |
|                                           |               |                          | Location                         | n of R     | lease Source                                        |                                           |  |
| Latitude: 32.0                            | )98756        |                          | (NAD 83 in a                     | decimal de | Longitude: - 104.154525<br>ees to 5 decimal places) |                                           |  |
| Site Name: H                              | Iayhurst NM   | I Section 26 Digni       | itas SWD                         |            | Site Type: Oil                                      |                                           |  |
| Date Release                              | Discovered    | : 01/05/2023             |                                  |            | API# (if applicable):                               |                                           |  |
| Unit Letter                               | Section       | Township                 | Range                            |            | County                                              |                                           |  |
| I                                         | 26            | 25S                      | 27E                              | Edd        |                                                     |                                           |  |
| Crude Oi                                  | Materia<br>1  | al(s) Released (Select a | all that apply and atta          |            | ns or specific justification for the Volume Recov   |                                           |  |
| Produced                                  | Water         | Volume Release           | ed (bbls):                       |            | Volume Recovered (bbls):                            |                                           |  |
|                                           |               | Is the concentra         | ation of dissolved >10,000 mg/l? | l chloride | e in the Yes No                                     |                                           |  |
| Condensa                                  | ate           |                          | ed (bbls): 0.0095                | í          | Volume Recovered (bbls): 0                          |                                           |  |
| Natural C                                 | Gas           | Volume Release           | ed (Mcf): 1.5                    |            | Volume Recovered (Mcf)                              |                                           |  |
| Other (de                                 | escribe)      | Volume/Weigh             | t Released (provi                | ide units) | Volume/Weigl                                        | ht Recovered (provide units)              |  |
| Cause of Rel Condensate I ground.         |               | ne flare pilot line a    | and resulted in co               | ondensate  | mist and liquid igniting fron                       | n the flare and burning as it fell to the |  |
|                                           |               |                          |                                  |            |                                                     |                                           |  |

Received by OCD: 9/20/2023 9:06:16 AM State of New Mexico
Page 2 Oil Conservation Division

Page 2 20f 62

| Incident ID    | nAPP2301837404 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

| Was this a major                                                                                | If YES, for what reason(s) does the respon                                                                                                         | sible party consider this a major release?                                                                                                                                                                                                                                                                                                                              |
|-------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| release as defined by 19.15.29.7(A) NMAC?                                                       | Event resulting in a fire.                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                         |
| ⊠ Yes □ No                                                                                      |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
| If YES, was immediate no                                                                        | otice given to the OCD? By whom? To wh                                                                                                             | om? When and by what means (phone, email, etc)?                                                                                                                                                                                                                                                                                                                         |
| Yes – by Catherine Smith                                                                        | to Mike Bratcher by email on 01/05/2023 a                                                                                                          | at 17:14 MT.                                                                                                                                                                                                                                                                                                                                                            |
|                                                                                                 | Initial Ro                                                                                                                                         | esponse                                                                                                                                                                                                                                                                                                                                                                 |
| The responsible                                                                                 | party must undertake the following actions immediately                                                                                             | vunless they could create a safety hazard that would result in injury                                                                                                                                                                                                                                                                                                   |
| The source of the rele                                                                          | ease has been stopped.                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                         |
| <u>-                                   </u>                                                     | s been secured to protect human health and                                                                                                         | the environment.                                                                                                                                                                                                                                                                                                                                                        |
|                                                                                                 | •                                                                                                                                                  | ikes, absorbent pads, or other containment devices.                                                                                                                                                                                                                                                                                                                     |
|                                                                                                 | ecoverable materials have been removed and                                                                                                         | l managed appropriately.                                                                                                                                                                                                                                                                                                                                                |
| If all the actions described                                                                    | d above have <u>not</u> been undertaken, explain v                                                                                                 | vhy:                                                                                                                                                                                                                                                                                                                                                                    |
|                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
|                                                                                                 |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
| Per 19.15.29.8 B. (4) NM                                                                        | AC the responsible party may commence re                                                                                                           | emediation immediately after discovery of a release. If remediation                                                                                                                                                                                                                                                                                                     |
| has begun, please attach                                                                        | a narrative of actions to date. If remedial                                                                                                        | efforts have been successfully completed or if the release occurred lease attach all information needed for closure evaluation.                                                                                                                                                                                                                                         |
| regulations all operators are<br>public health or the environr<br>failed to adequately investig | required to report and/or file certain release notinent. The acceptance of a C-141 report by the Cate and remediate contamination that pose a thre | pest of my knowledge and understand that pursuant to OCD rules and fications and perform corrective actions for releases which may endanger CD does not relieve the operator of liability should their operations have at to groundwater, surface water, human health or the environment. In responsibility for compliance with any other federal, state, or local laws |
|                                                                                                 | erine Smith                                                                                                                                        | Title: _Lead Environmental Specialist, Field Support                                                                                                                                                                                                                                                                                                                    |
| Signature:                                                                                      |                                                                                                                                                    | Date:1/18/2023                                                                                                                                                                                                                                                                                                                                                          |
| email:catherinesm                                                                               | ith@chevron.com                                                                                                                                    | Telephone:432-967-9487                                                                                                                                                                                                                                                                                                                                                  |
| OCD Only                                                                                        |                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                         |
| Received by: <u>Jocelyn</u>                                                                     | Harimon                                                                                                                                            | Date:01/19/2023                                                                                                                                                                                                                                                                                                                                                         |

Received by OCD: 9/20/2023 9:06:16 AM State of New Mexico
Page 3 Oil Conservation Division

|                | rugg (3.0p)    |
|----------------|----------------|
| Incident ID    | nAPP2301837404 |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## Spill Calculations:

|      |   | Horizontal Dimensions |               |              | Vertical Dimensions        |                            | Calculated Volume          |                         |
|------|---|-----------------------|---------------|--------------|----------------------------|----------------------------|----------------------------|-------------------------|
|      |   | Diameter (in)         | Length (feet) | Width (feet) | Abovegrade<br>Depth (feet) | Belowgrade<br>Depth (feet) | Condensate<br>(feet cubed) | Condensate<br>(Barrels) |
| Area | 1 | 36                    |               |              |                            | 0.00520833                 | 0.036815515                | 0.006556637             |
| Area | 2 | 24                    |               |              |                            | 0.00520833                 | 0.016362451                | 0.002914061             |
| Area | 3 |                       |               |              |                            |                            |                            |                         |
|      |   |                       |               |              |                            |                            | Total                      | 0.009470698             |

Released to Imaging: 1/23/2024 3:11:31 PM

Page 3 of 62

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 177666

#### **CONDITIONS**

| Operator:         | OGRID:                                    |
|-------------------|-------------------------------------------|
| CHEVRON U S A INC | 4323                                      |
|                   | Action Number:                            |
| Midland, TX 79706 | 177666                                    |
|                   | Action Type:                              |
|                   | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created By |      | Condition<br>Date |
|------------|------|-------------------|
| jharimon   | None | 1/19/2023         |

| Incident ID    | nAPP2301837404 |
|----------------|----------------|
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

Page 5 of 62

## Site Assessment/Characterization

| this information must be provided to the appropriate district office no later than 90 days after the release discovery date.                                                                                                                       |            |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|--|--|
| What is the shallowest depth to groundwater beneath the area affected by the release?                                                                                                                                                              | 51-100     |  |  |
| Did this release impact groundwater or surface water?                                                                                                                                                                                              | ☐ Yes ☒ No |  |  |
| Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?                                                                                                                 | ☐ Yes 🏻 No |  |  |
| Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?                                                                                                       | ☐ Yes ☒ No |  |  |
| Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?                                                                                                               | ☐ Yes 🛛 No |  |  |
| Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?                                                    | ☐ Yes 🏻 No |  |  |
| Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?                                                                                                                                                   | ☐ Yes ☒ No |  |  |
| Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?                                                                                                              | ☐ Yes 🏻 No |  |  |
| Are the lateral extents of the release within 300 feet of a wetland?                                                                                                                                                                               | ☐ Yes ☒ No |  |  |
| Are the lateral extents of the release overlying a subsurface mine?                                                                                                                                                                                | ☐ Yes ☒ No |  |  |
| Are the lateral extents of the release overlying an unstable area such as karst geology?                                                                                                                                                           | X Yes ☐ No |  |  |
| Are the lateral extents of the release within a 100-year floodplain?                                                                                                                                                                               | ☐ Yes ☒ No |  |  |
| Did the release impact areas <b>not</b> on an exploration, development, production, or storage site?                                                                                                                                               | ☐ Yes 🛛 No |  |  |
| Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics. |            |  |  |
| Characterization Report Checklist: Each of the following items must be included in the report.                                                                                                                                                     |            |  |  |
| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.                                                                                                                            |            |  |  |

| Characterization Report Checklist: Each of the following items must be included in the report.                                         |
|----------------------------------------------------------------------------------------------------------------------------------------|
| <u> </u>                                                                                                                               |
|                                                                                                                                        |
| Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.                |
| Field data                                                                                                                             |
|                                                                                                                                        |
| Data table of soil contaminant concentration data                                                                                      |
| Depth to water determination                                                                                                           |
| $\square$ Determination of water sources and significant watercourses within $\frac{1}{2}$ -mile of the lateral extents of the release |
|                                                                                                                                        |
| Boring or excavation logs                                                                                                              |
| ☐ Photographs including date and GIS information                                                                                       |
| Topographic/Aerial maps                                                                                                                |
|                                                                                                                                        |
| ☐ Laboratory data including chain of custody                                                                                           |
|                                                                                                                                        |

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 9/20/2023 9:06:16 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

|                | Page 6 of      | 62 |
|----------------|----------------|----|
| Incident ID    | nAPP2301837404 |    |
| District RP    |                |    |
| Facility ID    |                |    |
| Application ID |                |    |

| regulations all operators are required to report and/or file certain release public health or the environment. The acceptance of a C-141 report by t failed to adequately investigate and remediate contamination that pose a | the best of my knowledge and understand that pursuant to OCD rules and notifications and perform corrective actions for releases which may endanger the OCD does not relieve the operator of liability should their operations have threat to groundwater, surface water, human health or the environment. In or of responsibility for compliance with any other federal, state, or local laws |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Printed Name: Amy Barnhill                                                                                                                                                                                                    | Title: Environmental Advisor                                                                                                                                                                                                                                                                                                                                                                   |
| Signature: Thile                                                                                                                                                                                                              | Date: 9-10-23                                                                                                                                                                                                                                                                                                                                                                                  |
| email:abarnhill@chevron.com                                                                                                                                                                                                   | Telephon <u>e: 432-687-7108</u>                                                                                                                                                                                                                                                                                                                                                                |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                |
| OCD Only                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                |
| Received by:                                                                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                |

Page 7 of 62

|                | - 18           |
|----------------|----------------|
| Incident ID    | nAPP2301837404 |
| District RP    |                |
| Facility ID    |                |
| Application ID |                |

## Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

| ☐ A scaled site and sampling diagram as described in 19.15.29.11                                                                                                                              | NMAC                                                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|
| Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection) |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| ☐ Laboratory analyses of final sampling (Note: appropriate ODC                                                                                                                                | District office must be notified 2 days prior to final sampling)                                                                                                                                                                                                              |  |  |  |  |  |  |
| Description of remediation activities                                                                                                                                                         |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of a                                                   | ediate contamination that pose a threat to groundwater, surface water, C-141 report does not relieve the operator of responsibility for ions. The responsible party acknowledges they must substantially ditions that existed prior to the release or their final land use in |  |  |  |  |  |  |
| Printed Name: Amy Barrhill                                                                                                                                                                    | Title: Environmental Advisor                                                                                                                                                                                                                                                  |  |  |  |  |  |  |
| Signature: Thile                                                                                                                                                                              | Date: 9-10-23                                                                                                                                                                                                                                                                 |  |  |  |  |  |  |
| email: abarhill@chevron.com                                                                                                                                                                   | Telephon <u>e: 432-687-7108</u>                                                                                                                                                                                                                                               |  |  |  |  |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| OCD Only                                                                                                                                                                                      |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Received by:                                                                                                                                                                                  | Date:                                                                                                                                                                                                                                                                         |  |  |  |  |  |  |
|                                                                                                                                                                                               | of liability should their operations have failed to adequately investigate and eater, human health, or the environment nor does not relieve the responsible regulations.                                                                                                      |  |  |  |  |  |  |
| Closure Approved by: Scott Rodgers                                                                                                                                                            | Date:01/23/2024                                                                                                                                                                                                                                                               |  |  |  |  |  |  |
| Printed Name: Scott Rodgers                                                                                                                                                                   | Title: Environmental Specialist Adv.                                                                                                                                                                                                                                          |  |  |  |  |  |  |
|                                                                                                                                                                                               |                                                                                                                                                                                                                                                                               |  |  |  |  |  |  |



# **CLOSURE REQUEST REPORT**

Hayhurst NM Section 26 Dignitas SWD
Eddy County, New Mexico
Incident Number nAPP2301837404

Prepared For: Chevron USA, Inc. 6301 Deauville Blvd. Midland, TX 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

#### **SYNOPSIS**

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc. (Chevron), presents the following Closure Request Report (CRR) detailing soil sampling activities for an inadvertent release of condensate and natural gas at the Hayhurst NM Section 26 Dignitas SWD (Site). Based on completed remedial actions and laboratory analytical results from recent soil sampling events, Chevron is requesting No Further Action (NFA) at the Site.

#### SITE LOCATION AND BACKGROUND

The Site is located in Unit I, Section 26, Township 25 South, Range 27 East, in Eddy County, New Mexico (32.098756°, -104.154525°) and is associated with oil and gas exploration and production operations on State Land. (**Figure 1** in **Appendix A**).

On January 5, 2023, failure of the flare pilot line caused the release of approximately 0.0095 barrels (bbls) of condensate and 1.5 thousand cubic feet (Mcf) of natural gas, which ignited as it fell to the ground and resulted in a fire. Chevron immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) via email on January 5, 2023, and on a Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on January 19, 2023, and was subsequently assigned Incident Number nAPP2301837404. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

#### SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech confirmed the Site was characterized according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

The closest well with available groundwater data is New Mexico Office of the State Engineer (NMOSE) well C-04371, located approximately 0.3 miles southwest of the Site. The well has a reported depth to groundwater of 69 feet below ground surface (bgs) from 2019. Based on this information and findings from the regional groundwater data review, depth to groundwater at the Site is estimated to be between 51 and 100 feet bgs. All well records referenced for depth to groundwater determination are included in **Appendix B**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a high potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included in **Figure 1** in **Appendix A**.

Closure Request Report Incident Number nAPP2301837404 Hayhurst NM Section 26 Dignitas SWD

pg. 2

Based on the results from the desktop review (specifically the BLM CFO karst designation), the following Closure Criteria was applied:

| Constituents of Concern (COCs)                          | Laboratory Analytical Method                   | Closure Criteria                    |
|---------------------------------------------------------|------------------------------------------------|-------------------------------------|
| Chloride                                                | (Environmental Protection<br>Agency) EPA 300.0 | 600 milligrams per kilogram (mg/kg) |
| Total Petroleum Hydrocarbon (TPH)                       | EPA 8015 M/D                                   | 100 mg/kg                           |
| Benzene                                                 | EPA 8021B                                      | 10 mg/kg                            |
| Benzene, Toluene, Ethylbenzene, Total<br>Xylenes (BTEX) | EPA 8021B                                      | 50 mg/kg                            |

## SITE ASSESSMENT AND DELINEATION SOIL SAMPLING ACTIVITIES

On August 10, 2023, Etech personnel conducted site assessment and delineation activities to characterize the subject release by verifying the presence or absence of residual soil impacts associated with AOC. Five delineation auger holes were advanced via hand auger to define the vertical and horizontal extent of the AOC. Two soil samples were collected from each delineation soil sampling location. Soil descriptions are included on soil sampling logs shown in **Appendix C**. The locations of the delineation soil samples are shown in **Figure 2** in **Appendix A**. Photographic documentation of excavation activities is included in **Appendix D**.

