15,773 sqft=0.36 acres * 325,851 ac/ft * 3 ft deep * 0.1 inch/inch available water capacity=13,890 gal

Plant-available water holding capacities of various textured soil.

	Plant-Available Water
	Holding Capacity
Soil Texture	(inches of water
	per foot of soil)
Very coarse sands	0.4 - 0.75
Coarse sands, fine sands, loamy sands	0.75 - 1.25
Sandy loams, fine sandy loams	1.25 - 1.75
Very fine sandy loams, loams, silt	1.50 - 2.30
loams	
Clay loams, silty clay loams, sandy	1.75 - 2.50
clay loams	
Sandy clays, silty clays, clays	1.60 - 2.50

^zAdapted from: Schwankl, L.J. and T. Prichard. 2009. University of California Drought Management Web Site. <u>http://UCManageDrought.ucdavis.edu</u>. Viewed Aug. 13, 2009. Received by OCD: 2/22/2024 3:24:05 PM Form C-141 State of New Mexico

Oil Conservation Division

	1 480 2 0 1 1
Incident ID	nAPP2225935775
District RP	
Facility ID	
Application ID	

Page 2 of 161

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	>100 (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🔽 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🗹 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🔽 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🔽 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🗹 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🔽 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🔽 No
Did the release impact areas not on an exploration, development, production, or storage site?	🔽 Yes 🗌 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
 Field data
- \checkmark Data table of soil contaminant concentration data
- $\overline{\mathbf{\nabla}}$ Depth to water determination
- Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- ☑ Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 2/22/2	3024 3:24:05 PM State of New Mexico			Page 3 of 1 (
			Incident ID	nAPP2225935775
Page 4	Oil Conservation Division		District RP	
			Facility ID	
			Application ID	
public health or the enviro failed to adequately invest		OCD does not relieve the reat to groundwater, surfa f responsibility for compl	e operator of liability sho ce water, human health liance with any other fec Compliance and Envi	ould their operations have or the environment. In deral, state, or local laws
OCD Only Received by:		Date:		

Received by OCD: 2/22/2024 3:24:05 PM Form C-141 State of New Mexico

Incident ID	nAPP2225935775
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.

Detailed description of proposed remediation technique

Page 5

Scaled sitemap with GPS coordinates showing delineation points

 $\overline{\mathbf{\nabla}}$ Estimated volume of material to be remediated

Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC

Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required)

Deferral Requests Only: Each of the following items must be cont	firmed as part of any request for deferral of remediation.	
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. ☐ Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.		
Extents of contamination must be fully delineated.		
Contamination does not cause an imminent risk to human health,	the environment, or groundwater.	
I hereby certify that the information given above is true and complete rules and regulations all operators are required to report and/or file co which may endanger public health or the environment. The acceptan liability should their operations have failed to adequately investigate surface water, human health or the environment. In addition, OCD a responsibility for compliance with any other federal, state, or local la	ertain release notifications and perform corrective actions for releases ice of a C-141 report by the OCD does not relieve the operator of and remediate contamination that pose a threat to groundwater, cceptance of a C-141 report does not relieve the operator of	
Printed Name: Halie Butler	Title: Sr. Corporate Compliance and Enviromental Manager	
Signature: JMMM	Date: 11/21/23	
email: hbutler@selectwater.com	Telephone: 281-467-3153	
OCD Only		
Received by:	Date:	
Approved Approved with Attached Conditions of A	Approval Denied Deferral Approved	
Signature:]	Date:	

•

Page 6

Oil Conservation Division

Incident ID	nAPP2225935775
District RP	
Facility ID	
Application ID	

Page 5 of 161

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u>: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

 \square Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Halie Butler	Title: Sr. Corporate Compliance and Enviromental Manager	
Printed Name: Halie Butler Signature: Halie Butler	Date: 11/21/23	
email: hbutler@selectwater.com	Telephone: 281-467-3153	
OCD Only		
Received by:	Date:	
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.		
Closure Approved by:	Date:	
Printed Name:		

Incident ID: nAPP2225935775 REMEDIATION AND CLOSURE REPORT Salado Draw Pad 415 Produced Water Release Lea County, New Mexico

Latitude: 32.02233 Longitude: -103.62972

LAI Project No. 22-0104-07

November 20, 2023

Prepared for: Select Water Solutions, LLC P.O. Box 1715 Gainesville, TX 76242

Prepared by: Larson & Associates, Inc. 507 North Marienfeld Street, Suite 202 Midland, Texas 79701

Mark J. Larson, P.G. Certified Professional Geologist #10490

Daniel St. Germain

Daniel St. Germain Staff Geologist

This Page Intentionally Left Blank

Contents

1.0 INTRODUCTION	
1.1 Background	1
1.2 Physical Setting	
1.3 Remediation Levels	2
2.0 DELINEATION	2
3.0 REMEDIATION	3
4.0 RECLAMATION	4
5.0 CLOSURE REQUEST	rror! Bookmark not defined.

Tables

Table 1	Delineation Analytical Data Summary
Table 2	Confirmation Analytical Data Summary
Table 3	Backfill Analytical Data Summary

Figures

Figure 1	Topographic Map with Site Location
Figure 2	Aerial Map with Site Location and Groundwater Borehole Location
Figure 3	Aerial Map with Proposed Excavation Areas and Delineation Sample Locations
Figure 4	Aerial Map with Excavation Areas and Confirmation Sample Locations

Appendices

Appendix A	Initial C-141
Appendix B	Karst Potential Map
Appendix C	NMOCD Communications
Appendix D	Laboratory Reports
Appendix E	Photographic Documentation

1.0 INTRODUCTION

Larson & Associates, Inc. (LAI) has prepared this remediation and closure report on behalf of Select Water Solutions, LLC. (Select) for submittal to the New Mexico Oil Conservation Division (NMOCD) District I for a produced water release at the Salado Draw Pad 415 (Site) located in Unit N (SE/4 of SW/4), Section 24, Township 26 South, Range 32 East in Lea County, New Mexico. The geodetic position is North 32.02233 and West -103.62972. Figure 1 presents a topographic map.

1.1 Background

The release was discovered on September 2, 2022, and was the result of a manifold operator closing an inlet valve, allowing pressure to build above the maximum threshold of the lay flat line, causing the line to fail and release about 847 barrels (bbls) of produced water along the lease road and into an adjoining pasture. Select reported that about 125 bbls were recovered. The initial C-141 was received by the NMOCD on September 16, 2023, and assigned to incident number nAPP2225935775. Appendix A presents the initial C-141 and spill calculation. Appendix A presents the initial C-141.

1.2 Physical Setting

The physical setting is as follows:

- The surface elevation is approximately 3,136 feet above mean sea level (MSL).
- The surface topography gradually decreases to the southwest.
- There are no surface water features within 0.5 miles of the Site.
- Karst data provided by the USGS describes the Site as "medium risk" potential.
- The soils are designated as Pyote soils and Maljamar fine sands, where the Pyote setting consists of 0 to 30 inches of find sand underlain by 30 to 60 inches of fine sandy loam; and the Maljamar setting consists of 0 to 24 inches of fine sand, underlain by 24 to 50 inches of sandy clay loam, and 50-60 inches of cemented material (caliche).
- Surface geology is described as Holocene to middle Pleistocene eolian and piedmont deposits consisting of alternating layers of eolian and piedmont-slope deposits.
- Groundwater is greater than 100 feet below ground surface (bgs), based on a dry groundwater bore (SB-01), located 0.39 miles northwest of the Site, and gauged for depth to groundwater 72 hours after completion.

Figure 2 presents an aerial map with the site location and groundwater borehole location. Appendix B presents the karst potential map.

1.3 Remediation Levels

The following remediation standards are based on closure criteria for groundwater greater than 100 feet bgs and soils impacted by a release, as presented in Table 1 of 19.15.29 NMAC:

- Benzene 10 mg/Kg
- BTEX 50 mg/Kg
- TPH 2,500 mg/Kg
- Chloride 20,000 mg/Kg

Furthermore, 19.15.29.13 NMAC (Restoration, Reclamation and Re-Vegetation) requires the operator to restore the impacted surface area that existed prior to the release or their final land use.

2.0 DELINEATION

The release was fully delineated between September 20, 2023, and March 16, 2023, and documented in a report titled "*Delineation Report and Remediation Plan, Salado Draw Pad 415, Lea County, New Mexico, April 19, 2023*". The report recommended the following remedial actions:

- Excavate soil from an area measuring about 2,044 square feet encompassing S-1 to a depth of one (1) foot bgs.
- Excavate soil from an area measuring about 3,317 square feet encompassing S-4 and S-5 and S-6 to a depth of three (3) feet bgs.
- Excavate soil from an area measuring about 4,296 square feet encompassing S-6 and S-7 to a depth of one (1) feet bgs.
- Excavate soil from an area measuring about 1,110 square feet encompassing S-8 to a depth of three (3) feet bgs.
- Excavate soil from an area measuring about 1,746 square feet encompassing S-10 to a depth of one (1) feet bgs.
- Excavate soil from an area measuring about 442 square feet encompassing S-11 to a depth of 4.1 feet bgs.
- Excavate soil from an area measuring about 200 square feet encompassing C-3 to a depth of five
 (5) feet bgs.
- Collect five-point composite bottom and sidewall confirmation soil samples every 200 square feet and analyze for BTEX, TPH and chloride.
- > Backfill excavation with topsoil and caliche assuming achievement of NMOCD closure criteria.
- > Prepare report with photographs for submittal to NMOCD District I.

NMOCD conditionally approved the remediation plan on July 5, 2023, stating that, *"Remediation Plan approved with the following conditions:*

- 1. No remedial activity is required for the following areas: from S-1 area approximately 2,044 square feet (ft.2), from S-6 area approximately 1,422 ft.2, from C-1, C-9, C-10 area approximately 500 ft.2, from S-2, S-10, C-4, C-5, C-6, C-7 approximately 1,746 ft.2.
- 2. Excavation from S-7 area approximately 2,366 ft.2, required to reach, at a minimum, 1 foot below ground surface (bgs).
- 3. Excavation from S-4 and S-5 area approximately 3,317 ft.2, S-8 area approximately 1,110 ft.2, and S-11 and C-3 area approximately 442 ft.2, required to reach, at a minimum, 3.5 ft. bgs.
- 4. Collect confirmation samples per five-point composite every 200 ft.2 from excavation base and sidewalls.
- 5. Sample laboratory analysis for chloride only,
- 6. Remediation Due date updated to October 3, 2023, to submit final closure report with photos of excavated areas prior to backfill, and
- 7. Backfill excavation as stated in report".

Figure 3 presents an aerial map with delineation soil sample locations and proposed excavation areas. Appendix C presents NMCOD communications.

3.0 REMEDIATION

Between August 20, 2023, and October 5, 2023, SDR Enterprises, LLC (SDR) and Warrior Technologies, LLC (Warrior) excavated about 939 cubic yards of impacted soil from the release area using mechanical and hydro excavation methods. Mechanically excavated soil was temporally stored on plastic liners near the excavation and hydro excavated material was stored in vacuum boxes. Impacted material was disposed of at the R360 Antelope Draw Disposal Facility in Lea County, New Mexico, or the Milestone disposal facility in Orla, Texas.

On September 20, 2022, during the initial site assessment of the release, LAI personnel collected ten (10) confirmation soil samples (C-1 through C-10) from an open gas line trench. The samples were delivered under chain-of-custody and preservation to Eurofins-Xenco (Xenco) in Midland, Texas. The samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA SW-846 Method 8021B, total petroleum hydrocarbons (TPH), including gasoline range organics (C6-C12), diesel range organics (>C12-C28), and oil range organics (>C28-C35) by EPA SW-846 Method 8015M, and chloride by EPA Method 300. Xenco reported that benzene, BTEX, and TPH were below NMOCD closure criteria (19.15.29 NMAC Table 1) in all samples. Chloride was reported above the NMOCD closure criteria in C-3 (37,400 mg/Kg). The remaining confirmation samples areas were excluded from further remediation per NMOCD remediation plan approval conditions.

On August 31, 2023, LAI personnel collected 32 initial (C-11 through C-42) composite confirmation samples from the bottom and the sidewalls of the excavation. The samples were analyzed by Xenco for chloride by EPA Method 300 and reported chloride above NMOCD closure criteria in seven (7) samples, including C-36 (972 mg/Kg), C-37 (975 mg/Kg), C-38 (835 mg/Kg), C-39 (814 mg/Kg) C-40 (853 mg/Kg), C-41 (805 mg/Kg), and C-42 (633 mg/Kg).

On September 9, 2023, LAI personnel collected four (4) composite soil samples, including three (3) initial samples (C-43 through C-45) and one (1) sample from a sample area (C-3) where additional soil excavation was performed due to chloride previously being repeated above closure criteria. Xenco analyzed the samples and reported chloride below NMOCD closure criteria in all samples.

On October 3 and 5, 2023, LAI Collected six (6) composite samples (C-36 through C-42) from areas where additional soil excavation was performed due to chloride previously being reported above NMOCD closure criteria. Xenco analyzed the samples for chloride and reported that C-39 (1,480 mg/Kg) was above NMOCD closure criteria.

Laboratory analysis demonstrates that chloride is below the NMOCD closure standards in Table 1 of 19.15.29 NMAC for all confirmation samples, apart from sample C-39, where a deferral is requested. Figure 4 presents excavation area and confirmation sample location map. Table 2 presents the confirmation sample analytical summary. Appendix D presents the laboratory reports.

4.0 RECLAMATION

On November 1, 2023, LAI personnel collected three (3) composite samples (BF-1 through BF-3) of backfill material from the Battle Axe Headquarters borrow pit located in Lea County, New Mexico. Xenco analyzed the samples for BTEX, TPH and chloride and reported concentrations below the analytical method reporting limit and NMOCD requirements outlined in 19.25.29.13D(1). Table 2 presents the backfill analytical data summary. Appendix D presents the laboratory reports.

During the week of November 6, 2023, SDR backfilled the excavation with material collected from the borrow pit. Additional topsoil was used to recontour offsite areas to resemble previous surface conditions. SDR seeded the pasture area with BLM Mix #3. Backfill notification was provided to the NMOCD on October 18, 2023. Appendix C presents NMOCD communications. Appendix E presents photographic documentation.

5.0 DEFFERRAL REQUEST

Select requests a deferral for the area near sample location C-39, due to its proximity to a high traffic lease road.

Tables

Table 1

Sample	Depth (Feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Delineation Limi	t:			10	50				100/2,500	600/20,000
S-1	0-0.5	09/20/2022	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	4,980
	0.5-1	09/20/2022	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	5,750
	0-1	03/15/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	56.1
	3	03/15/2023	In-Situ	<0.00109	<0.00217	<27.2	<27.2	<27.2	<27.2	239
	5	03/15/2023	In-Situ	<0.00114	< 0.00227	<28.4	<28.4	<28.4	<28.4	4,770
S-2	0-0.5	09/20/2022	In-Situ	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	44.4
	0.5-1	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	7.94
S-3	0-0.5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	13.6
	0.5-1	09/20/2022	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	13.9
S-4	0-0.5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	7,640
	0.5-1	09/20/2022	In-Situ	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	4,550
	0-1	03/15/2023	In-Situ	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	4,230
	3	03/15/2023	In-Situ	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	3,560
	5	03/15/2023	In-Situ	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	469
	5	03/13/2023	in situ	0.00100	0.00215	\$20.5	\$20.5	\$20.5	120.5	405
S-5	0-0.5	09/20/2022	In-Situ	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	5,070
3-5										
	0.5-1	09/20/2022	In-Situ	<0.00102 <0.00202	<0.00204 <0.00404	<25.5 <49.9	<25.5 <49.9	<25.5 <49.9	<25.5	3,000
	0-1 3.00	03/13/2023 03/13/2023	In-Situ In-Situ	<0.00202 <0.00198	<0.00404 <0.00398	<49.9 <50.0	<49.9 <50.0	<49.9 <50.0	<49.9 <50.0	300 968
	5.00	03/13/2023	In-Situ	<0.00198 <0.00198	<0.00398	<90.0 <49.9	<49.9	<50.0 <49.9	<50.0 <49.9	507
	5.00	00, 10, 2020	in situ	.0.00100	.0.000000	(10.0			-10.0	507

Sample	Depth (Feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Delineation Limi	t:			10	50				100/2,500	600/20,000
S-6	0-0.5	09/20/2022	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	1,400
	0.5-1	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	832
	0-1	03/13/2023	In-Situ	<0.00199	<0.00398	<49.9	<49.9	<49.9	<49.9	507
	3	03/13/2023	In-Situ	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	162
	5	03/13/2023	In-Situ	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	15.6
S-7	0-0.5	09/20/2022	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	9,210
	0.5-1	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	570
S-8	0-0.5	09/20/2022	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	4,390
	0.5-1	09/20/2022	In-Situ	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	4,600
	0-1	03/13/2023	In-Situ	<0.00199	<0.00398	<50.0	<50.0	<50.0	<50.0	803
	3	03/13/2023	In-Situ	<0.00200	<0.00401	<49.9	<49.9	<49.9	<49.9	1,010
	5	03/13/2023	In-Situ	<0.00201	<0.00402	<49.9	<49.9	<49.9	<49.9	2,430
S-9	0-0.5	09/20/2022	In-Situ	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	365
	0.5-1	09/20/2022	In-Situ	<0.00101	<0.00202	<25.3	<23.5	<23.5	<23.5	198
S-10	0-0.5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	4,370
	0.5-1	09/20/2022	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	5,530
	0-1	03/16/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	3.20
	3	03/16/2023	In-Situ	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	7.03
	5	03/16/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	838

Table 1

Sample	Depth (Feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Delineation Limi	ion Limit:			10	50				100/2,500	600/20,000
S-11	0-1	03/16/2023	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	81.1
	3	03/16/2023	In-Situ	<0.00105	<0.00211	<26.3	<25.8	<25.8	<25.8	161
	4.1-4.5	09/20/2022	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	2,510
	4.5-5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	2,670
S-12	0-1	03/16/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	77.0
	3	03/16/2023	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	430
	4.1-4.5	09/20/2022	In-Situ	<0.00108	0.00544	<26.9	<26.9	<26.9	<26.9	14,200
	4.5-5	09/20/2022	In-Situ	<0.00104	0.00533	<26.0	<26.0	<26.0	<26.0	4,410
S-13	0-1	03/14/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	16.0
	3	03/14/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	11.4
	4.1-4.5	09/20/2022	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	3,130
	4.5-5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	2,650
S-14	0-1	03/13/2023	In-Situ	<0.00198	<0.00396	<49.9	<49.9	<49.9	<49.9	51.2
	3	03/13/2023	In-Situ	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	42.7
	4.1-4.5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	2,650
	4.5-5	09/20/2022	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	1,940
S-15	0-0.5	09/20/2022	In-Situ	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	3.21
	0.5-1	09/20/2022	In-Situ	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	4.78

Table 1

Sample	Depth (Feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Delineation Limi	t:			10	50				100/2,500	600/20,000
S-16	0-0.5	09/20/2022	In-Situ	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	4.08
	0.5-1	09/20/2022	In-Situ	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	5.89
6.47	0.1	02/16/2022	La Cita	-0.00105	-0.00211	-26.2	-26.2	-26.2	-26.2	0.22
S-17	0-1	03/16/2023	In-Situ	< 0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	8.23
	3	03/16/2023	In-Situ	< 0.00103	< 0.00206	<25.8	<25.8	<25.8	<25.8	467
	5	03/16/2023	In-Situ	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	2,000
S-18	0-1	03/16/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	13.6
	3	03/16/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	13.3
	5	03/16/2023	In-Situ	<0.00104	<0.00208	<26	<26	<26	<26	497
S-19	0-1	03/14/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	9.10
	3	03/14/2023	In-Situ	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	8.10
	5	03/14/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	85.5
S-20	0-1	03/14/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	5.56
	3	03/14/2023	In-Situ	< 0.00108	< 0.00215	<26.9	<26.9	<26.9	<26.9	15.2
	5	03/14/2023	In-Situ	<0.00103	<0.00206	<25.8	<25.8	<25.8	<25.8	16.5
6.24	0.1	02/46/2022	la Citu	-0.00100	-0.00200	-25.0	-25.0	-25.0	-25.0	5.00
S-21	0-1 3	03/16/2023 03/16/2023	In-Situ In-Situ	<0.00100 <0.00105	<0.00200 <0.00211	<25.0 <26.3	<25.0 <26.3	<25.0 <26.3	<25.0 <26.3	5.86 30.4
	5	03/16/2023	In-Situ	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	32.3

Table 1 Soil Sample Analytical Data Summary Select Energy - Salado Draw Pad 415 Lea County, New Mexico

32°01'20.42"N, 103°37'47.01"W

Sample	Depth	Collection	Status	Benzene	BTEX	C6 - C12	C12 - C28	C28 - C35	ТРН	Chloride
	(Feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Delineation Li	mit:			10	50				100/2,500	600/20,000

Notes:	
Analysis performed by Permian Basin Environmental Laboratories (PBEL) in Midland, Texas by EPA SW-846 8021B (BTEX), 8015M (TPH), and 300E (Chloride)	

mg/Kg: milligrams per kilogram equivalent to parts per million (ppm)

<: parameter concentration below analytical method reporting limit

Depth in feet below ground surface (bgs)

Bold and Highlighted exceeds NMOCD remediation limits

Table 2 Confirmation Soil Sample Analytical Data Summary

Select Water, Salado Draw Pad 415

Lea County, New Mexico

32°01'20.42"N, 103°37'47.01"W

Sample ID	Location	Depth (feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX	C6 - C12	C12 - C28 (mg/Kg)	C28 - C35	TPH (mg/Kg)	Chloride (mg/Kg)
Closure Criteria:		(leet)	Date		10	(mg/Kg) 50	(mg/Kg)	(iiig/ kg)	(mg/Kg)		20,000
	Dattan		0/20/2022	la Cita	<0.00109	0.00982	.27.2	.27.2	.27.2	2,500	-
C-1 C-2	Bottom	4.1	9/20/2022	In-Situ In-Situ	<0.00109	<0.00982	<27.2 <25.3	<27.2	<27.2	<27.2	17,800
	Bottom	4.1	9/20/2022					<25.3	<25.3	<25.3	5,110
C-3	Bottom	4.1	9/20/2022	Excavated	<0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	37,400
6.4	Dettern	5	9/15/2023	In-Situ							99.9
C-4	Bottom	4.1	9/20/2022	In-Situ	< 0.00102	< 0.00204	<25.5	<25.5	<25.5	<25.5	9,320
C-5	Bottom	4.1	9/20/2022	In-Situ	< 0.00102	<0.00204	<25.5	<25.5	<25.5	<25.5	16,400
C-6	Sidewall	0-4.1	9/20/2022	In-Situ	< 0.00100	< 0.00200	<25.0	<25.0	<25.0	<25.0	2,950
C-7	Sidewall	0-4.1	9/20/2022	In-Situ	< 0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	6,370
C-8	Sidewall	0-4.1	9/20/2022	In-Situ	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	313
C-9	Sidewall	0-4.1	9/20/2022	In-Situ	<0.00101	<0.00202	<25.3	<25.3	<25.3	<25.3	1,240
C-10	Sidewall	0-4.1	9/20/2022	In-Situ	<0.00100	<0.00200	<25.0	<25.0	<25.0	<25.0	1,800
C-11	Bottom	4.1	8/31/2023	In-Situ							1,040
C-12	Bottom	4.1	8/31/2023	In-Situ							2,600
C-13	Bottom	4.1	8/31/2023	In-Situ							3,330
C-14	Bottom	4.1	8/31/2023	In-Situ							3,560
C-15	Bottom	4.1	8/31/2023	In-Situ							4,770
C-16	Bottom	4.1	8/31/2023	In-Situ							3,080
C-17	Bottom	4.1	8/31/2023	In-Situ							206
C-18	Bottom	4.1	8/31/2023	In-Situ							5,480
C-19	Bottom	4.1	8/31/2023	In-Situ							356
C-20	Bottom	4.1	8/31/2023	In-Situ							1,670
C-21	Bottom	4.1	8/31/2023	In-Situ							1,090
C-22	Bottom	4.1	8/31/2023	In-Situ							2,370
C-23	Bottom	4.1	8/31/2023	In-Situ							2,290
C-24	Bottom	4.1	8/31/2023	In-Situ							3,360
C-25	Bottom	4.1	8/31/2023	In-Situ							77.6
C-26	Bottom	1	8/31/2023	In-Situ							36.7
C-27	Bottom	1	8/31/2023	In-Situ							48.2

