SITE INFORMATION

Re	port Type:	Closure Re	port (nAP	P2307047	'906/nAP	P23165	55696)			
General Site Info	rmation:									
Site:		Convoy Cent	ral CTB							
Company:		EOG Resource	ces							
Section, Townsh	ip and Range	Unit G	Sec. 28	T 24S	R 33E					
Lease Number:										
County:		Lea County								
GPS:			32.192135°			-103.	576488°			
Surface Owner:		State								
Mineral Owner:		Energia interne e eti e	In NIM 100 and C		the are O fam 1 4					
Directions:			0.49 miles. Turn			z miles. Turr	n right (west) onto lease			
Release Data:										
Date Released:		12.27.2022 / 6	5.11.2023							
Type Release:			Produced Water							
Source of Contam	nination:	Cracked Weld								
Fluid Released:		5 bbl oil / 70 b								
Fluids Recovered:		0 bbl oil / 38 b	bls water							
Official Commun	ication:									
Name:	Todd Wells				Clair Gonza	ales				
Company:	EOG Resources				Tetra Tech					
Address:	5509 Champions	Dr.			901 W. Wa	ll St.				
					Ste 100					
City:	Midland, Texas, 7	9706			Midland, Te	exas, 79701				
Phone number:	<mark>(432) 686-3613</mark>				(432) 682-4	1559				
Fax:										
Email:	Todd Wells@e	ogresources.com			clair.gonza	ales@tetrat	tech.com			

Site Characterization	
Depth to Groundwater:	70' bgs
Karst Potential:	Low

Recommended Remedial Action Levels (RRALs)										
Benzene	Total BTEX	TPH (GRO+DRO)	TPH (GRO+DRO+MRO)	Chlorides						
10 mg/kg	50 mg/kg	100 mg/kg	100 mg/kg	600 mg/kg						

October 25, 2023

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

RE: Closure Report EOG Resources Convoy Central CTB Lea County, New Mexico nAPP2307047906 nAPP2316555696

Oil Conservation Division:

Tetra Tech, Inc. (Tetra Tech) was contacted by EOG Resources (EOG) to assess a release that occurred at the Convoy Central CTB release, Unit G, Section 28, Township 24 South, Range 33 East, Lea County, New Mexico (Site). The spill site coordinates are 32.192135°, -103.576488°. The site location is shown on **Figures 1 and 2**.

Background

Initial Release (nAPP2307047906)

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by a developed crack in a weld on the discharge pipe, causing the release of 5 bbls of crude oil. The release was an overspray that impacted the pad surrounding the equipment onsite, impacting an area of 50' in length and 35' in width. Additionally, none of fluids were recovered. On December 27, 2022, the release was discovered, due to an inaccurate initial determination of the amount released and thought to be under 5 barrels, it was not reported immediately. Once the release was reevaluated and determined to be greater than 5 barrels, it was reported to the New Mexico Oil Conservation Division (NMOCD) on March 11, 2023. The C-141 is shown in **Appendix A**.

Second Release (nAPP2316555696)

According to the State of New Mexico C-141 Initial Report, the release at the Site was caused by a valve being left open at a load line during facility upgrade activities, causing the release of 70 bbls of produced water. The release ran across the pad and into a pipeline ROW, impacting an area of 210' in length and 70' in width. Additionally, 38 barrels of the fluids were recovered. On June 11, 2023, the release was discovered, and was reported on June 14, 2023, to the New Mexico Oil Conservation Division (NMOCD). The C-141 is shown in **Appendix A**.

Site Characterization

Significant Water Features

According to the NFHL (National Flood Hazard Layer) Flood Data Application and the USGS (United States Geological Survey) National Water Information System Mapper, there were no watercourses, lakebeds, sinkholes, playa lakes, springs, wetlands, subsurface mines, private domestic water wells, or floodplains located within the specified distances. Additionally, the site is located in a low karst area. The NFHL Map, USGS Mapper, and Karst map are shown in **Appendix B**.

Significant Boundaries

According to Google Earth US Government City Boundaries and US School Districts, the lateral extents of the release were not within an incorporated municipal boundary, defined municipal fresh water well field, or a school district. Additionally, there were no occupied permanent residences, schools, hospitals, institution, or churches located within the specified distances of the lateral extents of the release.

Groundwater Review

Groundwater research was completed for the site through the USGS (United States Geological Survey) National Water Information System and New Mexico Office of the State Engineer (NMOSE) Water Rights Reporting System. Groundwater research conducted through these two resources, show the two closest water wells within a 1.5-mile radius of the Site. The well reported on the NMOSE Water Rights Reporting System reports a total depth of 120 ft bgs and measured water level of 70 ft bgs and is approximately 0.77 miles of the Site. The well reported on the USGS National Water Information System reports a water level measured at 94.35 ft bgs and is approximately 1.43 miles of the Site. The groundwater information is shown in **Appendix B**.

Distance from Site	Date of Data	Resource of Information	Depth of Well	Depth to Water
0.77 Miles	12/31/1890	NMOSE	120'	70'
1.43 Miles	03/01/1996	USGS	-	94.35'

Regulatory

A risk-based evaluation was performed for the site following the New Mexico Oil Conservation Division (NMOCD) Guidelines for Remediation of Leaks, Spills, and Releases, updated August 14, 2018. The guidelines require a risk-based evaluation of the site to determine recommended remedial action levels (RRAL) for benzene, toluene, ethylbenzene, and xylene (collectively referred to as BTEX) and total petroleum hydrocarbons (TPH) in soil. The proposed RRAL for benzene was determined to be 10 parts per million (ppm) or milligrams per kilogram (mg/kg) and 50 ppm for total BTEX (sum of benzene, toluene, ethylbenzene, and xylene). Based upon the site characterization, the proposed RRAL for TPH is 100 mg/kg (GRO + DRO + ORO). Additionally, based on the site characterization, the proposed RRAL for chlorides is 600 mg/kg.

Site Assessment and Remediation Activities

Initial Release Site Assessment Activities

Tetra Tech conducted site assessment activities on January 5, 2023. A total of three (3) auger holes (AH-1 through AH-3) were installed to depths ranging from surface to 2.5 ft bgs, to attempt to assess and vertically delineate the impacted the area. Deeper samples were not collected due to dense geological formation. Additionally, a total of six (6) horizontals (H-1 through H-6) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 3**.

The samples were submitted to Eurofins Laboratories in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 1** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, all auger holes (AH-1 through AH-3) did not indicate chloride concentrations above RRALs. However, auger holes (AH-1 and AH-3) indicated TPH concentrations above RRALs, with concentrations ranging from 103 mg/kg to 7,180 mg/kg at depths ranging from surface to 2.5 ft bgs. Auger hole (AH-3) indicated benzene and BTEX concentrations above RRALs, with a benzene concentration of 20.4 mg/kg at surface and BTEX concentrations ranging from 99.9 mg/kg to 213 mg/kg, at depths ranging from surface to 2.5 ft bgs. Vertical delineation of TPH and BTEX was not found in the auger (AH-3) due to hitting refusal due to the dense geological formation. Additionally, auger hole (AH-2) and horizontals (H-1 through H-6) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Initial Release Remediation Activities

Tetra Tech conducted remediation activities from June 6, 2023 through June 21, 2023. The areas of impact were remediated to depths ranging from 0.5 ft bgs to 2.75 ft bgs. Additionally, a superficial 0.5' scrape was completed on the remaining areas beyond horizontal delineation of surficial staining that did not indicate exceedances for housekeeping purposes. The remediation areas and depths are shown on **Figure 4**.

Following remediation activities, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the remediation. All confirmation samples are collected as a composite 5-point die pattern to ensure a representative sample of sidewalls and floor of the excavation are collected. A total of four (4) bottom holes (BH-1 through BH-4) were collected and a total of eleven (11) sidewalls (SW-1 through SW-11) were collected to confirm full removal of impacted soil. The confirmation soil samples were submitted to the Cardinal Laboratory in Hobbs, New Mexico and Eurofins Laboratory in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0 and EPA Method 4500. The analytical results are summarized in **Table 2** and the analytical laboratory reports are included in **Appendix C**.

Regarding all final samples collected from the remediation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the RRALs.

Second Release Site Assessment Activities

Tetra Tech conducted site assessment activities on June 21, 2023. A total of eight (8) auger holes (AH-1 through AH-8) were installed to depths ranging from surface to 3.5 ft bgs, to attempt to assess and vertically delineate the impacted the area. Deeper samples were not collected due to dense geological formation. Additionally, a total of seven (7) horizontals (H-1 through H-7) were installed to total depths of 0.5 ft bgs, to horizontally delineate the impact. The impact and sample locations are shown on **Figure 5**.

The samples were submitted to Eurofins Laboratories in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0. The analytical results are summarized in **Table 3** and the analytical laboratory reports are included in **Appendix C**.

Referring to Table 1, all auger holes (AH-1 through AH-8) did not indicate chloride, benzene, or BTEX concentrations above RRALs. However, auger holes (AH-2 through AH-8) indicated TPH concentrations above RRALs, with concentrations ranging from 103 mg/kg to 21,500 mg/kg at depths ranging from surface to 3.5 ft bgs. Vertical delineation of TPH was not found in the auger (AH-2, AH-3, and AH-5 through AH-8) due to hitting refusal due to the dense geological formation. Additionally, Horizontals (H-1 through H-7) did not indicate benzene, BTEX, TPH, or chloride concentrations above RRALs.

Second Release Remediation Activities

Tetra Tech conducted remediation activities from July 10, 2023, through July 21, 2023. The areas of impact were remediated to depths ranging from 1.0 ft bgs to 4.5 ft bgs. The remediation areas and depths are shown on **Figure 6**.

Following remediation activities, Tetra Tech conducted confirmation sampling by collecting 5-point composite bottom hole samples and 5-point composite sidewall samples every 200 square feet within the remediation. All confirmation samples are collected as a composite 5-point die pattern to ensure a representative sample of sidewalls and floor of the excavation are collected. A total of fourty-eight (48) bottom holes (BH-1 through BH-48) were collected and a total of twenty-one (21) sidewalls (SW-1 through SW-21) were collected to confirm full removal of impacted soil. The confirmation soil samples were submitted to the Cardinal Laboratory in Hobbs, New Mexico and Eurofins Laboratory in Midland, Texas to be analyzed for TPH method 8015 modified, BTEX method 8021B, and Chloride by EPA Method 300.0 and EPA Method 4500. The analytical results are summarized in **Table 4** and the analytical laboratory reports are included in **Appendix C**.

Regarding all final samples collected from the remediation, analytical results indicated benzene, BTEX, TPH, and chloride concentrations were below the RRALs.

Conclusions

Based on the C-141's (nAPP2307047906 and nAPP2316555696) and information provided by EOG, Tetra Tech performed site characterization and groundwater research to determine groundwater depth, proximity from significant water features, and proximity from specified populated entities to determine RRALs and assess the impacted area. Based on the OCD *Guidelines for Remediation of Leaks, Spills, and Releases*, updated August 14, 2018, according to the groundwater data found during research activites, the RRALs of 600 mg/kg for chlorides and 100 mg/kg for TPH were followed. Based on Tetra Tech assessment activites, laboratory results indicated TPH and BTEX concentrations in both releases that exceeded RRALs and required remediation.

Following remediation of the areas of impact, Tetra Tech conducted confirmation soil sampling of the area by collecting 5-point composite confirmation bottom hole and sidewall samples to ensure the impacted soil was fully removed. Approximately 1,494 cubic yards total of impacted soil was removed and properly disposed of, with 173 and 1,321 cubic yards from the initial and second release, respectively. The area was backfilled with clean to surface grade material. The analytical results indicated all confirmation samples reported below the RRALs for all constituents. Based on this information, it is recommended that the remediated pad at this Site requires no further action. The final C-141 is included in **Appendix A**.

If you require any additional information or have any questions or comments, please contact us at (432) 682-4559.

Respectfully submitted, TETRA TECH

Brittany Long, Project Manager

Clair Gonzales, P.G. Senior Project Manager

Figures

I CTB.mxc

Goo

Name: Figure 6 - Convoy Central CTB

Released to Imaging: 2/6/2024 1:23:40 PM

Service Layer Credits: World Street Map, ESRI.

Tables

Table 1

EOG Resources Convoy Central CTB

Les County New Mexico

					Lea	county, i	New Mexic	0					
Sample	Sample	Soil	Status		TPH	(mg/kg)				BTEX (mg/kg)			Chloride
Date	Depth (ft)	In-Situ	Removed	GRO mg/kg	DRO mg/kg	ORO mg/kg	Total mg/kg	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total (mg/Kg)	(mg/kg)
							100	10				50	600
							mg/kg	mg/kg				mg/kg	mg/kg
					Initi	al Release	Assessmer	nt					
1/5/2023	0-1	-	Х	<50.0	<50.0	<50.0	<50.0	0.0135	0.374	0.195	0.852	1.43	54.5
"	1-1.5	-	Х	<49.9	103	<49.9	103	0.0373	0.0896	0.229	0.933	1.29	120
"	2-2.5	Х	-	<50.0	82.3	<50.0	82.3	0.0252	0.0894	0.151	0.591	0.857	106
1/5/2023	0-1	х	-	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	< 0.00404	<0.00404	53.8
"	1-1.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00199	0.00300	<0.00199	0.00860	0.0116	159
"	2-2.5	Х	-	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	142
1/5/2023	0-1	-	Х	2,830	3,850	503	7,180	20.4	138	39.0	150	213	56.1
"	1-1.5	-	Х	654	1,520	177	2,350	2.62	36.3	13.9	47.1	99.9	92.1
Ш	2-2.5	-	Х	423	642	<49.8	1,070	1.92	30.8	16.2	55.5	104	110
1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	0.00565	0.00255	<0.00202	0.00995	0.0182	59.9
1/5/2023	0-0.5	Х	-	<49.8	84.9	<49.8	84.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	153
1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	0.0122	0.00656	<0.00200	<0.00399	0.0212	92.8
1/5/2023	0-0.5	Х	-	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	91.9
1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	79.8
1/5/2023	0-0.5	Х	-	<49.9	<49.9	<49.9	<49.9	0.00669	<0.00199	<0.00199	<0.00398	0.00669	85.6
	1/5/2023 " 1/5/2023 " 1/5/2023 " 1/5/2023 1/5/2023 1/5/2023 1/5/2023 1/5/2023 1/5/2023	Sample Date Depth (ft) Date Depth (ft) 1/5/2023 0-1 " 1-1.5 " 2-2.5 1/5/2023 0-1 " 1-1.5 " 2-2.5 1/5/2023 0-1 " 1-1.5 " 2-2.5 1/5/2023 0-1 " 1-1.5 " 2-2.5 1/5/2023 0-1 1/5/2023 0-0.5 1/5/2023 0-0.5 1/5/2023 0-0.5 1/5/2023 0-0.5 1/5/2023 0-0.5 1/5/2023 0-0.5	Sample Date Depth (ft) In-Situ 1/5/2023 0-1 - 1/5/2023 0-1 - " 1-1.5 - " 2-2.5 X 1/5/2023 0-1 X " 2-2.5 X 1/5/2023 0-1 X " 2-2.5 X 1/5/2023 0-1 - " 2-2.5 X 1/5/2023 0-1 - " 2-2.5 X 1/5/2023 0-1 - 1/5/2023 0-1 - 1/5/2023 0-0.5 X 1/5/2023 0-0.5 X 1/5/2023 0-0.5 X 1/5/2023 0-0.5 X 1/5/2023 0-0.5 X	Sample Date Depth (ft) In-Situ Removed 1/5/2023 0-1 - X 1/5/2023 0-1 - X " 1-1.5 - X " 2-2.5 X - 1/5/2023 0-1 X - 1/5/2023 0-0.5 X -	Sample Date Depth (ft) In-Situ Removed GRO mg/kg 1/5/2023 0-1 - X <50.0	Sample Date Sample (ft) Soil Status TPH Date Depth (ft) In-Situ Removed GRO mg/kg DRO mg/kg 1/5/2023 0-1 - X <50.0	Sample Date Sample hepth (ft) Soil Status TPH (mg/kg) TPH (mg/kg) $n-Situ$ Removed GRO mg/kg DRO mg/kg Mg/kg Mg/kg $n-Situ$ Removed GRO mg/kg Mg/kg Mg/kg Mg/kg $n-Situ$ Removed GRO mg/kg Mg/kg Mg/kg Mg/kg $n-Situ$ Removed Soil Status GRO mg/kg Mg/kg Mg/kg $n-Situ$ N <50.0 <50.0 <50.0 <50.0 n' $1-1.5$ $ X$ <49.9 <49.9 <49.9 n'' $1-1.5$ X $ <50.0$ <50.0 <50.0 $1/5/2023$ $0-1$ X $ <49.9$ <49.9 <49.9 n'' $1-1.5$ X $ <50.0$ <50.0 <50.0 n'' $1-1.5$ X $ <49.9$ <49.9 <49.9 n'' $1-5.5$ X $-$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Sample Date Depth (ft) In-Situ Removed Removed GRO mg/kg DRO mg/kg ORO mg/kg Total mg/kg Benzene (mg/Kg) 100 10 mg/kg mg/kg mg/kg mg/kg mg/kg mg/kg 100 10 mg/kg mg/kg mg/kg mg/kg mg/kg 105/2023 0-1 - X <50.0	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Sample Date Sample beth (ft) Soil Status TPH (mg/kg) mg/kg Total mg/kg Benzene mg/kg Totuene (mg/Kg) BTEX (mg/kg) 100 10 mg/kg mg/kg	Sample Date Sample Depth (ft) Soil Status TPH (mg/kg) (ms/kg) Total mg/kg Benzene mg/kg Totuene (mg/Kg) BTEX (mg/kg) 100 10 ms/kg mg/kg mg/kg </td <td>Sample Date Soil Status TPH (mg/kg) BTEX (mg/kg) BTEX (mg/kg) In-Situ Removed GRO mg/kg DRO mg/kg ORO mg/kg Total mg/kg Benzene mg/kg Toluene (mg/Kg) Ethylbenzene (mg/Kg) Xylenes (mg/Kg) Total (mg/Kg) 100 10 100 10 100 10 50 Initial Release Assessment 1/5/2023 0-1 - X <50.0</td> <50.0	Sample Date Soil Status TPH (mg/kg) BTEX (mg/kg) BTEX (mg/kg) In-Situ Removed GRO mg/kg DRO mg/kg ORO mg/kg Total mg/kg Benzene mg/kg Toluene (mg/Kg) Ethylbenzene (mg/Kg) Xylenes (mg/Kg) Total (mg/Kg) 100 10 100 10 100 10 50 Initial Release Assessment 1/5/2023 0-1 - X <50.0

NOTES

Released to Imaging: 2/6/2024 1:23:40 PM

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 2 EOG Resources Convoy Central CTB Lea County, New Mexico

	Sample	Sample	Soil S	Status			(mg/kg)	New Mexic			BTEX (mg/kg)			Chloride
Sample ID	Date	Depth	In-Situ	Removed	GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	-	Total	(mg/kg)
	Dute	(ft)	in-onu	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	
RRALs								100	10				50	600
								mg/kg	mg/kg				mg/kg	mg/kg
					-	Initial Re	lease Conf	irmation Sa	mples					
	6/14/2023	1.5	-	Х	<10.0	89.9	18.4	108	<0.050	<0.050	<0.050	<0.150	<0.300	49.5
BH-1	6/19/2023	1.75	-	Х	<10.0	368	147	515	<0.050	<0.050	<0.050	<0.150	<0.300	65.6
	6/21/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	57.1
BH-2	6/14/2023	1.5	-	Х	<10.0	102	23.9	126	< 0.050	<0.050	<0.050	<0.150	<0.300	51.7
BH-2	6/19/2023	1.75	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	55.5
	6/14/2023	2.5	-	Х	<10.0	88.6	36.6	125	< 0.050	< 0.050	< 0.050	< 0.150	<0.300	46.7
BH-3	6/19/2023	2.75	х	-	<10.0	12.3	<10.0	12.3	< 0.050	< 0.050	< 0.050	<0.150	<0.300	60.9
DUL 4		4.75	V	I	-10.0	47.4	14.2	(1.2	-0.050	-0.050	10.050	-0.150	-0.200	64.5
BH-4	6/19/2023	1.75	Х	-	<10.0	47.1	14.2	61.3	<0.050	<0.050	<0.050	<0.150	<0.300	61.5
SW-1	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.5
SW-2	6/14/2023		Х	-	<10.0	30.2	<10.0	30.2	<0.050	<0.050	<0.050	<0.150	<0.300	54.3
SW-3	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	49.5
SW-4	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	49.6
SW-5	6/14/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	54.6
SW-6	6/14/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	59.6
SW-7	6/14/2023		х	-	<10.0	15.1	<10.0	15.1	<0.050	<0.050	<0.050	<0.150	<0.300	58.7
SW-8	6/14/2023		Х	-	<10.0	16.8	<10.0	16.8	<0.050	<0.050	<0.050	<0.150	<0.300	53.7
SW-9	6/15/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	37.8
SW-10	6/15/2023		Х	-	<10.0	27.6	<10.0	27.6	<0.050	<0.050	<0.050	<0.150	<0.300	39.9
SW-11	6/15/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	37.4

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 3 EOG Resources Convoy Central CTB Lea County, New Mexico

Sample Date Sample Date Depth (H) Constants GRO DRO Mg/kg mg/kg<		. .	Sample	Soil S	Status			(mg/kg)				BTEX (mg/kg)			
Date (ft) insuit mg/kg mg/kg mg/kg (mg/kg) (mg/kg) (mg/kg) (mg/kg) (mg/kg) RRALs 50 mg/kg <	ample ID					GRO			Total	Benzene			Xylenes	Total	Chloride
PRRALS mg/kg mg/kg mg/kg mg/kg BECOM Release Assessment AH-1 6/21/2023 0-1 X - < <10.0		Date		in-situ	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)
AH-1 6/21/2023 0-1 X - <100	RRAIs								100	10					600
AH-1 6/21/2023 0-1 X - <10.0	110.20								mg/kg	mg/kg				mg/kg	mg/kg
AH-1 " 1-1.5 X - <10.0							Seco	nd Release	e Assessme	nt					
AH-1 " 2-2.5 X - <10.0		6/21/2023	0-1	Х	-	<10.0	13.1	<10.0	13.1	<0.050	<0.050	<0.050	<0.150	<0.300	60.8
" 2.2.5 X · <th< th=""><th>AH_1</th><th>н</th><th>1-1.5</th><th>Х</th><th>-</th><th><10.0</th><th><10.0</th><th><10.0</th><th><10.0</th><th><0.050</th><th><0.050</th><th><0.050</th><th><0.150</th><th><0.300</th><th>59.1</th></th<>	AH_1	н	1-1.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	59.1
AH-0 S-3.5 X I S-10.0	<u></u>		2-2.5		-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	60.2
AH-2 " 1-1.5 - X <10.0		п	3-3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	54.0
AH-2 " 2-2.5 - X <10.0		6/21/2023	0-1	-	Х	<10.0	580	133	713	<0.050	<0.050	<0.050	<0.150	<0.300	66.5
" 2-2.5 . X <10.0	AH-2	"	1-1.5	-	Х	<10.0	352	74.5	427	<0.050	<0.050	<0.050	<0.150	<0.300	56.1
AH-3 6/21/2023 0-1 X C10.0 9.0 13.0 103 C0.050 C0.050 <th< th=""><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th><0.050</th><th></th><th></th><th></th><th></th><th>51.0</th></th<>				-						<0.050					51.0
AH-4 6/21/2023 0-1 - X <10.0		"	3-3.5	-	Х	<10.0	90	13.0	103	<0.050	<0.050	<0.050	<0.150	<0.300	52.3
AH-4 " 1-1.5 - X <10.0	AH-3	6/21/2023	0-1	-	Х	<10.0	4,350	1,080	5,430	<0.050	<0.050	<0.050	<0.150	<0.300	77.5
" 2-2.5 X - <10.0		6/21/2023	0-1	-	Х	<10.0	570	182	752	<0.050	< 0.050	<0.050	< 0.150	< 0.300	70.8
AH-5 6/21/2023 0-1 - X <10.0	AH-4	"	1-1.5	-	Х	<10.0	262	84.2	346	<0.050	<0.050	<0.050	<0.150	<0.300	53.5
AH-6 6/21/2023 0-1 - X <10.0		п	2-2.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	51.5
AH-7 6/21/2023 0-1 - X <10.0	AH-5	6/21/2023	0-1	-	Х	<10.0	3,940	989	4,929	<0.050	<0.050	<0.050	<0.150	<0.300	52.4
AH-8 6/21/2023 0-1 - X 218 17,900 3,390 21,500 <0.050	AH-6	6/21/2023	0-1	-	Х	<10.0	382	109	491	<0.050	<0.050	<0.050	<0.150	<0.300	63.3
H-1 6/21/2023 X - <10.0	AH-7	6/21/2023	0-1	-	Х	<10.0	2,820	859	3,679	<0.050	<0.050	<0.050	<0.150	<0.300	61.0
H-2 6/21/2023 X - <10.0	AH-8	6/21/2023	0-1	-	Х	218	17,900	3,390	21,500	<0.050	0.141	0.532	2.86	3.53	219.0
H-3 6/21/2023 X - <10.0	H-1	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.8
H-4 6/21/2023 X - <10.0 <10.0 <10.0 <10.0 <0.050 <0.050 <0.050 <0.150 <0.300	H-2	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.2
	H-3	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	40.6
H-5 6/21/2023 X - <10.0	H-4	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	41.5
	H-5	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	46.6
H-6 6/21/2023 X - <10.0 <10.0 <10.0 <10.0 <0.050 <0.050 <0.050 <0.150 <0.300	H-6	6/21/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	46.3
H-7 6/21/2023 X - <10.0 <10.0 <10.0 <10.0 <0.050 <0.050 <0.050 <0.150 <0.300	H-7	6/21/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	53.9

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Table 4 EOG Resources Convoy Central CTB Lea County. New Mexico

		Sample	Soil S	Status			(mg/kg)	lew Mexic	BTEX (mg/kg)					
Sample ID	Sample	Depth			GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes	Total	Chloride
•	Date	(ft)	In-Situ	Removed	mg/kg	mg/kg	mg/kg	mg/kg	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/kg)
RRALs								100	10				50	600
								mg/kg	mg/kg				mg/kg	mg/kg
				-		Second Re	elease Con	firmation Sa	ampling					
BH-1	7/12/2023	1	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
BH-2	7/12/2023	1	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
BH-3	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-4	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-5	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-6	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
BH-7	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-8	7/12/2023	3	-	Х	<10.0	77.9	27.3	105	<0.050	<0.050	<0.050	<0.150	<0.300	144
BI1-0	7/14/2023	3	Х	-	<10.0	13	<10.0	12.7	<0.050	<0.050	<0.050	<0.150	<0.300	368
BH-9	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-10	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-11	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	560
BH-12	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-13	7/12/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192
BH-14	7/12/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
BH-15	7/13/2023	2	-	Х	<10.0	284	65.1	349	<0.050	<0.050	<0.050	<0.150	<0.300	416
PH-12	7/19/2023	4.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	192.0
BH-16	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	160
BH-17	7/13/2023	2	Х	-	<10.0	37.8	<10.0	37.8	<0.050	<0.050	<0.050	<0.150	<0.300	256
BH-18	7/13/2023	2	Х	-	<10.0	56.1	12.7	68.8	<0.050	<0.050	<0.050	<0.150	<0.300	208
BH-19	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-20	7/13/2023	2	Х	-	<10.0	36.3	<10.0	36.3	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-21	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-22	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	144
	7/19/2023	3.5	Х	-	<10.0	68	11.3	79.2	<0.050	<0.050	<0.050	<0.150	<0.300	144

.

Table 4 EOG Resources Convoy Central CTB Lea County, New Mexico

		Sample	Soil S	Status			(mg/kg)	New IVIEXIC			BTEX (mg/kg)			
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO	DRO	ORO	Total	Benzene	Toluene	Ethylbenzene	Xylenes (mg/Kg)	Total	Chloride (mg/kg)
RRALs		(11)			mg/kg	mg/kg	mg/kg	mg/kg 100	(mg/Kg) 10	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg) 50	600
-								mg/kg	mg/kg				mg/kg	mg/kg
BH-23	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-24	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-25	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-26	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-27	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	448
BH-28	7/14/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-29	7/13/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-30	7/13/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-31	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-32	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-33	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-34	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
BH-35	7/14/2023	3	Х	-	<10.0	16.1	<10.0	16.1	<0.050	<0.050	<0.050	<0.150	<0.300	432
BH-36	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-37	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-38	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	352
BH-39	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
BH-40	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
BH-41	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
BH-42	7/14/2023	3	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	224
	7/19/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-43	7/14/2023	3	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
511-45	7/19/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	224.0
BH-44	7/14/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
BH-45	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
BH-46	7/14/2023	2	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
BH-47	7/14/2023	3.5	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0

.