The delineation soil samples were placed directly into lab provided pre-cleaned jars, packed with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures, to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs.

## LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all delineation soil samples indicated all analyzed COCs were below the Site Closure Criteria. Laboratory analytical results are summarized in **Table 1** included in **Appendix E**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix F**.

#### **CLOSURE REQUEST**

Based on laboratory analytical results for delineation soil samples, Chevron believes delineation activities associated with the inadvertent release have verified the absence of residual soil impacts as per Site Closure Criteria, as well as defined the horizontal periphery of the AOC. As such, NFA appears warranted at this time and the CRR associated with Incident Number nAPP2301837404 should be respectfully considered for Closure by the NMOCD.

If you have any questions or comments, please do not hesitate to contact Blake Estep at (432) 894-6038 or <a href="mailto:blake@etechenv.com">blake@etechenv.com</a>. **Appendix G** provides correspondence email notification receipts associated with the subject release.

Sincerely,

Etech Environmental and Safety Solutions, Inc.

Blake Estep, Project Manager

Closure Request Report

Incident Number nAPP2301837404

Hayhurst NM Section 26 Dignitas SWD

pg. 3

cc: Amy Barnhill, Chevron

New Mexico Oil Conservation Division

State Land Office

## Appendices:

Appendix A: Figure 1: Site Map

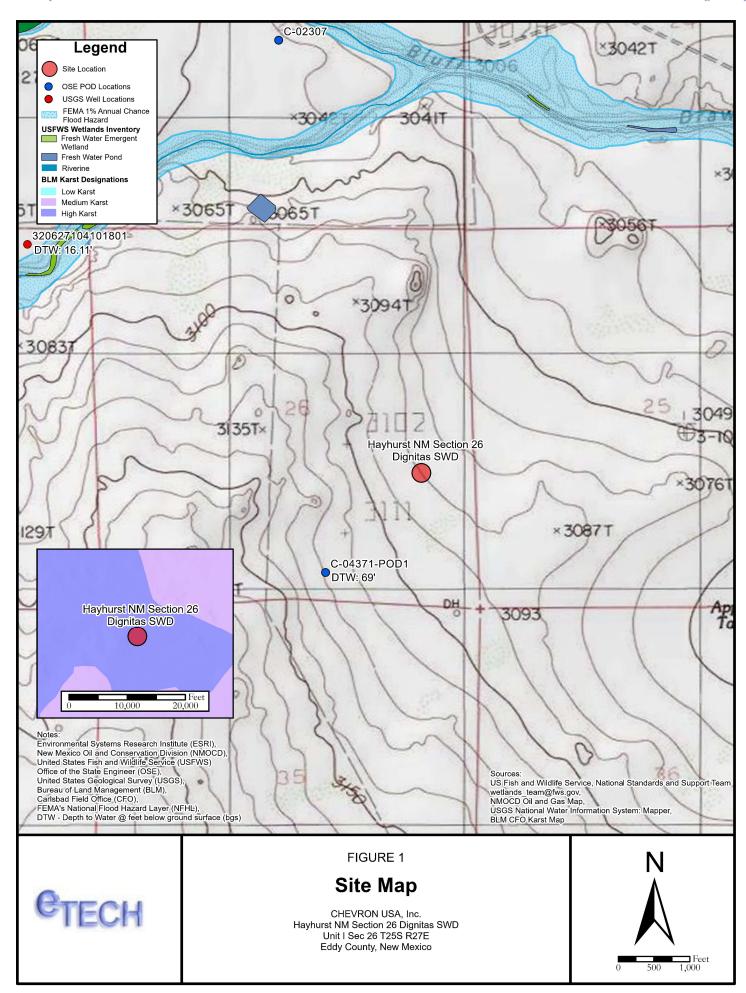
Figure 2: Delineation Soil Sample Locations

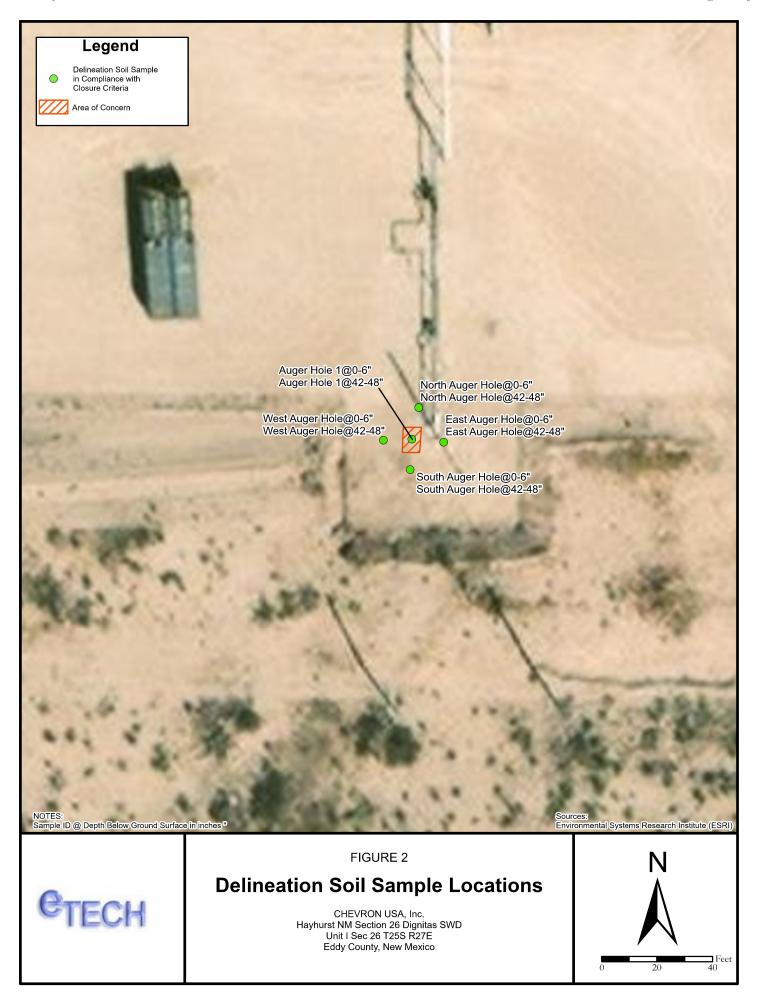
Appendix B: Referenced Well Records

**Appendix C**: Soil Sampling Logs **Appendix D**: Photographic Log

Appendix E: Tables

**Appendix F**: Laboratory Analytical Reports & Chain-of-Custody Documentation


Appendix G: NMOCD Notifications


# **APPENDIX A**

**Figures** 

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213







# **APPENDIX B**

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213





|                    |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       | <del> </del>                                     |                   |                                                  |                                       |              |
|--------------------|--------------------------------------------------|---------------------------------------|--------------------------------------------------|---------------------------------------------------|---------------------------------------|---------------------------------------|---------------------------------------|--------------------------------------------------|-------------------|--------------------------------------------------|---------------------------------------|--------------|
|                    | OSE POD NO                                       | ). (WELL NO                           | ·.)                                              |                                                   | WELL TAG ID N                         | O.                                    | <del> </del>                          | OSEFILE NO                                       | <b>S</b> ).       |                                                  |                                       |              |
| Ž                  | N/A                                              |                                       |                                                  |                                                   |                                       | C-4371                                |                                       |                                                  |                   |                                                  |                                       |              |
| Ē                  | WELL OWN                                         | ER NAME(S                             | )                                                |                                                   |                                       | PHONE (OPTIONAL)                      |                                       |                                                  |                   |                                                  |                                       |              |
| AND WELL LOCATION  | Tetra Tech                                       | Inc. on t                             | ehalf of Chevron N                               | I.A. E&P Co                                       |                                       | 432-687-81                            | 30                                    |                                                  |                   |                                                  |                                       |              |
| ĭ                  | WELL OWN                                         | ER MAILING                            | ADDRESS                                          |                                                   |                                       | CITY                                  |                                       | STATE                                            | ···               | ZIP                                              |                                       |              |
| 3                  | 901 W. Wa                                        |                                       |                                                  |                                                   |                                       |                                       |                                       | Midland                                          |                   | TX                                               | 79706                                 |              |
| <b>≥</b>           |                                                  | · · · · · · · · · · · · · · · · · · · |                                                  |                                                   |                                       |                                       | · · · · · · · · · · · · · · · · · · · | <u> </u>                                         |                   |                                                  |                                       |              |
| 3                  | WELL                                             |                                       | DI                                               | GREES 32                                          | MINUTES                               | SECO                                  |                                       |                                                  |                   |                                                  |                                       |              |
| 9                  | LOCATIO                                          | N LA                                  | TTUDE                                            | 32                                                | 5                                     | 41                                    | .91 N                                 | <b>!</b>                                         | REQUIRED: ONE TEN | TH OF A S                                        | ECOND                                 |              |
| ER.                | (FROM GP                                         | rs) Loi                               | NGITUDE                                          | 104                                               | 9                                     | 31                                    | .92 W                                 | * DATUM RE                                       | QUIRED: WGS 84    |                                                  |                                       |              |
| GENERAL            | DESCRIPTION                                      |                                       | IG WELL LOCATION TO                              | STREET ADDR                                       | ESS AND COMMO                         | ON LANDA                              | IARKS - PLS                           | S (SECTION, TO                                   | WNSHITP RANGE) WE | FRE AVAI                                         | LABLE                                 |              |
| 1.6                |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       | 0 (0001202,) 10                                  |                   |                                                  |                                       |              |
|                    |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       |                                                  |                   |                                                  |                                       |              |
|                    | LICENSE NO                                       | ).                                    | NAME OF LICENSED                                 | DRILLER                                           |                                       |                                       |                                       |                                                  | NAME OF WELL DR   | ILLING CC                                        | MPANY                                 |              |
|                    | WD-1                                             | 1456                                  |                                                  |                                                   | John W. White                         | <b>e</b>                              |                                       |                                                  | White I           | rilling Co                                       | mpany, Inc                            |              |
|                    | DRILLING S                                       | TARTED                                | DRILLING ENDED                                   | DEPTH OF CO                                       | MPLETED WELL                          | (FT)                                  | BORE HO                               | LE DEPTH (FT)                                    | DEPTH WATER FIR   | ST ENCOU                                         | NTERED (FT)                           |              |
|                    | 10/17/                                           | 2019                                  | 10/17/2019                                       |                                                   |                                       |                                       | L                                     | 100                                              |                   | 69                                               |                                       |              |
|                    |                                                  |                                       | <u> </u>                                         | ··· · <del></del>                                 | <del>. "</del>                        |                                       | <u> </u>                              | <del></del>                                      | STATIC WATER LEV  | EL IN CO                                         | MPLETED WE                            | LL (FT)      |
| _                  | COMPLETE                                         | WELL IS:                              | ARTESIAN                                         | DRY HOL                                           | E 📝 SHALL                             | OW (UNC                               | ONFINED)                              |                                                  |                   | 69                                               |                                       | ,            |
| CASING INFORMATION | DRILLING FI                                      | rano.                                 | ✓ AIR                                            | MUD                                               | ADDET                                 | IVES – SPE                            | CIEV.                                 |                                                  | <u> </u>          |                                                  | · · · · · · · · · · · · · · · · · · · |              |
| TV1                |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       |                                                  | <del></del>       |                                                  |                                       |              |
| SK.                | DRILLING M                                       | ETHOD:                                | ROTARY                                           | HAMMER                                            | CABLE                                 | TOOL                                  | OTHE                                  | R – SPECIFY:                                     |                   |                                                  |                                       |              |
| Ž                  | DEPTH                                            | (feet bgl)                            | BORE HOLE                                        | CASING                                            | MATERIAL AN                           | ID/OR                                 | C.                                    | ASING                                            | CASING            | CASIN                                            | IG WALL                               | SLOT         |
| ည                  | FROM                                             | TO                                    | DIAM                                             | GRADE<br>(include each casing string, and         |                                       |                                       |                                       | NECTION                                          | INSIDE DIAM.      |                                                  | KNESS                                 | SIZE         |
| SI                 |                                                  |                                       | (inches)                                         |                                                   | eacn casing sum<br>sections of scree  |                                       |                                       | YPE<br>ling diameter)                            | (inches)          | (iı                                              | iches)                                | (inches)     |
|                    |                                                  |                                       | <del> </del>                                     | <del> </del>                                      | · · · · · · · · · · · · · · · · · · · |                                       | (                                     |                                                  |                   | _                                                |                                       | <u> </u>     |
| DRILLING &         |                                                  |                                       |                                                  | <del>                                     </del>  |                                       |                                       | <u> </u>                              |                                                  |                   | <del> </del>                                     | <del></del>                           | <del> </del> |
| E                  |                                                  |                                       | <del>                                     </del> | <del> </del>                                      |                                       |                                       |                                       | · · · · · · · · · · · · · · · · · · ·            | <u> </u>          | <del>                                     </del> | ····                                  | 1            |
|                    |                                                  |                                       |                                                  | <del>                                      </del> |                                       |                                       |                                       |                                                  |                   |                                                  |                                       |              |
| 互                  |                                                  |                                       |                                                  | <del> </del>                                      |                                       | <del></del>                           |                                       | <del>*************************************</del> |                   | <del>                                     </del> |                                       |              |
| 7                  |                                                  |                                       |                                                  | <b></b>                                           |                                       |                                       | <del> </del> -                        |                                                  |                   |                                                  | ens                                   | إنجنت        |
|                    |                                                  |                                       |                                                  | <del>                                     </del>  |                                       |                                       |                                       |                                                  |                   | <del> </del>                                     | ( )                                   |              |
|                    | L                                                |                                       |                                                  | <u> </u>                                          |                                       |                                       |                                       |                                                  |                   |                                                  | +                                     | 1            |
|                    |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       |                                                  |                   |                                                  | 1:3                                   |              |
| :                  |                                                  |                                       |                                                  |                                                   |                                       |                                       | ļ                                     |                                                  |                   |                                                  | 7-3                                   | 11.1         |
|                    |                                                  | <u> </u>                              |                                                  |                                                   |                                       |                                       |                                       | ,2                                               | <u> </u>          | <u> </u>                                         |                                       | 1            |
|                    | DEPTH                                            | (feet bgl)                            | BORE HOLE                                        | L.I.                                              | ST ANNULAR                            | SEAL MA                               | TERIAL A                              | ND ONL                                           | AMOUNT            |                                                  | метно                                 | D OF G       |
| VΓ                 | FROM                                             | TO                                    | DIAM. (inches)                                   | GRA                                               | VEL PACK SIZ                          | E-RANG                                | E BY INTE                             | RVAL                                             | (cubic feet)      |                                                  | PLACE                                 | MENT         |
| E                  |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       | ·, · · · ·                                       |                   |                                                  | ····                                  | , ,          |
| ΑŢ                 |                                                  |                                       |                                                  | <del>                                     </del>  | · · · · · · · · · · · · · · · · · · · |                                       |                                       |                                                  |                   | <del></del>                                      | <del>,</del>                          |              |
| W                  |                                                  | · · · -                               |                                                  |                                                   | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · · | <del></del>                           |                                                  | <u> </u>          | <del>-  -</del>                                  |                                       |              |
| ANNULAR MATERIAL   | <b> </b>                                         |                                       |                                                  |                                                   |                                       |                                       |                                       |                                                  | <u></u>           |                                                  |                                       |              |
| Z                  | <del>                                     </del> |                                       |                                                  | <del> </del>                                      |                                       |                                       | ·                                     |                                                  | <del> </del>      |                                                  |                                       |              |
|                    |                                                  |                                       | <u> </u>                                         | ╀                                                 |                                       |                                       |                                       | <del></del>                                      |                   | ·   -                                            |                                       |              |
| ૡ                  |                                                  |                                       |                                                  | <u> </u>                                          |                                       |                                       |                                       |                                                  |                   |                                                  |                                       | 4. <u> </u>  |
|                    | <u> </u>                                         |                                       | <u></u>                                          | <u></u>                                           |                                       |                                       |                                       |                                                  | <u> </u>          |                                                  |                                       |              |
|                    |                                                  |                                       |                                                  |                                                   |                                       |                                       |                                       |                                                  |                   |                                                  |                                       |              |

 FOR OSE INTERNAL USE
 WR-20 WELL RECORD & LOG (Version 04/30/19)

 FILE NO.
 POD NO.
 TRN NO.