Table 2 Confirmation Soil Sample Analytical Data Summary

Select Water, Salado Draw Pad 415

Lea County, New Mexico

32°01'20.42"N, 103°37'47.01"W

Sample ID	Location	Depth (feet)	Collection	Status	Benzene	BTEX	C6 - C12	C12 - C28	C28 - C35	TPH	Chloride
		(feet)	Date		(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)	(mg/Kg)
Closure Criteria:			· ·	E.	10	50	I 1	F	I	2,500	20,000
C-28	Bottom	1	8/31/2023	In-Situ							32.1
C-29	Bottom	1	8/31/2023	In-Situ							53.4
C-30	Bottom	1	8/31/2023	In-Situ							104
C-31	Bottom	1	8/31/2023	In-Situ							52.7
C-32	Sidewall	0-1	8/31/2023	In-Situ							39.0
C-33	Bottom	4.1	8/31/2023	In-Situ							2,590
C-34	Bottom	4.1	8/31/2023	In-Situ							2,390
C-35	Bottom	4.1	8/31/2023	In-Situ							90.7
C-36	Sidewall	0-4.1	8/31/2023	Excavated							972
			10/5/2023	In-Situ							200
C-37	Sidewall	0-4.1	8/31/2023	Excavated							975
			10/5/2023	In-Situ							186
C-38	Sidewall	0-4.1	8/31/2023	Excavated							835
			10/5/2023	In-Situ							157
C-39	Sidewall	0-4.1	8/31/2023	Excavated							814
			10/3/2023	In-Situ							1,480
C-40	Sidewall	0-4.1	8/31/2023	Excavated							853
			10/5/2023	In-Situ							234
C-41	Sidewall	0-4.1	8/31/2023	Excavated							805
			10/3/2023	In-Situ							441
C-42	Sidewall	0-4.1	8/31/2023	Excavated							633
			10/5/2023	In-Situ							266
C-43	Bottom	5	9/15/2023	In-Situ							88.3
C-44	Bottom	5	9/15/2023	In-Situ							24.5
C-45	Sidewall	0-5	9/15/2023	In-Situ							60.0

Table 2 Confirmation Soil Sample Analytical Data Summary Select Water, Salado Draw Pad 415 Lea County, New Mexico 32°01'20.42"N, 103°37'47.01"W

Sample ID	Location	Depth (feet)	Collection Date	Status	Benzene (mg/Kg)	BTEX (mg/Kg)	C6 - C12 (mg/Kg)	C12 - C28 (mg/Kg)	C28 - C35 (mg/Kg)	TPH (mg/Kg)	Chloride (mg/Kg)
Closure Criteria:					10	50				2,500	20,000
				Bac	kfill Samples	;					
BF-1			11/1/2023	In-Situ	<0.00198	<0.00396	<50.0	<50.0	<50.0	<50.0	<4.97
BF-2			11/1/2023	In-Situ	<0.00199	<0.00398	<49.6	<49.6	<49.6	<49.6	<5.00
BF-3			11/1/2023	In-Situ	<0.00200	<0.00399	<49.9	<49.9	<49.9	<49.9	<4.98

Notes:

Analysis performed by Permian Basin Enviromental Lab (PBEL) or Eurofins-Xenco (Xenco) by EPA SW-846 Methods 8021B (BTEX) and 8015M (TPH), and Method 300 (chloride)

mg/Kg: milligrams per kilogram; equivalent to parts per million (ppm)

<: parameter concentration below analytical method reporting limit

Depth reported in feet below ground surface (bgs)

Bold and highlighted indicates parameter concentration above NMOCD closure criteria

Bold and Highlighted indicates areas where remdiation is not required per NMOCD

Bold and Highlighted indicates confirmation sample areas where a deferral is being requested

Figures

Figure 1 - Topographic Map

Figure 2 - Groundwater Borehole and Site Locations

Figure 3 - Aerial Map

Figure 4 - Aerial Map Showing Excavation Area and Confirmation Samples

Appendix A

Initial C-141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	NAPP2225935775
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Select Energy Services, LLC	OGRID: 289068
Contact Name: Halie Butler	Contact Telephone: 281-467-3153
Contact email: hbutler@selectenergyservices.com	Incident # (assigned by OCD)
Contact mailing address: PO Box 1715 Gainesville, TX 76241	

Location of Release Source

Latitude 32.02228

Longitude <u>-103.63008</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name: Salado Draw Pad 415	Site Type: Oil
Date Release Discovered: 9-2-2022	API# (if applicable)

Unit Letter	Section	Township	Range	County
Ν	24	26S	32E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls): 847	Volume Recovered (bbls): 125
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
	old operator on pad closed the inlet valve, causing press correctly at 90 psi, but higher pressure was seen downst	

eived by OCD: 2/22/202	Lead by OCD: 2/22/2024 3t24:05 PM1 State of New Mexico		Page 29cof	
III C-141			NAPP2225935775	
e 2	Oil Conservation Division	District RP		
		Facility ID		
		Application ID		
Was this a major release as defined by 19.15.29.7(A) NMAC? ⊠ Yes □ No	If YES, for what reason(s) does the responsible par Release greater than 25 bbls	ty consider this a major release?		
	Lotice given to the OCD? By whom? To whom? Wh ssumed responsibility of the release on 9-13-22 and H			

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: <u>Halie Butler</u>	Title: Sr. Corp ENV Manager
Signature: Dutter	Date: 9/16/22
email: <u>hbutler@selectenergyservices.com</u>	Telephone: <u>281-467-3153</u>
	·
OCD Only	
Received by: Jocelyn Harimon	Date: 09/16/2022

Area	Shape	Length in feet	Width in feet	Diameter (for circular)	Standing Depth in inches	Depth in Soil in inches	Standing Volume	In Soil Volume	Total Volume
1	Rectangle	100.00	11.00		6.000	2.000	97.96	4.90	102.86
2	Rectangle	785.00	10.00		0.250	0.250	29.13	4.37	33.50
3	Rectangle	760.00	10.00		6.000	2.000	676.81	33.84	710.65
4									
5									
6									
7									
8									
9									
10									
							Total Vol	ume BBLS	847.00

Area	Shape	Length in feet	Width in feet	Diameter (for circular)	Standing Depth in inches	Depth in Soil in inches	Standing Volume	In Soil Volume	Total Volume
1	Rectangle	100.00	11.00		6.000	2.000	97.96	4.90	102.86
2	Rectangle	785.00	10.00		0.250	0.250	29.13	4.37	33.50
3	Rectangle	760.00	10.00		6.000	2.000	676.81	33.84	710.65
4									
5									
6									
7									
8									
9									
10									
							Total Vol	ume BBLS	847.00

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
SELECT ENERGY SERVICES, LLC	289068
PO Box 1715	Action Number:
Gainesville, TX 76240	144084
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
jharimon	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C- 141	9/16/2022

Appendix B

Karst Potential Map

Appendix C

NMOCD Communications

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
SELECT ENERGY SERVICES, LLC	289068
PO Box 1715	Action Number:
Gainesville, TX 76240	209343
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
nvelez	Remediation Plan approved with the following conditions; 1) No remedial activity is required for the following areas; from S-1 area - approximately 2,044 square feet (ft.2), from S-6 area - approximately 1,422 ft.2, from C-1, C-9, C-10 area - approximately 500 ft.2, from S-2, S-10, C-4, C-5, C-6, C-7 - approximately 1,746 ft.2,	7/5/2023
nvelez	2) Excavation from S-7 area - approximately 2,366 ft.2, required to reach, at a minimum, 1 foot below ground surface (bgs). 3) Excavation from S-4 and S-5 area - approximately 3,317 ft.2, S-8 area - approximately 1,110 ft.2, and S-11 and C-3 area - approximately 442 ft.2, required to reach, at a minimum, 3 ½ ft. bgs. 4) Collect confirmation samples per five point composite every 200 ft.2 from excavation base and sidewalls. 5) Sample laboratory analysis for chloride only,	7/5/2023
nvelez	6) Remediation Due date updated to October 3, 2023 to submit final closure report with photos of excavated areas prior to backfill. 7) Backfill excavation as stated in report.	7/5/2023

PRgge236 of 161 CONDITIONS

Action 209343
Daniel St. Germain

From:	Robert Nelson
Sent:	Tuesday, November 14, 2023 8:33 AM
То:	Daniel St. Germain
Subject:	FW: Salado Draw Pad 415 (nAPP2225935775) Excavation Backfill Notification
Attachments:	Table 2 Confirmation Soil Sample Analytical Data Summary -SD Pad 15.pdf; Figure 4 - Aerial Map
	Showing Excavation Area and Confirmation Samples Extended SW.pdf

Robert Nelson Project Manager Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com

From: Robert Nelson
Sent: Wednesday, October 18, 2023 4:20 PM
To: Hamlet, Robert, EMNRD <robert.hamlet@state.nm.us>; Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Cc: Halie Butler <hbutler@selectwater.com>; Timsan Bricker <TBricker@selectwater.com>; Mark Larson
<Mark@laenvironmental.com>
Subject: Salado Draw Pad 415 (nAPP2225935775) Excavation Backfill Notification

Hello Mr. Hamlet and Mr. Velez,

Larson & Associates, Inc. (LAI), on behalf of Select Water, submits the attached confirmation (post remediation) laboratory analytical data and sample location map to the New Mexico Oil Conservation Division (OCD) District I to provide two (2) business days notification prior to backfilling the excavation at the Salado Draw Pad 415 (nAPP2225935775) in Lea County, New Mexico. A deferral for sidewall sample C-39 has been requested based on proximity to electrical pole/lease road. Please feel free to contact Halie Butler with Select at <u>hbutler@selectwater.com</u>, Mark Larson (432) 687-0901 or <u>mark@laenvironmental.com</u>, or me with any questions or concerns.

Thank you,

Robert Nelson Project Manager Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com

Appendix D

Laboratory Reports

Received by OCD: 2/22/2024 3:24:05 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 9/6/2023 11:37:05 AM

JOB DESCRIPTION

Salado Draw Pad 415 SDG NUMBER 22-0104-07

JOB NUMBER

880-32778-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 9/6/2023 11:37:05 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: 22-0104-07

Laboratory Job ID: 880-32778-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	11
QC Association Summary	13
Lab Chronicle	15
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	27

2

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Page 42 of 161

Job ID: 880-32778-1 SDG: 22-0104-07

Qualifiers

Qualifiers		3
HPLC/IC Qualifier	Qualifier Description	4
4	MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not applicable.	5
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	8
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	9
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	12
MCI	EPA recommended "Maximum Contaminant Level"	

Glossary

Glussaly		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Case Narrative

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Job ID: 880-32778-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32778-1

Receipt

The samples were received on 9/1/2023 8:28 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was -4.2° C.

Receipt Exceptions

One or more containers for the following samples were received empty: C-35, 4.1 (880-32778-25).

General Chemistry

Method 300.0: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-61717 and analytical batch 880-61845 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/Glossary page.

Job ID: 880-32778-1 SDG: 22-0104-07

		Client	t Sample Re	sults				
Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415			-				Job ID: 880-3 SDG: 22-0	
Client Sample ID: C-11, 4.1 Date Collected: 08/31/23 09:00 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-′ x: Solic
			- Soluble					
Analyte		Qualifier	RL	Unit	<u> </u>	Prepared	Analyzed	Dil Fa
Chloride	1040		5.04	mg/Kg			09/05/23 16:21	
Client Sample ID: C-12, 4.1 Date Collected: 08/31/23 09:10 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-2 x: Solic
Method: EPA 300.0 - Anions, Ion	Chroma	tography	- Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2600		25.1	mg/Kg			09/05/23 16:40	į
Client Sample ID: C-13, 4.1 Date Collected: 08/31/23 09:20 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-3 x: Solic
Method: EPA 300.0 - Anions, Ion			- Soluble					
Analyte		Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Chloride	3330		25.3	mg/Kg			09/05/23 16:46	:
Date Collected: 08/31/23 09:30 Date Received: 09/01/23 08:28 				11-14		Duran and		x: Solic
Analyte Chloride	3560	Qualifier		Unit mg/Kg	D	Prepared	Analyzed 09/05/23 16:53	
	5500		20.0	ing/itg				
Client Sample ID: C-15, 4.1 Date Collected: 08/31/23 09:40 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-5 x: Solic
Method: EPA 300.0 - Anions, Ion	Chroma	tography	- Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	4770		50.3	mg/Kg			09/05/23 16:59	10
Client Sample ID: C-16, 4.1 Date Collected: 08/31/23 09:50 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-6 x: Solic
Method: EPA 300.0 - Anions, Ion Analyte		tography Qualifier	- Soluble RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3080		25.0	mg/Kg			09/05/23 17:18	Ę
Client Sample ID: C-17, 4.1 Date Collected: 08/31/23 10:00 Date Received: 09/01/23 08:28					La	ab Sampl	e ID: 880-32 Matrix	2778-7 x: Solic
 Method: EPA 300.0 - Anions, Ion			- Soluble					
_		tography Qualifier	- Soluble 	Unit mg/Kg	D	Prepared	Analyzed 09/05/23 17:25	Dil Fac

Eurofins Midland

		Clien	t Sample Re	esults				
Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415			-				Job ID: 880-3 SDG: 22-0	
Client Sample ID: C-18, 4.1 Date Collected: 08/31/23 10:10 Date Received: 09/01/23 08:28					Li	ab Sampl	le ID: 880-32 Matrix	2778-8 k: Solic
Method: EPA 300.0 - Anions, Ion Analyte		ography Qualifier	- Soluble RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	5480		50.2	mg/Kg			09/05/23 17:31	1
Client Sample ID: C-19, 4.1 Date Collected: 08/31/23 10:20 Date Received: 09/01/23 08:28					La	ab Sampl	le ID: 880-32 Matrix	2778-9 k: Solid
Method: EPA 300.0 - Anions, Ion					_			
Analyte Chloride	Result 356	Qualifier		Unit mg/Kg	D	Prepared	Analyzed 09/05/23 17:37	Dil Fa
Client Sample ID: C-20, 4.1 Date Collected: 08/31/23 10:30 Date Received: 09/01/23 08:28					Lal	b Sample	D: 880-327 Matrix	778-1(k: Soli
Method: EPA 300.0 - Anions, Ion	Chromat	ography	- Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1670		24.9	mg/Kg			09/05/23 17:44	4
Client Sample ID: C-21, 4.1 Date Collected: 08/31/23 10:40 Date Received: 09/01/23 08:28					La	b Sample	D: 880-32 Matrix	778-11 k: Solic
Method: EPA 300.0 - Anions, Ion Analyte		ography Qualifier	- Soluble RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	1090		5.01	mg/Kg		Tioparou	09/05/23 17:50	
Client Sample ID: C-22, 4.1 Date Collected: 08/31/23 10:50 Date Received: 09/01/23 08:28					Lal	b Sample	D: 880-327 Matrix	778-12 k: Solic
Method: EPA 300.0 - Anions, Ion	Chromat	ography	- Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2370		25.1	mg/Kg			09/05/23 18:10	;
Client Sample ID: C-23, 4.1 Date Collected: 08/31/23 11:00 Date Received: 09/01/23 08:28					Lal	b Sample	ID: 880-327 Matrix	778-13 k: Solic
Method: EPA 300.0 - Anions, Ion Analyte		ography Qualifier	- Soluble _{RL}	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2290		25.1	mg/Kg		•	09/05/23 20:04	
Client Sample ID: C-24, 4.1 Date Collected: 08/31/23 11:10 Date Received: 09/01/23 08:28					Lal	b Sample	D: 880-327 Matrix	778-14 k: Solic
Method: EPA 300.0 - Anions, Ion								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

Welliou. LFA 300.0 - Allions, IC	Jii Ciii Oinat	ography .	Joiuble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	3360		24.9	mg/Kg			09/05/23 20:24	5

Eurofins Midland

.

Client: Larson & Associates, Inc.		Chem	Sample Re	50115			Job ID: 880-3	32778-
Project/Site: Salado Draw Pad 415							SDG: 22-0	
Client Sample ID: C-25, 1 Date Collected: 08/31/23 11:20					La	b Sample	ID: 880-327 Matrix	778-1 x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ion Analyte		tography - Qualifier	Soluble RL	Unit	D	Broporod	Analyzad	Dil Fa
Chloride	77.6	Quaimer	5.01	mg/Kg		Prepared	Analyzed 09/05/23 20:30	
- Client Semple ID: C 26 1						h Somolo	000 22	770 4
Client Sample ID: C-26, 1 Date Collected: 08/31/23 11:30					La	o Sample	ID: 880-327 Matrix	x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ion	n Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	36.7		5.05	mg/Kg			09/05/23 20:37	
Client Sample ID: C-27, 1					La	b Sample	ID: 880-327	778-1
Date Collected: 08/31/23 11:40							Matrix	x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ion	n Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	48.2		5.04	mg/Kg			09/05/23 20:43	
Client Sample ID: C-28, 1					La	b Sample	ID: 880-327	778-1
Date Collected: 08/31/23 11:50								x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ion	Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	32.1		4.99	mg/Kg			09/05/23 21:02	
Client Sample ID: C-29, 1					La	b Sample	ID: 880-327	778-1
Date Collected: 08/31/23 12:00								x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ion		tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	53.4		4.97	mg/Kg			09/05/23 21:09	
Client Sample ID: C-30, 1					La	b Sample	ID: 880-327	778-2
Date Collected: 08/31/23 12:10						o o da mpro		x: Soli
Date Received: 09/01/23 08:28								
Mathadi EDA 200.0 Aniana Jan	Chromo	toorophy	Colubia					
Method: EPA 300.0 - Anions, Ion Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	104		4.97	mg/Kg	<u> </u>		09/05/23 21:15	
Client Sample ID: C-31, 1					 2	h Samplo	ID: 880-327	778_2
Date Collected: 08/31/23 12:20					La			x: Soli
Date Received: 09/01/23 08:28							Maill	
			Oshakila					
Method: EPA 300.0 - Anions, Ion		tography - Qualifier		llait	D	Droporod	Applymod	Dil Fa
Analyte	Result	Quaimer	RL	Unit	U	Prepared	Analyzed	ри га

wiethod: EPA 300.0 - Anions, id	on Chromatogi	rapny - Soluble					
Analyte	Result Qua	alifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52.7	4.96	mg/Kg			09/05/23 21:21	1

.

		Client	Sample R	esults				
Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415							Job ID: 880-3 SDG: 22-0	
Client Sample ID: C-32, 1 Date Collected: 08/31/23 12:30					Lal	o Sample	ID: 880-327 Matrix	778-2 x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, lor	n Chromat	ography	- Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	39.0		4.99	mg/Kg		•	09/05/23 21:28	
Client Sample ID: C-33, 4.1					l al	n Samnlo	ID: 880-327	778-2
Date Collected: 08/31/23 12:40					La	oumpic		x: Soli
Date Received: 09/01/23 08:28							Math	
	0		0.1.1.1					
Method: EPA 300.0 - Anions, Ior Analyte		ograpny Qualifier	- Soluble RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2590	Quaimer	25.2	mg/Kg		Flepaleu	09/05/23 21:34	
	2000		20.2	mg/rtg				
Client Sample ID: C-34, 4.1					Lal	o Sample	ID: 880-327	
Date Collected: 08/31/23 12:50							Matrix	x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, lor	n Chromat	ography	- Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	2390		25.2	mg/Kg			09/05/23 21:53	
Date Received: 09/01/23 08:28 Method: EPA 300.0 - Anions, lor	n Chromat	ography	- Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	972		4.97	mg/Kg			09/05/23 22:00	
Client Sample ID: C-37, 0-4	.1				Lal	o Sample	ID: 880-327	778-2
Date Collected: 08/31/23 13:20								x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, lor	Chromot	ography	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	975		5.03	mg/Kg			09/05/23 22:19	
- Client Semple ID: C 29, 0.4	4					- Comple	10,000 22	770 0
Client Sample ID: C-38, 0-4 Date Collected: 08/31/23 13:30	91 				La	o Sample	ID: 880-327	
Date Received: 09/01/23 08:28							Matri	x: Soli
Method: EPA 300.0 - Anions, lor								
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	835		5.02	mg/Kg			09/05/23 22:25	
Client Sample ID: C-39, 0-4	.1				Lal	o Sample	ID: 880-327	778-2
Date Collected: 08/31/23 13:40						-	Matrix	x: Soli
Date Received: 09/01/23 08:28								
Method: EPA 300.0 - Anions, Ior	n Chromat	ography	- Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chlorido	04.4		5.02	ma/Ka			00/05/23 22:32	-

	Client S	Sample Re	sults				
Client: Larson & Associate Project/Site: Salado Draw		-				Job ID: 880- SDG: 22-	
Client Sample ID: C- Date Collected: 08/31/23	13:50			Lab	o Sample	ID: 880-32 Matri	778-30 x: Solid
Date Received: 09/01/23	08:28						
Method: EPA 300.0 - Ar Analyte	nions, Ion Chromatography - S Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	853	4.99	mg/Kg			09/05/23 22:38	1
	000	1.00					
				Lab	o Sample	ID: 880-32	778-31
Client Sample ID: C- Date Collected: 08/31/23	41, 0-4.1 14:00			Lab	o Sample		778-31 x: Solid
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23	41, 0-4.1 14:00 08:28			Lat	o Sample		
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23	41, 0-4.1 14:00		Unit	Lat	Prepared		
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar	41, 0-4.1 14:00 08:28 hions, Ion Chromatography - S	oluble				Matri	x: Solid
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar Analyte Chloride	41, 0-4.1 14:00 08:28 hions, Ion Chromatography - S Result Qualifier 805	coluble RL	Unit	D	Prepared	Matri - Analyzed 09/05/23 22:44	x: Solid Dil Fac
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar Analyte Chloride		coluble RL	Unit	D	Prepared	Matri Analyzed 09/05/23 22:44 ID: 880-32	x: Solid Dil Fac
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar Analyte Chloride Client Sample ID: C- Date Collected: 08/31/23		coluble RL	Unit	D	Prepared	Matri Analyzed 09/05/23 22:44 ID: 880-32	x: Solid Dil Fac 1 778-32
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar Analyte Chloride Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23	41, 0-4.1 14:00 08:28 nions, Ion Chromatography - S Result Qualifier 805 42, 0-4.1 14:10 08:28	Soluble RL 5.00	Unit	D	Prepared	Matri Analyzed 09/05/23 22:44 ID: 880-32	x: Solid Dil Fac 1 778-32
Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23 Method: EPA 300.0 - Ar Analyte Chloride Client Sample ID: C- Date Collected: 08/31/23 Date Received: 09/01/23		Soluble RL 5.00	Unit	D	Prepared	Matri Analyzed 09/05/23 22:44 ID: 880-32	x: Solid Dil Fac 1 778-32