Table 4 EOG Resources Convoy Central CTB

Lea County, New Mexico

	Comple	Sample	Soil S	Status			(mg/kg)				BTEX (mg/kg)			Chloride
Sample ID	Sample Date	Depth (ft)	In-Situ	Removed	GRO mg/kg	DRO mg/kg	ORO mg/kg	Total mg/kg	Benzene (mg/Kg)	Toluene (mg/Kg)	Ethylbenzene (mg/Kg)	Xylenes (mg/Kg)	Total (mg/Kg)	(mg/kg)
RRALs								100 mg/kg	10 mg/kg	((50 50 mg/kg	600 mg/kg
BH-48	7/14/2023	2	-	Х	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
	7/19/2023	3	Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64
SW-1	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-2	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	176
SW-3	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
SW-4	7/11/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-5	7/11/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-6	7/11/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-7	7/12/2023		х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240
SW-8	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-9	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-10	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
SW-11	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-12	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-13	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-14	7/12/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-15	7/19/2023		х	-	<10.0	13.2	<10.0	13.2	<0.050	<0.050	<0.050	<0.150	<0.300	160
SW-16	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	128
SW-17	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	112
SW-18	7/19/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	240
SW-19	7/19/2023		Х	-	<10.0	41.4	<10.0	41.4	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-20	7/19/2023		Х	-	<10.0	43.7	<10.0	43.7	<0.050	<0.050	<0.050	<0.150	<0.300	96.0
SW-21	7/19/2023		- V	Х	<10.0	169	40.5	210	< 0.050	<0.050	<0.050	<0.150	<0.300	80.0
	7/26/2023		Х	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0

NOTES

RRALs (Recommended Remediation Action Levels) are based on NMOCD (New Mexico Oil Conservation Devision) Guidelines for Remediation of Leaks, Spills,

All screening values and results are presented in milligrams per kilogram (mg/kg)

Bolded cells represent a detected concentration above the respective screening value.

< = analyte was not detected above the respective sample detection limit

ft = feet below ground surface

(-) = not analyzed for respective constituent

TPH = total petroleum hydrocarbons

BTEX = benzene, toluene, ethylbenzene, xylene

Photographic Documentation

EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View North

EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

TETRA TECH

View of Remediation Activities - View North

View of Remediation Activities - View North

EOG Resources Convoy Central CTB 1st Release Eddy County, New Mexico

Page 24 of 262

View of Remediation Activities - View North

View of Remediation Activities - View North

Received by OCD: 10/25/2023 3:11:34 PM

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View Northeast

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities - View North

View of Remediation Activities - View Southeast

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities – View Northeast

View of Remediation Activities - View West

Received by OCD: 10/25/2023 3:11:34 PM

EOG Resources Convoy Central CTB 2nd Release Eddy County, New Mexico

View of Remediation Activities - View Northwest

Appendix A

C-141 Document

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2307047906
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377
Contact Name Todd Wells	Contact Telephone (432) 686-3613
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2307047906
Contact mailing address 5509 Champions Drive Midland, TX 79706	

Location of Release Source

Latitude <u>32.192135°</u>

Longitude <u>-103.576488°</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name Convoy Central CTB	Site Type Tank Battery
Date Release Discovered 12/27/22	API# (if applicable)

Unit Letter	Section	Township	Range	County
G	28	24S	33E	Lea

Surface Owner: State Federal Tribal Private (*Name:* _____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls) 5	Volume Recovered (bbls) 0	
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)	
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No	
Condensate	Volume Released (bbls)	Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)	
Cause of Release: The weld on the discharge pipe developed a crack and sprayed oil on the ground surrounding it on the pad. Initially the release was estimated to be less than 5 bbls. Following the soil assessment the release volume was revised to approximately 5 bbls.			

the release was estimated to be less than 5 bbls. Following the soil assessment the release volume was revised to approximately 5 bbls of oil released on the pad with 0 bbls recovered.

Oil Conservation Division

Incident ID	NAPP2307047906
District RP	
Facility ID	
Application ID	

Was this a major release as defined by	If YES, for what reason(s) does the responsible party consider this a major release?
19.15.29.7(A) NMAC?	
🗌 Yes 🖾 No	
If YES, was immediate ne	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: _	Todd Wells	Title:	Environmental Specialist
Signature:	Todd Wells		Date: <u>3-11-23</u>
email:	_Todd_Wells@eogresources.com		Telephone: (432) 686-3613
OCD Only			
Received by:	Jocelyn Harimon		Date:03/13/2023

Page 2

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🗌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🗌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🗌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🗌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🗌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within 1/2-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps

Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

•

Received by OCD: 10/25/2023 3:11:34 PM Form C-141 State of New Mexico			Page 33 of 26	
			Incident ID	
Page 4			District RP	
			Facility ID	
			Application ID	
regulations all operators a public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature:	formation given above is true and complete to the re required to report and/or file certain release notionment. The acceptance of a C-141 report by the C tigate and remediate contamination that pose a three of a C-141 report does not relieve the operator of Wells	ifications and perform c DCD does not relieve th eat to groundwater, surf responsibility for comp 	corrective actions for rele e operator of liability sh ace water, human health oliance with any other fe	eases which may endanger ould their operations have a or the environment. In deral, state, or local laws
OCD Only				
Received by:		Date:		

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.		
A scaled site and sampling diagram as described in 19.15.29.1	A scaled site and sampling diagram as described in 19.15.29.11 NMAC	
Photographs of the remediated site prior to backfill or photos must be notified 2 days prior to liner inspection)	Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)	
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)	
Description of remediation activities		
and regulations all operators are required to report and/or file certai may endanger public health or the environment. The acceptance of	ations. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in	
Printed Name:	Title:	
Signature: Todd Wells	Date:	
email:	Telephone:	
OCD Only		
Received by:	Date:	
	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.	
Closure Approved by:	Date:	
Printed Name:		

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	nAPP2316555696
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party EOG Resources	OGRID 7377	
Contact Name Todd Wells	Contact Telephone (432) 686-3613	
Contact email Todd_Wells@eogresources.com	Incident # (assigned by OCD) nAPP2316555696	
Contact mailing address 5509 Champions Drive Midland, TX 79706		

Location of Release Source

Latitude 32.192436°

Longitude -103.576510° (NAD 83 in decimal degrees to 5 decimal places)

Site Name Convoy Central CTB	Site Type Tank Battery
Date Release Discovered 6/11/23	API# (if applicable)

Unit Letter	Section	Township	Range	County
G	28	24S	33E	Lea

Surface Owner: State Federal Tribal Private (*Name:* _____)

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)	
Produced Water Volume Released (bbls) 70		Volume Recovered (bbls) 38	
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No	
Condensate Volume Released (bbls)		Volume Recovered (bbls)	
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)	
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)	
Cause of Release: Following a facility upgrade, the valve for one of the water tanks was left open at the load line. This caused the release of approximately 70 bbls of produced water that ran across the pad and into the ROW with 38 bbls recovered.			

Page	2
B-	_

Oil Conservation Division

Incident ID	NAPP2316555696
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release? More than 25 bbls.
Yes 🗌 No	
	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)? James Kennedy n to the NMOCD Inbox on 6/12/23.

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: _	Todd Wells	Title:	Environmental Specialist
Signature:	Todd Wells		Date: <u>6/14/23</u>
email:	Todd_Wells@eogresources.com		Telephone: (432) 686-3613
OCD Only			
Received by:	Jocelyn Harimon		Date:06/15/2023
Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>70</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🖌 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🖌 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🖌 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🖌 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🖌 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖌 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🖌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🖌 No
Did the release impact areas not on an exploration, development, production, or storage site?	🖌 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data
- **D**ata table of soil contaminant concentration data
- \checkmark Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- ✓ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Page 3

orm (11	2023 3:11:34 PM State of New Mexico		Page 38 oj Incident ID nAPP2316555696				
		Oil Conservation Division		nAPP2316555696			
age 4	Oil Conservation Division						
			Facility ID				
			Application ID				
public health or the environ failed to adequately investig	e required to report and/or file certain release no ment. The acceptance of a C-141 report by the gate and remediate contamination that pose a th of a C-141 report does not relieve the operator of	OCD does not relieve reat to groundwater, s	the operator of liability shurface water, human health	nould their operations have n or the environment. In			
Printed Name: <u>Todd We</u> Signature: <u>Todd (</u> email: <u>Todd_Wells@eog</u>	Vella	Title: <u>Environme</u> Date: <u>10/25/2</u> Telephone: <u>(432)</u>	3				

Page 6

Oil Conservation Division

	Page 39 of 26
Incident ID	nAPP2316555696
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

 Printed Name: Todd Wells
 Title: Environmental Specialist

 Signature: Todd Wells
 Date: 10/25/23

 email: Todd_Wells@eogresources.com
 Telephone: (432) 686-3613

 OCD Only
 Environmental Specialist

 Received by: ______
 Date: ______

 Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Nelson Velez	Date:	02/06/2024
Printed Name:	Nelson Velez	Title:	Environmental Specialist - Adv

Appendix B

Site Characterization Documents

		(quarters are sma	llest to largest	:) (1	(NAD83 UTM in meters)		
Well Tag	POD Number	Q64 Q16 Q4	Sec Tws	Rng	Χ	Y	
NA	C 02310	2 4 2	33 24S	33E (634420	3560893 🌍	
Driller Lic	ense:	Driller Compan	ı y:				
Driller Na	me: UNKNOWN						
Drill Start	Date: 01/01/1890	Drill Finish Dat	e: 1	2/31/1890	Plug	g Date:	
Log File D	ate:	PCW Rcv Date:	:		Sou	rce:	
Pump Typ	e:	Pipe Discharge	Size:		Esti	mated Yield:	60 GPM
Casing Siz	e: 8.50	Depth Well:	1	20 feet	Dep	th Water:	70 feet

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

1/26/23 5:10 PM

POINT OF DIVERSION SUMMARY

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321017103343201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321017103343201 24S.33E.33.23231

Lea County, New Mexico Latitude 32°10'17", Longitude 103°34'32" NAD27 Land-surface elevation 3,475 feet above NAVD88 This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Ogallala Formation (1210GLL) local aquifer.

Output formats

Tok		of	data	
d	ле	OI D	udid	

Tab-separated data

Graph of data

Reselect period

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source a measura
1954-03-17		D	62610		3380.19	NGVD29	1	Z		
1954-03-17		D	62611		3381.85	NAVD88	1	Z		
1954-03-17		D	72019	93.15			1	Z		
1976-01-22		D	62610		3381.29	NGVD29	1	Z		
1976-01-22		D	62611		3382.95	NAVD88	1	Z		
1976-01-22		D	72019	92.05			1	Z		
1981-03-20		D	62610		3380.53	NGVD29	1	Z		
1981-03-20		D	62611		3382.19	NAVD88	1	Z		
1981-03-20		D	72019	92.81			1	Z		
1986-03-11		D	62610		3378.77	NGVD29	1	Z		
1986-03-11		D	62611		3380.43	NAVD88	1	Z		
1986-03-11		D	72019	94.57			1	Z		
1991-06-06		D	62610		3378.72	NGVD29	1	Z		
1991-06-06		D	62611		3380.38	NAVD88	1	Z		
1991-06-06		D	72019	94.62			1	Z		

Received by OSCA: 10/25/2023 3:11:34 PM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 43 of 262

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measure
1996-03-01		D	62610		3378.99	NGVD29	1	S		
1996-03-01		D	62611		3380.65	NAVD88	1	S		
1996-03-01		D	72019	94.35			1	S		

Explanation							
Section	Code	Description					
Water-level date-time accuracy	D	Date is accurate to the Day					
Parameter code	62610	Groundwater level above NGVD 1929, feet					
Parameter code	62611	Groundwater level above NAVD 1988, feet					
Parameter code	72019	Depth to water level, feet below land surface					
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988					
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929					
Status	1	Static					
Method of measurement	S	Steel-tape measurement.					
Method of measurement	Z	Other.					
Measuring agency		Not determined					
Source of measurement		Not determined					
Water-level approval status	А	Approved for publication Processing and review completed.					

Questions about sites/data? Feedback on this web site Automated retrievals Help Data Tips Explanation of terms Subscribe for system changes News

Accessibility FOIA Privacy Policies and Notices <u>U.S. Department of the Interior</u> | <u>U.S. Geological Survey</u> Title: Groundwater for New Mexico: Water Levels URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-01-27 01:22:39 EST 0.28 0.24 nadww01 USA.gov

.

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

nmflood.org is made possible through a collaboration with NMDHSEM,

Appendix C

Laboratory Reports

Received by OCD: 10/25/2023 3:11:34 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Brittany Long Tetra Tech, Inc. 901 W Wall Ste 100 Midland, Texas 79701 Generated 1/19/2023 1:48:38 PM

JOB DESCRIPTION

Convoy Central CTB SDG NUMBER Lea County NM

JOB NUMBER

890-3772-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Received by OCD: 10/25/2023 3:11:34 PM

Eurofins Carlsbad

Job Notes

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

RAMER

Generated 1/19/2023 1:48:38 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-3772-1 SDG: Lea County NM

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	30
Lab Chronicle	35
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Checklists	45

Page 50 of 262

62

3

ceived by OCL	D: 10/25/2023 3:11:34 PM	Page 51 of
	Definitions/Glossary	
Client: Tetra Te	-	Job ID: 890-3772-1
	onvoy Central CTB	SDG: Lea County NM
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
*1	LCS/LCSD RPD exceeds control limits.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	

Reporting Limit or Requested Limit (Radiochemistry) RL RPD Relative Percent Difference, a measure of the relative difference between two points TEF Toxicity Equivalent Factor (Dioxin)

Relative Error Ratio (Radiochemistry)

Method Quantitation Limit

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

MQL

NC

ND

NEG POS

PQL PRES

QC

RER

Job ID: 890-3772-1 SDG: Lea County NM

Page 52 of 262

Job ID: 890-3772-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-3772-1

Receipt

The samples were received on 1/5/2023 1:41 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 16.1°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (890-3772-1), H-2 (890-3772-2), H-3 (890-3772-3), H-4 (890-3772-4), H-5 (890-3772-5), H-6 (890-3772-6), AH-1 (0-1') (890-3772-7), AH-1 (1-1.5') (890-3772-8), AH-1 (2-2.5') (890-3772-9), AH-2 (0-1') (890-3772-10), AH-2 (1-1.5') (890-3772-11), AH-2 (2-2.5') (890-3772-12), AH-3 (0-1') (890-3772-13), AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: AH-1 (0-1') (890-3772-7), AH-3 (0-1') (890-3772-13), AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: AH-1 (1-1.5') (890-3772-8). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following sample was outside control limits: AH-1 (2-2.5') (890-3772-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: AH-3 (1-1.5') (890-3772-14) and AH-3 (2-2.5') (890-3772-15). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-43699 and analytical batch 880-43692 was outside the upper control limits.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-43712 and analytical batch 880-43694 was outside the upper control limits.

Method 8015MOD_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-43713 and analytical batch 880-43779 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (MB 880-43713/1-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-43540 and analytical batch 880-43613 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 53 of 262

Matrix: Solid

5

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-1

Client Sample ID: H-1 Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00565		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	
Toluene	0.00255		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	
Ethylbenzene	< 0.00202	U	0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	
m-Xylene & p-Xylene	0.00520		0.00403		mg/Kg		01/09/23 10:59	01/12/23 22:17	
o-Xylene	0.00475		0.00202		mg/Kg		01/09/23 10:59	01/12/23 22:17	
Xylenes, Total	0.00995		0.00403		mg/Kg		01/09/23 10:59	01/12/23 22:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	74		70 - 130				01/09/23 10:59	01/12/23 22:17	
1,4-Difluorobenzene (Surr)	91		70 - 130				01/09/23 10:59	01/12/23 22:17	ŝ
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0182		0.00403		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 10:56	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	94		70 - 130				01/11/23 08:24	01/11/23 10:56	
o-Terphenyl	100		70 - 130				01/11/23 08:24	01/11/23 10:56	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	59.9		4.99		mg/Kg			01/11/23 14:47	1
lient Sample ID: H-2							Lab Sar	nple ID: 890-	3772-2
ate Collected: 01/05/23 00:00								Matri	x: Soli
ate Received: 01/05/23 13:41									
Method: SW846 8021B - Volatile Analyte	• •	ounds (GC Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		01/09/23 10:59	01/12/23 22:37	
Toluene	< 0.00199		0.00199		mg/Kg		01/09/23 10:59	01/12/23 22:37	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		01/09/23 10:59	01/12/23 22:37	
m-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		01/09/23 10:59	01/12/23 22:37	
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 22:37	

o-Xylene	<0.00199	U	0.00199	mg/Kg	01/09/23 10:59	01/12/23 22:37	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg	01/09/23 10:59	01/12/23 22:37	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	% Recovery 97	Qualifier	Limits 70 - 130		Prepared 01/09/23 10:59	Analyzed 01/12/23 22:37	Dil Fac

Eurofins Carlsbad

ruge 33 of

Matrix: Solid

5

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-2

Client Sample ID: H-2

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00398	U	0.00398		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal TPH	84.9		49.8		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
GRO)-C6-C10									
Diesel Range Organics (Over	84.9		49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
I-Chlorooctane	105		70 - 130				01/11/23 08:24	01/11/23 12:02	1
p-Terphenyl	105		70 - 130				01/11/23 08:24	01/11/23 12:02	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	graphy - S	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	153		5.01		mg/Kg			01/11/23 15:06	1

Collected: 01/05/2 Date Received: 01/05/23 13:41

Matrix: Solid

ethod:	SW846	8021B -	Volatile	Organic	Compounds	(GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0122		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Toluene	0.00656		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
o-Xylene	0.00247		0.00200		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		01/09/23 10:59	01/12/23 22:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				01/09/23 10:59	01/12/23 22:58	1
1,4-Difluorobenzene (Surr)	100		70 - 130				01/09/23 10:59	01/12/23 22:58	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.0212		0.00399		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Die	sel Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	1
	iesel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		ma/Ka		01/11/23 08:24	01/11/23 12:24	1

2					•		
Gasoline Range Organics	<49.9 U	49.9	mg/Kg	_	01/11/23 08:24	01/11/23 12:24	
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.9 U	49.9	mg/Kg		01/11/23 08:24	01/11/23 12:24	
C10-C28)							

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: H-3

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 12:24	
	<i></i>	0 117					- <i>.</i>		
Surrogate	_ <u>%Recovery</u> 122	Qualifier	<u>Limits</u> 70 - 130				Prepared	Analyzed	Dil Fac
1-Chlorooctane							01/11/23 08:24	01/11/23 12:24	1
o-Terphenyl	123		70 - 130				01/11/23 08:24	01/11/23 12:24	1
Method: MCAWW 300.0 - Anions									
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Chloride	92.8		5.00		mg/Kg			01/11/23 15:12	1
lient Sample ID: H-4							Lab San	nple ID: 890-	3772-4
ate Collected: 01/05/23 00:00								Matri	x: Solid
ate Received: 01/05/23 13:41									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)	1						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	1
Toluene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		01/09/23 10:59	01/12/23 23:18	
o-Xylene	<0.00201	U	0.00201		mg/Kg		01/09/23 10:59	01/12/23 23:18	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		01/09/23 10:59	01/12/23 23:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				01/09/23 10:59	01/12/23 23:18	1
1,4-Difluorobenzene (Surr)	91		70 - 130				01/09/23 10:59	01/12/23 23:18	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diese	Rango Organ	ice (DRO) (30)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(60)						
Analyte		Qualifier	RL	мы	Unit	п	Prepared	Analyzed	Dil Fac
Gasoline Range Organics			49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	1
(GRO)-C6-C10		-			.99				
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	1
C10-C28)									
,	<49.8	U	49.8		mg/Kg		01/11/23 08:24	01/11/23 12:47	
,									
Oll Range Organics (Over C28-C36)	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	%Recovery 	Qualifier	Limits 70 - 130				Prepared 01/11/23 08:24	Analyzed 01/11/23 12:47	Dil Fac

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	91.9		5.02		mg/Kg			01/11/23 15:18	1	

Eurofins Carlsbad

Released to Imaging: 2/6/2024 1:23:40 PM

Lab Sample ID: 890-3772-3 Matrix: Solid

Page 56 of 262

5

Job ID: 890-3772-1 SDG: Lea County NM

Matrix: Solid

Lab Sample ID: 890-3772-5

Client Sample ID: H-5 Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		01/09/23 10:59	01/12/23 23:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				01/09/23 10:59	01/12/23 23:39	1
1,4-Difluorobenzene (Surr)	79		70 - 130				01/09/23 10:59	01/12/23 23:39	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	1
Method: SW846 8015B NM - Die						_			
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:09	1
(GRO)-C6-C10 Diesel Range Organics (Over	<49.9	н	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:09	1
C10-C28)		0	40.0		iiig/itg		01/11/20 00.24	01/11/20 10:00	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				01/11/23 08:24	01/11/23 13:09	
p-Terphenyl	115		70 - 130				01/11/23 08:24	01/11/23 13:09	1
Method: MCAWW 300.0 - Anion	s, Ion Chromato	ography - Sol	uble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.8		5.01		mg/Kg			01/11/23 15:24	1
lient Sample ID: H-6							Lab Sar	nple ID: 890-	3772-6
ate Collected: 01/05/23 00:00								Matri	ix: Solic
ate Received: 01/05/23 13:41									
Method: SW846 8021B - Volatile	organic Comp	ounds (GC)							
	• •	Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00669		0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Toluene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/12/23 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				01/09/23 10:59	01/12/23 23:59	1
1,4-Difluorobenzene (Surr)	93		70 - 130				01/09/23 10:59	01/12/23 23:59	1

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM

Matrix: Solid

5

Lab Sample ID: 890-3772-6

Client Sample ID: H-6

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00669		0.00398		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			01/11/23 17:26	
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 08:24	01/11/23 13:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	121		70 - 130				01/11/23 08:24	01/11/23 13:32	
p-Terphenyl	118		70 - 130				01/11/23 08:24	01/11/23 13:32	
nalyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	85.6		5.00		mg/Kg			01/11/23 15:30	
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00			5.00		mg/Kg		Lab Sar	nple ID: 890-	3772-7
Lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41)	ounds (GC			mg/Kg		Lab Sar	nple ID: 890-	3772-7
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile) Organic Comp	ounds (GC Qualifier		MDL		D	Lab Sar	nple ID: 890-	3772-7 ix: Solic
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte) Organic Comp)	MDL		<u>D</u>		nple ID: 890- Matri	3772-7 ix: Solid
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene) Organic Comp Result) RL	MDL	Unit	<u>D</u>	Prepared	nple ID: 890- Matri 	3772-5 ix: Solic Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene) Organic Comp Result 0.0135) 	MDL	Unit mg/Kg	<u>D</u>	Prepared 01/09/23 10:59	nple ID: 890- Matri <u>Analyzed</u> 01/13/23 00:19	3772-7 ix: Solic Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene) Organic Comp Result 0.0135 0.374		RL 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19	3772-7 ix: Solie Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene) Organic Comp Result 0.0135 0.374 0.195		RL 0.00199 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772- ix: Soli Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene) Organic Comp Result 0.0135 0.374 0.195 0.599		RL 0.00199 0.00199 0.00199 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772- ix: Solid Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Kylenes, Total) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253		RL 0.00199 0.00199 0.00199 0.00398 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-5 ix: Solid
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Foluene Ethylbenzene n-Xylene & p-Xylene o-Xylene Kylenes, Total) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 ix: Solid Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene b-Xylene Kylenes, Total Surrogate 4-Bromofluorobenzene (Surr)) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery	Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 Limits	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7 ix: Solid Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772-7
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130 70 - 130 RL		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	D	Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 Analyzed 01/13/23 00:19	3772-7 ix: Solic Dil Fa Dil Fa
Chloride Chloride Client Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte Total BTEX) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103	Qualifier Qualifier S1+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 Limits 70 - 130 70 - 130		Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19	3772- ix: Solid Dil Fa
lient Sample ID: AH-1 (0-1' ate Collected: 01/05/23 00:00 ate Received: 01/05/23 13:41 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX - T Analyte) Organic Comp Result 0.0135 0.374 0.195 0.599 0.253 0.852 %Recovery 150 103 Total BTEX Calc Result 1.43 el Range Organ	Qualifier Qualifier S1+ Culation Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00398 0.00398 Limits 70 - 130 70 - 130 RL 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg		Prepared 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 Prepared 01/09/23 10:59 01/09/23 10:59	Analyzed 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 01/13/23 00:19 Analyzed 01/13/23 00:19	3772- ix: Soli Dil Fa

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

<50.0 U

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	1
C10-C28)									

50.0

mg/Kg

Eurofins Carlsbad

01/12/23 14:52

Released to Imaging: 2/6/2024 1:23:40 PM

Total TPH

Matrix: Solid

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-7

Client Sample ID: AH-1 (0-1')

Project/Site: Convoy Central CTB

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Client: Tetra Tech, Inc.

Method: SW846 8015B NM - Die									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 02:31	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				01/11/23 09:44	01/12/23 02:31	
o-Terphenyl	121		70 - 130				01/11/23 09:44	01/12/23 02:31	
Method: MCAWW 300.0 - Anion	s. Ion Chromato	ography - S	oluble						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	54.5	F1	5.00		mg/Kg			01/11/23 15:36	
lient Sample ID: AH-1 (1-1	.5')						Lab Sar	nple ID: 890-	3772-
ate Collected: 01/05/23 00:00	,							-	x: Soli
Date Received: 01/05/23 13:41									
ample Depth: 0 - 1									
Method: SW846 8021B - Volatile		-							
Analyte		Qualifier		MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Benzene	0.0373		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Toluene	0.0896		0.0198		mg/Kg		01/13/23 10:20	01/13/23 14:01	
Ethylbenzene	0.229		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
m-Xylene & p-Xylene	0.662		0.00399		mg/Kg		01/09/23 10:59	01/13/23 00:40	
o-Xylene	0.271		0.00200		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Xylenes, Total	0.933		0.00399		mg/Kg		01/09/23 10:59	01/13/23 00:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	117		70 - 130				01/09/23 10:59	01/13/23 00:40	
1,4-Difluorobenzene (Surr)	109		70 - 130				01/09/23 10:59	01/13/23 00:40	
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	1.29		0.00399		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	103		49.9		mg/Kg			01/12/23 14:52	
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL		<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
Diesel Range Organics (Over	103		49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
C10-C28)							0.1.1.1.05 55 5		
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		01/11/23 09:44	01/12/23 02:53	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				01/11/23 09:44	01/12/23 02:53	
a Tambanul	122		70 - 130				01/11/23 09:44	01/12/23 02:53	
o-rerpnenyi									
	s, Ion Chromato	ography - S	oluble						
o-Terphenyl - Method: MCAWW 300.0 - Anion Analyte		ography - S Qualifier	oluble RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Eurofins Carlsbad

Released to Imaging: 2/6/2024 1:23:40 PM

RL

0.00201

0.0199

0.00201

0.00402

0.00201

0.00402

Limits

70 - 130

70 - 130

RL

RL

50.0

0.00402

MDL Unit

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

D

Prepared

01/09/23 10:59

01/13/23 10:20

01/09/23 10:59

01/09/23 10:59

01/09/23 10:59

01/09/23 10:59

Prepared

01/09/23 10:59

01/09/23 10:59

Prepared

Prepared

Dil Fac

1

10

1

1

1

1

1

1

Dil Fac

Dil Fac

Dil Fac

Job ID: 890-3772-1 SDC- Lea County NM

Client Sample ID: AH-1 (2-2.5')

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

Qualifier

0.0252

0.0894

0.151

0.428

0.163

0.591

103

92

0.857

82.3

Result Qualifier

Result Qualifier

%Recovery

Date Collected: 01/05/23 00:00

Sample Depth: 1 - 1.5

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Tetra Tech, Inc.

