# **E** N S O L U M

February 20, 2024

**New Mexico Oil Conservation Division** New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

## Re: Closure Request PLU 18 Brushy Draw TB Incident Number NAPP2334060921 Eddy County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared this *Closure Request* to document assessment, excavation, and soil sampling activities performed at the PLU 18 Brushy Draw Tank Battery (TB; Site). The purpose of the Site assessment, excavation, and soil sampling activities was to address waste-containing soil following a release of produced water at the Site. Based on excavation activities and soil sample laboratory analytical results, XTO is submitting this *Closure Request*, describing remediation that has occurred and requesting no further remediation for Incident Number NAPP2334060921. Reclamation and revegetation activities will be completed during pad abandonment.

### SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit E, Section 18, Township 25 South, Range 30 East, in Eddy County, New Mexico (32.13277°, -103.92829°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On November 22, 2023, a pump malfunction caused a coupling to strike a pressure gauge, resulting in the release of approximately 8.30 barrels (bbls) of produced water into a lined containment and onto the surface of the facility pad. A vacuum truck was immediately dispatched to recover free-standing fluids; approximately 4.0 bbls of released fluids were recovered. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification Form C-141 (Form C-141) on December 6, 2023. The release was assigned Incident Number NAPP2334060921.

# SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented below.

Depth to groundwater at the Site is estimated to be greater than 100 feet below ground surface (bgs) based on the nearest groundwater well data. Depth to groundwater data is based on a soil boring permitted by the New Mexico Office of the State Engineer (NMOSE) located approximately 119 feet north of the Site. The soil boring, permit number C-04529, was drilled to assess depth to groundwater on May 14, 2021. The boring was drilled to a total depth of 101 feet bgs and allowed to equilibrate for at

XTO Energy, Inc Closure Request PLU 18 Brushy Draw TB

least 72 hours to allow for slow infill of water to enter the well if present. Groundwater was not detected during drilling or after the 72-hour waiting period and was subsequently backfilled per the NMOSE permit. The Well Record and Log is included in Appendix A. All wells used to determine depth to groundwater are depicted on Figure 1.

The closest continuously flowing or significant watercourse to the Site is a freshwater emergent wetland, located approximately 3,611 feet north of the Site. The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet from any freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Potential Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

## SITE ASSESSMENT AND DELINEATION ACTIVITIES

On January 5, 2024, Ensolum personnel visited the Site to evaluate the release extent based on information provided on the Form C-141 and visual observations. The release extent was mapped utilizing a handheld Global Positioning System (GPS) unit and is depicted on Figure 2. Photographic documentation was conducted during the Site assessment and is included in a Photographic Log in Appendix B. Based on visible staining within the release area, delineation and excavation activities appeared to be warranted.

A 48-hour advance notice of liner inspection (C-141L) was submitted to the NMOCD. A liner integrity inspection was conducted on January 17, 2024. No liner breach was identified and the liner appeared to be operating as designed. Photographic documentation was conducted during the inspection and is included in Appendix B.

Four potholes (PH01 through PH04) were advanced within the release extent by use of heavy equipment to assess the vertical extent of the release. Discrete delineation soil samples were collected from each pothole at depths ranging from 0.5 feet to 2 feet bgs. The delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride using Hach<sup>®</sup> chloride QuanTab<sup>®</sup> test strips. The delineation soil sample locations are depicted on Figure 2. Field screening results and observations for the potholes were logged on lithologic/soil sampling logs, which are included in Appendix C.

The delineation soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Eurofins Laboratories (Eurofins) in Carlsbad, New Mexico, for analysis of the following constituents of concern (COCs): BTEX following United States



XTO Energy, Inc Closure Request PLU 18 Brushy Draw TB

Environmental Protection Agency (EPA) Method 8021B; TPH-GRO, TPH-TPH-DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following EPA Method 300.0. Soil samples delivered to the laboratory the same day they are collected may not have equilibrated to the 6 degrees Celsius required for shipment and long term storage but are considered to have been received in acceptable condition by the laboratory.

### **EXCAVATION SOIL SAMPLING ACTIVITIES**

While impacted soil related to the November 2023 release was not identified at the Site, waste-containg soil was and in accessible areas. As such, waste-containing soil was excavated from the release area as indicated by field screening concentrations from delineation soil samples collected in potholes PH01 through PH04. Excavation activities were performed utilizing a track hoe and transport vehicles. The entirety of the excavation occurred on the well pad. To direct excavation activities, soil was screened for VOCs and chloride.

Following removal of waste-containing soil, 5-point composite soil samples were collected every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples were collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Confirmation soil samples FS01 through FS19 were collected from the floor of the excavation at depths ranging from 1-foot to 2 feet bgs. Confirmation soil samples SW01 through SW05 were collected from the sidewalls of the excavation at depths ranging from the ground surface to 2 feet bgs. The excavation confirmation soil samples were handled and analyzed following the same procedures as described above. The excavation extent and excavation confirmation soil sample locations are presented on Figure 3. Photographic documentation of the excavation is included in Appendix B.

The final excavation extent measured approximately 3,345 square feet. A total of approximately 190 cubic yards of waste-containing soil was removed during the excavation activities. The waste-containing soil was transported and properly disposed of at R360 Landfill Disposal Facility in Hobbs, New Mexico.

# LABORATORY ANALYTICAL RESULTS

Laboratory analytical results for all delineation and confirmation soil samples indicated all COC concentrations were compliant with the Closure Criteria. Laboratory analytical results for delineation soil samples PH01 through PH04, collected at 0.5 feet bgs, indicated chloride concentrations exceeded the reclamation requirement and as such, waste-containing soil was removed during excavation activities. No impacted or waste-containing soil remains in place at the Site. Laboratory analytical results are summarized in Table 1 and the complete laboratory analytical reports are included in Appendix D.

### **CLOSURE REQUEST**

Site assessment, delineation, and excavation activities were conducted at the Site to address the November 2023 release of produced water. Laboratory analytical results for excavation soil samples collected from the final excavation extent indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirement. Based on laboratory analytical results, no further remediation is required. The release is vertically defined by confirmation floor soil samples FS01 through FS19 and laterally defined by confirmation sidewall soil samples SW01 through SW05. No additional excavation will be needed at the time of pad abandonment or major facility reconstruction as a result of this release. Following pad abandonment or major facility reconstruction, the work area will be reseeded with the recommended BLM seed mixture. On January 18, 2024, XTO backfilled the northern half of the excavation because the area was subject to high traffic. The caliche material used for the backfill was



XTO Energy, Inc Closure Request PLU 18 Brushy Draw TB

purchased locally and the area recontoured to match pre-existing Site conditions. Photographic documentation of the backfill is included in Appendix B. The remainder of the excavation is scheduled to be backfilled the week of February 19, 2024.

Excavation of soil has mitigated adverse conditions at this Site. The release has been vertically and laterally defined. The lined containment was inspected and appears to be operating as designed. Depth to groundwater is confirmed to be greater than 100 feet bgs and no other sensitive receptors were identified near the release extent. XTO believes these remedial actions are protective of human health, the environment, and groundwater. As such, XTO respectfully requests no further remediation for Incident Number NAPP2334060921.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, Ensolum, LLC

Mariaha O'Dell

Mariaha O'Dell Staff Geologist

Daniel Moir, P.G. Senior Managing Geologist

cc: Garrett Green, XTO Tommee Lambert, XTO Bureau of Land Management

Appendices:

- Figure 1 Site Receptor Map
- Figure 2 Delineation Soil Sample Locations
- Figure 3 Excavation Soil Sample Locations
- Table 1Soil Sample Analytical Results
- Appendix A Referenced Well Records
- Appendix B Photographic Log
- Appendix C Lithologic / Soil Sampling Logs
- Appendix D Laboratory Analytical Reports & Chain-of-Custody Documentation





**FIGURES** 

.

Received by OCD: 2/20/2024 3:46:53 PM

Page 6 of 123





Environmental, Engineering and Hydrogeologic Consultants

XTO Energy, Inc PLU 18 Brushy Draw TB Incident Number: NAPP2334060921 Unit E, Sec 18, T25S, R30E Eddy County, New Mexico

Received by OCD: 2/20/2024 3:46:53 PM





# TABLES

# E N S O L U M

### TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS PLU 18 Brushy Draw TB XTO Energy, Inc Eddy County, New Mexico

|                 | 1                 |                            |                        |                        |                     |                     |                     |                     |                      |                     |
|-----------------|-------------------|----------------------------|------------------------|------------------------|---------------------|---------------------|---------------------|---------------------|----------------------|---------------------|
| Sample I.D.     | Sample<br>Date    | Sample Depth<br>(feet bgs) | Benzene<br>(mg/kg)     | Total BTEX<br>(mg/kg)  | TPH GRO<br>(mg/kg)  | TPH DRO<br>(mg/kg)  | TPH ORO<br>(mg/kg)  | GRO+DRO<br>(mg/kg)  | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
| NMOCD Table I C | losure Criteria ( | NMAC 19.15.29)             | 10                     | 50                     | NE                  | NE                  | NE                  | 1,000               | 2,500                | 20,000              |
|                 |                   |                            |                        | Deli                   | neation Soil Sa     | mples               |                     |                     |                      |                     |
| PH01            | 01/17/2024        | 0.5                        | <0.00200               | <0.00399               | <50.1               | <50.1               | <50.1               | <50.1               | <del>&lt;50.1</del>  | <del>2,760</del>    |
| PH01A           | 01/17/2024        | 2                          | <0.00200               | <0.00400               | <50.1               | <50.1               | <50.1               | <50.1               | <50.1                | 32.3                |
| PH02            | 01/17/2024        | 0.5                        | <del>&lt;0.00199</del> | <del>&lt;0.00398</del> | <50.4               | <50.4               | <50.4               | <50.4               | <del>&lt;50.4</del>  | <del>3,750</del>    |
| PH02A           | 01/17/2024        | 2                          | <0.00200               | < 0.00399              | 56.3                | 56.3                | 56.3                | 56.3                | 56.3                 | 73.6                |
| PH03            | 01/17/2024        | <del>0.5</del>             | <del>&lt;0.00201</del> | <del>&lt;0.00402</del> | <del>&lt;49.8</del> | <del>&lt;49.8</del> | <del>&lt;49.8</del> | <del>&lt;49.8</del> | <del>&lt;49.8</del>  | <del>988</del>      |
| PH03A           | 01/17/2024        | 1                          | <0.00200               | <0.00401               | <49.7               | <49.7               | <49.7               | <49.7               | <49.7                | 50.0                |
| PH04            | 01/17/2024        | 0.5                        | <0.00200               | <del>&lt;0.00399</del> | <49.6               | <del>&lt;49.6</del> | <49.6               | <del>&lt;49.6</del> | <49.6                | <del>1,380</del>    |
| PH04A           | 01/17/2024        | 1                          | <0.00201               | <0.00402               | <50.2               | <50.2               | <50.2               | <50.2               | <50.2                | 45.8                |
|                 |                   |                            |                        | Conf                   | irmation Soil Sa    | amples              |                     |                     |                      |                     |
| FS01            | 01/17/2024        | 1                          | <0.00200               | <0.00401               | <50.4               | <50.4               | <50.4               | <50.4               | <50.4                | 90.3                |
| FS02            | 01/17/2024        | 1                          | <0.00202               | <0.00403               | <50.5               | <50.5               | <50.5               | <50.5               | <50.5                | 218                 |
| FS03            | 01/17/2024        | 1                          | <0.00199               | <0.00398               | <50.0               | <50.0               | <50.0               | <50.0               | <50.0                | 85.9                |
| FS04            | 01/17/2024        | 1                          | <0.00198               | <0.00397               | <49.6               | <49.6               | <49.6               | <49.6               | <49.6                | 37.8                |
| FS05            | 01/17/2024        | 1                          | <0.00199               | <0.00398               | <49.6               | <49.6               | <49.6               | <49.6               | <49.6                | 86.0                |
| FS06            | 01/17/2024        | 1                          | <0.00200               | < 0.00399              | <50.3               | <50.3               | <50.3               | <50.3               | <50.3                | 48.4                |
| FS07            | 01/17/2024        | 1                          | <0.00201               | <0.00402               | <50.1               | <50.1               | <50.1               | <50.1               | <50.1                | 69.8                |
| FS08            | 01/18/2024        | 1                          | <0.00201               | <0.00402               | <49.6               | <49.6               | <49.6               | <49.6               | <49.6                | 78.8                |
| FS09            | 01/18/2024        | 1                          | <0.00199               | <0.00398               | <49.7               | <49.7               | <49.7               | <49.7               | <49.7                | 23.4                |
| FS10            | 01/18/2024        | 2                          | <0.00199               | <0.00398               | <49.5               | <49.5               | <49.5               | <49.5               | <49.5                | 57.9                |
| FS11            | 01/18/2024        | 2                          | <0.00200               | < 0.00399              | <49.9               | <49.9               | <49.9               | <49.9               | <49.9                | 35.5                |
| FS12            | 01/18/2024        | 2                          | <0.00201               | <0.00402               | <49.6               | <49.6               | <49.6               | <49.6               | <49.6                | 245                 |
| FS13            | 01/18/2024        | 2                          | <0.00200               | <0.00401               | <50.2               | <50.2               | <50.2               | <50.2               | <50.2                | 379                 |
| FS14            | 01/18/2024        | 2                          | <0.00199               | <0.00398               | <49.7               | <49.7               | <49.7               | <49.7               | <49.7                | 122                 |
| FS15            | 01/18/2024        | 2                          | <0.00200               | <0.00399               | <49.7               | <49.7               | <49.7               | <49.7               | <49.7                | 11.1                |
| FS16            | 01/18/2024        | 2                          | <0.00201               | <0.00402               | <49.7               | <49.7               | <49.7               | <49.7               | <49.7                | 8.30                |
| FS17            | 01/18/2024        | 2                          | <0.00200               | <0.00401               | <50.4               | <50.4               | <50.4               | <50.4               | <50.4                | 14.6                |
| FS18            | 01/18/2024        | 2                          | <0.00199               | <0.00398               | <50.5               | <50.5               | <50.5               | <50.5               | <50.5                | <5.02               |
| FS19            | 01/18/2024        | 2                          | <0.00199               | <0.00398               | <50.4               | <50.4               | <50.4               | <50.4               | <50.4                | 8.12                |
| SW01            | 01/17/2024        | 0 - 1                      | <0.00200               | <0.00401               | <50.5               | <50.5               | <50.5               | <50.5               | <50.5                | 78.5                |
| SW02            | 01/17/2024        | 0 - 1                      | <0.00201               | <0.00402               | <49.5               | <49.5               | <49.5               | <49.5               | <49.5                | 22.7                |
| SW03            | 01/18/2024        | 0 - 2                      | <0.00199               | <0.00398               | <50.5               | <50.5               | <50.5               | <50.5               | <50.5                | 28.4                |

Ensolum

.

Page 10 of 123

# ENSOLUM

### TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS PLU 18 Brushy Draw TB XTO Energy, Inc Eddy County, New Mexico

| Sample I.D.                                    | Sample<br>Date | Sample Depth<br>(feet bgs) | Benzene<br>(mg/kg) | Total BTEX<br>(mg/kg) | TPH GRO<br>(mg/kg) | TPH DRO<br>(mg/kg) | TPH ORO<br>(mg/kg) | GRO+DRO<br>(mg/kg) | Total TPH<br>(mg/kg) | Chloride<br>(mg/kg) |
|------------------------------------------------|----------------|----------------------------|--------------------|-----------------------|--------------------|--------------------|--------------------|--------------------|----------------------|---------------------|
| NMOCD Table I Closure Criteria (NMAC 19.15.29) |                | 10                         | 50                 | NE                    | NE                 | NE                 | 1,000              | 2,500              | 20,000               |                     |
| SW04                                           | 01/18/2024     | 0 - 2                      | <0.00200           | <0.00399              | <49.8              | <49.8              | <49.8              | <49.8              | <49.8                | 141                 |
| SW05                                           | 01/18/2024     | 0 - 2                      | <0.00201           | <0.00402              | <49.9              | <49.9              | <49.9              | <49.9              | <49.9                | 441                 |

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in  $\operatorname{\boldsymbol{bold}}$  exceed the NMOCD Table I Closure Criteria

GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

Grey text indicates soil sample removed during excavation activities



# APPENDIX A

Referenced Well Records



# WELL RECORD & LOG

# OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

| ION                              | ose pod no<br>POD1 (M                            |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 0.)                                                                |                       | WELL TAG ID NO.<br>n/a                                              |                      |             | OSE FILE NO(3<br>C-4529                    | 5).                                | · · · · · ·                             |                          |  |  |
|----------------------------------|--------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------|----------------------|-------------|--------------------------------------------|------------------------------------|-----------------------------------------|--------------------------|--|--|
| OCATI                            | WELL OWN                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             | PHONE (OPTIC                               | ONAL)                              |                                         |                          |  |  |
| MELL I                           | WELL OWN<br>6401 Holid                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | ig address<br>Dr.                                                  |                       |                                                                     |                      |             | CITY STATE ZIP<br>Midland TX 79707         |                                    |                                         |                          |  |  |
| GENERAL AND WELL LOCATION        | WELL<br>LOCATIO<br>(FROM GP                      | rs) 💾                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ATITUDE                                                            | egrees<br>32°<br>103° | MINUTES<br>8'<br>55'                                                | SECON<br>2.0<br>42.2 | 7" <u>N</u> |                                            |                                    |                                         |                          |  |  |
| 1. GENI                          |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  | LICENSE NO<br>124                                |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | NAME OF LICENSED                                                   |                       | Jackie D. Atkins                                                    |                      |             |                                            | NAME OF WELL DRI<br>Atkins Eng     | ILLING COMPANY<br>tineering Associates, | ínc.                     |  |  |
|                                  | DRILLING S<br>05/14/                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | DRILLING ENDED<br>05/14/2021                                       |                       | MPLETED WELL (FI<br>rary well materia                               |                      |             | le depth (ft)<br>101                       | DEPTH WATER FIRS                   | ST ENCOUNTERED (FT<br>n/a               | )                        |  |  |
| N                                | COMPLETE                                         | OMPLETED WELL IS: Image: Artesian image: Artesia |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| VIIC                             | DRILLING FLUID: 📝 AIR 🗍 MUD ADDITIVES - SPECIFY: |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| RM                               | DRILLING M                                       | IETHOD:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | THOD: ROTARY HAMMER CABLE TOOL COTHER - SPECIFY: Hollow Stem Auger |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| 2. DRILLING & CASING INFORMATION | DEPTH<br>FROM                                    | (feet bgl)<br>TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | BORE HOLE<br>DIAM<br>(inches)                                      | (include              | MATERIAL AND<br>GRADE<br>each casing string,<br>sections of screen) | and                  | CONI        | ASING<br>NECTION<br>TYPE<br>ling diameter) | CASING<br>INSIDE DIAM.<br>(inches) | CASING WALL<br>THICKNESS<br>(inches)    | SLOT<br>SIZE<br>(inches) |  |  |
| & C/                             | 0                                                | 101                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ±6.5                                                               |                       | Boring- HSA                                                         |                      | (           |                                            |                                    |                                         | -                        |  |  |
| <b>B</b> N                       |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       | ·                                                                   |                      |             |                                            |                                    |                                         |                          |  |  |
| ILLL                             |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    | ·                                       |                          |  |  |
| .DR                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| 7                                |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | }                     |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         | <u> </u>                 |  |  |
| . 1                              | DEPTH                                            | (feet bgl)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | BORE HOLE                                                          |                       | IST ANNULAR SI                                                      |                      |             |                                            | AMOUNT                             | METHO                                   |                          |  |  |
| RIAI                             | FROM                                             | TO                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | DIAM. (inches)                                                     | GRA                   | VEL PACK SIZE                                                       | -RANGE               | E BY INTE   | RVAL                                       | (cubic feet)                       | PLACE                                   | MEN I                    |  |  |
| ATE                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| RM                               |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      | <u> </u>    |                                            |                                    |                                         |                          |  |  |
| ANNULAR MATERIAL                 |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    | 1                     |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| INN                              |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| <b>3.</b> A                      |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
|                                  |                                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                    |                       |                                                                     |                      |             |                                            |                                    |                                         |                          |  |  |
| EOD                              | OSE INTER                                        | NAT TIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 8                                                                  |                       |                                                                     |                      |             | 11/0 0                                     | WELL RECORD                        | A LOG Marrian Of                        | 0/170                    |  |  |

| FOR OSE INTERINAL OSE |               | W1       | 11-20 WL | LI KLCOKD & LOO | version ou joir () |   |
|-----------------------|---------------|----------|----------|-----------------|--------------------|---|
| FILE NO. (-455        | 20 POD NO.    |          | NN NO.   | 492934          |                    |   |
| LOCATION F. A.        | 255.30E.K.131 | WELL TAC | G ID NO. |                 | PAGE 1 OF          | 2 |
|                       |               |          |          |                 |                    |   |