 LOCATION
 WELL TAG ID NO.
 PAGE 1 OF 2

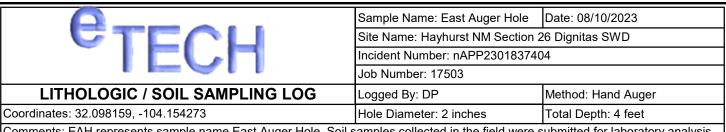
| F                           |                 |                                       |                     |                                       |                                                                          |                                       |         |                          |          |                                                |
|-----------------------------|-----------------|---------------------------------------|---------------------|---------------------------------------|--------------------------------------------------------------------------|---------------------------------------|---------|--------------------------|----------|------------------------------------------------|
|                             | DEPTH (i        | feet bgi)<br>TO                       | THICKNESS<br>(feet) | INCLUDE WATE                          | ID TYPE OF MATERIAL<br>ER-BEARING CAVITIES<br>oplemental sheets to fully | OR FRACTURE ZON                       | ES      | WATE<br>BEARIN<br>(YES/N | īG?      | ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm) |
|                             | 0               | 5                                     | 5                   |                                       | Tan clayey sand                                                          | · · · · · · · · · · · · · · · · · · · |         | Υ,                       | / N      | . <u> </u>                                     |
|                             | 5               | 100                                   | 95                  |                                       | Gypsum                                                                   |                                       |         | √ Y                      | N        |                                                |
|                             |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
| 7                           |                 |                                       |                     |                                       |                                                                          | · · · · · · · · · · · · · · · · · · · | _       | Y                        | N        |                                                |
| 4 Hydrogeologic log of well |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
| OF                          |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
| 90                          |                 |                                       |                     |                                       | <del></del>                                                              |                                       |         | Y                        | N        |                                                |
| 1C1                         |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
| 59                          |                 |                                       |                     |                                       |                                                                          | ·                                     |         | Y                        | N        |                                                |
| EO                          |                 |                                       |                     |                                       | · · · · · · · · · · · · · · · · · · ·                                    |                                       |         | Ý                        | N        |                                                |
| 202                         |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
| E                           |                 |                                       |                     | -                                     |                                                                          |                                       |         | Y                        | N        |                                                |
| 4                           |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       | <u></u>                                                                  |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       | · · · · · · · · · · · · · · · · · · ·                                    |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       | <u></u>                                                                  |                                       |         | Y                        | N        |                                                |
|                             |                 | · · · · · · · · · · · · · · · · · · · |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     |                                       |                                                                          |                                       |         | Y                        | N        |                                                |
|                             |                 |                                       |                     | · · · · · · · · · · · · · · · · · · · | · · · · · · · · · · · · · · · · · · ·                                    |                                       |         | Y                        | N        |                                                |
|                             | METHOD U        | SED TO E                              | STIMATE YIELD       | OF WATER-BEARIN                       | G STRATA:                                                                |                                       | тотл    | AL ESTIMA                | TED      |                                                |
|                             | ☐ PUMI          | · 🗆                                   | JR LIFT             | BAILER O                              | THER - SPECIFY:                                                          |                                       | WEI     | L YIELD (                | gpm):    | 0.00                                           |
| Z.                          | -WELL TES       |                                       |                     |                                       | A COLLECTED DURING                                                       |                                       |         |                          |          |                                                |
| TEST; RIG SUPERVISION       | MISCELLA        | NEOUS IN                              | FORMATION:          |                                       |                                                                          |                                       |         |                          | ••       |                                                |
| PER                         |                 |                                       |                     |                                       |                                                                          |                                       |         |                          |          |                                                |
| S                           |                 |                                       |                     |                                       |                                                                          |                                       |         |                          |          |                                                |
| <b>E</b>                    |                 |                                       |                     |                                       |                                                                          |                                       |         |                          |          |                                                |
| TS                          | DDINT NAS       | (P(9) OF D                            | DIT 1 DIZ CIPET     | VACODES THAT BRO                      | VIDED ONSITE SUPERV                                                      | ASION OF MELL CO                      | NOTOTI  | CHON OTH                 | пр ти    | AN FICENSEE.                                   |
| EE '8                       | Dallas Rade     |                                       | RILL RRI SUFER      | visons) inai rao                      | VIDED ONSITE SOFER                                                       | ISION OF WELL CO                      | MS I KU | CIRONOIL                 | LEIK III | AN LICENSEL.                                   |
|                             | BY SIGNIN       | G BELOW                               | , I CERTIFY TH      | AT TO THE BEST O                      | F MY KNOWLEDGE A                                                         | ND BELIEF, THE FO                     | REGOI   | NG IS A T                | RUE A    | ND CORRECT                                     |
| TURE                        | RECORD O        | THE ABO                               | OVE DESCRIBED       | WELL, I ALSO CERT                     | TFY THAT THE WELL T<br>HOLDER WITHIN 30 DAY                              | AG, IF REQUIRED, H                    | IAS BEE | 'N INSTALI               | ED AN    | ID THAT THIS                                   |
| SIGNATURE                   |                 | K                                     | ∌                   |                                       |                                                                          |                                       | 16      | 2819                     | }        |                                                |
| 145                         |                 | SIGNAT                                | TURE OF DRILLE      | ER / PRINT SIGNEE                     | NAME                                                                     |                                       | 44      | <del>/- / /</del>        | ATE      | · <del></del>                                  |
|                             | - /             |                                       |                     |                                       |                                                                          |                                       |         |                          |          |                                                |
|                             | R OSE INTER     | NAL USE                               |                     |                                       | POD NO                                                                   | 7                                     | ELL RE  | CORD & LO                | OG (Vei  | sion 04/30/2019)                               |
|                             | E NO.<br>CATION |                                       |                     |                                       | POD NO.                                                                  | TRN NO.                               |         |                          | ·····    | PAGE 2 OF 2                                    |


# **APPENDIX C**

Soil Sampling Logs

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

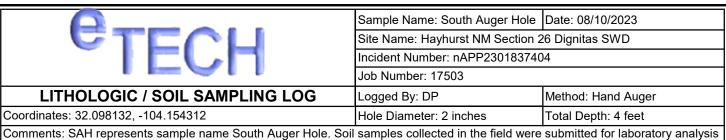



## Date: 08/10/2023 Sample Name: Auger Hole 1 Site Name: Hayhurst NM Section 26 Dignitas SWD Incident Number: nAPP2301837404 Job Number: 17503 LITHOLOGIC / SOIL SAMPLING LOG Logged By: DP Method: Hand Auger Coordinates: 32.098162, -104.154310 Hole Diameter: 2 inches Total Depth: 4 feet Comments: AH-1 represents sample name Auger Hole 1. Soil samples collected in the field were submitted for laboratory analysis of BTEX, TPH and chloride. USCS/Rock Symbol Sample Depth (feet bgs) Depth (feet bgs) Sample ID Chloride Staining (mdd) **Lithologic Descriptions/Notes** Dry No 0-4': brown, f.-m. SILTY SAND, dry, non-plastic, noncohesive, poorly graded, no stainging, no odor Dry AH-1 1 No 2 Dry No No Dry 3 Dry No AH-1 4 Total Depth



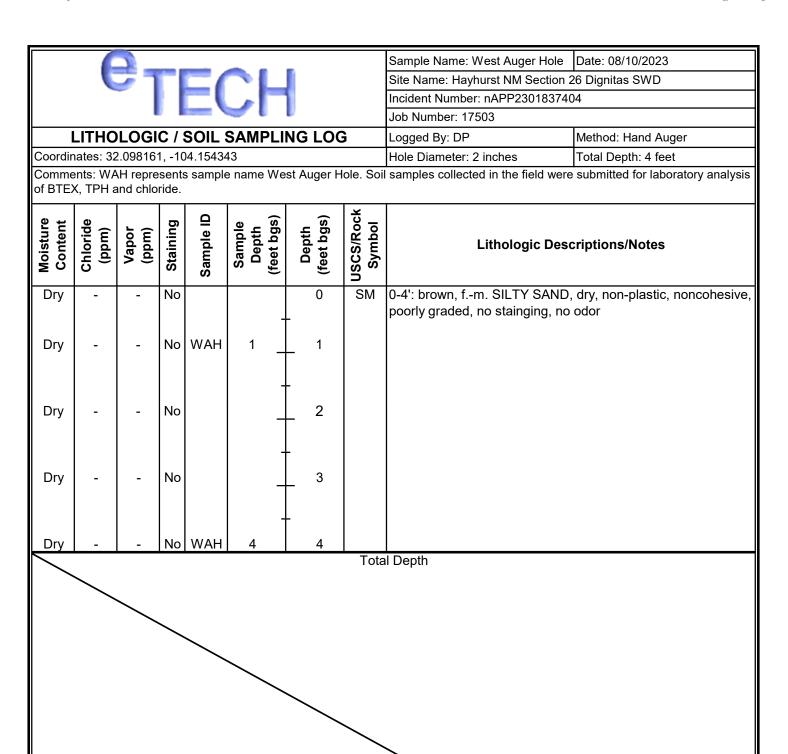
of BTEX, TPH and chloride.

| Moisture<br>Content | Chloride<br>(ppm) | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(feet bgs) | Depth<br>(feet bgs) | USCS/Rock<br>Symbol | Lithologic Descriptions/Notes                                                                    |
|---------------------|-------------------|----------------|----------|-----------|-------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------|
| Dry                 | -                 | -              | No       |           |                               | 0                   |                     | 0-4': brown, fm. SILTY SAND, dry, non-plastic, noncohesive, poorly graded, no stainging, no odor |
|                     |                   |                |          |           | -                             | -                   |                     | poorly graded, no stainging, no odoi                                                             |
| Dry                 | -                 | -              | No       | NAH       | 1 _                           | _ 1                 |                     |                                                                                                  |
|                     |                   |                |          |           |                               |                     |                     |                                                                                                  |
| Dry                 | _                 | _              | No       |           |                               | 2                   |                     |                                                                                                  |
| Diy                 | -                 |                |          |           | _                             |                     |                     |                                                                                                  |
|                     |                   |                |          |           | _                             | -                   |                     |                                                                                                  |
| Dry                 | -                 | -              | No       |           | _                             | _ 3                 |                     |                                                                                                  |
|                     |                   |                |          |           |                               |                     |                     |                                                                                                  |
|                     |                   |                |          |           | -                             | -                   |                     |                                                                                                  |
| Dry                 | -                 | -              | No       | NAH       | 4                             | 4                   |                     |                                                                                                  |


Total Depth



Comments: EAH represents sample name East Auger Hole. Soil samples collected in the field were submitted for laboratory analysis of BTEX, TPH and chloride.


| Moisture<br>Content | Chloride<br>(ppm) | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(feet bgs) | Depth<br>(feet bgs) | USCS/Rock<br>Symbol | Lithologic Descriptions/Notes                                                                    |
|---------------------|-------------------|----------------|----------|-----------|-------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------|
| Dry                 | -                 | -              | No       |           | -                             | 0                   |                     | 0-4': brown, fm. SILTY SAND, dry, non-plastic, noncohesive, poorly graded, no stainging, no odor |
| Dry                 | -                 | -              | No       | EAH       | 1 _                           | _ 1                 |                     |                                                                                                  |
| Dry                 | -                 | -              | No       |           | _                             | -<br>_ 2            |                     |                                                                                                  |
| Dry                 | -                 | -              | No       |           | _                             | -<br>- 3            |                     |                                                                                                  |
| Dry                 | <u>-</u>          | _              | No       | EAH       | 4                             | -<br>4              |                     |                                                                                                  |

Total Depth



Comments: SAH represents sample name South Auger Hole. Soil samples collected in the field were submitted for laboratory analysis of BTEX, TPH and chloride.

| Moisture<br>Content | Chloride<br>(ppm) | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(feet bgs) | Depth<br>(feet bgs) | USCS/Rock<br>Symbol | Lithologic Descriptions/Notes                                                                    |
|---------------------|-------------------|----------------|----------|-----------|-------------------------------|---------------------|---------------------|--------------------------------------------------------------------------------------------------|
| Dry                 | -                 | -              | No       |           | _                             | -<br>-              |                     | 0-4': brown, fm. SILTY SAND, dry, non-plastic, noncohesive, poorly graded, no stainging, no odor |
| Dry                 | -                 | -              | No       | SAH       | 1 _                           | _ 1                 |                     |                                                                                                  |
| Dry                 | -                 | -              | No       |           | _                             | -<br>_ 2            |                     |                                                                                                  |
| Dry                 | -                 | -              | No       |           | -                             | -<br>_ 3            |                     |                                                                                                  |
| Dry                 | -                 | _              | No       | SAH       | 4                             | 4                   |                     |                                                                                                  |



# APPENDIX D

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



# **e**TECH

## **PHOTOGRAPHIC LOG**

Chevron USA, Inc.
Hayhurst NM Section 26 Dignitas SWD
Incident Number nAPP2301837404



Photograph 1 Date: 01/25/2023

Description: Northeastern view of the Area of

Concern, courtesy of Chevron



Photograph 2 Date: 01/25/2023

Description: Southern view of the Area of

Concern, courtesy of Chevron



Photograph 3 Date: 08/10/2023

Description: Northern view of delineation

activities



Photograph 4 Date: 08/10/2023
Description: Northeastern view of delineation activities