500	5. Le	ea Co	oum	.y in	P
amnlo	יחו	890	-37	72	

Lab Sample ID: 890-3772-9 Matrix: Solid

Analyzed

01/13/23 01:00

01/13/23 14:22

01/13/23 01:00

01/13/23 01:00

01/13/23 01.00

01/13/23 01:00

Analyzed

01/13/23 01:00

01/13/23 01:00

Analyzed

01/13/23 08:07

Analyzed

01/12/23 14:52

5

Date Received: 01/05/23 13:41

Project/Site: Convoy Central CTB

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	1
Diesel Range Organics (Over C10-C28)	82.3		50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				01/11/23 09:44	01/12/23 03:14	1
o-Terphenyl	109		70 - 130				01/11/23 09:44	01/12/23 03:14	1
Method: MCAWW 300.0 - Anions	, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		5.00		mg/Kg			01/11/23 16:09	1
Client Sample ID: AH-2 (0-1')							Lab Sam	ple ID: 890-3	772-10
Date Collected: 01/05/23 00:00								Matri	x: Solid
Anto Received: 01/05/22 12:44									
ale Receiveu. 01/05/23 13:41									
Date Received: 01/05/23 13:41 Sample Depth: 2 - 2.5									
	Organic Comp	ounds (GC)							
Sample Depth: 2 - 2.5	•	ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile	•	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared 01/09/23 10:59	Analyzed 01/13/23 01:21	Dil Fac
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile Analyte	Result	Qualifier	RL	MDL		<u>D</u>	<u> </u>		
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile (Analyte Benzene	- Result <0.00202	Qualifier U U	RL	MDL	mg/Kg	<u>D</u>	01/09/23 10:59	01/13/23 01:21	1
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00202 <0.00202	Qualifier U U U	RL 0.00202 0.00202	MDL	mg/Kg mg/Kg	<u>D</u>	01/09/23 10:59 01/09/23 10:59	01/13/23 01:21 01/13/23 01:21	1
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00202 <0.00202 <0.00202	Qualifier U U U U	RL 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	01/13/23 01:21 01/13/23 01:21 01/13/23 01:21	1 1 1
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U U U	RL 0.00202 0.00202 0.00202 0.00404	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	01/13/23 01:21 01/13/23 01:21 01/13/23 01:21 01/13/23 01:21	1 1 1 1
Sample Depth: 2 - 2.5 Method: SW846 8021B - Volatile (Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U U	RL 0.00202 0.00202 0.00202 0.00404 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59 01/09/23 10:59	01/13/23 01:21 01/13/23 01:21 01/13/23 01:21 01/13/23 01:21 01/13/23 01:21	1 1 1 1 1

Eurofins Carlsbad

5

Client Sample Results

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-10

Lab Sample ID: 890-3772-11

Matrix: Solid

Client Sample ID: AH-2 (0-1')

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Collected: 01/05/23 00:00					Matri	x: Solid
Date Received: 01/05/23 13:41						
Sample Depth: 2 - 2.5						
Method: SW846 8021B - Volatile	organic Comp	ounds (GC) (Continued)			
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	81		70 - 130	01/09/23 10:59	01/13/23 01:21	1

Method: TAL SOP Total BTEX - Total BTEX Calculation									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diesel Ra	inge Organ	ics (DRO) ((GC)						

Method. Sweete of 15 Mill - Dieser Range Organics (DRO) (GC)									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<50.0 U	50.0	mg/Kg			01/12/23 14:52	1	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		01/11/23 09:44	01/12/23 03:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				01/11/23 09:44	01/12/23 03:36	1
o-Terphenyl	118		70 - 130				01/11/23 09:44	01/12/23 03:36	1

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	53.8		4.98		mg/Kg			01/11/23 16:27	1

Client Sample ID: AH-2 (1-1.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41 Sample Depth: 0 - 3.5

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 0.00300 Toluene 1 Ethylbenzene <0.00199 U 0.00199 01/09/23 10:59 01/13/23 02:44 mg/Kg 01/13/23 02:44 0.00398 01/09/23 10:59 m-Xylene & p-Xylene 0.00474 mg/Kg 1 o-Xylene 0.00386 0.00199 mg/Kg 01/09/23 10:59 01/13/23 02:44 1 0.00860 0.00398 mg/Kg 01/09/23 10:59 01/13/23 02:44 **Xylenes**, Total 1 %Recovery Surrogate Qualifier Limits Dil Fac Prepared Analvzed 4-Bromofluorobenzene (Surr) 70 - 130 70 01/09/23 10:59 01/13/23 02.44 1 1,4-Difluorobenzene (Surr) 92 70 - 130 01/09/23 10:59 01/13/23 02:44 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL MDL Unit D Dil Fac Prepared Analyzed 0.00398 mg/Kg 01/13/23 08:07 **Total BTEX** 0.0116 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total TPH <49.9 U 49.9 01/12/23 14:52 mg/Kg 1

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM

Matrix: Solid

Dil Fac

Lab Sample ID: 890-3772-11

Analyzed

Lab Sample ID: 890-3772-12

Matrix: Solid

Client Sample ID: AH-2 (1-1.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Project/Site: Convoy Central CTB

Sample Depth: 0 - 3.5

Client: Tetra Tech, Inc.

Method: SW846 8015B NM - Diesel	Range Organics (DRO) (0	GC)
Analyte	Result Qualifier	RL

					•		
Gasoline Range Organics	<49.9	U	49.9	mg/Kg	01/11/23 09:44	01/12/23 03:58	1
(GRO)-C6-C10							
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg	01/11/23 09:44	01/12/23 03:58	1
C10-C28)							
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg	01/11/23 09:44	01/12/23 03:58	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
1-Chlorooctane	101		70 - 130		01/11/23 09:44	01/12/23 03:58	1
o-Terphenyl	107		70 - 130		01/11/23 09:44	01/12/23 03:58	1
L							

MDL Unit

D

Prepared

Method: MCAWW 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	159	4.95	mg/Kg			01/11/23 16:33	1

Client Sample ID: AH-2 (2-2.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Sample Depth: 1 - 4.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199		0.00199		mg/Kg	<u> </u>	01/09/23 10:59	01/13/23 03:04	1
Toluene	<0.00199	-	0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Ethylbenzene	<0.00199		0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
m-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		01/09/23 10:59	01/13/23 03:04	ا ۱
									1
o-Xylene			0.00199		mg/Kg		01/09/23 10:59	01/13/23 03:04	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		01/09/23 10:59	01/13/23 03:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				01/09/23 10:59	01/13/23 03:04	1
1,4-Difluorobenzene (Surr)	85		70 - 130				01/09/23 10:59	01/13/23 03:04	1
			70 - 130				01/09/23 10:59	01/13/23 03:04	1
Method: TAL SOP Total BTEX	- Total BTEX Calo			MDI	Unit	Р			Dil Eac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calo Result	Qualifier	RL	MDL	Unit	<u>D</u>	01/09/23 10:59 Prepared	Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX	- Total BTEX Calo	Qualifier		MDL	Unit mg/Kg	<u>D</u>			1 1
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00398	Qualifier U	RL	MDL		<u>D</u>		Analyzed	1 Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL	MDL	mg/Kg	<u>D</u>		Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 01/13/23 08:07	1 Dil Fac 1 Dil Fac 1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00398 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.0		mg/Kg Unit		Prepared	Analyzed 01/13/23 08:07 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.0		mg/Kg Unit mg/Kg		Prepared	Analyzed 01/13/23 08:07 Analyzed	1

(GRO)-C6-C10							
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg	01/11/23 09:44	01/12/23 04:19	1
C10-C28)							
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg	01/11/23 09:44	01/12/23 04:19	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 1-Chlorooctane	% Recovery 94	Qualifier	Limits 70 - 130		Prepared 01/11/23 09:44	Analyzed 01/12/23 04:19	Dil Fac
		Qualifier					Dil Fac

Eurofins Carlsbad

		Clien	t Sample R	esults	;				
Client: Tetra Tech, Inc.			-					Job ID: 890	
Project/Site: Convoy Central CTB								SDG: Lea Co	unty NM
Client Sample ID: AH-2 (2-2.5')							Lab Sam	ple ID: 890-3	772-12
Date Collected: 01/05/23 00:00								Matri	ix: Solid
Date Received: 01/05/23 13:41									
Sample Depth: 1 - 4.5									
Method: MCAWW 300.0 - Anions, Io	on Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	142		5.00		mg/Kg			01/11/23 16:40	1
Client Sample ID: AH-3 (0-1')							Lab Sam	ple ID: 890-3	772-13
Date Collected: 01/05/23 00:00								•	ix: Solid
Date Received: 01/05/23 13:41									
Sample Depth: 0 - 1									
Method: SW846 8021B - Volatile Or	manic Comp	ounds (GC	.						
Analyte		Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	20.4		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:07	100
Toluene	138		1.99		mg/Kg		01/18/23 08:29	01/18/23 15:20	1000
Ethylbenzene	39.0		0.499		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
m-Xylene & p-Xylene	115		0.998		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
o-Xylene	38.2		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:07	100
Xylenes, Total	150		0.998		mg/Kg		01/13/23 10:20	01/13/23 14:42	250
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)		S1+	70 - 130				01/09/23 10:59	01/13/23 05:07	100
1,4-Difluorobenzene (Surr)	98	•	70 - 130				01/09/23 10:59	01/13/23 05:07	100
		sulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	213		0.998		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diesel R Analyte		ICS (DRO) (Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	7180	quamor	49.9		mg/Kg			01/12/23 14:52	1
_ 	_								
Method: SW846 8015B NM - Diesel						_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	2830		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
Diesel Range Organics (Over C10-C28)	3850		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
Oll Range Organics (Over	503		49.9		mg/Kg		01/11/23 09:44	01/12/23 04:40	1
C28-C36)					- •				
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130				01/11/23 09:44	01/12/23 04:40	1
o-Terphenyl	101		70 - 130				01/11/23 09:44	01/12/23 04:40	1
Method: MCAWW 300.0 - Anions, Io	on Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	56.1		4.99		mg/Kg			01/11/23 16:46	1

Eurofins Carlsbad

Job ID: 890-3772-1 SDG: Lea County NM

Client Sample ID: AH-3 (1-1.5')

Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Lab Sample ID: 890-3772-14

Matrix: Solid

5

Date Received: 01/05/23 13:41 Sample Depth: 1 - 1.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.62		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
Toluene	36.3		0.402		mg/Kg		01/13/23 10:20	01/13/23 15:02	20
Ethylbenzene	13.9		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	100
m-Xylene & p-Xylene	34.3		0.398		mg/Kg		01/09/23 10:59	01/13/23 05:28	100
o-Xylene	12.8		0.199		mg/Kg		01/09/23 10:59	01/13/23 05:28	10
Xylenes, Total	47.1		0.398		mg/Kg		01/09/23 10:59	01/13/23 05:28	100
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130				01/09/23 10:59	01/13/23 05:28	10
1,4-Difluorobenzene (Surr)	108		70 - 130				01/09/23 10:59	01/13/23 05:28	100
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total BTEX	99.9		0.398		mg/Kg			01/13/23 08:07	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	2350		49.9		mg/Kg			01/12/23 14:52	
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	654		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Diesel Range Organics (Over C10-C28)	1520		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Oll Range Organics (Over C28-C36)	177		49.9		mg/Kg		01/11/23 09:44	01/12/23 05:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	116		70 - 130				01/11/23 09:44	01/12/23 05:01	
o-Terphenyl	107		70 - 130				01/11/23 09:44	01/12/23 05:01	-
Method: MCAWW 300.0 - Anior	ns, Ion Chromato	ography - So	oluble						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Chloride	92.1		5.01		mg/Kg			01/11/23 16:52	
Client Sample ID: AH-3 (2-2 Pate Collected: 01/05/23 00:00 Pate Received: 01/05/23 13:41 Sample Depth: 2 - 2.5	2.5')						Lab Sam	ple ID: 890-3 Matri	772-1 x: Soli
Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	моі	Unit	D	Prepared	Analyzed	Dil Fa
Benzene		Juannen	0.200		mg/Kg		01/09/23 10:59	01/13/23 05:49	100
	30.8		0.403		mg/Kg		01/13/23 10:39	01/13/23 15:23	20
Toluene	30.8		0.403		inging		01/10/20 10.20	01/10/20 10.20	200

Eurofins Carlsbad

01/13/23 05:49

01/13/23 05:49

01/13/23 05:49

01/13/23 05:49

01/09/23 10:59

01/09/23 10:59

01/09/23 10:59

01/09/23 10:59

Ethylbenzene

Xylenes, Total

o-Xylene

m-Xylene & p-Xylene

0.200

0.399

0.200

0.399

mg/Kg

mg/Kg

mg/Kg

mg/Kg

16.2

40.2

15.3

55.5

100

100

100

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-3 (2-2.5')

Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

Samp	le Dept	h: 2 ·	· 2.5

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130				01/09/23 10:59	01/13/23 05:49	100
1,4-Difluorobenzene (Surr)	100		70 - 130				01/09/23 10:59	01/13/23 05:49	100
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	104		0.399		mg/Kg			01/13/23 08:07	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1070		49.8		mg/Kg			01/13/23 12:46	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	423		49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	642	*1	49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		01/11/23 09:47	01/13/23 00:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				01/11/23 09:47	01/13/23 00:26	1
o-Terphenyl	101		70 - 130				01/11/23 09:47	01/13/23 00:26	1
- Method: MCAWW 300.0 - Anions,	Ion Chromato	ography - S	oluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		4.97		mg/Kg			01/11/23 16:58	

Matrix: Solid

5

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-15

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Accept
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
890-3772-1	H-1	74	91	· · · · ·
890-3772-1 MS	H-1	116	89	
890-3772-1 MSD	H-1	123	98	
890-3772-2	H-2	97	89	
890-3772-3	H-3	94	100	
890-3772-4	H-4	97	91	
890-3772-5	H-5	97	79	
890-3772-6	H-6	97	93	
890-3772-7	AH-1 (0-1')	150 S1+	103	
890-3772-8	AH-1 (1-1.5')	117	109	
890-3772-9	AH-1 (2-2.5')	103	92	
890-3772-10	AH-2 (0-1')	111	81	
890-3772-11	AH-2 (1-1.5')	70	92	
890-3772-12	AH-2 (2-2.5')	98	85	
890-3772-13	AH-3 (0-1')	212 S1+	98	
890-3772-14	AH-3 (1-1.5')	133 S1+	108	
890-3772-15	AH-3 (2-2.5')	144 S1+	100	
890-3781-A-1-D MS	Matrix Spike	110	106	
890-3781-A-1-E MSD	Matrix Spike Duplicate	108	104	
890-3860-A-1-E MS	Matrix Spike	127	101	
890-3860-A-1-F MSD	Matrix Spike Duplicate	114	99	
LCS 880-43511/1-A	Lab Control Sample	110	100	
LCS 880-43654/1-A	Lab Control Sample	108	103	
LCS 880-44226/1-A	Lab Control Sample	89	104	
LCSD 880-43511/2-A	Lab Control Sample Dup	93	106	
LCSD 880-43654/2-A	Lab Control Sample Dup	102	104	
LCSD 880-44226/2-A	Lab Control Sample Dup	112	99	
MB 880-43511/5-A	Method Blank	85	87	
MB 880-43542/5-A	Method Blank	76	84	
MB 880-43654/5-A	Method Blank	106	103	
MB 880-44226/5-A	Method Blank	82	90	

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits
		1CO1	OTPH1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
0-23565-A-1-C MS	Matrix Spike	96	88	
80-23565-A-1-D MSD	Matrix Spike Duplicate	85	77	
0-3772-1	H-1	94	100	
)-3772-1 MS	H-1	104	96	
-3772-1 MSD	H-1	107	98	
0-3772-2	H-2	105	105	
0-3772-3	H-3	122	123	
90-3772-4	H-4	115	117	

Prep Type: Total/NA

6

Prep Type: Total/NA

Job ID: 890-3772-1 SDG: Lea County NM

Prep Type: Total/NA

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-3772-5	H-5	115	115		J
890-3772-6	H-6	121	118		6
890-3772-7	AH-1 (0-1')	112	121		Ο
890-3772-8	AH-1 (1-1.5')	116	122		
890-3772-9	AH-1 (2-2.5')	103	109		
890-3772-10	AH-2 (0-1')	112	118		
890-3772-11	AH-2 (1-1.5')	101	107		8
890-3772-12	AH-2 (2-2.5')	94	99		
890-3772-13	AH-3 (0-1')	119	101		9
890-3772-14	AH-3 (1-1.5')	116	107		
890-3772-15	AH-3 (2-2.5')	102	101		
890-3781-A-21-D MS	Matrix Spike	87	82		
890-3781-A-21-E MSD	Matrix Spike Duplicate	105	94		
LCS 880-43699/2-A	Lab Control Sample	105	100		
LCS 880-43712/2-A	Lab Control Sample	103	99		
LCS 880-43713/2-A	Lab Control Sample	125	108		
LCSD 880-43699/3-A	Lab Control Sample Dup	120	109		13
LCSD 880-43712/3-A	Lab Control Sample Dup	121	108		
LCSD 880-43713/3-A	Lab Control Sample Dup	101	85		
MB 880-43699/1-A	Method Blank	164 S1+	153 S1+		
MB 880-43712/1-A	Method Blank	130	133 S1+		
MB 880-43713/1-A	Method Blank	140 S1+	123		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sa	mple ID: MB	880-43511/5-A
	· · · ·	

Matrix: Solid Analysis Batch: 43785

-	МВ	мв							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/09/23 10:59	01/12/23 21:55	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				01/09/23 10:59	01/12/23 21:55	1
1,4-Difluorobenzene (Surr)	87		70 - 130				01/09/23 10:59	01/12/23 21:55	1

Lab Sample ID: LCS 880-43511/1-A Matrix: Solid

Analysis Batch: 43785

Sp	oike	LCS	LCS				%Rec
Analyte Ad	ded	Result	Qualifier	Unit	D	%Rec	Limits
Benzene 0.	100	0.1002		mg/Kg		100	70 - 130
Toluene 0.	100	0.1035		mg/Kg		103	70 - 130
Ethylbenzene 0.	100	0.09783		mg/Kg		98	70 - 130
m-Xylene & p-Xylene 0.	200	0.2107		mg/Kg		105	70 - 130
o-Xylene 0.	100	0.1169		mg/Kg		117	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: LCSD 880-43511/2-A

Matrix: Solid

Analysis Batch: 43785							Prep	Batch:	43511
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09524		mg/Kg		95	70 - 130	5	35
Toluene	0.100	0.09086		mg/Kg		91	70 - 130	13	35
Ethylbenzene	0.100	0.07835		mg/Kg		78	70 - 130	22	35
m-Xylene & p-Xylene	0.200	0.1642		mg/Kg		82	70 - 130	25	35
o-Xylene	0.100	0.09047		mg/Kg		90	70 - 130	25	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	93		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-3772-1 MS Matrix: Solid

Analysia Bataby 42795

Analysis Batch: 43785									Prep	Batch: 43511
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.00565		0.0990	0.08747		mg/Kg		83	70 - 130	
Toluene	0.00255		0.0990	0.08936		mg/Kg		88	70 - 130	

Eurofins Carlsbad

Client Sample ID: H-1

Prep Type: Total/NA

Page 67 of 262

Job ID: 890-3772-1 SDG: Lea County NM

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 43511

Prep Batch: 43511

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

MS MS

MSD MSD

0.09758

0.09709

0.08848

Result Qualifier

Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

mg/Kg

mg/Kg

Result

0.07712

0.1746

0.1009

Spike

Added

0.0990

0.198

0.0990

Limits 70 - 130

70 - 130

Spike

Added

0.0998

0.0998

0.0998

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Lab Sample ID: 890-3772-1 MS

Analysis Batch: 43785

4-Bromofluorobenzene (Surr)

Analysis Batch: 43785

Lab Sample ID: 890-3772-1 MSD

1,4-Difluorobenzene (Surr)

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analyte

Benzene

Toluene

Ethylbenzene

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

Sample Sample

0.00565

0.00255

<0.00202 U

Result Qualifier

116

89

U

Qualifier

Qualifier

Result

<0.00202

0.00520

0.00475

%Recovery

Client Sample ID: H-1

Prep Type: Total/NA

Prep Batch: 43511

5
7
8
9

35

35

35

14

12

12

Prep Type: Total/NA Prep Batch: 43542

Client Sample ID: H-1 Prep Type: Total/NA Prep Batch: 43511 %Rec RPD RPD Limit %Rec Limits D 92 70 - 130 11 35 95 70 - 130 8 35

70 - 130

70 - 130

70 - 130

Client Sample ID: Method Blank

01/12/23 11:20

01/12/23 11:20

Client Sample ID: Method Blank

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

76

86

97

87

96

109

01/09/23 12:55

01/09/23 12:55

D

m-Xylene & p-Xylene	0.00520		0.200	0.1972	mg/Kg
o-Xylene	0.00475		0.0998	0.1134	mg/Kg
	MSD	MSD			
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	123		70 - 130		
			70 - 130		

Lab Sample ID: MB 880-43542/5-A Matrix: Solid Analysis Batch: 43785

	MB	мв							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/09/23 12:55	01/12/23 11:20	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

	<u> </u>	
4-Bromofluorobenzene (Surr)	76	70 - 130
1,4-Difluorobenzene (Surr)	84	70 - 130

Lab Sample ID: MB 880-43654/5-A Matrix: Solid Analysis Batch: 43866

МВ МВ Result Qualifier Dil Fac Analyte MDL Unit Prepared RL D Analyzed < 0.00200 U 0.00200 01/10/23 13:07 01/13/23 12:31 Benzene mg/Kg 1 Toluene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 01/10/23 13:07 01/13/23 12:31 1 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 01/10/23 13:07 01/13/23 12:31 1

Eurofins Carlsbad

Prep Type: Total/NA

Prep Batch: 43654

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Xylenes, Total

Analysis Batch: 43866

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Analysis Batch: 43866

Lab Sample ID: MB 880-43654/5-A

Lab Sample ID: LCS 880-43654/1-A

Method: 8021B - Volatile Organic Com

%Recov

Compo	ounds (G	iC) (Continu	ued)									
									Client S	ample ID: Metho Prep Type: ⁻ Prep Bato	Total/NA	4
МВ	МВ											5
Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac	
<0.00200	U	0.00200			mg/Kg		_	01/1	0/23 13:07	01/13/23 12:31	1	
<0.00400	U	0.00400			mg/Kg			01/1	0/23 13:07	01/13/23 12:31	1	
МВ	МВ											7
%Recovery	Qualifier	Limits						Р	repared	Analyzed	Dil Fac	
106		70 - 130						01/1	0/23 13:07	01/13/23 12:31	1	8
103		70 - 130						01/1	0/23 13:07	01/13/23 12:31	1	
							С	lient	Sample	ID: Lab Control	Sample	9
										Prep Type: Prep Batc		
		Spike	LCS	LCS						%Rec		
		Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
		0.100	0.1099			mg/Kg			110	70 - 130		

104

102

104

99

70 - 130

70 - 130

70 - 130

70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Analyte	Added	Result Qualifier	Unit	D
Benzene	0.100	0.1099	mg/Kg	
Toluene	0.100	0.1043	mg/Kg	
Ethylbenzene	0.100	0.1020	mg/Kg	
m-Xylene & p-Xylene	0.200	0.2079	mg/Kg	
o-Xylene	0.100	0.09906	mg/Kg	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	108		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-43654/2-A Matrix: Solid

Analysis Batch: 43866

Prep Batch: 43654 LCSD LCSD Spike %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits RPD Limit D Benzene 0.100 0.1013 mg/Kg 101 70 - 130 8 35 Toluene 0.100 0.09648 mg/Kg 96 70 - 130 8 35 Ethylbenzene 0.100 0.09355 mg/Kg 94 70 - 130 9 35 m-Xylene & p-Xylene 0.200 0.1919 mg/Kg 96 70 - 130 8 35 o-Xylene 0.100 0.09158 mg/Kg 92 70 - 130 8 35 ICOD ICOD

	LCSD	L03D	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: 890-3781-A-1-D MS Matrix: Solid

Analysis Batch: 43866 Prep Batch: 43654 Spike MS MS %Rec Sample Sample Qualifier Added Qualifier Analyte Result Result Unit D %Rec Limits υ 0.0998 0.1069 107 Benzene <0.00200 70 - 130 mg/Kg Toluene <0.00200 U 0.0998 0.1005 mg/Kg 100 70 - 130 0.0998 Ethvlbenzene < 0.00200 U 0.09709 mg/Kg 97 70 - 130 m-Xylene & p-Xylene < 0.00401 U 0.200 0.1998 mg/Kg 100 70 - 130 o-Xylene <0.00200 U 0.0998 0.09520 mg/Kg 95 70 - 130

Eurofins Carlsbad

Job ID: 890-3772-1

SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-3781-A-1-D MS

Matrix: Solid Analysis Batch: 43866

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 _ 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 890-3781-A-1-E MSD Matrix: Solid

Analysis Batch: 43866

Matrix: Solid

Analysis Batch: 43866									Prep	Batch:	43654
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0990	0.1072		mg/Kg		108	70 - 130	0	35
Toluene	<0.00200	U	0.0990	0.1018		mg/Kg		102	70 - 130	1	35
Ethylbenzene	<0.00200	U	0.0990	0.09867		mg/Kg		100	70 - 130	2	35
m-Xylene & p-Xylene	<0.00401	U	0.198	0.2033		mg/Kg		103	70 - 130	2	35
o-Xylene	<0.00200	U	0.0990	0.09649		mg/Kg		97	70 - 130	1	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								

70 - 130 70 - 130

4-Bromofluorobenzene (Surr)	108	
1,4-Difluorobenzene (Surr)	104	
_		
Lab Sample ID: MB 880-44226/	'5-A	

Analysis Batch: 44223								Prep Batch	n: 442
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil I
Benzene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	
Toluene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		01/18/23 08:29	01/18/23 11:41	
o-Xylene	<0.00200	U	0.00200		mg/Kg		01/18/23 08:29	01/18/23 11:41	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		01/18/23 08:29	01/18/23 11:41	
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil I
4-Bromofluorobenzene (Surr)	82		70 - 130				01/18/23 08:29	01/18/23 11:41	
1,4-Difluorobenzene (Surr)	90		70 - 130				01/18/23 08:29	01/18/23 11:41	

Lab Sample ID: LCS 880-44226/1-A Matrix: Solid

Client Sample	ID:	Lab	Contr	ol Sample

Prep Type: Total/NA Prep Batch: 44226

			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene			0.100	0.09903		mg/Kg		99	70 - 130	
Toluene			0.100	0.09706		mg/Kg		97	70 - 130	
Ethylbenzene			0.100	0.08273		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene			0.200	0.1705		mg/Kg		85	70 - 130	
o-Xylene			0.100	0.09254		mg/Kg		93	70 - 130	
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	89		70 - 130							

Eurofins Carlsbad

Page 70 of 262

Job ID: 890-3772-1

Prep Type: Total/NA Prep Batch: 44226 Fac

Fac 1

1

Client Sample ID: Method Blank

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-442 Matrix: Solid Analysis Batch: 44223	26/1-A						Client	Sample		ontrol Sa Type: To Batch:	tal/NA
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Lab Sample ID: LCSD 880-44	226/2-A					Clier	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid								·		· Type: To	
Analysis Batch: 44223									Prep	Batch:	44226
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1030		mg/Kg		103	70 - 130	4	35
Toluene			0.100	0.1089		mg/Kg		109	70 - 130	12	35
Ethylbenzene			0.100	0.1053		mg/Kg		105	70 - 130	24	35
m-Xylene & p-Xylene			0.200	0.2353		mg/Kg		118	70 - 130	32	35
o-Xylene			0.100	0.1291		mg/Kg		129	70 _ 130	33	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	112		70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
_ Lab Sample ID: 890-3860-A-1	-E MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 44223									Prep	Batch:	44226
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00201	U	0.0990	0.09265		mg/Kg		94	70 - 130		
Toluene	<0.00201	U	0.0990	0.09939		mg/Kg		100	70 - 130		
Ethylbenzene	<0.00201	U	0.0990	0.09605		mg/Kg		97	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.198	0.2160		mg/Kg		109	70 - 130		
o-Xylene	<0.00201	U	0.0990	0.1191		mg/Kg		120	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	127		70 - 130								
1,4-Difluorobenzene (Surr)	101		70 - 130								

Lab Sample ID: 890-3860-A-1-F MSD Matrix: Solid Analysis Batch: 44223

Prep Batch: 44226 Spike Sample Sample MSD MSD %Rec RPD Analyte **Result Qualifier** Added **Result Qualifier** Unit D %Rec Limits RPD Limit Benzene <0.00201 U 0.101 0.08187 mg/Kg 81 70 - 130 35 12 Toluene <0.00201 U 0.101 0.08779 mg/Kg 87 70 - 130 12 35 Ethylbenzene <0.00201 U 0.101 0.08013 mg/Kg 79 70 - 130 18 35 m-Xylene & p-Xylene <0.00402 U 0.202 0.1785 70 - 130 35 mg/Kg 89 19 o-Xylene <0.00201 U 0.101 0.09776 mg/Kg 97 70 - 130 20 35

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	114		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Eurofins Carlsbad