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

5 6

Method: 300.0 - Anions, Ion Chromatography

Matrix: Solid	1717/1-A						Cli	ent Sam	ple ID: Met Prep Typ		
Analysis Batch: 61845											
Analyta	Pa	MB MB sult Qualifier		RL	Unit) Р	renered	Analyza		Dil Fac
Analyte Chloride				5.00	mg/K			repared	Analyzed		
		5.00 0		5.00	iiig/it	9			09/03/23 10	.02	1
Lab Sample ID: LCS 880-6 Matrix: Solid	61717/2-A					Clie	nt Sa	mple ID	: Lab Contr Prep Typ		
Analysis Batch: 61845											
Amelia			Spike	_	LCS	11		0/ D = =	%Rec		
Analyte			Added 250		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	250.8		mg/Kg		100	90 - 110		
Lab Sample ID: LCSD 880 Matrix: Solid)-61717/3-A				C	Client Sa	mple	ID: Lab	Control Sa Prep Typ		
Analysis Batch: 61845			• •								
Analyta			Spike	_	LCSD	l Ini t	~	% Dee	%Rec	הסם	RPD
Analyte Chloride			Added 250	250.6	Qualifier	Unit mg/Kg	<u>D</u>	%Rec 100	Limits 90 - 110	RPD 0	
Chiolide			230	250.0		mg/kg		100	90-110	0	20
Lab Sample ID: 880-32778 Matrix: Solid	3-1 MS							Client	Sample ID: Prep Typ		-
Analysis Batch: 61845	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added	-	Qualifier	Unit	D	%Rec	Limits		
Chloride	1040		252	1255		mg/Kg		87	90 - 110		
Lab Sample ID: 880-32778	8-1 MSD							Client	Sample ID:	: C-1 1	I, 4 .1
Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845		Samolo	Sniko	MSD	MSD			Client	Prep Typ		bluble
Matrix: Solid Analysis Batch: 61845	Sample	Sample Qualifier	Spike Added	_	MSD Qualifier	Unit	П		Prep Typ %Rec	e: Sc	RPD
Matrix: Solid Analysis Batch: 61845 Analyte	Sample Result	Sample Qualifier	Added	Result	Qualifier	Unit ma/Ka	<u>D</u>	%Rec	Prep Typ %Rec Limits	e: So RPD	RPD Limit
Matrix: Solid Analysis Batch: 61845	Sample Result 1040 B-11 MS	Qualifier	Added 252	Result 1254	Qualifier 4	Unit mg/Kg	<u>D</u>	%Rec 87	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ	RPD 0 C-21	RPD Limit 20 I, 4.1
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845	Sample Result 1040 S-11 MS Sample	Qualifier	Added 252 Spike	Result 1254 MS	Qualifier 4 MS	mg/Kg		%Rec 87 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec	RPD 0 C-21	RPD Limit 20 I, 4.1
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte	Sample Result 1040 8-11 MS Sample Result	Qualifier	Added 252 Spike Added	Result 1254 MS Result	Qualifier 4 MS Qualifier	mg/Kg Unit	D	%Rec 87 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits	RPD 0 C-21	RPD Limit 20 I, 4.1
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid	Sample Result 1040 8-11 MS Sample Result 1090	Qualifier	Added 252 Spike	Result 1254 MS	Qualifier 4 MS Qualifier	mg/Kg		%Rec 87 Client %Rec 83	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec	RPD 0 C-21 e: C-21 : C-21	RPE Limi 20 1, 4.1 bluble
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD	Qualifier Sample Qualifier	Added 252 Spike Added 251	Result 1254 MS Result 1293	Qualifier 4 MS Qualifier 4	mg/Kg Unit		%Rec 87 Client %Rec 83	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ	RPD 0 C-21 e: C-21 : C-21	RPC Limit 20 1, 4.1 Dluble
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD Sample	Qualifier Sample Qualifier Sample	Added 252 Spike Added 251 Spike	Result 1254 MS Result 1293	Qualifier 4 MS Qualifier 4	mg/Kg Unit mg/Kg	D	%Rec 87 Client %Rec 83 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec	RPD 0 C-21 c: C-21 c: C-21 c: C-21 c: C-21	I, 4.1 I, 4.1 I, 4.1 RPD
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analysis Batch: 61845	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD Sample Result	Qualifier Sample Qualifier	Added 252 Spike Added 251 Spike Added	Result 1254 MS Result 1293 MSD Result	Qualifier 4 MS Qualifier 4 MSD Qualifier	mg/Kg Unit mg/Kg Unit		%Rec 87 Client %Rec 83 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits	RPD 0 C-21 c: C-21 c: Sc c-21 c: Sc RPD	RPE Limi 20 I, 4.1 Dluble
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analysis Batch: 61845	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD Sample	Qualifier Sample Qualifier Sample	Added 252 Spike Added 251 Spike	Result 1254 MS Result 1293	Qualifier 4 MS Qualifier 4 MSD Qualifier	mg/Kg Unit mg/Kg	D	%Rec 87 Client %Rec 83 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec	RPD 0 C-21 c: C-21 c: C-21 c: C-21 c: C-21	I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1 I, 4.1
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD Sample Result 1090	Qualifier	Added 252 Spike Added 251 Spike Added	Result 1254 MS Result 1293 MSD Result	Qualifier 4 MS Qualifier 4 MSD Qualifier	mg/Kg Unit mg/Kg Unit	D	%Rec 87 Client %Rec 83 Client %Rec 83 Client	Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits 90 - 110 Sample ID: Prep Typ %Rec Limits	RPD 0 C-21 c: C-21 c: C-21 c: C-21 c: C-21 d: C-21	Limit 20 L, 4.1 Dluble RPD Limit 20 Blank
Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: 880-32778 Matrix: Solid Analysis Batch: 61845 Analyte Chloride Lab Sample ID: MB 880-67 Matrix: Solid	Sample Result 1040 3-11 MS Sample Result 1090 3-11 MSD Sample Result 1090 3-11 MSD 1090 3-11 MSD 1090 11 MSD 1090 11 MSD	Qualifier Sample Qualifier Sample	Added 252 Spike Added 251 Spike Added	Result 1254 MS Result 1293 MSD Result	Qualifier 4 MS Qualifier 4 MSD Qualifier	Unit mg/Kg Unit mg/Kg	D D Clia	%Rec 87 Client %Rec 83 Client %Rec 83 Client	Prep Typ %Rec Limits 90-110 Sample ID: Prep Typ %Rec Limits 90-110 Sample ID: Prep Typ %Rec Limits 90-110 %R	RPD 0 C-21 e: C-21 e: Sc RPD 0 RPD 0 hod H e: Sc	Limit 20 L, 4.1 Dluble RPD Limit 20 RPD Limit 20 Blank

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

5 6

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: LCS 880-61718/2	2-A					Clier	nt Sar	nple ID	: Lab Cor	ntrol Sa	mple
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 61846											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	251.9		mg/Kg		101	90 - 110		
Lab Sample ID: LCSD 880-61718	3/3-A				c	lient Sa	mple	ID: Lat	Control	Sample	e Dup
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 61846											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	251.8		mg/Kg		101	90 - 110	0	20
Lab Sample ID: 880-32778-13 M	S							Client	Sample I	D: C-23	3, 4.1
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 61846											
S	ample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	2290		1260	3598		mg/Kg		104	90 - 110		
Lab Sample ID: 880-32778-13 M	SD							Client	Sample I	D: C-23	3, 4.1
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 61846											
S	ample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2290		1260	3603		mg/Kg		105	90 - 110	0	20
Lab Sample ID: 880-32778-23 M	s							Client	Sample I	D: C-33	3, 4.1
Matrix: Solid									Prep Ty	ype: So	oluble
Analysis Batch: 61846											
S	ample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	2590		1260	3907		mg/Kg		105	90 - 110		
Lab Sample ID: 880-32778-23 M	SD							Client	Sample I	D: C-33	3, 4.1
Matrix: Solid									Prep T	ype: Sc	oluble
Analysis Batch: 61846											
S	ample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2590		1260	3912		mg/Kg		105	90 - 110	0	20

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-32778-1 SDG: 22-0104-07

HPLC/IC

Leach Batch: 61717

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-32778-1	C-11, 4.1	Soluble	Solid	DI Leach	
880-32778-2	C-12, 4.1	Soluble	Solid	DI Leach	
880-32778-3	C-13, 4.1	Soluble	Solid	DI Leach	
880-32778-4	C-14, 4.1	Soluble	Solid	DI Leach	
880-32778-5	C-15, 4.1	Soluble	Solid	DI Leach	
880-32778-6	C-16, 4.1	Soluble	Solid	DI Leach	
880-32778-7	C-17, 4.1	Soluble	Solid	DI Leach	
880-32778-8	C-18, 4.1	Soluble	Solid	DI Leach	
880-32778-9	C-19, 4.1	Soluble	Solid	DI Leach	
880-32778-10	C-20, 4.1	Soluble	Solid	DI Leach	
880-32778-11	C-21, 4.1	Soluble	Solid	DI Leach	
880-32778-12	C-22, 4.1	Soluble	Solid	DI Leach	
MB 880-61717/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-61717/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-61717/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32778-1 MS	C-11, 4.1	Soluble	Solid	DI Leach	
380-32778-1 MSD	C-11, 4.1	Soluble	Solid	DI Leach	
880-32778-11 MS	C-21, 4.1	Soluble	Solid	DI Leach	
880-32778-11 MSD	C-21, 4.1	Soluble	Solid	DI Leach	

Leach Batch: 61718

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32778-13	C-23, 4.1	Soluble	Solid	DI Leach	
880-32778-14	C-24, 4.1	Soluble	Solid	DI Leach	
880-32778-15	C-25, 1	Soluble	Solid	DI Leach	
880-32778-16	C-26, 1	Soluble	Solid	DI Leach	
880-32778-17	C-27, 1	Soluble	Solid	DI Leach	
880-32778-18	C-28, 1	Soluble	Solid	DI Leach	
880-32778-19	C-29, 1	Soluble	Solid	DI Leach	
880-32778-20	C-30, 1	Soluble	Solid	DI Leach	
880-32778-21	C-31, 1	Soluble	Solid	DI Leach	
880-32778-22	C-32, 1	Soluble	Solid	DI Leach	
880-32778-23	C-33, 4.1	Soluble	Solid	DI Leach	
880-32778-24	C-34, 4.1	Soluble	Solid	DI Leach	
880-32778-26	C-36, 0-4.1	Soluble	Solid	DI Leach	
880-32778-27	C-37, 0-4.1	Soluble	Solid	DI Leach	
880-32778-28	C-38, 0-4.1	Soluble	Solid	DI Leach	
880-32778-29	C-39, 0-4.1	Soluble	Solid	DI Leach	
880-32778-30	C-40, 0-4.1	Soluble	Solid	DI Leach	
880-32778-31	C-41, 0-4.1	Soluble	Solid	DI Leach	
880-32778-32	C-42, 0-4.1	Soluble	Solid	DI Leach	
MB 880-61718/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-61718/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-61718/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32778-13 MS	C-23, 4.1	Soluble	Solid	DI Leach	
880-32778-13 MSD	C-23, 4.1	Soluble	Solid	DI Leach	
880-32778-23 MS	C-33, 4.1	Soluble	Solid	DI Leach	
880-32778-23 MSD	C-33, 4.1	Soluble	Solid	DI Leach	

Released to Imaging: 4/18/2024 8:48:50 AM

QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Job ID: 880-32778-1 SDG: 22-0104-07

HPLC/IC

Analysis Batch: 61845

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32778-1	C-11, 4.1	Soluble	Solid	300.0	61717
880-32778-2	C-12, 4.1	Soluble	Solid	300.0	61717
880-32778-3	C-13, 4.1	Soluble	Solid	300.0	61717
880-32778-4	C-14, 4.1	Soluble	Solid	300.0	61717
880-32778-5	C-15, 4.1	Soluble	Solid	300.0	61717
880-32778-6	C-16, 4.1	Soluble	Solid	300.0	61717
880-32778-7	C-17, 4.1	Soluble	Solid	300.0	61717
880-32778-8	C-18, 4.1	Soluble	Solid	300.0	61717
880-32778-9	C-19, 4.1	Soluble	Solid	300.0	61717
880-32778-10	C-20, 4.1	Soluble	Solid	300.0	61717
880-32778-11	C-21, 4.1	Soluble	Solid	300.0	61717
880-32778-12	C-22, 4.1	Soluble	Solid	300.0	61717
MB 880-61717/1-A	Method Blank	Soluble	Solid	300.0	61717
LCS 880-61717/2-A	Lab Control Sample	Soluble	Solid	300.0	61717
LCSD 880-61717/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	61717
880-32778-1 MS	C-11, 4.1	Soluble	Solid	300.0	61717
880-32778-1 MSD	C-11, 4.1	Soluble	Solid	300.0	61717
880-32778-11 MS	C-21, 4.1	Soluble	Solid	300.0	61717
880-32778-11 MSD	C-21, 4.1	Soluble	Solid	300.0	61717

Analysis Batch: 61846

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32778-13	C-23, 4.1	Soluble	Solid	300.0	61718
880-32778-14	C-24, 4.1	Soluble	Solid	300.0	61718
880-32778-15	C-25, 1	Soluble	Solid	300.0	61718
880-32778-16	C-26, 1	Soluble	Solid	300.0	61718
880-32778-17	C-27, 1	Soluble	Solid	300.0	61718
880-32778-18	C-28, 1	Soluble	Solid	300.0	61718
880-32778-19	C-29, 1	Soluble	Solid	300.0	61718
880-32778-20	C-30, 1	Soluble	Solid	300.0	61718
880-32778-21	C-31, 1	Soluble	Solid	300.0	61718
880-32778-22	C-32, 1	Soluble	Solid	300.0	61718
880-32778-23	C-33, 4.1	Soluble	Solid	300.0	61718
880-32778-24	C-34, 4.1	Soluble	Solid	300.0	61718
880-32778-26	C-36, 0-4.1	Soluble	Solid	300.0	61718
880-32778-27	C-37, 0-4.1	Soluble	Solid	300.0	61718
880-32778-28	C-38, 0-4.1	Soluble	Solid	300.0	61718
880-32778-29	C-39, 0-4.1	Soluble	Solid	300.0	61718
880-32778-30	C-40, 0-4.1	Soluble	Solid	300.0	61718
880-32778-31	C-41, 0-4.1	Soluble	Solid	300.0	61718
880-32778-32	C-42, 0-4.1	Soluble	Solid	300.0	61718
MB 880-61718/1-A	Method Blank	Soluble	Solid	300.0	61718
LCS 880-61718/2-A	Lab Control Sample	Soluble	Solid	300.0	61718
LCSD 880-61718/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	61718
880-32778-13 MS	C-23, 4.1	Soluble	Solid	300.0	61718
880-32778-13 MSD	C-23, 4.1	Soluble	Solid	300.0	61718
880-32778-23 MS	C-33, 4.1	Soluble	Solid	300.0	61718
880-32778-23 MSD	C-33, 4.1	Soluble	Solid	300.0	61718

Eurofins Midland

Released to Imaging: 4/18/2024 8:48:50 AM

Project/Site: Salado Draw Pad 415

Lab Chronicle

Job ID: 880-32778-1 SDG: 22-0104-07

Lab Sample ID: 880-32778-1

Lab Sample ID: 880-32778-2

Lab Sample ID: 880-32778-3

Lab Sample ID: 880-32778-4

Lab Sample ID: 880-32778-5

Lab Sample ID: 880-32778-6

Client Sample ID: C-11, 4.1 Date Collected: 08/31/23 09:00 Date Received: 09/01/23 08:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		1			61845	09/05/23 16:21	СН	EET MID

Client Sample ID: C-12, 4.1 Date Collected: 08/31/23 09:10 Date Received: 09/01/23 08:28

[Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 16:40	СН	EET MID

Client Sample ID: C-13, 4.1 Date Collected: 08/31/23 09:20 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 16:46	СН	EET MID

Client Sample ID: C-14, 4.1 Date Collected: 08/31/23 09:30

Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analvst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	61717	09/01/23 09:49		EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 16:53	СН	EET MID

Client Sample ID: C-15, 4.1 Date Collected: 08/31/23 09:40 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		10			61845	09/05/23 16:59	СН	EET MID

Client Sample ID: C-16, 4.1 Date Collected: 08/31/23 09:50 Date Received: 09/01/23 08:28

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 17:18	СН	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 880-32778-1 SDG: 22-0104-07

Lab Sample ID: 880-32778-7

Lab Sample ID: 880-32778-9

Lab Sample ID: 880-32778-10

Lab Sample ID: 880-32778-11

Lab Sample ID: 880-32778-12

Client Sample ID: C-17, 4.1 Date Collected: 08/31/23 10:00 Date Received: 09/01/23 08:28

Project/Site: Salado Draw Pad 415

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		1			61845	09/05/23 17:25	СН	EET MID
lient Sam	ple ID: C-1	8, 4.1					L	ab Sample	ID: 880	-32778-8

Client Sample ID: C-18, 4.1 Date Collected: 08/31/23 10:10 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		10			61845	09/05/23 17:31	СН	EET MID

Client Sample ID: C-19, 4.1 Date Collected: 08/31/23 10:20 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		1			61845	09/05/23 17:37	СН	EET MID

Client Sample ID: C-20, 4.1 Date Collected: 08/31/23 10:30

Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 17:44	СН	EET MID

Client Sample ID: C-21, 4.1 Date Collected: 08/31/23 10:40 Date Received: 09/01/23 08:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.99 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		1			61845	09/05/23 17:50	СН	EET MID

Client Sample ID: C-22, 4.1 Date Collected: 08/31/23 10:50 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61717	09/01/23 09:49	СН	EET MID
Soluble	Analysis	300.0		5			61845	09/05/23 18:10	СН	EET MID

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Project/Site: Salado Draw Pad 415

Lab Chronicle

Job ID: 880-32778-1 SDG: 22-0104-07

Lab Sample ID: 880-32778-13

Lab Sample ID: 880-32778-14

Lab Sample ID: 880-32778-15

Lab Sample ID: 880-32778-16

Lab Sample ID: 880-32778-17

Lab Sample ID: 880-32778-18

Client Sample ID: C-23, 4.1 Date Collected: 08/31/23 11:00 Date Received: 09/01/23 08:28

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		5			61846	09/05/23 20:04	СН	EET MID

Client Sample ID: C-24, 4.1 Date Collected: 08/31/23 11:10 Date Received: 09/01/23 08:28

Pr	ер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Sc	oluble	Leach	DI Leach			5.02 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Sc	oluble	Analysis	300.0		5			61846	09/05/23 20:24	СН	EET MID

Client Sample ID: C-25, 1 Date Collected: 08/31/23 11:20 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.99 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 20:30	СН	EET MID

Client Sample ID: C-26, 1 Date Collected: 08/31/23 11:30 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 20:37	СН	EET MID

Client Sample ID: C-27, 1 Date Collected: 08/31/23 11:40 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	61718	09/01/23 09:51	CH	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 20:43	СН	EET MID

Client Sample ID: C-28, 1 Date Collected: 08/31/23 11:50 Date Received: 09/01/23 08:28

—	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 21:02	СН	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Job ID: 880-32778-1 SDG: 22-0104-07

Lab Sample ID: 880-32778-19

Lab Sample ID: 880-32778-20

Lab Sample ID: 880-32778-21

Lab Sample ID: 880-32778-22

Lab Sample ID: 880-32778-23

Lab Sample ID: 880-32778-24

Client Sample ID: C-29, 1 Date Collected: 08/31/23 12:00 Date Received: 09/01/23 08:28

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 21:09	СН	EET MID

Client Sample ID: C-30, 1 Date Collected: 08/31/23 12:10 Date Received: 09/01/23 08:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 21:15	СН	EET MID

Client Sample ID: C-31, 1 Date Collected: 08/31/23 12:20 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 21:21	СН	EET MID

Client Sample ID: C-32, 1 Date Collected: 08/31/23 12:30 Date Received: 09/01/23 08:28

Prep TypeBatchSolubleLeachSolubleAnalysis	Batch Method DI Leach 300.0	Run	Dil Factor	Initial Amount 5.01 g	Final Amount 50 mL	Batch Number 61718 61846	Prepared or Analyzed 09/01/23 09:51 09/05/23 21:28		EET MID
---	--------------------------------------	-----	---------------	-----------------------------	--------------------------	-----------------------------------	---	--	---------

Client Sample ID: C-33, 4.1 Date Collected: 08/31/23 12:40 Date Received: 09/01/23 08:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		5			61846	09/05/23 21:34	СН	EET MID

Client Sample ID: C-34, 4.1 Date Collected: 08/31/23 12:50 Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		5			61846	09/05/23 21:53	СН	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Project/Site: Salado Draw Pad 415

Lab Chronicle

Job ID: 880-32778-1 SDG: 22-0104-07

Lab Sample ID: 880-32778-26

Lab Sample ID: 880-32778-27

Lab Sample ID: 880-32778-28

Lab Sample ID: 880-32778-29

Lab Sample ID: 880-32778-30

Lab Sample ID: 880-32778-31

Client Sample ID: C-36, 0-4.1 Date Collected: 08/31/23 13:10 Date Received: 09/01/23 08:28

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.03 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:00	СН	EET MID

Client Sample ID: C-37, 0-4.1 Date Collected: 08/31/23 13:20 Date Received: 09/01/23 08:28

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:19	СН	EET MID

Client Sample ID: C-38, 0-4.1 Date Collected: 08/31/23 13:30 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:25	CH	EET MID

Client Sample ID: C-39, 0-4.1 Date Collected: 08/31/23 13:40

Date Received: 09/01/23 08:28

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:32	СН	EET MID

Client Sample ID: C-40, 0-4.1 Date Collected: 08/31/23 13:50 Date Received: 09/01/23 08:28

Ргер Туре	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:38	CH	EET MID

Client Sample ID: C-41, 0-4.1 Date Collected: 08/31/23 14:00 Date Received: 09/01/23 08:28

	Batch	Batch	_	Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5 g	50 mL	61718	09/01/23 09:51	СН	EET MID
Soluble	Analysis	300.0		1			61846	09/05/23 22:44	СН	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-32778-1 SDG: 22-0104-07

Client Sample ID: C-42, 0-4.1 Date Collected: 08/31/23 14:10 Date Received: 09/01/23 08:28

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	5
Soluble	Leach	DI Leach			5.04 g	50 mL	61718	09/01/23 09:51	СН	EET MID	-
Soluble	Analysis	300.0		1			61846	09/05/23 22:51	СН	EET MID	

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-32778-32 Matrix: Solid

Accreditation/Certification Summary

Clie	nt: Larson & Associates, Inc.	
Proj	ject/Site: Salado Draw Pad 415	

Job ID: 880-32778-1 SDG: 22-0104-07

Laboratory: Eurofins Midland

thority	Program	Identification Number	Expiration Date	
as	NELAP	T104704400-23-26	06-30-24	

Method Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Job ID: 880-32778-1 SDG: 22-0104-07

lethod	Method Description	Protocol	Laboratory	
300.0	Anions, Ion Chromatography	EPA	EET MID	-
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol R	eferences:			5
ASTM =	ASTM International			
EPA = L	JS Environmental Protection Agency			
Laboratory	/ References:			
	D = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440			