# **APPENDIX E**

**Tables** 

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213





# Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Hayhurst NM Section 26 Dignitas SWD Eddy County, New Mexico

| Sample I.D.                       | Sample<br>Date     | Sample Depth<br>(inches bgs) | Sample Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg)  | TPH GRO<br>(mg/kg)   | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
|-----------------------------------|--------------------|------------------------------|----------------------------|--------------------|------------------------|----------------------|--------------------|--------------------|----------------------|---------------------|
| NMOCD Table I Closur<br>19.15.29) | e Criteria for Soi | Is Impacted by a             | Release (NMAC              | 10                 | 50                     | NE                   | NE                 | NE                 | 100                  | 600                 |
|                                   |                    |                              |                            | Delinea            | ion Soil Samples - Inc | ident Number nAPP230 | D1837404           |                    |                      |                     |
| Auger Hole 1                      | 08/10/2023         | 0 - 6                        | 0 - 0.5                    | <0.00202           | <0.00403               | <49.8                | <49.8              | <49.8              | <49.8                | 46.7                |
| Auger Hole 1                      | 08/10/2023         | 42 - 48                      | 3.5 - 4                    | <0.00200           | <0.00401               | <50.3                | <50.3              | <50.3              | <50.3                | 35.4                |
| North Auger Hole                  | 08/10/2023         | 0 - 6                        | 0 - 0.5                    | <0.00202           | <0.00404               | <50.5                | <50.5              | <50.5              | <50.5                | 48.4                |
| North Auger Hole                  | 08/10/2023         | 42 - 48                      | 3.5 - 4                    | <0.00200           | <0.00399               | <50.1                | <50.1              | <50.1              | <50.1                | 40.0                |
| East Auger Hole                   | 08/10/2023         | 0 - 6                        | 0 - 0.5                    | <0.00198           | <0.00396               | <50.1                | <50.1              | <50.1              | <50.1                | 50.3                |
| East Auger Hole                   | 08/10/2023         | 42 - 48                      | 3.5 - 4                    | <0.00199           | <0.00398               | <50.5                | <50.5              | <50.5              | <50.5                | 62.4                |
| South Auger Hole                  | 08/10/2023         | 0 - 6                        | 0 - 0.5                    | <0.00199           | <0.00398               | <50.0                | <50.0              | <50.0              | <50.0                | 41.5                |
| South Auger Hole                  | 08/10/2023         | 42 - 48                      | 3.5 - 4                    | <0.00199           | <0.00398               | <49.9                | <49.9              | <49.9              | <49.9                | 41.6                |
| West Auger Hole                   | 08/10/2023         | 0 - 6                        | 0 - 0.5                    | <0.00198           | <0.00397               | <49.6                | <49.6              | <49.6              | <49.6                | 80.3                |
| West Auger Hole                   | 08/10/2023         | 42 - 48                      | 3.5 - 4                    | <0.00202           | <0.00404               | <49.7                | <49.7              | <49.7              | <49.7                | 47.3                |

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Concentrations in bold exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard for Soils Impacted by a Release

# **APPENDIX F**

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



**Environment Testing** 

## **ANALYTICAL REPORT**

## PREPARED FOR

Attn: Blake Estep Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711

Generated 8/21/2023 2:34:12 PM

## **JOB DESCRIPTION**

Hayhurst NM Sec26 Dignitas SWD

## **JOB NUMBER**

880-31941-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

## **Eurofins Midland**

## **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## **Authorization**

Generated 8/21/2023 2:34:12 PM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440

Laboratory Job ID: 880-31941-1

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 6  |
| Surrogate Summary      | 14 |
| QC Sample Results      | 15 |
| QC Association Summary | 19 |
| Lab Chronicle          | 22 |
| Certification Summary  | 26 |
| Method Summary         | 27 |
| Sample Summary         | 28 |
| Chain of Custody       | 29 |
| Receipt Checklists     | 30 |

3

6

8

10

11

12

14

## **Definitions/Glossary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

## **Qualifiers**

## **GC VOA**

Qualifier Description

U Indicates the analyte was analyzed for but not detected.

#### **GC Semi VOA**

#### Qualifier Qualifier Description

S1+ Surrogate recovery exceeds control limits, high biased.
U Indicates the analyte was analyzed for but not detected.

#### HPLC/IC

Qualifier Qualifier Description

U Indicates the analyte was analyzed for but not detected.

## **Glossary**

| Abbreviation | These commonly used abbreviations may or may not be present in this report.                |
|--------------|--------------------------------------------------------------------------------------------|
| ¤            | Listed under the "D" column to designate that the result is reported on a dry weight basis |
| %R           | Percent Recovery                                                                           |
| CFL          | Contains Free Liquid                                                                       |

CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

**Eurofins Midland** 

9

3

4

6

7

10

12

13

#### Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Job ID: 880-31941-1

**Laboratory: Eurofins Midland** 

Narrative

Job Narrative 880-31941-1

#### Receipt

The samples were received on 8/10/2023 4:43 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.4°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: Augerhole 1 (880-31941-1), Augerhole 1 (880-31941-2), North augerhole (880-31941-3), North augerhole (880-31941-4), East augerhole (880-31941-5), East augerhole (880-31941-6), South augerhole (880-31941-7), South augerhole (880-31941-8), West augerhole (880-31941-9) and West augerhole (880-31941-10).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-60525 recovered above the upper control limit for Benzene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated samples are impacted: (CCV 880-60525/20) and (CCV 880-60525/33).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD\_NM: The surrogate recovery for the blank associated with preparation batch 880-60593 and analytical batch 880-60630 was outside the upper control limits.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: Augerhole 1 (880-31941-1), Augerhole 1 (880-31941-2), North augerhole (880-31941-3), North augerhole (880-31941-4), East augerhole (880-31941-5), East augerhole (880-31941-6), South augerhole (880-31941-8), West augerhole (880-31941-10), (880-31941-10), (880-31941-10), (880-31941-10), (880-31941-10), Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-60630/20) and (CCV 880-60630/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

Method 300\_ORGFM\_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-59908 and 880-59908 and analytical batch 880-60057 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits. The associated samples are: Augerhole 1 (880-31941-1), Augerhole 1 (880-31941-2), North augerhole (880-31941-4), East augerhole (880-31941-5), East augerhole (880-31941-6), South augerhole (880-31941-7), South augerhole (880-31941-8) and West augerhole (880-31941-9).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

3

4

5

<del>-</del>

10

12

13

| 4

## **Client Sample Results**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Lab Sample ID: 880-31941-1

Matrix: Solid

Client Sample ID: Augerhole 1

Date Collected: 08/10/23 10:13 Date Received: 08/10/23 16:43

Sample Depth: 0-6"

| Analyte                                                                                                           | Result                                    | Qualifier                      | RL                               | MDL  | Unit           | D              | Prepared                                                 | Analyzed                                                 | Dil Fac                       |
|-------------------------------------------------------------------------------------------------------------------|-------------------------------------------|--------------------------------|----------------------------------|------|----------------|----------------|----------------------------------------------------------|----------------------------------------------------------|-------------------------------|
| Benzene                                                                                                           | <0.00202                                  | U                              | 0.00202                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| Toluene                                                                                                           | <0.00202                                  | U                              | 0.00202                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| Ethylbenzene                                                                                                      | <0.00202                                  | U                              | 0.00202                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| m-Xylene & p-Xylene                                                                                               | <0.00403                                  | U                              | 0.00403                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| o-Xylene                                                                                                          | <0.00202                                  | U                              | 0.00202                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| Xylenes, Total                                                                                                    | <0.00403                                  | U                              | 0.00403                          |      | mg/Kg          |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| Surrogate                                                                                                         | %Recovery                                 | Qualifier                      | Limits                           |      |                |                | Prepared                                                 | Analyzed                                                 | Dil Fac                       |
| 4-Bromofluorobenzene (Surr)                                                                                       | 75                                        |                                | 70 - 130                         |      |                |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| 1,4-Difluorobenzene (Surr)                                                                                        | 113                                       |                                | 70 - 130                         |      |                |                | 08/18/23 15:22                                           | 08/18/23 23:02                                           | 1                             |
| Method: TAL SOP Total BTEX - 1                                                                                    | otal BTEX Cald                            | culation                       |                                  |      |                |                |                                                          |                                                          |                               |
| Analyte                                                                                                           | Result                                    | Qualifier                      | RL                               | MDL  | Unit           | D              | Prepared                                                 | Analyzed                                                 | Dil Fac                       |
| Method: SW846 8015 NM - Diese<br>Analyte                                                                          |                                           | ics (DRO) (<br>Qualifier       | GC)<br>RL                        | MDL  | Unit           | D              | Prepared                                                 | Analyzed                                                 | Dil Fac                       |
| Total TPH                                                                                                         | <del>Kesuit</del>                         |                                | 49.8                             | WIDL | mg/Kg          | — <del>-</del> | Prepared                                                 | 08/21/23 14:40                                           | 1                             |
| Method: SW846 8015B NM - Dies                                                                                     | sel Range Orga                            | nics (DRO)                     | (GC)                             |      |                |                |                                                          |                                                          |                               |
| Analyte                                                                                                           |                                           | Qualifier                      | RL                               | MDL  | Unit           | D              | Prepared                                                 | Analyzed                                                 | Dil Fac                       |
| Gasoline Range Organics<br>(GRO)-C6-C10                                                                           | <49.8                                     | U                              | 49.8                             |      | mg/Kg          |                | 08/18/23 18:02                                           | 08/20/23 10:36                                           |                               |
|                                                                                                                   |                                           |                                |                                  |      |                |                |                                                          |                                                          | 1                             |
| Diesel Range Organics (Over C10-C28)                                                                              | <49.8                                     | U                              | 49.8                             |      | mg/Kg          |                | 08/18/23 18:02                                           | 08/20/23 10:36                                           |                               |
| Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                      | <49.8<br><49.8                            |                                | 49.8<br>49.8                     |      | mg/Kg<br>mg/Kg |                | 08/18/23 18:02<br>08/18/23 18:02                         | 08/20/23 10:36<br>08/20/23 10:36                         | 1                             |
| C10-C28)                                                                                                          |                                           | U                              |                                  |      |                |                |                                                          |                                                          | 1                             |
| C10-C28) OII Range Organics (Over C28-C36)                                                                        | <49.8                                     | U                              | 49.8                             |      |                |                | 08/18/23 18:02                                           | 08/20/23 10:36                                           | 1<br>Dil Fac                  |
| C10-C28) Oll Range Organics (Over C28-C36) Surrogate                                                              | <49.8<br><b>%Recovery</b>                 | U<br>Qualifier<br>S1+          | 49.8 <i>Limits</i>               |      |                |                | 08/18/23 18:02  Prepared                                 | 08/20/23 10:36  Analyzed                                 | Dil Fac                       |
| C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane o-Terphenyl  Method: EPA 300.0 - Anions, Ion | <49.8  **Recovery  145  150  Chromatograp | Qualifier S1+ S1+ Shy - Solubl | 49.8  Limits  70 - 130  70 - 130 |      | mg/Kg          |                | 08/18/23 18:02  Prepared  08/18/23 18:02  08/18/23 18:02 | 08/20/23 10:36  Analyzed  08/20/23 10:36  08/20/23 10:36 | 1<br>1<br><i>Dil Fac</i><br>1 |
| C10-C28) Oll Range Organics (Over C28-C36)  Surrogate 1-Chlorooctane o-Terphenyl                                  | <49.8  **Recovery  145  150  Chromatograp | Qualifier S1+ S1+              | 49.8  Limits  70 - 130  70 - 130 | MDL  | mg/Kg          | <u>D</u>       | 08/18/23 18:02  Prepared  08/18/23 18:02                 | 08/20/23 10:36  Analyzed  08/20/23 10:36                 | 1 1 1 Dil Fac                 |

Client Sample ID: Augerhole 1

Date Collected: 08/10/23 10:22

Date Received: 08/10/23 16:43

Sample Depth: 42-48"

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| m-Xylene & p-Xylene         | <0.00401  | U         | 0.00401  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| Xylenes, Total              | <0.00401  | U         | 0.00401  |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 88        |           | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/18/23 23:22 | 1       |

**Eurofins Midland** 

Lab Sample ID: 880-31941-2

2

4

\_

0

10

12

. .

Matrix: Solid

## **Client Sample Results**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Client Sample ID: Augerhole 1

Date Collected: 08/10/23 10:22 Date Received: 08/10/23 16:43

Sample Depth: 42-48"

Lab Sample ID: 880-31941-2

Lab Sample ID: 880-31941-3

Matrix: Solid

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 1,4-Difluorobenzene (Surr)
 108
 70 - 130
 08/18/23 15:22
 08/18/23 23:22
 1

Method: TAL SOP Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00401</td>
 U
 0.00401
 mg/Kg
 08/21/23 11:05
 1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total TPH
 <50.3</td>
 U
 50.3
 mg/Kg
 08/21/23 14:40
 1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

**MDL** Unit Analyte Result Qualifier RL D Prepared Analyzed Dil Fac <50.3 U 50.3 mg/Kg 08/18/23 18:02 Gasoline Range Organics 08/20/23 11:41 (GRO)-C6-C10 <50.3 U 50.3 08/18/23 18:02 08/20/23 11:41 Diesel Range Organics (Over mg/Kg C10-C28) OII Range Organics (Over C28-C36) <50.3 U 50.3 mg/Kg 08/18/23 18:02 08/20/23 11:41

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 134 S1+ 70 - 130 08/18/23 18:02 08/20/23 11:41 149 S1+ 70 - 130 08/18/23 18:02 08/20/23 11:41 o-Terphenyl

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Chloride
 35.4
 4.95
 mg/Kg
 08/12/23 23:41
 1

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:25

Date Received: 08/10/23 16:43

Sample Depth: 0-6"

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 0.00202 mg/Kg 08/18/23 15:22 08/18/23 23:43 Toluene <0.00202 U 0.00202 08/18/23 15:22 08/18/23 23:43 mg/Kg <0.00202 U 0.00202 08/18/23 15:22 08/18/23 23:43 Ethylbenzene mg/Kg 0.00404 08/18/23 23:43 m-Xylene & p-Xylene <0.00404 U 08/18/23 15:22 mg/Kg o-Xylene <0.00202 U 0.00202 mg/Kg 08/18/23 15:22 08/18/23 23:43 Xylenes, Total <0.00404 U 0.00404 mg/Kg 08/18/23 15:22 08/18/23 23:43

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 86 70 - 130 08/18/23 15:22 4-Bromofluorobenzene (Surr) 08/18/23 23:43 1,4-Difluorobenzene (Surr) 122 70 - 130 08/18/23 15:22 08/18/23 23:43

Method: TAL SOP Total BTEX - Total BTEX Calculation

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Fac

 Total BTEX
 <0.00404</td>
 U
 0.00404
 mg/Kg
 5
 0.08/21/23 11:05
 1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

 Analyte
 Result
 Qualifier
 RL
 MDL
 Unit
 D
 Prepared
 Analyzed
 Dil Factor

 Total TPH
 <50.5</td>
 U
 50.5
 mg/Kg
 08/21/23 14:40
 1

**Eurofins Midland** 

5

3

7

0

10

12

13

## **Client Sample Results**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:25 Date Received: 08/10/23 16:43

Sample Depth: 0-6"

|     | _   | _   |     |     |     |      | _ |
|-----|-----|-----|-----|-----|-----|------|---|
| Lab | Sam | ple | ID: | 880 | -31 | 941- | 3 |

Lab Sample ID: 880-31941-4

Matrix: Solid

Matrix: Solid

| Analyte                           | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.5        | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:03 | 1       |
| (GRO)-C6-C10                      |              |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.5        | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:03 | 1       |
| C10-C28)                          |              |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.5        | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:03 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 123          |             | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 12:03 | 1       |
| o-Terphenyl                       | 132          | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 12:03 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |     |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 48.4         |             | 4.95     |     | mg/Kg |   |                | 08/12/23 23:48 | 1       |

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:35 Date Received: 08/10/23 16:43

Sample Depth: 42-48"

| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|----------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                                 | <0.00200       | U           | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| Toluene                                 | <0.00200       | U           | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| Ethylbenzene                            | <0.00200       | U           | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| m-Xylene & p-Xylene                     | <0.00399       | U           | 0.00399  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| o-Xylene                                | <0.00200       | U           | 0.00200  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| Xylenes, Total                          | <0.00399       | U           | 0.00399  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)             | 86             |             | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| 1,4-Difluorobenzene (Surr)              | 118            |             | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 00:04 | 1       |
| Method: TAL SOP Total BTEX - T          | otal BTEX Cald | culation    |          |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                              | <0.00399       | U           | 0.00399  |     | mg/Kg |   |                | 08/21/23 11:05 | 1       |
| Method: SW846 8015 NM - Diese           | l Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                               | <50.1          | U           | 50.1     |     | mg/Kg |   |                | 08/21/23 14:40 | 1       |
| Method: SW846 8015B NM - Dies           | sel Range Orga | nics (DRO)  | (GC)     |     |       |   |                |                |         |
| Analyte                                 | Result         | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.1          | U           | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:25 | 1       |
| Diesel Range Organics (Over C10-C28)    | <50.1          | U           | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:25 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.1          | U           | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:25 | 1       |
| Surrogate                               | %Recovery      | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 131            | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 12:25 | 1       |
|                                         |                |             |          |     |       |   |                |                |         |