Page 71 of 262

Job ID: 890-3772-1 SDG: Lea County NM

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-43699/1	I -A									Client S	ample ID:	Method	Blank
Matrix: Solid											Prep [·]	Type: To	tal/NA
Analysis Batch: 43692											Prep	Batch:	43699
	N	IB MB											
Analyte	Res	ult Qualifier	RL		MDL	Unit		D	Ρ	repared	Analy	zed	Dil Fac
Gasoline Range Organics	<50	0.0 U	50.0)		mg/Kg			01/1	1/23 08:04	01/11/23	08:18	1
(GRO)-C6-C10													
Diesel Range Organics (Over	<50	0.0 U	50.0)		mg/Kg			01/1	1/23 08:04	01/11/23	08:18	1
C10-C28)													
Oll Range Organics (Over C28-C36)	<50	0.0 U	50.0)		mg/Kg			01/1	1/23 08:04	01/11/23	08:18	
	٨	IB MB											
Surrogate	%Recove		Limits						Р	repared	Analy	zed	Dil Fa
-Chlorooctane		64 S1+	70 - 130	-				-		1/23 08:04			2
p-Terphenyl		53 S1+	70 - 130							1/23 08:04			
Telphenyi	,	00 07:	70 - 750						01/1	1/25 00.04	01/11/25	00.70	
ab Sample ID: LCS 880-43699/	2-A							Cli	ient	Sample	ID: Lab C	ontrol S	ample
Aatrix: Solid										Sampio		Type: To	
Analysis Batch: 43692												Batch:	
Analysis Datch: 43032			Spike	1.09	LCS						%Rec	Datch.	4303
noluto			-			ifior	Unit		n	% Baa	Limits		
nalyte			Added	Result	Quai		Unit		<u>D</u>	%Rec			
asoline Range Organics			1000	923.6			mg/Kg			92	70 - 130		
GRO)-C6-C10 liesel Range Organics (Over			1000	908.1			mg/Kg			91	70 - 130		
C10-C28)			1000	300.1			iiig/itg			31	10 - 100		
10 020)													
	LCS L												
urrogate	%Recovery G	ualifier	Limits										
-Chlorooctane	105		70 - 130										
Terphenyl	100		70 - 130										
ab Sample ID: LCSD 880-4369.	9/3-A						Cli	ient S	Sam	ple ID: L	ab Contro		
Aatrix: Solid											Prep [·]	Type: To	tal/N/
Analysis Batch: 43692											Prep	Batch:	43699
			Spike	LCSD	LCS	D					%Rec		RPD
nalyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limi
Basoline Range Organics			1000	988.6			mg/Kg		-	99	70 - 130	7	20
GRO)-C6-C10													
Diesel Range Organics (Over			1000	999.2			mg/Kg			100	70 - 130	10	20
:10-C28)													
	LCSD L	CSD											
urrogate		ualifier	Limits										
-Chlorooctane	120		70 - 130										
-Terphenyl	109		70 - 130										
	,00												
ab Sample ID: 890-3772-1 MS											Client S	Sample I	D: H-'
Aatrix: Solid												Type: To	
												Batch:	
Analysis Batch: 43692	Sample S	omnio	Spike		MS							Datch:	+2035
			SDIKE	IN S	IVID						%Rec		

Analysis Batch: 43692									Prep	Batch: 43699
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	998	1094		mg/Kg		110	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	998	1047		mg/Kg		105	70 - 130	
C10-C28)										

Job ID: 890-3772-1 SDG: Lea County NM

Eurofins Carlsbad
QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 890-3772-1 MS Matrix: Solid												Client Sar Prep Typ	be: To	tal/NA
Analysis Batch: 43692												Prep B	atcn:	43699
	MS	MS												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	104			70 - 130										
o-Terphenyl	96			70 - 130										
Lab Sample ID: 890-3772-1 MS	D											Client Sar	nple I	D: H-1
Matrix: Solid												Prep Typ		
Analysis Batch: 43692												Prep B		
	Sample	Sam	ple	Spike	MSE	MSI	D					%Rec		RPD
Analyte	Result	Qua	lifier	Added	Resul	t Qua	alifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U		997	1002	2		mg/Kg		_	101	70 - 130	9	20
Diesel Range Organics (Over	<49.9	U		997	1085	5		mg/Kg			109	70 - 130	4	20
C10-C28)														
	MSD	MSE)											
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane	107			70 - 130										
o-Terphenyl	98			70 - 130										
Matrix: Solid Analysis Batch: 43694		МВ	МВ									Prep Typ Prep B		
Analyte	R	esult	Qualifier	F	RL	MDL	Unit		D	Р	repared	Analyzed		Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<	\$50.0	U	50	.0		mg/K	g		01/1	1/23 09:44	01/11/23 19:	58	1
Diesel Range Organics (Over C10-C28)	<	\$0.0	U	50	.0		mg/K	g		01/1	1/23 09:44	01/11/23 19:	58	1
OII Range Organics (Over C28-C36)	<	\$0.0		50	.0		mg/K	g		01/1	1/23 09:44	01/11/23 19:	58	1
		MB												
Surrogate	%Reco		Qualifier	Limits	_				-		repared	Analyzed		Dil Fac
1-Chlorooctane		130	-	70 - 130							1/23 09:44	01/11/23 19:		1
o-Terphenyl		133	S1+	70 - 130						01/1	1/23 09:44	01/11/23 19:	58	1
Lab Sample ID: LCS 880-43712	2/2-A								CI	ient	Sample	ID: Lab Con		
Matrix: Solid												Ргер Тур		
Analysis Batch: 43694												Prep B	atch:	43712
				Spike		LCS				_	~ -	%Rec		
Analyte				Added	Resul		alifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	980.1			mg/Kg			98	70 - 130		
Diesel Range Organics (Over C10-C28)				1000	897.0)		mg/Kg			90	70 - 130		
,														
Surrogato	LCS %Recovery			Limits										
Surrogate	/onecovery	Qud	mer	LIIIIIIS										

Page 73 of 262

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-437	12/3-A					CI	ient	Sam	ple ID: L	.ab Contro		
Matrix: Solid										Prep T	Type: To	tal/NA
Analysis Batch: 43694										Prep	Batch:	43712
			Spike	LCSD	LCSD					%Rec		RPD
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	849.2		mg/Kg			85	70 - 130	14	20
(GRO)-C6-C10												
Diesel Range Organics (Over			1000	1053		mg/Kg			105	70 - 130	16	20
C10-C28)												
	LCSD	LCSD										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	121		70 - 130	-								
o-Terphenyl	108		70 - 130									
Lab Sample ID: 880-23565-A-1	I-C MS								Client	Sample ID:	: Matrix	Spike
Matrix: Solid											Type: To	
Analysis Batch: 43694											Batch:	
	Sample	Sample	Spike	MS	MS					• %Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<49.9	-	998	941.4		mg/Kg		-	92	70 - 130		
(GRO)-C6-C10						0 0						
Diesel Range Organics (Over	<49.9	U	998	1158		mg/Kg			114	70 - 130		
C10-C28)												
	MS	MS										
Surrogate			Limits									
Surrogate 1-Chlorooctane	%Recovery		<i>Limits</i>	-								
1-Chlorooctane o-Terphenyl	%Recovery 96 88		Limits 70 - 130 70 - 130	-			0.5			Matrix Or		1
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid	%Recovery 96 88		70 - 130	-			Clie	nt Sa	Imple ID		Type: To	tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1	%Recovery 96 88	Qualifier	70 - 130	- MSD	MSD		Clie	nt Sa	Imple ID	Prep T		tal/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid	%Recovery 96 88 I-D MSD Sample	Qualifier	70 - 130 70 - 130		MSD Qualifiei		Clie	nt Sa	mple ID %Rec	Prep T Prep	Type: To	tal/NA 43712 RPC
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694	%Recovery 96 88 I-D MSD Sample	Qualifier Sample Qualifier	70 - 130 70 - 130 50 - 130				Clie		-	Prep T Prep %Rec	Type: To Batch:	tal/NA 43712 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte	%Recovery 96 88 I-D MSD Sample Result	Qualifier Sample Qualifier	70 - 130 70 - 130 Spike Added	Result		Unit	Clie		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 43712 RPC Limi
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added	Result		Unit	Clie		%Rec	Prep T Prep %Rec Limits	Batch:	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane p-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 Spike Added 997 997	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/NA 43712 RPE Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery 96 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie		%Rec	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15	tal/N/ 43712 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130	Type: To Batch: RPD 15 14	tal/N/ 43712 RPI Limi 20 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: To Batch: RPD 15 14	tal/NA 43712 RPE Limi 20 20
1-Chlorooctane o-Terpheny/ Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: MB 880-43713	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method	tal/NA 43712 RPE Limi 20 20 Blank tal/NA
1-Chlorooctane p-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Sample Qualifier U U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 70 - 130	Result 1098		Unit mg/Kg	Clie	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method Type: To	tal/NA 43712 RPE Limi 20 20 Blank tal/NA
1-Chlorooctane o-Terpheny/ Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terpheny/ Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Qualifier U MSD Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098		<mark>Unit</mark> mg/Kg mg/Kg	D	<u>D</u>	%Rec 107 99	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: <u>RPD</u> 15 14 Method Type: To Batch:	tal/N/ 43712 RPI Limi 20 20 Blani tal/N/ 43713
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics	%Recovery 96 88 I-D MSD Sample Result <49.9	Qualifier Qualifier U MSD Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006	Qualifier	<mark>Unit</mark> mg/Kg mg/Kg		Pr	%Rec 107 99 Client S	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 190 Prep T Prep T	Type: To Batch: 15 14 Method Type: To Batch: red	tal/NA 43712 RPE Limi 20 20 8 Blank tal/NA 43713 Dil Fac
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics (GRO)-C6-C10	%Recovery 96 96 88 88 88 Sample Result <49.9	Qualifier Qualifier U U MSD Qualifier MB MB esult Qua 50.0 U	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006 - - 50.0	Qualifier	t t t		D Pr 01/11	%Rec 107 99 Client S repared 1/23 09:47	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Analyz 01/12/23 -	Type: To Batch: 15 14 Method Type: To Batch: 19:44	tal/NA 43712 RPC Limit 20 20 20 Blank tal/NA 43713 Dil Fac
1-Chlorooctane o-Terphenyl Lab Sample ID: 880-23565-A-1 Matrix: Solid Analysis Batch: 43694 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: MB 880-43713 Matrix: Solid Analysis Batch: 43779 Analyte Gasoline Range Organics	%Recovery 96 96 88 88 88 Sample Result <49.9	Qualifier Qualifier U MSD Qualifier MB MB esult Qua	70 - 130 70 - 130 70 - 130 Spike Added 997 997 997 997 997 - 130 70 - 130 70 - 130	Result 1098 1006	Qualifier	tt		D Pr 01/11	%Rec 107 99 Client S	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 15 14 Method Type: To Batch: 19:44	tal/NA 43712 RPC Limit 20 20 20 Blank tal/NA 43713 Dil Fac

Eurofins Carlsbad

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Project/Site: Convoy Central CTB

Lab Sample ID: MB 880-43713/1-A

Client: Tetra Tech, Inc.

Matrix: Solid

Job ID: 890-3772-1

SDG: Lea County NM **Client Sample ID: Method Blank** Prep Type: Total/NA Prep Batch: 43713 5 Fac 1 1 ple /NA 713 Dup /NA 713 RPD .imit 20 20

Matrix. Solid									Prep Type.	
Analysis Batch: 43779									Prep Bate	ch: 43713
		MB MB								
Surrogate	%Reco	very Qualif	ïer Limits				P	repared	Analyzed	Dil Fac
1-Chlorooctane		140 S1+	70 - 130	_			01/1	1/23 09:47	01/12/23 19:44	1
o-Terphenyl		123	70 - 130				01/1	1/23 09:47	01/12/23 19:44	1
Lab Sample ID: LCS 880-4371	3/2-A						Client	Sample	ID: Lab Contro	I Sample
Matrix: Solid								. oumpro	Prep Type:	
Analysis Batch: 43779									Prep Bate	
·			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics			1000	1063		mg/Kg		106	70 - 130	
(GRO)-C6-C10						0 0				
Diesel Range Organics (Over			1000	1036		mg/Kg		104	70 - 130	
C10-C28)										
	LCS	LCS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	125		70 - 130							
o-Terphenyl	108		70 - 130							
Lab Sample ID: LCSD 880-437	′13/3-A					Clie	ent Sam	ple ID: L	ab Control Sar	nple Dup
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 43779									Prep Bate	ch: 43713
			Spike	LCSD	LCSD				%Rec	RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits RI	PD Limit
Gasoline Range Organics			1000	978.4		mg/Kg		98	70 - 130	8 20
(GRO)-C6-C10										
Diesel Range Organics (Over C10-C28)			1000	766.4	*1	mg/Kg		77	70 - 130	30 20
	LCSD	1050								
Surrogate	%Recovery		Limits							
1-Chlorooctane		Quaimer								
o-Terphenyl	85		70 - 130							
	00		10 - 100							
Lab Sample ID: 890-3781-A-21	-D MS							Client S	Sample ID: Mat	rix Spike
Matrix: Solid									Prep Type:	
Analysis Batch: 43779									Prep Bate	
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<50.0	U	998	927.5		mg/Kg		89	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<50.0	U *1	998	862.9		mg/Kg		86	70 - 130	
C10-C28)										
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
1-Chlorooctane	87		70 - 130							
o-Terphenyl	82		70 - 130							
-										

Eurofins Carlsbad

QC Sample Results

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid	-21-E MSD): Matrix S Prep 1	Type: To	
Analysis Batch: 43779	Commis	Comula	Calles	MCD	MSD				-	Batch:	
A w = h de	Sample	-	Spike			11	-	0/ D	%Rec		RPD
Analyte		Qualifier	Added		Qualifier	Unit	<u>D</u>	%Rec	Limits	RPD	Limi
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	997	1064		mg/Kg		103	70 - 130	14	20
Diesel Range Organics (Over	<50.0	U *1	997	993.4		mg/Kg		100	70 - 130	14	2
C10-C28)											_
,											
	MSD										
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	105		70 - 130								
o-Terphenyl	94		70 - 130								
lethod: 300.0 - Anions,	Ion Chromat	ography									
Lab Sample ID: MB 880-435	340/1-A							Client S	Sample ID:	Method	Blan
Matrix: Solid								Short C		Type: So	
Analysis Batch: 43613									Fieh	Type. St	Jubi
Analysis Datch. 43013		МВ МВ									
Analyte	P	esult Qualifier		RL	MDL Unit		D P	repared	Analyz	od	Dil Fa
Chloride		5.00 U		5.00	mg/K			repared	01/11/23		Dirte
		0.00 0		0.00	mg/tv	9			01/11/20	10.00	
	540/2-0						Client	Sample	D: Lab C	ontrol Sa	ampl
Lab Sample ID: LCS 880-43	JHU/2 M										
	340/2-A										
Matrix: Solid	340/2-A							. oumpre		Type: So	
Matrix: Solid	340/2- A		Spike	LCS	LCS						
Matrix: Solid Analysis Batch: 43613	540/2 - A		Spike Added		LCS Qualifier	Unit	D	%Rec	Prep		
Matrix: Solid Analysis Batch: 43613 ^{Analyte}			Added	Result				-	Prep %Rec		
Matrix: Solid Analysis Batch: 43613 Analyte						Unit mg/Kg		%Rec	Prep %Rec Limits		
Matrix: Solid Analysis Batch: 43613 Analyte Chloride			Added	Result		mg/Kg	D	%Rec	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4			Added	Result		mg/Kg	D	%Rec	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid			Added	Result		mg/Kg	D	%Rec	Prep %Rec Limits 90 - 110	Type: So	olubl
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid			Added 250	Result 264.0		mg/Kg	D	%Rec	Prep %Rec Limits 90 - 110	Type: So	e Du olubl
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613			Added	Result 264.0	Qualifier	mg/Kg	D	%Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep	Type: So	e Du olubi RP
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte			Added 250 Spike	Result 264.0	Qualifier	mg/Kg Clie	D_	%Rec 106	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec	Type: So J Sample Type: So	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte			Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sample Type: So 	e Du olubi olubi RP Lim
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride	 I3540/3-A 		Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec 105	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits	Type: So ol Sample Type: So <u>RPD</u> 0	e Du olubi olubi RP Lim 2
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7	 I3540/3-A 		Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec 105	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample	Type: So ol Sample Type: So <u>0</u> ID: AH-1	e Du olubi RP Lim 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 Matrix: Solid	 I3540/3-A 		Added 250 Spike Added	Result 264.0 LCSD Result	Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec 105	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample	Type: So ol Sample Type: So <u>RPD</u> 0	e Du olubi RP Lim 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 Matrix: Solid	 I3540/3-A 		Added 250 Spike Added	Result 264.0 LCSD Result 263.6	Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec 105	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample	Type: So ol Sample Type: So <u>0</u> ID: AH-1	e Du olubi RP Lim 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613	 I3540/3-A MS Sample	Sample Qualifier	Added 250 Spike Added 250	Result 264.0 LCSD Result 263.6	Qualifier LCSD Qualifier	mg/Kg Clie	D_	%Rec 106 nple ID: %Rec 105	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep	Type: So ol Sample Type: So <u>0</u> ID: AH-1	e Du olubi RP Lim 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte	 I3540/3-A MS Sample	Qualifier	Added 250 Spike Added 250 Spike	Result 264.0 LCSD Result 263.6	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec	Type: So ol Sample Type: So <u>0</u> ID: AH-1	e Du olubi olubi <u>Lim</u> 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte	I3540/3-A MS Sample Result	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits	Type: So ol Sample Type: So <u>0</u> ID: AH-1	e Du olubi RP Lim 2 I (0-1
Matrix: Solid Analysis Batch: 43613 Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte Chloride	MS Sample 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec 146	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits	Type: So DI Sample Type: So <u>RPD</u> 0 ID: AH-1 Type: So	ele Du olubi RP Lim 2 I (0-1 olubi
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7	MS Sample 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec 146	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	Type: So DI Sample Type: So <u>RPD</u> 0 ID: AH-1 Type: So	e Du olubi RPP Lim 2 I (0-1 olubi
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid	MS Sample 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec 146	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 ID: AH-1 Type: So ID: AH-1	e Du olubi RP Lim 2 I (0-1 olubi
Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid	I3540/3-A MS 	Qualifier	Added 250 Spike Added 250 Spike Added	Result 264.0 LCSD Result 263.6 MS Result 420.0	Qualifier LCSD Qualifier MS Qualifier	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec 146	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110	Type: So ol Sample Type: So <u>RPD</u> 0 ID: AH-1 Type: So ID: AH-1	e Du olubi RP Lim 2 I (0-1 olubi
Lab Sample ID: LCS 880-434 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: LCSD 880-4 Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte Chloride Lab Sample ID: 890-3772-7 I Matrix: Solid Analysis Batch: 43613 Analyte Chloride	U3540/3-A MS MS <u>Result</u> 54.5 MSD Sample	Qualifier F1	Added 250 Spike Added 250 Spike Added 250	Result 264.0 LCSD Result 263.6 MS Result 420.0	Qualifier LCSD Qualifier MS Qualifier F1	mg/Kg Clie Unit mg/Kg	D_ ent San D_	%Rec 106 nple ID: %Rec 105 Clie %Rec 146	Prep %Rec Limits 90 - 110 Lab Contro Prep %Rec Limits 90 - 110 nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep	Type: So ol Sample Type: So <u>RPD</u> 0 ID: AH-1 Type: So ID: AH-1	e Du olubi RPI Lim 2 (0-1' olubi

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA

Prep Batch: 43511

rep Batch: 43511					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	5035	
890-3772-2	H-2	Total/NA	Solid	5035	
890-3772-3	H-3	Total/NA	Solid	5035	
890-3772-4	H-4	Total/NA	Solid	5035	
890-3772-5	H-5	Total/NA	Solid	5035	
890-3772-6	H-6	Total/NA	Solid	5035	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	5035	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	5035	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	5035	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	5035	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	5035	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	5035	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	5035	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	5035	
MB 880-43511/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43511/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43511/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3772-1 MS	H-1	Total/NA	Solid	5035	
890-3772-1 MSD	H-1	Total/NA	Solid	5035	

Prep Batch: 43542

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-43542/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 43654

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	5035	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	5035	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	5035	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	5035	
MB 880-43654/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-43654/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-43654/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3781-A-1-D MS	Matrix Spike	Total/NA	Solid	5035	
890-3781-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 43785

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	8021B	43511
890-3772-2	H-2	Total/NA	Solid	8021B	43511
890-3772-3	H-3	Total/NA	Solid	8021B	43511
890-3772-4	H-4	Total/NA	Solid	8021B	43511
890-3772-5	H-5	Total/NA	Solid	8021B	43511
890-3772-6	H-6	Total/NA	Solid	8021B	43511
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8021B	43511
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8021B	43511
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8021B	43511
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8021B	43511
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8021B	43511

Eurofins Carlsbad

Page 77 of 262

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA (Continued)

Analysis Batch: 43785 (Continued)

Analysis Batch: 43785	(Continued)				
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8021B	43511
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	43511
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8021B	43511
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8021B	43511
MB 880-43511/5-A	Method Blank	Total/NA	Solid	8021B	43511
MB 880-43542/5-A	Method Blank	Total/NA	Solid	8021B	43542
LCS 880-43511/1-A	Lab Control Sample	Total/NA	Solid	8021B	43511
LCSD 880-43511/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43511
890-3772-1 MS	H-1	Total/NA	Solid	8021B	43511
890-3772-1 MSD	H-1	Total/NA	Solid	8021B	43511
Analysis Batch: 43863					
- Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	Total BTEX	
890-3772-2	H-2	Total/NA	Solid	Total BTEX	
890-3772-3	Н-3	Total/NA	Solid	Total BTEX	
890-3772-4	H-4	Total/NA	Solid	Total BTEX	
890-3772-5	H-5	Total/NA	Solid	Total BTEX	
890-3772-6	H-6	Total/NA	Solid	Total BTEX	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	Total BTEX	

Analysis Batch: 43863

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	Total BTEX	
890-3772-2	H-2	Total/NA	Solid	Total BTEX	
890-3772-3	H-3	Total/NA	Solid	Total BTEX	
890-3772-4	H-4	Total/NA	Solid	Total BTEX	
890-3772-5	H-5	Total/NA	Solid	Total BTEX	
890-3772-6	H-6	Total/NA	Solid	Total BTEX	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	Total BTEX	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	Total BTEX	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	Total BTEX	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	Total BTEX	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	Total BTEX	

Analysis Batch: 43866

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8021B	43654
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8021B	43654
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	43654
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8021B	43654
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8021B	43654
MB 880-43654/5-A	Method Blank	Total/NA	Solid	8021B	43654
LCS 880-43654/1-A	Lab Control Sample	Total/NA	Solid	8021B	43654
LCSD 880-43654/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	43654
890-3781-A-1-D MS	Matrix Spike	Total/NA	Solid	8021B	43654
890-3781-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	43654

Analysis Batch: 44223

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8021B	44226
MB 880-44226/5-A	Method Blank	Total/NA	Solid	8021B	44226
LCS 880-44226/1-A	Lab Control Sample	Total/NA	Solid	8021B	44226
LCSD 880-44226/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	44226
890-3860-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	44226
890-3860-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	44226

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

5 6

Job ID: 890-3772-1 SDG: Lea County NM

GC VOA

Prep Batch: 44226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-13	AH-3 (0-1')	Total/NA	Solid	5035	
MB 880-44226/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-44226/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-44226/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-3860-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-3860-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

GC Semi VOA

Analysis Batch: 43692

GC Semi VOA						8
Analysis Batch: 43692						
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-3772-1	H-1	Total/NA	Solid	8015B NM	43699	
890-3772-2	H-2	Total/NA	Solid	8015B NM	43699	
890-3772-3	H-3	Total/NA	Solid	8015B NM	43699	
890-3772-4	H-4	Total/NA	Solid	8015B NM	43699	
890-3772-5	H-5	Total/NA	Solid	8015B NM	43699	
890-3772-6	H-6	Total/NA	Solid	8015B NM	43699	
MB 880-43699/1-A	Method Blank	Total/NA	Solid	8015B NM	43699	
LCS 880-43699/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43699	
LCSD 880-43699/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43699	
390-3772-1 MS	H-1	Total/NA	Solid	8015B NM	43699	
890-3772-1 MSD	H-1	Total/NA	Solid	8015B NM	43699	

Analysis Batch: 43694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015B NM	43712
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8015B NM	43712
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8015B NM	43712
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8015B NM	43712
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8015B NM	43712
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8015B NM	43712
MB 880-43712/1-A	Method Blank	Total/NA	Solid	8015B NM	43712
LCS 880-43712/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43712
LCSD 880-43712/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43712
880-23565-A-1-C MS	Matrix Spike	Total/NA	Solid	8015B NM	43712
880-23565-A-1-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43712

Prep Batch: 43699

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	8015NM Prep	
890-3772-2	H-2	Total/NA	Solid	8015NM Prep	
890-3772-3	H-3	Total/NA	Solid	8015NM Prep	
890-3772-4	H-4	Total/NA	Solid	8015NM Prep	
890-3772-5	H-5	Total/NA	Solid	8015NM Prep	
890-3772-6	H-6	Total/NA	Solid	8015NM Prep	
MB 880-43699/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43699/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43699/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3772-1 MS	H-1	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

GC Semi VOA (Continued)

Prep Batch: 43699 (Continued)

GC Semi VOA (C	ontinued)						
Prep Batch: 43699 (Continued)							
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch		
890-3772-1 MSD	H-1	Total/NA	Solid	8015NM Prep		5	
Prep Batch: 43712							
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch		
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015NM Prep			
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015NM Prep			
800 3772 0		Total/NA	Solid	8015NM Prop			

M Prep
M Prep

Prep Batch: 43713

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8015NM Prep	
MB 880-43713/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-43713/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-43713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-3781-A-21-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-3781-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 43772

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Total/NA	Solid	8015 NM	
890-3772-2	H-2	Total/NA	Solid	8015 NM	
890-3772-3	H-3	Total/NA	Solid	8015 NM	
890-3772-4	H-4	Total/NA	Solid	8015 NM	
890-3772-5	H-5	Total/NA	Solid	8015 NM	
890-3772-6	H-6	Total/NA	Solid	8015 NM	
890-3772-7	AH-1 (0-1')	Total/NA	Solid	8015 NM	
890-3772-8	AH-1 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-9	AH-1 (2-2.5')	Total/NA	Solid	8015 NM	
890-3772-10	AH-2 (0-1')	Total/NA	Solid	8015 NM	
890-3772-11	AH-2 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-12	AH-2 (2-2.5')	Total/NA	Solid	8015 NM	
890-3772-13	AH-3 (0-1')	Total/NA	Solid	8015 NM	
890-3772-14	AH-3 (1-1.5')	Total/NA	Solid	8015 NM	
890-3772-15	AH-3 (2-2.5')	Total/NA	Solid	8015 NM	

Analysis Batch: 43779

Lab Sample ID 890-3772-15	Client Sample ID AH-3 (2-2.5')	Prep Type Total/NA	Matrix Solid	Method F 8015B NM	Prep Batch 43713
MB 880-43713/1-A	Method Blank	Total/NA	Solid	8015B NM	43713
LCS 880-43713/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	43713
LCSD 880-43713/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	43713

Eurofins Carlsbad

Page 80 of 262

Job ID: 890-3772-1 SDG: Lea County NM

GC Semi VOA (Continued)

Analysis Batch: 43779 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3781-A-21-D MS	Matrix Spike	Total/NA	Solid	8015B NM	43713
890-3781-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43713

HPLC/IC

Leach Batch: 43540

nalysis Batch: 43779	(Continued)				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3781-A-21-D MS	Matrix Spike	Total/NA	Solid	8015B NM	43713
890-3781-A-21-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	43713
IPLC/IC					
each Batch: 43540					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Soluble	Solid	DI Leach	
890-3772-2	H-2	Soluble	Solid	DI Leach	
890-3772-3	H-3	Soluble	Solid	DI Leach	
890-3772-4	H-4	Soluble	Solid	DI Leach	
890-3772-5	H-5	Soluble	Solid	DI Leach	
890-3772-6	H-6	Soluble	Solid	DI Leach	
890-3772-7	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-3772-8	AH-1 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-9	AH-1 (2-2.5')	Soluble	Solid	DI Leach	
890-3772-10	AH-2 (0-1')	Soluble	Solid	DI Leach	
890-3772-11	AH-2 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-12	AH-2 (2-2.5')	Soluble	Solid	DI Leach	
890-3772-13	AH-3 (0-1')	Soluble	Solid	DI Leach	
890-3772-14	AH-3 (1-1.5')	Soluble	Solid	DI Leach	
890-3772-15	AH-3 (2-2.5')	Soluble	Solid	DI Leach	
MB 880-43540/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-43540/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-43540/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-3772-7 MS	AH-1 (0-1')	Soluble	Solid	DI Leach	
890-3772-7 MSD	AH-1 (0-1')	Soluble	Solid	DI Leach	

Analysis Batch: 43613

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-3772-1	H-1	Soluble	Solid	300.0	43540
890-3772-2	H-2	Soluble	Solid	300.0	43540
890-3772-3	H-3	Soluble	Solid	300.0	43540
890-3772-4	H-4	Soluble	Solid	300.0	43540
890-3772-5	H-5	Soluble	Solid	300.0	43540
890-3772-6	H-6	Soluble	Solid	300.0	43540
890-3772-7	AH-1 (0-1')	Soluble	Solid	300.0	43540
890-3772-8	AH-1 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-9	AH-1 (2-2.5')	Soluble	Solid	300.0	43540
890-3772-10	AH-2 (0-1')	Soluble	Solid	300.0	43540
890-3772-11	AH-2 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-12	AH-2 (2-2.5')	Soluble	Solid	300.0	43540
890-3772-13	AH-3 (0-1')	Soluble	Solid	300.0	43540
890-3772-14	AH-3 (1-1.5')	Soluble	Solid	300.0	43540
890-3772-15	AH-3 (2-2.5')	Soluble	Solid	300.0	43540
MB 880-43540/1-A	Method Blank	Soluble	Solid	300.0	43540
LCS 880-43540/2-A	Lab Control Sample	Soluble	Solid	300.0	43540
LCSD 880-43540/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	43540
890-3772-7 MS	AH-1 (0-1')	Soluble	Solid	300.0	43540
890-3772-7 MSD	AH-1 (0-1')	Soluble	Solid	300.0	43540

Eurofins Carlsbad

Job ID: 890-3772-1

SDG: Lea County NM

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-1 Matrix: Solid

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Client Sample ID: H-1

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:17
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 10:56
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 14:47

Client Sample ID: H-2

Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:37
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:02
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	CH	EET MID	01/11/23 15:06

Client Sample ID: H-3

Date Collected: 01/05/23 00:00

Date	Received	: 01/05/23	13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 22:58
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:24
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:12

Client Sample ID: H-4 Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:18
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07

Eurofins Carlsbad

1/19/2023

Matrix: Solid

Page 82 of 262

Lab Sample ID: 890-3772-3

Lab Sample ID: 890-3772-4

Matrix: Solid

5 6

9

Lab Sample ID: 890-3772-2 Matrix: Solid

Lab Chronicle

Job ID: 890-3772-1 SDG: Lea County NM

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-3772-4

Client Sample ID: H-4 Date Collected: 01/05/23 00:00

Project/Site: Convoy Central CTB

Client: Tetra Tech, Inc.