Sample Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
80-32778-1	C-11, 4.1	Solid	08/31/23 09:00	09/01/23 08:28
380-32778-2	C-12, 4.1	Solid	08/31/23 09:10	09/01/23 08:28
380-32778-3	C-13, 4.1	Solid	08/31/23 09:20	09/01/23 08:28
80-32778-4	C-14, 4.1	Solid	08/31/23 09:30	09/01/23 08:28
80-32778-5	C-15, 4.1	Solid	08/31/23 09:40	09/01/23 08:28
380-32778-6	C-16, 4.1	Solid	08/31/23 09:50	09/01/23 08:28
80-32778-7	C-17, 4.1	Solid	08/31/23 10:00	09/01/23 08:28
80-32778-8	C-18, 4.1	Solid	08/31/23 10:10	09/01/23 08:28
80-32778-9	C-19, 4.1	Solid	08/31/23 10:20	09/01/23 08:28
380-32778-10	C-20, 4.1	Solid	08/31/23 10:30	09/01/23 08:28
380-32778-11	C-21, 4.1	Solid	08/31/23 10:40	09/01/23 08:28
380-32778-12	C-22, 4.1	Solid	08/31/23 10:50	09/01/23 08:28
380-32778-13	C-23, 4.1	Solid	08/31/23 11:00	09/01/23 08:28
880-32778-14	C-24, 4.1	Solid	08/31/23 11:10	09/01/23 08:28
380-32778-15	C-25, 1	Solid	08/31/23 11:20	09/01/23 08:28
380-32778-16	C-26, 1	Solid	08/31/23 11:30	09/01/23 08:28
80-32778-17	C-27, 1	Solid	08/31/23 11:40	09/01/23 08:28
80-32778-18	C-28, 1	Solid	08/31/23 11:50	09/01/23 08:28
80-32778-19	C-29, 1	Solid	08/31/23 12:00	09/01/23 08:28
80-32778-20	C-30, 1	Solid	08/31/23 12:10	09/01/23 08:28
80-32778-21	C-31, 1	Solid	08/31/23 12:20	09/01/23 08:28
80-32778-22	C-32, 1	Solid	08/31/23 12:30	09/01/23 08:28
80-32778-23	C-33, 4.1	Solid	08/31/23 12:40	09/01/23 08:28
80-32778-24	C-34, 4.1	Solid	08/31/23 12:50	09/01/23 08:28
80-32778-26	C-36, 0-4.1	Solid	08/31/23 13:10	09/01/23 08:28
80-32778-27	C-37, 0-4.1	Solid	08/31/23 13:20	09/01/23 08:28
80-32778-28	C-38, 0-4.1	Solid	08/31/23 13:30	09/01/23 08:28
80-32778-29	C-39, 0-4.1	Solid	08/31/23 13:40	09/01/23 08:28
380-32778-30	C-40, 0-4.1	Solid	08/31/23 13:50	09/01/23 08:28
380-32778-31	C-41, 0-4.1	Solid	08/31/23 14:00	09/01/23 08:28
880-32778-32	C-42, 0-4.1	Solid	08/31/23 14:10	09/01/23 08:28

Job ID: 880-32778-1 SDG: 22-0104-07

0 <mark>00</mark> 4 0	0 8 1 6 10	11 13		32778 No. 3111
			(CHAIN-OF-CUSTODY
1				
\Lambda arson & 🖛 💌	5	N. Mullerlield, Sie. 202		PAGEOF
T ssociates, In Environmental Consulto	С.			ORK ORDER#
Data Reported to	luis		DJECT LOCATION OR NAME <u>Sala</u> PROJECT # <u>22-0104-02</u>	
_				
TRRP report? S=SOIL Yes No A=AIR	P=PAINT ER SL=SLUDGE OT=OTHER	PRESERVATION		
TIME ZONE Time zone/State		aoH []		
MST/NM			^ \$ \$` \$' . \$ \$' . 2 42 2)	
Field Sample I D Lab #	Date Time Matrıx	# of Containers HCI HNO ₃ HNO ₃ HNO ₃ HNO ₃ Covert Covert H	\$` \$` \$` ` \$` \$` \$` ` \$` \$` \$` \$` \$` \$` \$` \$` \$` \$` \$` \$` \$`	TSTERNOTES
C-11 4.1	8/4/23 0900 3			1/2025
C-11 4.1	6910 1		┽┼┽┽┽┼┼┼┼┼	- R - W
2-13 41	0910			
-14 41	0930			
-1541	0940			
2-16.4.	0950			
2-10, 4.1	1000			
2-17.4.1	1010			
-19 4.	1010			
2-20' 4.1 2-21 4.1 2-22 4.1	1030			
21 4.1	1040			
-11 4.1	1050			
2-23, 4, 1	1100			
C-24 4.1	1110			
2-25 1	L 1120 I			
OTAL			880-32778 Chain of Custody	
RELINQUISHED BY (Signature)	DATE/TIME	RECEIVED BY (Sugnature)	TURN AROUND TIME LABORATORY	
RELINQUISHED BY (Signature)	<u>ــــــــــــــــــــــــــــــــــــ</u>	RECEIVED BY (Signature)		USE ONLY. MP 3.91-42 MP 3.91-42 THERM# JAP
RELINQUISHED BY (Signature)	DATE/TIME	RECEIVED BY (Signature)	1 DAY 2 DAY OTHER CUSTODY SEA	LO- G BROKEN GARTACT GINUTUSED
LABORATORY Xenco				

Received by OCD: 2/22/2024 3:24:05 PM

				~ ~		~																(52	7	76	3	No	. 31	12 [°]
																					С	H.	All	N-	OF	=-C	US	το	୵ଝ୍ଲ
	Statif-			5		Mar	ionfe		Ste. 20	2	DA	TE.	8	:/3/	112	O's	13										2		0
Aarson & ssociat		\sim					ienie id, T)			J2	PO						-		_ L/	AB V	NOF		ORD	ER#					_
Environmento	al Consulta	ints					-687-				PR	OJE	СТ	LOC	ATI	ON	OR N	IAN	/IE	(a)	ade	2	Dú	àci	> (Part	415	•-	
Data Reported to	l										LA	I PR	OJE	CT #	#	<u>22</u> .	-01	2	10	>		C	OLL	.EC	TOF	× Ko	13		_
TRRP report?	S=SOIL W=WATE					PR	ESE								$\langle \rangle$	/ /		/	K	3	6		ß	6		[4] 4]	7]5	77	7
Yes No	A=AIR		SLUDGE OTHER											k i	//	/ /		6		ß	\$	X	Ň			\$%)			
TIME ZONE Time zone/State					s				ĒD				JS I			//		X,	¥]]	\sum			K)	X)			<i>*//</i> ,		
MST/NM		1	<u> </u>	ł	Containers			L NaOH	UNPRESSERVED		\$)	, / Ř		K	Y_/			\checkmark	$\left \left \left$		3/3		No.				//		
Field					Cont				RES	AMALY		X3) N N		X	Ý			E L	×		$\langle s \rangle$			L) S	///	/		
Sample I D	Lab #	Date	Time	Matrix	# of	ΗÇ	HNO ₃	T S CE E E	UNP		2/22/2 22/22/23/23/23/23/23/23/23/23/23/23/23/2							Ì		i/s	¥\$ }}	Ŋ	\$/3 \$/3	Ĕ Ĕ		F	IELD NO	OTES	
6-241		8/31/2	3 1130	5	1			X					-	Ħ		Ŧ	1	ſ	f f	Ŧ	1-	Ť	\overline{X}	Ħ	Ŧ				
C-27/1			1140		Ì			1										\uparrow		\uparrow		╋	ĥ						
C-22 1			1150															Τ				1	Ħ						
C-29			1200																				Π						0 0
C-301			1200										Τ					Τ											
C-31/1			1220										Τ					┢			\top								age
C-32			1230																										
C-33 4.1			12.40															Τ					T			-			
C-34 41			1250															\top											
C-35 41			1300															\uparrow	+			+							
C-36 0-4.1			1310																										M
6-320-4.1			1320																	T									8:48:50 AM
C-38'0-4.1			1330										Τ					\top											48:5
C-39 0-4.1			1340															┢			+-	+							-
e-40 0-4.1		L	1350					L										\uparrow				1							4/18/2024
TOTAL											$\uparrow \uparrow$		1					+		╈		-							/18/
RELINQUISHED BY (Signature)		DATE/TI		RECE	EIVEC	BY	Signa	Aure	(<u>-</u>	 TL				TIME		_ABOR		RY U	SE C		·					
RELINQUISHED BY (Signature)	<u></u>	9/1/123 DATE/TI		RECE	EIVED) BY (Signa	iture)				NO		LÀ				RECEIV	'ING	TEM	Р_							nagin
RELINQUISHED BY (Signature)		DATE/TI	ME	RECE	EIVED) BY (Signa	iture)				2 D	AY 🗌 HER)									Roki	EN 🕻		N 🗆 N	OT USE	– – – – eleased to Imaging:
LABORATORY Ke																						-							lease

Page 63 of 161

1 1 <th1< th=""> <th1< th=""> <th1< th=""> <th1< th=""></th1<></th1<></th1<></th1<>	11 13		
			32778 No. 3113
•			CHAIN-OF-CUSTODY
Aarson & 🖛 🐭 🐦		DATE 8/3/2023	
Associates, Inc. Environmental Consultants	Midland, TX 79701	°O#	LAB WORK ORDER#
Environmental Consultants Data Reported to	432-687-0901	PROJECT LOCATION OR N	AME <u>Salado Draw Part 415</u> 104-02 COLLECTOR <u>CC</u>
Ves W=WATER SL=SLUDGE	PRESERVATION		
TIME ZONE		/ <u> </u>	
Time zone/State	e ERVE		
MST/NM	# of Containers HCI HNO ₃ HNO ₃ H ₂ SO ₄ ☐ NaOH ☐ ICE UNPRESSERVED		
Field Sample I D Lab # Date Time Matrix	# of C HHCI HINO3 HISO2 HISO2 HISO2 HISO2 HISO2 HISO3 HISO2 HISO3	\$\\$\`\\$\\$\\$\\$\\$\\$\\$ \$\\$\\$\\$\\$\\$\\$\\$\\$\\$ \$\\$\\$\\$\\$\\$\\$\\$\\$\\$\\$	
C-41.0-4.1 8/3/22 /400 5		3/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/ 8/	
C-420-41 1 1410 1			
	+-+++++++++++++++++++++++++++++++++++++		
	+ + + + + + + + + + + + + + + + + + + +		
			Loc: 880 32778
			+++++++++++++++++++++++++++++++++++++++
TOTAL			
RELINCIUISHED BY (Signature) DATE/TIME 9/11/23 6\$28	RECEIVED BY (Signature)	TURN AROUND TIME	LABORATORY USE ONLY:
RELINQUISHED BY (Signature) DATE/TIME	RECEIVED BY (Signature)	NORMAL	RECEIVING TEMP THERM#
RELINQUISHED BY (Signature) DATE/TIME	RECEIVED BY (Signature)	2 DAY 🗋	CUSTODY SEALS - 📮 BROKEN 🖵 INTACT 🖵 NOT USED
		OTHER 🗋	CARRIER BILL #
LABORATORY Kentes			HAND DELIVERED

Released to Imaging: 4/18/2024 8:48:50 AM

•

Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

Login Number: 32778 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Job Number: 880-32778-1 SDG Number: 22-0104-07 4 5 7 8 9 10 11 12 List Source: Eurofins Midland

Received by OCD: 2/22/2024 3:24:05 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 9/21/2023 1:44:21 PM

JOB DESCRIPTION

Salado Draw Pad 415 SDG NUMBER 22-0104-07

JOB NUMBER

880-33334-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 9/21/2023 1:44:21 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Definitions/Glossary

1 uge 07 0j 101

	Definitions/Glossary		
	& Associates, Inc.	Job ID: 880-33334-1	_
Project/Site: S	alado Draw Pad 415	SDG: 22-0104-07	
Qualifiers			3
HPLC/IC Qualifier	Qualifier Description		4
U	Indicates the analyte was analyzed for but not detected.		
Glossary			5
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		0
CNF	Contains No Free Liquid		0
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		9
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		

Positive / Present Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Presumptive Quality Control

POS

PQL PRES

QC RER

RL

RPD

TEF

TEQ

TNTC

5

Job ID: 880-33334-1 SDG: 22-0104-07

Job ID: 880-33334-1

Laboratory: Eurofins Midland

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Narrative

Job Narrative 880-33334-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
 Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/18/2023 9:15 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.6°C

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

		Client S	ample Res	sults				
Client: Larson & Associates, Inc.			•				Job ID: 880-	33334-1
Project/Site: Salado Draw Pad 415							SDG: 22-	0104-0
Client Sample ID: C- 35, 4.1						Lab Sam	ple ID: 880-3	3334-′
Date Collected: 09/15/23 11:15							Matri	x: Solie
Date Received: 09/18/23 09:15								
Method: EPA 300.0 - Anions, Ion Ch	romatograp	hy - Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	90.7		5.01	mg/Kg			09/20/23 17:43	
Client Sample ID: C- 3, 5'						Lab Sam	nple ID: 880-3	3334-2
Date Collected: 09/15/23 12:00							Matri	x: Solid
Date Received: 09/18/23 09:15								
Method: EPA 300.0 - Anions, Ion Ch	romatograp	hy - Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	99.9		4.98	mg/Kg			09/20/23 18:04	
Client Sample ID: C- 43, 5'						Lab Sam	nple ID: 880-3	3334-3
Date Collected: 09/15/23 12:05							Matri	x: Solid
Date Received: 09/18/23 09:15								
Method: EPA 300.0 - Anions, Ion Ch	romatograr	hv - Soluble						
	• •	-						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	Result 88.3	Qualifier	RL 4.95	Unit mg/Kg	<u> </u>	Prepared	Analyzed 09/20/23 18:10	Dil Fac
Analyte Chloride		Qualifier			<u> </u>	•		
Analyte Chloride Client Sample ID: C- 44, 5'		Qualifier			<u>D</u>	•	09/20/23 18:10	
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10		Qualifier			<u> </u>	•	09/20/23 18:10	3334-4
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10	88.3				<u> </u>	•	09/20/23 18:10	3334-4
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15	88.3 romatograp				<u>D</u>	•	09/20/23 18:10	3334-4
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chi	88.3 romatograp	ohy - Soluble	4.95	mg/Kg		Lab Sam	09/20/23 18:10 1ple ID: 880-3 Matri	3334-4 x: Solic
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chi Analyte Chloride	88.3 romatograp Result	ohy - Soluble	4.95	mg/Kg		Lab Sam	09/20/23 18:10 aple ID: 880-3 Matri Analyzed	3334-4 x: Solic
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: C- 45, 0-5	88.3 romatograp Result	ohy - Soluble	4.95	mg/Kg		Lab Sam	09/20/23 18:10 aple ID: 880-3 Matri <u>Analyzed</u> 09/20/23 18:17 aple ID: 880-3	3334-4 x: Solic
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: C- 45, 0-5 Date Collected: 09/15/23 12:15	88.3 romatograp Result	ohy - Soluble	4.95	mg/Kg		Lab Sam	09/20/23 18:10 aple ID: 880-3 Matri <u>Analyzed</u> 09/20/23 18:17 aple ID: 880-3	3334-4 x: Solic
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chr Analyte Chloride Client Sample ID: C- 45, 0-5 Date Collected: 09/15/23 12:15 Date Received: 09/18/23 09:15	88.3 romatograp Result 24.5	o <mark>hy - Soluble</mark> Qualifier	4.95	mg/Kg		Lab Sam	09/20/23 18:10 aple ID: 880-3 Matri <u>Analyzed</u> 09/20/23 18:17 aple ID: 880-3	3334-4 x: Solic
Analyte Chloride Client Sample ID: C- 44, 5' Date Collected: 09/15/23 12:10 Date Received: 09/18/23 09:15 Method: EPA 300.0 - Anions, Ion Chr Analyte	88.3 romatograp Result 24.5 romatograp	o <mark>hy - Soluble</mark> Qualifier	4.95	mg/Kg		Lab Sam	09/20/23 18:10 aple ID: 880-3 Matri <u>Analyzed</u> 09/20/23 18:17 aple ID: 880-3	3334-4 x: Solic

Eurofins Midland

Released to Imaging: 4/18/2024 8:48:50 AM

QC Sample Results

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-33334-1 SDG: 22-0104-07

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-62761/1-A									c	lient S	Sample ID		
Matrix: Solid											Prep	o Type: S	oluble
Analysis Batch: 62905													
		MB MB	3										
Analyte	R	esult Qu	alifier	RL		Unit		D	Pre	pared	Analy	/zed	Dil Fac
Chloride	•	<5.00 U		5.00		mg/Kg	g				09/20/23	3 17:23	1
_ Lab Sample ID: LCS 880-62761/2-A								Clie	ent S	Sample	e ID: Lab (Control S	ample
Matrix: Solid											Prep	o Type: S	oluble
Analysis Batch: 62905													
			Spike	•	LCS	LCS					%Rec		
Analyte			Addec	Re	sult	Qualifier	Unit		D	%Rec	Limits		
Chloride			250	2	45.4		mg/Kg			98	90 _ 110		
_ Lab Sample ID: LCSD 880-62761/3-	-Δ						CI	ient Sa	amn	le ID:	Lab Contr	ol Sampl	le Dun
Matrix: Solid												Type: S	
Analysis Batch: 62905												, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orabio
Analysis Baton. 62000			Spike	. L	CSD	LCSD					%Rec		RPD
Analyte			Addeo			Qualifier	Unit	1	D	%Rec	Limits	RPD	Limit
Chloride			250		45.9		mg/Kg			98	90 - 110	0	20
-													
Lab Sample ID: 880-33334-1 MS										Clie	ent Sampl	e ID: C- 3	5, 4.1
Matrix: Solid											Prep	o Type: S	oluble
Analysis Batch: 62905													
	Sample	Sample	Spike	•	MS	MS					%Rec		
Analyte	Result	Qualifier	Addec	l Re	sult	Qualifier	Unit	I	D	%Rec	Limits		
Chloride	90.7		251	3	45.9		mg/Kg			102	90 - 110		
Lab Sample ID: 880-33334-1 MSD										Clie	ent Sample	e ID: C- 3	5, 4.1
Matrix: Solid											Prep	o Type: S	oluble
Analysis Batch: 62905													
-	Sample	Sample	Spike		ISD	MSD					%Rec		RPD
	Jampie												
Analyte	•	Qualifier			sult	Qualifier	Unit	I	D	%Rec	Limits	RPD	Limit
QC Association Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-33334-1 SDG: 22-0104-07

Leach Batch: 62761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-33334-1	C- 35, 4.1	Soluble	Solid	DI Leach	
880-33334-2	C-3, 5'	Soluble	Solid	DI Leach	
880-33334-3	C-43, 5'	Soluble	Solid	DI Leach	
880-33334-4	C- 44, 5'	Soluble	Solid	DI Leach	
880-33334-5	C- 45, 0-5	Soluble	Solid	DI Leach	
MB 880-62761/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-62761/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62761/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-33334-1 MS	C-35, 4.1	Soluble	Solid	DI Leach	
880-33334-1 MSD	C- 35, 4.1	Soluble	Solid	DI Leach	

Analysis Batch: 62905

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
80-33334-1	C- 35, 4.1	Soluble	Solid	DI Leach	
380-33334-2	C-3,5'	Soluble	Solid	DI Leach	
880-33334-3	C-43, 5'	Soluble	Solid	DI Leach	
380-33334-4	C- 44, 5'	Soluble	Solid	DI Leach	
380-33334-5	C-45, 0-5	Soluble	Solid	DI Leach	
MB 880-62761/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-62761/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-62761/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
380-33334-1 MS	C- 35, 4.1	Soluble	Solid	DI Leach	
	0.05.44	<u> </u>	Solid	DULASA	
880-33334-1 MSD nalysis Batch: 62905	C- 35, 4.1	Soluble	Solid	DI Leach	
nalysis Batch: 62905		Soluble Prep Type	Matrix	Method	Prep Batch
nalysis Batch: 62905 Lab Sample ID					Prep Batch 62761
nalysis Batch: 62905 Lab Sample ID 880-33334-1	Client Sample ID	Ргер Туре	Matrix	Method	
nalysis Batch: 62905 Lab Sample ID 380-33334-1 380-33334-2	Client Sample ID C- 35, 4.1	Prep Type Soluble	Matrix Solid	<u>Method</u> 300.0	62761
nalysis Batch: 62905 Lab Sample ID 880-33334-1 880-33334-2 880-33334-3	Client Sample ID C- 35, 4.1 C- 3, 5'	Prep Type Soluble Soluble	Matrix Solid Solid	Method 300.0 300.0	62761 62761
nalysis Batch: 62905 Lab Sample ID 880-33334-1 880-33334-2 880-33334-3 880-33334-4	Client Sample ID C- 35, 4.1 C- 3, 5' C- 43, 5'	Prep Type Soluble Soluble Soluble	Matrix Solid Solid Solid	Method 300.0 300.0 300.0	62761 62761 62761
Lab Sample ID 380-33334-1 380-33334-2 380-33334-3 380-33334-3 380-33334-4 380-33334-5	Client Sample ID C- 35, 4.1 C- 3, 5' C- 43, 5' C- 44, 5'	Prep Type Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0	62761 62761 62761 62761
Lab Sample ID 380-33334-1 380-33334-2 380-33334-3 380-33334-3 380-33334-4 380-33334-5 MB 880-62761/1-A	Client Sample ID C- 35, 4.1 C- 3, 5' C- 43, 5' C- 44, 5' C- 45, 0-5	Prep Type Soluble Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	62761 62761 62761 62761 62761 62761
Lab Sample ID 880-33334-1 880-33334-2 880-33334-3 880-33334-4 880-33334-5 MB 880-62761/1-A LCS 880-62761/2-A	Client Sample ID C- 35, 4.1 C- 3, 5' C- 43, 5' C- 44, 5' C- 45, 0-5 Method Blank	Prep Type Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	62761 62761 62761 62761 62761 62761
	Client Sample ID C- 35, 4.1 C- 3, 5' C- 43, 5' C- 44, 5' C- 45, 0-5 Method Blank Lab Control Sample	Prep Type Soluble Soluble Soluble Soluble Soluble Soluble Soluble	Matrix Solid Solid Solid Solid Solid Solid Solid Solid	Method 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0 300.0	62761 62761 62761 62761 62761 62761 62761

9/21/2023

Released to Imaging: 4/18/2024 8:48:50 AM

Page 73 of 161

Lab Chronicle

Job ID: 880-33334-1 SDG: 22-0104-07

Lab Sample ID: 880-33334-2

Lab Sample ID: 880-33334-3

Lab Sample ID: 880-33334-4

Lab Sample ID: 880-33334-5

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

8

Client Sample ID: C-35, 4.1 Date Collected: 09/15/23 11:15 Date Received: 09/18/23 09:15

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.99 g	50 mL	62761	09/18/23 14:41	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62905	09/20/23 17:43	SMC	EET MID

Client Sample ID: C-3, 5' Date Collected: 09/15/23 12:00 Date Received: 09/18/23 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	62761	09/18/23 14:41	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62905	09/20/23 18:04	SMC	EET MID

Client Sample ID: C-43, 5' Date Collected: 09/15/23 12:05

Date Received: 09/18/23 09:15

Prep Type	Batch Type	Batch Method	Run	Dil Factor	Initial Amount	Final Amount	Batch Number	Prepared or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	62761	09/18/23 14:41	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62905	09/20/23 18:10	SMC	EET MID

Client Sample ID: C-44, 5'

Date Collected: 09/15/23 12:10

Date Received: 09/18/23 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	62761	09/18/23 14:41	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62905	09/20/23 18:17	SMC	EET MID

Client Sample ID: C-45, 0-5

Date Collected: 09/15/23 12:15 Date Received: 09/18/23 09:15

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	62761	09/18/23 14:41	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	62905	09/20/23 18:24	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

	Accreditation/0	Certification Summary		
Client: Larson & Associates, Project/Site: Salado Draw Pa			Job ID: 880-33334-1 SDG: 22-0104-07	
aboratory: Eurofins N	fidland ed below are applicable to this report.			
Authority	Program	Identification Number	Expiration Date	
Texas	NELAP	T104704400-23-26	06-30-24	
				Ī
				Ì
				Ī