**Eurofins Midland** 

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:35 Date Received: 08/10/23 16:43

Sample Depth: 42-48"

Lab Sample ID: 880-31941-4

Lab Sample ID: 880-31941-5

08/19/23 00:25

08/18/23 15:22

**Matrix: Solid** 

Matrix: Solid

| Method: EPA 300.0 - Anions, Ion C | hromatography - Soluble |      |          |   |          |                |         |
|-----------------------------------|-------------------------|------|----------|---|----------|----------------|---------|
| Analyte                           | Result Qualifier        | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 40.0                    | 4.97 | mg/Kg    |   |          | 08/12/23 23:56 | 1       |

Client Sample ID: East augerhole

Date Collected: 08/10/23 10:40

m-Xylene & p-Xylene

| Date Received: 08/10/23 1 | 6:43                  |            |         |     |       |   |                |                |         |
|---------------------------|-----------------------|------------|---------|-----|-------|---|----------------|----------------|---------|
| Sample Depth: 0-6"        |                       |            |         |     |       |   |                |                |         |
| Method: SW846 8021B -     | Volatile Organic Comp | ounds (GC) |         |     |       |   |                |                |         |
| Analyte                   | Result                | Qualifier  | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                   | <0.00198              | U          | 0.00198 |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:25 | 1       |
| Toluene                   | <0.00198              | U          | 0.00198 |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:25 | 1       |
| Ethylbenzene              | <0.00198              | U          | 0.00198 |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:25 | 1       |

0.00396

<0.00396 U

mg/Kg

| o-Xylene                              | <0.00198 U          | 0.00198 | mg/Kg | 08/18/23 15:22          | 08/19/23 00:25          | 1       |
|---------------------------------------|---------------------|---------|-------|-------------------------|-------------------------|---------|
| Xylenes, Total                        | <0.00396 U          | 0.00396 | mg/Kg | 08/18/23 15:22          | 08/19/23 00:25          | 1       |
|                                       |                     |         |       |                         |                         |         |
| Surrogate                             | %Recovery Qualifier | Limits  |       | Prepared                | Analyzed                | Dil Fac |
| Surrogate 4-Bromofluorobenzene (Surr) | %Recovery Qualifier |         |       | Prepared 08/18/23 15:22 | Analyzed 08/19/23 00:25 | Dil Fac |

| Method: TAL SOP Total BTEX - Tot | tal BTEX Cald | culation  |         |     |       |   |          |                |         |
|----------------------------------|---------------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Analyte                          | Result        | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total BTEX                       | <0.00396      | U         | 0.00396 |     | mg/Kg |   |          | 08/21/23 11:05 | 1       |

| Method: SW846 8015 NM - Diesel F | Range Organ | ics (DRO) (0 | SC)  |     |       |   |          |                |         |
|----------------------------------|-------------|--------------|------|-----|-------|---|----------|----------------|---------|
| Analyte                          | Result      | Qualifier    | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                        | <50.1       | U            | 50.1 |     | mg/Kg |   |          | 08/21/23 14:40 | 1       |

| Analyte                           | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.1     | U         | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:47 | 1       |
| (GRO)-C6-C10                      |           |           |          |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.1     | U         | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:47 | 1       |
| C10-C28)                          |           |           |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.1     | U         | 50.1     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 12:47 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 154       | S1+       | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 12:47 | 1       |
| o-Terphenyl                       | 157       | S1+       | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 12:47 | 1       |

| Method: EPA 300.0 - Anions, Ion C | hromatograp | hy - Soluble | )    |     |       |   |          |                |         |
|-----------------------------------|-------------|--------------|------|-----|-------|---|----------|----------------|---------|
| Analyte                           | Result      | Qualifier    | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 50.3        |              | 5.02 |     | mg/Kg |   |          | 08/13/23 00:17 | 1       |

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Client Sample ID: East augerhole

Lab Sample ID: 880-31941-6

Matrix: Solid

Date Received: 08/10/23 16:43 Sample Depth: 42-48"

Date Collected: 08/10/23 10:55

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| o-Xylene                    | < 0.00199 | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 86        |           | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |
| 1,4-Difluorobenzene (Surr)  | 115       |           | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 00:46 | 1       |

| Total BTEX                       | <0.00398    | U           | 0.00398 |     | mg/Kg |   |          | 08/21/23 11:05 | 1       |
|----------------------------------|-------------|-------------|---------|-----|-------|---|----------|----------------|---------|
| Method: SW846 8015 NM - Diesel F | Range Organ | ics (DRO) ( | GC)     |     |       |   |          |                |         |
| Analyte                          | Result      | Qualifier   | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                        | <50.5       | U           | 50.5    |     | mg/Kg |   |          | 08/21/23 14:40 | 1       |

| Method: SW846 8015B NM - Dies           | el Range Orga | inics (DRO) | ) (GC)   |     |       |   |                |                |         |
|-----------------------------------------|---------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Analyte                                 | Result        | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.5         | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:09 | 1       |
| Diesel Range Organics (Over             | <50.5         | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:09 | 1       |
| C10-C28)                                |               |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)       | <50.5         | U           | 50.5     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:09 | 1       |
| Surrogate                               | %Recovery     | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 146           | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 13:09 | 1       |
| o-Terphenyl                             | 161           | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 13:09 | 1       |

| Method: EPA 300.0 - Anions, Ion C | hromatography - Soluble |      |          |   |          |                |         |
|-----------------------------------|-------------------------|------|----------|---|----------|----------------|---------|
| Analyte                           | Result Qualifier        | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 62.4                    | 5.01 | mg/Kg    |   |          | 08/13/23 00:24 | 1       |

Client Sample ID: South augerhole

Lab Sample ID: 880-31941-7

Matrix: Solid

Matrix. John

Date Received: 08/10/23 16:43 Sample Depth: 0-6"

Date Collected: 08/10/23 10:59

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 89        |           | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 01:07 | 1       |

**Eurofins Midland** 

2

Δ

J

8

10

12

13

H

ofins Midian

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Matrix: Solid

Lab Sample ID: 880-31941-7

Lab Sample ID: 880-31941-8

**Matrix: Solid** 

Client Sample ID: South augerhole

Date Collected: 08/10/23 10:59 Date Received: 08/10/23 16:43

Sample Depth: 0-6"

| Method: SW846 8021B      | - Volatile Organic | Compounds ( | GC) | (Continued) |
|--------------------------|--------------------|-------------|-----|-------------|
| Michiga. Strotto duz i B | - Voiatile Organic | Compounds ( | 901 | Continueu   |

| Surrogate                  | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------------------|---------------------|----------|----------------|----------------|---------|
| 1,4-Difluorobenzene (Surr) | 112                 | 70 - 130 | 08/18/23 15:22 | 08/19/23 01:07 | 1       |

| Mothod: TAL SOE | Total PTEV Total    | I BTEX Calculation  |
|-----------------|---------------------|---------------------|
| Wethoa: TAL SUP | ' lotal BTEX - lota | II BIEX Calculation |

| Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepare | d Analyzed     | Dil Fac |
|------------|----------|-----------|---------|-----|-------|---|---------|----------------|---------|
| Total BTEX | <0.00398 | U         | 0.00398 |     | mg/Kg |   |         | 08/21/23 11:05 | 1       |

| Mathada OMO40 0045 NM Disasi Danas Onnanias (DDO) (OO   | Α.  |
|---------------------------------------------------------|-----|
| Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC | . 1 |
|                                                         |     |

| Analyte   | Result ( | Qualifier | RL   | MDL Unit | D | Prepared | Analyzed       | Dil Fac |
|-----------|----------|-----------|------|----------|---|----------|----------------|---------|
| Total TPH | <50.0 L  | J         | 50.0 | mg/Kg    |   |          | 08/21/23 14:40 | 1       |

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                                 | Result    | Qualifier | RL     | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|--------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0   |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:31 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U         | 50.0   |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:31 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0   |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:31 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits |     |       |   | Prepared       | Analyzed       | Dil Fac |

| Surrogate      | %Recovery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|---------------------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 125                 | 70 - 130 | 08/18/23 18:02 | 08/20/23 13:31 | 1       |
| o-Terphenyl    | 128                 | 70 - 130 | 08/18/23 18:02 | 08/20/23 13:31 | 1       |

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result | Qualifier | RL   | MDL | Unit  | D | Prep | ared | Analyzed       | Dil Fac |  |
|----------|--------|-----------|------|-----|-------|---|------|------|----------------|---------|--|
| Chloride | 41.5   |           | 5.04 |     | mg/Kg |   |      |      | 08/13/23 00:31 | 1       |  |

Client Sample ID: South augerhole

Date Collected: 08/10/23 11:11 Date Received: 08/10/23 16:43

Sample Depth: 42-48"

| <br>Mathad. | CIMO 4C | 0024D   | Valatila Ossania   | Compounds (GC)   |
|-------------|---------|---------|--------------------|------------------|
| viernoa:    | SVVA4n  | AUZID . | · voiatile Organic | : Compounds (GC) |

| Analyte                     | Result    | Qualifier | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| Ethylbenzene                | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| o-Xylene                    | <0.00199  | U         | 0.00199  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| Xylenes, Total              | <0.00398  | U         | 0.00398  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 89        |           | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 01:28 | 1       |

| 1,4-Difluorobenzene (Surr) | 113 | 70 - 130 | 08/18/23 15:22 | 08/19/23 01:28 | 1 |
|----------------------------|-----|----------|----------------|----------------|---|
| 4-Bromonuoropenzene (Surr) | 89  | 70 - 130 | 08/18/23 15:22 | 08/19/23 01:28 | 1 |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation

| Analyte    | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-----|-------|---|----------|----------------|---------|
| Total BTEX | <0.00398 | U         | 0.00398 |     | mg/Kg |   |          | 08/21/23 11:05 | 1       |

| Analyte   | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|-----------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Total TPH | <49.9  | U         | 49.9 |     | mg/Kg |   |          | 08/21/23 14:40 | 1       |

**Eurofins Midland** 

2

4

6

\_\_\_\_\_

11

13

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD

Client Sample ID: South augerhole

Job ID: 880-31941-1

Lab Sample ID: 880-31941-8

Matrix: Solid

Sample Depth: 42-48"

Date Collected: 08/10/23 11:11

Date Received: 08/10/23 16:43

| Analyte                              | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|--------------------------------------|--------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics              | <49.9        | U           | 49.9     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:53 | 1       |
| (GRO)-C6-C10                         |              |             |          |     |       |   |                |                |         |
| Diesel Range Organics (Over          | <49.9        | U           | 49.9     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:53 | 1       |
| C10-C28)                             |              |             |          |     |       |   |                |                |         |
| Oll Range Organics (Over C28-C36)    | <49.9        | U           | 49.9     |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 13:53 | 1       |
| Surrogate                            | %Recovery    | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                       | 139          | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 13:53 | 1       |
| o-Terphenyl                          | 152          | S1+         | 70 - 130 |     |       |   | 08/18/23 18:02 | 08/20/23 13:53 | 1       |
| -<br>Method: EPA 300.0 - Anions, Ion | Chromatograp | hy - Solubl | e        |     |       |   |                |                |         |
|                                      |              | -           |          |     |       |   |                |                |         |
| Analyte                              | Result       | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |

Client Sample ID: West augerhole Lab Sample ID: 880-31941-9

Date Collected: 08/10/23 11:13 **Matrix: Solid** 

Date Received: 08/10/23 16:43

Sample Depth: 0-6"

| Analyte                                                                                                                                                              | Result                                                                                                                       | Qualifier                              | RL                                | MDL | Unit                     | D        | Prepared                                              | Analyzed                                                 | Dil Fac     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-----------------------------------|-----|--------------------------|----------|-------------------------------------------------------|----------------------------------------------------------|-------------|
| Benzene                                                                                                                                                              | <0.00198                                                                                                                     | U                                      | 0.00198                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| Toluene                                                                                                                                                              | <0.00198                                                                                                                     | U                                      | 0.00198                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| Ethylbenzene                                                                                                                                                         | <0.00198                                                                                                                     | U                                      | 0.00198                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| m-Xylene & p-Xylene                                                                                                                                                  | <0.00397                                                                                                                     | U                                      | 0.00397                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| o-Xylene                                                                                                                                                             | <0.00198                                                                                                                     | U                                      | 0.00198                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| Xylenes, Total                                                                                                                                                       | <0.00397                                                                                                                     | U                                      | 0.00397                           |     | mg/Kg                    |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| Surrogate                                                                                                                                                            | %Recovery                                                                                                                    | Qualifier                              | Limits                            |     |                          |          | Prepared                                              | Analyzed                                                 | Dil Fac     |
| 4-Bromofluorobenzene (Surr)                                                                                                                                          | 84                                                                                                                           |                                        | 70 - 130                          |     |                          |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| 1,4-Difluorobenzene (Surr)                                                                                                                                           | 118                                                                                                                          |                                        | 70 - 130                          |     |                          |          | 08/18/23 15:22                                        | 08/19/23 01:48                                           | 1           |
| Method: TAL SOP Total BTEX - 1                                                                                                                                       | otal BTEX Cald                                                                                                               | culation                               |                                   |     |                          |          |                                                       |                                                          |             |
| Analyte                                                                                                                                                              | Result                                                                                                                       | Qualifier                              | RL                                | MDL | Unit                     | D        | Prepared                                              | Analyzed                                                 | Dil Fac     |
| Total BTEX                                                                                                                                                           | <0.00397                                                                                                                     | U                                      | 0.00397                           |     | mg/Kg                    |          |                                                       | 08/21/23 11:05                                           | 1           |
|                                                                                                                                                                      |                                                                                                                              |                                        |                                   |     |                          |          |                                                       |                                                          |             |
|                                                                                                                                                                      |                                                                                                                              |                                        |                                   |     |                          |          |                                                       |                                                          |             |
| Method: SW846 8015 NM - Diese                                                                                                                                        |                                                                                                                              | , , ,                                  | •                                 |     |                          |          |                                                       |                                                          |             |
| Analyte                                                                                                                                                              | Result                                                                                                                       | Qualifier                              | RL                                | MDL | Unit                     | <u>D</u> | Prepared                                              | Analyzed                                                 | Dil Fac     |
|                                                                                                                                                                      |                                                                                                                              | Qualifier                              | •                                 | MDL | Unit<br>mg/Kg            | <u>D</u> | Prepared                                              | Analyzed 08/21/23 14:40                                  | Dil Fac     |
| Analyte                                                                                                                                                              |                                                                                                                              | Qualifier U                            | RL 49.6                           | MDL |                          | <u>D</u> | Prepared                                              |                                                          | Dil Fac     |
| Analyte Total TPH                                                                                                                                                    | Result <49.6                                                                                                                 | Qualifier U                            | RL 49.6                           |     |                          | <u>D</u> | Prepared Prepared                                     |                                                          | Dil Fac     |
| Analyte Total TPH  Method: SW846 8015B NM - Dies                                                                                                                     | Result <49.6                                                                                                                 | Qualifier U nics (DRO) Qualifier       | RL 49.6                           |     | mg/Kg                    |          |                                                       | 08/21/23 14:40                                           | 1           |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10                                                                        | Result <49.6  sel Range Orga Result                                                                                          | Qualifier U nics (DRO) Qualifier       | RL 49.6 (GC)                      |     | mg/Kg                    |          | Prepared                                              | 08/21/23 14:40  Analyzed                                 | 1 Dil Fac   |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                            | Result <49.6  sel Range Orga Result                                                                                          | Qualifier U  nics (DRO) Qualifier U    | RL 49.6 (GC)                      |     | mg/Kg                    |          | Prepared                                              | 08/21/23 14:40  Analyzed                                 | 1 Dil Fac   |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)                                   | Result <49.6  sel Range Orga Result <49.6 <49.6                                                                              | Qualifier U  nics (DRO) Qualifier U    | RL 49.6  (GC) RL 49.6  49.6       |     | mg/Kg  Unit mg/Kg  mg/Kg |          | Prepared 08/18/23 18:02 08/18/23 18:02                | 08/21/23 14:40  Analyzed  08/20/23 14:15  08/20/23 14:15 | 1 Dil Fac 1 |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over                                            | Result <a href="#">49.6</a> <a href="#">Seel Range Orga</a> <a href="#">Result <a href="#">49.6</a> <a href="#">49.6</a></a> | Qualifier U  nics (DRO) Qualifier U    | RL 49.6  (GC) RL 49.6             |     | mg/Kg  Unit mg/Kg        |          | Prepared 08/18/23 18:02                               | 08/21/23 14:40  Analyzed  08/20/23 14:15                 | Dil Fac     |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)                                   | Result <49.6  sel Range Orga Result <49.6 <49.6                                                                              | Qualifier U  nics (DRO) Qualifier U  U | RL 49.6  (GC) RL 49.6  49.6       |     | mg/Kg  Unit mg/Kg  mg/Kg |          | Prepared 08/18/23 18:02 08/18/23 18:02                | 08/21/23 14:40  Analyzed  08/20/23 14:15  08/20/23 14:15 | 1 Dil Fac 1 |
| Analyte Total TPH  Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) | Result                                                                                                                       | Qualifier U  nics (DRO) Qualifier U  U | RL 49.6  (GC) RL 49.6  49.6  49.6 |     | mg/Kg  Unit mg/Kg  mg/Kg |          | Prepared 08/18/23 18:02 08/18/23 18:02 08/18/23 18:02 | 08/21/23 14:40  Analyzed 08/20/23 14:15 08/20/23 14:15   | 1 Dil Fac 1 |