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM			43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 12:47
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:18

Client Sample ID: H-5 Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:39
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 13:09
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:24

Client Sample ID: H-6

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/12/23 23:59
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/11/23 17:26
Total/NA	Prep	8015NM Prep			43699	DM	EET MID	01/11/23 08:24
Total/NA	Analysis	8015B NM		1	43692	SM	EET MID	01/11/23 13:32
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:30

Client Sample ID: AH-1 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 00:19
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 02:31

Eurofins Carlsbad

Lab Sample ID: 890-3772-6

Lab Sample ID: 890-3772-7

Matrix: Solid

Matrix: Solid

Job ID: 890-3772-1

Matrix: Solid

Matrix: Solid

SDG: Lea County NM

Lab Sample ID: 890-3772-7

Lab Sample ID: 890-3772-8

Lab Chronicle

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-1 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 15:36

Client Sample ID: AH-1 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		10	43866	MNR	EET MID	01/13/23 14:01
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
lotal/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 00:40
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
otal/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
otal/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
otal/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 02:53
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:03

Client Sample ID: AH-1 (2-2.5') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		10	43866	MNR	EET MID	01/13/23 14:22
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 01:00
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:14
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:09

Client Sample ID: AH-2 (0-1') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 01:21
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52

Eurofins Carlsbad

Lab Sample ID: 890-3772-9

Lab Sample ID: 890-3772-10

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 890-3772-1 SDG: Lea County NM

Lab Sample ID: 890-3772-10

Lab Sample ID: 890-3772-11

Matrix: Solid

Matrix: Solid

9

Project/Site: Convoy Central CTB

Client Sample ID: AH-2 (0-1')

Client: Tetra Tech, Inc.

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:36
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:27

Client Sample ID: AH-2 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
lotal/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
lotal/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 02:44
lotal/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
lotal/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
otal/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
lotal/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 03:58
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
oluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:33

Client Sample ID: AH-2 (2-2.5')

Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		1	43785	MNR	EET MID	01/13/23 03:04
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 04:19
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:40

Client Sample ID: AH-3 (0-1') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		250	43866	MNR	EET MID	01/13/23 14:42
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:07
Total/NA	Prep	5035			44226	MNR	EET MID	01/18/23 08:29
Total/NA	Analysis	8021B		1000	44223	MNR	EET MID	01/18/23 15:20
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07

Eurofins Carlsbad

Page 85 of 262

Lab Sample ID: 890-3772-12

Lab Sample ID: 890-3772-13

Matrix: Solid

Matrix: Solid

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Client Sample ID: AH-3 (0-1') Date Collected: 01/05/23 00:00

Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Ргер Туре	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 04:40
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:46

Client Sample ID: AH-3 (1-1.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		200	43866	MNR	EET MID	01/13/23 15:02
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:28
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/12/23 14:52
Total/NA	Prep	8015NM Prep			43712	DM	EET MID	01/11/23 09:44
Total/NA	Analysis	8015B NM		1	43694	SM	EET MID	01/12/23 05:01
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	СН	EET MID	01/11/23 16:52

Client Sample ID: AH-3 (2-2.5') Date Collected: 01/05/23 00:00 Date Received: 01/05/23 13:41

Lab Sample ID: 890-3772-15

Lab Sample ID: 890-3772-14

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5035			43654	MNR	EET MID	01/13/23 10:20
Total/NA	Analysis	8021B		200	43866	MNR	EET MID	01/13/23 15:23
Total/NA	Prep	5035			43511	MNR	EET MID	01/09/23 10:59
Total/NA	Analysis	8021B		100	43785	MNR	EET MID	01/13/23 05:49
Total/NA	Analysis	Total BTEX		1	43863	AJ	EET MID	01/13/23 08:07
Total/NA	Analysis	8015 NM		1	43772	SM	EET MID	01/13/23 12:46
Total/NA	Prep	8015NM Prep			43713	DM	EET MID	01/11/23 09:47
Total/NA	Analysis	8015B NM		1	43779	AJ	EET MID	01/13/23 00:26
Soluble	Leach	DI Leach			43540	KS	EET MID	01/09/23 12:51
Soluble	Analysis	300.0		1	43613	CH	EET MID	01/11/23 16:58

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-3772-1 SDG: Lea County NM Lab Sample ID: 890-3772-13 Matrix: Solid

5

9

10

Job ID: 890-3772-1 SDG: Lea County NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority kas		rogram	Identification Number	Expiration Date
		ELAP	T104704400-22-25	06-30-23
The following analytes	are included in this report. b	ut the laboratory is not certif	ied by the governing authority. This list ma	ay include analytes for w
the agency does not of	fer certification.			
• •		Matrix	Analyte	
the agency does not of	fer certification.	Matrix Solid		

Eurofins Carlsbad

Method Summary

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1 SDG: Lea County NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	MCAWW	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
	= "Methods For Chemical Analysis Of Water And Wastes", EPA-600/4-79-020, Mai	•	
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	ition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Protocol References:

Laboratory References:

Sample Summary

Client: Tetra Tech, Inc. Project/Site: Convoy Central CTB

Job ID: 890-3772-1
SDG: Lea County NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-3772-1	H-1	Solid	01/05/23 00:00	01/05/23 13:41		
890-3772-2	H-2	Solid	01/05/23 00:00	01/05/23 13:41		
890-3772-3	H-3	Solid	01/05/23 00:00	01/05/23 13:41		5
890-3772-4	H-4	Solid	01/05/23 00:00	01/05/23 13:41		_
890-3772-5	H-5	Solid	01/05/23 00:00	01/05/23 13:41		
890-3772-6	H-6	Solid	01/05/23 00:00	01/05/23 13:41		0
890-3772-7	AH-1 (0-1')	Solid	01/05/23 00:00	01/05/23 13:41		
890-3772-8	AH-1 (1-1.5')	Solid	01/05/23 00:00	01/05/23 13:41	0 - 1	
890-3772-9	AH-1 (2-2.5')	Solid	01/05/23 00:00	01/05/23 13:41	1 - 1.5	
890-3772-10	AH-2 (0-1')	Solid	01/05/23 00:00	01/05/23 13:41	2 - 2.5	8
890-3772-11	AH-2 (1-1.5')	Solid	01/05/23 00:00	01/05/23 13:41	0 - 3.5	
890-3772-12	AH-2 (2-2.5')	Solid	01/05/23 00:00	01/05/23 13:41	1 - 4.5	9
890-3772-13	AH-3 (0-1')	Solid	01/05/23 00:00	01/05/23 13:41	0 - 1	
890-3772-14	AH-3 (1-1.5')	Solid	01/05/23 00:00	01/05/23 13:41	1 - 1.5	
890-3772-15	AH-3 (2-2.5')	Solid	01/05/23 00:00	01/05/23 13:41	2 - 2.5	
						12
						1:

of a Page Analysis Request of Chain of Custody Record Tetra Tech, Inc. 901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 TŁ Fax (432) 682-3946 Site Manager **Client Name:** EOG Rittony Long 890-3772 Chain of Custody Project Name: Convoy central CTB Project #: Project Location: 2121-MD-02458 Lea lourt NM (county, state) Invoice to: ALIN: Told Wells EOG TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO) fotai Metals Ag As Ba Cd Cr Pb Se Hg fCLP Metals Ag As Ba Cd Cr Pb Se Hg attac Sampler Signature: Receiving Laboratory: Eurofins Comments: 8260 mistry BTEX ICLP Semi Volatiles PRESERVATIVE Sulfate GC/MS Vol. 8260B SAMPLING MATRIX GC/MS Semi. Vol. PCB's 8082 / 608 5 Vol. inion/Cation Bala FILTERED (Y/N) METHOD # CONTAINERS PLM (Asbestos) Water **FCLP Volatiles** 2023 3TEX 8021B YEAR: SAMPLE IDENTIFICATION LAB # WATER SOIL 827 Chloride DATE HCL HNO₃ TIME PIOH LAB USE Chlor Hd B ONLY X X 1/5/23 X 1-11 41-2 H-3 4-4 41-5 41-6 A 11-1 0-1 (1-1.5' 4-1 AHIN (2-2.5) V AH-2 (0-1) REMARKS: Received by Date: Time etinguisned by Date: Time TAT LAB USE Standel 15/22 Miguel & Flor 341 1.5.23 N ONLY RUSH: Same Day 24 hr 48 hr 72 hr Relinquished by Received by: Date: Time Date: Time: Sample Temperature 14.3 Rush Charges Authorized Relinquished by: Date: Time: Date: Time: Received by 16.1 Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #: **ORIGINAL COPY**

1/19/2023

Page 90 of 262

14

Job Number: 890-3772-1 SDG Number: Lea County NM

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 3772 List Number: 1 Creator: Clifton, Cloe

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Job Number: 890-3772-1 SDG Number: Lea County NM

List Source: Eurofins Midland

List Creation: 01/09/23 08:26 AM

Login Sample Receipt Checklist

Client: Tetra Tech, Inc.

Login Number: 3772 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

June 15, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EOG - CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/14/23 16:35.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (1.5') (H233073-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	89.9	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	18.4	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	94.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.0	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 2 (1.5') (H233073-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	102	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	23.9	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	98.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 3 (2.5') (H233073-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	88.6	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	36.6	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	86.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 1 (H233073-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 2 (H233073-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	30.2	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	101	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 3 (H233073-06)

BTEX 8021B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	93.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	98.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 4 (H233073-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	200	100	200	5.53	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	206	103	200	5.33	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	<i>99.2</i>	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 5 (H233073-08)

BTEX 8021B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	101	48.2-13	4						
Surrogate: 1-Chlorooctadecane	109	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 6 (H233073-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	108 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 7 (H233073-10)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.59	129	2.00	18.1	
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	06/15/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	15.1	10.0	06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/14/2023	Sampling Date:	06/14/2023
Reported:	06/15/2023	Sampling Type:	Soil
Project Name:	EOG - CONVOY CENTRAL CTB	Sampling Condition:	** (See Notes)
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 8 (H233073-11)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050 0.050 06/15/2023		ND	2.59	129	2.00	18.1		
Toluene*	<0.050	0.050	06/15/2023	ND	2.60	130	2.00	18.5	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.55	127	2.00	18.6	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	7.74	129	6.00	18.5	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	197	98.4	200	0.977	
DRO >C10-C28*	C28* 16.8 1		06/15/2023	ND	178	89.0	200	0.171	
EXT DRO >C28-C36	<10.0	10.0	0.0 06/15/2023 ND						
Surrogate: 1-Chlorooctane	96.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-04	The RPD for the BS/BSD was outside of historical limits.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Daga	
Pade	

TŁ	Tetra Tech, Inc.				Midla Tel	Wall Stre land, Texa I (432) 68 x (432) 68	e 79701 2-4559	100																Pade 14 of
ent Name:	EOG	EQG Site Manager: Brittany Long								ANALYSIS REQUEST (Circle or Specify Method No.)														
ject Name:	Convoy Central CTB		432) 741 Brittany.lo			atech.	.com									 								Ì
ject Location: unty, state)	Lea County, NM	Project #:				-MD-		8														list)		
pice to:	Attn: Todd Wells											ARO)		Hg								attached		
ceiving Labora		Sampler Signa	ture:		Jorge	e Ferr	nande	ez				ORO - N		Pb Se				22				see att		
mments:											(8260B	DRO - (a Cd C			624	270C/62				stry		
622022		SAMP	SAMPLING			(P	PRESERVATIVE METHOD			(N/X	BTEX	17.1003 (EXLID C33) 8015M (GRO - DRO - ORO - MRO)		Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg	S	TCLP Semi Volatiles	GC/MS Vol. 8260B / 624	GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608		(so)	Sulfate	n Balance		
233073 LAB #	SAMPLE IDENTIFICATION	YEAR: 2023		щ			~		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	8015M	8270C	Metals	TCLP Volatiles	Semi /	IS Vol.	1S Semi	×	PLM (Asbestos) Chloride	ride	General Water C Anion/Cation Ba		
LAB USE)		DATE	TIME	WATER	SOIL	HCL	HN0 ³		# COI	FILTE	BTEX	TPH	PAH	TCLP	TCLP	TCLP	GC/N	GC/N PCB's	NORM	PLM	Chlo	Gene		
1	BH-1 (1.5')	6/14/2023			x		х				x	x	\square	_		+			\square	X	++	+	+	\vdash
	BH-2 (1.5')	6/14/2023			x		х		\perp	_	x	x	\square	+		+	+	+	+	X	++	++	+	\vdash
	BH-3 (2.5')	6/14/2023			x		X			-	x	X	$\left \right $	+	\square	+		-	+	X	++	+		\vdash
	SW-1	6/14/2023			x		x			_	х	x	\square	+		+	\square		+	X	++	+		\vdash
	SW-2	6/14/2023			x		x				x	x		-	\square		\square	\square	+	X	+	+	H	\square
	SW-3	6/14/2023			x		x				х	x				-		\square		X	\square	+	\square	\vdash
	SW-4	6/14/2023			x		x				x	x						\square		×	\square	\square	\square	\square
	SW-5	6/14/2023		Π	x		x				x	x						\square		×	\square			
	SW-6	6/14/2023			x		x				x	x						\square		X	\square			
/	SW-7	6/14/2023			x		x				x	x								X				
linquished by	J. Date: Time: J. Ferridez V. 6.14-23	Received by: Date: Time.								ONLY Sample Temperature									hr 72	2 hr				
linquished by	y: Date: Time:	Received by: Date: Time:									8.9c #13													

797 70 80 Analysi3 Request of Chain of Custody Record

Analysis Request of Chain of Custody Record																				Pag	ge		1	of _	15
Tetra Tech, Inc.				Tel	Wall St and, Tex (432) 6 (432) 6	as 79	701 59									8									Page 15 of
Client Name: EOG Site Manager: Brittany Long									ANALYSIS REQUEST (Circle or Specify Method No.)																
Project Name: Convoy Central CTB	(432) 741-5813											Cir 	cle 	or	Sp 	eci i	ity 	Me	tho 	d N 	0.) _	I			
Project Location: (county, state) Lea County, NM	Project #: 212C-MD-0295										1											(t)			
Invoice to: Attn: Todd Wells												RO)		P								iched lis			
Receiving Laboratory: Cardinal Labs	Sampler Sign	ature:		Jorge	Fer	nan	dez					8015M (GRO - DRO - ORO - MRO)	DP Co L	Pb Se I				5				see atta			
Comments:											K 8260B	DRO - 0	UPU C	a Cd Cr			624	8270C/625			TDS	mistry (8		
1/22072	SAMF	SAMPLING				PRESERVATIVE METHOD			ERS	(N/Y	BTEX	(GRO -	Ac Ac D	Ag As B	S	olatiles	8260B / 624	. Vol. 82	608	(so	Sulfate	ter Chei	n Baland		
HZ3 30 73 LAB # SAMPLE IDENTIFICATION	YEAR: 2023 BLYC	TIME	WATER	SOIL	HCL	HNO ₃	ICE		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	TPH 8015M	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi Volatiles RCI	GC/MS Vol. 8260B	SC/MS Semi	PCB's 8082 NORM	PLM (Asbestos)	Chloride S	General Water Chemistry (see attached list)	Anion/Catior		Pold
// SW-8	6/14/2023	F		က x	T		≚ x	+	#	LL.	X	- ⊢ X									x		~		1
											\square			_	\square	_			+	Н	+	\square	+	\square	+
			\square	_	-	\square	+	+		<u> </u>	\vdash	+	-	+	\mathbb{H}	+	+	\vdash	+	H	+	$\left \right $	+	+	+
			H		+	\mathbb{H}	+	+			\mathbb{H}	+	+	+	\mathbb{H}	+	H	H	+	H	+	+	+	++	+
	<u> </u>	1	H		+	H		+			۲ſ	$^{+}$		+	Ħ	+	Π	H	+	Ħ	+	Ħ			
		1				Π																			
																			-	Ц	-			\square	+
		ļ				Ļ			ļ.,	17					RF	MAR	KS:		Star	ndar		T			
Relinguished by: Date: Time: Relinguished by: Date: Time:	Received by	<u>Ullari</u>	1		Da	1.	Tir	1	le-19 142		Sam		ILY		,					Day	_		48 hr	72 h	r
Relinquished by: Date: Time:	Relinquished by: Date: Time: Received by: Date: Time:								10	Ou	60	2						Autho							
											8.9° #113 Special Report Limits or TRRP Report														
2)											(Circ	le) HA	AND D	DELIN	/ERE	D FI	EDEX	(U	PS	Track	ting #:				
Relinquished by: Date: Time:	ORIGINA	L COPY																							

June 16, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTERAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/15/23 14:54.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 9 (H233095-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/15/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	6.50	108	6.00	0.509	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	75.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	75.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 10 (H233095-02)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/15/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/15/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/15/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/15/2023	ND	6.50	108	6.00	0.509	
Total BTEX	<0.300	0.300	06/15/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	27.6	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	78.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/15/2023	Sampling Date:	06/15/2023
Reported:	06/16/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTERAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 11 (H233095-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/16/2023	ND	2.36	118	2.00	1.57	
Toluene*	<0.050	0.050	06/16/2023	ND	2.19	110	2.00	0.122	
Ethylbenzene*	<0.050	0.050	06/16/2023	ND	2.17	108	2.00	0.913	
Total Xylenes*	<0.150	0.150	06/16/2023	ND	6.50	108	6.00	0.509	
Total BTEX	<0.300	0.300	06/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.8	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/15/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/15/2023	ND	226	113	200	4.96	
DRO >C10-C28*	<10.0	10.0	06/15/2023	ND	208	104	200	3.03	
EXT DRO >C28-C36	<10.0	10.0	06/15/2023	ND					
Surrogate: 1-Chlorooctane	76.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	74.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

262			
Analysis Reques	t of Chai	n of Custo	dy Record

The

Ŧ	Tetra Tech, Inc.		r.		9	Midlan Tel (4	nd, Tex 432) 6	eet, Ste as 79701 82-4559 82-3946	100 I												F	Page)		<u>1</u> of	f
ent Name:	EOG	Site Manage	er:	В	ritta	ny Lo						Ť						VOI		•						
ject Name:	Convoy Central CTB		(432) 74	1-5	813		_					-		(C	irc		r S	pec	s R cify	EQU	JES eth	od	No	.)		
ect Location: inty, state)	Lea County, NM	Project #:	Brittany.	long			-	<u>com</u> 02958	3			+														
ice to:	Attn: Todd Wells							_				+											ist)	1		
eiving Laboratory:	Cardinal Labs	Sampler Sig	nature:		Jor	ge F	erna	andez	2			+	MPON-0		Se Hg	8100							ttached			
												8260B	5) 20 - ORC		Cd Cr Pb				2/625				V (see a			
33095		SAM	LING	M	ATR	іх		ESERVA METHO		s	=	BTEX .	RO - DF				es	8260B / 624	8270C/625			F	e IL	ance		
AB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2023 띤	ш	WATER		T	Τ	Π		CONTAINERS	FILTERED (Y/N)	8021B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)	PAH 8270C	Total Metals Ag As Ba TCLP Metals Ag As Ba	TCLP Volatiles	Semi Volatiles	GC/MS Vol. 8260B	Semi. Vol.	8082 / 600	PLM (Asbestos)	Cultat	Critoride Sultate TDS General Water Chemistry (see attached list)	ation Bala		
/ SW-9		DATE	TIME	WA	Sol	Î	N I	Ъ		# CO	FILTE		H H H H	PAH 8	TCLP	TCLP	RCI	GC/MS	GC/MS	NORM	PLM (A	Chloride	Benera	vnion/C		
2 SW-10		6/15/2023 6/15/2023			x	+	+	x	-			х	x	Π							+	x		4	++	-
3 SW-11		6/15/2023			x x	+	+	x	-			x	x	\square		\square	\perp	\square				x			\square	
					1	+	+	×	+			x	x	\vdash	+	\square	+	\square	+	\square	Ľ	x	\square	\perp	Ш	
									\square			H	+	+	+	+	+	\mathbb{H}	+	+	H	+	\mathbb{H}	+	\square	
		$ \rightarrow $		\downarrow	-										\square	+	$^{+}$	\square	+	H	H	+	\mathbb{H}	+	\vdash	-
				+	+	+			\square		_									Ħ	\uparrow	+	Ħ	+	\vdash	-
				+	+	+	\vdash	\square	+	_	-	-	\square	+		\downarrow				П			Π	\top		
shed by:				+	+	+	Н		$\left \right $	-+	-	+	++	+	++	+	\square	+	+	Щ	\downarrow		Щ			
/ /	Date: Time: Fernández V. 6-15-2023															REM	ARK	S:	St	and	lard	TAT	L L			
ind by.	Date: Time:	Received by:	lèque	0		Dat		Tim		ul.		Sampl	e Tem	perat	ure	X	RUS	SH:	Sam	ie De	ay	24 hr	r 48	3 hr	72 hr	1
shed by:	Date: Time:	Received by:	requ	e	5	Date		Time		145		/		30		_				es Aut						
											~	1000	HAN										RP F	Report	t	

.

June 20, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/19/23 14:20.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (1.75') (H233161-01)

BTEX 8021B	mg/kg		Analyze	d By: MS					
Analyte	Result Reporting Limit <0.050 0.050		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*			06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	368	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	147	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	110	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 2 (1.75') (H233161-02)

BTEX 8021B	mg/kg		Analyze	Analyzed By: MS					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	<10.0	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 3 (2.75') (H233161-03)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	12.3	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	<10.0	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	119 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	122 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/19/2023	Sampling Date:	06/19/2023
Reported:	06/20/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 4 (1.75') (H233161-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene* <0.05		0.050	06/19/2023	ND	2.02	101	2.00	0.248	
Toluene*	<0.050	0.050	06/19/2023	ND	1.92	96.1	2.00	0.481	
Ethylbenzene*	<0.050	0.050	06/19/2023	ND	1.92	95.8	2.00	0.504	
Total Xylenes*	<0.150	0.150	06/19/2023	ND	5.75	95.8	6.00	2.23	
Total BTEX	<0.300	0.300	06/19/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyze						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	06/20/2023	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/20/2023	ND	213	106	200	1.41	
DRO >C10-C28*	47.1	10.0	06/20/2023	ND	215	107	200	3.26	
EXT DRO >C28-C36	14.2	10.0	06/20/2023	ND					
Surrogate: 1-Chlorooctane	117 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARDINAL Laboratories

CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

101 East Marland, Hobbs, NM 88240 (575) 303-2326 EAX (575) 303-2476

Company Name:	Tetra Tech	And a state of the second s			-			E	IL	LTO					A	NAL	YSIS	REC	QUES	Т		
Project Manager		Long					P.O.	#:					6									
Address: 90	W. Wall S	Long					Com	pany:	EC	JG Re	source	5	6 Rd - DR0 - 0 RO									
City: Midl		State: TX	Zip: 1	79	701		Attn:	To	d	dw	source		-0									
Phone #:		Fax #:					Addr						×									
Project #: 212	C-MD-02958	Project Owner:					City:						,									
Project Name:	Convoy Cen Lea Count	tral CT	B	Re	lease		State	:	Z	Zip:			Rd	4500								
Project Location	: Lea Count	,NM					Phor	ne #:				213	.0	14								
Sampler Name:	Ivan Raw	los				_	Fax		_			3	\sim									
FOR LAB USE ONLY					MATE	IX	P	RESER	V.	SAME	PLING	80	5	65								
			OMP	, E	~								5108	3								
Lab I.D.	Sample I.	n	R (C)	WAT	ATEF		ú	i _				ω		Chloride								
	Sample I.	<i>p</i> .	AB O		TEW	GE	. H	COO	2			F	HAT	2								
H233161			(G)RAB OR (C)OMP	GROUNDWATER	WASTEWATER	SLUDGE	OTHER :	ICE / COOL	OTHER	DATE	TIME	2	+	5								
rie ster	RH-1	1.75')			X			X		6/19/23	9:30	×	X	X								_
Z	BH-1 (BH-2	(1.75') (2.75') (1.75')			1			1			9:45		1			-						
3	BH-3	(2.75')									10:15				-							
4	BH-4	(1.75)		4	V			V		V	10:44	5 V	V	V							_	
				+		_	+		-					-								+
				+			+					1										-
	1		\vdash	+																		
			\vdash																			
analyses All claims includin	d Damages. Cardinal's liability and clie Ig those for negligence and any other o	ause whatsoever shall be d	leemed w	raived u	unless made in v	riting and	receive	d by Cardi	nal wit	thin 30 days after	er completion of	the applica	ible									
service. In no event shall Ca	ardinal be liable for incidental or consec og out of or related to the performance	uental damages, including	without lin ardinal, re	mitation	n, business inter ss of whether su	uptions, l	oss of us	e, or loss	of prof	fits incurred by	easons or other	vise.			No	Add'l F	Dhone	4.				
Relinquished By		Date: 6-19-23	Rece	eive	d By:		/	11	1	1/	Verbal R All Resul	esuit:	D Ye									_
livan 1	Ramos	Time: 1420			MULL	Pa 1	rl	Vd	E	XX (
Relinquished By	:	Date:	Rece	eive	d By:		20	unin	7		REMAR	KS:										
		Time:																				
Delivered By: (Ci	ircle One) Ob	served Temp. °C	0.7	1	Sample (ED BY:	Turnarou	und Tim	e:	Stan	dard		Bacte Cool			ple Con	dition Temp. °C	
Sampler - UPS -	Bus - Other: Co	rrected Temp. °C	0.1		Cool I	Yes	5		Initi	als)	Thermom	eter ID	#113		thr		TYes		S		Temp. °C	
FORM-000	R 3.3 07/16/22				No No	No		1	-		Correction	ractor	-0.0.0		TTIK				0 00	rected	remp. (-

 \sim

Page 7 of

Released to Imaging: 2/6/2024 1:23:40 PM

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

June 28, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL RELEASE 2

Enclosed are the results of analyses for samples received by the laboratory on 06/23/23 14:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 6 (0-1') (H233286-01)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS					
Analyte	Result Reporting Limit		Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*		0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	Chloride, SM4500Cl-B mg/kg		Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	382	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	109	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	127	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 7 (0-1') (H233286-02)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8260	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	2820	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	859	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	109	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 8 (0-1') (H233286-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	0.141	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	0.532	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	2.86	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	3.53	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	170 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	288	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	218	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	17900	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	3390	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	135	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	438	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (3-3.5') (H233286-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	111 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	108 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (0-1') (H233286-05)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1600	16.0	06/26/2023	ND	432	108	400	0.00	QM-07
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	580	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	133	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	107	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (1-1.5') (H233286-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	720	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	352	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	74.5	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (2-2.5') (H233286-07)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 2 (3-3.5') (H233286-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.08	104	2.00	1.95	
Toluene*	<0.050	0.050	06/26/2023	ND	2.04	102	2.00	0.544	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.00	99.8	2.00	0.264	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.01	100	6.00	0.172	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	89.6	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	13.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 3 (0-1') (H233286-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	9200	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	4350	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	1080	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	90.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	155 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (0-1') (H233286-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	5400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	570	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	182	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	107	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	142	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (1-1.5') (H233286-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3960	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	262	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	84.2	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 4 (2-2.5') (H233286-12)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 5 (0-1') (H233286-13)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	24400	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	3940	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	989	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	84.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 1 (H233286-14)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	98.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 2 (H233286-15)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	97.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 3 (H233286-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	84.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 4 (H233286-17)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	86.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 5 (H233286-18)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	95.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 6 (H233286-19)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	183	91.4	200	5.14	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	172	85.8	200	8.81	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	95.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: H - 7 (H233286-20)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (0-1') (H233286-21)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1150	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	13.1	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	118 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	122	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (1-1.5') (H233286-22)