Method Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Job ID: 880-33334-1 SDG: 22-0104-07

Method	Method Description	Protocol	Laboratory
300.0	Anions, Ion Chromatography	EPA	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-33334-1 SDG: 22-0104-07

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-33334-1	C- 35, 4.1	Solid	09/15/23 11:15	09/18/23 09:15
880-33334-2	C-3, 5'	Solid	09/15/23 12:00	09/18/23 09:15
880-33334-3	C- 43, 5'	Solid	09/15/23 12:05	09/18/23 09:15
880-33334-4	C- 44, 5'	Solid	09/15/23 12:10	09/18/23 09:15
880-33334-5	C- 45, 0-5	Solid	09/15/23 12:15	09/18/23 09:15

<u>∽</u> N M 4	S		∞ c	10		12	6	2																				
																										No	. 312	21 ₂₂
																					Cl	HA	4N	-0	F-C	UST		
				50					CH- C		DA	TE _	9	18	20	23												
Aarson & ssociat	tes In			50	07 N. 1 Mio		ienie id, T)			202	PC)#							L/	AB W	/ORI	K OF	RDE	R#			•	•
Environment	al Consulta	nts					687-				PR	OJEC	CT L	OCA	TIO	N OI	R N/	٩MI	Ξ	Sal	ade	26)100	ى	Pad	415		
Data Reported to	1			······	<u>г — — — — — — — — — — — — — — — — — — —</u>	T					LA	I PRC	JEC	CT #		227	ok	94	-0	2		co	LLE	СТС	R_Ł	6		-
TRRP report?	S=SOIL W=WATE A=AIR		AINT SLUDGE OTHER			PRI	ESE								5/			ß				 \$ \$`	Y					7
TIME ZONE Time zone/State		01=	UTHER		ers				RVED					`\ _			Ĭ	?\\$ \$}							31 52 3 32 52 3 32 52 3	3 ³⁷		
MST/NM			1		Containers			ž J	SSEI	4	\$P/~	<u> </u>		s/s	[]	Ś	;]]	Ś	ß		S/S			Ŋ				
Field Sample I D	Lab #	Date	Time	Matrix	# of Co	нсі	HNO ³	H ₂ SO4	UNPRESSERVED	AMALY			N. S.				3/3 3/2	\$\\$ \$\{			5/5 5/3	s Js				FIELD NO	TES	
C-35 41		9/15/23	1155	S	1			X			\mathbf{T}		F		-		Ħ		Ŧ	T	Ħ	F,	Ń	Ť	202			7
6-3 5'		1	1200	1																		ľ	\mathbf{M}		-01			-
			1205																				Π					4
C-44 5'	ļ		1210																				Π					3 0
C-450-5			1215					1															Ц					Page 13 of 14
					ļ																							Ъа
			ļ			+																		_				
[[<u> </u>		ļ				++		\downarrow																	
					ļ																				l			
			ļ			$\left - \right $							┝─┤							1			111 III].
					<u> </u>	$\left \right $		_	+				$\left \right $															
					<u> </u>				++																	W W		10.50
													$\left - \right $							 88 -	30-33	334 C	hain c	of Cus	tody			0.1
					├──			_	+		╉┯╋		┟──┟			4	┝──┦					┝─┼						
TOTAL			<u> </u>	I		$\left \right $					<u> </u>		┝─┤												<u> </u>			10
RELINQUISHED BY	(Signature)		DATE/T	ME	RECE			(Sign	ature	ᆗ																		_
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~			7/10/201	0915	<u> </u>	$\underline{\mathcal{V}}$		Ţ	V	6976-** 2010-2010-2010-2010-2010-2010-2010-2010	and a second			RN AF			ME		BOR	ATOR	IY US	E ON	11 211	.6		<u></u>	00 -	
RELINQUISHED BY	(Signature)		DATE/T		RECE	IVED	) BY	(Šign	ature)				1 DA		- <b></b>													
RELINQUISHED BY			DATE/T	IME	RECE	EIVED	) BY	(Sıgn	ature)				2 DA OTH		)					DY SE RIER				OKEN				and to
LABORATORY Xe	010												<del>-</del>					Q	HAN	D DEI	LIVEF	RED						

Released to Imaging: 4/18/2024 8:48:50 AM

Job Number: 880-33334-1

SDG Number: 22-0104-07

List Source: Eurofins Midland

# Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

### Login Number: 33334 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

13

Received by OCD: 2/22/2024 3:24:05 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 10/9/2023 10:39:08 AM

# JOB DESCRIPTION

Salado Draw Pad 415 SDG NUMBER 22-0104-07

# **JOB NUMBER**

880-34003-1

**DB DI** Salad G NUM

Eurofins Midland 1211 W. Florida Ave Midland TX 79701





# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 10/9/2023 10:39:08 AM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-34003-1 SDG: 22-0104-07

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	7
QC Association Summary	8
Lab Chronicle	9
Certification Summary	10
Method Summary	11
Sample Summary	12
Chain of Custody	13
Receipt Checklists	14

Released to Imaging: 4/18/2024 8:48:50 AM

# **Definitions/Glossary**

1 uge 05 0j 101

Client: Larcon	& Associates, Inc.	Job ID: 880-34003-1	
	a Associates, inc. Salado Draw Pad 415	SDG: 22-0104-07	
Qualifiers			
			3
HPLC/IC Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			5
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		0
CNF	Contains No Free Liquid		0
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		9
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		13
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEGNegative / AbsentPOSPositive / Present

PQLPractical Quantitation LimitPRESPresumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

4

5

Job ID: 880-34003-1 SDG: 22-0104-07

### Job ID: 880-34003-1

### Laboratory: Eurofins Midland

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Narrative

Job Narrative 880-34003-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
 Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

### Receipt

The samples were received on 10/4/2023 9:34 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.7°C

### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: C-39 (880-34003-1) and C-41 (880-34003-2).

Per Daniel St Germain, BTEX and TPH were cancelled on both samples (phone 10/5/2023)

C-39 (880-34003-1) and C-41 (880-34003-2)

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

		Client \$	Sample Res	sults					
Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415							Job ID: 880- SDG: 22-		2
Client Sample ID: C-39 Date Collected: 10/03/23 12:15						Lab Sam	ple ID: 880-3 Matr	4003-1 ix: Solid	
Date Received: 10/04/23 09:34									
Method: EPA 300.0 - Anions, Ion Chi Analyte		hy - Soluble Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	5
Chloride	1480		25.1	mg/Kg			10/06/23 14:34	5	6
Client Sample ID: C-41						Lab Sam	ple ID: 880-3	4003-2	
Date Collected: 10/03/23 12:20 Date Received: 10/04/23 09:34							Matr	ix: Solid	7
Method: EPA 300.0 - Anions, Ion Ch									8
Analyte		Qualifier		Unit	D	Prepared	Analyzed	Dil Fac	0
Chloride	441		4.95	mg/Kg			10/06/23 14:41	1	9
									13

Eurofins Midland

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34003-1 SDG: 22-0104-07

## Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-63962/1-A Matrix: Solid										С	lient S	ample ID: Prep	Method Type: S	
Analysis Batch: 64137	мв	МВ												
Analyte		MB Qualifier		RL			Jnit		D	Dro	pared	Analy	zod	Dil Fac
Chloride	<5.00			5.00			ng/Kg		<u> </u>	rie	pareu	10/06/23		1
Lab Sample ID: LCS 880-63962/2-A Matrix: Solid									Clie	ent S	Sample	ID: Lab C Prep	ontrol S Type: S	
Analysis Batch: 64137			Spike		LCS	LCS						%Rec		
Analyte			Added		Result		ier	Unit	I	D	%Rec	Limits		
Chloride			250		245.0			mg/Kg			98	90 _ 110		
Lab Sample ID: LCSD 880-63962/3-A								Cli	ent Sa	amp	le ID: L	_ab Contro	ol Samp	le Dup
Matrix: Solid												Prep	Type: S	Soluble
Analysis Batch: 64137														
			Spike		LCSD	LCSD						%Rec		RPD
Analyte			Added		Result	Qualifi	ier	Unit	I	D	%Rec	Limits	RPD	Limit
Chloride			250		244.9			mg/Kg			98	90 - 110	0	20

# **QC** Association Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### HPLC/IC

### Leach Batch: 63962

each Batch: 63962					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34003-1	C-39	Soluble	Solid	DI Leach	
380-34003-2	C-41	Soluble	Solid	DI Leach	
MB 880-63962/1-A	Method Blank	Soluble	Solid	DI Leach	
_CS 880-63962/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
_CSD 880-63962/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
nalysis Batch: 64137					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-34003-1	C-39	Soluble	Solid	300.0	63962
380-34003-2	C-41	Soluble	Solid	300.0	63962
MB 880-63962/1-A	Method Blank	Soluble	Solid	300.0	63962
_CS 880-63962/2-A	Lab Control Sample	Soluble	Solid	300.0	63962
-CSD 880-63962/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	63962

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-34003-1	C-39	Soluble	Solid	300.0	63962	
880-34003-2	C-41	Soluble	Solid	300.0	63962	
MB 880-63962/1-A	Method Blank	Soluble	Solid	300.0	63962	
LCS 880-63962/2-A	Lab Control Sample	Soluble	Solid	300.0	63962	
LCSD 880-63962/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	63962	

Job ID: 880-34003-1 SDG: 22-0104-07

# Lab Chronicle

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Client Sample ID: C-39 Date Collected: 10/03/23 12:15 Date Received: 10/04/23 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.98 g	50 mL	63962	10/04/23 16:12	AG	EET MID
Soluble	Analysis	300.0		5			64137	10/06/23 14:34	SMC	EET MID

### Client Sample ID: C-41 Date Collected: 10/03/23 12:20 Date Received: 10/04/23 09:34

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	63962	10/04/23 16:12	AG	EET MID
Soluble	Analysis	300.0		1			64137	10/06/23 14:41	SMC	EET MID

### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-34003-1 SDG: 22-0104-07

# Lab Sample ID: 880-34003-1

Matrix: Solid

Matrix: Solid

8

Eurofins Midland

	Accreditation/0	Certification Summary		
Client: Larson & Associates Project/Site: Salado Draw F			Job ID: 880-34003-1 SDG: 22-0104-07	
Laboratory: Eurofins	Midland sted below are applicable to this report.			3
- Authority	Program	Identification Number	Expiration Date	4
Texas	NELAP	T104704400-23-26	06-30-24	5
				6
				8
				9
				1
				1

# **Method Summary**

### Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Job ID: 880-34003-1 SDG: 22-0104-07

Method	Method Description	Protocol	Laboratory	
300.0	Anions, Ion Chromatography	EPA	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Re	ferences:			5
ASTM =	ASTM International			
EPA = L	S Environmental Protection Agency			
Laboratory	References:			
EET MI	D = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440			8
				9
				1

### Protocol References:

### Laboratory References:

Eurofins Midland

# Sample Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34003-1 SDG: 22-0104-07

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-34003-1	C-39	Solid	10/03/23 12:15	10/04/23 09:34
880-34003-2	C-41	Solid	10/03/23 12:20	10/04/23 09:34

	LQ					5																			(	15	٦Ń	2,	$N_{-}$ 20
																							$\sim$	Ц	۸ I	I NI	$\sim$		No. 30 ISTO[
				- 50	)7 N.	Mai	rient	feld	Ste	20	12	DA	ATE		01	41	207	3										PAGE	/ OF /
Aarson 8 ssocia	ites, In	C.					nd, 1				~	PC	)#.								LA	3 W	OF	RK C	DRE	)ER	R#		
Environmen	tal Consulta	ants				432	-687	7-090	D1			PF	SO1	ECT	LO(		ION	OR	NAI	ΛE	<u>Se</u>	<u>ala</u>	<u>el o</u>	0	ra	w	P	a <u>d</u> 41	5
Data Reported to					Γ	Т				Т				ROJ		#_	22	7	7	7	77	~ 7	7					R <u>DSG</u>	IKG
TRRP report?	S=SOIL W=WATE A=AIR		AINT SLUDGE OTHER			PF	RESE	ERVA		N I				/							Y & S			X					<u> } </u>
TIME ZONE Time zone/State	-				lers							<u> </u>			S) S	<u>_</u>		51 ⁰				3/3 }}				Y S	YS Sje		
MNT/NM	-				Containers			Ü V			MAL 8		V S	N N N		Ľ	Ż		Y X		Ľ		Ľ		No No		X X X	<u>*</u> ///	
Field Sample I D	Lab #	Date	Time	Matrix	# of (	Ρ̈́	нN0 "Н	H₂SO₄	Ш		NAL S	¥ ¥ 3							N/2	Ĭ	S) S/	S	\^ \$/	X) \$/{	*) */	ÌÈ	»/	FIEI	D NOTES
C-39		10/3/23	1215	5	۱				X	1,		X		X	Ť	Ħ	Í	Ť	Ť	f	Ŧ	Ť.	É	Ť	Íx	F	F	<b></b>	
C-41		10/3/23	1220	S	l				X	>	<	X	$\times$	x											ĺχ				
	1									_										1									
										_			_										<b> </b>		Ļ				
									_			┞─┤		_								<u> </u>	<u> </u>						
	+					+	+	-+	+			$\left  \right $		_	_	+		_	_	_		<u> </u>	┨──			–			
						+					+	┠─╂		-				-		-	+	+		+	┼─	-	-		
					<u> </u>	$\uparrow$				+	+								╈	+-		┼─		1	<u> </u>		<u> </u>	L	·
									+	$\top$	+		$\rightarrow$		_				+-	+	4		N () () ()						
					<u> </u>																Τ			003.9	Chai	n of (	Cust	ody	
																					Τ							1	
					ļ		+	$ \rightarrow $														-		_					
															_														
TOTAL 2 RELINQUISHED BY,	(Signature)		DATE/TI		REC	EIVE			natur	e																			
RELINQUISHED BY	(Signature)	1	DATE/TI 0   4   2 2	<u>z P</u>		7	<u> </u>	2										TIME	<u> </u>	LAB	ORA								7 - 1100
	(Signature)	1		<u>z P</u>	REC	7	<u> </u>	2						- N 1	IORM, DAY [	AL 🛛		TIME				TOR	Y U	SE C	DNL'	/: /\$	Set		IN B
RELINQUISHED BY	(Signature)		0/4/22	<u>з Ф</u> ІМЕ	<u>y</u>	EIVE	D BY	(Sig	natur	e)				- N 1 - 2	IORM,	AL 🛛 D		TIME		CUS				SE C P		/: /\$	Set		

13

Job Number: 880-34003-1 SDG Number: 22-0104-07

List Source: Eurofins Midland

# Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

### Login Number: 34003 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 2/22/2024 3:24:05 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 10/13/2023 2:19:10 PM

# JOB DESCRIPTION

Salado Draw Pad 415 SDG NUMBER 22-0104-07

# **JOB NUMBER**

880-34133-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701





# **Eurofins Midland**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# **Authorization**

Generated 10/13/2023 2:19:10 PM

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com (806)794-1296

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 880-34133-1 SDG: 22-0104-07

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
Client Sample Results	7
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
-	24

	Definitions/Glossary		
	& Associates, Inc. alado Draw Pad 415	Job ID: 880-34133-1 SDG: 22-0104-07	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		5
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier S1+	Qualifier Description Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			4
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		1
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		

Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin) Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

LOQ

MCL

MDA

MDC

MDL

MPN

MQL

NC

ND NEG

POS

PQL

PRES

QC

RER

RPD

TEF

TEQ TNTC

RL

ML

Job ID: 880-34133-1 SDG: 22-0104-07

### Job ID: 880-34133-1

### Laboratory: Eurofins Midland

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Narrative

Job Narrative 880-34133-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

### Receipt

The samples were received on 10/9/2023 8:23 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -0.3°C

### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: C-36 0-4.1' (880-34133-1), C-37 0-4.1' (880-34133-2), C-38 0-4.1' (880-34133-3), C-40 0-4.1' (880-34133-4) and C-42 0-4.1' (880-34133-5).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-64194 recovered above the upper control limit for Toluene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-64194/51).

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-63929 and 880-64197 and analytical batch 880-64194 was outside the control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: C-40 0-4.1' (880-34133-4), (LCSD 880-64149/2-A) and (890-5414-A-1-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-64149 and analytical batch 880-64401 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-64312 and analytical batch 880-64318 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: C-36 0-4.1' (880-34133-1), C-37 0-4.1' (880-34133-2), C-38 0-4.1' (880-34133-3), C-40 0-4.1' (880-34133-4), C-42 0-4.1' (880-34133-5), (890-5415-A-4-D MS) and (890-5415-A-4-E MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-64318/20), (CCV 880-64318/31), (CCV 880-64318/5) and (LCS 880-64312/2-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### HPLC/IC

Case Narrative	
Client: Larson & Associates, Inc.Job ID: 880-34133-7Project/Site: Salado Draw Pad 415SDG: 22-0104-07	
Job ID: 880-34133-1 (Continued)	3
Laboratory: Eurofins Midland (Continued)	4
No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.	5
	6
	ð
	9
	13
	14

Released to Imaging: 4/18/2024 8:48:50 AM

.

# **Client Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Client Sample ID: C-36 0-4.1' Date Collected: 10/05/23 11:40

Date Received: 10/09/23 08:23

Toluene

Ethylbenzene

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
Toluene	<0.00200	U	0.00200	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
m,p-Xylenes	<0.00401	U	0.00401	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
Xylenes, Total	<0.00401	U	0.00401	mg/Kg		10/09/23 13:00	10/10/23 14:25	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130			10/09/23 13:00	10/10/23 14:25	1
1,4-Difluorobenzene (Surr)	107		70 - 130			10/09/23 13:00	10/10/23 14:25	1
Method: TAL SOP Total BTEX - 1	Total BTEX Calo	culation						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401	mg/Kg			10/10/23 14:25	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (	GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7		49.7	mg/Kg			10/10/23 15:09	1
Method: SW846 8015B NM - Die					_			
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		10/10/23 08:39	10/10/23 15:09	1
Diesel Range Organics (Over	<49.7	u	49.7	mg/Kg		10/10/23 08:39	10/10/23 15:09	1
C10-C28)	10.7	0	10.1	1119/119		10,10,20 00.00	10,10,20 10.00	•
Oll Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		10/10/23 08:39	10/10/23 15:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)		S1+	70 - 130			10/10/23 08:39	10/10/23 15:09	1
o-Terphenyl (Surr)	118		70 - 130			10/10/23 08:39	10/10/23 15:09	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solub	le					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	200		4.98	mg/Kg			10/12/23 15:46	1
Client Sample ID: C-37 0-4.	1'					Lab Sam	ple ID: 880-3	4133-2
ate Collected: 10/05/23 11:50							-	x: Solid
ate Received: 10/09/23 08:23								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC	)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							<b>,</b> ,	

								ĺ
ollected: 10/05/23 11:50							Matr	į
eceived: 10/09/23 08:23								
od: SW846 8021B - Volatile O	rganic Comp	ounds (GC)						
)	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
e	<0.00199	U	0.00199	mg/Kg		10/09/23 13:00	10/10/23 14:51	
3	<0.00199	U	0.00199	mg/Kg		10/09/23 13:00	10/10/23 14:51	

<0.00199 U

m,p-Xylenes	<0.00398 U	J	0.00398	mg/Kg	10/09/23 13:00	10/10/23 14:51	1
o-Xylene	<0.00199 U	J	0.00199	mg/Kg	10/09/23 13:00	10/10/23 14:51	1
Xylenes, Total	<0.00398 U	J	0.00398	mg/Kg	10/09/23 13:00	10/10/23 14:51	1
Surrogate	%Recovery Q	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	% <b>Recovery</b> 129	Qualifier	Limits 70 - 130		<b>Prepared</b> 10/09/23 13:00	Analyzed 10/10/23 14:51	Dil Fac

Page 7 of 24

0.00199

10/10/23 14:51

Page 100 of 161

Job ID: 880-34133-1 SDG: 22-0104-07

# Lab Sample ID: 880-34133-1

Matrix: Solid

mg/Kg

10/09/23 13:00

1

1

5

## **Client Sample Results**

Job ID: 880-34133-1 SDG: 22-0104-07

Lab Sample ID: 880-34133-2

# Client Sample ID: C-37 0-4.1'

Date Collected: 10/05/23 11:50 Date Received: 10/09/23 08:23

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			10/10/23 14:51	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (	GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			10/10/23 15:30	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9	mg/Kg		10/10/23 08:39	10/10/23 15:30	
(GRO)-C6-C10								
Diesel Range Organics (Over	<49.9	U	49.9	mg/Kg		10/10/23 08:39	10/10/23 15:30	
C10-C28)								
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		10/10/23 08:39	10/10/23 15:30	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	151	S1+	70 - 130			10/10/23 08:39	10/10/23 15:30	
o-Terphenyl (Surr)	128		70 - 130			10/10/23 08:39	10/10/23 15:30	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	186		4.96	mg/Kg			10/12/23 15:52	

Date Collected: 10/05/23 12:00

Date Received: 10/09/23 08:23

C10-C28)

#### Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 10/09/23 13:00 10/10/23 15:17 mg/Kg 1 Toluene <0.00199 U 0.00199 10/09/23 13:00 10/10/23 15:17 mg/Kg 1 Ethylbenzene <0.00199 U 10/09/23 13:00 10/10/23 15:17 0.00199 mg/Kg 1 m,p-Xylenes <0.00398 U 0.00398 mg/Kg 10/09/23 13:00 10/10/23 15:17 1 o-Xylene <0.00199 U 0.00199 mg/Kg 10/09/23 13:00 10/10/23 15:17 1 Xylenes, Total <0.00398 U 0.00398 10/09/23 13:00 10/10/23 15:17 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 10/09/23 13:00 10/10/23 15:17 4-Bromofluorobenzene (Surr) 126 1 1,4-Difluorobenzene (Surr) 108 70 - 130 10/09/23 13:00 10/10/23 15:17 1 Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			10/10/23 15:17	1
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (O	SC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			10/10/23 15:52	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		10/10/23 08:39	10/10/23 15:52	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		10/10/23 08:39	10/10/23 15:52	1

**Eurofins Midland** 

Matrix: Solid

Matrix: Solid

5

Matrix: Solid

5

# **Client Sample Results**

Job ID: 880-34133-1 SDG: 22-0104-07

Lab Sample ID: 880-34133-3

# Client Sample ID: C-38 0-4.1'

Date Collected: 10/05/23 12:00

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		10/10/23 08:39	10/10/23 15:52	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	169	S1+	70 - 130			10/10/23 08:39	10/10/23 15:52	1
o-Terphenyl (Surr)	142	S1+	70 - 130			10/10/23 08:39	10/10/23 15:52	1
_ Method: EPA 300.0 - Anions, Ion	Chromatograg	hy - Solubl	e					
Analyte	• •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	157		4.99	mg/Kg			10/12/23 16:12	1
						Lab Cam		A422 A
Client Sample ID: C-40 0-4.1	1'					Lab Sam	pie ID: 000-3	4133-4
· · · · · · · · · · · · · · · · · · ·	1.					Lab Sam	ple ID: 880-3 Matri	4133-4 x: Solid
Date Collected: 10/05/23 12:10	ı.					Lad Sam	-	
Date Collected: 10/05/23 12:10 Date Received: 10/09/23 08:23		ounds (GC)	)			Lad Sam	-	
ate Collected: 10/05/23 12:10 ate Received: 10/09/23 08:23 Method: SW846 8021B - Volatile	Organic Comp	ounds (GC) Qualifier	) RL	Unit	D	Lad Sam	-	
bate Collected: 10/05/23 12:10 bate Received: 10/09/23 08:23 Method: SW846 8021B - Volatile	Organic Comp	Qualifier		Unit mg/Kg	D		Matri	x: Solid
ate Collected: 10/05/23 12:10 ate Received: 10/09/23 08:23 Method: SW846 8021B - Volatile Analyte	Organic Comp	Qualifier U	RL		<u>D</u>	Prepared	Matri Analyzed	x: Solid
Date Collected: 10/05/23 12:10 Date Received: 10/09/23 08:23 Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp 	Qualifier U U	RL 0.00200	mg/Kg	<u> </u>	Prepared 10/09/23 17:00	Matri Analyzed 10/11/23 15:34	x: Solid
Analyte Benzene Toluene	Organic Comp 	Qualifier U U U	RL 0.00200 0.00200	mg/Kg mg/Kg	<u>D</u>	Prepared 10/09/23 17:00 10/09/23 17:00	Matri Analyzed 10/11/23 15:34 10/11/23 15:34	x: Solid