|                              | DEPTH (1    | TO          | THICKNESS<br>(feet)     | INCLUDE WATE                           | D TYPE OF MATERIAL<br>R-BEARING CAVITIES<br>plemental sheets to fully     | OR FRA         | <b>ACTURE ZONE</b> | s      | WAT<br>BEAR<br>(YES) | ING?     | ESTIMATED<br>YIELD FOR<br>WATER-<br>BEARING<br>ZONES (gpm) |
|------------------------------|-------------|-------------|-------------------------|----------------------------------------|---------------------------------------------------------------------------|----------------|--------------------|--------|----------------------|----------|------------------------------------------------------------|
|                              | 0           | 4           | 4                       | SAND, poorly graded                    | , fine-very grained, calic                                                | he gravel      | , Reddish-brown    | , dry  | Y                    | √ N      |                                                            |
|                              | 4           | 29          | 25                      |                                        | solidated, with sand med                                                  | -              |                    |        | Y                    | √ N      |                                                            |
|                              | 29          | 39          | 10                      |                                        | fine-very grained, some                                                   |                |                    |        | Y                    | √ N      |                                                            |
|                              | 39          | 54          | 15                      | SILTY SAND, p                          | oorly graded, very- fine g                                                | rained, L      | ight brown, dry    |        | Y                    | √ N      |                                                            |
|                              | 54          | 59          | 5                       |                                        | graded, very- fine grained                                                |                |                    | wn, dr | Y                    | √N       |                                                            |
| L                            | 59          | 73          | 14                      | SANDY CLAY, very-f                     | ine grained sand, low pla                                                 | sticity, B     | rown- Red Brow     | n, moi | Y                    | √N       |                                                            |
| 4. HYDROGEOLOGIC LOG OF WELL | 73          | 79          | 6                       | ······                                 | plasticity, very-fine grain                                               | -              |                    |        | Y                    | √N       |                                                            |
| OF V                         | 79          | 83          | 4                       | ······································ | ine grained sand, low pla                                                 |                |                    |        | Y                    | √ N      |                                                            |
| 00                           | 83          | 94          | 9                       |                                        | fine grained sand, low pl                                                 |                |                    |        | Y                    | √ N      |                                                            |
| IC IV                        | 94          | 99          | 5                       |                                        | ine grained sand, low pla                                                 |                |                    |        | Y                    | √ N      |                                                            |
| 0ĊI                          | 99          | 101         | 2                       |                                        | ry-fine grained sand, low                                                 |                |                    |        | Y                    | √ N      |                                                            |
| EOL                          |             |             |                         |                                        | .)                                                                        | <u>p======</u> | ,                  | ~/     | Y                    | N        |                                                            |
| SOG                          |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
| IQY                          |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
| 4. H                         |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
|                              |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
|                              |             |             |                         |                                        |                                                                           |                |                    |        | -<br>Y               | N        |                                                            |
|                              |             |             |                         |                                        |                                                                           |                |                    |        | -<br>Y               | N        |                                                            |
|                              |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
|                              |             |             |                         |                                        |                                                                           |                |                    |        | Y                    | N        |                                                            |
|                              | • •         |             | · · · · · · · · · · · · |                                        | • • •                                                                     |                |                    |        | <br>Y                | N        |                                                            |
|                              | METHOD      | SED TO ES   | TIMATE VIELD            | OF WATER-BEARING                       | S STRATA.                                                                 |                |                    |        | L ESTIN              |          |                                                            |
|                              |             | _           |                         |                                        | HER – SPECIFY:                                                            |                |                    |        | L YIELD              |          | 0.00                                                       |
| NOISI                        | WELL TES    |             |                         |                                        | A COLLECTED DURIN                                                         |                |                    |        |                      |          |                                                            |
| TEST; RIG SUPERVISI          | MISCELLA    | NEOUS INF   | fe                      |                                        | ils removed and the soi<br>ce, then hydrated bent<br>? on-site geologist. |                |                    |        |                      |          |                                                            |
| TES                          | PRINT NAM   | IE(S) OF DI | RILL RIG SUPER          | VISOR(S) THAT PRO                      | VIDED ONSITE SUPER                                                        | VISION         | OF WELL CON        | STRUC  | CTION O              | THER TH  | AN LICENSEE:                                               |
| ŝ                            | Shane Eldri | lge, Carme  | lo Trevino, Car         | neron Pruitt                           |                                                                           |                |                    |        |                      |          |                                                            |
| SIGNATURE                    | CORRECT I   | ECORD O     | F THE ABOVE I           | DESCRIBED HOLE AN                      | EST OF HIS OR HER K<br>D THAT HE OR SHE W<br>PLETION OF WELL DR           | TLL FIL        | E THIS WELL F      |        |                      |          |                                                            |
| 6. SIGN                      | Jack A      | tkins       |                         | Jac                                    | kie D. Atkins                                                             |                |                    |        | 06/09                | 0/2021   |                                                            |
| 9                            |             | SIGNAT      | URE OF DRILLE           | ER / PRINT SIGNEE                      | NAME                                                                      |                |                    |        |                      | DATE     |                                                            |
| _FOF                         | OSE INTER   | NAL USE     |                         |                                        |                                                                           |                | WR-20 WE           | LL REC | CORD &               | LOG (Ver | rsjon 06/30/2017)                                          |
| FIL                          | E NO.       | (           | 1625                    |                                        | POD NO.                                                                   |                | TRN NO.            |        | 920                  | 739      | †                                                          |
| LO                           | CATION      |             |                         |                                        |                                                                           | WEI            | L TAG ID NO.       | 00     | •                    | -        | PAGE 2 OF 2                                                |

.



# APPENDIX B

Photographic Log







APPENDIX C

Lithologic Soil Sampling Logs

| ENSOLUM<br>Site Name: PLU 18 Brushy Draw TB<br>Incident Number: NAPP2334060921<br>Job Number: 03C1558301                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s<br>raded, very                                      |                                           |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|-------------------------------------------|
| Job Number: 03C1558301   LITHOLOGIC / SOIL SAMPLING LOG Logged By: M. O'Dell Method:   Coordinates: 32.132476, -103.928340 Hole Diameter: 2.5' Total Dep   Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloperformed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor. <th cols<="" td=""><td>pth: 2'<br/>pride test<br/>S<br/>raded, very</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>pth: 2'<br/>pride test<br/>S<br/>raded, very</td> | pth: 2'<br>pride test<br>S<br>raded, very |
| Job Number: 03C1558301   LITHOLOGIC / SOIL SAMPLING LOG Logged By: M. O'Dell Method:   Coordinates: 32.132476, -103.928340 Hole Diameter: 2.5' Total Dep   Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloperformed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor.   Mathematication of soil to distilled water. All chloride screenings include a +40% correction factor. <th cols<="" td=""><td>pth: 2'<br/>pride test<br/>S<br/>raded, very</td></th>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | <td>pth: 2'<br/>pride test<br/>S<br/>raded, very</td> | pth: 2'<br>pride test<br>S<br>raded, very |
| LITHOLOGIC / SOIL SAMPLING LOG Logged By: M. O'Dell Method:   Coordinates: 32.132476, -103.928340 Hole Diameter: 2.5' Total Deg   Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloperformed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor. Image: Comment is include a +40% correction factor.   Image: Comment is the index of                                                                                   | pth: 2'<br>pride test<br>S<br>raded, very             |                                           |
| Coordinates: 32.132476, -103.928340 Hole Diameter: 2.5' Total Dep   Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chlo performed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.   Total Dep   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Total Dep   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Total Dep   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Total Dep   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Option of soil to distilled water. All chloride screenings include a +40% correction factor.   Depth (ft bgs)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | pth: 2'<br>pride test<br>S<br>raded, very             |                                           |
| Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloperformed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.   an tion an tion an tion and ti                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | s<br>raded, very                                      |                                           |
| performed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s<br>raded, verv                                      |                                           |
| an triangle Depth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | raded, verv                                           |                                           |
| D6,6700.0YPH010.5CCHE<br>(fill)Caliche/Sand mixture. Brown, well gr<br>fine to fine grained, dry, fill.D1,7080.0N11SWSand. Brown, very fine to fine grained<br>graded, dryD<168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | raded, verv                                           |                                           |
| D6,6700.0YPH010.5CCHE<br>(fill)Caliche/Sand mixture. Brown, well gr<br>fine to fine grained, dry, fill.D1,7080.0N11SWSand. Brown, very fine to fine grained<br>graded, dryD<168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | raded, verv                                           |                                           |
| D6,6700.0YPH010.5CCHE<br>(fill)Caliche/Sand mixture. Brown, well gr<br>fine to fine grained, dry, fill.D1,7080.0N11SWSand. Brown, very fine to fine grained<br>graded, dryD<168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
| D6,6700.0YPH010.5CCHE<br>(fill)Caliche/Sand mixture. Brown, well gr<br>fine to fine grained, dry, fill.D1,7080.0N11SWSand. Brown, very fine to fine grained<br>graded, dryD<168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
| D 6,670 0.0 Y PH01 0.5 Image: Second secon | d, well                                               |                                           |
| D 1,708 0.0 N 1 1 SW Sand. Brown, very fine to fine graine graded, dry   D <168                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | d, well                                               |                                           |
| D <168 0.0 N PH01A 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | d, well                                               |                                           |
| D <168 0.0 N PH01A 2 2 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                       |                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | $\sim$                                                |                                           |

|                                                                                                                                                                                                                                                         | _              |          |           |                             |                   |                     | Sample Name: PH02                                       | Date: 01/17/2024                |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|-----------------------------|-------------------|---------------------|---------------------------------------------------------|---------------------------------|--|--|
|                                                                                                                                                                                                                                                         | E              | N        |           | ΟΙ                          |                   | Μ                   | Site Name: PLU 18 Brushy Draw                           |                                 |  |  |
|                                                                                                                                                                                                                                                         |                |          |           |                             |                   |                     |                                                         |                                 |  |  |
| <b> </b>                                                                                                                                                                                                                                                |                | 0.01     |           |                             |                   |                     | Job Number: 03C1558301                                  |                                 |  |  |
|                                                                                                                                                                                                                                                         |                |          | -         | SAMPLING                    | i LOG             |                     | Logged By: M. O'Dell                                    | Method: Trackhoe                |  |  |
| Coordinates: 3                                                                                                                                                                                                                                          |                |          |           | the lungue of               |                   | Hole Diameter: 2.5' | Total Depth: 2'                                         |                                 |  |  |
| Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor. |                |          |           |                             |                   |                     |                                                         |                                 |  |  |
| Moisture<br>Content<br>Chloride<br>(ppm)                                                                                                                                                                                                                | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic D                                            |                                 |  |  |
| D 4,833                                                                                                                                                                                                                                                 | 0.0            | N        | PH02      | 0.5                         | 0<br>             | CCHE<br>(fill)      | Caliche/Sand mixture. Bro<br>fine to fine grained, dry, | own, well graded, very<br>fill. |  |  |
| D 3,450                                                                                                                                                                                                                                                 | 0.0            | N        |           | 1 _                         | 1                 | SW                  | Sand. Brown, very fine to graded, dry                   | fine grained, well              |  |  |
| D 201.6                                                                                                                                                                                                                                                 | 0.0            | N        | PH02A     | 2                           | 2                 |                     |                                                         |                                 |  |  |
|                                                                                                                                                                                                                                                         |                |          |           |                             |                   |                     |                                                         |                                 |  |  |

|                                                                                                                                                                                                                                                         |                |          |             |                             |                   |                     | Sample Name: PH03                                    | Date: 01/17/2024                     |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-------------|-----------------------------|-------------------|---------------------|------------------------------------------------------|--------------------------------------|--|--|--|
|                                                                                                                                                                                                                                                         |                |          |             |                             |                   |                     | Site Name: PLU 18 Brushy Dra                         |                                      |  |  |  |
|                                                                                                                                                                                                                                                         |                |          |             | ΟΙ                          |                   |                     | Incident Number: NAPP2334060921                      |                                      |  |  |  |
|                                                                                                                                                                                                                                                         |                |          |             |                             |                   |                     | Job Number: 03C1558301                               |                                      |  |  |  |
|                                                                                                                                                                                                                                                         | LITHOL         | OGI      |             | SAMPLING                    | G LOG             |                     | Logged By: M. O'Dell Method: Trackhoe                |                                      |  |  |  |
| Coordinates: 32.132865, -103.928335                                                                                                                                                                                                                     |                |          |             |                             |                   |                     | Hole Diameter: 2.5'                                  | Total Depth: 1'                      |  |  |  |
| Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test performed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor. |                |          |             |                             |                   |                     |                                                      |                                      |  |  |  |
| performed wit                                                                                                                                                                                                                                           | h 1:4 dilu     | tion f   | actor of so | il to distilled             | water. All c      | hloride sc          | reenings include a +40% corre                        | ction factor.                        |  |  |  |
| Moisture<br>Content<br>Chloride<br>(ppm)                                                                                                                                                                                                                | Vapor<br>(ppm) | Staining | Sample ID   | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol |                                                      | Descriptions                         |  |  |  |
| D 2,996                                                                                                                                                                                                                                                 | 0.0            | N        | PH03        | 0.5                         | <u> </u> 0<br>-   | CCHE<br>(fill)      | Caliche/Sand mixture. B<br>fine to fine grained, dry | Brown, well graded, very<br>/, fill. |  |  |  |
| D <168                                                                                                                                                                                                                                                  | 0.0            | Ν        | PH03A       | 1                           | 1                 | SW                  | Sand. Brown, very fine t<br>graded, dry              | to fine grained, well                |  |  |  |
|                                                                                                                                                                                                                                                         |                |          |             |                             | TD                | @ 1' bg             | IS.                                                  |                                      |  |  |  |
|                                                                                                                                                                                                                                                         |                |          |             |                             |                   |                     |                                                      |                                      |  |  |  |

|                                                                                                                                                                                                     |                |          |           |                             |                   |                     |                                                                    | D : 01/17/2024       |  |  |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------|----------|-----------|-----------------------------|-------------------|---------------------|--------------------------------------------------------------------|----------------------|--|--|--|
|                                                                                                                                                                                                     |                |          |           |                             |                   |                     | Sample Name: PH04                                                  | Date: 01/17/2024     |  |  |  |
|                                                                                                                                                                                                     | E              | N        | S         | ΟΙ                          |                   | Μ                   | Site Name: PLU 18 Brushy Draw TE<br>Incident Number: NAPP233406092 |                      |  |  |  |
|                                                                                                                                                                                                     |                | _        |           | -                           |                   | -                   | Job Number: 03C1558301                                             |                      |  |  |  |
|                                                                                                                                                                                                     |                | 0.01     |           | SAMPLING                    |                   |                     |                                                                    | Method: Trackhoe     |  |  |  |
| Coordinator                                                                                                                                                                                         |                |          | -         | SAIVIPLINC                  |                   |                     | Logged By: M. O'Dell<br>Hole Diameter: 2.5'                        | Total Depth: 1'      |  |  |  |
| Coordinates: 32.133109, -103.928345Hole Diameter: 2.5'Total Depth: 1'Comments: Field screening conducted with HACH Chloride Test Strips and PID for chloride and vapor, respectively. Chloride test |                |          |           |                             |                   |                     |                                                                    | •                    |  |  |  |
| performed with 1:4 dilution factor of soil to distilled water. All chloride screenings include a +40% correction factor.                                                                            |                |          |           |                             |                   |                     |                                                                    |                      |  |  |  |
| Moisture<br>Content<br>Chloride<br>(ppm)                                                                                                                                                            | Vapor<br>(ppm) | Staining | Sample ID | Sample<br>Depth<br>(ft bgs) | Depth<br>(ft bgs) | USCS/Rock<br>Symbol | Lithologic Des                                                     |                      |  |  |  |
| D 1,708                                                                                                                                                                                             | 0.0            | N        | PH04      | ۱<br>0.5                    | <u> </u> 0<br>-   | CCHE<br>(fill)      | Caliche/Sand mixture. Brow fine to fine grained, dry, fill.        | n, well graded, verv |  |  |  |
| D <168                                                                                                                                                                                              | 0.0            | N        | PH04A     | 1                           | 1                 | SW                  | Sand. Brown, very fine to fir<br>graded, dry                       | e grained, well      |  |  |  |
|                                                                                                                                                                                                     |                |          |           |                             | TU                | @ 1' bg             | I<br>!S.                                                           |                      |  |  |  |
|                                                                                                                                                                                                     |                |          |           |                             |                   |                     |                                                                    |                      |  |  |  |



# APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

Received by OCD: 2/20/2024 3:46:53 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 1/31/2024 1:34:38 PM

# JOB DESCRIPTION

PLU 18 Brushy Draw TB 03C1558301

# **JOB NUMBER**

890-5982-1

RT OR Belill Jum J St. 400 701

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

# **Eurofins Carlsbad**

# Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

# Authorization

AMER

Generated 1/31/2024 1:34:38 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5982-1 SDG: 03C1558301

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 21 |
| QC Sample Results      | 23 |
| QC Association Summary | 33 |
| Lab Chronicle          | 39 |
| Certification Summary  | 45 |
| Method Summary         | 46 |
| Sample Summary         | 47 |
| Chain of Custody       | 48 |
| Receipt Checklists     | 50 |
|                        |    |

Indicates the analyte was analyzed for but not detected.

| U 18 Brushy Draw TB SDG: 03C1558301                        | 2  |
|------------------------------------------------------------|----|
|                                                            | 3  |
| Qualifier Description                                      | 4  |
| LCS and/or LCSD is outside acceptance limits, high biased. |    |
| MS and/or MSD recovery exceeds control limits.             | 5  |
| Surrogate recovery exceeds control limits, low biased.     |    |
| Surrogate recovery exceeds control limits, high biased.    | 6  |
| Indicates the analyte was analyzed for but not detected.   | -  |
| Qualifier Description                                      |    |
| LCS/LCSD RPD exceeds control limits.                       | 8  |
| Surrogate recovery exceeds control limits, low biased.     |    |
| Indicates the analyte was analyzed for but not detected.   | 9  |
| Qualifier Description                                      | 10 |

\_\_\_\_\_

HPLC/IC Qualifier

Qualifiers GC VOA Qualifier

GC Semi VOA Qualifier

\*+

F1

S1-

S1+

U

\*1

S1-

U

U

| Glossary       |                                                                                                             |
|----------------|-------------------------------------------------------------------------------------------------------------|
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |
| %R             | Percent Recovery                                                                                            |
| CFL            | Contains Free Liquid                                                                                        |
| CFU            | Colony Forming Unit                                                                                         |
| CNF            | Contains No Free Liquid                                                                                     |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |
| Dil Fac        | Dilution Factor                                                                                             |
| DL             | Detection Limit (DoD/DOE)                                                                                   |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |
| MCL            | EPA recommended "Maximum Contaminant Level"                                                                 |
| MDA            | Minimum Detectable Activity (Radiochemistry)                                                                |
| MDC            | Minimum Detectable Concentration (Radiochemistry)                                                           |
| MDL            | Method Detection Limit                                                                                      |
| ML             | Minimum Level (Dioxin)                                                                                      |
| MPN            | Most Probable Number                                                                                        |
| MQL            | Method Quantitation Limit                                                                                   |
| NC             | Not Calculated                                                                                              |
| ND             | Not Detected at the reporting limit (or MDL or EDL if shown)                                                |
| NEG            | Negative / Absent                                                                                           |
| POS            | Positive / Present                                                                                          |
| PQL            | Practical Quantitation Limit                                                                                |
| PRES           | Presumptive                                                                                                 |
| QC             | Quality Control                                                                                             |
| RER            | Relative Error Ratio (Radiochemistry)                                                                       |
| RL             | Reporting Limit or Requested Limit (Radiochemistry)                                                         |
| RPD            | Relative Percent Difference, a measure of the relative difference between two points                        |
| TEF            | Toxicity Equivalent Factor (Dioxin)                                                                         |
| TEQ            | Toxicity Equivalent Quotient (Dioxin)                                                                       |
| TNTC           | Too Numerous To Count                                                                                       |
|                |                                                                                                             |

Job ID: 890-5982-1

**Case Narrative** 

Client: Ensolum Project: PLU 18 Brushy Draw TB Job ID: 890-5982-1

## Job ID: 890-5982-1

### **Eurofins Carlsbad**

#### Job Narrative 890-5982-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

quality control (QC) is further explained in narrative comments.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 1/17/2024 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.0°C

#### **Receipt Exceptions**

The following samples were received and analyzed from an unpreserved bulk soil jar: PH01 (890-5982-1), PH01A (890-5982-2), PH02 (890-5982-3), PH02A (890-5982-4), PH03 (890-5982-5), PH03A (890-5982-6), PH04 (890-5982-7), PH04A (890-5982-8), FS01 (890-5982-9), FS02 (890-5982-10), FS03 (890-5982-11), FS04 (890-5982-12), FS05 (890-5982-13), FS06 (890-5982-14), FS07 (890-5982-15), SW01 (890-5982-16) and SW02 (890-5982-17).

#### GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-71764 recovered under the lower control limit for Benzene and o-Xylene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-71343 and analytical batch 880-71764 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-71764 recovered above the upper control limit for Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-71764/51).

Method 8021B: The matrix spike (MS) and/or matrix spike duplicate (MSD) recovery for preparation batch 880-71633 and analytical batch 880-71772 was outside control limits for the following analyte(s): Benzene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. Results may be biased high because this analyte is a common laboratory solvent and contaminant.

Method 8021B: Surrogate recovery for the following samples were outside control limits: (890-5988-A-1-G), (890-5988-A-1-E MS) and (890-5988-A-1-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71633 and analytical batch 880-71772 was outside the control limits.

Method 8021B: The laboratory control sample duplicate (LCSD) for preparation batch 880-71633 and analytical batch 880-71772 recovered outside control limits for the following analytes: m-Xylene & p-Xylene. Since only an acceptable LCS is required per the method, the data has been qualified and reported.

Method 8021B: Surrogate recovery for the following sample was outside control limits: FS03 (890-5982-11). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) for preparation batch 880-71537 and analytical batch 880-71915 recovered outside control limits for the following analytes: m-Xylene & p-Xylene. Since only an acceptable LCS or LCSD is required per the method, the LCSD shows recovery for the batch therefore the data has been qualified and reported.

Eurofins Carlsbad

was outside the control limits.

Job ID: 890-5982-1

Client: Ensolum Project: PLU 18 Brushy Draw TB

Job ID: 890-5982-1 (Continued)

# **Eurofins Carlsbad** Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71537 and analytical batch 880-71915

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-71537 and analytical batch 880-71915 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample duplicate (LCSD) recovery was within acceptance limits.