BTEX 8021B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	114 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL RELEASE 2	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: AH - 1 (2-2.5') (H233286-23)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	116 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	120 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	Tetra Tech, Inc.			9	Midla Tel	Wall Stree and, Texas (432) 682 (432) 683	s 79701 2-4559	00																	je 26 of 28
Client Name:	EOG	Site Manager:		Britta	any l	Long							Ci	rcle		Sp.					d N	0.)			Page
Project Name:	Convoy Central Release 2		(432) 741 Brittany.lo			atech.	com																		
Project Location: county, state)	Lea County, NM	Project #:		21	12C-	-MD-0)2958	3														ist)			
nvoice to:	Attn: Todd Wells					-						ARO)		Hg								ached I			
Receiving Labora	tory: Cardinal Labs	Sampler Signa	ature:	Jo	orge	Fern	ande	Z				ORO - N		r Pb Se				122				see att			
Comments:										to serve	X 8260B	DRO -		a Cd Cr			624	8270C/625			TDS	mistry	3		
11233284		SAMP YEAR: 2023	LING	MAT		PF	METH		INERS	(N/N) 0	21B BTE	1X1005 (EXT to C35) 8015M (GRO - DRO - ORO - MRO)	S	Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	ni Volatiles	3260B	Vol. 608		lestos)	Sulfate	I S I			
LAB #	SAMPLE IDENTIFICATION	DATE	TIME	WATER	201	HCL	HNO ₃		# CONTAINERS	FILTERED (Y/N)		TPH 801	PAH 8270C	Total Meta	TCLP Vol	TCLP Ser RCI	GC/MS V	GC/MS Semi. PCB's 8082 /	NORM	PLM (Asbestos)	Chloride	General			Pold
	AH-6 (0-1')	6/21/2023	·	×			x				x	x		_			\square	_	\square	H	×	$\left \right $	++	+	+
2	AH-7 (0-1')	6/21/2023		X	1	++	x	\square	+	+	×	X	H	+	\mathbb{H}	+	\mathbb{H}	+	+	+	×	++	++	+	+
3	AH-8 (0-1')	6/21/2023		×			X				×	x		+		+		+			×		\ddagger	+	Ŧ
				H	-	+	+	$\left \right $	+					+						H	\pm		\pm	+	\pm
				\square	Ŧ									-	\square	+	$\left \right $	+	+	$\left \right $	-	H	+	+	+
					\ddagger				\pm		Ħ	+		+		+			T		1	\square	\square	+	Ŧ
Relinquished by	L Vendez V 6-2333					Date		Time:					NLY		,	MAR							8 hr	72 h	
Relinquished b	y: Date: Time: `	Received by	leia	ul	U	le	a3	23	142	4	1000	nple Te			1			Charg							
Relinquished b	y: Date: Time:	Received by	r. I	(J	Date	e:	Time:		/		82		15		s	pecia	al Re	port	Limi	ts or	TRRF	Repo	rt	
		1									(Cir	cle) H	IAND	DELI		DF	EDEX	(UP	S	Track	king #	:			_

TŁ	Tetra Tech, Inc.				Mic	V Wall St dland, Tex el (432) 6 ax (432) 6	xas 79 582-45	701 59																		;	ge 27 of
Client Name:	EOG	Site Manager:		Britt	any	Long)								role					EQU M			No			1	Page
Project Name:	Convoy Central Release 2		(432) 741 Brittany.lo			ratech	1.CO	m																			
Project Location: county, state)	Lea County, NM	Project #:		2	2120	C-MD	-029	958															1001	list)			
nvoice to:	Attn: Todd Wells	lo se la Circo											MRO)		Ha	0							hodoot	attached list)			
Receiving Labora	tory: Cardinal Labs	Sampler Signa	ature:		Jorg	e Fer	man	dez					ORO -		Pb Se				55					see at			
Comments:												X 8260B	DRO - (a Cd Cr				8270C/625				TDS	imistry (
11233284		SAMP	LING	MA	(TRI)	×		ERVATI	VE	VERS	(N/X)	B BTEX	1 X 1 UU3 (EXT 10 C33) 8015M (GRO - DRO - ORO - MRO)		Ag As B	les	Volatiles		8260B	2 / 608	etnel	lame	Sulfate	ater Cne on Balan			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023	TIME	WATER	SOIL	HCL	HNO ₃	ш		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	PH 1X100	PAH 8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg Tr'i D Metals Ag As Ba Cd Cr Ph Sa Hg	TCLP Volatiles	TCLP Semi Volatiles	RCI	GC/MS Vol.	PCB's 8082/	NORM DI M (Achactoc)	Chloride	Chloride	General Water Chemistry Anion/Cation Balance			Hold
ONLY			L L			Ĭ		⊻ x	+	#	Ē	X	×	à	<u> </u>	Ĕ	Ĕ	2	5 0		Z	. о х		94	+	\vdash	t
	AH-1 (3-3.5')	6/21/2023 6/21/2023			x x	+	+	x	\vdash			x	x	Ħ	+	$^{+}$	\square	H	$^{+}$	\square	1	x					T
	AH-2 (0-1')	6/21/2023			x	+	+	x	+			x	x	Ħ	1	T		Π				x					
	AH-2 (1-1.5') AH-2 (2-2.5')	6/21/2023			x	+	+	x	\top			x	x	Π								x					
	AH-2 (2-2.5) AH-2 (3-3.5')	6/21/2023			x			x				x	x									х	\square		Щ	\perp	\downarrow
0	AH-3 (0-1')	6/21/2023			x			x				х	х							\square	\downarrow	x	\square		\square	\perp	\downarrow
	AH-4 (0-1')	6/21/2023			x			x				x	x			\perp		\square	\perp	\square	\downarrow	x	\square	+	Ц.	\vdash	╀
10	AH-4 (1-1.5')	6/21/2023			x			x				×	x			\perp	\downarrow	\square	+	++	+	x	\square	+	\square	╞	+
10	AH-4 (2-2.5')	6/21/2023			x			x				×	x	\square		+	\vdash	Ц	+	+	+	×	\square	+	\vdash	╀	+
	AH-5 (0-1')	6/21/2023			x			x				×	X					ARK		Sta		X		5			
Relinquished by Relinquished by	- J Jen Ju V 6-23-23	Received by	deio		0		ate:	JZ:	ne: 3	1424	ł	Sam	0	B US NLY	eratur	e)	RU	SH:		ne Da	ay 2	24 hr		hr 7	'2 hr	
Relinquished by	y: Date: Time:	Received by		m	0	1	ate:	and the second second	me:				/	CE #).[2 = =		_	-						RRP F	Report		

the second s																									1001
TŁ	Tetra Tech, Inc.			1	Midla Tel (Vall Stree nd, Texas (432) 682 (432) 682	79701 -4559	00																	Page 28 of 28
Client Name:	EOG	Site Manager:		Britt	any L	ong							Circ				IS R				1 No	.)			Pag
Project Name:	Convoy Central Release 2		(432) 741 Brittany.lo			tech.o	com					ΙÌ													
Project Location: county, state)	Lea County, NM	Project #:		2	212C-	MD-0	2958	3														ist)			
nvoice to:	Attn: Todd Wells											MRO)	BH	Hg								see attached list)			
Receiving Labora	atory: Cardinal Labs	Sampler Signa	iture:	J	lorge	Ferna	ande	Z				- ORO - MRO)	Pb Se	Pb Se			5					see at			
Comments:											X 8260B	DRO - C	a Cd Cr I	a Cd Cr			8 / 624 8270C/625				TDS	mistry (
H233280		SAMP	LING	MA		PR	METH		ERS	(N/A	BTE/	GRO-	Ag As Ba	Ag As B	Volatiles		Z60E Vol.			tos)	Sulfate	ater Che			
LAB #	SAMPLE IDENTIFICATION	YEAR: 2023	Æ	WATER		HCL	с Г ш		CONTAINERS	FILTERED (Y/N)	BTEX 8021B		PAH 8270C Total Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles TCLP Semi Volatiles		GC/MS Vol. 8 GC/MS Semi.	082	NORM	PLM (Asbestos)	Chloride Sulfate TDS	eneral Wa			Hold
(ONLY)		DATE	TIME		SOIL	FL		$\left \right $	#	Ē		L ⊨ X	To	F		RCI	ŏö	<u>M</u>	ž			0 4	+	+	Ŧ
	H-1	6/21/2023			<	++	X	++	+	-	x x	Ŷ	+	H	+	H	+	$^{+}$	Η	>	+	H	$^{++}$	+	+
15	H-2	6/21/2023			×	++	X	++	+	\vdash	x	Ĵ	+	H	+	Η	+	$^{+}$	H	,	+	H	++	+	+
16	Н-3	6/21/2023			×	++	X	++	+	-	x	Ŷ	+	H	+	Η		$^{+}$	Н	,	+	H	Ħ	+	+
17	H-4	6/21/2023			×	++	x	++	+		x	x	+	Η	+	Η		$^{+}$	Н	١,	+	H	\square	\top	+
18	H-5	6/21/2023			×	++	x	++	+	\vdash	x	x	+	\mathbf{H}	+	Η		$^{+}$	Н	١,	(H	\square	\top	\top
19	Н-6	6/21/2023			×	++	x	++	+	\vdash	x	x	+	Н	+	\square	+	$^{+}$	П	١,	(H	\square	T	\top
20	H-7	6/21/2023			× ×	++	x	++	+	\vdash	x	x	+	Н		\top		$^{+}$	Π	,	~	Π	\square		\top
al	AH-1 (0-1')	6/21/2023			×	++	x	++	+	\vdash	x	x	+	Н		\top		T	Π	,	~	Π	\square	Π	T
22	AH-1 (1-1.5")	6/21/2023			x	++	x	++	+	\vdash	x	x		П		\top		T	5	T,	<	Π	Π	Π	
a3 Relinquished by	AH-1 (2-2.5') y: Date: Time: 1 + 4 = -23 + 23	6/21/2023			^ _										REM						TA		8 br	72 hi	r
Rélinquisbed b	y: Date: Time:	Received by	Rian	N	4	Contraction of the local division of the loc	23þ	A REAL PROPERTY AND A REAL	142	4	Sam 2.1	iple Te	mpera			-	ish Cl						511	7211	
Relinquished b	y: Date: Time:	Received by	c I	(J	Date	2:	Time:		/	T.	8:-		1.1		Sp	ecial	Rep	ort l	Limit	s or T	RRP	Repo	ort	
										6	THE OWNER WHEN PARTY NAME	HA (HA	the second s		ERED) FE	DEX	UPS	S 1	Track	ing #:	_			
		ORIGINA	L COPY											_											

Released to Imaging: 2/6/2024 1:23:40 PM

.

June 28, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 06/23/23 14:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	06/23/2023	Sampling Date:	06/21/2023
Reported:	06/28/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shalyn Rodriguez
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: BH - 1 (2.0') (H233287-01)

BTEX 8021B	mg/	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	06/26/2023	ND	2.31	116	2.00	5.00	
Toluene*	<0.050	0.050	06/26/2023	ND	2.29	114	2.00	6.16	
Ethylbenzene*	<0.050	0.050	06/26/2023	ND	2.16	108	2.00	6.20	
Total Xylenes*	<0.150	0.150	06/26/2023	ND	6.68	111	6.00	6.07	
Total BTEX	<0.300	0.300	06/26/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	06/26/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	06/26/2023	ND	175	87.6	200	3.26	
DRO >C10-C28*	<10.0	10.0	06/26/2023	ND	180	89.8	200	2.21	
EXT DRO >C28-C36	<10.0	10.0	06/26/2023	ND					
Surrogate: 1-Chlorooctane	111 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TŁ	Tetra Tech, Inc.				Mid	V Wall Str dland, Tex el (432) 6 ax (432) 6	xas 797	01 9																		Page 4 of 4
lient Name:	EOG	Site Manager:		Brit	tany	Long)				Τ		,	Cir							EST		lo.)			Pa
roject Name:	Convoy Central CTB		(432) 741 Brittany.lo			ratech	n.con	n					I Ì													
roject Location: ounty, state)	Lea County, NM	Project #:		2	2120	C-MD	-029	58															ist)			
voice to:	Attn: Todd Wells												MRO)	ELS.	Hg								attached list)			
eceiving Laboratory:	Cardinal Labs	Sampler Signa	ature:		Jorg	e Fer	mano	lez			\neg		- ORO - MRO)	Dh Co	r Pb Se				25							
omments:												X 8260B C35)	DRO -	UPU V	a cd C			624	270C/6			TDS	mistry	lce		
0777		SAMP	LING	M/	ATRI)	x		RVATIVI	E	ERS	(N)	(Ext to C	8015M (GRO - DRO	D o V o V	Ag As I	Se	/olatiles	8260B	Semi. Vol. 8	/ 608	(so	Cultato	ter Che	n Balar		
LAB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2023	TIME	WATER	SOIL	HCL	HNO ₃	GE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B TPH TX1005	TPH 8015M	PAH 8270C	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	TCLP Semi V RCI	GC/MS Vol. 8260B / 624	GC/MS Semi	PCB's 8082	PLM (Asbestos)	Chloride	General Water Chemistry (see	Anion/Cation Balance		
BH-1	(2.0')	6/21/2023			x		,					x	x	_	-	П	+			-	\square	x				-
				\mathbb{H}	+	+	$\left \right $	+		$\left \right $						H	+									+
							\square										+	\square		+	+		+	+	++	+
				H	+	+	+	+			-				+		\pm				\pm				Ħ	1
						_									+	\square	+	+		+	+	\parallel	+	\vdash	++	+
				H		+	+				_		\square								\pm					
Relinquished by:	Date: Time:										_	L	AB			RE	MAR	KS:	(Sta	ndar	rd T	AT)		
Relipquished by:	Fernidez V. 6-23-B. Date: Time:	Received by	deic	N	rl	Da	ate:	Tim 132		1424	L	Samp	ole Te								e Day Auth			48 hr	72	hr
elinquished by:	Date: Time:	Received by		ľ		Da	ate:	Tim	e:				/		R			Speci	al R	epor	t Lim	its or	TRR	P Rep	port	

July 17, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/12/23 17:09.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946	Reported: 17-Jul-23 08:40
---	--	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SW - 1	H233581-01	Soil	11-Jul-23 13:00	12-Jul-23 17:09
SW - 2	H233581-02	Soil	11-Jul-23 13:15	12-Jul-23 17:09
SW - 3	H233581-03	Soil	11-Jul-23 13:30	12-Jul-23 17:09
SW - 4	H233581-04	Soil	11-Jul-23 13:45	12-Jul-23 17:09
SW - 5	H233581-05	Soil	11-Jul-23 14:00	12-Jul-23 17:09
SW - 6	H233581-06	Soil	11-Jul-23 14:15	12-Jul-23 17:09
SW - 7	H233581-07	Soil	12-Jul-23 14:30	12-Jul-23 17:09
SW - 8	H233581-08	Soil	12-Jul-23 07:30	12-Jul-23 17:09
SW - 9	H233581-09	Soil	12-Jul-23 07:45	12-Jul-23 17:09
SW - 10	H233581-10	Soil	12-Jul-23 08:00	12-Jul-23 17:09
SW - 11	H233581-11	Soil	12-Jul-23 08:15	12-Jul-23 17:09
SW - 12	H233581-12	Soil	12-Jul-23 08:30	12-Jul-23 17:09
SW - 13	H233581-13	Soil	12-Jul-23 08:45	12-Jul-23 17:09
SW - 14	H233581-14	Soil	12-Jul-23 09:00	12-Jul-23 17:09
BH-1 (1')	H233581-15	Soil	12-Jul-23 09:15	12-Jul-23 17:09
BH - 2 (1')	H233581-16	Soil	12-Jul-23 09:30	12-Jul-23 17:09
BH - 3 (3')	H233581-17	Soil	12-Jul-23 09:45	12-Jul-23 17:09
BH - 4 (3')	H233581-18	Soil	12-Jul-23 10:15	12-Jul-23 17:09
BH - 5 (3')	H233581-19	Soil	12-Jul-23 10:30	12-Jul-23 17:09
BH - 6 (3')	H233581-20	Soil	12-Jul-23 10:45	12-Jul-23 17:09
BH - 7 (3')	H233581-21	Soil	12-Jul-23 11:00	12-Jul-23 17:09
BH - 8 (3')	H233581-22	Soil	12-Jul-23 11:30	12-Jul-23 17:09
BH - 9 (3')	H233581-23	Soil	12-Jul-23 13:00	12-Jul-23 17:09
BH - 10 (2')	H233581-24	Soil	12-Jul-23 13:15	12-Jul-23 17:09
BH - 11 (2')	H233581-25	Soil	12-Jul-23 13:30	12-Jul-23 17:09
BH - 12 (2')	H233581-26	Soil	12-Jul-23 13:45	12-Jul-23 17:09
BH - 13 (2')	H233581-27	Soil	12-Jul-23 14:00	12-Jul-23 17:09

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701		Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
BH - 14 (3')	H233581-28	Soil	12-Jul-23 14:30	12-Jul-23 17:09

07/17/23 - Client added BTEX to all samples (see COC). This is the revised report and will replace the one sent on 07/14/23.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	STE 100		Project Num Project Mana			Reported: 17-Jul-23 08:4	10			
			~	SW - 1 581-01 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds			16.0			2071250		10.1.1.00	4500 CL D	
Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701										40
				SW - 2 581-02 (So	. :I)					
			П255	581-02 (50)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	176		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII	D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			125 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

								Reported: 17-Jul-23 08:4	40	
			9	SW - 3						
			H233	581-03 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	128		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			124 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	I WEST WALL STREET , STE 100Project Number: 212C-MD-0295817-Jul-23 08:40									40
				SW - 4 581-04 (So	sil)					
			11255.	501-04 (50	,m)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701	T WALL STREET, STE 100 Project Number: 212C-MD-02958 17-Jul-23 08:40									10
				SW - 5 581-05 (So	,iI)					
			11255.	501-05 (50	,iii)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			115 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			124 %	49.1-	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701										40
				SW - 6	.11\					
			H233	581-06 (So)))					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PI	D)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			119 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , MIDLAND TX, 79701										40
				SW - 7 581-07 (So	.;])					
			П255.	501-07 (50) (1)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	240		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	3021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PIL))		107 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			117 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECHProject:CONVOY CENTRAL CTB901 WEST WALL STREET , STE 100Project Number:212C-MD-02958MIDLAND TX, 79701Project Manager:BRITTANY LONGFax To:(432) 682-3946									Reported: 17-Jul-23 08:4	10
				SW - 8						
			H233	581-08 (So	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
<u>Inorganic Compounds</u> Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			105 %	48.2	-134	3071320	MS	13-Jul-23	8015B	_
Surrogate: 1-Chlorooctadecane			112 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			\$	SW - 9						
			H233	581-09 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	64.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		109 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			111 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			119 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				W - 10	•1`						
			H233	581-10 (So	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	128		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (P.	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				W - 11	.9)					
Γ			H233:	581-11 (So)11)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	48.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		107 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			128 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
			S	SW - 12							
			H233	581-12 (Se	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	64.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PL	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	_	
Surrogate: 1-Chlorooctadecane			123 %	49.1	-148	3071320	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
			~	5W - 13 581-13 (So	sil)					
			11200	501 10 (50	,,,,,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			114 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
			~	W - 14						
			H233	581-14 (Se	01 1)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	D)		111 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			120 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			130 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				1 (1' 581-15 (So	·					
					,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	<16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PL	ID)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			113 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			120 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 2 (1' 581-16 (So	<i>`</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	D)		106 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			109 %	48.2	-134	3071320	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			116 %	49.1	-148	3071320	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 3 (3' 581-17 (So	, ,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	ID)		111 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 4 (3' 581-18 (Se	,					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	32.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		105 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			110 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			117 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				· 5 (3' 581-19 (So	<i>,</i>					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3071350	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds		8021	1010	00						
Benzene*	<0.050	021	0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	14-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	(D)		108 %	71.5	-134	3071412	MS	14-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			105 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			110 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	, STE 100		Project Num Project Mana		Reported: 17-Jul-23 08:40					
				- 6 (3' 581-20 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	128		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071412	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		104 %	71.5	-134	3071412	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	y GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071320	MS	14-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	3071320	MS	14-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				7 (3' 581-21 (So	·						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	96.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B		
Volatile Organic Compound	s by EPA Method 8	021									
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			104 %	71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane	Surrogate: 1-Chlorooctane			48.2	-134	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			99.9 %	49.1-148		3071251	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40			
				8 (3' 581-22 (Se	·					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compounds	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (PID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	77.9		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	27.3		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane	Surrogate: 1-Chlorooctane			48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			120 %	49.1-148		3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				· 9 (3' 581-23 (Se	<i>,</i>						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	112		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B		
		0031	10.0	ilig/kg	т	5071551	ne	15-541-25	4500-01-0		
Volatile Organic Compounds Benzene*	<u>S Dy EPA Method 8</u> <0.050	5021	0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Toluene*	<0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B 8021B		
Ethylbenzene*	<0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total Xylenes*	<0.150		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total BTEX	<0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B		
	Surrogate: 4-Bromofluorobenzene (PID)			71.5	-134	3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			101 %	48.2	-134	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane		113 %	49.1	-148	3071251	MS	13-Jul-23	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701			Project: CONVOY CENTRAL CTB Project Number: 212C-MD-02958 Project Manager: BRITTANY LONG Fax To: (432) 682-3946						Reported: 17-Jul-23 08:40		
				10 (2' 581-24 (Se	,						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	80.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B		
		0.01	10.0	ing/kg	·	5071551	ne	15 Jul 25	1500 61 5		
Volatile Organic Compound Benzene*	<u><0.050 <000 <000 <000 <000 <000 <000 <00</u>	021	0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Toluene*	< 0.050		0.050	mg/kg	50 50	3071413	MS	15-Jul-23	8021B 8021B		
Ethylbenzene*	<0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B 8021B		
Total Xylenes*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Total BTEX	<0.150		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B		
Surrogate: 4-Bromofluorobenzene (PL			103 %	71.5		3071413	MS	15-Jul-23	8021B		
Petroleum Hydrocarbons by	GC FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
DRO >C10-C28*	12.2		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctane			97.2 %	48.2	-134	3071251	MS	13-Jul-23	8015B		
Surrogate: 1-Chlorooctadecane			110 %	49.1-148		3071251	MS	13-Jul-23	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET MIDLAND TX, 79701	901 WEST WALL STREET , STE 100 Project Number: 212C-MD-02958								Reported: 17-Jul-23 08:4	40
BH - 11 (2') H233581-25 (Soil)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
<u>Inorganic Compounds</u> Chloride	560		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (Pl	ID)		104 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	26.4		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			93.0 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECHProject:CONVOY CENTRAL CTB901 WEST WALL STREET , STE 100Project Number:212C-MD-02958MIDLAND TX, 79701Project Manager:BRITTANY LONGFax To:(432) 682-3946								Reported: 17-Jul-23 08:4	40	
BH - 12 (2') H233581-26 (Soil)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	80.0		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	ls by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P	PID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			103 %	48.2	-134	3071251	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			122 %	49.1	-148	3071251	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECHProject:CONVOY CENTRAL CTB901 WEST WALL STREET , STE 100Project Number:212C-MD-02958MIDLAND TX, 79701Project Manager:BRITTANY LONGFax To:(432) 682-3946									Reported: 17-Jul-23 08:4	10
BH - 13 (2') H233581-27 (Soil)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	192		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		103 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			97.1 %	48.2	-134	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			113 %	49.1	-148	3071302	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECHProject:CONVOY CENTRAL CTB901 WEST WALL STREET , STE 100Project Number:212C-MD-02958MIDLAND TX, 79701Project Manager:BRITTANY LONGFax To:(432) 682-3946								Reported: 17-Jul-23 08:4	40	
BH - 14 (3') H233581-28 (Soil)										
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	144		16.0	mg/kg	4	3071351	AC	13-Jul-23	4500-Cl-B	
Volatile Organic Compound	s by EPA Method 8	8021								
Benzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	3071413	MS	15-Jul-23	8021B	
Surrogate: 4-Bromofluorobenzene (P.	ID)		99.4 %	71.5	-134	3071413	MS	15-Jul-23	8021B	
Petroleum Hydrocarbons by	GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctane			96.4 %	48.2	-134	3071302	MS	13-Jul-23	8015B	
Surrogate: 1-Chlorooctadecane			111 %	49.1	-148	3071302	MS	13-Jul-23	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071350 - 1:4 DI Water										
Blank (3071350-BLK1)				Prepared &	Analyzed:	13-Jul-23				
Chloride	ND	16.0	mg/kg							
LCS (3071350-BS1)				Prepared &	Analyzed:	13-Jul-23				
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (3071350-BSD1)				Prepared &	z Analyzed:	13-Jul-23				
Chloride	448	16.0	mg/kg	400		112	80-120	3.64	20	
Batch 3071351 - 1:4 DI Water										
Blank (3071351-BLK1)				Prepared &	Analyzed:	13-Jul-23				
Chloride	ND	16.0	mg/kg							
LCS (3071351-BS1)				Prepared &	Analyzed:	13-Jul-23				
Chloride	400	16.0	mg/kg	400		100	80-120			
LCS Dup (3071351-BSD1)				Prepared &	Analyzed:	13-Jul-23				
Chloride	432	16.0	mg/kg	400		108	80-120	7.69	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071412 - Volatiles										
Blank (3071412-BLK1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	ND	0.050	mg/kg							
Toluene	ND	0.050	mg/kg							
Ethylbenzene	ND	0.050	mg/kg							
Total Xylenes	ND	0.150	mg/kg							
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0536		mg/kg	0.0500		107	71.5-134			
LCS (3071412-BS1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	2.14	0.050	mg/kg	2.00		107	82.8-130			
Toluene	2.14	0.050	mg/kg	2.00		107	86-128			
Ethylbenzene	2.03	0.050	mg/kg	2.00		101	85.9-128			
m,p-Xylene	4.26	0.100	mg/kg	4.00		106	89-129			
o-Xylene	2.04	0.050	mg/kg	2.00		102	86.1-125			
Total Xylenes	6.30	0.150	mg/kg	6.00		105	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0537		mg/kg	0.0500		107	71.5-134			
LCS Dup (3071412-BSD1)				Prepared &	Analyzed:	14-Jul-23				
Benzene	2.13	0.050	mg/kg	2.00		107	82.8-130	0.601	15.8	
Toluene	2.08	0.050	mg/kg	2.00		104	86-128	2.79	15.9	
Ethylbenzene	2.06	0.050	mg/kg	2.00		103	85.9-128	1.61	16	
m,p-Xylene	4.28	0.100	mg/kg	4.00		107	89-129	0.673	16.2	
o-Xylene	2.04	0.050	mg/kg	2.00		102	86.1-125	0.282	16.7	
Total Xylenes	6.32	0.150	mg/kg	6.00		105	88.2-128	0.364	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0526		mg/kg	0.0500		105	71.5-134			

Batch 3071413 - Volatiles

Blank (3071413-BLK1)			Prepared: 14-Jul-23 Analyzed: 15-Jul-23
Benzene	ND	0.050	mg/kg
Toluene	ND	0.050	mg/kg
Ethylbenzene	ND	0.050	mg/kg
Total Xylenes	ND	0.150	mg/kg

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any daim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence ar any other cause whitstoewer shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damage including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether su claim is based to prove stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: 2 Project Manager: E		Reported: 17-Jul-23 08:40
---	---	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Labor	atories

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 3071413 - Volatiles										
Blank (3071413-BLK1)				Prepared: 1	4-Jul-23 A	nalyzed: 15	5-Jul-23			
Total BTEX	ND	0.300	mg/kg							
Surrogate: 4-Bromofluorobenzene (PID)	0.0521		mg/kg	0.0500		104	71.5-134			
LCS (3071413-BS1)				Prepared: 1	4-Jul-23 A	nalyzed: 15	5-Jul-23			
Benzene	2.02	0.050	mg/kg	2.00		101	82.8-130			
Toluene	1.98	0.050	mg/kg	2.00		98.8	86-128			
Ethylbenzene	1.89	0.050	mg/kg	2.00		94.6	85.9-128			
m,p-Xylene	3.83	0.100	mg/kg	4.00		95.8	89-129			
o-Xylene	1.88	0.050	mg/kg	2.00		94.1	86.1-125			
Total Xylenes	5.71	0.150	mg/kg	6.00		95.2	88.2-128			
Surrogate: 4-Bromofluorobenzene (PID)	0.0485		mg/kg	0.0500		97.0	71.5-134			
LCS Dup (3071413-BSD1)				Prepared: 1	4-Jul-23 A	nalyzed: 15	5-Jul-23			
Benzene	2.03	0.050	mg/kg	2.00		101	82.8-130	0.399	15.8	
Toluene	1.97	0.050	mg/kg	2.00		98.6	86-128	0.184	15.9	
Ethylbenzene	1.92	0.050	mg/kg	2.00		95.8	85.9-128	1.21	16	
m,p-Xylene	3.91	0.100	mg/kg	4.00		97.7	89-129	1.97	16.2	
o-Xylene	1.93	0.050	mg/kg	2.00		96.4	86.1-125	2.33	16.7	
Total Xylenes	5.83	0.150	mg/kg	6.00		97.2	88.2-128	2.09	16.3	
Surrogate: 4-Bromofluorobenzene (PID)	0.0489		mg/kg	0.0500		97.7	71.5-134			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40	
---	-------------------------------------	--	------------------------------	--