Xylenes, Total	<0.00399	U	0.00399	mg/Kg	10/09/23 17:00	10/11/23 15:34	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	133	S1+	70 - 130		10/09/23 17:00	10/11/23 15:34	1
1,4-Difluorobenzene (Surr)	87		70 - 130		10/09/23 17:00	10/11/23 15:34	1

### Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399	mg/Kg			10/11/23 15:34	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
A	nalyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac		
T	otal TPH	<50.1	U	50.1	mg/Kg			10/10/23 16:36	1		

### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1	mg/Kg		10/10/23 08:39	10/10/23 16:36	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.1	U	50.1	mg/Kg		10/10/23 08:39	10/10/23 16:36	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		10/10/23 08:39	10/10/23 16:36	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	134	S1+	70 - 130			10/10/23 08:39	10/10/23 16:36	1
o-Terphenyl (Surr)	115		70 - 130			10/10/23 08:39	10/10/23 16:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	234		5.00	mg/Kg			10/12/23 16:19	1

# **Client Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## Client Sample ID: C-42 0-4.1' Date Collected: 10/05/23 12:40

Date Received: 10/09/23 08:23

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
Toluene	<0.00201	U	0.00201	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
m,p-Xylenes	<0.00402	U	0.00402	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		10/09/23 17:00	10/11/23 16:01	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			10/09/23 17:00	10/11/23 16:01	1
1,4-Difluorobenzene (Surr)	123		70 - 130			10/09/23 17:00	10/11/23 16:01	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	11	0.00402	mg/Kg			10/11/23 16:01	1
 Method: SW846 8015 NM - Diese	el Range Organ			Unit	D	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ	<mark>ics (DRO) (</mark> Qualifier	GC)		<u>D</u>	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <50.5	<mark>ics (DRO) (</mark> Qualifier U	GC) 	<u>Unit</u>	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die	el Range Organ 	ics (DRO) ( Qualifier U	GC) <u>RL</u> 50.5 (GC)	<u>Unit</u>			Analyzed 10/10/23 16:58	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte	el Range Organ 	ics (DRO) ( Qualifier U mics (DRO) Qualifier	GC) 	Unit mg/Kg Unit	<u>D</u>	Prepared Prepared 10/10/23 08:39	Analyzed	Dil Fac 1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die	el Range Organ Result <a href="https://www.sciencescomesciencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomes&lt;br&gt;a set a set&lt;/td&gt;&lt;td&gt;ics (DRO) (&lt;br&gt;Qualifier&lt;br&gt;U&lt;br&gt;mics (DRO)&lt;br&gt;Qualifier&lt;/td&gt;&lt;td&gt;GC)&lt;/td&gt;&lt;td&gt; Unit mg/Kg&lt;/td&gt;&lt;td&gt;&lt;/td&gt;&lt;td&gt;Prepared&lt;/td&gt;&lt;td&gt;Analyzed&lt;br&gt;10/10/23 16:58&lt;br&gt;Analyzed&lt;/td&gt;&lt;td&gt;1&lt;br&gt;Dil Fac&lt;/td&gt;&lt;/tr&gt;&lt;tr&gt;&lt;td&gt;Method: SW846 8015 NM - Diese&lt;br&gt;Analyte&lt;br&gt;Total TPH&lt;br&gt;Method: SW846 8015B NM - Die&lt;br&gt;Analyte&lt;br&gt;Gasoline Range Organics&lt;/td&gt;&lt;td&gt;el Range Organ Result &lt;a href=" https:="" www.sciencescomesciencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomescuencescomes<br="">a set a set</a>	ics (DRO) ( Qualifier U mics (DRO) Qualifier U	GC)	Unit mg/Kg Unit		Prepared	Analyzed 10/10/23 16:58 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Presult Sel Range Orga Result Sel Range Orga Result Solution Sel Solution Solu	ics (DRO) (( Qualifier U mics (DRO) Qualifier U	GC) RL 50.5 (GC) RL 50.5 50.5	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Pesult Solution Peruptuation	ics (DRO) (( Qualifier U mics (DRO) Qualifier U	GC) <u>RL</u> 50.5 (GC) <u>RL</u> 50.5	Unit mg/Kg Unit mg/Kg		Prepared 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ 	ics (DRO) (( Qualifier U mics (DRO) Qualifier U U Qualifier	GC) RL 50.5 (GC) RL 50.5 50.5	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58	1 Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ 	ics (DRO) (( Qualifier U mics (DRO) Qualifier U U U Qualifier	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 50.5	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58	1 Dil Fac 1 1 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr)	el Range Organ 	ics (DRO) (( Qualifier U mics (DRO) Qualifier U U Qualifier	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 Limits	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39 10/10/23 08:39 Prepared	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58 10/10/23 16:58 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	el Range Organ 	ics (DRO) (( Qualifier U mics (DRO) Qualifier U U U Qualifier S1+	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39 10/10/23 08:39 Prepared 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58 10/10/23 16:58 Analyzed 10/10/23 16:58	1 Dil Fac 1 1 1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr)	el Range Organ Result sel Range Orga sel Range Orga Result <50.5 <50.5 <50.5 <50.5 %Recovery 146 125 a Chromatograp	ics (DRO) (( Qualifier U mics (DRO) Qualifier U U U Qualifier S1+	GC) RL 50.5 (GC) RL 50.5 50.5 50.5 50.5 <u>Limits</u> 70 - 130 70 - 130 70 - 130	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 10/10/23 08:39 10/10/23 08:39 10/10/23 08:39 Prepared 10/10/23 08:39	Analyzed 10/10/23 16:58 Analyzed 10/10/23 16:58 10/10/23 16:58 10/10/23 16:58 Analyzed 10/10/23 16:58	1 Dil Fac 1 1 1 Dil Fac

Page 103 of 161

Job ID: 880-34133-1 SDG: 22-0104-07

# Lab Sample ID: 880-34133-5

Matrix: Solid

5

Eurofins Midland

Released to Imaging: 4/18/2024 8:48:50 AM

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 880-34133-1 C-36 0-4.1' 107 125 880-34133-2 C-37 0-4.1' 129 102 880-34133-3 C-38 0-4.1' 126 108 87 880-34133-4 C-40 0-4.1' 133 S1+ 880-34133-5 C-42 0-4.1' 113 123 LCS 880-64149/1-A Lab Control Sample 124 103 LCS 880-64197/1-A Lab Control Sample 114 97 LCSD 880-64149/2-A Lab Control Sample Dup 136 S1+ 113 LCSD 880-64197/2-A Lab Control Sample Dup 112 79 MB 880-63929/5-A Method Blank 66 S1-95 MB 880-64149/5-A Method Blank 68 S1-93 MB 880-64197/5-A Method Blank 68 S1-87 Surrogate Legend BFB = 4-Bromofluorobenzene (Surr) DFBZ = 1,4-Difluorobenzene (Surr)

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

### Matrix: Solid

-			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-34133-1	C-36 0-4.1'	138 S1+	118
880-34133-2	C-37 0-4.1'	151 S1+	128
880-34133-3	C-38 0-4.1'	169 S1+	142 S1+
880-34133-4	C-40 0-4.1'	134 S1+	115
880-34133-5	C-42 0-4.1'	146 S1+	125
LCS 880-64312/2-A	Lab Control Sample	126	135 S1+
LCSD 880-64312/3-A	Lab Control Sample Dup	97	97
MB 880-64312/1-A	Method Blank	189 S1+	176 S1+

### Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Prep Type: Total/NA

Page 104 of 161

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

# Method: 8021B - Volatile Organic Compounds (GC)

	)/5-A								Client Sa	mple ID: Meth	od Bl	ank		
Matrix: Solid										Prep Type	Total	/NA		
Analysis Batch: 64194										Prep Bat	ch: 63	929		
	ME	B MB												
Analyte	Resul	t Qualifier	RL		Unit		D	Pr	epared	Analyzed	Dil	l Fac		
Benzene	<0.00200	D U	0.00200		mg/K	g	_	10/04	4/23 09:20	10/09/23 12:21		1		
Toluene	<0.00200	) U	0.00200		mg/K	g		10/04	4/23 09:20	10/09/23 12:21		1		
Ethylbenzene	<0.00200	) U	0.00200		mg/K	g		10/04	4/23 09:20	10/09/23 12:21		1		
m,p-Xylenes	<0.00400	) U	0.00400		mg/K	g		10/04	4/23 09:20	10/09/23 12:21		1		
o-Xylene	<0.00200	) U	0.00200		mg/K	g		10/04	4/23 09:20	10/09/23 12:21		1		
Xylenes, Total	<0.00400	U U	0.00400		mg/K	g		10/04	4/23 09:20	10/09/23 12:21		1		
	МЕ	B MB												
Surrogate	%Recover	Qualifier	Limits					Pr	epared	Analyzed	Dil	l Fac		
4-Bromofluorobenzene (Surr)	6	5 S1-	70 - 130					10/04	4/23 09:20	10/09/23 12:21		1		
1,4-Difluorobenzene (Surr)	9	5	70 - 130					10/04	4/23 09:20	10/09/23 12:21		1		
_ Lab Sample ID: MB 880-64149	)/5-A								Client Sa	mple ID: Meth	od Bl	ank		
Matrix: Solid										Prep Type:				
Analysis Batch: 64401										Prep Bat				
Analysis Datch. 04401	ME	3 MB								Пер Ба		145		
Analyte	Resul		RL		Unit		D	Pr	epared	Analyzed	Dil	l Fac		
Benzene	<0.00200		0.00200		mg/K	a	_		6/23 15:31	10/11/23 11:39		1		
Toluene	<0.00200		0.00200		mg/K	-			6/23 15:31	10/11/23 11:39		1		
Ethylbenzene	<0.00200		0.00200						6/23 15:31	10/11/23 11:39		1		
					mg/K									
m,p-Xylenes	<0.00400		0.00400		mg/K	-		10/06/23 15:31		10/11/23 11:39		1		
o-Xylene	<0.00200		0.00200		-	mg/Kg mg/Kg		mg/Kg			6/23 15:31	10/11/23 11:39		1
Xylenes, Total	<0.00400	) ()	0.00400		mg/K	g		10/06	6/23 15:31	10/11/23 11:39		1		
	ME													
Surrogate	%Recover		Limits						repared	Analyzed	Dil	l Fac		
4-Bromofluorobenzene (Surr)	6		70 - 130						6/23 15:31	10/11/23 11:39		1		
1,4-Difluorobenzene (Surr)	9.	3	70 - 130					10/06	6/23 15:31	10/11/23 11:39		1		
Lab Sample ID: LCS 880-6414	9/1-A						C	lient	Sample I	D: Lab Contro	ol Sam	ple		
Matrix: Solid										Prep Type:	Total	/NA		
Analysis Batch: 64401										Prep Bat	ch: 64	149		
			Spike	LCS	LCS					%Rec				
Analyte			Added	Result	Qualifier	Unit		D	%Rec	Limits				
Benzene			0.100	0.1146		mg/Kg			115	70 - 130				
Toluene			0.100	0.1236		mg/Kg			124	70 - 130				
Ethylbenzene			0.100	0.1173		mg/Kg			117	70 - 130				
m,p-Xylenes			0.200	0.2229		mg/Kg			111	70 - 130				
o-Xylene			0.100	0.1057		mg/Kg			106	70 - 130				
Surranata	LCS LC %Recovery Qu		Lingita											
Surrogate 4-Bromofluorobenzene (Surr)	124	aiiiiei	Limits 70 - 130											
1,4-Difluorobenzene (Surr)	103		70 - 130 70 - 130											
						_								
Lab Sample ID: LCSD 880-641 Matrix: Solid	149/2-A					Cli	ent	Sam	ple ID: La	ab Control Sa Prep Type:	-			
Analysis Batch: 64401			Snika	1.000	LCSD					Prep Bat		RPD		
Analyto			Spike Addod			11014		<b>n</b>	% Baa	%Rec				
Analyte			Added		Qualifier				%Rec			Limit		
Benzene			0.100	0.1221		mg/Kg			122	70 - 130	6	35		

Job ID: 880-34133-1 SDG: 22-0104-07

Eurofins Midland

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

Page 106 of 161

Job ID: 880-34133-1 SDG: 22-0104-07

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-6 Matrix: Solid										•		ab Contro Prep T	ype: To	
Analysis Batch: 64401													Batch:	
				Spike	LCSD	LCSD						%Rec		RP
Analyte				Added	Result	Qualifi	ier	Unit		D	%Rec	Limits	RPD	Lim
oluene				0.100	0.1265			mg/Kg			126	70 - 130	2	3
Ethylbenzene				0.100	0.1240			mg/Kg			124	70 - 130	6	3
n,p-Xylenes				0.200	0.2406			mg/Kg			120	70 - 130	8	3
-Xylene				0.100	0.1214			mg/Kg			121	70 - 130	14	3
	LCSD L													
Surrogate		Qualif	ier	Limits										
1-Bromofluorobenzene (Surr)		:1+		70 - 130										
,4-Difluorobenzene (Surr)	113			70 - 130										
ab Sample ID: MB 880-641	97/5-A										Client Sa	ample ID: I	Nethod	Blan
Aatrix: Solid													ype: To	
Analysis Batch: 64194													Batch:	
	N	ив м	ИВ											
nalyte	Res	ult C	Qualifier	R	L	ι	Jnit		D	P	repared	Analyz	ed	Dil Fa
enzene	< 0.002	<u>00</u> ī	J	0.0020	0	n	ng/Ko	7	_		9/23 09:34	10/10/23 0		
oluene	<0.002			0.0020	0		ng/Kg	-		10/0	9/23 09:34	10/10/23 0	)1:45	
thylbenzene	<0.002	00 ι	J	0.0020	0		ng/Ko			10/0	9/23 09:34	10/10/23 0	)1:45	
,p-Xylenes	<0.004			0.0040	0		ng/Kg			10/0	9/23 09:34	10/10/23 0		
-Xylene	< 0.002			0.0020	0		ng/Kg				9/23 09:34	10/10/23 0		
ylenes, Total	<0.004			0.0040			ng/Kg	-			9/23 09:34	10/10/23 0		
							5	,						
			ИВ							_				
Currogate	%Recove	<u> </u>	Qualifier	<u>Limits</u> 70 - 130	_						repared	Analyz		Dil Fa
-Bromofluorobenzene (Surr)		68 S 87	57-	70 - 130 70 - 130							9/23 09:34 9/23 09:34	10/10/23 (		
,4-Difluorobenzene (Surr)		07		70 - 130						10/0	9/23 09.34	10/10/23 (	77.45	
ab Sample ID: LCS 880-641	197/1-A								С	lient	Sample	ID: Lab Co	ontrol S	amp
Aatrix: Solid													ype: To	
Analysis Batch: 64194													Batch:	
				Spike	LCS	LCS						%Rec		
nalyte				Added	Result	Qualifi	ier	Unit		D	%Rec	Limits		
enzene				0.100	0.08681			mg/Kg			87	70 - 130		
oluene				0.100	0.08481			mg/Kg			85	70 - 130		
thylbenzene				0.100	0.07876			mg/Kg			79	70 - 130		
i,p-Xylenes				0.200	0.1616			mg/Kg			81	70 - 130		
-Xylene				0.100	0.08910			mg/Kg			89	70 - 130		
								0 0						
	LCS L													
urrogate		Qualif	ier	Limits										
Bromofluorobenzene (Surr)	114			70 - 130										
4-Difluorobenzene (Surr)	97			70 - 130										
ab Sample ID: LCSD 880-6	4197/2-A							Cli	ient	Sam	ple ID: I	ab Contro	l Samnl	e Du
Atrix: Solid													ype: To	
nalysis Batch: 64194													Batch:	
anaryois Baton. 07107				Spike		LCSD						%Rec	Battin.	RF
nalyte				Added		Qualifi	ier	Unit		D	%Rec	Limits	RPD	Lin
Benzene				0.100	0.08459	_uuiii		mg/Kg			85	70 - 130	3	3
				0.100	0.00-09			mg/itg			00	10-100	5	

2

9

35

35

Toluene

Ethylbenzene

0.08333

0.08601

mg/Kg

mg/Kg

83

86

70 - 130

70 - 130

0.100

0.100

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

10/09/23 17:24

10/10/23 09:17

Prep Type: Total/NA

Prep Batch: 64312

**Client Sample ID: Lab Control Sample** 

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-6 Matrix: Solid	4197/2-A					Clier	nt San	ple ID: I	Lab Contro Prep 1	I Sampl	
Analysis Batch: 64194									Prep	Batch:	64197
-			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
m,p-Xylenes			0.200	0.1652		mg/Kg		83	70 - 130	2	35
o-Xylene			0.100	0.08903		mg/Kg		89	70 - 130	0	35
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	112		70 - 130								
1,4-Difluorobenzene (Surr)	79		70 - 130								

Method: 8015B NM	- Diesel Range	Organics	(DRO) (GC)
------------------	----------------	----------	------------

Lab Sample ID: MB 880-64312/1- Matrix: Solid Analysis Batch: 64318	A					Client Sa	nple ID: Method Blan Prep Type: Total/N Prep Batch: 6431		
	MB	МВ							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<50.0	U	50.0	mg/Kg		10/09/23 17:24	10/10/23 09:17	1	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		10/09/23 17:24	10/10/23 09:17	1	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		10/09/23 17:24	10/10/23 09:17	1	
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane (Surr)		S1+	70 - 130			10/09/23 17:24	10/10/23 09:17	1	

### Lab Sample ID: LCS 880-64312/2-A Matrix: Solid

## Analysis Batch: 64318

o-Terphenyl (Surr)

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	916.1		mg/Kg		92	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	879.0		mg/Kg		88	70 - 130
C10-C28)							

70 - 130

176 S1+

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	126		70 - 130
o-Terphenyl (Surr)	135	S1+	70 - 130

Lab Sample ID: LCSD 880-64312/3-A Matrix: Solid Analysis Batch: 64318		Clien	t Sam	nple ID:		l Sampl ype: To Batch:	tal/NA		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	895.5		mg/Kg		90	70 - 130	2	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	807.7		mg/Kg		81	70 - 130	8	20
C10-C28)									

Page 107 of 161

Eurofins Midland

1

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34133-1 SDG: 22-0104-07

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-64312/3 Matrix: Solid	3-A								Cli	ient S	Sam	ple ID:	Lab Contr Pren	ol Samp Type: To	
Analysis Batch: 64318														p Batch:	
	LCSD L	CSD													
Surrogate	%Recovery G	Qualifier		Limits											
1-Chlorooctane (Surr)	97			70 - 130	-										
o-Terphenyl (Surr)	97			70 - 130											
Method: 300.0 - Anions, Ion C	hromato	grapł	ıy												
- Lab Sample ID: MB 880-64248/1-A												Client S	Sample ID:	Method	l Blank
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 64552															
	I	ИВ МВ													
Analyte	Res	ult Qua	alifier		RL		ι	Unit		D	Pr	repared	Analy	zed	Dil Fac
Chloride	<5.	00 U			5.00		r	mg/Kg					10/12/23	3 13:33	1
Lab Sample ID: LCS 880-64248/2-	Α									Cli	ent	Sample	D: Lab C	ontrol S	Sample
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 64552															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qualif	ier	Unit		D	%Rec	Limits		
Chloride				250		247.4			mg/Kg			99	90 - 110		
Lab Sample ID: LCSD 880-64248/3	3-A								Cli	ient S	Sam	ple ID:	Lab Contr	ol Samp	le Dup
Matrix: Solid													Prep	Type: S	Soluble
Analysis Batch: 64552															
				Spike		LCSD	LCSD						%Rec		RPD
Analyte			_	Added		Result	Qualif	ier	Unit		D	%Rec	Limits	RPD	Limit
Chloride				250		247.6			mg/Kg			99	90 - 110	0	20

Eurofins Midland
# **QC Association Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34133-1 SDG: 22-0104-07

## **GC VOA**

## Prep Batch: 63929

MB 880-63929/5-A					
	Method Blank	Total/NA	Solid	5035	
ep Batch: 64149					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
380-34133-4	C-40 0-4.1'	Total/NA	Solid	5035	
380-34133-5	C-42 0-4.1'	Total/NA	Solid	5035	
MB 880-64149/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-64149/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-64149/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
nalysis Batch: 64194					
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bat
80-34133-1	C-36 0-4.1'	Total/NA	Solid	8021B	641
80-34133-2	C-37 0-4.1'	Total/NA	Solid	8021B	641
80-34133-3	C-38 0-4.1'	Total/NA	Solid	8021B	641
1B 880-63929/5-A	Method Blank	Total/NA	Solid	8021B	639
IB 880-64197/5-A	Method Blank	Total/NA	Solid	8021B	641
.CS 880-64197/1-A	Lab Control Sample	Total/NA	Solid	8021B	641
CSD 880-64197/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	641
ep Batch: 64197					
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bat
80-34133-1	C-36 0-4.1'	Total/NA	Solid	5035	
80-34133-2	C-37 0-4.1'	Total/NA	Solid	5035	
80-34133-3	C-38 0-4.1'	Total/NA	Solid	5035	
/IB 880-64197/5-A	Method Blank	Total/NA	Solid	5035	
CS 880-64197/1-A	Lab Control Sample	Total/NA	Solid	5035	
.CSD 880-64197/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
nalysis Batch: 64401					
ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bat
80-34133-4	C-40 0-4.1'	Total/NA	Solid	8021B	641
80-34133-5	C-42 0-4.1'	Total/NA	Solid	8021B	641
/IB 880-64149/5-A	Method Blank	Total/NA	Solid	8021B	641
CS 880-64149/1-A	Lab Control Sample	Total/NA	Solid	8021B	641
CSD 880-64149/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	641
nalysis Batch: 64421					
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bat
80-34133-1	C-36 0-4.1'	Total/NA	Solid	Total BTEX	
80-34133-2	C-37 0-4.1'	Total/NA	Solid	Total BTEX	
80-34133-3	C-38 0-4.1'	Total/NA	Solid	Total BTEX	
80-34133-4	C-40 0-4.1'	Total/NA	Solid	Total BTEX	
80-34133-5	C-42 0-4.1'	Total/NA	Solid	Total BTEX	

# Prep Batch: 64312

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34133-1	C-36 0-4.1'	Total/NA	Solid	8015NM Prep	
880-34133-2	C-37 0-4.1'	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Released to Imaging: 4/18/2024 8:48:50 AM

```
10/13/2023
```

## **QC Association Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## GC Semi VOA (Continued)

#### Prep Batch: 64312 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34133-3	C-38 0-4.1'	Total/NA	Solid	8015NM Prep	
880-34133-4	C-40 0-4.1'	Total/NA	Solid	8015NM Prep	
880-34133-5	C-42 0-4.1'	Total/NA	Solid	8015NM Prep	
MB 880-64312/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-64312/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-64312/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