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

**Matrix: Solid** 

Client Sample ID: West augerhole

Date Collected: 08/10/23 11:13 Date Received: 08/10/23 16:43

Sample Depth: 0-6"

Lab Sample ID: 880-31941-9

Lab Sample ID: 880-31941-10

Matrix: Solid

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier Analyte RL MDL Unit D Dil Fac Prepared Analyzed 08/13/23 00:46 5.02 Chloride 80.3 mg/Kg

Client Sample ID: West augerhole

Date Collected: 08/10/23 11:18 Date Received: 08/10/23 16:43

Sample Depth: 42-48"

| Analyte                          | Result            | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------|-------------------|-------------|----------|-----|-------|---|----------------|----------------|---------|
| Benzene                          | <0.00202          | U           | 0.00202  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| Toluene                          | <0.00202          | U           | 0.00202  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| Ethylbenzene                     | <0.00202          | U           | 0.00202  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| m-Xylene & p-Xylene              | <0.00404          | U           | 0.00404  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| o-Xylene                         | <0.00202          | U           | 0.00202  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| Xylenes, Total                   | <0.00404          | U           | 0.00404  |     | mg/Kg |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| Surrogate                        | %Recovery         | Qualifier   | Limits   |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)      | 83                |             | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| 1,4-Difluorobenzene (Surr)       | 117               |             | 70 - 130 |     |       |   | 08/18/23 15:22 | 08/19/23 02:09 | 1       |
| Method: TAL SOP Total BTEX       | - Total BTEX Cald | culation    |          |     |       |   |                |                |         |
| Analyte                          | Result            | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                       | <0.00404          | U           | 0.00404  |     | mg/Kg |   |                | 08/21/23 11:05 | 1       |
| -<br>Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |     |       |   |                |                |         |
| Analyte                          | •                 | Qualifier   | RL       | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                        | <49.7             | U           | 49.7     |     | mg/Kg |   |                | 08/21/23 14:40 | 1       |

| Analyte                           | Result    | Qualifier | RL                  | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|-----------|-----------|---------------------|-----|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.7     | U         | 49.7                |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 14:38 | 1       |
| (GRO)-C6-C10                      |           |           |                     |     |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.7     | U         | 49.7                |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 14:38 | •       |
| C10-C28)                          |           |           |                     |     |       |   |                |                |         |
| OII Range Organics (Over C28-C36) | <49.7     | U         | 49.7                |     | mg/Kg |   | 08/18/23 18:02 | 08/20/23 14:38 | 1       |
| Surrogate                         | %Recovery | Qualifier | Limits              |     |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 147       | S1+       | 70 - 130            |     |       |   | 08/18/23 18:02 | 08/20/23 14:38 | 1       |
| o-Terphenyl                       | 161       | S1+       | 70 <sub>-</sub> 130 |     |       |   | 08/18/23 18:02 | 08/20/23 14:38 | 1       |

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 47.3 5.00 mg/Kg 08/13/23 00:53

**Eurofins Midland** 

8/21/2023

## **Surrogate Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

|                    |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|----------|----------|------------------------------------------------|
|                    |                        | BFB1     | DFBZ1    |                                                |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31941-1        | Augerhole 1            | 75       | 113      |                                                |
| 880-31941-1 MS     | Augerhole 1            | 78       | 113      |                                                |
| 880-31941-1 MSD    | Augerhole 1            | 86       | 109      |                                                |
| 880-31941-2        | Augerhole 1            | 88       | 108      |                                                |
| 880-31941-3        | North augerhole        | 86       | 122      |                                                |
| 880-31941-4        | North augerhole        | 86       | 118      |                                                |
| 880-31941-5        | East augerhole         | 82       | 119      |                                                |
| 880-31941-6        | East augerhole         | 86       | 115      |                                                |
| 880-31941-7        | South augerhole        | 89       | 112      |                                                |
| 880-31941-8        | South augerhole        | 89       | 113      |                                                |
| 880-31941-9        | West augerhole         | 84       | 118      |                                                |
| 880-31941-10       | West augerhole         | 83       | 117      |                                                |
| LCS 880-60584/1-A  | Lab Control Sample     | 98       | 109      |                                                |
| LCSD 880-60584/2-A | Lab Control Sample Dup | 84       | 112      |                                                |
| MB 880-60466/5-A   | Method Blank           | 74       | 94       |                                                |
| MB 880-60584/5-A   | Method Blank           | 71       | 101      |                                                |

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

|                    |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|--------------------|------------------------|----------|----------|------------------------------------------------|
|                    |                        | 1CO1     | OTPH1    |                                                |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                |
| 880-31941-1        | Augerhole 1            | 145 S1+  | 150 S1+  |                                                |
| 880-31941-1 MS     | Augerhole 1            | 133 S1+  | 131 S1+  |                                                |
| 880-31941-1 MSD    | Augerhole 1            | 133 S1+  | 127      |                                                |
| 880-31941-2        | Augerhole 1            | 134 S1+  | 149 S1+  |                                                |
| 880-31941-3        | North augerhole        | 123      | 132 S1+  |                                                |
| 880-31941-4        | North augerhole        | 131 S1+  | 144 S1+  |                                                |
| 880-31941-5        | East augerhole         | 154 S1+  | 157 S1+  |                                                |
| 880-31941-6        | East augerhole         | 146 S1+  | 161 S1+  |                                                |
| 880-31941-7        | South augerhole        | 125      | 128      |                                                |
| 880-31941-8        | South augerhole        | 139 S1+  | 152 S1+  |                                                |
| 880-31941-9        | West augerhole         | 124      | 134 S1+  |                                                |
| 880-31941-10       | West augerhole         | 147 S1+  | 161 S1+  |                                                |
| LCS 880-60593/2-A  | Lab Control Sample     | 95       | 108      |                                                |
| LCSD 880-60593/3-A | Lab Control Sample Dup | 107      | 123      |                                                |
| LOOD 000 00000/07K | Method Blank           | 146 S1+  | 161 S1+  |                                                |

Eurofins Midland

Released to Imaging: 1/23/2024 3:11:31 PM

OTPH = o-Terphenyl

2

4

6

8

10

12

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

## Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-60466/5-A

**Matrix: Solid** 

Analysis Batch: 60525

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 60466

|                     | MB       | MB        |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
| Xylenes, Total      | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 08/17/23 13:00 | 08/18/23 11:39 | 1       |
|                     |          |           |         |     |       |   |                |                |         |

MB MB

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 74                  | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 94                  | 70 - 130 |

08/17/23 13:00 08/18/23 11:39 08/17/23 13:00 08/18/23 11:39

Prepared

Client Sample ID: Method Blank

Analyzed

Prep Type: Total/NA

Dil Fac

Prep Batch: 60584

**Matrix: Solid** Analysis Batch: 60525

Lab Sample ID: MB 880-60584/5-A

|                     | MB       | MB        |         |     |       |   |                |                |         |
|---------------------|----------|-----------|---------|-----|-------|---|----------------|----------------|---------|
| Analyte             | Result   | Qualifier | RL      | MDL | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 22:40 | •       |
| Toluene             | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 22:40 |         |
| Ethylbenzene        | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 22:40 |         |
| m-Xylene & p-Xylene | <0.00400 | U         | 0.00400 |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 22:40 |         |
| o-Xylene            | <0.00200 | U         | 0.00200 |     | mg/Kg |   | 08/18/23 15:22 | 08/18/23 22:40 |         |
| Xvlenes Total       | <0.00400 | 11        | 0.00400 |     | ma/Ka |   | 08/18/23 15:22 | 08/18/23 22:40 |         |

MB MB

| Surrogate                   | %Recovery | Qualifier | Limits   | Pre    | pared     | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|--------|-----------|----------------|---------|
| 4-Bromofluorobenzene (Surr) | 71        |           | 70 - 130 | 08/18/ | /23 15:22 | 08/18/23 22:40 | 1       |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 | 08/18  | /23 15:22 | 08/18/23 22:40 | 1       |

Lab Sample ID: LCS 880-60584/1-A

**Matrix: Solid** 

**Analysis Batch: 60525** 

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA Prep Batch: 60584

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1075  |           | mg/Kg |   | 108  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1046  |           | mg/Kg |   | 105  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.09640 |           | mg/Kg |   | 96   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2134  |           | mg/Kg |   | 107  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1065  |           | mg/Kg |   | 107  | 70 - 130 |  |

LCS LCS

| Surrogate                   | %Recovery Qual | ifier Limits |
|-----------------------------|----------------|--------------|
| 4-Bromofluorobenzene (Surr) | 98             | 70 - 130     |
| 1,4-Difluorobenzene (Surr)  | 109            | 70 - 130     |

Lab Sample ID: LCSD 880-60584/2-A

**Matrix: Solid** 

Analysis Batch: 60525

| Client Sample | ID: Lab | Control | Sample | Dup    |
|---------------|---------|---------|--------|--------|
|               |         | Duam To | Tata   | I/NI A |

Prep Type: Total/NA

Prep Batch: 60584

|         | <b>Spike</b> | LCSD LCSD        |       |   |      | %Rec     |     | RPD   |  |
|---------|--------------|------------------|-------|---|------|----------|-----|-------|--|
| Analyte | Added        | Result Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Benzene | 0.100        | 0.1233           | mg/Kg |   | 123  | 70 - 130 | 14  | 35    |  |

**Eurofins Midland** 

Page 15 of 30

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

### Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-60584/2-A **Matrix: Solid** 

Analysis Batch: 60525

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 60584

|                    | Spike                                                  | LCSD                                                                                                                                | LCSD                                                                                                                                                                                                           |                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | %Rec                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                       | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|--------------------|--------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| nalyte             | Added                                                  | Result                                                                                                                              | Qualifier                                                                                                                                                                                                      | Unit                                                                                                                                                                                                                                              | D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Limits                                                                                                                                                                                                                                                                                                                                  | RPD                                                                                                                                                                                                                                                                                                                                                                                                                                   | Limit                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| oluene             | 0.100                                                  | 0.1041                                                                                                                              |                                                                                                                                                                                                                | mg/Kg                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 104                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                                                | 0                                                                                                                                                                                                                                                                                                                                                                                                                                     | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| thylbenzene        | 0.100                                                  | 0.08410                                                                                                                             |                                                                                                                                                                                                                | mg/Kg                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 84                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 - 130                                                                                                                                                                                                                                                                                                                                | 14                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| -Xylene & p-Xylene | 0.200                                                  | 0.1749                                                                                                                              |                                                                                                                                                                                                                | mg/Kg                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 87                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 - 130                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| Xylene             | 0.100                                                  | 0.08755                                                                                                                             |                                                                                                                                                                                                                | mg/Kg                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 88                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 70 - 130                                                                                                                                                                                                                                                                                                                                | 20                                                                                                                                                                                                                                                                                                                                                                                                                                    | 35                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
|                    | nalyte  Dluene thylbenzene 1-Xylene & p-Xylene -Xylene | nalyte         Added           pluene         0.100           thylbenzene         0.100           a-Xylene & p-Xylene         0.200 | nalyte         Added bluene         Result oluene           pluene         0.100         0.1041           thylbenzene         0.100         0.08410           a-Xylene & p-Xylene         0.200         0.1749 | nalyte         Added pluene         Result of the political pluene         Qualifier           oluene         0.100         0.1041           thylbenzene         0.100         0.08410           a-Xylene & p-Xylene         0.200         0.1749 | nalyte         Added         Result on the politic on t | nalyte         Added         Result oluginary         Qualifier oluginary         Unit oluginary         Description         Description         Output         Description         Description | nalyte         Added plus         Result qualifier         Unit         D         %Recurrence           plusene         0.100         0.1041         mg/Kg         104           thylbenzene         0.100         0.08410         mg/Kg         84           x-Xylene & p-Xylene         0.200         0.1749         mg/Kg         87 | Added         Result obligation         Qualifier obligation         Unit obligation         D where obligation         Limits obligation           bluene         0.100         0.1041         mg/Kg         104         70 - 130           thylbenzene         0.100         0.08410         mg/Kg         84         70 - 130           a-Xylene & p-Xylene         0.200         0.1749         mg/Kg         87         70 - 130 | Added bullene         Added bullene         Result of the plant of t |

LCSD LCSD

| Surrogate                   | %Recovery | Qualifier | Limits   |
|-----------------------------|-----------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 84        |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 112       |           | 70 - 130 |

Lab Sample ID: 880-31941-1 MS

**Matrix: Solid** 

Analysis Batch: 60525

Client Sample ID: Augerhole 1

Prep Type: Total/NA

Prep Batch: 60584

|                     | Sample   | Sample    | Spike | MS      | MS        |       |   |      | %Rec     |  |
|---------------------|----------|-----------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Result   | Qualifier | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | <0.00202 | U         | 0.100 | 0.1100  |           | mg/Kg |   | 109  | 70 - 130 |  |
| Toluene             | <0.00202 | U         | 0.100 | 0.08888 |           | mg/Kg |   | 88   | 70 - 130 |  |
| Ethylbenzene        | <0.00202 | U         | 0.100 | 0.07000 |           | mg/Kg |   | 70   | 70 - 130 |  |
| m-Xylene & p-Xylene | <0.00403 | U         | 0.200 | 0.1423  |           | mg/Kg |   | 71   | 70 - 130 |  |
| o-Xylene            | <0.00202 | U         | 0.100 | 0.07090 |           | mg/Kg |   | 71   | 70 - 130 |  |
|                     |          |           |       |         |           |       |   |      |          |  |