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal	Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3071251 - General Prep - Organics										
Blank (3071251-BLK1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	3-Jul-23			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	41.2		mg/kg	49.6		83.2	48.2-134			
Surrogate: 1-Chlorooctadecane	49.2		mg/kg	50.0		98.4	49.1-148			
LCS (3071251-BS1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	3-Jul-23			
GRO C6-C10	201	10.0	mg/kg	200		101	66.4-123			
DRO >C10-C28	214	10.0	mg/kg	200		107	66.5-118			
Total TPH C6-C28	416	10.0	mg/kg	400		104	77.6-123			
Surrogate: 1-Chlorooctane	57.6		mg/kg	49.6		116	48.2-134			
Surrogate: 1-Chlorooctadecane	67.1		mg/kg	50.0		134	49.1-148			
LCS Dup (3071251-BSD1)				Prepared: 1	2-Jul-23 A	nalyzed: 13	3-Jul-23			
GRO C6-C10	183	10.0	mg/kg	200		91.3	66.4-123	9.76	17.7	
DRO >C10-C28	195	10.0	mg/kg	200		97.3	66.5-118	9.63	21	
Total TPH C6-C28	377	10.0	mg/kg	400		94.3	77.6-123	9.70	18.5	
Surrogate: 1-Chlorooctane	57.7		mg/kg	49.6		116	48.2-134			
Surrogate: 1-Chlorooctadecane	73.4		mg/kg	50.0		147	49.1-148			

Blank (3071302-BLK1)		Prepared & Ana	lyzed: 13-Jul-23				
GRO C6-C10	ND	10.0	mg/kg				
DRO >C10-C28	ND	10.0	mg/kg				
EXT DRO >C28-C36	ND	10.0	mg/kg				
Surrogate: 1-Chlorooctane	71.3		mg/kg	49.6	144	48.2-134	S-04
Surrogate: 1-Chlorooctadecane	88.8		mg/kg	50.0	178	49.1-148	S-04

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG	Reported: 17-Jul-23 08:40	
	Fax To:	(432) 682-3946		

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal	Laboratories
----------	--------------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3071302 - General Prep - Organics										
LCS (3071302-BS1)				Prepared &	Analyzed:	13-Jul-23				
GRO C6-C10	189	10.0	mg/kg	200		94.6	66.4-123			
DRO >C10-C28	223	10.0	mg/kg	200		112	66.5-118			
Total TPH C6-C28	413	10.0	mg/kg	400		103	77.6-123			
Surrogate: 1-Chlorooctane	46.0		mg/kg	49.6		92.9	48.2-134			
Surrogate: 1-Chlorooctadecane	49.0		mg/kg	50.0		98.1	49.1-148			
LCS Dup (3071302-BSD1)				Prepared &	Analyzed:	13-Jul-23				
GRO C6-C10	220	10.0	mg/kg	200		110	66.4-123	15.3	17.7	
DRO >C10-C28	224	10.0	mg/kg	200		112	66.5-118	0.285	21	
Total TPH C6-C28	445	10.0	mg/kg	400		111	77.6-123	7.47	18.5	
Surrogate: 1-Chlorooctane	45.6		mg/kg	49.6		92.0	48.2-134			
Surrogate: 1-Chlorooctadecane	48.7		mg/kg	50.0		97.5	49.1-148			
Batch 3071320 - General Prep - Organics										
Blank (3071320-BLK1)				Prepared &	z Analyzed:	13-Jul-23				
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	55.5		mg/kg	49.6		112	48.2-134			
Surrogate: 1-Chlorooctadecane	60.4		mg/kg	50.0		121	49.1-148			
LCS (3071320-BS1)				Prepared: 1	13-Jul-23 A	nalyzed: 14	4-Jul-23			
GRO C6-C10	212	10.0	mg/kg	200		106	66.4-123			
DRO >C10-C28	216	10.0	mg/kg	200		108	66.5-118			
Total TPH C6-C28	428	10.0	mg/kg	400		107	77.6-123			
Surrogate: 1-Chlorooctane	59.5		mg/kg	49.6		120	48.2-134			
Surrogate: 1-Chlorooctadecane	70.1		mg/kg	50.0		140	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701	Project Number: Project Manager:	CONVOY CENTRAL CTB 212C-MD-02958 BRITTANY LONG (432) 682-3946	Reported: 17-Jul-23 08:40
---	-------------------------------------	--	------------------------------

Petroleum Hydrocarbons by GC FID - Quality Control

Cardinal Laboratories

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 3071320 - General Prep - Organics										
LCS Dup (3071320-BSD1)				Prepared &	analyzed:	13-Jul-23				
GRO C6-C10	215	10.0	mg/kg	200		108	66.4-123	1.41	17.7	
DRO >C10-C28	213	10.0	mg/kg	200		107	66.5-118	1.28	21	
Total TPH C6-C28	428	10.0	mg/kg	400		107	77.6-123	0.0621	18.5	
Surrogate: 1-Chlorooctane	64.2		mg/kg	49.6		130	48.2-134			
Surrogate: 1-Chlorooctadecane	73.0		mg/kg	50.0		146	49.1-148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Page 192 of 262

Received by OCD: 10/25/2023 3:11:34 PM

CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

4 Page 39 of

101 East Marland, Hobbs, NM 88240 00 0000 FAY (ETE) 202 2476

	(575) 393-2326 FAX (575) 393-24	10	BILL TO		ANALYSIS REC	QUEST
Company Name:	Tetra Tech		and the second with the second s	6		
Project Manager:	Brittany Long		P.O. #:	ounes +		
Address: 901	11 Wall 57 J	n Salar	Company: EOG Res	ources +		
City: Midla		Zip: 797001	Attn: Todd Well		N N	
Phone #:	Fax #:		Address:	-		
	C-MD-02958 Project Owner		City:	+	711413	
		C0	State: Zip:	2		
	Convoy CTB Relea		Phone #:	S		
Project Location			Fax #:		addld	
Sampler Name:	van Ramas	MATRIX	PRESERV. SAMPL	ING S	9	
FOR LAB USE ONLY		- dv		1. d	0	
		C)OM RS ER		rPH 8015 Chlorides	\times	
Lab I.D.	Sample I.D.	DR (C UNE) VATE	SE	PH	BIE	
Lab I.D.	Sample i.D.	AB O UNITA	ER CO	1 5	$\overline{\mathcal{D}}$	
163 3581		(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL	SLUDGE OTHER : ACID/BASE: ICE / COOL	ТІМЕ		
100 301	511-1	1 X	X 7/11/23	13:00 X X		
3	SWI-2	1 1	1 1/11/23	13:15 1 1		
3	50-2		7/11/22	13:30		
4	Stat di		2/11/23	13:45		
	SW-Q		7/11/23	19:00		
S	GW-1		11/23	14:15		
47	EW-R		1/12/23	14:30		
8	A14(-9		1,1	7:30		
9	CIN-G			7:45 /		
10	5-10	\mathbf{V}	VV	8:00		
PLEASE NOTE: Liability a	nd Damages. Cardinal's liability and client's exclusive remedy for ing those for negligence and any other cause whatsoever shall b	any claim arising whether based in core deemed waived unless made in writin	ntract or tort, shall be limited to the amount paid og and received by Cardinal within 30 days after	completion of the applicable		
analyses All claims includ	ing those for negligence and any other cause whatsoever shall b cardinal be liable for incidental or consequental damages, includ ing out of or related to the performance of services hereunder by	the second	loss of use or loss of profits incurred by cl	ient, its subsidiaries,	No Add'l Phone #:	
affiliates or successors aris Relinquished B	ing out of or related to the performance of services nerealised	and the second se	MIIIA	Verbal Result: All Results are emailed. P	Please provide Email address:	
/	Time:	AIIAN	n, Wanter,			
	Chances Time: 1909	Received By:	quange	REMARKS:		
Relinguished E	· · · · · · · · · · · · · · · · · · ·	Noorrou by.				
1	Time:			Turnaround Time: S	Standard 🔲 Bacteria (o	only) Sample Condition
Delivered By: (Circle One) Observed Temp. °	C AA Sample Co	ndition CHECKED BY: (Initials)		Cool Intac	ct Observed Temp. °C
Sampler - UPS	Bus - Other: Corrected Temp. °	C Cool Inta	Yes Q.	Turnaround Time: S Thermometer ID +#115 Correction Factor -0.6°6	T. 7/12/23 NC	No Corrected Temp. °C
	6 R 3.3 07/16/22		changes Please email cha	nges to celey.keene@ca	ardinallabsnm.com	

† Cardinal cannot accept verbal changes. Please email changes to celey.

CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

4 Page 40 of

101 East Marland, Hobbs, NM 88240 -----

	(575) 393-2326 FAX (575) 393-24	10	BILL TO		ANALYSIS F	EQUEST
Company Name:	Tetra Tech					
Project Manager:			P.O. #:			
Address: 9.01	lal lalal St	6	Company: EOG Res	sources 2	0	
City: Mich	Land State: TX	Zip: 79701	Attn: Todd We	O	33	
Phone #:	Fax #:		Address:		+	
	C-MD-02958 Project Owne	r:	City:	3C+DX	モ	
	Convoy CTB Rel	CASE	State: Zip:		5	
Project Name. Project Location		1	Phone #:	U		
Sampler Name:	, Change and a second s		Fax #:	10 0	Ce l	
FOR LAB USE ONLY	Van Ramos	MATRIX	PRESERV. SAMPI	LING STO	2	
		dW a		×1. 00	3	
		(C)C ATE IER		4	\times	
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER :	Rep: 10/2		
		RAB ONT OUN OUN	SLUDGE OTHER: ACID/BAS ICE / COC OTHER:	TIME HO	6	
H233581		(G)RA # CON GROL WAST WAST SOIL			X	
11	54-11	X I	K 7/12/23			
12	SW-12			8:36		
13	SW-13			9:00		
14	SW-14			9.15		
15	BH-1 (1°)			9:30		
14	BH-2(1)			9:45		
17	BH - 3(3)			4/1-15		
	SH-4(3)			10:20		
19	ISH-5(3)			10:45		
20	A Damages. Cardinal's liability and client's exclusive remedy in the cause what sever shall	or any claim arising whether based in co	ontract or tort, shall be limited to the amount pa	id by the client for the er completion of the applicable		
analyzes All claims includ	ng those for negligence and any outer cause milabouter site.		there have af use or loss of profits incurred by	client, its subsidiarios,		
affiliates or successors and	ing out of of related to the performance of contract	by Cardinal, regardless of whether such Received By:	claim is based upon any of the above states to	Verbal Result: Ye	es 🗆 No Add'l Phone # . Please provide Email addre	SS:
Relinguished B	7-12-20		a Illighter	All Results are enfaned.		
Chan !	Campo Time: 709	Jullan	a willing	REMARKS:		
Relinguished E	y: Date:	Received By:				
	Time:				Standard Bacter	ia (only) Sample Condition
Delivered By: (Circle One) Observed Temp.	°C N4 Sample Co	ondition CHECKED BY: (Initials)	Turnaround Time:	Rush Cool I	ntact Observed Temp. °C
Sampler - UPS		°C IVYes	Yes 00	Thermometer ID #113 Correction Factor 0.6°C	Yes	Yes No Corrected Temp. °C
	o R 3.3 07/16/22		No Please email cha			
1 01111-00		I some a accort vorbal	Channes Fiedse email Un	and an an and a second		

Received by OCD: 10/25/2023 3:11:34 PM

CHAIN-OF-CUSTODY AND ANALYS'S REQUEST

101 East Marland, Hobbs, NM 88240

	(575) 393-2326 FAX (575) 393-24	476	BILL TO		ANALYSIS RE	QUEST
	Tetra Tech		and the second se			
	Brittany Long		P.O. #:	aurces 0		
Address: 901	W Wall St	**		aurces o	MN	
City: Midla	State: TX	Zip: 79701	Attn: Todd We	ells of	1040	
Phone #:	Fax #:		Address:		子	
	- MD - 02958 Project Owne	r:	City:	- KOA	2	
Project #. AL	onvoy CTB Relea		State: Zip:	2		
Project Name.	Len County, NM		Phone #:	0	60	
Sampler Name:	Wan Remos	·	Fax #:	202	B	
FOR LAB USE ONLY	Man Salmas	MATRIX	PRESERV. SAMPL	ING 012	2	
		AMO R		ING 900		
		(C)C ATE TER	11 I	70	X	
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL	SLUDGE OTHER : ACID/BASE: ICE / COOL OTHER : ACID/BASE:	AX	4	
1 1		RAB SOUL	SLUDGE OTHER: ACID/BAS ICE / COC OTHER:		0	
H233581		(G)R # CC GRC GRC GRC GRC OIL			X	
21	BH(-7 (3)		X 7/12/23			
21 32	BH-8(3)			W:30 13:00		
23	BH-9 (3)					
34	BH-(6(2))			13:15		
25	BH-(1(2)*			13:45		
34	BH-12 (2)			(4:00 ////		
	BH-ISLD)			14:30 V V		
28	1211-14(3)	V				
PLEASE NOTE: Liability and	d Damages. Cardinal's liability and client's exclusive remedy in g those for negligence and any other cause whatsoever shall for the built for incident or concensuental damages, inclu-	for any claim arising whether based in con	ntract or tort, shall be limited to the amount pair ng and received by Cardinal within 30 days afte	d by the client for the r completion of the applicable		
	ing those for negligence and any other cause whatsoever shall ardinal be liable for incidental or consequental damages, inclu- ng out of or related to the performance of services hereunder				No Add'l Phone #:	
affiliates or successors arisin Relinguished By	ng out of of related to the performance of derivers interesting	Den in a Den	MAN	Verbal Result: All Results are emailed. Pleas	e provide Email addres	s:
	-	A MILLAN	a Martal			
avan 1	Ramer Time: 709	Received By:	a canang	REMARKS:		
Relinquished B						
	Time:	°C 2/11 Sample Co	endition CHECKED BY:	Turnaround Time: Stan	dard Bacteria	(only) Sample Condition act Observed Temp. °C
Delivered By: (C	Circle One) Observed Temp.	°C 44 Sample Co Cool Intr °C Yes		Thermometer ID #113#140]Yes
Sampler - UPS -	Bus - Other: Corrected Temp.	No	No	A REAL PROPERTY AND ADDRESS OF ADDRE		
FORM-000	R 3.3 07/16/22	Learnet econt workal	changes Please email cha	anges to celey.keene@cardi	nallabsnm.com	

† Cardinal cannot accept verbal changes. Please email changes to ce

July 18, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CTB RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 07/14/23 17:25.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 8 (3') (H233666-01)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	07/18/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/17/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	12.7	10.0	07/17/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/17/2023	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 28 (3.5') (H233666-02)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	448	112	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 31 (3') (H233666-03)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	93.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 32 (3') (H233666-04)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	89.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 33 (3') (H233666-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 34 (3') (H233666-06)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	94.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 35 (3') (H233666-07)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	432	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	16.1	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 36 (2') (H233666-08)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	97.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 37 (3') (H233666-09)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	99.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 38 (2') (H233666-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 15 (2') (H233666-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	284	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	65.1	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	111 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	130	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 16 (2') (H233666-12)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	124	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 17 (2') (H233666-13)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	37.8	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 18 (2') (H233666-14)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	208	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	56.1	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	12.7	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	101	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 19 (2') (H233666-15)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 20 (2') (H233666-16)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	36.3	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	94.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 21 (2') (H233666-17)

BTEX 8021B	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	92.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 22 (3') (H233666-18)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	112 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	119 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 23 (3') (H233666-19)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	106	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	111 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 24 (3') (H233666-20)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.12	106	2.00	0.435	
Toluene*	<0.050	0.050	07/18/2023	ND	2.06	103	2.00	0.429	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	1.99	99.5	2.00	0.0204	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	5.96	99.3	6.00	0.476	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	168	84.1	200	2.75	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	173	86.4	200	2.16	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	97.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 39 (2') (H233666-21)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/17/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/17/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/17/2023	ND					
Surrogate: 1-Chlorooctane	86.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 40 (2') (H233666-22)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/18/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 41 (3') (H233666-23)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 42 (3') (H233666-24)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	79.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 43 (3') (H233666-25)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	115 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	126	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 44 (3') (H233666-26)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	96.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 45 (2') (H233666-27)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	84.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 46 (2') (H233666-28)

BTEX 8021B	mg/	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	80.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 47 (3.5') (H233666-29)

BTEX 8021B	mg/	kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	117 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	129 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/14/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 48 (2') (H233666-30)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	110 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 25 (3') (H233666-31)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	75.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 26 (3') (H233666-32)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	83.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 27 (3') (H233666-33)

BTEX 8021B	mg	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	85.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 29 (2') (H233666-34)

BTEX 8021B	mg/kg		Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	83.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/14/2023	Sampling Date:	07/13/2023
Reported:	07/18/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 30 (3') (H233666-35)

BTEX 8021B	mg,	/kg	Analyze	d By: JH/					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/18/2023	ND	2.09	104	2.00	0.0200	
Toluene*	<0.050	0.050	07/18/2023	ND	2.08	104	2.00	0.990	
Ethylbenzene*	<0.050	0.050	07/18/2023	ND	2.19	110	2.00	0.853	
Total Xylenes*	<0.150	0.150	07/18/2023	ND	6.53	109	6.00	0.410	
Total BTEX	<0.300	0.300	07/18/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/18/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/18/2023	ND	172	86.2	200	7.63	
DRO >C10-C28*	<10.0	10.0	07/18/2023	ND	170	85.2	200	18.6	
EXT DRO >C28-C36	<10.0	10.0	07/18/2023	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name			BILL TO	2	1	AM	NALYSIS RE	OUEST	
Project Manage	Brittany Louis		P.O. #:				ALISIS RE		
Address: 90	W. Wallst		Company: EOG Re	CAULA DO	1B (GRO+DRO+ORO				
City: Midle		Zip: 79201	Attn: Todd We	Sources	0				
Phone #:	Fax #:		Address:	.15	14				
Project #: 212	(-MD-02958 Project Own				a d				
Project Name:	Conner CTP Dala		City:		4				
Project Location	Convoy CTB Release Lea County, NM Wan Ramos		State: Zip:	2					
Sampler Name	tea county, NM		Phone #:		CM				
FOR LAB USE ONLY	Wan Kamos	MATRIX	Fax #: PRESERV. SA	MPLING					
			FRESERV. SA	MPLING	802				
		R R R			506	2			
Lab I.D.	Sample I.D.	INER WA	iii y			lorides			
		AB C UND TEW	BAS BAS BAS		HA	0			
H2336666		(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER: ACID/BÁSE ICE / COOL OTHER:	TIME	mF	3			
	BH-8 (3)		X 7/14/2						+
2	BH-28(35)	1	11170	9:15	$ X X\rangle$	<			
3	BH-31 (3')			9:30		· ·			
4	BH-32(3)			9:45					
5	BH-33 (3)			10:00					
9	BH-34(3)			10:15					
6	BH-35 (3')			10:30					
X	BH-36(2)			10:45					
7	BH-37(2)			11:00	1.1				
PLEASE NOTE: Liability and	BH-38(2)		VV	11:15	VVV				
	Damages. Cardinal's liability and client's exclusive remedy for a those for negligence and any other cause whatsoever shall be dinal be liable for incidental or consequential damages included								
affiliates or successors arising Relinguished By:	dinal be liable for incidental or consequental damages, including out of or related to the performance of services hereunder by C	ardinal, rega tess of whether such claim is	oss of use, or loss of profits incurred by is based upon any of the above stated r	client, its subsidiarie easons or otherwise	es, e.				
	7-14-23	Received By:	-	Verbal Res All Results	are emailed. Ple	Add	I'l Phone #:		
ave	Time: 25	Shai Ci	Sherrow		are emaned. The	use provide -	mail address.		
Relinquished By:	Date:	Received By:		REMARKS:	:				
	Time:								
Delivered By: (Cir	cle One) Observed Temp. °C	Sample Condition	ON CHECKED BY:	Turnaround	Time: Of		Desta 1 4		
Sampler - UPS - B	us - Other: Corrected Temp. °C		(Initials)	Turnaround Thermometer Correction Fa	Ru: ∎ 10 1€113 (sh X 18hrs	Cool Intact) Sample Conditio Observed Temp	o. °C
1 OI (W-000 R	3.3 07/18/22		the second s			0100	Nc No	Corrected Tem	0. °C

† Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com

Received by OCD: 10/25/2023 3:11:34 PM

CA	R	D	IN	A	L
Lat	20	ra	tor	TIE	20

Page 233 of 262

Received by OCD: 10/25/2023 3:11:34 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

<u>(SIS</u> F

101 East Marland, Hobbs, NM 88240

	(575)	393-2326	FAX	(575)	393-2476
--	-------	----------	-----	-------	----------

Company Name	: Tetra Tec	h							14		BI	LL 7	0	N 19 38	T					ANA	I YS	SR	EQUE	ST			
Project Manage	": Brittany	Long						Ρ.	0. #	No. of Concession, name					12	1					T			<u> </u>		T	-
Address: 90	": Tetra Tec ": Brittany I W, Wall S.	t)						c	omp	any	:F	16	Re	50000005	CRA#DRO+ORA	4											
City: Mid	land	State: [X Z	Zip:	D	2770	51		At	ttn:	t	ad	ld 1	No	lla	+	-											
Phone #:		Fax #:			<i>y</i> .				ddre		00	ch.		40	8	3											
Project #: 212	C-MD-02958	Project Owner:						Ci	ity:						Ā			Σ									
Project Name:	CONVOY CTB	Release						St	ate:			Zip:			1												
Project Location	n: Lea Count	NM						Pł	none	#:					2	1 4	2										
Sampler Name:	Project Name: Convoy CTB Release Project Location: Lea County, NM Sampler Name: Wan Ramos						Fa	x #:			>			2	1 2	20,418											
FOR LAB USE ONLY			T	Τ		MAT	RIX		PR	ESE	RV.	S	AMF	PLING	5		0	S									
Lab I.D.	Sample I.I	D.	(G)RAB UR (C)OMP	# CONTAINERS	WASTEWATER	SOIL	SLUDGE	OTHER :	ACID/BASE:	ICE / COOL	OTHER :	DAT	Ē	TIME	TPH &OVG		PX=1ci	Chrovides					×				
1)	BH-15(2)		1			X				X		7/13	123	9:00	X	X	-	X				+	+	+-	+	+	+
12 13 14 15	BH-16(2 BH-17(3 BH-18(2)													9:30	1												
10	BH-1917						_							11.00													
17	12H-20(0	1 Ir		╀		+	_			\square	+		_	11:30													
18	RH-20/8			t		\square					+			12:00		\square	+		_			-					
19	BH-12(551 1	Ħ	t								1	+	12,30			+		-				-	+			-
20	BH-24(=	31)	V			1			1	V	+	V		1:26	\mathbb{V}	V		\mathbf{V}	-				-				-
PLEASE NOTE: Liability and analyses. All claims including	those for negligence and any other cau	s exclusive remedy for any cla se whatsoever shall be deem																							1	1	
affiliates or successors arising	g out of or related to the performance of													ient, its subsidiarie sons or otherwise	es,	ne.											
Moan /	hanz	Date: 7-14-23 Time: 7:25	ece	ived	By:		en						1	Verbal Res All Results	ult: are em	□ Y nailed	'es 1. Pl	No No lease pr	ovide	Add'l P Email	hone # addres	#: ss:					
Relinguished By:		Date: R	ece	iveo	By:			- 0						REMARKS	:												
		Time:																									
Delivered By: (Circ	cle One) Obse	rved Temp. °C	^		Samp			on	C	HEC	KE	D BY:	1	Turnaround	Time:		S	tandar	d í		Bacter	ria (on	lv) Sam	ple Con	dition		
Sampler - UPS - B		cted Temp. °C 4	40			es 🗋	Yes No		1		hitia	ls)	1	Thermometer Correction Fa	ID #1	40	R	ush 8 h	(S		Cool	Intact	OI es	bserved	d Temp. ^o		
		† Cardinal car	nno	tac	cept	verb	al ch	ang	es. I	Plea	se	email	cha	inges to co	eley.k	eene			llabsr	nm.co			0 00	medieu	remp.	0	

Received by OCD: 10/25/2023 3:11:34 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 40 of 41

101 East Marland, Hobbs, NM 88240

(575) 393-2326	FAX	(575)	393-2476
----------------	-----	-------	----------

Company Name: Tetra Tech		BILL TO)		A	ALYSIS F	FOUERT	
Project Manager: Brithan & Low		P.O. #:				ALISIS P		
Address: 901 W. Wall St		Company: EQG	acoutras	3 GRO+DRN+0R0				
City: Midland State: TX :	Zip: Mamal	Attn: Todd W.	oth	40				
Phone #: Fax #:		Address:	elis	L DZ				
Project #: 212C-MD-02958 Project Owner:		City:					Υ	
Project Name: CAMVOU (TB Release		State: Zip:						
Project Name: CONVOY CTB Release Project Location: Lew County, NM		Phone #:	m.O					
Sampler Name: Way Ramos		Fax #:		1-1-				
FOR LAB USE ONLY	and the second s	MPLING	8021					
Lab I.D. Sample I.D.	(G)RAB OR (C)OMP. # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE	OTHER : ACID/BASE: ICE / COOL OTHER :	ТІМЕ	BTEX 802 TPH 8015	chlorides			
21 $BH-3q(2)$ 23 $BH-4q(2)$ 23 $BH-4q(3)$ 24 $BH-4q(3)$ 25 $BH-4q(3)$ 25 $BH-4q(3)$ 25 $BH-4q(3)$ 26 $BH-4q(3)$ 27 $BH-4q(3)$ 28 $BH-4q(3)$ 28 $BH-4q(3)$ 30 $BH-4q(2)$		× 7/14/3	3 11:30 12:00 12:15 12:15 12:30 12:45 13:00 13:15 13:30 13:45	X X				
analyses. All claims including those for negligence and any other cause whatsoever shall be deen service. In no event shall Cardinal be liable for incidental or consequental damages, including with affiliates or successors arising out of or related to the performance of services hereunder by Cardin Relinquished By .				e applicable es,				
from Anno Time: 25	eceivad By:	News	Verbal Resi		☐ No. Add Please provide Em	'l Phone #: ail address:		
Delivered By: (Circle One) Sampler - UPS - Bus - Other: FORM-000 R 3.4 07/11/23 Corrected Temp. °C Corrected Temp. °C		(Initials)	Turnaround Thermometer Correction Fa	ID #140 ctor 0°C	Standard Rush A	Cool Intaci	es	ndition rd Temp. °C rd Temp. °C

Page 235 of 262

Received by OCD: 10/25/2023 3:11:34 PM

CHAIN-OF-CUSTOD / AND ANALYSIS REQUEST

Page 41 of 41

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Company Name			BILL TO					SIS REQ	UEST	
Project Manage	r: Brittany Loina		P.O. #:		1			SIS REQ	UESI	
Address: 90	W. Wall St		Company: COC D	a callerad		6R0+DR0+0R0				
City: Mid	I had State: TX	zip: 79701	Company: EOG R Attn: Todd We	il.		+				
Phone #:	Fax #:		Address:	,115		2				
Project #: 21	2 C - MD - 02958 Project Owne	<u>۲.</u>	City:			E I			× 1	
Project Name:	Francis CTR Dalad	60	State: Zip:		2			-		
Project Location	Convoy CTB Relea Lea County, NM IVGN Ramos			100	0					
Sampler Name:	Wan Damig, 1001		Phone #: Fax #:							
FOR LAB USE ONLY	Ramos	MATRIX		IPLING	0 I	n B				
		- Mo	FRESERV. SAN		8	anides				
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP # CONTAINERS GROUNDWATER WASTEWATER SOIL OIL SLUDGE								
Lub I.D.	Sample I.D.	B OF NDV NDV	ASE SASE		U	N P				
4223/10/010		(G)RAB O # CONTAI GROUND WASTEW WASTEW SOIL OIL SLUDGE	OTHER: ACID/BASE ICE / COOL OTHER:		34	L L				
31	BIL 15/2)	(G) (G) (GR (GR (GR (GR (GR) (GR) (GR) (TIME	- /					
H2336666 31 32 33 33 33 33 33 33 33 33 33 33 33 33	BH-26(3)		X 7/13/23		XX					
33	BH-27(3)			2:30	11		· .			
34	BH-29(2)			3:00 3:30	+++					
35	BH-30(3')			1000	11					
				4:00	VV	Y -				
PLEASE NOTE: Liphility and										
	Damages. Cardinal's liability and client's exclusive remedy for al those for negligence and any other cause whatsoever shall be dinal be liable for incidental or consequental damages including									
	out of or related to the performance of services hereunder by C	ardinal, regardless of w. other such claim is			S,					
Reiniquistied By:	Late:	Received Ey:		Verbal Resu			Add"I Phon	e #:		
dra	/ Eng Time: 25	Abru Cisi	Ulas	An Nesults a	are emaned	d. Please provid	e Email 200	ress:		
Relinguished By:	Date:	Received By:	COULD .	REMARKS:						
	Time:									
Delivered By: (Cir	cle One) Observed Temp. °C	Sample Conditio	ON CHECKED BY:	Turnaraurad	Time	Oton I I	-			
Sampler - UPS - B		Cool Intact	(Initials)	Turnaround		Standard Rush	Bac Cool	teria (only) Sa Intact	ample Conditi Observed Te	
FORM-000 R		HILO Yes Yes No No	DC	Thermometer Correction Fac	ID #140 ctor 0°C	48 hrs		Yes Yes	Corrected Te	·
		cannot accept verbal cha	anges. Please email ch	anges to ce	lev keen	@cardinallab	snm com		Somected Te	inp. c