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-71692 and analytical batch 880-72000 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

# GC Semi VOA

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: FS03 (890-5982-11). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-71251 and analytical batch 880-71655 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

Method 8015MOD NM: The continuing calibration verification (CCV) associated with batch 880-71655 recovered below the lower control limit for Gasoline Range Organics (GRO)-C6-C10, Diesel Range Organics (Over C10-C28) and Total TPH. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-71655/47).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 29 of 123

**Eurofins Carlsbad** 

RL

0.00200

0.00200

0.00200

0.00399

0.00200

0.00399

Limits

70 - 130

70 - 130

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

Prepared

01/22/24 14:55

01/22/24 14:55

01/22/24 14:55

01/22/24 14:55

01/22/24 14:55

01/22/24 14:55

Prepared

01/22/24 14:55

01/22/24 14:55

Job ID: 890-5982-1 SDG: 03C1558301

# **Client Sample ID: PH01**

Date Collected: 01/17/24 09:30 Date Received: 01/17/24 16:35

Sample Depth: 0.5'

Client: Ensolum

Analyte

Benzene

Toluene

Xylenes, Total

Surrogate

Lab Sample ID: 890-5982-1

Analyzed

01/29/24 12:17

01/29/24 12:17

01/29/24 12:17

01/29/24 12:17

01/29/24 12.17

01/29/24 12:17

Analyzed

01/29/24 12:17

01/29/24 12:17

Matrix: Solid

| 00001          |    |
|----------------|----|
| 982-1<br>Solid |    |
| oonu           | 4  |
|                | 5  |
| Dil Fac<br>1   | 6  |
| 1              | 7  |
| 1<br>1         | 8  |
| Dil Fac        | 9  |
| 1<br>1         | 10 |
| Dil Fac        | 11 |
| 1              | 12 |
| Dil Fac        | 13 |

| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
|-----------------------------------------|---------------|--------------|----------|-------|---|----------------|----------------|---------|
| Total BTEX                              | <0.00399      | U            | 0.00399  | mg/Kg |   |                | 01/29/24 12:17 |         |
| -<br>Method: SW846 8015 NM - Diese      | l Range Organ | ics (DRO) (  | GC)      |       |   |                |                |         |
| Analyte                                 | • •           | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Total TPH                               | <50.1         | U            | 50.1     | mg/Kg |   |                | 01/26/24 19:59 |         |
| -<br>Method: SW846 8015B NM - Dies      | el Range Orga | nics (DRO)   | (GC)     |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.1         | U            | 50.1     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 19:59 |         |
| Diesel Range Organics (Over<br>C10-C28) | <50.1         | U *1         | 50.1     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 19:59 |         |
| Oll Range Organics (Over C28-C36)       | <50.1         | U            | 50.1     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 19:59 |         |
| Surrogate                               | %Recovery     | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                          | 86            |              | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 19:59 |         |
| o-Terphenyl                             | 103           |              | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 19:59 |         |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp  | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |
| Chloride                                | 2760          |              | 24.8     | mg/Kg |   |                | 01/22/24 20:32 |         |
| Client Sample ID: PH01A                 |               |              |          |       |   | Lab Sar        | nple ID: 890-  | 5982-   |
| Date Collected: 01/17/24 09:40          |               |              |          |       |   |                | Matri          | x: Soli |
| Date Received: 01/17/24 16:35           |               |              |          |       |   |                |                |         |
| Sample Depth: 2'                        |               |              |          |       |   |                |                |         |
| Method: SW846 8021B - Volatile          | Organic Comp  | ounds (GC    | )        |       |   |                |                |         |
| Analyte                                 | Result        | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa  |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 89        |           | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 12:38 | 1       |

**Eurofins Carlsbad** 

Ethylbenzene m-Xylene & p-Xylene o-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Result Qualifier

Qualifier

<0.00200 U

<0.00200 U

<0.00200 U

<0.00399 U

<0.00200 U

<0.00399 U

83

81

%Recovery

# **Client Sample Results**

Limits

70 - 130

RL

RL

50.1

RL

50.1

50.1

0.00400

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Job ID: 890-5982-1 SDG: 03C1558301

# **Client Sample ID: PH01A**

Project/Site: PLU 18 Brushy Draw TB

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Ū

Result Qualifier

Result Qualifier

<50.1 U

<50.1 U

<50.1 U\*1

76

< 0.00400

Date Collected: 01/17/24 09:40 Date Received: 01/17/24 16:35

Sample Depth: 2'

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

**Diesel Range Organics (Over** 

Client: Ensolum

Surrogate

Analyte

Analyte

Analyte

C10-C28)

(GRO)-C6-C10

Total TPH

Total BTEX

| Lab Sample | ID: | 890-5982-2 |
|------------|-----|------------|

Analyzed

01/29/24 12:38

Analyzed

01/29/24 12:38

Analyzed

01/26/24 21:05

Analyzed

01/26/24 21:05

01/26/24 21:05

Lab Sample ID: 890-5982-3

Prepared

01/22/24 14:55

Prepared

Prepared

Prepared

01/19/24 17:02

01/19/24 17:02

D

D

D

Matrix: Solid

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Dil Fac

Matrix: Solid

1

1

1

| - |
|---|

| Oll Range Organics (Over C28-C36) | <50.1       | U          | 50.1     | mg/Kg | 01/19/24 17:02 | 01/26/24 21:05 |   |
|-----------------------------------|-------------|------------|----------|-------|----------------|----------------|---|
| Surrogate                         | %Recovery   | Qualifier  | Limits   |       | Prepared       | Analyzed       | I |
| 1-Chlorooctane                    | 94          |            | 70 - 130 |       | 01/19/24 17:02 | 01/26/24 21:05 |   |
| o-Terphenyl                       | 114         |            | 70 - 130 |       | 01/19/24 17:02 | 01/26/24 21:05 |   |
| Method: EPA 300.0 - Anions. Ion C | bromatogran | by Soluble |          |       |                |                |   |

| method. El A 000.0 - Amons, ion o | inomatography - oolabic |      |       |   |          |                |         |
|-----------------------------------|-------------------------|------|-------|---|----------|----------------|---------|
| Analyte                           | Result Qualifier        | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 32.3                    | 5.02 | mg/Kg |   |          | 01/22/24 20:39 | 1       |

### **Client Sample ID: PH02**

Date Collected: 01/17/24 09:45 Date Received: 01/17/24 16:35 Sample Depth: 0.5'

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 01/25/24 18:00 01/30/24 05:11 Toluene <0.00199 U 0.00199 01/25/24 18:00 01/30/24 05.11 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 01/25/24 18:00 01/30/24 05:11 01/30/24 05:11 m-Xylene & p-Xylene <0.00398 U\*+ 0.00398 mg/Kg 01/25/24 18:00 1 o-Xylene <0.00199 U 0.00199 mg/Kg 01/25/24 18:00 01/30/24 05:11 Xylenes, Total <0.00398 U\*+ 0.00398 mg/Kg 01/25/24 18:00 01/30/24 05:11 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 70 - 130 81 01/25/24 18:00 4-Bromofluorobenzene (Surr) 01/30/24 05.11 1 1,4-Difluorobenzene (Surr) 78 70 - 130 01/25/24 18:00 01/30/24 05:11 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analvte Result Qualifier RL D Unit Prepared Analyzed Dil Fac Total BTEX <0.00398 Ū 0.00398 01/30/24 05:11 mg/Kg Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <50.4 U 50.4 mg/Kg 01/26/24 21:27 1

**Eurofins Carlsbad** 

Job ID: 890-5982-1 SDG: 03C1558301

Matrix: Solid

Lab Sample ID: 890-5982-3

01/26/24 21:27

Lab Sample ID: 890-5982-4

01/19/24 17:02

# **Client Sample ID: PH02**

Date Collected: 01/17/24 09:45 Date Received: 01/17/24 16:35

Sample Depth: 0.5'

Client: Ensolum

| _<br>Method: SW846 8015B NM - Dies      | sel Range Orga | nics (DRO) | (GC)     |       |   |                |                |
|-----------------------------------------|----------------|------------|----------|-------|---|----------------|----------------|
| Analyte                                 |                | Qualifier  | RL       | Unit  | D | Prepared       | Analyzed       |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.4          | U          | 50.4     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:27 |
| Diesel Range Organics (Over<br>C10-C28) | <50.4          | U *1       | 50.4     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:27 |
| Oll Range Organics (Over C28-C36)       | <50.4          | U          | 50.4     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:27 |
| Surrogate                               | %Recovery      | Qualifier  | Limits   |       |   | Prepared       | Analyzed       |
| 1-Chlorooctane                          |                |            | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 21:27 |

# Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

119

| Method. El A 300.0 - Amons, ion o | momatograpi | ily - Soluble |      |       |   |          |                |         |
|-----------------------------------|-------------|---------------|------|-------|---|----------|----------------|---------|
| Analyte                           | Result      | Qualifier     | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Chloride                          | 3750        |               | 25.2 | mg/Kg |   |          | 01/22/24 20:46 | 5       |

70 - 130

### **Client Sample ID: PH02A**

### Date Collected: 01/17/24 09:55

### Sample Depth: 2'

o-Terphenyl

| Analyte                         | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|---------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                         | <0.00200          | U           | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| Toluene                         | <0.00200          | U           | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| Ethylbenzene                    | <0.00200          | U           | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| m-Xylene & p-Xylene             | <0.00399          | U *+        | 0.00399  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| o-Xylene                        | <0.00200          | U           | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| Xylenes, Total                  | <0.00399          | U *+        | 0.00399  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| Surrogate                       | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)     | 77                |             | 70 - 130 |       |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| 1,4-Difluorobenzene (Surr)      | 84                |             | 70 - 130 |       |   | 01/29/24 10:00 | 01/30/24 05:32 | 1       |
| -<br>Method: TAL SOP Total BTEX | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                         | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                      | <0.00399          | U           | 0.00399  | mg/Kg |   |                | 01/30/24 05:32 | 1       |
| Method: SW846 8015 NM - Die     | sel Range Organ   | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                         | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                       | 56.3              |             | 50.5     | mg/Kg |   |                | 01/26/24 21:48 |         |

# Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.5     | U         | 50.5     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:48 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | 56.3      | *1        | 50.5     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:48 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.5     | U         | 50.5     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 21:48 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 96        |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 21:48 | 1       |
| o-Terphenyl                             | 117       |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 21:48 | 1       |

**Eurofins Carlsbad** 

1

1

1

1

1

Date Received: 01/17/24 16:35

|                                                     |               | Clien       | t Sample Re          | sults  |   |                |                   |          |
|-----------------------------------------------------|---------------|-------------|----------------------|--------|---|----------------|-------------------|----------|
| Client: Ensolum                                     |               |             |                      |        |   |                | Job ID: 890       | -5982-1  |
| Project/Site: PLU 18 Brushy Draw 1                  | В             |             |                      |        |   |                | SDG: 03C1         | 1558301  |
| Client Sample ID: PH02A                             |               |             |                      |        |   | Lab Sar        | nple ID: 890-     | 5982-4   |
| Date Collected: 01/17/24 09:55                      |               |             |                      |        |   |                | -                 | x: Solid |
| Date Received: 01/17/24 16:35                       |               |             |                      |        |   |                |                   |          |
| Sample Depth: 2'                                    |               |             |                      |        |   |                |                   |          |
| _<br>Method: EPA 300.0 - Anions, Ion                | Chromotogram  | why Solubl  | •                    |        |   |                |                   |          |
| Analyte                                             |               | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fac  |
| Chloride                                            | 73.6          |             | 5.01                 | mg/Kg  |   |                | 01/22/24 20:53    |          |
| -<br>Client Semple ID: DH02                         |               |             |                      |        |   | Lob Cor        |                   | 5002 5   |
| Client Sample ID: PH03                              |               |             |                      |        |   | Lap San        | nple ID: 890-     |          |
| Date Collected: 01/17/24 10:30                      |               |             |                      |        |   |                | Matri             | x: Solid |
| Date Received: 01/17/24 16:35<br>Sample Depth: 0.5' |               |             |                      |        |   |                |                   |          |
| -                                                   |               |             |                      |        |   |                |                   |          |
| Method: SW846 8021B - Volatile                      | Organic Comp  | ounds (GC)  | )                    |        |   |                |                   |          |
| Analyte                                             | Result        | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fa   |
| Benzene                                             | <0.00201      |             | 0.00201              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| Toluene                                             | <0.00201      | U           | 0.00201              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| Ethylbenzene                                        | <0.00201      | U           | 0.00201              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| m-Xylene & p-Xylene                                 | < 0.00402     | U *+        | 0.00402              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| o-Xylene                                            | <0.00201      | U           | 0.00201              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| Xylenes, Total                                      | <0.00402      | U *+        | 0.00402              | mg/Kg  |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| Surrogate                                           | %Recovery     | Qualifier   | Limits               |        |   | Prepared       | Analyzed          | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                         | 78            |             | 70 - 130             |        |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| 1,4-Difluorobenzene (Surr)                          | 81            |             | 70 - 130             |        |   | 01/29/24 10:00 | 01/30/24 05:52    |          |
| _<br>Method: TAL SOP Total BTEX - T                 | otal BTEX Cal | sulation    |                      |        |   |                |                   |          |
| Analyte                                             |               | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fac  |
| Total BTEX                                          | <0.00402      |             | 0.00402              | mg/Kg  |   |                | 01/30/24 05:52    | 1        |
| _                                                   |               |             |                      |        |   |                |                   |          |
| Method: SW846 8015 NM - Diese                       |               |             |                      |        | _ |                |                   |          |
| Analyte                                             |               | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fa   |
| Total TPH                                           | <49.8         | U           | 49.8                 | mg/Kg  |   |                | 01/26/24 22:11    |          |
| Method: SW846 8015B NM - Dies                       | el Range Orga | nics (DRO)  | (GC)                 |        |   |                |                   |          |
| Analyte                                             |               | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fa   |
| Gasoline Range Organics                             | <49.8         | U           | 49.8                 | mg/Kg  |   | 01/19/24 17:02 | 01/26/24 22:11    |          |
| (GRO)-C6-C10<br>Diesel Range Organics (Over         | -10.0         | 11*1        | 49.8                 | m~~//~ |   | 01/10/24 47:00 | 01/26/24 22:44    |          |
| C10-C28)                                            | <49.8         | 0 1         | 49.0                 | mg/Kg  |   | 01/19/24 17:02 | 01/26/24 22:11    |          |
| Oll Range Organics (Over C28-C36)                   | <49.8         | U           | 49.8                 | mg/Kg  |   | 01/19/24 17:02 | 01/26/24 22:11    |          |
| Surrogate                                           | %Recovery     | Qualifier   | Limits               |        |   | Prepared       | Analyzed          | Dil Fa   |
| 1-Chlorooctane                                      |               | qualitiel   |                      |        |   | 01/19/24 17:02 | 01/26/24 22:11    | DIIFa    |
| o-Terphenyl                                         | 95            |             | 70 - 130<br>70 - 130 |        |   | 01/19/24 17:02 | 01/26/24 22:11    |          |
|                                                     | 30            |             | 10-100               |        |   | 51/10/27 11.02 | 5 11 LOI LT 22.11 |          |
| Method: EPA 300.0 - Anions, Ion                     | Chromatograp  | hy - Solubl | e                    |        |   |                |                   |          |
| Analyte                                             | Result        | Qualifier   | RL                   | Unit   | D | Prepared       | Analyzed          | Dil Fac  |
| Chloride                                            | 988           |             | 4.98                 | mg/Kg  |   |                | 01/22/24 21:13    | 1        |

Eurofins Carlsbad

Method: SW846 8021B - Volatile Organic Compounds (GC)

Result Qualifier

RL

Unit

D

Prepared

Job ID: 890-5982-1 SDG: 03C1558301

# Client Sample ID: PH03A

Date Collected: 01/17/24 10:35 Date Received: 01/17/24 16:35

Sample Depth: 1'

Client: Ensolum

Analyte

SDG: 03C1558

# Lab Sample ID: 890-5982-6

Analyzed

Matrix: Solid

| Analyte                                 | Result         | Quaimer      | RL       | Unit  | U | Prepared       | Analyzed       | Dirrac    |
|-----------------------------------------|----------------|--------------|----------|-------|---|----------------|----------------|-----------|
| Benzene                                 | <0.00200       | U            | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| Toluene                                 | <0.00200       | U            | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| Ethylbenzene                            | <0.00200       | U            | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| m-Xylene & p-Xylene                     | <0.00401       | U *+         | 0.00401  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| o-Xylene                                | <0.00200       | U            | 0.00200  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| Xylenes, Total                          | <0.00401       | U *+         | 0.00401  | mg/Kg |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| Surrogate                               | %Recovery      | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac   |
| 4-Bromofluorobenzene (Surr)             | 81             |              | 70 - 130 |       |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| 1,4-Difluorobenzene (Surr)              | 75             |              | 70 - 130 |       |   | 01/29/24 10:00 | 01/30/24 06:13 | 1         |
| Method: TAL SOP Total BTEX - 1          | Total BTEX Cal | culation     |          |       |   |                |                |           |
| Analyte                                 |                | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Total BTEX                              | <0.00401       | U            | 0.00401  | mg/Kg |   |                | 01/30/24 06:13 | 1         |
| Method: SW846 8015 NM - Diese           | el Range Organ | ics (DRO) (  | GC)      |       |   |                |                |           |
| Analyte                                 |                | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Total TPH                               | <49.7          |              | 49.7     | mg/Kg |   | ·              | 01/26/24 22:34 | 1         |
|                                         |                |              |          |       |   |                |                |           |
| Method: SW846 8015B NM - Dies           | sel Range Orga | nics (DRO)   | (GC)     |       |   |                |                |           |
| Analyte                                 | Result         | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.7          | U            | 49.7     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:34 | 1         |
| Diesel Range Organics (Over<br>C10-C28) | <49.7          | U *1         | 49.7     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:34 | 1         |
| Oll Range Organics (Over C28-C36)       | <49.7          | U            | 49.7     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:34 | 1         |
| Surrogate                               | %Recovery      | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac   |
| 1-Chlorooctane                          | 78             |              | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 22:34 | 1         |
| o-Terphenyl                             | 97             |              | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 22:34 | 1         |
| -<br>Method: EPA 300.0 - Anions, Ion    | Chromatogra    | ohy - Solubl | e        |       |   |                |                |           |
| Analyte                                 | • •            | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac   |
| Chloride                                | 50.0           |              | 4.95     | mg/Kg |   |                | 01/22/24 21:20 | 1         |
| Client Sample ID: PH04                  |                |              |          |       |   | Lab Sar        | nple ID: 890-  | 5982-7    |
| Date Collected: 01/17/24 10:55          |                |              |          |       |   |                | -              | ix: Solid |
| Date Received: 01/17/24 16:35           |                |              |          |       |   |                |                |           |
| Sample Depth: 0.5'                      |                |              |          |       |   |                |                |           |
| -                                       |                |              |          |       |   |                |                |           |
| Method: SW846 8021B - Volatile          |                |              |          | 11-:4 | D | Bronered       | Analyzed       |           |
| Analyte                                 |                | Qualifier    | RL       | Unit  |   | Prepared       | Analyzed       | Dil Fac   |
| Benzene                                 |                |              | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:56 | 1         |
| Toluene                                 | <0.00200       | U            | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:56 | 1         |
|                                         |                |              |          |       |   |                |                |           |

| 4-Bromofluorobenzene (Surr) | 85        |           | 70 - 130 |         | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
|-----------------------------|-----------|-----------|----------|---------|----------------|----------------|---------|
| Surrogate                   | %Recovery | Qualifier | Limits   |         | Prepared       | Analyzed       | Dil Fac |
| Xylenes, Total              | <0.00399  | U         | 0.00399  | mg/Kg   | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg   | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
| m-Xylene & p-Xylene         | <0.00399  | U         | 0.00399  | mg/Kg   | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg   | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg   | 01/26/24 11:33 | 01/31/24 11:56 | 1       |
| Bolizono                    | 0.00200   | 0         | 0.00200  | ing/itg | 01/20/2111.00  | 01/01/2111.00  |         |

Eurofins Carlsbad

# **Client Sample Results**

Job ID: 890-5982-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5982-7

# Client Sample ID: PH04

Date Collected: 01/17/24 10:55 Date Received: 01/17/24 16:35

Sample Depth: 0.5'

Client: Ensolum

| Surrogate                               | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa |
|-----------------------------------------|-----------------|-------------|----------|-------|---|----------------|----------------|--------|
| 1,4-Difluorobenzene (Surr)              | 76              |             | 70 - 130 |       |   | 01/26/24 11:33 | 01/31/24 11:56 | ·      |
| Method: TAL SOP Total BTEX -            | Total BTEX Calo | ulation     |          |       |   |                |                |        |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Total BTEX                              | <0.00399        | U           | 0.00399  | mg/Kg |   |                | 01/31/24 11:56 |        |
| Method: SW846 8015 NM - Diese           | el Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |        |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Total TPH                               | <49.6           | U           | 49.6     | mg/Kg |   |                | 01/26/24 22:57 |        |
| Method: SW846 8015B NM - Die            | sel Range Orga  | nics (DRO)  | (GC)     |       |   |                |                |        |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.6           | U           | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:57 |        |
| Diesel Range Organics (Over<br>C10-C28) | <49.6           | U *1        | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:57 |        |
| Oll Range Organics (Over C28-C36)       | <49.6           | U           | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 22:57 |        |
| Surrogate                               | %Recovery       | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa |
| 1-Chlorooctane                          |                 |             | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 22:57 |        |
| o-Terphenyl                             | 120             |             | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 22:57 |        |
| Method: EPA 300.0 - Anions, lor         | n Chromatograp  | hy - Solubl | e        |       |   |                |                |        |
| Analyte                                 | Result          | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fa |
| Chloride                                | 1380            |             | 25.2     | mg/Kg |   |                | 01/22/24 21:41 |        |
| lient Sample ID: PH04A                  |                 |             |          |       |   | Lab Sar        | nple ID: 890-  | 5092 ( |

Sample Depth: 1'

| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201          | U           | 0.00201  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| Toluene                     | <0.00201          | U           | 0.00201  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| Ethylbenzene                | <0.00201          | U           | 0.00201  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| m-Xylene & p-Xylene         | <0.00402          | U           | 0.00402  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| o-Xylene                    | <0.00201          | U           | 0.00201  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| Xylenes, Total              | <0.00402          | U           | 0.00402  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| Surrogate                   | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 86                |             | 70 - 130 |       |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| 1,4-Difluorobenzene (Surr)  | 75                |             | 70 - 130 |       |   | 01/26/24 11:33 | 01/31/24 12:17 | 1       |
| Method: TAL SOP Total BTEX  | - Total BTEX Cald | ulation     |          |       |   |                |                |         |
| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                  | <0.00402          | U           | 0.00402  | mg/Kg |   |                | 01/31/24 12:17 | 1       |
| Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                     | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|                             |                   |             |          |       |   |                | 01/26/24 23:19 |         |

Eurofins Carlsbad

Job ID: 890-5982-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5982-8

Lab Sample ID: 890-5982-9

Matrix: Solid

# Client Sample ID: PH04A

Date Collected: 01/17/24 11:00 Date Received: 01/17/24 16:35

Sample Depth: 1'

Client: Ensolum

| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.2     | U         | 50.2     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 23:19 |         |
| Diesel Range Organics (Over<br>C10-C28) | <50.2     | U *1      | 50.2     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 23:19 |         |
| Oll Range Organics (Over C28-C36)       | <50.2     | U         | 50.2     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 23:19 |         |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                          | 83        |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 23:19 | 1       |
| o-Terphenyl                             | 100       |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 23:19 | 1       |

# Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 45.8             | 5.02 | mg/Kg |   |          | 01/22/24 21:47 | 1       |