MS MS

| Surrogate                   | %Recovery Qualifier | Limits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 78                  | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 113                 | 70 - 130 |

Lab Sample ID: 880-31941-1 MSD

**Matrix: Solid** 

Analysis Batch: 60525

Client Sample ID: Augerhole 1

Prep Type: Total/NA

Prep Batch: 60584

|                     | Sample   | Sample    | Spike  | MSD     | MSD       |       |   |      | %Rec     |     | RPD   |
|---------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00202 | U         | 0.0996 | 0.1023  |           | mg/Kg |   | 102  | 70 - 130 | 7   | 35    |
| Toluene             | <0.00202 | U         | 0.0996 | 0.09256 |           | mg/Kg |   | 92   | 70 - 130 | 4   | 35    |
| Ethylbenzene        | <0.00202 | U         | 0.0996 | 0.07602 |           | mg/Kg |   | 76   | 70 - 130 | 8   | 35    |
| m-Xylene & p-Xylene | <0.00403 | U         | 0.199  | 0.1585  |           | mg/Kg |   | 80   | 70 - 130 | 11  | 35    |
| o-Xylene            | <0.00202 | U         | 0.0996 | 0.07880 |           | mg/Kg |   | 79   | 70 - 130 | 11  | 35    |

MSD MSD

| Surrogate                   | 76Recovery | Qualifier | LIIIIII  |
|-----------------------------|------------|-----------|----------|
| 4-Bromofluorobenzene (Surr) | 86         |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 109        |           | 70 - 130 |

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-60593/1-A

**Matrix: Solid** 

Analysis Batch: 60630

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 60593

мв мв Result Qualifier MDL Unit Prepared <50.0 U 50.0 08/18/23 18:02 08/20/23 08:03 Gasoline Range Organics mg/Kg (GRO)-C6-C10

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-60593/1-A **Matrix: Solid** 

Analysis Batch: 60630

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 60593

| ı |                                      | IVID   | IVID      |      |          |   |                |                |         |
|---|--------------------------------------|--------|-----------|------|----------|---|----------------|----------------|---------|
|   | Analyte                              | Result | Qualifier | RL   | MDL Unit | D | Prepared       | Analyzed       | Dil Fac |
|   | Diesel Range Organics (Over C10-C28) | <50.0  | U         | 50.0 | mg/Kg    |   | 08/18/23 18:02 | 08/20/23 08:03 | 1       |
|   | Oll Range Organics (Over C28-C36)    | <50.0  | U         | 50.0 | mg/Kg    |   | 08/18/23 18:02 | 08/20/23 08:03 | 1       |

MB MB

| Surrogate      | %Recovery | Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
|----------------|-----------|-----------|----------|----------------|----------------|---------|
| 1-Chlorooctane | 146       | S1+       | 70 - 130 | 08/18/23 18:02 | 08/20/23 08:03 | 1       |
| o-Terphenyl    | 161       | S1+       | 70 - 130 | 08/18/23 18:02 | 08/20/23 08:03 | 1       |

**Client Sample ID: Lab Control Sample** 

Lab Sample ID: LCS 880-60593/2-A **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 60630 Prep Batch: 60593

|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Gasoline Range Organics     | 1000  | 945.9  |           | mg/Kg |   | 95   | 70 - 130 |  |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |  |
| Diesel Range Organics (Over | 1000  | 798.5  |           | mg/Kg |   | 80   | 70 - 130 |  |
| C10-C28)                    |       |        |           |       |   |      |          |  |

LCS LCS

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 95        |           | 70 - 130 |
| o-Terphenyl    | 108       |           | 70 - 130 |

Client Sample ID: Lab Control Sample Dup

**Matrix: Solid** Prep Type: Total/NA Analysis Batch: 60630 Prep Batch: 60593

|                             | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |  |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Gasoline Range Organics     | 1000  | 961.2  |           | mg/Kg |   | 96   | 70 - 130 | 2   | 20    |  |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |     |       |  |
| Diesel Range Organics (Over | 1000  | 882.6  |           | mg/Kg |   | 88   | 70 - 130 | 10  | 20    |  |
| C10-C28)                    |       |        |           |       |   |      |          |     |       |  |

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 107 70 - 130 o-Terphenyl 123 70 - 130

Lab Sample ID: 880-31941-1 MS Client Sample ID: Augerhole 1

**Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 60630 Prep Batch: 60593

MS MS

Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits <49.8 U 997 70 - 130 Gasoline Range Organics 827.2 83 mg/Kg (GRO)-C6-C10 997 100 Diesel Range Organics (Over <49.8 U 1029 mg/Kg 70 - 130 C10-C28)

Lab Sample ID: LCSD 880-60593/3-A

| Surrogate      | %Recovery | Qualifier | Limits   |  |  |  |
|----------------|-----------|-----------|----------|--|--|--|
| 1-Chlorooctane | 133       | S1+       | 70 - 130 |  |  |  |
| o-Terphenyl    | 131       | S1+       | 70 - 130 |  |  |  |

MS MS

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-31941-1 MSD

Client Sample ID: Augerhole 1 Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: West augerhole

Client Sample ID: West augerhole

**Prep Type: Soluble** 

**Prep Type: Soluble** 

**Prep Type: Soluble** 

Prep Batch: 60593

|                             | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec     |     | RPD   |
|-----------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
| Analyte                     | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Gasoline Range Organics     | <49.8  | U         | 997   | 821.7  |           | mg/Kg |   | 82   | 70 - 130 | 1   | 20    |
| (GRO)-C6-C10                |        |           |       |        |           |       |   |      |          |     |       |
| Diesel Range Organics (Over | <49.8  | U         | 997   | 1011   |           | mg/Kg |   | 98   | 70 - 130 | 2   | 20    |
| 040 000)                    |        |           |       |        |           |       |   |      |          |     |       |

C10-C28)

**Matrix: Solid** 

Analysis Batch: 60630

MSD MSD

| Surrogate      | %Recovery | Qualifier | Limits   |
|----------------|-----------|-----------|----------|
| 1-Chlorooctane | 133       | S1+       | 70 - 130 |
| o-Terphenyl    | 127       |           | 70 - 130 |

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-59908/1-A Client Sample ID: Method Blank **Prep Type: Soluble** 

**Matrix: Solid** 

**Analysis Batch: 60057** 

мв мв

| Analyte  | Result | Qualifier | RL   | MDL | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|--------|-----------|------|-----|-------|---|----------|----------------|---------|
| Chloride | <5.00  | U         | 5.00 |     | mg/Kg |   |          | 08/12/23 22:51 | 1       |

Lab Sample ID: LCS 880-59908/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble** 

**Analysis Batch: 60057** 

|          | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Chloride | 250   | 259.9  | -         | mg/Kg |   | 104  | 90 - 110 |  |

Lab Sample ID: LCSD 880-59908/3-A

**Matrix: Solid** 

Analysis Batch: 60057

|          | Spike | LCSD   | LCSD      |       |   |      | %Rec     |     | RPD   |  |
|----------|-------|--------|-----------|-------|---|------|----------|-----|-------|--|
| Analyte  | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |  |
| Chloride | 250   | 262.7  |           | ma/Ka |   | 105  | 90 - 110 |     | 20    |  |

Lab Sample ID: 880-31941-10 MS

**Matrix: Solid** 

Analysis Batch: 60057

|          | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec     |  |
|----------|--------|-----------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte  | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Chloride | 47.3   |           | 250   | 311.0  |           | ma/Ka |   | 105  | 90 _ 110 |  |

Lab Sample ID: 880-31941-10 MSD

**Matrix: Solid** 

Analysis Batch: 60057

| Alialysis Datell. 00001 |        |           |       |        |           |       |   |      |          |     |       |
|-------------------------|--------|-----------|-------|--------|-----------|-------|---|------|----------|-----|-------|
|                         | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec     |     | RPD   |
| Analyte                 | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Chloride                | 47.3   |           | 250   | 311.3  | -         | mg/Kg |   | 106  | 90 - 110 | 0   | 20    |

# **QC Association Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

## **GC VOA**

## Prep Batch: 60466

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-60466/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 60525

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-31941-1        | Augerhole 1            | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-2        | Augerhole 1            | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-3        | North augerhole        | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-4        | North augerhole        | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-5        | East augerhole         | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-6        | East augerhole         | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-7        | South augerhole        | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-8        | South augerhole        | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-9        | West augerhole         | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-10       | West augerhole         | Total/NA  | Solid  | 8021B  | 60584      |
| MB 880-60466/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 60466      |
| MB 880-60584/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 60584      |
| LCS 880-60584/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 60584      |
| LCSD 880-60584/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-1 MS     | Augerhole 1            | Total/NA  | Solid  | 8021B  | 60584      |
| 880-31941-1 MSD    | Augerhole 1            | Total/NA  | Solid  | 8021B  | 60584      |

#### Prep Batch: 60584

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batcl |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-31941-1        | Augerhole 1            | Total/NA  | Solid  | 5035   |            |
| 880-31941-2        | Augerhole 1            | Total/NA  | Solid  | 5035   |            |
| 880-31941-3        | North augerhole        | Total/NA  | Solid  | 5035   |            |
| 880-31941-4        | North augerhole        | Total/NA  | Solid  | 5035   |            |
| 880-31941-5        | East augerhole         | Total/NA  | Solid  | 5035   |            |
| 880-31941-6        | East augerhole         | Total/NA  | Solid  | 5035   |            |
| 880-31941-7        | South augerhole        | Total/NA  | Solid  | 5035   |            |
| 880-31941-8        | South augerhole        | Total/NA  | Solid  | 5035   |            |
| 880-31941-9        | West augerhole         | Total/NA  | Solid  | 5035   |            |
| 880-31941-10       | West augerhole         | Total/NA  | Solid  | 5035   |            |
| MB 880-60584/5-A   | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-60584/1-A  | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-60584/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-31941-1 MS     | Augerhole 1            | Total/NA  | Solid  | 5035   |            |
| 880-31941-1 MSD    | Augerhole 1            | Total/NA  | Solid  | 5035   |            |

#### Analysis Batch: 60700

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|---------------|------------------|-----------|--------|------------|------------|
| 880-31941-1   | Augerhole 1      | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-2   | Augerhole 1      | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-3   | North augerhole  | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-4   | North augerhole  | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-5   | East augerhole   | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-6   | East augerhole   | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-7   | South augerhole  | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-8   | South augerhole  | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-9   | West augerhole   | Total/NA  | Solid  | Total BTEX |            |
| 880-31941-10  | West augerhole   | Total/NA  | Solid  | Total BTEX |            |

**Eurofins Midland** 

3

Δ

6

g

9

# **QC Association Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

## GC Semi VOA

## Prep Batch: 60593

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 880-31941-1        | Augerhole 1            | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-2        | Augerhole 1            | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-3        | North augerhole        | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-4        | North augerhole        | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-5        | East augerhole         | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-6        | East augerhole         | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-7        | South augerhole        | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-8        | South augerhole        | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-9        | West augerhole         | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-10       | West augerhole         | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-60593/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-60593/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-60593/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-1 MS     | Augerhole 1            | Total/NA  | Solid  | 8015NM Prep |            |
| 880-31941-1 MSD    | Augerhole 1            | Total/NA  | Solid  | 8015NM Prep |            |

## Analysis Batch: 60630

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-31941-1        | Augerhole 1            | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-2        | Augerhole 1            | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-3        | North augerhole        | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-4        | North augerhole        | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-5        | East augerhole         | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-6        | East augerhole         | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-7        | South augerhole        | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-8        | South augerhole        | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-9        | West augerhole         | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-10       | West augerhole         | Total/NA  | Solid  | 8015B NM | 60593      |
| MB 880-60593/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 60593      |
| LCS 880-60593/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 60593      |
| LCSD 880-60593/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-1 MS     | Augerhole 1            | Total/NA  | Solid  | 8015B NM | 60593      |
| 880-31941-1 MSD    | Augerhole 1            | Total/NA  | Solid  | 8015B NM | 60593      |

#### Analysis Batch: 60745

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 880-31941-1   | Augerhole 1      | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-2   | Augerhole 1      | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-3   | North augerhole  | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-4   | North augerhole  | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-5   | East augerhole   | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-6   | East augerhole   | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-7   | South augerhole  | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-8   | South augerhole  | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-9   | West augerhole   | Total/NA  | Solid  | 8015 NM |            |
| 880-31941-10  | West augerhole   | Total/NA  | Solid  | 8015 NM |            |

# **QC Association Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

#### **HPLC/IC**

#### Leach Batch: 59908

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batcl |
|--------------------|------------------------|-----------|--------|----------|------------|
| 880-31941-1        | Augerhole 1            | Soluble   | Solid  | DI Leach |            |
| 880-31941-2        | Augerhole 1            | Soluble   | Solid  | DI Leach |            |
| 880-31941-3        | North augerhole        | Soluble   | Solid  | DI Leach |            |
| 880-31941-4        | North augerhole        | Soluble   | Solid  | DI Leach |            |
| 880-31941-5        | East augerhole         | Soluble   | Solid  | DI Leach |            |
| 880-31941-6        | East augerhole         | Soluble   | Solid  | DI Leach |            |
| 880-31941-7        | South augerhole        | Soluble   | Solid  | DI Leach |            |
| 880-31941-8        | South augerhole        | Soluble   | Solid  | DI Leach |            |
| 880-31941-9        | West augerhole         | Soluble   | Solid  | DI Leach |            |
| 880-31941-10       | West augerhole         | Soluble   | Solid  | DI Leach |            |
| MB 880-59908/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-59908/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-59908/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 880-31941-10 MS    | West augerhole         | Soluble   | Solid  | DI Leach |            |
| 880-31941-10 MSD   | West augerhole         | Soluble   | Solid  | DI Leach |            |

#### **Analysis Batch: 60057**

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 880-31941-1        | Augerhole 1            | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-2        | Augerhole 1            | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-3        | North augerhole        | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-4        | North augerhole        | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-5        | East augerhole         | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-6        | East augerhole         | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-7        | South augerhole        | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-8        | South augerhole        | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-9        | West augerhole         | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-10       | West augerhole         | Soluble   | Solid  | 300.0  | 59908      |
| MB 880-59908/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 59908      |
| LCS 880-59908/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 59908      |
| LCSD 880-59908/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-10 MS    | West augerhole         | Soluble   | Solid  | 300.0  | 59908      |
| 880-31941-10 MSD   | West augerhole         | Soluble   | Solid  | 300.0  | 59908      |

**Eurofins Midland** 

2

\_

Q

9

11

4.0

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD

Client Sample ID: Augerhole 1

Date Collected: 08/10/23 10:13 Date Received: 08/10/23 16:43

Lab Sample ID: 880-31941-1

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.96 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/18/23 23:02 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 10:36 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/12/23 23:34 | SMC     | EET MID |

Client Sample ID: Augerhole 1

Date Collected: 08/10/23 10:22

Date Received: 08/10/23 16:43

Lab Sample ID: 880-31941-2

**Matrix: Solid** 

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 4.99 g 5 mL 60584 08/18/23 15:22 EL EET MID Total/NA 8021B 5 mL 08/18/23 23:22 **EET MID** Analysis 1 5 mL 60525 AJ Total/NA Total BTEX 60700 08/21/23 11:05 Analysis A.I **EET MID** 1 Total/NA Analysis 8015 NM 60745 08/21/23 14:40 SM **EET MID** Total/NA 60593 08/18/23 18:02 Prep 8015NM Prep 9.94 g 10 mL TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 60630 08/20/23 11:41 SM **EET MID** Soluble 08/11/23 09:24 Leach DI Leach 5.05 g 50 mL 59908 KS EET MID Soluble Analysis 300.0 50 mL 50 mL 60057 08/12/23 23:41 SMC **EET MID** 