July 24, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CTB RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 07/20/23 17:00.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 15 (4.5') (H233803-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	192	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	129	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 22 (3.5') (H233803-02)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	67.9	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	11.3	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 42 (2.5') (H233803-03)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	176	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	77.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 43 (2.5') (H233803-04)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	224	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: BH - 48 (3') (H233803-05)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	96.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 15 (H233803-06)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	160	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	13.2	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	101 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	112 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 16 (H233803-07)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 17 (H233803-08)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	112	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	87.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 18 (H233803-09)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	<10.0	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	91.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	103 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 19 (H233803-10)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/21/2023	ND	141	70.5	200	14.7	
DRO >C10-C28*	41.4	10.0	07/21/2023	ND	187	93.7	200	4.22	
EXT DRO >C28-C36	<10.0	10.0	07/21/2023	ND					
Surrogate: 1-Chlorooctane	85.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	99.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 20 (H233803-11)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/22/2023	ND	192	96.2	200	5.03	
DRO >C10-C28*	43.7	10.0	07/22/2023	ND	213	106	200	3.85	
EXT DRO >C28-C36	<10.0	10.0	07/22/2023	ND					
Surrogate: 1-Chlorooctane	96.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/20/2023	Sampling Date:	07/19/2023
Reported:	07/24/2023	Sampling Type:	Soil
Project Name:	CONVOY CTB RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Tamara Oldaker
Project Location:	EOG LEA COUNTY, NM		

Sample ID: SW - 21 (H233803-12)

BTEX 8021B	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/21/2023	ND	2.13	106	2.00	1.75	
Toluene*	<0.050	0.050	07/21/2023	ND	2.09	104	2.00	0.752	
Ethylbenzene*	<0.050	0.050	07/21/2023	ND	2.04	102	2.00	1.22	
Total Xylenes*	<0.150	0.150	07/21/2023	ND	6.14	102	6.00	1.08	
Total BTEX	<0.300	0.300	07/21/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	07/21/2023	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/22/2023	ND	192	96.2	200	5.03	
DRO >C10-C28*	169	10.0	07/22/2023	ND	213	106	200	3.85	
EXT DRO >C28-C36	40.5	10.0	07/22/2023	ND					
Surrogate: 1-Chlorooctane	124 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	143 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUES

Page 15 of 16

101 East Marland, Hobbs, NM 88240 (575) 202-2326 EAX (575) 393-2476

O	THE OWNER AND ADDRESS OF TAXABLE ADDRESS OF TAXAB	-AA (575) 333-24						1	-	B//	L 7	TO	States and					AN/	ALYS	SIS	REC	UES	Т			
Company Name:	Tetra Te						P	.0. #	-			-		3	`				Τ							
	Brittany	Long					- F			~	~	P		MA												
Address: 901		54 -		5									ources	+0							·					
City: Midlo	and	State: TX	Zip:	11	170					ac	r h	Jell	5	+ 0 ORO+MRO							·					
Phone #:		Fax #:						ddre	SS:					Ø		-										
Project #: 212(-	-MD-02959	S Project Owner:					c	ity:		2				+		0										
Project Name: ()	ONVOY CT	B Release	9				s	tate:		2	Zip:			GRO	-	1tan										
Project Location:	Lea Coun	ty, NM					P	hone	e #:					0	00	12	-									
Sampler Name:	Ivan Ra	mos					_	ax #:	-			SAMP	LING	ic	021	V						×.				
FOR LAB USE ONLY			· ·		M	ATRIX		PR	ESE	RV.		SAIVIP	LING	8015	8	9	3									
			OMF	s	ж ж					1				8	1 J	T	2									
	0		(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER WASTEWATER			ίŰ	V					T	N)	1010	>									
Lab I.D.	Sample	e I.D.	BOF	ITAII	IND/		B	BAS	000	~				A	F	5	2									
			3)RA	Ś	GROL WAST	OIL	SLUDGE	ACID/BASE:	ICE / COOL	OTHER	DA	ATE	TIME	1-	N.	C										
HZ33803	DILIC	1115)	<u>e</u>	#	0 5 0	n O	0	≥ <	¥	0	Mil	4/12	12:00	X	X	X										
	BH-D	(4.5)		1					1		1	425	12:30	1	1	1										
33	BH-1	2(3.3.		H					1				1:15													
2	DH-4	24.27						+	1				1:30													
4	ISH-4	5 (7.5)		H					T				2:00													
5	DH-4	B(3)											3:00													-
7	SW-1) U		Ш									3:15													-
8	SW-	10											3:30					_		_					-	-
9	SIN-	18										1	3:45	11	11/	1.1			_			-				-
ID	5W-	19		V	1	V			V		V	y	4:00	\forall	V	V										
		nd client's exclusive remedy for a other cause whatsoever shall be													able											
service. In no event shall Car affiliates or successors arising	indinal be liable for incidental or on on out of or related to the perform	consequental damages, including	Cardina	ut limita al, rega	ation, busines rdless of whe	s interrup ther such	tions, lo claim is	ss of use based u	e, or lo upon a	ss of pr ny of th	ofits incl e above	e stated re	asons or othe.	ise.		00	□ No	Δd	d'l Pho	one #						
Relinquished By		2-20-23 7-20-23 Time: 17:00	R	eceiv	ved By:			1	1	1	/ /	1	Verbal K All Result	ts are e	Tailed	. Plea	se pro									
due	Ramo	Time:	R		MAI	1/1/4/	11	11		zk	18	P														
Relinquished By	-	Date:	R	ecei	ved By:	with	u	de	in	n	-)		REMARK	(S:												
inquience by	-	Time:	-																							
					Sam	ple Co	nditi	n	CF	HECK	ED E	BY:	Turnarou	ind Tim	e:	Sta	ndard						nple Co	ndition		
Delivered By: (Ci	ircle One)	Observed Temp. °C	/	.1	Coo	Int	act			(Init	ials)					Ru	sh 48h	ACK)bserve	d Temp.	°C	
Sampler - UPS - B	Bus - Other:	Corrected Temp. °C				Yes A	Yes No		1	70	-		Thermome Correction	Factor	0°C		701	K3		No		No C	orrecte	ed Temp	.°C	-
FORM-000 R 3.4 07/11/23 + Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com																										

Released to Imaging: 2/6/2024 1:23:40 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 16 of 16

101 East Marland, Hobbs, NM 88240

Contraction Contract (Ching) P.O. #: Company: EQS. Resources P.O. #: Address: 901 W. Wall St. State: TX_ZIP: 74 TIO L Attm: TO dal Walls PO Address: 901 W. Wall St. Fax #: Address: PO PO Project Iname: Convort City: Project Iname: PO	(575) 393-2326 FAX (575) 393	2410	BILL TO	ANALYSIS REQUEST	
Project Audress: Displays Counce: Company:EDG Resources State:	Company Name: Testva Tech		The second se		
City: Middland State: Zip: QUID: Attr:: Logda: Willing Phone #: Fax #: Address: Dig Address: Dig Dig <t< th=""><th>Project Manager: Brittany Long</th><th></th><th></th><th></th><th></th></t<>	Project Manager: Brittany Long				
Sampler Name: Van. Ramod Fax #: Sample Name: Van. Ramod Tork Las Use Okv iiii iii iii iii iii iii iii iii iii i	Address: 901 W. Wall St		Company: EUG RESOUVCES		
Sampler Name: Van Ramo 5 Fax #: J <thj< th=""> J</thj<>	City: Midland State: ()	Zip: 19160	5		
Sampler Name: Via M. Raymody Fax #: SAMPLING SUBJECT Control Line Cont	Filolic #.				
Sampler Name: Van Ramod Fax #: Tore Lad UBE ONT MATRIX PRESERV SAMPLING TORE Van	Project #: 212(-MD-02958 Project Ow	ner:			
Sampler Name: Van. Ramod Fax #: Sample Name: Van. Ramod Tork Las Use Okv iiii iii iii iii iii iii iii iii iii i	Project Name: CONVOY CTB Relea	50	State: Zip:		
FOR LAB USE ONLY and OUT WHEN ONLY and OUT WHEN ONLY and OUT WHEN ONLY Lab I.D. Sample I.D. and OUT WHEN ONLY and OUT WHEN ONLY and OUT WHEN ONLY H2335803 JIII SW-2D i X Y/9/33 X X I JIII SW-2D i X Y/9/33 X X I I I JIII SW-2D i X Y/9/33 X X I	Project Location: Lea County, NN	l	Phone #:		
FOR LAB USE ONLY and OUT WHEN ONLY and OUT WHEN ONLY and OUT WHEN ONLY Lab I.D. Sample I.D. and OUT WHEN ONLY and OUT WHEN ONLY and OUT WHEN ONLY H2335803 JIII SW-2D i X Y/9/33 X X I JIII SW-2D i X Y/9/33 X X I I I JIII SW-2D i X Y/9/33 X X I	Sampler Name: Van Ramos				
Lab I.D. Sample I.D. OUNTRY Image: Source of the sou	FOR LAB USE ONLY		PRESERV. SAMPLING		
Lab I.D. Sample I.D. Image: Signature of the second s		AMO R.			
SW-20 1 X 7/19/13 4:15 X X Image: Control of the second		(C)(IERS ATE TER	iii a		
SW-20 1 X 7/19/33 4:15 X X Image: Control of the second	Lab I.D. Sample I.D.	3 OR NDW	3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3: 3	귀빈의	
SW-20 1 X 7/19/13 4:15 X X Image: Control of the second		RAE SON			
Image: SW-AU Image: SW-AU <td< th=""><th>HZ33803</th><th>(G) # (G) (G) = (G)</th><th></th><th></th><th></th></td<>	HZ33803	(G) # (G) (G) = (G)			
PLASE NOTE: Lability and Damages. Cardinal's lability and client's excludes remedy for any claim asing whether based in contract or for, shall be lined to the amount paid by the client for the subscription and any other case whatsovers that load head head in a label of noticidant consequence whether whether whether and head in a label of noticidant consequence that load head head head head head head head he	11 SW-20	X	X 1/19/23 4.15		
PLASE NOTE: Lability and Damages. Cardinal's lability and client's excludes remedy for any claim asing whether based in contract or for, shall be lined to the amount paid by the client for the subscription and any other case whatsovers that load head head in a label of noticidant consequence whether whether whether and head in a label of noticidant consequence that load head head head head head head head he	12 SW-21	V X	X V 4,30		
analyses. All claims including those for negligence and any other cause whatsbeever shall be deterted wave of unless interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Relinquished By: Date: Received By: Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by: Date: Received By: Rec					
analyses. All claims including those for negligence and any other cause whatsoever shall be deletined wantoo unitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add": Phone #: Relinquished By: Date: Pate: Pate: Received By: All Results are emailed. Please provide Email address: Relinquished By: Date: Time: Received By: Remarks: Time: Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition Coordination Coordinates CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) Sample Condition Coord Intact Observed Temp. °C					
analyses. All claims including those for negligence and any other cause whatsoever shall be deletined wantoo unitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add": Phone #: Relinquished By: Date: Pate: Pate: Received By: All Results are emailed. Please provide Email address: Relinquished By: Date: Time: Received By: Remarks: Time: Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition Coordination Coordinates CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) Sample Condition Coord Intact Observed Temp. °C					
analyses. All claims including those for negligence and any other cause whatsoever shall be deletined wantoo unitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add": Phone #: Relinquished By: Date: Pate: Pate: Received By: All Results are emailed. Please provide Email address: Relinquished By: Date: Time: Received By: Remarks: Time: Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition Coordination Coordinates CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) Sample Condition Coord Intact Observed Temp. °C					
analyses. All claims including those for negligence and any other cause whatsoever shall be deletined wantoo unitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add": Phone #: Relinquished By: Date: Pate: Pate: Received By: All Results are emailed. Please provide Email address: Relinquished By: Date: Time: Received By: Remarks: Time: Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition Coordination Coordinates CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) Sample Condition Coord Intact Observed Temp. °C					
analyses. All claims including those for negligence and any other cause whatsoever shall be deletined wantoo unitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the such claim is based upon any of the above stated reasons or otherwise. Verbal Result: Yes No Add": Phone #: Relinquished By: Date: Pate: Pate: Received By: All Results are emailed. Please provide Email address: Relinquished By: Date: Time: Received By: Remarks: Time: Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition Coordination Coordinates CHECKED BY: (Initials) Turnaround Time: Standard Rush Bacteria (only) Sample Condition Coord Intact Observed Temp. °C					
analyses. All claims including those for negligence and any other cause whatsbeever shall be deterted wave of unless interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Relinquished By: Date: Received By: Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by: Date: Received By: Rec					
analyses. All claims including those for negligence and any other cause whatsbeever shall be deterted wave of unless interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services arising out of or related to the performance of services hereunder by Cardinal, regardless of with the subscriptions, loss of use, or loss of profits incurred by client, its subsidiaries, services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Relinquished By: Date: Received By: Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by Cardinal, regardless of with the above stated reasons or otherwise. Verbal Result: Yes No Add! Phone #: Machine Cardinal based uses and or consequences of the performance of services hereunder by: Date: Received By: Rec	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remed	y for any claim arising whether based in con	ntract or tort, shall be limited to the amount paid by the client	nt for the opticable	
refliates or successors arising out of or related to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of services intervalues of valuate, for an elated to the performance of valuate, for an elated to the performance of the	analyses. All claims including those for negligence and any other cause whatsoever sr	all be deemed waived unless made in what	ions loss of use, or loss of profits incurred by client, its subsi	sidiaries,	
Time: Time: Turnaround Time: Standard Bacteria (only) Sample Condition Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Rush Cool Intact Observed Temp. °C Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Bacteria (only) Sample Condition Cool Intact Observed Temp. °C U yes Yes Yes Yes Yes Yes Yes	affiliates or successors arising out of or related to the performance of services hereund	al by Caldinal, regardless of the	Verbal	Result: Yes No Add" Phone #:	
Time: Time: Turnaround Time: Standard Bacteria (only) Sample Condition Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Standard Bacteria (only) Sample Condition Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Thermometer ID #140 J/S/MES U yes Yes Yes	7-20-	13 Jampin	All Resu	uits are emailed. Please provide Email 2000 555.	
Time: Time: Turnaround Time: Standard Bacteria (only) Sample Condition Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Standard Bacteria (only) Sample Condition Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Bacteria (only) Sample Condition Cool Intact Observed Temp. °C Thermometer ID #140 J.S.MES U yes Yes Yes	Wan Kamon 19:00	Mulle	WILLIAM DEMAR	RKS:	
Delivered By: (Circle One) Observed Temp. °C /// Sample Condition CHECKED BY: (Initials) Turnaround Time: Standard Rush Cool Intact Observed Temp. °C /// (Initials) Thermometer ID #140 // Sample Condition Cool Intact Observed Temp. °C // (Initials)	Relinquished By: Date:	Received By:			
Delivered By: (Circle One) Observed Temp. °C 4/1 Sample Condition (Initials) Cool Intact (Initials) Cool Intact (Initials) Cool Intact (Initials) Cool Intact (Initials)	Time:				
Thermometer ID #140 ALS/NES Yes	Delivered By: (Circle One) Observed Temp	°C 11 Sample Cor		Rush M Cool Intact Observed Temp. °	'C
Sampler - UPS - Bus - Other: Corrected Temp. C	Sampler - UPS - Bus - Other: Corrected Temp		Yes Thermon	meter ID #140 ASMES Yes	°C
Sampler - UPS - Bus - Other: Corrected Temp. Corrected Temp. Corrected Temp. FORM-000 R 3.4 07/11/23 + Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com	oumput of a		No Correctio		

Released to Imaging: 2/6/2024 1:23:40 PM

July 27, 2023

BRITTANY LONG TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: CONVOY CENTRAL CTB

Enclosed are the results of analyses for samples received by the laboratory on 07/26/23 16:55.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH BRITTANY LONG 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	07/26/2023	Sampling Date:	07/26/2023
Reported:	07/27/2023	Sampling Type:	Soil
Project Name:	CONVOY CENTRAL CTB	Sampling Condition:	Cool & Intact
Project Number:	212C-MD-02958	Sample Received By:	Shari Cisneros
Project Location:	EOG - LEA COUNTY, NM		

Sample ID: SW - 21 (H233920-01)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/27/2023	ND	1.99	99.3	2.00	3.96	
Toluene*	<0.050	0.050	07/27/2023	ND	2.07	103	2.00	4.25	
Ethylbenzene*	<0.050	0.050	07/27/2023	ND	2.02	101	2.00	3.80	
Total Xylenes*	<0.150	0.150	07/27/2023	ND	6.00	100	6.00	5.20	
Total BTEX	<0.300	0.300	07/27/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/27/2023	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/27/2023	ND	197	98.6	200	3.51	
DRO >C10-C28*	<10.0	10.0	07/27/2023	ND	203	102	200	0.479	
EXT DRO >C28-C36	<10.0	10.0	07/27/2023	ND					
Surrogate: 1-Chlorooctane	96.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Page 4 of 4

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

Project Location: Leab I.D. Sampler I.D. Matrix: Project Location: Leab I.D. Matrix: Project Location: Leab I.D. Matrix: Project Location: Leab I.D. Leab I.D. Matrix: Project Location: Leab I.D. Leab I.D. Leab I.D. Leab	Company Name: Tetra Tech Project Manager: Right August		BILL TO	ANALYSIS REQUEST
Phone #: Fax #: Address: OF Project Mame: CMUVOY Central CTB Release State: Zip: Project Location: Lea County MM Phone #: Total State: Zip: Project Location: Lea County MM Phone #: Total State: Zip: Project Location: Lea County MM Phone #: Total State: Zip: Project Location: Lea County MM Phone #: Total State: Zip: Not LAB USE COLV Marrix PRESERV SAMPLING XX X Image: Sample And State: I ab I.D. Sample I.D. Big NMW MONOLUS WIG:	pri land Long		P.O. #:	
Phone #: Fax #: Address: OF Project #: AIAC-MD - 014558 Project Owner: City: Project Name: CMVOY Central CTB Release State: Zip: Project Location: Lea County, MM Phone #: TO Sampler Name: Van Ramos Fax #: TO Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Fax #: Von Labuse over Image: Sampler Name: Van Ramos Van Ramos Von Bauer over Image: Sampler Name: Van Ramos Van Ramos Marce over Image: Sampler Name Van Ramos Van Ramos Marce over Image: Sampler Name Van Ramos Van Ramos Marce over Image: Sampler Name Van Ramos <			Company: FAG Resource	195
Phone #: Fax #: Address: Or Address: O	ity: Midland State: TX Zi	ip: 79701		
Project #: \Lack_MD = 0.1958 Project Owner: City:			10000 mont	
Project Name: County, MM Phone #:	roject #: 212C-MD-02958 Project Owner:			
Project Location: Lear County MM Phone #: If y y y y y y y y y y y y y y y y y y y	roject Name: COLAVON CONTIN CTR D	a lanca		
Carl Lab I.D. Sample I.D. MATRIX PRESERV SAMPLING Y </td <td>roject Location: Lea County AIM</td> <td>ien ause</td> <td></td> <td></td>	roject Location: Lea County AIM	ien ause		
FOR LAB USE ONLY Sample I.D. MATRIX PRESERV SAMPLING SAMPLING Lab I.D. Sample I.D. IIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIIII	ampler Name: IVan Ramas			12 5
Lab I.D. Sample I.D. BUILTING OF HERE DATE TIME TIME <thtime< th=""> <thtime< th=""> TIME</thtime<></thtime<>		MATRIX		
Vice. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by clernt, its subsidiaries, and there are the state of the applicable elimination, and the state of the applicable elimination, business interruptions, loss of use, or loss of profits incurred by clernt, its subsidiaries, and there are the state of the applicable elimination. The state of the applicable elimination, business interruptions, loss of use, or loss of profits incurred by clernt, its subsidiaries, and there are the state of the applicable elimination. The state of the applicable elimination, business interruptions, loss of use, or loss of profits incurred by clernt, its subsidiaries, and there are the state of the applicable elimination. The state of the applicable elimination elimination elimination elimination elimination elimination elimination elimination. The state of the applicable elimination elimination elimination elimination elimination elimination elimination elimination elimination. The state of the applicable elimination eliminatination elim	Lab I.D. Sample I.D.	CONTAINERS CONTAINERS GROUNDWATER WASTEWATER VASTEWATER OIL OIL OIL SOIL		E TAR
intervent shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of profits incurred by Cardinal within 30 days after completion of the applicable iates or successors arising out of or related to the perference of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasort, and the perference of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasort, and the perference of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasort, and the perference of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasort, and the perference of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasort. Date: Date: Verf al Result: Yes No Add'l Phone #: All Result: are emailed. Please provide Email address: Plinguished By: Date: Page of the perference of the perferen	SE NOTE: Liability and Damages Cardinate liability and all a feature			
Time: Delivered By: (Circle One) Observed Temp. °C Sample Conditión CHECKED BY: (Initials) Turnaround Time: Standard Bacteria (only) Sample Conditión ampler - UPS - Bus - Other: Corrected Temp. °C Sample Conditión CHECKED BY: (Initials) Turnaround Time: Standard Bacteria (only) Sample Conditión PORM-000 R 3:4 07/11/23 Corrected Temp. °C No No No No Mo Mo Mo Mo Mo Mo Corrected	e. In no event shall Cardinal be liable for incidental or consequental damages, including without es or successors arising out of or related to the performance of services hereunder by Cardinal, inquished By:	t limitation, business interruptions, los t, regardless of whether such claim is t ceived By: ceived By: Sample Condition Cool Intact PYes Types	so fuse, or loss of profits incurred by clancing its subside based upon any of the above stated reason, or other Werhal R All Result CHECKED BY: (Initials)	of the applicable diaries, invise. Result: Yes No Add'I Phone #: Its are emailed. Please provide Email address: KS: und Time: Standard Rush Bacteria (only) Sample Condition Cool Intact Observed Temp. °C

Appendix D

State Correspondence

Long, Brittany

From:	Todd Wells <todd_wells@eogresources.com></todd_wells@eogresources.com>
Sent:	Monday, June 12, 2023 10:22 AM
То:	Long, Brittany
Cc:	James Kennedy
Subject:	Fwd: EOG - Convoy Central CTB, Incident # nAPP2307047906

A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments. A

Brittany,

See the email below from Nelson Valez with the OCD regarding the extension of time request for the Convoy CTB site. Please work on the requested information and documentation that we can submit to the OCD by the stated 6/20 deadline.

Thank you,

Todd

Sent from my iPhone

Begin forwarded message:

From: "Velez, Nelson, EMNRD" <Nelson.Velez@emnrd.nm.gov> Date: June 12, 2023 at 10:06:53 AM CDT To: Todd Wells <Todd_Wells@eogresources.com> Subject: RE: EOG - Convoy Central CTB, Incident # nAPP2307047906

You don't often get email from nelson.velez@emnrd.nm.gov. Learn why this is important

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning Todd,

Many of the site characterization/assessment (SC/A) data (Form C-141 page 3), such as determining depth to water, especially when OCD is only given an estimation, can be achieved administratively. Therefore, OCD will grant EOG Resources' (**EOG**) time extension request with an updated closure report deadline of 08/11/2023 under the conditions that the following information is provided <u>with supporting</u> <u>documentation</u> (19.15.29.11A) and all remedial activities to date be submitted by 06/20/2023 through the OCD Permitting application C-141 portal;

1. Provide as best as possible, the shallowest depth to groundwater beneath the area affected by the release

2. Provide information as to whether the release impacted groundwater or surface water

a. groundwater impact may be determined based on research findings and possibly interpreted as having a higher- than-average probability of occurring (e.g. – high volume release, high soil porosity, shallow groundwater).

3. Provide the lateral extents of the release if within 300 feet of a continuously flowing watercourse or any other significant watercourse

4. Provide the lateral extents of the release if within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)

5. Provide the lateral extents of the release if within 300 feet of an occupied permanent residence, school, hospital, institution, or church

6. Provide the lateral extents of the release if within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes

7. Provide the lateral extents of the release if within 1000 feet of any other fresh water well or spring

8. Provide the lateral extents of the release if within incorporated municipal boundaries or within a defined municipal fresh water well field

9. Provide the lateral extents of the release if within 300 feet of a wetland

10. Provide the lateral extents of the release if overlying a subsurface mine

11. Provide the lateral extents of the release if overlying an unstable area(s)

12. Provide the lateral extents of the release if within a 100-year floodplain

13. Provide information whether the release impact areas are not on an exploration, development, production, or storage site

14. Provide a scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells if applicable

15. Any field data collected

16. Data table of soil contaminant concentration, if any

17. Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release

18. Photographs associated with the release that includes date/time and/or GIS information for the photographs collected

19. Topographic/Aerial maps showing the areal extent of the impacted area

- 20. Laboratory data including chain of custody if any sampling has been completed
- 21. 19.15.29 NMAC Table I closure standard determination
- 22. Remediation Plan per 19.15.29.12C NMAC.

If OCD has not received the required documentations or the final closure report by June 20, 2023, EOG will remain non-compliant with 19.15.29.11, 1915.29.12, and 19.15.29.13 NMAC.

Upon receipt of the documentation, OCD reserved the right to request additional information if needed (19.15.29.11C NMAC).

Please keep a copy of this communication for inclusion within the appropriate report submittal.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Thank you for your cooperation regarding this incident.

Regards,

Nelson Velez • Environmental Specialist - Adv

.

Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

Long, Brittany

From:	Enviro, OCD, EMNRD <ocd.enviro@emnrd.nm.gov></ocd.enviro@emnrd.nm.gov>
Sent:	Thursday, June 15, 2023 10:12 AM
То:	Long, Brittany
Cc:	Bratcher, Michael, EMNRD; Velez, Nelson, EMNRD
Subject:	RE: [EXTERNAL] EOG Convoy Central CTB Confirmation Sampling Notification

A CAUTION: This email originated from an external sender. Verify the source before opening links or attachments.

Brittany,

Please be aware that notification requirements are **two business days**, per rule. You may proceed on your schedule. This, and all correspondence, should be included in the closure report to ensure inclusion in the project file.

JH

Jocelyn Harimon • Environmental Specialist Environmental Bureau EMNRD - Oil Conservation Division 1220 South St. Francis Drive | Santa Fe, NM 87505 (505)469-2821 | Jocelyn.Harimon@emnrd.nm.gov http:// www.emnrd.nm.gov

From: Long, Brittany <Brittany.Long@tetratech.com>
Sent: Wednesday, June 14, 2023 1:14 PM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] EOG Convoy Central CTB Confirmation Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

To whom it may concern,

Tetra Tech is scheduled to collect 5 point confirmation, bottom hole and sidewall samples on the Convoy Central CTB (nAPP2307047906) remediation starting on Friday, June 16, 2023 at 1:15 PM. These samples will be placed within the remediation and will continue each day as the remediation progresses. Please let me know if you have any questions or need any additional information.

Best Regards,

Brittany D. Long,

Brittany D. Long | Biologist & Project Manager

.

Phone: 432.682.4559 | Mobile 432.741.5813 | Fax:432.682.3946 Brittany.Long@tetratech.com

Tetra Tech | Leading with Science®

901 West Wall Street, Suite 100 Midland, Texas 79701

PLEASE NOTE: This message, including any attachments, may include privileged, confidential and/or inside information. Any distribution or use of this communication by anyone other than the intended recipient is strictly prohibited and may be unlawful. If you are not the intended recipient, please notify the sender by replying to this message and then delete it from your system.

F Please consider the environment before printing. Read more

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
EOG RESOURCES INC	7377
5509 Champions Drive	Action Number:
Midland, TX 79706	279362
	Action Type:
	[C-141] Release Corrective Action (C-141)
CONDITIONS	

Created Condition Condition By Date 2/6/2024 nvelez None

CONDITIONS

Page 262 of 262

Action 279362