#### Analysis Batch: 64318

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34133-1	C-36 0-4.1'	Total/NA	Solid	8015B NM	64312
880-34133-2	C-37 0-4.1'	Total/NA	Solid	8015B NM	64312
880-34133-3	C-38 0-4.1'	Total/NA	Solid	8015B NM	64312
880-34133-4	C-40 0-4.1'	Total/NA	Solid	8015B NM	64312
880-34133-5	C-42 0-4.1'	Total/NA	Solid	8015B NM	64312
MB 880-64312/1-A	Method Blank	Total/NA	Solid	8015B NM	64312
LCS 880-64312/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	64312
LCSD 880-64312/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	64312
nalysis Batch: 64456					

#### Analysis Batch: 64456

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-34133-1	C-36 0-4.1'	Total/NA	Solid	8015 NM	
880-34133-2	C-37 0-4.1'	Total/NA	Solid	8015 NM	
880-34133-3	C-38 0-4.1'	Total/NA	Solid	8015 NM	
880-34133-4	C-40 0-4.1'	Total/NA	Solid	8015 NM	
880-34133-5	C-42 0-4.1'	Total/NA	Solid	8015 NM	

## HPLC/IC

#### Leach Batch: 64248

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34133-1	C-36 0-4.1'	Soluble	Solid	DI Leach	
880-34133-2	C-37 0-4.1'	Soluble	Solid	DI Leach	
880-34133-3	C-38 0-4.1'	Soluble	Solid	DI Leach	
880-34133-4	C-40 0-4.1'	Soluble	Solid	DI Leach	
880-34133-5	C-42 0-4.1'	Soluble	Solid	DI Leach	
MB 880-64248/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-64248/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-64248/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

#### Analysis Batch: 64552

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-34133-1	C-36 0-4.1'	Soluble	Solid	300.0	64248
880-34133-2	C-37 0-4.1'	Soluble	Solid	300.0	64248
880-34133-3	C-38 0-4.1'	Soluble	Solid	300.0	64248
880-34133-4	C-40 0-4.1'	Soluble	Solid	300.0	64248
880-34133-5	C-42 0-4.1'	Soluble	Solid	300.0	64248
MB 880-64248/1-A	Method Blank	Soluble	Solid	300.0	64248
LCS 880-64248/2-A	Lab Control Sample	Soluble	Solid	300.0	64248
LCSD 880-64248/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	64248

5

Job ID: 880-34133-1

SDG: 22-0104-07

Job ID: 880-34133-1 SDG: 22-0104-07

# Lab Sample ID: 880-34133-1

Lab Sample ID: 880-34133-3

Lab Sample ID: 880-34133-4

Matrix: Solid

Matrix: Solid

5 6

9

Client Sample ID: C-36 0-4.1' Date Collected: 10/05/23 11:40

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

Date Received: 10/09/23 08:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	64197	10/09/23 13:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64194	10/10/23 14:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64421	10/10/23 14:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			64456	10/10/23 15:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	64312	10/10/23 08:39	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64318	10/10/23 15:09	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	64248	10/09/23 12:55	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64552	10/12/23 15:46	СН	EET MID

# Client Sample ID: C-37 0-4.1'

#### Date Collected: 10/05/23 11:50 Date Received: 10/09/23 08:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	64197	10/09/23 13:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64194	10/10/23 14:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64421	10/10/23 14:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			64456	10/10/23 15:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	64312	10/10/23 08:39	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64318	10/10/23 15:30	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	64248	10/09/23 12:55	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64552	10/12/23 15:52	CH	EET MID

### Client Sample ID: C-38 0-4.1' Date Collected: 10/05/23 12:00

## Date Received: 10/09/23 08:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	64197	10/09/23 13:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64194	10/10/23 15:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64421	10/10/23 15:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			64456	10/10/23 15:52	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	64312	10/10/23 08:39	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64318	10/10/23 15:52	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	64248	10/09/23 12:55	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64552	10/12/23 16:12	СН	EET MID

#### Client Sample ID: C-40 0-4.1' Date Collected: 10/05/23 12:10 Date Received: 10/09/23 08:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	64149	10/09/23 17:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64401	10/11/23 15:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64421	10/11/23 15:34	SM	EET MID

**Eurofins Midland** 

### Released to Imaging: 4/18/2024 8:48:50 AM

Matrix: Solid

5

9

Job ID: 880-34133-1 SDG: 22-0104-07

## Lab Sample ID: 880-34133-4 Matrix: Solid

Lab Sample ID: 880-34133-5

Date Collected: 10/05/23 12:10 Date Received: 10/09/23 08:23

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

Client Sample ID: C-40 0-4.1'

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			64456	10/10/23 16:36	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	64312	10/10/23 08:39	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64318	10/10/23 16:36	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	64248	10/09/23 12:55	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64552	10/12/23 16:19	СН	EET MID

#### Client Sample ID: C-42 0-4.1' Date Collected: 10/05/23 12:40 Date Received: 10/09/23 08:23

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	64149	10/09/23 17:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64401	10/11/23 16:01	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64421	10/11/23 16:01	SM	EET MID
Total/NA	Analysis	8015 NM		1			64456	10/10/23 16:58	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	64312	10/10/23 08:39	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64318	10/10/23 16:58	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	64248	10/09/23 12:55	AG	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64552	10/12/23 16:25	СН	EET MID

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Matrix: Solid

**Eurofins Midland** 

Authority

Texas

10

## Job ID: 880-34133-1 SDG: 22-0104-07 Laboratory: Eurofins Midland Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below. Identification Number Expiration Date Program NELAP T104704400-23-26 06-30-24 5 6 7

0,	are included in this report, bu bes not offer certification.	ut the laboratory is not certif	ied by the governing authority. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte
8015 NM		Solid	Total TPH
Total BTEX		Solid	Total BTEX

Eurofins Midland

## **Method Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34133-1 SDG: 22-0104-07

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition November 1096 And Its Undetee	
	= TestAmerica Laboratories, Standard Operating Procedure	inion, november 1960 And its Opdates.	
Laboratory R			
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

#### Laboratory References:

Eurofins Midland

Released to Imaging: 4/18/2024 8:48:50 AM

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-34133-1

JOD ID: 660-34 133-1
SDG: 22-0104-07

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-34133-1	C-36 0-4.1'	Solid	10/05/23 11:40	10/09/23 08:23
880-34133-2	C-37 0-4.1'	Solid	10/05/23 11:50	10/09/23 08:23
880-34133-3	C-38 0-4.1'	Solid	10/05/23 12:00	10/09/23 08:23
880-34133-4	C-40 0-4.1'	Solid	10/05/23 12:10	10/09/23 08:23
880-34133-5	C-42 0-4.1'	Solid	10/05/23 12:40	10/09/23 08:23

Released			ટુવા દુરુ No. 2770 CHAIN-OF-CUSTODY
5 Aarson & 5 ssociates, Inc. Environmental Consultants	Midland, TX 79701 432-687-0901 PROJE	ECT LOCATION OR N	PAGE [ OF ] LAB WORK ORDER# AME <u>SACADO PRANS PANS 415</u>
Data Reported to     ROBERT MELSON fm       TRRP report?     S=SOIL     P=PAINT       Yes     No     S=SOIL     P=PAINT       TIME ZONE     A=AIR     OT=OTHER       Time zone/State     MNT     Field	PRESERVATION PRESERVATION UNAOH	OJECT #. <u></u> O	
Sample I D       Lab #       Date       Time       Matrix $\mathcal{L} - 3 \notin \mathcal{O} - 4 / 1'$ 10/5/123       11!40       3 $\mathcal{L} - 3 \notin \mathcal{O} - 4 / 1'$ 10/5/123       11!50       5 $\mathcal{L} - 3 \notin \mathcal{O} - 4 / 1'$ 10/5/123       11!50       5 $\mathcal{L} - 3 \notin \mathcal{O} - 4 / 1'$ 10/5/123       12!30       5 $\mathcal{L} - 3 \notin \mathcal{O} - 4 / 1'$ 10/5/123       12!70       5 $\mathcal{L} - 40 = \mathcal{O} - 4 / 1'$ 1015/123       12!46       5 $\mathcal{L} - 42 = \mathcal{O} - 4 / 1'$ 1015/123       12!46       5 $\mathcal{N}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$ $\mathcal{O}$	HCI HCI HCI HCI HCI HCI HCI HCI		
TOTAL RELINQUISHED BY (Signature) RELINQUISHED BY (Signature) DATE/TIME DATE/TIME	RECEIVED BY (Signature)		B80-34133 Chain of Custody B80-34133 Chain of Custody LABORATORY USE ONLY: RECEIVING TEMP - 3 - 3 THERM# JAC
RELINQUISHED BY (Signature) DATE/TIME	RECEIVED BY (Signature)	1 DAY - 2 DAY - OTHER - 	CUSTODY SEALS - D BROKEN DINTACT D NOT USED CARRIER BILL # HAND DELIVERED

Page 116 of 161

Job Number: 880-34133-1 SDG Number: 22-0104-07

List Source: Eurofins Midland

## Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

#### Login Number: 34133 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14



**Environment Testing** 

# ANALYTICAL REPORT

# PREPARED FOR

Attn: Mr. Mark J Larson Larson & Associates, Inc. 507 N Marienfeld Suite 202 Midland, Texas 79701 Generated 11/20/2023 10:12:48 AM Revision 1

# JOB DESCRIPTION

Salado Draw Pad 415 22-0104-07

# **JOB NUMBER**

880-35343-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701





# **Eurofins Midland**

# **Job Notes**

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## **Authorization**

(806)794-1296

Authorized for release by Holly Taylor, Project Manager Holly.Taylor@et.eurofinsus.com Generated 11/20/2023 10:12:48 AM **Revision 1** 

Laboratory Job ID: 880-35343-1

SDG: 22-0104-07

# **Table of Contents**

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21



# **Definitions/Glossary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-35343-1 SDG: 22-0104-07

Qualifiers		3
GC VOA Qualifier	Qualifier Description	4
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	9
Glossary		10
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	10
DER	Duplicate Error Ratio (normalized absolute difference)	13
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin)

MPN Most Probable Number

MQL Method Quantitation Limit NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POS Positive / Present

PQLPractical Quantitation LimitPRESPresumptive

QCQuality ControlRERRelative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

**Eurofins Midland** 

## Job ID: 880-35343-1

#### Laboratory: Eurofins Midland

#### Narrative

Job Narrative 880-35343-1

#### Revision

The report being provided is a revision of the original report sent on 11/13/2023. The report (revision 1) is being revised to include results for BTEX and TPH per Daniel St Germain (phone).

#### Receipt

The samples were received on 11/6/2023 11:22 AM. Unless otherwise noted below, the samples arrived in good condition, and where required, properly preserved and on ice. The temperature of the cooler at receipt was 2.5° C.

#### General Chemistry

No analytical or quality issues were noted, other than those described in the Definitions/Glossary page.

### Job ID: 880-35343-2

#### Laboratory: Eurofins Midland

Narrative

#### Job Narrative 880-35343-2

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 11/6/2023 11:22 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-66753 and 880-66881 and analytical batch 880-66913 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BF-1 (880-35343-1), BF-2 (880-35343-2), (880-35343-A-1-G MS) and (880-35343-A-1-H MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Spike compounds were inadvertently omitted during the extraction process for the matrix spike/matrix spike duplicate (MS/MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-67028 and analytical batch 880-67152. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-35343-1 SDG: 22-0104-07

# **Client Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## Client Sample ID: BF-1 Date Collected: 11/01/23 15:25 Date Received: 11/06/23 11:22

Page	<i>123</i>	of 1	61

Job ID: 880-35343-1 SDG: 22-0104-07

# Lab Sample ID: 880-35343-1

Matrix: Solid

5

Method: SW846 8021B - Volat Analyte	-	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198		0.00198	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
Toluene	< 0.00198		0.00198	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
Ethylbenzene	< 0.00198		0.00198	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
m,p-Xylenes	< 0.00396		0.00396	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
o-Xylene	< 0.00198		0.00198	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
Xylenes, Total	< 0.00396		0.00396	mg/Kg		11/10/23 16:35	11/15/23 04:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96	· · · · · · · · · · · · · · · · · · ·	70 - 130			11/10/23 16:35	11/15/23 04:17	1
1,4-Difluorobenzene (Surr)	106		70 - 130				11/15/23 04:17	1
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396	mg/Kg			11/15/23 04:17	1
Method: SW846 8015 NM - Die	esel Range (	Organics (	DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			11/16/23 10:15	1
Method: SW846 8015B NM - D	iesel Range	• Organics	(DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U F1	50.0	mg/Kg		11/15/23 09:52	11/16/23 10:15	1
Diesel Range Organics (Over C10-C28)	<50.0	U F1	50.0	mg/Kg		11/15/23 09:52	11/16/23 10:15	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 10:15	1
Surrogate	%Recovery		Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	4	S1-	70 - 130			11/15/23 09:52	11/16/23 10:15	1
o-Terphenyl (Surr)	0.3	S1-	70 - 130			11/15/23 09:52	11/16/23 10:15	1
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<4.97	U	4.97	mg/Kg			11/13/23 11:45	1
lient Sample ID: BF-2					L	ab Sample	e ID: 880-35	
ate Collected: 11/01/23 15:30 ate Received: 11/06/23 11:22							Matrix	: Solid
Method: SW846 8021B - Volat	ile Organic	Compound						
Analyte	-	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
Toluene	<0.00199		0.00199	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
n,p-Xylenes	<0.00398		0.00398	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
p-Xylene	<0.00199		0.00199	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		11/10/23 16:35	11/15/23 04:38	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130			11/10/23 16:35		1

Eurofins Midland

1

11/10/23 16:35 11/15/23 04:38

11/10/23 16:35 11/15/23 04:38

watr

Released to Imaging: 4/18/2024 8:48:50 AM

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

70 - 130

110

# **Client Sample Results**

Page 124 of 161

5

Job ID: 880-35343-1 SDG: 22-0104-07

Lab Sample ID: 880-35343-2

## Client Sample ID: BF-2 Date Collected: 11/01/23 15:30

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

Date Received: 11/06/23 11:22

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/Kg			11/15/23 04:38	1
Method: SW846 8015 NM - Die	esel Range	Organics (	DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6	mg/Kg			11/16/23 11:26	1
Method: SW846 8015B NM - D	iesel Range	• Organics	; (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 11:26	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 11:26	1
Oll Range Organics (Over C28-C36)	<49.6	U	49.6	mg/Kg		11/15/23 09:52	11/16/23 11:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	21	S1-	70 - 130			11/15/23 09:52	11/16/23 11:26	1
o-Terphenyl (Surr)	5	S1-	70 - 130			11/15/23 09:52	11/16/23 11:26	1
Method: EPA 300.0 - Anions, I	on Chroma	tography -	Soluble					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00	mg/Kg			11/11/23 20:13	1
lient Sample ID: BF-3					L	ab Sample	D: 880-35	343-3
ate Collected: 11/01/23 15:35								: Solid

#### Method: SW846 8021B - Volatile Organic Compounds (GC) RL Analyte Result Qualifier Unit D Prepared Dil Fac Analyzed Benzene <0.00200 U 0.00200 mg/Kg 11/10/23 16:35 11/15/23 04:58 1 Toluene 11/10/23 16:35 11/15/23 04:58 <0.00200 U 0.00200 mg/Kg 1 Ethylbenzene <0.00200 U 0.00200 mg/Kg 11/10/23 16:35 11/15/23 04:58 1 m,p-Xylenes <0.00399 U 0.00399 mg/Kg 11/10/23 16:35 11/15/23 04:58 1 o-Xylene <0.00200 U 0.00200 mg/Kg 11/10/23 16:35 11/15/23 04:58 1 Xylenes, Total <0.00399 U 0.00399 mg/Kg 11/10/23 16:35 11/15/23 04:58 1 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 70 - 130 4-Bromofluorobenzene (Surr) 11/10/23 16:35 11/15/23 04:58 112 1 1,4-Difluorobenzene (Surr) 114 70 - 130 11/10/23 16:35 11/15/23 04:58 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Result Qualifier RL Analyte Unit D Prepared Dil Fac Analyzed

Total BTEX	<0.00399	U	0.00399	mg/Kg			11/15/23 04:58	1
Method: SW846 8015 NM - D	iesel Range (	Organics (D	RO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9	mg/Kg			11/16/23 11:48	1
Method: SW846 8015B NM - Analyte	-			Unit	D	Prepared	Analvzed	Dil Fac
Method: SW846 8015B NM - Analyte Gasoline Range Organics (GRO)-C6-C10	-	Qualifier	DRO) (GC) RL 49.9	Unit mg/Kg	D	Prepared 11/15/23 09:52	Analyzed 11/16/23 11:48	Dil Fac

**Eurofins Midland** 

------y

Matrix: Solid

Job ID: 880-35343-1 SDG: 22-0104-07

## Client Sample ID: BF-3 Date Collected: 11/01/23 15:35 Date Received: 11/06/23 11:22

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

# Lab Sample ID: 880-35343-3

Matrix: Solid

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.9	U	49.9	mg/Kg		11/15/23 09:52	11/16/23 11:48	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	114		70 - 130			11/15/23 09:52	11/16/23 11:48	1
o-Terphenyl (Surr)	122		70 - 130			11/15/23 09:52	11/16/23 11:48	1
Method: EPA 300.0 - Anions,	Ion Chromat	tography -	Soluble					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<4.98	U	4.98	mg/Kg			11/11/23 20:19	1

**Eurofins Midland** 

# **Surrogate Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		Percent Surrogate Recovery (Acceptance Limits)						
		BFB1	DFBZ1					
Lab Sample ID	Client Sample ID	(70-130)	(70-130)					
880-35343-1	BF-1	96	106					
880-35343-2	BF-2	102	110					
880-35343-3	BF-3	112	114					
LCS 880-66753/1-A	Lab Control Sample	115	105					
LCSD 880-66753/2-A	Lab Control Sample Dup	112	104					
MB 880-66753/5-A	Method Blank	111	131 S1+					
MB 880-66881/5-A	Method Blank	112	135 S1+					

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

			Percen	t Surrogate Recovery (Acceptance Limits)
b Sample ID	Client Semple ID	1CO1 (70-130)	OTPH1 (70-130)	
343-1	Client Sample ID BF-1		0.3 S1-	
343-1 MS	BF-1	2 S1-	0.2 S1-	
5343-1 MSD	BF-1	2 S1-	0.2 S1-	
343-2	BF-2	21 S1-	5 S1-	
43-3	BF-3	114	122	
)-67028/2-A	Lab Control Sample	97	112	
880-67028/3-A	Lab Control Sample Dup	92	105	
0-67028/1-A	Method Blank	109	124	

#### Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

5 6 7

Prep Type: Total/NA

**Eurofins Midland** 

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## Method: 8021B - Volatile Organic Compounds (GC)

#### Lab Sample ID: MB 880-66753/5-A Matrix: Solid Analysis Batch: 66913

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
Toluene	<0.00200	U	0.00200	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/10/23 16:35	11/14/23 22:53	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/10/23 16:35	11/14/23 22:53	1
1,4-Difluorobenzene (Surr)	131	S1+	70 - 130			11/10/23 16:35	11/14/23 22:53	1

#### Lab Sample ID: LCS 880-66753/1-A Matrix: Solid Analysis Batch: 66913

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1138		mg/Kg		114	70 - 130	
Toluene	0.100	0.09427		mg/Kg		94	70 - 130	
Ethylbenzene	0.100	0.09951		mg/Kg		100	70 - 130	
m,p-Xylenes	0.200	0.2194		mg/Kg		110	70 - 130	
o-Xylene	0.100	0.1062		mg/Kg		106	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	115		70 - 130
1,4-Difluorobenzene (Surr)	105		70 - 130

#### Lab Sample ID: LCSD 880-66753/2-A Matrix: Solid

#### Analysis Batch: 66913

Allalysis Daluli. 00313							Fieh D	baltin. C	0733
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1126		mg/Kg		113	70 - 130	1	35
Toluene	0.100	0.09444		mg/Kg		94	70 - 130	0	35
Ethylbenzene	0.100	0.09635		mg/Kg		96	70 - 130	3	35
m,p-Xylenes	0.200	0.2182		mg/Kg		109	70 - 130	1	35
o-Xylene	0.100	0.1044		mg/Kg		104	70 - 130	2	35
1.000									

	LCSD	LCSD	
Surrogate	LCSD LCSD <u>%Recovery</u> Qualifier <u>112</u> 104	Limits	
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

### Lab Sample ID: MB 880-66881/5-A Matrix: Solid

Analysis Batch: 66913						Prep Batch	: 66881
	MB	MB					
Analyte	Result	Qualifier	RL	Unit D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg	11/13/23 16:38	11/14/23 11:12	1
Toluene	<0.00200	U	0.00200	mg/Kg	11/13/23 16:38	11/14/23 11:12	1

Eurofins Midland

Prep Type: Total/NA

**Client Sample ID: Method Blank** 

Page 127 of 161

Job ID: 880-35343-1 SDG: 22-0104-07

Prep Type: Total/NA

Prep Batch: 66753

**Client Sample ID: Method Blank** 

# Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 66753

<b>Client Sample ID: Lab Contr</b>	ol Sample Dup
Prep	Type: Total/NA
Pre	n Batch: 66753

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MD MD

124

Lab Sample ID: MB 880-66 Matrix: Solid	881/ <b>5-A</b>						le ID: Method Prep Type: To	
Analysis Batch: 66913							Prep Batch	
	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		11/13/23 16:38	11/14/23 11:12	1
m,p-Xylenes	<0.00400	U	0.00400	mg/Kg		11/13/23 16:38	11/14/23 11:12	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		11/13/23 16:38	11/14/23 11:12	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		11/13/23 16:38	11/14/23 11:12	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			11/13/23 16:38	11/14/23 11:12	1
1,4-Difluorobenzene (Surr)	135	S1+	70 - 130			11/13/23 16:38	11/14/23 11:12	1
lethod: 8015B NM - Di	esel Range (	Organics	(DRO) (GC)					
	coor range (	organico						
Lab Sample ID: MB 880-67	028/1-A					<b>Client Samp</b>	le ID: Method	d Blank
Matrix: Solid							Prep Type: To	otal/NA
Analysis Batch: 67152							Prep Batch	: 67028

	IVID								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 07:31	1	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 07:31	1	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		11/15/23 09:52	11/16/23 07:31	1	
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac	
1-Chlorooctane (Surr)	109		70 - 130			11/15/23 09:52	11/16/23 07:31	1	

#### Lab Sample ID: LCS 880-67028/2-A Matrix: Solid Analysis Batch: 67152

o-Terphenyl (Surr)

Analysis Batch: 67152							Prep E	atch: 67028
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1059		mg/Kg		106	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	924.3		mg/Kg		92	70 - 130	
C10-C28)								

70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	97		70 - 130
o-Terphenyl (Surr)	112		70 - 130

## Lab Sample ID: LCSD 880-67028/3-A Matrix: Solid

Analysis Batch: 67152							Prep E	Batch: 6	<b>7028</b>
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	1090		mg/Kg		109	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	1000	952.9		mg/Kg		95	70 - 130	3	20