### Client Sample ID: FS01

### Date Collected: 01/17/24 13:40

## Date Received: 01/17/24 16:35

| oumpie Dopuin i | Sampl | le D | epth | า: | 1' |
|-----------------|-------|------|------|----|----|
|-----------------|-------|------|------|----|----|

| Analyte                        | Result            | Qualifier   | RL       | Unit          | D | Prepared                   | Analyzed                   | Dil Fac |
|--------------------------------|-------------------|-------------|----------|---------------|---|----------------------------|----------------------------|---------|
| Benzene                        | <0.00200          | U           | 0.00200  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| Toluene                        | <0.00200          | U           | 0.00200  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| Ethylbenzene                   | <0.00200          | U           | 0.00200  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| m-Xylene & p-Xylene            | <0.00401          | U           | 0.00401  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| o-Xylene                       | <0.00200          | U           | 0.00200  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| Xylenes, Total                 | <0.00401          | U           | 0.00401  | mg/Kg         |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| Surrogate                      | %Recovery         | Qualifier   | Limits   |               |   | Prepared                   | Analyzed                   | Dil Fac |
| 4-Bromofluorobenzene (Surr)    | 89                |             | 70 - 130 |               |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| 1,4-Difluorobenzene (Surr)     | 72                |             | 70 - 130 |               |   | 01/26/24 11:33             | 01/31/24 12:37             | 1       |
| Method: TAL SOP Total BTEX     | - Total BTEX Cal  | culation    |          |               |   |                            |                            |         |
| Analyte                        |                   | Qualifier   | RL       | Unit          | D | Prepared                   | Analyzed                   | Dil Fac |
| Total BTEX                     | <0.00401          | U           | 0.00401  | mg/Kg         |   |                            | 01/31/24 12:37             | 1       |
| Method: SW846 8015 NM - Die    | esel Range Organ  | ics (DRO) ( | GC)      |               |   |                            |                            |         |
| Analyte                        | Result            | Qualifier   | RL       | Unit          | D | Prepared                   | Analyzed                   | Dil Fac |
| Total TPH                      | <50.4             | U           | 50.4     | mg/Kg         |   |                            | 01/26/24 23:40             | 1       |
| Method: SW846 8015B NM - D     | liesel Range Orga | nics (DRO)  | (GC)     |               |   |                            |                            |         |
| method. Offorto of tob him - b |                   |             |          |               | _ |                            |                            |         |
| Analyte                        | Result            | Qualifier   | RL       | Unit          | D | Prepared                   | Analyzed                   | Dil Fac |
|                                | Result <50.4      |             | RL       | Unit<br>mg/Kg | D | Prepared<br>01/19/24 17:02 | Analyzed<br>01/26/24 23:40 | Dil Fac |

| 1-Chlorooctane<br>o-Terphenyl     | 104<br>126 |           | 70 - 130<br>70 - 130 |       | 01/19/24 17:02<br>01/19/24 17:02 | 01/26/24 23:40<br>01/26/24 23:40 | 1       |
|-----------------------------------|------------|-----------|----------------------|-------|----------------------------------|----------------------------------|---------|
|                                   |            |           |                      |       |                                  |                                  |         |
|                                   |            |           | 70 100               |       | 01/10/01 17 00                   | 01/00/01 00 10                   |         |
| Surrogate                         | %Recovery  | Qualifier | Limits               |       | Prepared                         | Analyzed                         | Dil Fac |
| Oll Range Organics (Over C28-C36) | <50.4      | U         | 50.4                 | mg/Kg | 01/19/24 17:02                   | 01/26/24 23:40                   | 1       |
| C10-C28)                          |            |           |                      |       |                                  |                                  |         |
| Diesel Range Organics (Over       | <50.4      | U *1      | 50.4                 | mg/Kg | 01/19/24 17:02                   | 01/26/24 23:40                   | 1       |
|                                   |            |           |                      |       |                                  |                                  |         |
|                                         |                | Clier                   | t Sample Re | sults        |   |                |                            |          |
|-----------------------------------------|----------------|-------------------------|-------------|--------------|---|----------------|----------------------------|----------|
| Client: Ensolum                         |                |                         | •           |              |   |                | Job ID: 890                | )-5982-  |
| Project/Site: PLU 18 Brushy Draw T      | В              |                         |             |              |   |                | SDG: 03C                   | 155830   |
| Client Sample ID: FS01                  |                |                         |             |              |   | Lab Sar        | nple ID: 890-              | 5982-    |
| Date Collected: 01/17/24 13:40          |                |                         |             |              |   |                | •                          | ix: Soli |
| Date Received: 01/17/24 16:35           |                |                         |             |              |   |                |                            |          |
| Sample Depth: 1'                        |                |                         |             |              |   |                |                            |          |
| _                                       |                |                         |             |              |   |                |                            |          |
| Method: EPA 300.0 - Anions, Ion         |                | hy - Solub<br>Qualifier | le<br>RL    | Unit         | D | Prepared       | Analyzad                   | Dil Fa   |
| Analyte<br>Chloride                     | 90.3           | Quaimer                 | 4.99        | Ont<br>mg/Kg |   | Prepared       | Analyzed<br>01/22/24 21:54 |          |
| -                                       |                |                         |             |              |   |                |                            |          |
| Client Sample ID: FS02                  |                |                         |             |              |   | Lab Sam        | ple ID: 890-5              | 982-1    |
| Date Collected: 01/17/24 13:45          |                |                         |             |              |   |                | Matr                       | ix: Soli |
| Date Received: 01/17/24 16:35           |                |                         |             |              |   |                |                            |          |
| Sample Depth: 1'                        |                |                         |             |              |   |                |                            |          |
| _<br>Method: SW846 8021B - Volatile (   | Organic Comp   | ounds (GC               | )           |              |   |                |                            |          |
| Analyte                                 | • •            | Qualifier               | RL          | Unit         | D | Prepared       | Analyzed                   | Dil Fa   |
| Benzene                                 | <0.00202       | U                       | 0.00202     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| Toluene                                 | <0.00202       | U                       | 0.00202     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| Ethylbenzene                            | <0.00202       | U                       | 0.00202     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| m-Xylene & p-Xylene                     | <0.00403       | U                       | 0.00403     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| o-Xylene                                | <0.00202       |                         | 0.00202     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| Xylenes, Total                          | <0.00403       | U                       | 0.00403     | mg/Kg        |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| Surrogate                               | %Recovery      | Qualifier               | Limits      |              |   | Prepared       | Analyzed                   | Dil Fa   |
| 4-Bromofluorobenzene (Surr)             | 88             |                         | 70 - 130    |              |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| 1,4-Difluorobenzene (Surr)              | 73             |                         | 70 - 130    |              |   | 01/22/24 14:55 | 01/29/24 17:35             |          |
| _<br>Method: TAL SOP Total BTEX - To    | otal BTEX Cale | sulation                |             |              |   |                |                            |          |
| Analyte                                 |                | Qualifier               | RL          | Unit         | D | Prepared       | Analyzed                   | Dil Fa   |
| Total BTEX                              | < 0.00403      |                         | 0.00403     | mg/Kg        |   |                | 01/29/24 17:35             |          |
| -                                       |                |                         |             |              |   |                |                            |          |
| Method: SW846 8015 NM - Diesel          |                |                         |             |              |   |                |                            |          |
| Analyte                                 |                | Qualifier               | RL          | Unit         | D | Prepared       | Analyzed                   | Dil Fa   |
| Total TPH                               | <50.5          | U                       | 50.5        | mg/Kg        |   |                | 01/27/24 00:04             |          |
| -<br>Method: SW846 8015B NM - Diese     | el Range Orga  | nics (DRO)              | (GC)        |              |   |                |                            |          |
| Analyte                                 |                | Qualifier               | RL          | Unit         | D | Prepared       | Analyzed                   | Dil Fa   |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.5          | U                       | 50.5        | mg/Kg        |   | 01/19/24 17:02 | 01/27/24 00:04             |          |
| Diesel Range Organics (Over<br>C10-C28) | <50.5          | U *1                    | 50.5        | mg/Kg        |   | 01/19/24 17:02 | 01/27/24 00:04             |          |
| Oll Range Organics (Over C28-C36)       | <50.5          | U                       | 50.5        | mg/Kg        |   | 01/19/24 17:02 | 01/27/24 00:04             |          |
| Surrogate                               | %Recovery      | Qualifier               | Limits      |              |   | Prepared       | Analyzed                   | Dil F    |
| 1-Chlorooctane                          | 83             |                         | 70 - 130    |              |   | 01/19/24 17:02 | 01/27/24 00:04             |          |
| o-Terphenyl                             | 99             |                         | 70 - 130    |              |   | 01/19/24 17:02 | 01/27/24 00:04             |          |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp   | hy - Solub              | le          |              |   |                |                            |          |
| Analyte                                 |                | Qualifier               | RL          | Unit         | D | Prepared       | Analyzed                   | Dil Fa   |

Eurofins Carlsbad

01/22/24 22:01

Chloride

5.03

mg/Kg

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Result Qualifier

<0.00199 U

<0.00199 U

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

69 S1-

Result Qualifier

Result Qualifier

Result Qualifier

<50.0 U

<50.0 U

<50.0 U\*1

<50.0 U

86

<0.00398 U

RL

0.00199

0.00199

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

RL

RL

50.0

RL

50.0

50.0

50.0

0.00398

Job ID: 890-5982-1 SDG: 03C1558301

# **Client Sample ID: FS03**

Date Collected: 01/17/24 13:50 Date Received: 01/17/24 16:35

Sample Depth: 1'

Client: Ensolum

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Analyte

Analyte

C10-C28)

(GRO)-C6-C10

Total TPH

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

Lab Sample ID: 890-5982-11

Matrix: Solid

| Unit  | D | Prepared       | Analyzed       | Dil Fac |     |
|-------|---|----------------|----------------|---------|-----|
| mg/Kg | _ | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 6   |
| mg/Kg |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       |     |
| mg/Kg |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 7   |
| mg/Kg |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       |     |
| mg/Kg |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 8   |
| mg/Kg |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 0   |
|       |   |                |                |         | 0   |
|       |   | Prepared       | Analyzed       | Dil Fac | 3   |
|       |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 4.0 |
|       |   | 01/22/24 14:55 | 01/29/24 17:55 | 1       | 10  |
|       |   |                |                |         |     |
|       | _ |                |                |         | 11  |
| Unit  | D | Prepared       | Analyzed       | Dil Fac |     |
| mg/Kg |   |                | 01/29/24 17:55 | 1       | 12  |
|       |   |                |                |         |     |
| Unit  | D | Prepared       | Analyzed       | Dil Fac | 13  |
| mg/Kg | _ |                | 01/27/24 00:49 | 1       |     |
|       |   |                |                |         | 14  |
| Unit  | D | Prepared       | Analyzed       | Dil Fac |     |
| mg/Kg | _ | 01/19/24 17:02 | 01/27/24 00:49 | 1       |     |
|       |   |                |                |         |     |
| mg/Kg |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |     |
|       |   |                |                |         |     |
| mg/Kg |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |     |
|       |   | Prepared       | Analyzed       | Dil Fac |     |
|       |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |     |
|       |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |     |
|       |   |                |                |         |     |

Lab Sample ID: 890-5982-12

Matrix: Solid

| Surrogate                           | %Recovery      | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
|-------------------------------------|----------------|--------------|----------|-------|---|----------------|----------------|---------|
| 1-Chlorooctane                      | 59             | S1-          | 70 - 130 |       |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |
| o-Terphenyl                         | 71             |              | 70 - 130 |       |   | 01/19/24 17:02 | 01/27/24 00:49 | 1       |
| _<br>Method: EPA 300.0 - Anions, lo | n Chromatograp | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                             | Result         | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                            | 85.9           |              | 5.04     | mg/Kg |   |                | 01/22/24 22:08 | 1       |

# **Client Sample ID: FS04** Date Collected: 01/17/24 14:00

Date Received: 01/17/24 16:35 Sample Depth: 1'

| Method: SW846 8021B - Volatile O | rganic Comp | ounds (GC) |        |
|----------------------------------|-------------|------------|--------|
| Analyte                          | Result      | Qualifier  | R      |
| Benzene                          | <0.00198    | U          | 0.0019 |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00198  | U         | 0.00198  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| Toluene                     | <0.00198  | U         | 0.00198  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| Ethylbenzene                | <0.00198  | U         | 0.00198  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| m-Xylene & p-Xylene         | <0.00397  | U         | 0.00397  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| o-Xylene                    | <0.00198  | U         | 0.00198  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| Xylenes, Total              | <0.00397  | U         | 0.00397  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 93        |           | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 18:16 | 1       |

**Eurofins Carlsbad** 

**Released to Imaging: 4/22/2024 2:45:18 PM** 

# **Client Sample Results**

Limits

70 - 130

RL

RL

49.6

0.00397

Unit

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

Job ID: 890-5982-1 SDG: 03C1558301

Analyzed

01/29/24 18:16

Analyzed

01/29/24 18:16

Analyzed

01/27/24 01:12

Analyzed

01/27/24 01:12

# **Client Sample ID: FS04**

Date Collected: 01/17/24 14:00 Date Received: 01/17/24 16:35

Sample Depth: 1'

1,4-Difluorobenzene (Surr)

Surrogate

Analyte

Analyte

Total TPH

Total BTEX

Client: Ensolum

# Lab Sample ID: 890-5982-12

D

D

D

Prepared

01/22/24 14:55

Prepared

Prepared

Prepared

01/19/24 17:02

Matrix: Solid

Dil Fac

Dil Fac

1

1

1

| Dil Fac<br>1<br>Dil Fac<br>1 | 9  |
|------------------------------|----|
| 1                            |    |
|                              |    |
| 1                            |    |
|                              | 13 |

| Analyte                 | Result | Qualifier | RL   |  |
|-------------------------|--------|-----------|------|--|
| Gasoline Range Organics | <49.6  | U         | 49.6 |  |

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

%Recovery Qualifier

Result Qualifier

Result Qualifier

<49.6 U

<49.6 U

73

<0.00397 U

| (GRO)-C6-C10                      |           |           |          |       |                |                |         |
|-----------------------------------|-----------|-----------|----------|-------|----------------|----------------|---------|
| Diesel Range Organics (Over       | <49.6     | U *1      | 49.6     | mg/Kg | 01/19/24 17:02 | 01/27/24 01:12 | 1       |
| C10-C28)                          |           |           |          |       |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.6     | U         | 49.6     | mg/Kg | 01/19/24 17:02 | 01/27/24 01:12 | 1       |
|                                   |           |           |          |       |                |                |         |
| Surrogate                         | %Recovery | Qualifier | Limits   |       | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 77        |           | 70 - 130 |       | 01/19/24 17:02 | 01/27/24 01:12 | 1       |
| o-Terphenyl                       | 93        |           | 70 - 130 |       | 01/19/24 17:02 | 01/27/24 01:12 | 1       |
|                                   |           |           |          |       |                |                |         |

# Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 37.8             | 5.04 | mg/Kg |   |          | 01/22/24 22:15 | 1       |

# **Client Sample ID: FS05**

Date Collected: 01/17/24 14:10 Date Received: 01/17/24 16:35 Sample Depth: 1'

# Lab Sample ID: 890-5982-13

Matrix: Solid

| Analyte                          | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|----------------------------------|-------------------|-------------|----------|-------|---|----------------|----------------|---------|
| Benzene                          | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| Toluene                          | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| Ethylbenzene                     | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| m-Xylene & p-Xylene              | <0.00398          | U           | 0.00398  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| o-Xylene                         | <0.00199          | U           | 0.00199  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| Xylenes, Total                   | <0.00398          | U           | 0.00398  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| Surrogate                        | %Recovery         | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr)      | 75                |             | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| 1,4-Difluorobenzene (Surr)       | 72                |             | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 18:36 | 1       |
| Method: TAL SOP Total BTEX       | - Total BTEX Cald | culation    |          |       |   |                |                |         |
| Analyte                          | Result            | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total BTEX                       | <0.00398          | U           | 0.00398  | mg/Kg |   |                | 01/29/24 18:36 | 1       |
| -<br>Method: SW846 8015 NM - Die | esel Range Organ  | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                          |                   | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |

**Eurofins Carlsbad** 

01/27/24 01:33

Total TPH

49.6

mg/Kg

Job ID: 890-5982-1 SDG: 03C1558301

Lab Sample ID: 890-5982-14

Matrix: Solid

Matrix: Solid

# **Client Sample ID: FS05**

Date Collected: 01/17/24 14:10 Date Received: 01/17/24 16:35

Sample Depth: 1'

Client: Ensolum

# Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics<br>(GRO)-C6-C10 | <49.6     | U         | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/27/24 01:33 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <49.6     | U *1      | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/27/24 01:33 | 1       |
| Oll Range Organics (Over C28-C36)       | <49.6     | U         | 49.6     | mg/Kg |   | 01/19/24 17:02 | 01/27/24 01:33 | 1       |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 80        |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/27/24 01:33 | 1       |
| o-Terphenyl                             | 97        |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/27/24 01:33 | 1       |

# Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

| Analyte  | Result Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|----------|------------------|------|-------|---|----------|----------------|---------|
| Chloride | 86.0             | 4.98 | mg/Kg |   |          | 01/22/24 22:22 | 1       |

# **Client Sample ID: FS06**

# Date Collected: 01/17/24 14:15

# Date Received: 01/17/24 16:35

Sample Depth: 1'

| Analyte                                                                                                                                  | Result                                                                         | Qualifier                                                                  | RL                                 | Unit                            | D              | Prepared             | Analyzed                                                 | Dil Fac           |
|------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------|----------------------------------------------------------------------------|------------------------------------|---------------------------------|----------------|----------------------|----------------------------------------------------------|-------------------|
| Benzene                                                                                                                                  | <0.00200                                                                       | U                                                                          | 0.00200                            | mg/Kg                           |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
| Toluene                                                                                                                                  | <0.00200                                                                       | U                                                                          | 0.00200                            | mg/Kg                           |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
| Ethylbenzene                                                                                                                             | <0.00200                                                                       | U                                                                          | 0.00200                            | mg/Kg                           |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
| m-Xylene & p-Xylene                                                                                                                      | <0.00399                                                                       | U                                                                          | 0.00399                            | mg/Kg                           |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
| o-Xylene                                                                                                                                 | <0.00200                                                                       | U                                                                          | 0.00200                            | mg/Kg 01/22/24 14:55 01/29/24 1 |                | 01/29/24 18:57       | 1                                                        |                   |
| Xylenes, Total                                                                                                                           | <0.00399                                                                       | U                                                                          | 0.00399 mg/Kg 01/22/24 14:55 01/2  |                                 | 01/29/24 18:57 | 1                    |                                                          |                   |
| Surrogate                                                                                                                                | %Recovery                                                                      | Qualifier                                                                  | Limits                             |                                 |                | Prepared             | Analyzed                                                 | Dil Fac           |
| 4-Bromofluorobenzene (Surr)                                                                                                              | 78                                                                             |                                                                            | 70 - 130                           |                                 |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
| 1,4-Difluorobenzene (Surr)                                                                                                               | 83                                                                             |                                                                            | 70 - 130                           |                                 |                | 01/22/24 14:55       | 01/29/24 18:57                                           | 1                 |
|                                                                                                                                          |                                                                                | culation                                                                   | 101100                             |                                 |                | 011222771.00         | •                                                        |                   |
|                                                                                                                                          |                                                                                | culation                                                                   | 101100                             |                                 |                | 0                    |                                                          |                   |
| Method: TAL SOP Total BTEX<br>Analyte                                                                                                    | - Total BTEX Calo<br>Result                                                    | Qualifier                                                                  | RL                                 | Unit                            | D              | Prepared             | Analyzed                                                 | Dil Fac           |
| Method: TAL SOP Total BTEX<br>Analyte                                                                                                    | - Total BTEX Cal                                                               | Qualifier                                                                  |                                    | Unit<br>mg/Kg                   | <u>D</u>       |                      |                                                          | Dil Fac           |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX                                                                                      | - Total BTEX Cale<br>Result<br><0.00399                                        | Qualifier<br>U                                                             | RL<br>0.00399                      |                                 | D              |                      | Analyzed                                                 | Dil Fac           |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Die                                                       | - Total BTEX Cale<br>Result<br><0.00399                                        | Qualifier<br>U                                                             | RL<br>0.00399                      |                                 | <u>D</u><br>   |                      | Analyzed                                                 | Dil Fac           |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Die<br>Analyte                                            | - Total BTEX Cale<br>Result<br><0.00399                                        | Qualifier<br>U<br>ics (DRO) (<br>Qualifier                                 | RL<br>0.00399                      | mg/Kg                           |                | Prepared             | Analyzed<br>01/29/24 18:57                               | 1                 |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Die<br>Analyte<br>Total TPH                               | - Total BTEX Cale<br>Result<br><0.00399<br>esel Range Organ<br>Result<br><50.3 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                            | RL<br>0.00399<br>GC)<br>RL<br>50.3 | mg/Kg<br>Unit                   |                | Prepared             | Analyzed<br>01/29/24 18:57<br>Analyzed                   | 1                 |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Die<br>Analyte<br>Total TPH<br>Method: SW846 8015B NM - D | - Total BTEX Cale<br>Result<br><0.00399<br>esel Range Organ<br>Result<br><50.3 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U                            | RL<br>0.00399<br>GC)<br>RL<br>50.3 | mg/Kg<br>Unit                   |                | Prepared             | Analyzed<br>01/29/24 18:57<br>Analyzed                   | 1                 |
| Method: TAL SOP Total BTEX<br>Analyte<br>Total BTEX<br>Method: SW846 8015 NM - Die<br>Analyte                                            | - Total BTEX Cale<br>Result<br><0.00399<br>esel Range Organ<br>Result<br><50.3 | Qualifier<br>U<br>ics (DRO) (<br>Qualifier<br>U<br>nics (DRO)<br>Qualifier | RL         0.00399                 | mg/Kg<br>Unit<br>mg/Kg          | D              | Prepared<br>Prepared | Analyzed<br>01/29/24 18:57<br>Analyzed<br>01/27/24 01:56 | 1<br>Dil Fac<br>1 |

### 50.3 01/19/24 17:02 01/27/24 01:56 Oll Range Organics (Over C28-C36) <50.3 U mg/Kg 1 Limits Dil Fac %Recovery Qualifier Prepared Analyzed Surrogate 70 - 130 01/19/24 17:02 01/27/24 01:56 1-Chlorooctane 89 1 o-Terphenyl 106 70 - 130 01/19/24 17:02 01/27/24 01:56 1