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:25

Date Received: 08/10/23 16:43

Lab Sample ID: 880-31941-3

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/18/23 23:43 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.91 g  | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 12:03 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/12/23 23:48 | SMC     | EET MID |

**Client Sample ID: North augerhole** 

Date Collected: 08/10/23 10:35

Date Received: 08/10/23 16:43

| Lab Sample ID: | 880-31941-4   |
|----------------|---------------|
|                | Matrix: Solid |

| Analyst | Lab     |
|---------|---------|
| EL      | EET MID |
| AJ      | EET MID |

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 00:04 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |

Job ID: 880-31941-1

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD

Client Sample ID: North augerhole

Date Collected: 08/10/23 10:35 Date Received: 08/10/23 16:43 Lab Sample ID: 880-31941-4

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 12:25 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/12/23 23:56 | SMC     | EET MID |

Client Sample ID: East augerhole

Date Collected: 08/10/23 10:40

Date Received: 08/10/23 16:43

| Lab Sample ID: 880-31941-5 |
|----------------------------|
|----------------------------|

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.05 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 00:25 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.99 g  | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 12:47 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:17 | SMC     | EET MID |

Client Sample ID: East augerhole

Date Collected: 08/10/23 10:55 Date Received: 08/10/23 16:43 Lab Sample ID: 880-31941-6

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 00:46 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 13:09 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:24 | SMC     | EET MID |

Client Sample ID: South augerhole

Date Collected: 08/10/23 10:59

Date Received: 08/10/23 16:43

| Lab | Sample | ID: | 880-31941-7   |
|-----|--------|-----|---------------|
|     |        |     | Madelan Oalla |

**Matrix: Solid** 

000 040 44 =

| _                    | Batch            | Batch                   |     | Dil    | Initial         | Final         | Batch          | Prepared                         |           |                    |
|----------------------|------------------|-------------------------|-----|--------|-----------------|---------------|----------------|----------------------------------|-----------|--------------------|
| Prep Type            | Туре             | Method                  | Run | Factor | Amount          | Amount        | Number         | or Analyzed                      | Analyst   | Lab                |
| Total/NA             | Prep             | 5035                    |     |        | 5.02 g          | 5 mL          | 60584          | 08/18/23 15:22                   | EL        | EET MID            |
| Total/NA             | Analysis         | 8021B                   |     | 1      | 5 mL            | 5 mL          | 60525          | 08/19/23 01:07                   | AJ        | EET MID            |
| Total/NA             | Analysis         | Total BTEX              |     | 1      |                 |               | 60700          | 08/21/23 11:05                   | AJ        | EET MID            |
| Total/NA             | Analysis         | 8015 NM                 |     | 1      |                 |               | 60745          | 08/21/23 14:40                   | SM        | EET MID            |
| Total/NA<br>Total/NA | Prep<br>Analysis | 8015NM Prep<br>8015B NM |     | 1      | 10.00 g<br>1 uL | 10 mL<br>1 uL | 60593<br>60630 | 08/18/23 18:02<br>08/20/23 13:31 | TKC<br>SM | EET MID<br>EET MID |

**Eurofins Midland** 

Released to Imaging: 1/23/2024 3:11:31 PM

#### Lab Chronicle

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

Client Sample ID: South augerhole

Date Collected: 08/10/23 10:59 Date Received: 08/10/23 16:43 Lab Sample ID: 880-31941-7

Matrix: Solid

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 4.96 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:31 | SMC     | EET MID |

Client Sample ID: South augerhole Lab Sample ID: 880-31941-8

Date Collected: 08/10/23 11:11 Date Received: 08/10/23 16:43

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 01:28 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 13:53 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:39 | SMC     | EET MID |

Client Sample ID: West augerhole

Date Collected: 08/10/23 11:13

Date Received: 08/10/23 16:43

Lab Sample ID: 880-31941-9

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.04 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 01:48 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 14:15 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:46 | SMC     | EET MID |

Client Sample ID: West augerhole

Date Collected: 08/10/23 11:18

Date Received: 08/10/23 16:43

Lab Sample ID: 880-31941-10

**Matrix: Solid** 

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Type     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.95 g  | 5 mL   | 60584  | 08/18/23 15:22 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 60525  | 08/19/23 02:09 | AJ      | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 60700  | 08/21/23 11:05 | AJ      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 60745  | 08/21/23 14:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.07 g | 10 mL  | 60593  | 08/18/23 18:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 60630  | 08/20/23 14:38 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5 g     | 50 mL  | 59908  | 08/11/23 09:24 | KS      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 60057  | 08/13/23 00:53 | SMC     | EET MID |

## **Lab Chronicle**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Accreditation/Certification Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

# **Laboratory: Eurofins Midland**

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

| Authority                                        | Pr          | ogram                            | Identification Number                       | Expiration Date        |
|--------------------------------------------------|-------------|----------------------------------|---------------------------------------------|------------------------|
| Texas                                            | NE          | ELAP                             | T104704400-23-26                            | 06-30-24               |
| The following analytes<br>the agency does not of |             | it the laboratory is not certifi | ed by the governing authority. This list ma | ay include analytes fo |
|                                                  |             |                                  |                                             |                        |
| Analysis Method                                  | Prep Method | Matrix                           | Analyte                                     |                        |
| Analysis Method<br>8015 NM                       | Prep Method | Matrix Solid                     | Analyte Total TPH                           |                        |

9

3

4

5

7

9

44

12

# **Method Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

| Laboratory |     |
|------------|-----|
| EET MID    |     |
| EET MID    |     |
| EET MID    | 5   |
| FET MD     | - 3 |

| Method      | Method Description                 | Protocol | Laboratory |
|-------------|------------------------------------|----------|------------|
| 8021B       | Volatile Organic Compounds (GC)    | SW846    | EET MID    |
| Total BTEX  | Total BTEX Calculation             | TAL SOP  | EET MID    |
| 8015 NM     | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 8015B NM    | Diesel Range Organics (DRO) (GC)   | SW846    | EET MID    |
| 300.0       | Anions, Ion Chromatography         | EPA      | EET MID    |
| 5035        | Closed System Purge and Trap       | SW846    | EET MID    |
| 8015NM Prep | Microextraction                    | SW846    | EET MID    |
| DI Leach    | Deionized Water Leaching Procedure | ASTM     | EET MID    |

#### **Protocol References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Sample Summary**

Client: Etech Environmental & Safety Solutions Project/Site: Hayhurst NM Sec26 Dignitas SWD Job ID: 880-31941-1

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth  |
|---------------|------------------|--------|----------------|----------------|--------|
| 880-31941-1   | Augerhole 1      | Solid  | 08/10/23 10:13 | 08/10/23 16:43 | 0-6"   |
| 880-31941-2   | Augerhole 1      | Solid  | 08/10/23 10:22 | 08/10/23 16:43 | 42-48" |
| 880-31941-3   | North augerhole  | Solid  | 08/10/23 10:25 | 08/10/23 16:43 | 0-6"   |
| 880-31941-4   | North augerhole  | Solid  | 08/10/23 10:35 | 08/10/23 16:43 | 42-48" |
| 880-31941-5   | East augerhole   | Solid  | 08/10/23 10:40 | 08/10/23 16:43 | 0-6"   |
| 880-31941-6   | East augerhole   | Solid  | 08/10/23 10:55 | 08/10/23 16:43 | 42-48" |
| 880-31941-7   | South augerhole  | Solid  | 08/10/23 10:59 | 08/10/23 16:43 | 0-6"   |
| 880-31941-8   | South augerhole  | Solid  | 08/10/23 11:11 | 08/10/23 16:43 | 42-48" |
| 880-31941-9   | West augerhole   | Solid  | 08/10/23 11:13 | 08/10/23 16:43 | 0-6"   |
| 880-31941-10  | West augerhole   | Solid  | 08/10/23 11:18 | 08/10/23 16:43 | 42-48" |

2

4

5

7

8

9

10

40

13

| 880-31 | Chain of Custody  Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334  Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock,TX (806)794-1296  Hobbs NM (575-392 7550) Phoenix AZ (480-355 0900) Atlanta GA (770-449-8800) Tampa FL (813-620-2000)   Bill to (if different) | ABORATORIES Hobbs NM (575-3 Etech Environmental |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------|

|                                    |                                                                             | 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         |                                                                                                                               | 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
|------------------------------------|-----------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                    |                                                                             | 4 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 8/10/25/16:43                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                         |                                                                                                                               | 3 Dectar                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Date/Time                          | Received by (Signature)                                                     | Relinquished by (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Received by (Signature)                                                                                                                 | y (Signature) R                                                                                                               | Relinquished by                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | lard terms and conditions stances beyond the control previously negotiated. | Notice Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed These terms will be enforced unless previously negotiated. | om client company to Xenco, it<br>any losses or expenses incurr<br>e submitted to Xenco, but not                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | nples constitutes a valid purchase order frond shall not assume any responsibility for a hproject and a charge of \$5 for each samples. | is document and relinquishment of sa<br>be liable only for the cost of samples of<br>charge of \$75.00 will be applied to eac | Notice Signature of thi of service. Xenco will of Xenco A minimum                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| -                                  |                                                                             | Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | CRA Sb As Ba Be O                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ed TCLP / SPLP 6010 8RCRA                                                                                                               | Circle Method(s) and Metal(s) to be analyzed                                                                                  | Circle Method                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| ISn U V Zn                         | n Mo Ni K Se Ag SiO2 Na Sr Ti                                               | B Cd Ca Cr Co Cu Fe Pb Mg Mn                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Al Sb As Ba Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | 8RCRA 13PPM Texas 11                                                                                                                    | 6010 200.8 / 6020:                                                                                                            | Total 200.7 / 6010                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 7 11:18 42-48"                                                                                                                          | acquirale 1                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11:13 0-6"                                                                                                                              | aughter                                                                                                                       | ليعهد عسوا                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 11:11 42-48"                                                                                                                            | questione                                                                                                                     | South que                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         | ا                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:55 42-48"                                                                                                                            | augerbore.                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         | Cayaghed e                                                                                                                    | East aug                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 10:35 42-48"                                                                                                                            | whole                                                                                                                         | North angahale                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                         | g have                                                                                                                        | Months augustuse                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 10:22 42-48"                                                                                                                            | L                                                                                                                             | Augeswole                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| Do                                 |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 8/0/23 10:13 0-6"                                                                                                                       | 7                                                                                                                             | Augelode                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Sample Comments                    | Sar                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | BT<br>TP<br>CL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Date Time Depth                                                                                                                         | Matrix                                                                                                                        | Sample Identification                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|                                    | lab                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | E)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Total Containers                                                                                                                        | eals Yes No NA                                                                                                                | Sample Custody Seals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| TAT starts the day recevied by the | TAT star                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | (                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Correction Factor: 730                                                                                                                  | Yes No                                                                                                                        | Cooler Custody Seals                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | FIRE                                                                                                                                    | Ses.                                                                                                                          | Received Intact.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 8°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Thermometer ID                                                                                                                          | 1,7/n,y                                                                                                                       | Temperature (°C)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 15°                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes (No ) Wet lice (es) No                                                                                                              | Temp Blank                                                                                                                    | SAMPLE RECEIPT                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| •                                  |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | Due Date                                                                                                                                | Delfor                                                                                                                        | Sampler's Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Rush                                                                                                                                    | 17563                                                                                                                         | P O Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                    |                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Routine                                                                                                                                 | 19503                                                                                                                         | Project Number                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| Work Order Notes                   | WC                                                                          | ANALYSIS REQUEST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Hayhurst NM Sec 26 Dignites Turn Around                                                                                                 | Hayhurst NM Sec                                                                                                               | Project Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| Other                              | EDD ADaPT                                                                   | Deliverables                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | and the state of t | Email                                                                                                                                   | 432-563-2200                                                                                                                  | Phone                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| TRPP Teve V T                      | orting Le el II Lev IIII [PST/UST ]                                         | A U.S.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | City, State ZIP                                                                                                                         | Odessa, Texas 79765                                                                                                           | City, State ZIP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|                                    | State of Project                                                            | State                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Secretary of the secret | Address.                                                                                                                                | 13000 W CR 100                                                                                                                | Address                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
|                                    | P G am I ST/TST DR D I FOI D                                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ē -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Company Name                                                                                                                            | Etech Environmental                                                                                                           | Company Name                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|                                    | - T                                                                         | [mades                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 声をない                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | Bill-to-(if-different)                                                                                                                  | Blake Estep                                                                                                                   | Preject-Manager—                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                                    | ) 880-31941 Chain of Custody                                                | Hobbs NM (575-392 7550) Phoenix AZ (480-355 0900) Atlanta GA (770-449-8800) Tampa FL (813-620-2000)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Z (480-355 0900) Atlanta C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Hobbs NM (575-392 7550) Phoenix A                                                                                                       | **                                                                                                                            | And the control of th |
| 9/21                               |                                                                             | Houston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) 509-3334 Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock,TX (806)794-1296                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | louston TX (281) 240-4200 Dallas TX (214) 902-0300 San Antonio TX (210) Midland TX (432-704-5440) EL Paso TX (915)585-3443 Lubbock,TX (806)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Houston TX (281) 240-420<br>Midland TX (432-704-54                                                                                      |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| (200                               | ٤<br>                                                                       | ustody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Chain of Custody                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                         |                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |

Revised Date 051418 Rev 2018.1

## **Login Sample Receipt Checklist**

Client: Etech Environmental & Safety Solutions Job Number: 880-31941-1

Login Number: 31941 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present.                                                                  | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information.                                | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |         |

ge 30 0j 02

1

3

4

6

8

10

12

13

# **APPENDIX G**

# **NMOCD Notifications**

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213



### **Anna Byers**

From: Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Sent: Monday, August 7, 2023 9:45 AM

To: Blake Estep

Cc: Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD

**Subject:** RE: [EXTERNAL] Soil Sampling Activities

You don't often get email from shelly.wells@emnrd.nm.gov. Learn why this is important

Hi Blake,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells \* Environmental Specialist-Advanced Administrative Permitting Program EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Blake Estep <br/> <br/>blake@etechenv.com><br/>
Sent: Monday, August 7, 2023 9:12 AM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Subject: [EXTERNAL] Soil Sampling Activities

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

Chevron anticipates conducting soil sampling activities at the following sites between August 10 & 11, 2023:

Site Name: Hayhurst NM Section 26 Dignitas SWD

Incident Number: nAPP2301837404

Site Name: Hayhurst NM Section 35 CTB Incident Number: nAPP2302742810

Thank you,

Blake Estep

Etech Environmental & Safety Solutions, Inc.

P.O. Box 62228

Midland, Texas 79711 Phone: 432-563-2200 Mobile: 432-894-6038 Fax: 432-563-2213

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

**State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. **Santa Fe, NM 87505** 

CONDITIONS

Action 267380

#### **CONDITIONS**

| Operator:         | OGRID:                                    |
|-------------------|-------------------------------------------|
| CHEVRON U S A INC | 4323                                      |
|                   | Action Number:                            |
| Midland, TX 79706 | 267380                                    |
|                   | Action Type:                              |
|                   | [C-141] Release Corrective Action (C-141) |

#### CONDITIONS

| Created By    |      | Condition<br>Date |
|---------------|------|-------------------|
| scott.rodgers | None | 1/23/2024         |