**Eurofins Midland** 

11/15/23 09:52 11/16/23 07:31

**Client Sample ID: Lab Control Sample** 

**Client Sample ID: Lab Control Sample Dup** 

Prep Type: Total/NA

Prep Type: Total/NA

1

# **QC Sample Results**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

## Method: 801

<b>ble</b> <b>ult</b> 0.0 0.0 <b>WS</b> <b>ery</b> 2	LCSD Qualifier Qualifier U F1 U F1 U F1 MS Qualifier S1- S1-	Limits 70 - 130 70 - 130 70 - 130 Spike Added 1010 1010 1010 <u>Limits</u> 70 - 130 70 - 130	-		<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	<b>%Rec</b> 2 0.3	Prep Tyl Prep B Slient Sam Prep Tyl Prep B %Rec Limits 70 - 130 70 - 130	atch: 6 ple ID: pe: Tot	87028 BF-1 al/NA
<b>ble</b> <b>ult</b> 0.0 0.0 <b>WS</b> <b>ery</b> 2	Qualifier Qualifier U F1 U F1 MS Qualifier S1-	70 - 130 70 - 130 <b>Spike</b> Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	<u>D</u>	<u>%Rec</u>	Client Sam Prep Tyj Prep B %Rec Limits 70 - 130	ple ID: pe: Tot	BF-1 al/NA
<b>ble</b> <b>ult</b> 0.0 0.0 <b>WS</b> <b>ery</b> 2	Qualifier Qualifier U F1 U F1 MS Qualifier S1-	70 - 130 70 - 130 <b>Spike</b> Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	<u>D</u>	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
92 95 05 06 01 01 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0	Sample Qualifier U F1 U F1 MS Qualifier S1-	70 - 130 70 - 130 <b>Spike</b> Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	D	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
<b>ble</b> <b>ult</b> 0.0 0.0 <b>WS</b> <b>ery</b> 2	Qualifier U F1 U F1 MS Qualifier S1-	70 - 130 Spike Added 1010 1010 Limits 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	D	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
ple ult 0.0 0.0 MS ery 2	Qualifier U F1 U F1 MS Qualifier S1-	Spike           Added           1010           1010           1010           1010           70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	<u>D</u>	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
ult 0.0 0.0 WS ery 2	Qualifier U F1 U F1 MS Qualifier S1-	Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	D_	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
ult 0.0 0.0 WS ery 2	Qualifier U F1 U F1 MS Qualifier S1-	Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	<u>D</u>	<u>%Rec</u>	Prep Typ Prep B %Rec Limits 70 - 130	pe: Tot	al/NA
ult 0.0 0.0 WS ery 2	Qualifier U F1 U F1 MS Qualifier S1-	Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	D	2	Prep B %Rec Limits 70 - 130		
ult 0.0 0.0 WS ery 2	Qualifier U F1 U F1 MS Qualifier S1-	Added 1010 1010 <u>Limits</u> 70 - 130	<b>Result</b> <50.5	Qualifier U F1	mg/Kg	<u>D</u>	2	Limits 70 - 130		
0.0 0.0 <b>MS</b> ery 2	U F1 U F1 MS Qualifier S1-	1010 1010 <u>Limits</u> 70 - 130	<50.5	U F1	mg/Kg	<u>D</u>	2	70 - 130		
0.0 WS ery 2	U F1 MS Qualifier S1-	1010 Limits 70 - 130								
MS ery 2	MS Qualifier S1-	Limits	<50.5	U F1	mg/Kg		0.3	70 - 130		
ery 2	<b>Qualifier</b> S1-	70 - 130								
2	S1-	70 - 130								
0.2	S1-	70 130								
		10-150								
							C	lient Sam	ple ID:	BF-1
								Prep Ty	-	
								Prep B		
ole	Sample	Spike	MSD	MSD				%Rec		RPD
ult	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
0.0	U F1	1010	<50.5	U F1	mg/Kg		2	70 - 130	10	20
0.0	U F1	1010	<50.5	U F1	mg/Kg		-0.2	70 - 130	12	20
SD	MSD									
ery	Qualifier	Limits								
2	S1-	70 - 130								
0.2	S1-	70 - 130								
hro	omatogra	aphy								
50 50 7	sult 50.0 50.0 50.0 <i>(SD)</i> <i>(ery)</i> 2 0.2 <i>(hrc)</i>	sult Qualifier 50.0 U F1 50.0 U F1 50.0 U F1 50.0 U F1 50.0 U F1 7 7 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 7 8 8 7 8 8 7 8 8 7 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8	Qualifier         Added           50.0         U F1         1010           50.0         U F1         1010           50.0         U F1         1010           MSD         MSD           very         Qualifier         Limits           2         S1-         70 - 130           0.2         S1-         70 - 130	sult         Qualifier         Added         Result           50.0         U F1         1010         <50.5	Sult         Qualifier         Added         Result         Qualifier           50.0         U F1         1010         <50.5	Sult         Qualifier         Added         Result         Qualifier         Unit           50.0         U F1         1010         <50.5	sult Sult $\overline{U}$ Result $\overline{U}$ F1Qualifier $\overline{1010}$ Added Result $\overline{<50.5}$ Qualifier $\overline{U}$ F1Unit mg/KgD50.0U F11010 $\overline{<50.5}$ U F1mg/Kg50.0U F11010 $\overline{<50.5}$ U F1mg/KgMSD rery $2$ S1- $\overline{70.130}$ $\overline{70.130}$ 0.2S1- $\overline{70.130}$ $\overline{50.5}$ $\overline{50.5}$ Chromatography	Sult         Qualifier         Added         Result         Qualifier         Unit         D         %Rec           50.0         U F1         1010         <50.5	Sult         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits           50.0         U F1         1010         <50.5	Sult         Qualifier         Added         Result         Qualifier         Unit         D         %Rec         Limits         RPD           50.0         U F1         1010         <50.5

Analysis Batch: 66746										
	MB	MB								
Analyte	Result	Qualifier		RL	Unit	D	Р	repared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00	mg/K	g			11/11/23 19:39	1
Lab Sample ID: LCS 880-66460/2-A Matrix: Solid Analysis Batch: 66746						Clien	t Sa	mple ID:	Lab Control S Prep Type: S	
			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride			250	261.9		mg/Kg		105	90 - 110	

**Eurofins Midland** 

Job ID: 880-35343-1

SDG: 22-0104-07

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Page 130 of 161

Job ID: 880-35343-1 SDG: 22-0104-07

## Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-66460/3-A Matrix: Solid Analysis Batch: 66746			C	Client Sa	mple	ID: Lat	Control Prep T		
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	261.6		mg/Kg		105	90 - 110	0	20

**Eurofins Midland** 

5343-1 104-07 2 e Dup oluble

# **QC** Association Summary

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

5

Job ID: 880-35343-1 SDG: 22-0104-07

# GC VOA

### Prep Batch: 66753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35343-1	BF-1	Total/NA	Solid	5035	
880-35343-2	BF-2	Total/NA	Solid	5035	
880-35343-3	BF-3	Total/NA	Solid	5035	
MB 880-66753/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-66753/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-66753/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

## Prep Batch: 66881

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-66881/5-A	Method Blank	Total/NA	Solid	5035	

#### Analysis Batch: 66913

Prep Batch: 66881						8
Lab Sample ID MB 880-66881/5-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 5035	Prep Batch	9
Analysis Batch: 669	13					10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
880-35343-1	BF-1	Total/NA	Solid	8021B	66753	
880-35343-2	BF-2	Total/NA	Solid	8021B	66753	
880-35343-3	BF-3	Total/NA	Solid	8021B	66753	
MB 880-66753/5-A	Method Blank	Total/NA	Solid	8021B	66753	
MB 880-66881/5-A	Method Blank	Total/NA	Solid	8021B	66881	40
LCS 880-66753/1-A	Lab Control Sample	Total/NA	Solid	8021B	66753	13
LCSD 880-66753/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	66753	

#### Analysis Batch: 67121

Lab Sample ID 880-35343-1	Client Sample ID BF-1	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Batch
880-35343-2	BF-2	Total/NA	Solid	Total BTEX	
880-35343-3	BF-3	Total/NA	Solid	Total BTEX	

## GC Semi VOA

#### Prep Batch: 67028

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35343-1	BF-1	Total/NA	Solid	8015NM Prep	
880-35343-2	BF-2	Total/NA	Solid	8015NM Prep	
880-35343-3	BF-3	Total/NA	Solid	8015NM Prep	
MB 880-67028/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-67028/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-67028/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-35343-1 MS	BF-1	Total/NA	Solid	8015NM Prep	
880-35343-1 MSD	BF-1	Total/NA	Solid	8015NM Prep	

#### Analysis Batch: 67152

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35343-1	BF-1	Total/NA	Solid	8015B NM	67028
880-35343-2	BF-2	Total/NA	Solid	8015B NM	67028
880-35343-3	BF-3	Total/NA	Solid	8015B NM	67028
MB 880-67028/1-A	Method Blank	Total/NA	Solid	8015B NM	67028
LCS 880-67028/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	67028
LCSD 880-67028/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	67028
880-35343-1 MS	BF-1	Total/NA	Solid	8015B NM	67028
880-35343-1 MSD	BF-1	Total/NA	Solid	8015B NM	67028

**Eurofins Midland** 

Page 131 of 161

# **QC Association Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415

# GC Semi VOA

### Analysis Batch: 67307

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35343-1	BF-1	Total/NA	Solid	8015 NM	
880-35343-2	BF-2	Total/NA	Solid	8015 NM	
880-35343-3	BF-3	Total/NA	Solid	8015 NM	

## HPLC/IC

#### Leach Batch: 66460

Lab Sample ID 880-35343-1	Client Sample ID BF-1	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch	8
880-35343-2	BF-2	Soluble	Solid	DI Leach		0
880-35343-3	BF-3	Soluble	Solid	DI Leach		9
MB 880-66460/1-A	Method Blank	Soluble	Solid	DI Leach		
LCS 880-66460/2-A	Lab Control Sample	Soluble	Solid	DI Leach		
LCSD 880-66460/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach		

#### Analysis Batch: 66746

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35343-1	BF-1	Soluble	Solid	300.0	66460
880-35343-2	BF-2	Soluble	Solid	300.0	66460
880-35343-3	BF-3	Soluble	Solid	300.0	66460
MB 880-66460/1-A	Method Blank	Soluble	Solid	300.0	66460
LCS 880-66460/2-A	Lab Control Sample	Soluble	Solid	300.0	66460
LCSD 880-66460/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	66460

5

Job ID: 880-35343-1 SDG: 22-0104-07

Job ID: 880-35343-1 SDG: 22-0104-07

Matrix: Solid

Matrix: Solid

5

9

Lab Sample ID: 880-35343-1

Lab Sample ID: 880-35343-2

## Client Sample ID: BF-1 Date Collected: 11/01/23 15:25 Date Received: 11/06/23 11:22

Client: Larson & Associates, Inc.

Project/Site: Salado Draw Pad 415

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	66753	11/10/23 16:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66913	11/15/23 04:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			67121	11/15/23 04:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			67307	11/16/23 10:15	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	67028	11/15/23 09:52	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 10:15	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	66460	11/07/23 18:56	SMC	EET MID
Soluble	Analysis	300.0		1			66746	11/13/23 11:45	СН	EET MID

## Client Sample ID: BF-2 Date Collected: 11/01/23 15:30

Date Received: 11/06/23 11:22

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	66753	11/10/23 16:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66913	11/15/23 04:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			67121	11/15/23 04:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			67307	11/16/23 11:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	67028	11/15/23 09:52	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 11:26	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	66460	11/07/23 18:56	SMC	EET MID
Soluble	Analysis	300.0		1			66746	11/11/23 20:13	СН	EET MID

## Client Sample ID: BF-3 Date Collected: 11/01/23 15:35 Date Received: 11/06/23 11:22

#### Lab Sample ID: 880-35343-3 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	66753	11/10/23 16:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66913	11/15/23 04:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			67121	11/15/23 04:58	SM	EET MID
Total/NA	Analysis	8015 NM		1			67307	11/16/23 11:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	67028	11/15/23 09:52	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	67152	11/16/23 11:48	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	66460	11/07/23 18:56	SMC	EET MID
Soluble	Analysis	300.0		1			66746	11/11/23 20:19	CH	EET MID

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# **Accreditation/Certification Summary**

Clier	t: Larson & Associates, Inc.	
Proje	ct/Site: Salado Draw Pad 41	5

Job ID: 880-35343-1 SDG: 22-0104-07

## Laboratory: Eurofins Midland

uthority	Program	Identification Number	Expiration Date	
exas	NELAP	T104704400-23-26	06-30-24	

**Eurofins Midland** 

# **Method Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-35343-1 SDG: 22-0104-07

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

#### **Protocol References:**

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

**Eurofins Midland** 

# **Sample Summary**

Client: Larson & Associates, Inc. Project/Site: Salado Draw Pad 415 Job ID: 880-35343-1 SDG: 22-0104-07

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-35343-1	BF-1	Solid	11/01/23 15:25	11/06/23 11:22
880-35343-2	BF-2	Solid	11/01/23 15:30	11/06/23 11:22
880-35343-3	BF-3	Solid	11/01/23 15:35	11/06/23 11:22

Released																					2	35	31	1	3			Γ	lo. 32	204
																													STO	
to Imaging:	Aarson & ssociat	t <mark>es, In</mark>	C.		50	)7 N. Mic	lland	d, TX	7970		2	PO	#							_ L	AB	wo	RK	OR	DEI	R#_		SE	OF	
4/18						CARSON						LA	PR	OJE	CT	#	22	-01	24	-0	7		(	COI	LLE	СТС	0R <u>.</u> ≤	TAN	BATE	5
4/18/2024 8:48:50 AM	TRRP report? ☐ Yes  ☑ No	S=SOIL W=WATE A=AIR		AINT SLUDGE OTHER			PRE		TT						R C	<b>\$\$</b> ]					3 2   5									$\square$
(8:50 A	TIME ZONE Time zone/State				_	Iners				SERVED		i::/~				$\left \right $							¥~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~				3 3 3 3			
M	MNT/NM Field Sample I D	Lab #	Date	Time	Matrix	# of Containers	Р	0	2 ⁻⁴ -ICE	UNPRESS	MAL			NO NO								NA NA NA	Y N N N			Jø S		FIELI	O NOTES	
	BF-1		11/1/22		5				X			Ħ			Ħ	Ħ	f	T	Ħ	Í		Ť	Ť	Ť	λ T	f	Í –			
	BF-) BF-2		11/1/23		5				X															Ď	<u> </u>					
- ag	DBF-3		11/11/13	3:35	5				X								_				$\square$	_		×	4		ļ			
									+			┠╌┠		_					$\square$				_		_		ļ			
CI A	<b>b</b>							_	+			┝		_							_				_					
-						1	┝─┼					╋╋			+						$\rightarrow$		_		+	+				
			1			1			╉╍╂		1										-	-+	+	+	+	+				
				-		1			+						+				1		+				+	+		••••		
											1				1				1		+		-		-	1	1			
			_																			1	1	-						
				1	 	<u> </u>																- 1						oqa 	100.00	- ]
									╉╌┨			┼╌┼		_			_		_		_	_	880	-353	43 C	nain c	of Cust	047		
	TOTAL 3	L	1									$\left  \right $										-+-			+		ļ			
	RELINQUISHED BY	(Signature)	)	DATE/T	IME	REGE		BY AS	Signat		<u> </u>		ŀ		-	<u> </u>			[			<u> </u>				-	<u> </u>			
	Dom 094 RELINQUISHED BY				3 122		E	BY (S	J					NC	JRN / DRMA DAY []		UND	TIME	R	ABOF ECEIN	<b>RATC</b>	DRY L G TEN	JSE //P <	ANI J.	3/2	)\$,	- ∙ERM#	#	Ils	
	RELINQUISHED BY (Signature) DATE/TIME RECEIVED BY (Signature)						ure)				20	DAY C DAY C THER	L)			1						BRO	KEN	דאו	FACT [	US NOT US	ED			
	LABORATORY X	mea	>											1						HAN	ID D	ELIVI	ERE	D						_
•				······									4		<u>်</u>	12		2	6	ဖ		00		J	0	ں ا	n   4		<u>ມ</u> N	

Page 137 of 161

## Login Sample Receipt Checklist

Client: Larson & Associates, Inc.

#### Login Number: 35343 List Number: 1 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

14

Job Number: 880-35343-1 SDG Number: 22-0104-07

List Source: Eurofins Midland

Appendix E

Photographic Documentation



Impacted are in gasline trench, viewing to the southwest.



Impacted area in the pasture, viewing to the east.

Page **1** of **13** 



Impacted area in the pasture, viewing to the west.



Impacted area in gasline trench, viewing to the west.

Page **2** of **13** 



Impacted area in gasline trench, viewing to the southeast.



Impacted area in pasture, near gas riser, viewing to the west.

Page **3** of **13** 



Impacted area in the pasture, viewing to the southwest.



Impacted area in gasline trench, viewing to the east.

Page **4** of **13** 



Impacted area in pasture, near the lease road, viewing to the southeast.



Excavated area in the pasture, viewing to the south.

Page **5** of **13**


Excavated area in the pasture, viewing to the southeast.



Excavated area in the pasture, viewing to the southeast.

Page 6 of 13



Excavated area in the pasture, viewing to the south.



Excavated areas in the pasture, near the lease road, viewing to the southwest.

Page **7** of **13** 



Excavated area in the pasture, viewing to the east.



Excavated area in the pasture, with exposed gas lines, viewing to the south.

Page **8** of **13** 



Excavated area in the pasture, near the lease road, viewing to the south.



Backfilled and seeded excavation, viewing to the southwest.

Page **9** of **13** 



Backfilled and seeded excavation, viewing to the northwest.



Backfilled and seeded excavation, viewing to the southwest.

Page **10** of **13** 



Backfilled and seeded excavation, viewing to the northwest.



Backfilled and seeded excavation, viewing to the northwest.

Page **11** of **13** 



Backfilled and seeded excavation, viewing to the northeast.



Backfilled and seeded excavation, viewing to the northeast.

Page **12** of **13** 



Backfilled and seeded excavation, viewing to the southeast.



Bacfilled and seeded excavation, viewing the east.

Page **13** of **13** 

From:	Robert Nelson	
То:	Hamlet, Robert, EMNRD; Velez, Nelson, EMNRD	
Cc:	Halie Butler; Timsan Bricker; Mark Larson	
Subject:	Salado Draw Pad 415 (nAPP2225935775) Excavation Backfill Notification	
Date:	Wednesday, October 18, 2023 3:20:55 PM	
Attachments:	image001.png	
	Table 2 Confirmation Soil Sample Analytical Data Summary -SD Pad 15.pdf	
	Figure 4 - Aerial Map Showing Excavation Area and Confirmation Samples Extended SW.pdf	

# **External Email:** Use caution with links & attachments. The sender of this email is **rnelson@laenvironmental.com**

Hello Mr. Hamlet and Mr. Velez,

Larson & Associates, Inc. (LAI), on behalf of Select Water, submits the attached confirmation (post remediation) laboratory analytical data and sample location map to the New Mexico Oil Conservation Division (OCD) District I to provide two (2) business days notification prior to backfilling the excavation at the Salado Draw Pad 415 (nAPP2225935775) in Lea County, New Mexico. A deferral for sidewall sample C-39 has been requested based on proximity to electrical pole/lease road. Please feel free to contact Halie Butler with Select at hbutler@selectwater.com, Mark Larson (432) 687-0901 or mark@laenvironmental.com, or me with any questions or concerns.

Thank you,

Robert Nelson Project Manager Office – 432-687-0901 Cell – 432-664-4804 rnelson@laenvironmental.com



811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 316787

QUESTIONS	
Operator:	OGRID:
SELECT ENERGY SERVICES, LLC	289068
1820 N I-35	Action Number:
Gainesville, TX 76240	316787
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2225935775
Incident Name	NAPP2225935775 SALADO DRAW PAD 415 @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received

#### Location of Release Source

Please answer all the questions in this group.	
Site Name	SALADO DRAW PAD 415
Date Release Discovered	09/02/2022
Surface Owner	Federal

#### Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

#### Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Crude Oil Released (bbls) Details Not answered. Cause: Human Error | Pit (Specify) | Produced Water | Released: 847 BBL | Recovered: 125 Produced Water Released (bbls) Details

	BBL   LOST: 722 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 316787

QUESTIONS (continued)	
Operator:	OGRID:
SELECT ENERGY SERVICES, LLC	289068
1820 N I-35	Action Number:
Gainesville, TX 76240	316787
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Timsan Bricker Title: ENV Coordinator Email: tbricker@selectenergy.com Date: 02/22/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 156 of 161

Action 316787

QUESTIONS (continued)

Operator:	OGRID:	1
SELECT ENERGY SERVICES, LLC	289068	ĺ
1820 N I-35	Action Number:	ĺ
Gainesville, TX 76240	316787	ĺ
	Action Type:	ĺ
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	1

#### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Direct Measurement
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	d the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Yes

#### Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 37400 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 50 GRO+DRO (EPA SW-846 Method 8015M) 50 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 08/20/2023 On what date will (or did) the final sampling or liner inspection occur 10/03/2023 On what date will (or was) the remediation complete(d) 10/05/2023 What is the estimated surface area (in square feet) that will be reclaimed 5035 What is the estimated volume (in cubic yards) that will be reclaimed 939 What is the estimated surface area (in square feet) that will be remediated 5035 What is the estimated volume (in cubic yards) that will be remediated 939 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

**District I** 

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 157 of 161

Action 316787

QUESTIONS (continued)		
Operator: SELECT ENERGY SERVICES, LLC	OGRID: 289068	
1820 N I-35 Gainesville, TX 76240	Action Number: 316787	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal Not answered OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Yes In which state is the disposal taking place ТΧ What is the name of the out-of-state facility Milestone Orla OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered. (In Situ) Soil Vapor Extraction Not answered. (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered. (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered. (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by

local laws and/or regulations.	
I hereby agree and sign off to the above statement	Name: Timsan Bricker Title: ENV Coordinator Email: tbricker@selectenergy.com Date: 02/22/2024
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to	

the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 316787

QUESTIONS (continued)		
Operator:	OGRID:	
SELECT ENERGY SERVICES, LLC	289068	
1820 N I-35	Action Number:	
Gainesville, TX 76240	316787	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

#### QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction	Yes	
Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction	Select requests a deferral for the area near sample location C-39, due to its proximity to a high traffic lease road.	
What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted	200	
What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted	7.5	
Per Paragraph (2) of Subsection C of 19.15.29.12 NMAC if contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approval until the equipment is removed during other operations, or who the well or facility is plugged or abandoned, whichever comes first.		
Enter the facility ID (f#) on which this deferral should be granted	Not answered.	
Enter the well API (30-) on which this deferral should be granted	30-025-49075 SD 24 13 FEDERAL P415 #016H	
Contamination does not cause an imminent risk to human health, the environment, or groundwater	True	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.  I hereby agree and sign off to the above statement Name: Timsan Bricker Title: ENV Coordinator Email: tbricker@selectenergy.com Date: 02/22/2024		

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

### **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 316787

Page 159 of 161

QUESTIONS (continued)	
Operator:	OGRID:
SELECT ENERGY SERVICES, LLC	289068
1820 N I-35	Action Number:
Gainesville, TX 76240	316787
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	316779
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	10/03/2023
What was the (estimated) number of samples that were to be gathered	45
What was the sampling surface area in square feet	9000

**Remediation Closure Request** 

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	5035	
What was the total volume (cubic yards) remediated	939	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	5035	
What was the total volume (in cubic yards) reclaimed	939	
Summarize any additional remediation activities not included by answers (above)	N/A	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface.		

water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

	Name: Timsan Bricker
I hereby agree and sign off to the above statement	Title: ENV Coordinator
Thereby agree and sign on to the above statement	Email: tbricker@selectenergy.com
	Date: 02/22/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 316787

QUESTIONS (continued)		
Operator: SELECT ENERGY SERVICES, LLC	OGRID: 289068	
1820 N I-35 Gainesville, TX 76240	Action Number: 316787	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		

### clamation Poport

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 161 of 161

CONDITIONS

Action 316787

CONDITIONS Operator: OGRID: SELECT ENERGY SERVICES, LLC 289068 1820 N I-35 Action Number: Gainesville, TX 76240 316787 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

#### CONDITIONS

C	reated	Condition	Condition
B	y		Date
1	nvelez	Deferral is approved. Remediation Due date will be left open until the site has been plugged and abandoned or a major facility deconstruction takes place.	4/18/2024