**Eurofins Carlsbad** 

|                                              |               | Clier                   | nt Sample Re | sults    |   |                |                |           |
|----------------------------------------------|---------------|-------------------------|--------------|----------|---|----------------|----------------|-----------|
| Client: Ensolum                              |               | -                       |              |          |   |                | Job ID: 890    | -5982-1   |
| Project/Site: PLU 18 Brushy Draw TB          | 3             |                         |              |          |   |                | SDG: 03C       | 1558301   |
| Client Sample ID: FS06                       |               |                         |              |          |   | Lab Sam        | ple ID: 890-5  | 982-14    |
| Date Collected: 01/17/24 14:15               |               |                         |              |          |   | Lub Oum        |                | ix: Solid |
| ate Received: 01/17/24 16:35                 |               |                         |              |          |   |                | indu           |           |
| Sample Depth: 1'                             |               |                         |              |          |   |                |                |           |
| -                                            |               |                         | -            |          |   |                |                |           |
| Method: EPA 300.0 - Anions, Ion C<br>Analyte |               | hy - Solub<br>Qualifier | le<br>RL     | Unit     | D | Prepared       | Analyzed       | Dil Fac   |
| Chloride                                     |               | Quaimer                 | 4.96         | mg/Kg    |   | Fiepaleu       | 01/22/24 16:26 | 1         |
|                                              |               |                         |              | 5.5      |   |                |                |           |
| Client Sample ID: FS07                       |               |                         |              |          |   | Lab Sam        | ple ID: 890-5  |           |
| Date Collected: 01/17/24 14:20               |               |                         |              |          |   |                | Matri          | ix: Solid |
| Date Received: 01/17/24 16:35                |               |                         |              |          |   |                |                |           |
| Sample Depth: 1'                             |               |                         |              |          |   |                |                |           |
| Method: SW846 8021B - Volatile O             | rganic Comp   | ounds (GC               | )            |          |   |                |                |           |
| Analyte                                      |               | Qualifier               | RL           | Unit     | D | Prepared       | Analyzed       | Dil Fac   |
| Benzene                                      | <0.00201      | U                       | 0.00201      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| Toluene                                      | <0.00201      | U                       | 0.00201      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| Ethylbenzene                                 | <0.00201      |                         | 0.00201      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| m-Xylene & p-Xylene                          | <0.00402      | U                       | 0.00402      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| o-Xylene                                     | <0.00201      |                         | 0.00201      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| Xylenes, Total                               | <0.00402      | U                       | 0.00402      | mg/Kg    |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| Surrogate                                    | %Recovery     | Qualifier               | Limits       |          |   | Prepared       | Analyzed       | Dil Fac   |
| 4-Bromofluorobenzene (Surr)                  | 90            |                         | 70 - 130     |          |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| 1,4-Difluorobenzene (Surr)                   | 76            |                         | 70 - 130     |          |   | 01/22/24 14:55 | 01/29/24 19:17 | 1         |
| Method: TAL SOP Total BTEX - Tot             | tal BTEX Calo | culation                |              |          |   |                |                |           |
| Analyte                                      |               | Qualifier               | RL           | Unit     | D | Prepared       | Analyzed       | Dil Fac   |
| Total BTEX                                   | <0.00402      | U                       | 0.00402      | mg/Kg    |   |                | 01/29/24 19:17 | 1         |
|                                              | _             |                         |              |          |   |                |                |           |
| Method: SW846 8015 NM - Diesel I<br>Analyte  |               | Qualifier               | (GC)<br>RL   | Unit     | D | Prepared       | Analyzed       | Dil Fac   |
| Total TPH                                    | <50.1         |                         | 50.1         | mg/Kg    |   |                | 01/27/24 02:19 | 1         |
|                                              | -00.1         | 0                       | 00.1         | 1119/119 |   |                | 01/21/21 02.10 | •         |
| Method: SW846 8015B NM - Diese               | l Range Orga  | nics (DRO               | ) (GC)       |          |   |                |                |           |
| Analyte                                      | Result        | Qualifier               | RL           | Unit     | D | Prepared       | Analyzed       | Dil Fac   |
| Gasoline Range Organics                      | <50.1         | U                       | 50.1         | mg/Kg    |   | 01/19/24 17:02 | 01/27/24 02:19 | 1         |
| (GRO)-C6-C10                                 | -50.4         | 11 *4                   | 50.4         |          |   | 04/40/04 47:00 | 04/07/04 00:40 | 4         |
| Diesel Range Organics (Over<br>C10-C28)      | <50.1         | 0 1                     | 50.1         | mg/Kg    |   | 01/19/24 17:02 | 01/27/24 02:19 | 1         |
| Oll Range Organics (Over C28-C36)            | <50.1         | U                       | 50.1         | mg/Kg    |   | 01/19/24 17:02 | 01/27/24 02:19 | 1         |
| Surrogate                                    | %Recovery     | Qualifier               | Limits       |          |   | Prepared       | Analyzed       | Dil Fac   |
| 1-Chlorooctane                               |               |                         | 70 - 130     |          |   | 01/19/24 17:02 | 01/27/24 02:19 | 1         |
| o-Terphenyl                                  | 98            |                         | 70 - 130     |          |   | 01/19/24 17:02 | 01/27/24 02:19 | 1         |
|                                              |               |                         |              |          |   |                |                |           |
| Method: EPA 300.0 - Anions, Ion C            |               | -                       |              |          | _ | <b>_</b> .     |                | <b>-</b>  |
| Analyte                                      | Result        | Qualifier               | RL           | Unit     | D | Prepared       | Analyzed       | Dil Fac   |

 Analyte
 Result
 Qualifier
 RL
 Unit
 D
 Prepared
 Analyzed
 Dil

 Chloride
 69.8
 5.05
 mg/Kg
 01/22/24 16:42
 01/22/24 16:42
 01/22/24 16:42

Eurofins Carlsbad

Page 42 of 123

Job ID: 890-5982-1 SDG: 03C1558301

Lab Sample ID: 890-5982-16

# Client Sample ID: SW01

Date Collected: 01/17/24 14:25 Date Received: 01/17/24 16:35

Sample Depth: 0-1'

Client: Ensolum

| Method: SW846 8021B - Volatile C                                                                                                   |                                                           |                                            |                                           |                        |                |                                                    |                                                                |                             |
|------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|-------------------------------------------|------------------------|----------------|----------------------------------------------------|----------------------------------------------------------------|-----------------------------|
| Analyte                                                                                                                            |                                                           | Qualifier                                  | RL                                        | Unit                   | D              | Prepared                                           | Analyzed                                                       | Dil Fac                     |
| Benzene                                                                                                                            | <0.00200                                                  |                                            | 0.00200                                   | mg/Kg                  |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| Toluene                                                                                                                            | <0.00200                                                  | U                                          | 0.00200                                   | mg/Kg                  |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| Ethylbenzene                                                                                                                       | <0.00200                                                  | U                                          | 0.00200                                   | mg/Kg                  |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| m-Xylene & p-Xylene                                                                                                                | <0.00401                                                  | U                                          | 0.00401                                   | mg/Kg                  |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| o-Xylene                                                                                                                           | <0.00200 U                                                |                                            | 0.00200                                   | mg/Kg                  |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| Xylenes, Total                                                                                                                     | <0.00401                                                  | 0.00401 U 0.00401 mg/Kg 01/22/24 14:5      |                                           | 01/22/24 14:55         | 01/29/24 19:38 | 1                                                  |                                                                |                             |
| Surrogate                                                                                                                          | %Recovery                                                 | Qualifier                                  | Limits                                    |                        |                | Prepared                                           | Analyzed                                                       | Dil Fac                     |
| 4-Bromofluorobenzene (Surr)                                                                                                        | 77                                                        |                                            | 70 - 130                                  |                        |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| 1,4-Difluorobenzene (Surr)                                                                                                         | 83                                                        |                                            | 70 - 130                                  |                        |                | 01/22/24 14:55                                     | 01/29/24 19:38                                                 | 1                           |
| _<br>Method: TAL SOP Total BTEX - To                                                                                               | tal BTEX Cal                                              | culation                                   |                                           |                        |                |                                                    |                                                                |                             |
| Analyte                                                                                                                            |                                                           | Qualifier                                  | RL                                        | Unit                   | D              | Prepared                                           | Analyzed                                                       | Dil Fac                     |
| Total BTEX                                                                                                                         | <0.00401                                                  | U                                          | 0.00401                                   | mg/Kg                  |                |                                                    | 01/29/24 19:38                                                 | 1                           |
| –<br>Method: SW846 8015 NM - Diesel                                                                                                | Range Organ                                               | ics (DRO) ((                               | GC)                                       |                        |                |                                                    |                                                                |                             |
| Analyte                                                                                                                            | • •                                                       | Qualifier                                  | RL                                        | Unit                   | D              | Prepared                                           | Analyzed                                                       |                             |
| Total TPH                                                                                                                          | <50.5                                                     |                                            |                                           |                        |                |                                                    | •                                                              | Dil Fac                     |
| _                                                                                                                                  | <50.5                                                     | U                                          | 50.5                                      | mg/Kg                  |                |                                                    | 01/27/24 02:41                                                 | Dil Fac                     |
| <br>Method: SW846 8015B NM - Diese                                                                                                 |                                                           |                                            |                                           | mg/Kg                  |                |                                                    | 01/27/24 02:41                                                 | Dil Fac                     |
| Method: SW846 8015B NM - Diese<br>Analyte                                                                                          | el Range Orga                                             |                                            |                                           | mg/Kg<br>Unit          | <br>D          | Prepared                                           | 01/27/24 02:41                                                 | Dil Fac                     |
| Analyte<br>Gasoline Range Organics                                                                                                 | el Range Orga                                             | nics (DRO)<br>Qualifier                    | (GC)                                      |                        | D              | Prepared 01/19/24 17:02                            |                                                                | 1                           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                 | el Range Orga<br>Result                                   | nics (DRO)<br>Qualifier<br>U               | (GC)<br>RL                                | Unit<br>mg/Kg          | D              | ·                                                  | Analyzed                                                       | 1<br>Dil Fac                |
| Analyte<br>Gasoline Range Organics                                                                                                 | el Range Orga<br>Result<br><50.5                          | nics (DRO)<br>Qualifier<br>U               | (GC)<br><u>RL</u><br>50.5                 | Unit                   | D              | 01/19/24 17:02                                     | Analyzed<br>01/27/24 02:41                                     | 1<br>Dil Fac<br>1           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                  | el Range Orga<br>Result<br><50.5                          | unics (DRO)<br>Qualifier<br>U<br>U *1      | (GC)<br><u>RL</u><br>50.5                 | Unit<br>mg/Kg          | <u>D</u>       | 01/19/24 17:02                                     | Analyzed<br>01/27/24 02:41                                     | 1<br>Dil Fac<br>1           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                      | el Range Orga<br>Result<br><50.5<br><50.5                 | unics (DRO)<br>Qualifier<br>U<br>U *1<br>U | (GC)<br><u>RL</u><br>50.5<br>50.5         | Unit<br>mg/Kg<br>mg/Kg | D              | 01/19/24 17:02                                     | Analyzed<br>01/27/24 02:41<br>01/27/24 02:41                   | 1<br>Dil Fac<br>1           |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36) | el Range Orga<br><u>Result</u><br><50.5<br><50.5<br><50.5 | unics (DRO)<br>Qualifier<br>U<br>U *1<br>U | (GC)<br><u>RL</u><br>50.5<br>50.5<br>50.5 | Unit<br>mg/Kg<br>mg/Kg | D              | 01/19/24 17:02<br>01/19/24 17:02<br>01/19/24 17:02 | Analyzed<br>01/27/24 02:41<br>01/27/24 02:41<br>01/27/24 02:41 | 1<br>Dil Fac<br>1<br>1<br>1 |

| Method: EPA 300.0 - Anions, Ion Chromatography - Soluble |          |        |           |      |       |   |          |                |         |
|----------------------------------------------------------|----------|--------|-----------|------|-------|---|----------|----------------|---------|
|                                                          | Analyte  | Result | Qualifier | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
|                                                          | Chloride | 78.5   |           | 5.04 | mg/Kg |   |          | 01/22/24 16:47 | 1       |

# Client Sample ID: SW02 Date Collected: 01/17/24 14:30

Date Received: 01/17/24 16:35

Sample Depth: 0-1'

| Method: SW846 8021B - Volat | ile Organic Comp | ounds (GC | )        |       |   |                |                |         |
|-----------------------------|------------------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result           | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00201         | U         | 0.00201  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| Toluene                     | <0.00201         | U         | 0.00201  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| Ethylbenzene                | <0.00201         | U         | 0.00201  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| m-Xylene & p-Xylene         | <0.00402         | U *+      | 0.00402  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| o-Xylene                    | <0.00201         | U         | 0.00201  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| Xylenes, Total              | <0.00402         | U         | 0.00402  | mg/Kg |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |
| Surrogate                   | %Recovery        | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 84               |           | 70 - 130 |       |   | 01/24/24 15:35 | 01/30/24 13:32 | 1       |

Eurofins Carlsbad

Lab Sample ID: 890-5982-17

Matrix: Solid

D· 890-5982-1

Matrix: Solid

# **Client Sample Results**

Job ID: 890-5982-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5982-17

# Client Sample ID: SW02

Date Collected: 01/17/24 14:30 Date Received: 01/17/24 16:35

Sample Depth: 0-1'

Client: Ensolum

| Surrogate                                                              | %Recovery                             | Qualifier   | Limits                         |               |          | Prepared                          | Analyzed                   | Dil Fac          |
|------------------------------------------------------------------------|---------------------------------------|-------------|--------------------------------|---------------|----------|-----------------------------------|----------------------------|------------------|
| 1,4-Difluorobenzene (Surr)                                             | 70                                    |             | 70 - 130                       |               |          | 01/24/24 15:35                    | 01/30/24 13:32             | 1                |
| Method: TAL SOP Total BTEX - 1                                         | Total BTEX Cald                       | ulation     |                                |               |          |                                   |                            |                  |
| Analyte                                                                | Result                                | Qualifier   | RL                             | Unit          | D        | Prepared                          | Analyzed                   | Dil Fac          |
| Total BTEX                                                             | <0.00402                              | U           | 0.00402                        | mg/Kg         |          |                                   | 01/30/24 13:32             | 1                |
| -<br>Method: SW846 8015 NM - Diese                                     | el Range Organ                        | ics (DRO) ( | GC)                            |               |          |                                   |                            |                  |
| Analyte                                                                | Result                                | Qualifier   | RL                             | Unit          | D        | Prepared                          | Analyzed                   | Dil Fac          |
| Total TPH                                                              | <49.5                                 | U           | 49.5                           | mg/Kg         |          |                                   | 01/27/24 03:03             | 1                |
| Analyte Gasoline Range Organics (GRO)-C6-C10                           | <49.5                                 |             | 49.5                           | Unit<br>mg/Kg | <u> </u> | Prepared<br>01/19/24 17:02        | Analyzed<br>01/27/24 03:03 | Dil Fac          |
| Diesel Range Organics (Over<br>C10-C28)                                | <49.5                                 | U *1        | 49.5                           | mg/Kg         |          | 01/19/24 17:02                    | 01/27/24 03:03             | 1                |
|                                                                        |                                       |             |                                |               |          |                                   |                            |                  |
| ,                                                                      | <49.5                                 | U           | 49.5                           | mg/Kg         |          | 01/19/24 17:02                    | 01/27/24 03:03             | 1                |
| Oll Range Organics (Over C28-C36)                                      | <49.5<br><b>%Recovery</b>             |             | 49.5<br><b>Limits</b>          | mg/Kg         |          | 01/19/24 17:02<br>Prepared        | 01/27/24 03:03<br>Analyzed | 1<br>Dil Fac     |
| Oll Range Organics (Over C28-C36) Surrogate                            |                                       |             |                                | mg/Kg         |          |                                   |                            | 1<br>            |
| Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane             | %Recovery                             |             | Limits                         | mg/Kg         |          | Prepared                          | Analyzed                   | 1<br>            |
| Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl | <b>%Recovery</b><br>80<br>96          | Qualifier   | Limits<br>70 - 130<br>70 - 130 | mg/Kg         |          | <b>Prepared</b><br>01/19/24 17:02 | Analyzed<br>01/27/24 03:03 | 1<br>1<br>1<br>1 |
| Oll Range Organics (Over C28-C36) Surrogate                            | %Recovery<br>80<br>96<br>Chromatograp | Qualifier   | Limits<br>70 - 130<br>70 - 130 | mg/Kg<br>Unit | D        | <b>Prepared</b><br>01/19/24 17:02 | Analyzed<br>01/27/24 03:03 | 1<br>Dil Fac     |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                            |                        | BFB1          | DFBZ1     |  |
|----------------------------|------------------------|---------------|-----------|--|
| Lab Sample ID              | Client Sample ID       | (70-130)      | (70-130)  |  |
| 880-38189-A-1-B MS         | Vatrix Spike           | 119           | 102       |  |
| 880-38189-A-1-C MSD        | Matrix Spike Duplicate | 118           | 99        |  |
| 880-38301-A-1-B MS         | Vatrix Spike           | 115           | 107       |  |
| 380-38301-A-1-C MSD        | Matrix Spike Duplicate | 91            | 77        |  |
| 390-5981-A-1-E MS          | Vatrix Spike           | 109           | 104       |  |
| 90-5981-A-1-F MSD          | Vatrix Spike Duplicate | 115           | 104       |  |
| 90-5982-1                  | PH01                   | 83            | 81        |  |
| 90-5982-2                  | PH01A                  | 89            | 76        |  |
| 90-5982-3                  | PH02                   | 81            | 78        |  |
| 90-5982-4                  | PH02A                  | 77            | 84        |  |
| 90-5982-5                  | PH03                   | 78            | 81        |  |
|                            | PH03A                  | 81            | 75        |  |
|                            | PH04                   | 85            | 76        |  |
|                            | PH04A                  | 86            | 75        |  |
|                            | FS01                   | 89            | 72        |  |
|                            | FS02                   | 88            | 73        |  |
|                            | FS03                   | 86            | 69 S1-    |  |
|                            | =S04                   | 93            | 73        |  |
|                            | FS05                   | 75            | 72        |  |
|                            | =S06                   | 78            | 83        |  |
|                            | =S07                   | 90            | 76        |  |
|                            | SW01                   | 77            | 83        |  |
|                            | SW01<br>SW02           | 84            | 83<br>70  |  |
|                            |                        | 84<br>280 S1+ |           |  |
|                            | Matrix Spike           |               | 95        |  |
|                            | Matrix Spike Duplicate | 504 S1+       | 93<br>102 |  |
|                            | Lab Control Sample     | 118           | 102       |  |
|                            | Lab Control Sample     | 111           | 102       |  |
|                            | Lab Control Sample     | 116           | 101       |  |
|                            | Lab Control Sample     | 112           | 102       |  |
|                            | _ab Control Sample Dup | 128           | 106       |  |
|                            | _ab Control Sample Dup | 109           | 101       |  |
|                            | Lab Control Sample Dup | 115           | 101       |  |
| CSD 880-71692/2-A          | ab Control Sample Dup  | 104           | 94        |  |
| MB 880-71343/5-A           | Method Blank           | 71            | 84        |  |
| MB 880-71537/5-A           | Vethod Blank           | 67 S1-        | 88        |  |
| /IB 880-71633/5-A          | Method Blank           | 69 S1-        | 83        |  |
| MB 880-71690/5-A           | Method Blank           | 76            | 79        |  |
| MB 880-71692/5-A           | Method Blank           | 79            | 79        |  |
| Surrogate Legend           |                        |               |           |  |
| BFB = 4-Bromofluorobenzene | (Surr)                 |               |           |  |

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

# Matrix: Solid

|               |                  |          |          | Percent Surrogate Recovery (Acceptance Limits) |
|---------------|------------------|----------|----------|------------------------------------------------|
|               |                  | 1CO1     | OTPH1    |                                                |
| Lab Sample ID | Client Sample ID | (70-130) | (70-130) |                                                |
| 890-5982-1    | PH01             | 86       | 103      |                                                |

5

6

Job ID: 890-5982-1 SDG: 03C1558301

Prep Type: Total/NA

Eurofins Carlsbad

Prep Type: Total/NA

# Job ID: 890-5982-1 SDG: 03C1558301

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

Prep Type: Total/NA

|                    |                        | 1CO1     | OTPH1    | Percent Surrogate Recovery (Acceptance Limits) |    |
|--------------------|------------------------|----------|----------|------------------------------------------------|----|
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                | 5  |
| 890-5982-1 MS      | PH01                   | 88       | 89       |                                                | 5  |
| 890-5982-1 MSD     | PH01                   | 91       | 91       |                                                | 6  |
| 890-5982-2         | PH01A                  | 94       | 114      |                                                | Ο  |
| 890-5982-3         | PH02                   | 100      | 119      |                                                |    |
| 890-5982-4         | PH02A                  | 96       | 117      |                                                |    |
| 890-5982-5         | PH03                   | 78       | 95       |                                                |    |
| 890-5982-6         | PH03A                  | 78       | 97       |                                                | 8  |
| 890-5982-7         | PH04                   | 100      | 120      |                                                |    |
| 890-5982-8         | PH04A                  | 83       | 100      |                                                | 9  |
| 890-5982-9         | FS01                   | 104      | 126      |                                                |    |
| 890-5982-10        | FS02                   | 83       | 99       |                                                |    |
| 890-5982-11        | FS03                   | 59 S1-   | 71       |                                                |    |
| 890-5982-12        | FS04                   | 77       | 93       |                                                |    |
| 890-5982-13        | FS05                   | 80       | 97       |                                                |    |
| 890-5982-14        | FS06                   | 89       | 106      |                                                |    |
| 890-5982-15        | FS07                   | 81       | 98       |                                                |    |
| 890-5982-16        | SW01                   | 84       | 102      |                                                | 13 |
| 890-5982-17        | SW02                   | 80       | 96       |                                                |    |
| LCS 880-71251/2-A  | Lab Control Sample     | 81       | 103      |                                                |    |
| LCSD 880-71251/3-A | Lab Control Sample Dup | 88       | 108      |                                                |    |
| MB 880-71251/1-A   | Method Blank           | 98       | 119      |                                                |    |

# Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Carlsbad

Released to Imaging: 4/22/2024 2:45:18 PM

# Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-71343/5-A |  |
|---------------------------------|--|
| Matrix: Solid                   |  |

Analysis Batch: 71764

|                             | MB        | MB        |          |       |   |                |                |         |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| Ethylbenzene                | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| m-Xylene & p-Xylene         | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| o-Xylene                    | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| Xylenes, Total              | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
|                             | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 71        |           | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |
| 1,4-Difluorobenzene (Surr)  | 84        |           | 70 - 130 |       |   | 01/22/24 14:55 | 01/29/24 10:33 | 1       |

# Lab Sample ID: LCS 880-71343/1-A Matrix: Solid

# Analysis Batch: 71764

|                     | Spike | LCS    | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|--------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1109 |           | mg/Kg |   | 111  | 70 - 130 |  |
| Toluene             | 0.100 | 0.1084 |           | mg/Kg |   | 108  | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.1235 |           | mg/Kg |   | 124  | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.2589 |           | mg/Kg |   | 129  | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1258 |           | mg/Kg |   | 126  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 118       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 |

# Lab Sample ID: LCSD 880-71343/2-A

# Matrix: Solid

|   | Analysis Batch: 71764 |       |         |           |       |   |      | Prep     | Batch: | 71343 |
|---|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|   |                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
|   | Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
|   | Benzene               | 0.100 | 0.09840 |           | mg/Kg |   | 98   | 70 - 130 | 12     | 35    |
|   | Toluene               | 0.100 | 0.1009  |           | mg/Kg |   | 101  | 70 - 130 | 7      | 35    |
|   | Ethylbenzene          | 0.100 | 0.1248  |           | mg/Kg |   | 125  | 70 - 130 | 1      | 35    |
|   | m-Xylene & p-Xylene   | 0.200 | 0.2595  |           | mg/Kg |   | 130  | 70 - 130 | 0      | 35    |
|   | o-Xylene              | 0.100 | 0.1260  |           | mg/Kg |   | 126  | 70 - 130 | 0      | 35    |
| I |                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 128       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 106       |           | 70 - 130 |

# Lab Sample ID: 880-38189-A-1-B MS

# Matrix: Solid

| Analysis Batch: 71764 |          |           |        |         |           |       |   |      | Pre      | Batch: 71343 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|--------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |              |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |              |
| Benzene               | <0.00198 | U         | 0.0996 | 0.09967 |           | mg/Kg |   | 100  | 70 - 130 |              |
| Toluene               | <0.00198 | U         | 0.0996 | 0.1048  |           | mg/Kg |   | 105  | 70 - 130 |              |

**Eurofins Carlsbad** 

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

# Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 71343

Job ID: 890-5982-1

SDG: 03C1558301

3

# Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 71343

MS MS

0.1245

0.2478

0.1177

**Result Qualifier** 

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0996

0.199

0.0996

Limits 70 - 130

70 - 130

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

Lab Sample ID: 880-38189-A-1-B MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 71764

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00198

%Recovery

<0.00396 UF1

<0.00198 UF1

119

102

MS MS

**Result Qualifier** 

U F1

Qualifier

Prep Type: Total/NA

Prep Batch: 71343

**Client Sample ID: Matrix Spike** 

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

125

124

118

D

| 5 |
|---|
|   |
| 7 |
| 8 |
| 9 |
|   |
|   |
|   |

# **Client Sample ID: Matrix Spike Duplicate** Prep Type: Total/NA

**Client Sample ID: Method Blank** 

01/30/24 10:46

01/30/24 10:46

**Client Sample ID: Lab Control Sample** 

01/24/24 15:35

01/24/24 15:35

Prep Type: Total/NA

Prep Batch: 71537

Matrix: Solid Analysis Batch: 71764

Lab Sample ID: 880-38189-A-1-C MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

| Analysis Batch: 71764 |          |           |       |        |           |       |   |      | Prep     | Batch: | 71343 |   |
|-----------------------|----------|-----------|-------|--------|-----------|-------|---|------|----------|--------|-------|---|
|                       | Sample   | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec     |        | RPD   |   |
| Analyte               | Result   | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |   |
| Benzene               | <0.00198 | U         | 0.100 | 0.1113 |           | mg/Kg |   | 111  | 70 - 130 | 11     | 35    |   |
| Toluene               | <0.00198 | U         | 0.100 | 0.1202 |           | mg/Kg |   | 119  | 70 - 130 | 14     | 35    | i |
| Ethylbenzene          | <0.00198 | U F1      | 0.100 | 0.1365 | F1        | mg/Kg |   | 136  | 70 - 130 | 9      | 35    |   |
| m-Xylene & p-Xylene   | <0.00396 | U F1      | 0.201 | 0.2816 | F1        | mg/Kg |   | 140  | 70 - 130 | 13     | 35    | i |
| o-Xylene              | <0.00198 | U F1      | 0.100 | 0.1336 | F1        | mg/Kg |   | 133  | 70 - 130 | 13     | 35    |   |
|                       |          |           |       |        |           |       |   |      |          |        |       |   |

|                             | MSD       | MSD       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 118       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 99        |           | 70 - 130 |

# Lab Sample ID: MB 880-71537/5-A Matrix: Solid Analysis Batch: 71915

|                     | MB        | MB        |         |       |   |                |                |         |
|---------------------|-----------|-----------|---------|-------|---|----------------|----------------|---------|
| Analyte             | Result    | Qualifier | RL      | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Benzene             | <0.00200  | U         | 0.00200 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
| Toluene             | <0.00200  | U         | 0.00200 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
| Ethylbenzene        | <0.00200  | U         | 0.00200 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
| m-Xylene & p-Xylene | <0.00400  | U         | 0.00400 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
| o-Xylene            | <0.00200  | U         | 0.00200 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
| Xylenes, Total      | <0.00400  | U         | 0.00400 | mg/Kg |   | 01/24/24 15:35 | 01/30/24 10:46 | 1       |
|                     | МВ        | MB        |         |       |   |                |                |         |
| Surrogate           | %Recovery | Qualifier | Limits  |       |   | Prepared       | Analyzed       | Dil Fac |

| 4-Bromofluorobenzene (Surr) | 67 | S1- | 70 - 130 |
|-----------------------------|----|-----|----------|
| 1,4-Difluorobenzene (Surr)  | 88 |     | 70 _ 130 |
|                             |    |     |          |

# Lab Sample ID: LCS 880-71537/1-A Matrix: Solid Analysis Batch: 71915

| -                   | Spike | LCS    | LCS       |       |   |      | %Rec     |
|---------------------|-------|--------|-----------|-------|---|------|----------|
| Analyte             | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |
| Benzene             | 0.100 | 0.1118 |           | mg/Kg |   | 112  | 70 - 130 |
| Toluene             | 0.100 | 0.1124 |           | mg/Kg |   | 112  | 70 - 130 |
| Ethylbenzene        | 0.100 | 0.1262 |           | mg/Kg |   | 126  | 70 - 130 |
| m-Xylene & p-Xylene | 0.200 | 0.2642 | *+        | mg/Kg |   | 132  | 70 - 130 |

**Eurofins Carlsbad** 

Prep Type: Total/NA

Prep Batch: 71537

1

LCS LCS

0.1256

**Result Qualifier** 

Unit

mg/Kg

Spike

Added

0.100

Limits

70 - 130 70 - 130

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

Lab Sample ID: LCS 880-71537/1-A

Lab Sample ID: LCSD 880-71537/2-A

Matrix: Solid

Analyte

o-Xylene

Surrogate

Matrix: Solid

Analysis Batch: 71915

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Prep Type: Total/NA

Prep Batch: 71537

RPD

7

6

9

8

8

# 7

RPD

Limit

35

35

35 35

35

| Client Sample ID: Lab Control Sample Dup |  |
|------------------------------------------|--|

# Prep Type: Total/NA Prep Batch: 71537

**Client Sample ID: Matrix Spike** 

Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

%Rec

Limits

70 - 130

%Rec

126

D

|       |                               |                                                                                                                                                  |                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 | Pre                                                                                                                                                                                                                                                                                                            |
|-------|-------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Spike | LCSD                          | LCSD                                                                                                                                             |                                                                       |                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                 | %Rec                                                                                                                                                                                                                                                                                                           |
| Added | Result                        | Qualifier                                                                                                                                        | Unit                                                                  | D                                                                                                                                                                                                                                       | %Rec                                                                                                                                                                                                                                                            | Limits                                                                                                                                                                                                                                                                                                         |
| 0.100 | 0.1041                        |                                                                                                                                                  | mg/Kg                                                                 |                                                                                                                                                                                                                                         | 104                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                       |
| 0.100 | 0.1056                        |                                                                                                                                                  | mg/Kg                                                                 |                                                                                                                                                                                                                                         | 106                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                       |
| 0.100 | 0.1153                        |                                                                                                                                                  | mg/Kg                                                                 |                                                                                                                                                                                                                                         | 115                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                       |
| 0.200 | 0.2440                        |                                                                                                                                                  | mg/Kg                                                                 |                                                                                                                                                                                                                                         | 122                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                       |
| 0.100 | 0.1157                        |                                                                                                                                                  | mg/Kg                                                                 |                                                                                                                                                                                                                                         | 116                                                                                                                                                                                                                                                             | 70 - 130                                                                                                                                                                                                                                                                                                       |
|       | Added 0.100 0.100 0.100 0.200 | Added         Result           0.100         0.1041           0.100         0.1056           0.100         0.1153           0.200         0.2440 | Added         Result         Qualifier           0.100         0.1041 | Added         Result         Qualifier         Unit           0.100         0.1041         mg/Kg           0.100         0.1056         mg/Kg           0.100         0.1153         mg/Kg           0.200         0.2440         mg/Kg | Added         Result         Qualifier         Unit         D           0.100         0.1041         mg/Kg         mg/Kg           0.100         0.1056         mg/Kg           0.100         0.1153         mg/Kg           0.200         0.2440         mg/Kg | Added         Result         Qualifier         Unit         D         %Rec           0.100         0.1041         mg/Kg         104           0.100         0.1056         mg/Kg         106           0.100         0.1153         mg/Kg         115           0.200         0.2440         mg/Kg         122 |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 109       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 |

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

LCS LCS

111

102

Qualifier

%Recovery

# Lab Sample ID: 890-5981-A-1-E MS Matrix: Solid

### Analysis Batch: 71915 Prep Batch: 71537 Spike MS MS Sample Sample %Rec Result Qualifier Analyte Result Qualifier Added Unit D %Rec Limits Benzene <0.00199 U 0.0996 0.09687 mg/Kg 97 70 - 130 Toluene <0.00199 U 0.0996 0.09463 mg/Kg 94 70 - 130 Ethylbenzene <0.00199 U 0.0996 0.1029 mg/Kg 103 70 - 130 m-Xylene & p-Xylene <0.00398 U F1 \*+ 0.199 0.2163 mg/Kg 109 70 - 130 o-Xylene <0.00199 U 0.0996 0.1044 mg/Kg 105 70 - 130

|                             | MS        | MS        |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 109       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 104       |           | 70 - 130 |

# Lab Sample ID: 890-5981-A-1-F MSD Matrix: Solid

| Analysis Batch: 71915 |          |           |        |        |           |       |   |      | Prep     | Batch: | 71537 |
|-----------------------|----------|-----------|--------|--------|-----------|-------|---|------|----------|--------|-------|
|                       | Sample   | Sample    | Spike  | MSD    | MSD       |       |   |      | %Rec     |        | RPD   |
| Analyte               | Result   | Qualifier | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | <0.00199 | U         | 0.0990 | 0.1214 |           | mg/Kg |   | 123  | 70 - 130 | 22     | 35    |
| Toluene               | <0.00199 | U         | 0.0990 | 0.1155 |           | mg/Kg |   | 116  | 70 - 130 | 20     | 35    |
| Ethylbenzene          | <0.00199 | U         | 0.0990 | 0.1272 |           | mg/Kg |   | 128  | 70 - 130 | 21     | 35    |
| m-Xylene & p-Xylene   | <0.00398 | U F1 *+   | 0.198  | 0.2662 | F1        | mg/Kg |   | 134  | 70 - 130 | 21     | 35    |
| o-Xylene              | <0.00199 | U         | 0.0990 | 0.1272 |           | mg/Kg |   | 128  | 70 - 130 | 20     | 35    |

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

Lab Sample ID: 890-5981-A-1-F MSD

Lab Sample ID: MB 880-71633/5-A

Matrix: Solid

Matrix: Solid

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

Surrogate

Analysis Batch: 71915

4-Bromofluorobenzene (Surr)

Analysis Batch: 71772

1,4-Difluorobenzene (Surr)

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD %Recovery Qualifier

115

104

# Page 49 of 123

Prep Type: Total/NA

Prep Batch: 71537

**Client Sample ID: Matrix Spike Duplicate** 

# 5

|           |           |         |       |   | Client Sa      | mple ID: Metho             | d Blank  | _ / |
|-----------|-----------|---------|-------|---|----------------|----------------------------|----------|-----|
|           |           |         |       |   | Chefft da      | Prep Type: 7<br>Prep Batch | Fotal/NA | 8   |
| МВ        | МВ        |         |       |   |                |                            |          | Q   |
| Result    | Qualifier | RL      | Unit  | D | Prepared       | Analyzed                   | Dil Fac  | 9   |
| <0.00200  | U         | 0.00200 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| <0.00200  | U         | 0.00200 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| <0.00200  | U         | 0.00200 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| <0.00400  | U         | 0.00400 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| <0.00200  | U         | 0.00200 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| <0.00400  | U         | 0.00400 | mg/Kg |   | 01/25/24 18:00 | 01/29/24 22:21             | 1        |     |
| МВ        | МВ        |         |       |   |                |                            |          | 1:  |
| %Recovery | Qualifier | Limits  |       |   | Prepared       | Analyzed                   | Dil Fac  |     |

|                             | MB MB         |          |                |                |         |
|-----------------------------|---------------|----------|----------------|----------------|---------|
| Surrogate %Reco             | ery Qualifier | Limits   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 69 S1-        | 70 - 130 | 01/25/24 18:00 | 01/29/24 22:21 | 1       |
| 1,4-Difluorobenzene (Surr)  | 83            | 70 - 130 | 01/25/24 18:00 | 01/29/24 22:21 | 1       |

# Lab Sample ID: LCS 880-71633/1-A Matrix: Solid Analysis Batch: 71772

| Analysis Batch: 71772 |       |        |           |       |   |      | Prep B   | atch: 71633 |
|-----------------------|-------|--------|-----------|-------|---|------|----------|-------------|
|                       | Spike | LCS    | LCS       |       |   |      | %Rec     |             |
| Analyte               | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |             |
| Benzene               | 0.100 | 0.1103 |           | mg/Kg |   | 110  | 70 - 130 |             |
| Toluene               | 0.100 | 0.1082 |           | mg/Kg |   | 108  | 70 - 130 |             |
| Ethylbenzene          | 0.100 | 0.1273 |           | mg/Kg |   | 127  | 70 - 130 |             |
| m-Xylene & p-Xylene   | 0.200 | 0.2599 |           | mg/Kg |   | 130  | 70 - 130 |             |
| o-Xylene              | 0.100 | 0.1270 |           | mg/Kg |   | 127  | 70 - 130 |             |
|                       |       |        |           |       |   |      |          |             |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 116       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 101       |           | 70 - 130 |

# Lab Sample ID: LCSD 880-71633/2-A Matrix: Solid

# **Client Sample ID: Lab Control Sample Dup** Prep Type: Total/NA

**Client Sample ID: Lab Control Sample** 

Prep Type: Total/NA

| Analysis Batch: 71772 |           |           |        |        |           |       |   |      | Prep     | Batch: | 71633 |
|-----------------------|-----------|-----------|--------|--------|-----------|-------|---|------|----------|--------|-------|
|                       |           |           | Spike  | LCSD   | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               |           |           | Added  | Result | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               |           |           | 0.100  | 0.1102 |           | mg/Kg |   | 110  | 70 - 130 | 0      | 35    |
| Toluene               |           |           | 0.100  | 0.1107 |           | mg/Kg |   | 111  | 70 - 130 | 2      | 35    |
| Ethylbenzene          |           |           | 0.100  | 0.1274 |           | mg/Kg |   | 127  | 70 - 130 | 0      | 35    |
| m-Xylene & p-Xylene   |           |           | 0.200  | 0.2642 | *+        | mg/Kg |   | 132  | 70 - 130 | 2      | 35    |
| o-Xylene              |           |           | 0.100  | 0.1280 |           | mg/Kg |   | 128  | 70 - 130 | 1      | 35    |
|                       | LCSD      | LCSD      |        |        |           |       |   |      |          |        |       |
| Surrogate             | %Recovery | Qualifier | Limits |        |           |       |   |      |          |        |       |

| Sunoyate                    | /artecovery quanner | Linits   |
|-----------------------------|---------------------|----------|
| 4-Bromofluorobenzene (Surr) | 115                 | 70 - 130 |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-716<br>Matrix: Solid                                                     |                                              |                                                                   |                                  |                                                                          | ,       |                              | Cli         | ent  | Sam                                                      | ple ID: L                                                                                   | ab Control Sar<br>Prep Type:                                                                             |                                              |
|--------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------|---------|------------------------------|-------------|------|----------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|----------------------------------------------|
| Analysis Batch: 71772                                                                            |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | Prep Bate                                                                                                |                                              |
|                                                                                                  | 1.000                                        | 1.00                                                              |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Surrogata                                                                                        | LCSD<br>%Recovery                            |                                                                   |                                  | Limits                                                                   |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Surrogate 1,4-Difluorobenzene (Surr)                                                             |                                              | Quai                                                              |                                  | 70 - 130                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
|                                                                                                  | 101                                          |                                                                   |                                  | 10 - 100                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Lab Sample ID: 890-5988-A-1-E                                                                    | EMS                                          |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          | Client S                                                                                    | Sample ID: Mat                                                                                           | rix Spike                                    |
| Matrix: Solid                                                                                    |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | ·<br>Prep Type:                                                                                          |                                              |
| Analysis Batch: 71772                                                                            |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | Prep Bate                                                                                                |                                              |
| -                                                                                                | Sample                                       | Sam                                                               | ple                              | Spike                                                                    | MS      | MS                           |             |      |                                                          |                                                                                             | %Rec                                                                                                     |                                              |
| Analyte                                                                                          | Result                                       | Qual                                                              | ifier                            | Added                                                                    | Result  | Qualifier                    | Unit        |      | D                                                        | %Rec                                                                                        | Limits                                                                                                   |                                              |
| Benzene                                                                                          | < 0.00201                                    | U F1                                                              |                                  | 0.0996                                                                   | 0.07314 |                              | mg/Kg       |      |                                                          | 73                                                                                          | 70 - 130                                                                                                 |                                              |
| Toluene                                                                                          | 0.0262                                       | F1                                                                |                                  | 0.0996                                                                   | 0.07949 | F1                           | mg/Kg       |      |                                                          | 54                                                                                          | 70 - 130                                                                                                 |                                              |
| Ethylbenzene                                                                                     | 0.259                                        | F2 F                                                              | 1                                | 0.0996                                                                   | 0.2700  | F1                           | mg/Kg       |      |                                                          | 11                                                                                          | 70 - 130                                                                                                 |                                              |
|                                                                                                  |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
|                                                                                                  |                                              | MS                                                                |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Surrogate                                                                                        | %Recovery                                    |                                                                   | ifier                            | Limits                                                                   |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| 4-Bromofluorobenzene (Surr)                                                                      | 280                                          | S1+                                                               |                                  | 70 - 130                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| 1,4-Difluorobenzene (Surr)                                                                       | 95                                           |                                                                   |                                  | 70 - 130                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| _<br>                                                                                            |                                              |                                                                   |                                  |                                                                          |         |                              |             |      | -                                                        |                                                                                             | Motrix Spike                                                                                             | Vunligato                                    |
| Lab Sample ID: 890-5988-A-1-F                                                                    |                                              |                                                                   |                                  |                                                                          |         |                              |             | Sile | nt 36                                                    | ample ID:                                                                                   | Matrix Spike I                                                                                           | -                                            |
| Matrix: Solid                                                                                    |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | Prep Type:                                                                                               |                                              |
| Analysis Batch: 71772                                                                            | Commis                                       | C                                                                 |                                  | Califo                                                                   | Men     | MOD                          |             |      |                                                          |                                                                                             | Prep Bate                                                                                                |                                              |
| Amaluta                                                                                          | Sample                                       |                                                                   |                                  | Spike                                                                    |         | MSD<br>Ovelifier             | 11          |      | ~                                                        | % Dee                                                                                       | %Rec                                                                                                     | RPD                                          |
| Analyte<br>Benzene                                                                               | Result<br><0.00201                           | U F1                                                              |                                  | Added                                                                    | 0.06463 | Qualifier<br>F1              | Unit        |      | <u>D</u>                                                 | %Rec                                                                                        | Limits RF                                                                                                | <b>D</b> Limit<br>12 35                      |
| Toluene                                                                                          | 0.0262                                       |                                                                   |                                  | 0.0990                                                                   | 0.1030  | ГІ                           | mg/Kg       |      |                                                          | 78                                                                                          |                                                                                                          | 26 35                                        |
| Toldene                                                                                          | 0.0202                                       | ΓI                                                                |                                  | 0.0990                                                                   | 0.1030  |                              | mg/Kg       |      |                                                          | 10                                                                                          | 70 - 130                                                                                                 | 20 33                                        |
|                                                                                                  | MSD                                          | MSD                                                               |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Surrogate                                                                                        | %Recovery                                    | Qual                                                              | lifier                           | Limits                                                                   |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| 4-Bromofluorobenzene (Surr)                                                                      | 504                                          | S1+                                                               |                                  | 70 - 130                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| 1,4-Difluorobenzene (Surr)                                                                       | 93                                           |                                                                   |                                  | 70 - 130                                                                 |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| _                                                                                                |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Lab Sample ID: MB 880-71690/                                                                     | / <b>5-A</b>                                 |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          | Client Sa                                                                                   | ample ID: Meth                                                                                           | od Blank                                     |
| Matrix: Solid                                                                                    |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | Prep Type:                                                                                               | Total/NA                                     |
| Analysis Batch: 71764                                                                            |                                              |                                                                   |                                  |                                                                          |         |                              |             |      |                                                          |                                                                                             | Prep Bate                                                                                                | :h: 71690                                    |
|                                                                                                  |                                              | MB                                                                | MB                               |                                                                          |         |                              |             |      |                                                          |                                                                                             |                                                                                                          |                                              |
| Analyte                                                                                          | -                                            | ••                                                                | Qualifier                        | 01                                                                       |         | Unit                         |             | D    | Р                                                        | repared                                                                                     | Analyzed                                                                                                 | Dil Fac                                      |
|                                                                                                  | R                                            | esult                                                             | Quaimer                          |                                                                          |         |                              |             | _    |                                                          |                                                                                             |                                                                                                          |                                              |
| Benzene                                                                                          | <0.0                                         | 0200                                                              | U                                | 0.00200                                                                  |         | mg/K                         |             | _    | 01/2                                                     | 6/24 11:23                                                                                  | 01/28/24 23:01                                                                                           | 1                                            |
| Toluene                                                                                          | <0.0                                         | 0200<br>0200                                                      | U<br>U                           | 0.00200                                                                  |         | mg/K<br>mg/K                 | g           | _    | 01/2                                                     | 6/24 11:23                                                                                  | 01/28/24 23:01<br>01/28/24 23:01                                                                         | 1<br>1                                       |
|                                                                                                  | <0.0                                         | 0200                                                              | U<br>U                           | 0.00200                                                                  |         | mg/K<br>mg/K<br>mg/K         | g<br>g      | _    | 01/2<br>01/2                                             | 6/24 11:23<br>6/24 11:23                                                                    |                                                                                                          | 1<br>1<br>1                                  |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                                                   | <0.0<br><0.0<br><0.0                         | 0200<br>0200                                                      | บ<br>บ<br>บ                      | 0.00200<br>0.00200<br>0.00200<br>0.00200<br>0.00400                      |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g      |      | 01/2<br>01/2<br>01/2                                     | 6/24 11:23<br>6/24 11:23<br>6/24 11:23                                                      | 01/28/24 23:01                                                                                           | 1                                            |
| Toluene<br>Ethylbenzene                                                                          | <0.0<br><0.0<br><0.0<br><0.0<br><0.0         | 0200<br>0200<br>0200                                              | U<br>U<br>U<br>U                 | 0.00200<br>0.00200<br>0.00200                                            |         | mg/K<br>mg/K<br>mg/K         | g<br>g      | _    | 01/2<br>01/2<br>01/2                                     | 6/24 11:23<br>6/24 11:23                                                                    | 01/28/24 23:01<br>01/28/24 23:01                                                                         | 1<br>1                                       |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene                                                   | <0.0<br><0.0<br><0.0<br><0.0<br><0.0<br><0.0 | 0200<br>0200<br>0200<br>0200<br>0400                              | U<br>U<br>U<br>U<br>U            | 0.00200<br>0.00200<br>0.00200<br>0.00200<br>0.00400                      |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g<br>g | -    | 01/2<br>01/2<br>01/2<br>01/2                             | 6/24 11:23<br>6/24 11:23<br>6/24 11:23                                                      | 01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01                                                       | 1<br>1<br>1                                  |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene                                       | <0.0<br><0.0<br><0.0<br><0.0<br><0.0<br><0.0 | 0200<br>0200<br>0200<br>0400<br>0200<br>0400                      | U<br>U<br>U<br>U<br>U<br>U<br>U  | 0.00200<br>0.00200<br>0.00200<br>0.00400<br>0.00400                      |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g<br>g | -    | 01/2<br>01/2<br>01/2<br>01/2                             | 6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23                                        | 01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01                                     | 1<br>1<br>1<br>1<br>1                        |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Xylenes, Total                     | <0.0<br><0.0<br><0.0<br><0.0<br><0.0<br><0.0 | 0200<br>0200<br>0200<br>0400<br>0200<br>0400<br>0400<br><i>MB</i> | U<br>U<br>U<br>U<br>U<br>U<br>MB | 0.00200<br>0.00200<br>0.00200<br>0.00400<br>0.00200<br>0.00400           |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g<br>g | _    | 01/2<br>01/2<br>01/2<br>01/2<br>01/2                     | 6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23            | 01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01                   | 1<br>1<br>1<br>1<br>1<br>1                   |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Xylenes, Total<br><b>Surrogate</b> | <0.0<br><0.0<br><0.0<br><0.0<br><0.0<br><0.0 | 0200<br>0200<br>0200<br>0400<br>0200<br>0400<br>0400<br><b>MB</b> | U<br>U<br>U<br>U<br>U<br>U<br>U  | 0.00200<br>0.00200<br>0.00200<br>0.00400<br>0.00200<br>0.00400<br>Limits |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g<br>g | _    | 01/2<br>01/2<br>01/2<br>01/2<br>01/2<br>01/2             | 6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>repared | 01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01 | 1<br>1<br>1<br>1<br>1<br>1<br><i>Dil Fac</i> |
| Toluene<br>Ethylbenzene<br>m-Xylene & p-Xylene<br>o-Xylene<br>Xylenes, Total                     | <0.0<br><0.0<br><0.0<br><0.0<br><0.0<br><0.0 | 0200<br>0200<br>0200<br>0400<br>0200<br>0400<br>0400<br><i>MB</i> | U<br>U<br>U<br>U<br>U<br>U<br>MB | 0.00200<br>0.00200<br>0.00200<br>0.00400<br>0.00200<br>0.00400           |         | mg/K<br>mg/K<br>mg/K<br>mg/K | g<br>g<br>g | _    | 01/2<br>01/2<br>01/2<br>01/2<br>01/2<br><i>P</i><br>01/2 | 6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23<br>6/24 11:23            | 01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01<br>01/28/24 23:01                   | 1<br>1<br>1<br>1<br>1<br>1                   |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: MB 880-71692/5-A<br>Matrix: Solid |           |           |          |       |   | Client Sa      | mple ID: Metho<br>Prep Type: 1 |                 |   |
|--------------------------------------------------|-----------|-----------|----------|-------|---|----------------|--------------------------------|-----------------|---|
| Analysis Batch: 72000                            |           |           |          |       |   |                | Prep Batch                     | n: <b>71692</b> |   |
|                                                  | MB        | МВ        |          |       |   |                |                                |                 |   |
| Analyte                                          | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed                       | Dil Fac         |   |
| Benzene                                          | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               |   |
| Toluene                                          | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               | - |
| Ethylbenzene                                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               | 7 |
| m-Xylene & p-Xylene                              | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               |   |
| o-Xylene                                         | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               | 8 |
| Xylenes, Total                                   | <0.00400  | U         | 0.00400  | mg/Kg |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               |   |
|                                                  | МВ        | МВ        |          |       |   |                |                                |                 | 9 |
| Surrogate                                        | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed                       | Dil Fac         |   |
| 4-Bromofluorobenzene (Surr)                      | 79        |           | 70 - 130 |       |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               |   |
| 1,4-Difluorobenzene (Surr)                       | 79        |           | 70 - 130 |       |   | 01/26/24 11:33 | 01/31/24 11:14                 | 1               |   |

# Lab Sample ID: LCS 880-71692/1-A Matrix: Solid

# Analysis Batch: 72000

|                     | Spike | LCS     | LCS       |       |   |      | %Rec     |  |
|---------------------|-------|---------|-----------|-------|---|------|----------|--|
| Analyte             | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   |  |
| Benzene             | 0.100 | 0.1010  |           | mg/Kg |   | 101  | 70 - 130 |  |
| Toluene             | 0.100 | 0.09485 |           | mg/Kg |   | 95   | 70 - 130 |  |
| Ethylbenzene        | 0.100 | 0.09005 |           | mg/Kg |   | 90   | 70 - 130 |  |
| m-Xylene & p-Xylene | 0.200 | 0.1985  |           | mg/Kg |   | 99   | 70 - 130 |  |
| o-Xylene            | 0.100 | 0.1164  |           | mg/Kg |   | 116  | 70 - 130 |  |

|                             | LCS       | LCS       |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 112       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 102       |           | 70 - 130 |

# Lab Sample ID: LCSD 880-71692/2-A

# Matrix: Solid

| Analysis Batch: 72000 |       |         |           |       |   |      | Prep     | Batch: | 71692 |
|-----------------------|-------|---------|-----------|-------|---|------|----------|--------|-------|
|                       | Spike | LCSD    | LCSD      |       |   |      | %Rec     |        | RPD   |
| Analyte               | Added | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |
| Benzene               | 0.100 | 0.09042 |           | mg/Kg |   | 90   | 70 - 130 | 11     | 35    |
| Toluene               | 0.100 | 0.09201 |           | mg/Kg |   | 92   | 70 - 130 | 3      | 35    |
| Ethylbenzene          | 0.100 | 0.09967 |           | mg/Kg |   | 100  | 70 - 130 | 10     | 35    |
| m-Xylene & p-Xylene   | 0.200 | 0.2074  |           | mg/Kg |   | 104  | 70 - 130 | 4      | 35    |
| o-Xylene              | 0.100 | 0.09905 |           | mg/Kg |   | 99   | 70 - 130 | 16     | 35    |
|                       |       |         |           |       |   |      |          |        |       |

|                             | LCSD      | LCSD      |          |
|-----------------------------|-----------|-----------|----------|
| Surrogate                   | %Recovery | Qualifier | Limits   |
| 4-Bromofluorobenzene (Surr) | 104       |           | 70 - 130 |
| 1,4-Difluorobenzene (Surr)  | 94        |           | 70 - 130 |

# Lab Sample ID: 880-38301-A-1-B MS

# Matrix: Solid

| Analysis Batch: 72000 |          |           |        |         |           |       |   |      | Prep     | o Batch: 71692 |
|-----------------------|----------|-----------|--------|---------|-----------|-------|---|------|----------|----------------|
|                       | Sample   | Sample    | Spike  | MS      | MS        |       |   |      | %Rec     |                |
| Analyte               | Result   | Qualifier | Added  | Result  | Qualifier | Unit  | D | %Rec | Limits   |                |
| Benzene               | <0.00199 | U F1      | 0.0990 | 0.09160 |           | mg/Kg |   | 93   | 70 - 130 |                |
| Toluene               | <0.00199 | U         | 0.0990 | 0.1016  |           | mg/Kg |   | 103  | 70 - 130 |                |

Eurofins Carlsbad

Prep Type: Total/NA

**Client Sample ID: Matrix Spike** 

# Job ID: 890-5982-1 SDG: 03C1558301

**Client Sample ID: Lab Control Sample** 

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 71692

1/31/2024

MS MS

0.1170

0.2324

0.1108

**Result Qualifier** 

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0990

0.198

0.0990

Limits 70 - 130

70 - 130

70 - 130

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

Lab Sample ID: 880-38301-A-1-B MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 72000

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Sample Sample

<0.00199

<0.00398 U

<0.00199 U

**Result Qualifier** 

U

MS MS

%Recovery Qualifier

115

107

77

Job ID: 890-5982-1 SDG: 03C1558301

Prep Type: Total/NA

Prep Batch: 71692

**Client Sample ID: Matrix Spike** 

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

118

117

112

D

# 7

| Client Sample ID: | Matrix Spike Duplicate |
|-------------------|------------------------|
|                   | Prep Type: Total/NA    |

**Client Sample ID: Method Blank** 

01/26/24 18:52

**Client Sample ID: Lab Control Sample** 

01/19/24 17:02

Prep Type: Total/NA Prep Batch: 71251

Matrix: Solid Analysis Batch: 72000

Lab Sample ID: 880-38301-A-1-C MSD

| Analysis Datch. 72000       |           |           |          |         |           |       |   |      | Fieh     | Datch. | 11092 |   |
|-----------------------------|-----------|-----------|----------|---------|-----------|-------|---|------|----------|--------|-------|---|
|                             | Sample    | Sample    | Spike    | MSD     | MSD       |       |   |      | %Rec     |        | RPD   |   |
| Analyte                     | Result    | Qualifier | Added    | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD    | Limit |   |
| Benzene                     | <0.00199  | U F1      | 0.0998   | 0.06629 | F1        | mg/Kg |   | 66   | 70 - 130 | 32     | 35    |   |
| Toluene                     | <0.00199  | U         | 0.0998   | 0.08918 |           | mg/Kg |   | 89   | 70 - 130 | 13     | 35    | i |
| Ethylbenzene                | <0.00199  | U         | 0.0998   | 0.09755 |           | mg/Kg |   | 98   | 70 - 130 | 18     | 35    |   |
| m-Xylene & p-Xylene         | <0.00398  | U         | 0.200    | 0.1780  |           | mg/Kg |   | 89   | 70 - 130 | 27     | 35    | i |
| o-Xylene                    | <0.00199  | U         | 0.0998   | 0.08585 |           | mg/Kg |   | 86   | 70 - 130 | 25     | 35    |   |
|                             | MSD       | MSD       |          |         |           |       |   |      |          |        |       |   |
| Surrogate                   | %Recovery | Qualifier | Limits   |         |           |       |   |      |          |        |       |   |
| 4-Bromofluorobenzene (Surr) | 91        |           | 70 - 130 |         |           |       |   |      |          |        |       |   |

# Method: 8015B NM - Diesel Range Organics (DRO) (GC)

| Lab Sample ID: MB 880-71251/1-A |
|---------------------------------|
| Matrix: Solid                   |
| Analysis Batch: 71655           |

|                                         | MB        | MB        |          |       |   |                |                |         |
|-----------------------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Analyte                                 | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics<br>(GRO)-C6-C10 | <50.0     | U         | 50.0     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 18:52 | 1       |
| Diesel Range Organics (Over<br>C10-C28) | <50.0     | U         | 50.0     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 18:52 | 1       |
| Oll Range Organics (Over C28-C36)       | <50.0     | U         | 50.0     | mg/Kg |   | 01/19/24 17:02 | 01/26/24 18:52 | 1       |
|                                         | МВ        | МВ        |          |       |   |                |                |         |
| Surrogate                               | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                          | 98        |           | 70 - 130 |       |   | 01/19/24 17:02 | 01/26/24 18:52 | 1       |

| 1-Chlorooctane | 98  | 70 - 130 |
|----------------|-----|----------|
| o-Terphenyl    | 119 | 70 - 130 |
| _              |     |          |

### Lab Sample ID: LCS 880-71251/2-A Matrix: Solid -Inche Detak -

| Analysis Batch: 71655       |       |        |           |       |   |      | Prep B   | atch: 71251 |
|-----------------------------|-------|--------|-----------|-------|---|------|----------|-------------|
|                             | Spike | LCS    | LCS       |       |   |      | %Rec     |             |
| Analyte                     | Added | Result | Qualifier | Unit  | D | %Rec | Limits   |             |
| Gasoline Range Organics     | 1000  | 897.3  |           | mg/Kg |   | 90   | 70 - 130 |             |
| (GRO)-C6-C10                |       |        |           |       |   |      |          |             |
| Diesel Range Organics (Over | 1000  | 864.5  |           | mg/Kg |   | 86   | 70 - 130 |             |
| C10-C28)                    |       |        |           |       |   |      |          |             |

**Eurofins Carlsbad** 

Prep Type: Total/NA

ep type. Pren Batch: 71692

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

|                                                 | <b>J</b>      | <b>J ·</b> · · · ( | -/(-/(               |        |           |       |        |          |                        |                       |       |   |
|-------------------------------------------------|---------------|--------------------|----------------------|--------|-----------|-------|--------|----------|------------------------|-----------------------|-------|---|
| Lab Sample ID: LCS 880-71251/2<br>Matrix: Solid | 2-A           |                    |                      |        |           |       | Client | t Sample | e ID: Lab Co<br>Prep 1 | ontrol Sa<br>Type: To |       |   |
| Analysis Batch: 71655                           |               |                    |                      |        |           |       |        |          | Prep                   | Batch:                | 71251 | - |
|                                                 | 1.05          | LCS                |                      |        |           |       |        |          |                        |                       |       | 5 |
| Surrogate                                       | %Recovery     |                    | Limits               |        |           |       |        |          |                        |                       |       |   |
| 1-Chlorooctane                                  | 81            | Quanner            | 70 - 130             |        |           |       |        |          |                        |                       |       |   |
| o-Terphenyl                                     | 103           |                    | 70 - 130<br>70 - 130 |        |           |       |        |          |                        |                       |       |   |
| o-reiphenyi                                     | 105           |                    | 70 - 750             |        |           |       |        |          |                        |                       |       | 7 |
| Lab Sample ID: LCSD 880-71251                   | /3-A          |                    |                      |        |           | Clie  | nt Sam | nple ID: | Lab Contro             | Sampl                 | e Dup | - |
| Matrix: Solid                                   |               |                    |                      |        |           |       |        |          |                        | ype: To               |       | 8 |
| Analysis Batch: 71655                           |               |                    |                      |        |           |       |        |          |                        | Batch:                |       |   |
|                                                 |               |                    | Spike                | LCSD   | LCSD      |       |        |          | %Rec                   |                       | RPD   | 0 |
| Analyte                                         |               |                    | Added                | Result | Qualifier | Unit  | D      | %Rec     | Limits                 | RPD                   | Limit | 3 |
| Gasoline Range Organics                         |               |                    | 1000                 | 1085   |           | mg/Kg |        | 108      | 70 - 130               | 19                    | 20    |   |
| (GRO)-C6-C10                                    |               |                    |                      |        |           |       |        |          |                        |                       |       |   |
| Diesel Range Organics (Over                     |               |                    | 1000                 | 1149   | *1        | mg/Kg |        | 115      | 70 - 130               | 28                    | 20    |   |
| C10-C28)                                        |               |                    |                      |        |           |       |        |          |                        |                       |       |   |
|                                                 | LCSD          | LCSD               |                      |        |           |       |        |          |                        |                       |       |   |
| Surrogate                                       | %Recovery     | Qualifier          | Limits               |        |           |       |        |          |                        |                       |       |   |
| 1-Chlorooctane                                  | 88            |                    | 70 - 130             |        |           |       |        |          |                        |                       |       |   |
| o-Terphenyl                                     | 108           |                    | 70 - 130             |        |           |       |        |          |                        |                       |       |   |
|                                                 |               |                    |                      |        |           |       |        |          |                        |                       |       |   |
| Lab Sample ID: 890-5982-1 MS                    |               |                    |                      |        |           |       |        |          | Client Sar             |                       |       |   |
| Matrix: Solid                                   |               |                    |                      |        |           |       |        |          |                        | Type: To              |       |   |
| Analysis Batch: 71655                           |               |                    |                      |        |           |       |        |          |                        | Batch:                | 71251 |   |
|                                                 | -             | Sample             | Spike                |        | MS        |       |        |          | %Rec                   |                       |       |   |
| Analyte                                         |               | Qualifier          | Added                |        | Qualifier | Unit  | D      | %Rec     | Limits                 |                       |       |   |
| Gasoline Range Organics                         | <50.1         | U                  | 997                  | 816.2  |           | mg/Kg |        | 79       | 70 - 130               |                       |       |   |
| (GRO)-C6-C10<br>Diesel Range Organics (Over     | <50.1         | 11 *1              | 997                  | 998.9  |           | mg/Kg |        | 97       | 70 - 130               |                       |       |   |
| C10-C28)                                        | <b>~</b> 50.1 | 0 1                | 551                  | 990.9  |           | my/ky |        | 51       | 70 - 150               |                       |       |   |
| 0.00020)                                        |               |                    |                      |        |           |       |        |          |                        |                       |       |   |
|                                                 |               | MS                 |                      |        |           |       |        |          |                        |                       |       |   |
| Surrogate                                       | %Recovery     | Qualifier          | Limits               |        |           |       |        |          |                        |                       |       |   |
| 1-Chlorooctane                                  | 88            |                    | 70 - 130             |        |           |       |        |          |                        |                       |       |   |
| o-Terphenyl                                     | 89            |                    | 70 - 130             |        |           |       |        |          |                        |                       |       |   |
| Lab Sample ID: 890-5982-1 MSD                   |               |                    |                      |        |           |       |        |          | Client Sar             | nnle ID.              | PH01  |   |
| Matrix: Solid                                   |               |                    |                      |        |           |       |        |          |                        | Type: To              |       |   |
| Analysis Batch: 71655                           |               |                    |                      |        |           |       |        |          |                        | Batch:                |       |   |
|                                                 | Sample        | Sample             | Spike                | MSD    | MSD       |       |        |          | %Rec                   |                       | RPD   |   |
| Analyte                                         | -             | Qualifier          | Added                |        | Qualifier | Unit  | D      | %Rec     | Limits                 | RPD                   | Limit |   |
| Gasoline Range Organics                         | <50.1         |                    | 997                  | 883.0  |           | mg/Kg |        | 86       | 70 - 130               | 8                     | 20    |   |
| (GRO)-C6-C10                                    |               |                    |                      |        |           | 0.0   |        |          |                        |                       |       |   |
| Diesel Range Organics (Over                     | <50.1         | U *1               | 997                  | 1046   |           | mg/Kg |        | 102      | 70 - 130               | 5                     | 20    |   |
| C10-C28)                                        |               |                    |                      |        |           |       |        |          |                        |                       |       |   |
|                                                 |               |                    |                      |        |           |       |        |          |                        |                       |       |   |

|                | MSD       | MSD       |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 91        |           | 70 - 130 |
| o-Terphenyl    | 91        |           | 70 - 130 |

Eurofins Carlsbad

Page 53 of 123

Job ID: 890-5982-1

SDG: 03C1558301

Client: Ensolum

# **QC Sample Results**

Job ID: 890-5982-1 SDG: 03C1558301

Method: 300.0 - Anions, Ion Chromatography

| Lab Sample ID: MB 880-71219/1-A<br>Matrix: Solid                                                                                                                                                                                                           |           |              |           |                              |                |                                         |                  |               |       |            | Client                                                   | Sample ID: N<br>Prep 1                                                                                      | /lethod<br>Гуре: S                                              |                                                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--------------|-----------|------------------------------|----------------|-----------------------------------------|------------------|---------------|-------|------------|----------------------------------------------------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------------------------------|
| Analysis Batch: 71364                                                                                                                                                                                                                                      |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
| -                                                                                                                                                                                                                                                          |           | МВ           | МВ        |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
| Analyte                                                                                                                                                                                                                                                    | R         | lesult       | Qualifier |                              | RL             |                                         | Unit             |               | D     | Ρ          | repared                                                  | Analyze                                                                                                     | ed                                                              | Dil Fac                                            |
| Chloride                                                                                                                                                                                                                                                   | ~         | <5.00        | U         |                              | 5.00           |                                         | mg/Kg            |               |       |            |                                                          | 01/22/24 1                                                                                                  | 8:57                                                            | ,                                                  |
| Lab Sample ID: LCS 880-71219/2-A                                                                                                                                                                                                                           |           |              |           |                              |                |                                         |                  |               | Cl    | ient       | Sampl                                                    | e ID: Lab Co                                                                                                | ntrol S                                                         | Sample                                             |
| Matrix: Solid                                                                                                                                                                                                                                              |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             | Type: S                                                         |                                                    |
| Analysis Batch: 71364                                                                                                                                                                                                                                      |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
|                                                                                                                                                                                                                                                            |           |              |           | Spike                        |                | LCS                                     | LCS              |               |       |            |                                                          | %Rec                                                                                                        |                                                                 |                                                    |
| Analyte                                                                                                                                                                                                                                                    |           |              |           | Added                        |                | Result                                  | Qualifier        | Unit          |       | D          | %Rec                                                     | Limits                                                                                                      |                                                                 |                                                    |
| Chloride                                                                                                                                                                                                                                                   |           |              |           | 250                          |                | 269.5                                   |                  | mg/Kg         |       |            | 108                                                      | 90 _ 110                                                                                                    |                                                                 |                                                    |
| Lab Sample ID: LCSD 880-71219/3-                                                                                                                                                                                                                           | -A        |              |           |                              |                |                                         |                  | Cli           | ent S | Sam        | ple ID:                                                  | Lab Control                                                                                                 | Samp                                                            | le Duj                                             |
| Matrix: Solid                                                                                                                                                                                                                                              |           |              |           |                              |                |                                         |                  |               |       |            | ·                                                        |                                                                                                             | Type: S                                                         |                                                    |
| Analysis Batch: 71364                                                                                                                                                                                                                                      |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
|                                                                                                                                                                                                                                                            |           |              |           | Spike                        |                | LCSD                                    | LCSD             |               |       |            |                                                          | %Rec                                                                                                        |                                                                 | RP                                                 |
| Analyte                                                                                                                                                                                                                                                    |           |              |           | Added                        |                | Result                                  | Qualifier        | Unit          |       | D          | %Rec                                                     | Limits                                                                                                      | RPD                                                             | Lim                                                |
| Chloride                                                                                                                                                                                                                                                   |           |              |           | 250                          |                | 267.9                                   |                  | mg/Kg         |       |            | 107                                                      | 90 _ 110                                                                                                    | 1                                                               | 2                                                  |
| Lab Sample ID: 890-5982-4 MS                                                                                                                                                                                                                               |           |              |           |                              |                |                                         |                  |               |       |            |                                                          | Client Samp                                                                                                 | ole ID:                                                         | PH02/                                              |
| Matrix: Solid                                                                                                                                                                                                                                              |           |              |           |                              |                |                                         |                  |               |       |            |                                                          | Prep 1                                                                                                      | Гуре: S                                                         | Solubl                                             |
| Analysis Batch: 71364                                                                                                                                                                                                                                      |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
|                                                                                                                                                                                                                                                            | Sample    | Sam          | ple       | Spike                        |                | MS                                      | MS               |               |       |            |                                                          | %Rec                                                                                                        |                                                                 |                                                    |
| Analyte                                                                                                                                                                                                                                                    | Result    | Qual         | ifier     | Added                        |                | Result                                  | Qualifier        | Unit          |       | D          | %Rec                                                     | Limits                                                                                                      |                                                                 |                                                    |
| Chloride                                                                                                                                                                                                                                                   | 73.6      |              |           | 251                          |                | 346.1                                   |                  | mg/Kg         |       |            | 109                                                      | 90 - 110                                                                                                    |                                                                 |                                                    |
| Lab Sample ID: 890-5982-4 MSD<br>Matrix: Solid                                                                                                                                                                                                             |           |              |           |                              |                |                                         |                  |               |       |            |                                                          | Client Samp<br>Prep                                                                                         | ole ID:<br>Type: S                                              |                                                    |
| Analysis Batch: 71364                                                                                                                                                                                                                                      |           |              |           |                              |                |                                         |                  |               |       |            |                                                          |                                                                                                             |                                                                 |                                                    |
|                                                                                                                                                                                                                                                            | Sample    |              | •         | Spike                        |                | MSD                                     |                  |               |       |            |                                                          | %Rec                                                                                                        |                                                                 | RPI                                                |
| Analyte                                                                                                                                                                                                                                                    | Rosult    | Qual         | ifier     | Added                        |                |                                         |                  | llmit         |       |            |                                                          | Limits                                                                                                      | RPD                                                             | Lim                                                |
|                                                                                                                                                                                                                                                            |           |              |           |                              |                |                                         | Qualifier        | Unit          |       | <u>D</u>   | %Rec                                                     |                                                                                                             |                                                                 |                                                    |
| Chloride                                                                                                                                                                                                                                                   | 73.6      |              |           | 251                          |                | 346.5                                   | Qualifier        | mg/Kg         |       | D          | 109                                                      | 90 - 110                                                                                                    | 0                                                               | 2                                                  |
| -                                                                                                                                                                                                                                                          |           |              |           |                              |                |                                         | Qualifier        |               |       | _          | 109                                                      |                                                                                                             | 0                                                               |                                                    |
| Lab Sample ID: MB 880-71220/1-A                                                                                                                                                                                                                            |           |              |           |                              |                |                                         | Qualifier        |               |       | _          | 109                                                      | 90 - 110<br>Sample ID: N                                                                                    | 0                                                               | l Blan                                             |
| Lab Sample ID: MB 880-71220/1-A                                                                                                                                                                                                                            |           |              |           |                              |                |                                         | Qualifier        |               |       | _          | 109                                                      | 90 - 110<br>Sample ID: N                                                                                    | 0<br>Alethod                                                    | l Blan                                             |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid                                                                                                                                                                                                           |           | МВ           | МВ        |                              |                |                                         | Qualifier        |               |       | _          | 109                                                      | 90 - 110<br>Sample ID: N                                                                                    | 0<br>Alethod                                                    | l Blan                                             |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte                                                                                                                                                                       | 73.6<br>R | MB<br>Result | Qualifier |                              | RL             |                                         | Unit             | mg/Kg         | D     | _          | 109                                                      | 90 - 110<br>Sample ID: M<br>Prep 7<br>Analyze                                                               | 0<br>Method<br>Гуре: S                                          | l Blani<br>Solubl<br>Dil Fa                        |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid                                                                                                                                                                                                           | 73.6<br>R | МВ           | Qualifier |                              | <b>RL</b> 5.00 |                                         |                  | mg/Kg         | D     | _          | 109                                                      | 90 - 110<br>Sample ID: N<br>Prep 1                                                                          | 0<br>Method<br>Гуре: S                                          | l Blani<br>Solubic<br>Dil Fac                      |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride                                                                                                                                                           | 73.6      | MB<br>Result | Qualifier |                              |                |                                         | Unit             | mg/Kg         |       | P          | 109<br>Client                                            | 90 - 110<br>Sample ID: M<br>Prep 7<br>Analyze<br>01/22/24 1                                                 | 0<br>Aethod<br>Type: S<br>ed<br>6:11                            | l Blan<br>Solubl<br>Dil Fa                         |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A                                                                                                                       | 73.6      | MB<br>Result | Qualifier |                              |                |                                         | Unit             | mg/Kg         |       | P          | 109<br>Client                                            | 90 - 110<br>Sample ID: N<br>Prep 7<br>Analyze<br>01/22/24 1<br>e ID: Lab Co                                 | Aethod<br>Type: S<br>ed<br>6:11 -                               | l Blan<br>Solubl<br>Dil Fa                         |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid                                                                                                      | 73.6      | MB<br>Result | Qualifier |                              |                |                                         | Unit             | mg/Kg         |       | P          | 109<br>Client                                            | 90 - 110<br>Sample ID: N<br>Prep 7<br>Analyze<br>01/22/24 1<br>e ID: Lab Co                                 | 0<br>Aethod<br>Type: S<br>ed<br>6:11                            | l Blan<br>Solubl<br>Dil Fa                         |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A                                                                                                                       | 73.6      | MB<br>Result | Qualifier |                              |                | 346.5                                   | Unit             | mg/Kg         |       | P          | 109<br>Client                                            | 90 - 110<br>Sample ID: N<br>Prep 7<br>Analyze<br>01/22/24 1<br>e ID: Lab Co                                 | Aethod<br>Type: S<br>ed<br>6:11 -                               | I Blani<br>Solubi<br>Dil Fa                        |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365                                                                             | 73.6      | MB<br>Result | Qualifier | 251                          |                | 346.5                                   | Unit<br>mg/Kg    | mg/Kg         |       | P          | 109<br>Client                                            | 90 - 110<br>Sample ID: N<br>Prep 7<br>Analyze<br>01/22/24 1<br>e ID: Lab Co<br>Prep 7                       | Aethod<br>Type: S<br>ed<br>6:11 -                               | I Blani<br>Solubi<br>Dil Fa                        |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte                                                                  | 73.6      | MB<br>Result | Qualifier | 251                          |                | 346.5                                   | Unit<br>mg/Kg    | mg/Kg         |       | P          | 109<br>Client :<br>repared<br>Sampl                      | 90 - 110<br>Sample ID: N<br>Prep 7<br>                                                                      | Aethod<br>Type: S<br>ed<br>6:11 -                               | l Blank<br>Soluble<br>Dil Fac                      |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride                                                      | 73.6      | MB<br>Result | Qualifier | 251<br>Spike<br>Added        |                | 346.5<br>LCS<br>Result                  | Unit<br>mg/Kg    | Unit<br>mg/Kg | Cli   | Pi<br>ient | 109<br>Client :<br>repared<br>Sampl<br><u>%Rec</u><br>97 | 90 - 110<br>Sample ID: N<br>Prep 7<br>                                                                      | 0<br>Aethod<br>Type: S<br>ed<br>6:11<br>6:11<br>6:11<br>Fype: S | l Blan<br>Solubl<br>Dil Fa<br>Sample<br>Solubl     |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-71220/3-                  | 73.6      | MB<br>Result | Qualifier | 251<br>Spike<br>Added        |                | 346.5<br>LCS<br>Result                  | Unit<br>mg/Kg    | Unit<br>mg/Kg | Cli   | Pi<br>ient | 109<br>Client :<br>repared<br>Sampl<br><u>%Rec</u><br>97 | 90 - 110<br>Sample ID: N<br>Prep 1<br>                                                                      | 0<br>Aethod<br>Type: S<br>ad<br>6:11<br>                        | l Blan<br>Solubl<br>Dil Fa<br>Sampl<br>Solubl      |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-71220/3-<br>Matrix: Solid | 73.6      | MB<br>Result | Qualifier | 251<br>Spike<br>Added        |                | 346.5<br>LCS<br>Result                  | Unit<br>mg/Kg    | Unit<br>mg/Kg | Cli   | Pi<br>ient | 109<br>Client :<br>repared<br>Sampl<br><u>%Rec</u><br>97 | 90 - 110<br>Sample ID: N<br>Prep 1<br>                                                                      | 0<br>Aethod<br>Type: S<br>ed<br>6:11<br>6:11<br>6:11<br>Fype: S | l Blani<br>Solubi<br>Dil Fa<br>Sample<br>Solubi    |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-71220/3-<br>Matrix: Solid | 73.6      | MB<br>Result | Qualifier | 251<br>Spike<br>Added        |                | 346.5<br>LCS<br>Result                  | LCS<br>Qualifier | Unit<br>mg/Kg | Cli   | Pi<br>ient | 109<br>Client :<br>repared<br>Sampl<br><u>%Rec</u><br>97 | 90 - 110<br>Sample ID: N<br>Prep 1<br>                                                                      | 0<br>Aethod<br>Type: S<br>ad<br>6:11<br>                        | Dil Fac<br>Dil Fac<br>Sample<br>Soluble            |
| Lab Sample ID: MB 880-71220/1-A<br>Matrix: Solid<br>Analysis Batch: 71365<br>Analyte<br>Chloride<br>Lab Sample ID: LCS 880-71220/2-A<br>Matrix: Solid                                                                                                      | 73.6      | MB<br>Result | Qualifier | 251<br>Spike<br>Added<br>250 |                | 346.5<br>LCS<br>Result<br>242.3<br>LCSD | LCS<br>Qualifier | Unit<br>mg/Kg | Cli   | Pi<br>ient | 109<br>Client :<br>repared<br>Sampl<br><u>%Rec</u><br>97 | 90 - 110 Sample ID: N Prep 7 Analyze 01/22/24 1 e ID: Lab Co Prep 7 %Rec Limits 90 - 110 Lab Control Prep 7 | 0<br>Aethod<br>Type: S<br>ad<br>6:11<br>                        | I Blank<br>Soluble<br>Dil Fae<br>Sample<br>Soluble |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# Method: 300.0 - Anions, Ion Chromatography

| Matrix: Solid<br>Analysis Batch: 71365       Prep Type: Soluble         Analysis Batch: 71365       Sample       Sample       Spike       MS       MS       %Rec       Matrix:       Matrix       Matrix:       Qualifier       Unit       D       %Rec       Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|-----------|----------|--------|--|
| SampleSampleSpikeMSMS%RecAnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsChloride48.4248296.3mg/Kg10090 - 110for the second | Lab Sample ID: 890-5982-14 MS<br>Matrix: Solid |        |           |       |        |           |       |   |      |           | -        |        |  |
| AnalyteResultQualifierAddedResultQualifierUnitD%RecLimitsChloride48.4248248296.3mg/Kg10090 - 11090 - 110.ab Sample ID: 890-5982-14 MSD<br>Matrix: Solid<br>Analysis Batch: 71365Client Sample ID: FS0<br>Prep Type: Soluble<br>MSDPrep Type: Soluble<br>MSDPrep Type: Soluble<br>MSDMatrix:SampleSampleSpikeMSD%RecRP<br>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Analysis Batch: 71365                          |        |           |       |        |           |       |   |      |           |          |        |  |
| hloride 48.4 248 296.3 mg/Kg 100 90 - 110<br>ab Sample ID: 890-5982-14 MSD<br>fatrix: Solid<br>malysis Batch: 71365<br>Sample Sample Sample Spike MSD MSD %Rec RP<br>nalyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec      |          |        |  |
| ab Sample ID: 890-5982-14 MSD Client Sample ID: FS0<br>atrix: Solid Prep Type: Solubi<br>nalysis Batch: 71365<br>Sample Sample Spike MSD MSD %Rec RP<br>nalyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                              |        | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec |           |          |        |  |
| atrix: Solid     Prep Type: Soluble       nalysis Batch: 71365     Sample Sample       Sample Sample     Spike       MSD     %Rec       Result     Qualifier       Added     Result       Qualifier     Unit       D     %Rec                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | loride                                         | 48.4   |           | 248   | 296.3  |           | mg/Kg |   | 100  | 90 - 110  |          |        |  |
| nalysis Batch: 71365       Sample Sample       Spike       MSD       %Rec       RP         alyte       Result       Qualifier       Added       Result       Qualifier       Unit       D       %Rec       Limits       RPD       Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | b Sample ID: 890-5982-14 MSD                   |        |           |       |        |           |       |   |      | Client Sa | mple ID: | FS06   |  |
| Sample     Spike     MSD     MSD     %Rec     RP       alyte     Result     Qualifier     Added     Result     Qualifier     Unit     D     %Rec     Limits     RPD     Limits                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | atrix: Solid                                   |        |           |       |        |           |       |   |      | Prep      | Type: So | oluble |  |
| alyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Lim                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | alysis Batch: 71365                            |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec      |          | RPD    |  |
| iloride 48.4 248 296.6 mg/Kg 100 90 - 110 0 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | alyte                                          | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits    | RPD      | Limit  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | loride                                         | 48.4   |           | 248   | 296.6  |           | mg/Kg |   | 100  | 90 - 110  | 0        | 20     |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                |        |           |       |        |           |       |   |      |           |          |        |  |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB Job ID: 890-5982-1 SDG: 03C1558301

# GC VOA

# Prep Batch: 71343

| Lab Sample ID                                                                                                                                                                                                          | Client Sample ID                                                                                                                                               | Prep Type                                                                                                                                                                                                                                                                                 | Matrix                                                                                   | Method                                                                                                                                                                                                                                  | Prep Batch |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| 390-5982-1                                                                                                                                                                                                             | PH01                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 390-5982-2                                                                                                                                                                                                             | PH01A                                                                                                                                                          | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 390-5982-10                                                                                                                                                                                                            | FS02                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 890-5982-11                                                                                                                                                                                                            | FS03                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 890-5982-12                                                                                                                                                                                                            | FS04                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 890-5982-13                                                                                                                                                                                                            | FS05                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 890-5982-14                                                                                                                                                                                                            | FS06                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 390-5982-15                                                                                                                                                                                                            | FS07                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 390-5982-16                                                                                                                                                                                                            | SW01                                                                                                                                                           | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| MB 880-71343/5-A                                                                                                                                                                                                       | Method Blank                                                                                                                                                   | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| _CS 880-71343/1-A                                                                                                                                                                                                      | Lab Control Sample                                                                                                                                             | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| _CSD 880-71343/2-A                                                                                                                                                                                                     | Lab Control Sample Dup                                                                                                                                         | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| 380-38189-A-1-B MS                                                                                                                                                                                                     | Matrix Spike                                                                                                                                                   | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                        |                                                                                                                                                                | <b>T</b> ( 1010                                                                                                                                                                                                                                                                           | 0 11 1                                                                                   | 5005                                                                                                                                                                                                                                    |            |
|                                                                                                                                                                                                                        | Matrix Spike Duplicate                                                                                                                                         | Total/NA                                                                                                                                                                                                                                                                                  | Solid                                                                                    | 5035                                                                                                                                                                                                                                    |            |
| rep Batch: 71537                                                                                                                                                                                                       |                                                                                                                                                                |                                                                                                                                                                                                                                                                                           |                                                                                          |                                                                                                                                                                                                                                         | Prep Batch |
| ep Batch: 71537<br>.ab Sample ID                                                                                                                                                                                       | Client Sample ID SW02                                                                                                                                          | Prep Type<br>Total/NA                                                                                                                                                                                                                                                                     | Matrix                                                                                   | 5035<br>Method<br>5035                                                                                                                                                                                                                  | Prep Batch |
| rep Batch: 71537<br>ab Sample ID<br>390-5982-17                                                                                                                                                                        | Client Sample ID                                                                                                                                               | Ргер Туре                                                                                                                                                                                                                                                                                 | Matrix                                                                                   | Method                                                                                                                                                                                                                                  | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>390-5982-17<br>MB 880-71537/5-A                                                                                                                                                   | Client Sample ID<br>SW02                                                                                                                                       | Prep Type<br>Total/NA                                                                                                                                                                                                                                                                     | Matrix Solid                                                                             | <u>Method</u><br>5035                                                                                                                                                                                                                   | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A                                                                                                                              | Client Sample ID<br>SW02<br>Method Blank                                                                                                                       | Prep Type<br>Total/NA<br>Total/NA                                                                                                                                                                                                                                                         | Matrix<br>Solid<br>Solid                                                                 | Method<br>5035<br>5035                                                                                                                                                                                                                  | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A                                                                                                        | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample                                                                                                 | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA                                                                                                                                                                                                                                             | Matrix<br>Solid<br>Solid<br>Solid                                                        | Method<br>5035<br>5035<br>5035<br>5035                                                                                                                                                                                                  | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>890-5981-A-1-E MS                                                                                   | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup                                                                       | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                                                                                                                                                                                                 | Matrix<br>Solid<br>Solid<br>Solid<br>Solid                                               | Method<br>5035<br>5035<br>5035<br>5035<br>5035                                                                                                                                                                                          | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>390-5982-17<br>MB 880-71537/5-A<br>_CS 880-71537/1-A<br>_CSD 880-71537/2-A<br>390-5981-A-1-E MS<br>390-5981-A-1-F MSD                                                             | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike                                                       | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                                                                                                                                                                                     | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                             | Method           5035           5035           5035           5035           5035           5035           5035                                                                                                                         | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>890-5981-A-1-E MS<br>890-5981-A-1-F MSD                                                             | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike                                                       | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                                                                                                                                                                                     | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                             | Method           5035           5035           5035           5035           5035           5035           5035                                                                                                                         | Prep Batch |
| 880-38189-A-1-C MSD<br>rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>890-5981-A-1-E MS<br>890-5981-A-1-F MSD<br>rep Batch: 71633<br>Lab Sample ID | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate<br>Client Sample ID         | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Prep Type                                                                                                                                                                                            | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Matrix                   | Method           5035           5035           5035           5035           5035           5035           5035           5035           5035                                                                                           | Prep Batch |
| rep Batch: 71537<br>Lab Sample ID<br>390-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>390-5981-A-1-E MS<br>390-5981-A-1-F MSD<br>rep Batch: 71633<br>Lab Sample ID                        | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate                             | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA                                                                                                                                                                                                                     | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid                             | Method           5035           5035           5035           5035           5035           5035           5035                                                                                                                         |            |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>890-5981-A-1-E MS<br>890-5981-A-1-F MSD<br>rep Batch: 71633                                         | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate<br>Client Sample ID         | Prep Type<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Total/NA<br>Prep Type                                                                                                                                                                                            | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Matrix                   | Method           5035           5035           5035           5035           5035           5035           5035           5035           5035                                                                                           |            |
| rep Batch: 71537<br>Lab Sample ID<br>890-5982-17<br>MB 880-71537/5-A<br>LCS 880-71537/1-A<br>LCSD 880-71537/2-A<br>890-5981-A-1-E MS<br>890-5981-A-1-F MSD<br>rep Batch: 71633<br>Lab Sample ID<br>890-5982-3          | Client Sample ID<br>SW02<br>Method Blank<br>Lab Control Sample<br>Lab Control Sample Dup<br>Matrix Spike<br>Matrix Spike Duplicate<br>Client Sample ID<br>PH02 | Prep Type         Total/NA         Total/NA | Matrix<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Solid<br>Matrix<br>Solid | Method           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035           5035 |            |

# 890-5988-A-1-F MSD Prep Batch: 71690

MB 880-71633/5-A

LCS 880-71633/1-A

LCSD 880-71633/2-A

890-5988-A-1-E MS

Method Blank

Matrix Spike

Lab Control Sample

Lab Control Sample Dup

Matrix Spike Duplicate

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|------------------|------------------|-----------|--------|--------|------------|
| MB 880-71690/5-A | Method Blank     | Total/NA  | Solid  | 5035   |            |

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Solid

Solid

5035

5035

5035

5035

5035

# Prep Batch: 71692

| Lab Sample ID       | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-5982-7          | PH04                   | Total/NA  | Solid  | 5035   |            |
| 890-5982-8          | PH04A                  | Total/NA  | Solid  | 5035   |            |
| 890-5982-9          | FS01                   | Total/NA  | Solid  | 5035   |            |
| MB 880-71692/5-A    | Method Blank           | Total/NA  | Solid  | 5035   |            |
| LCS 880-71692/1-A   | Lab Control Sample     | Total/NA  | Solid  | 5035   |            |
| LCSD 880-71692/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 5035   |            |
| 880-38301-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 5035   |            |
| 880-38301-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 5035   |            |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

5

8

Job ID: 890-5982-1 SDG: 03C1558301

# GC VOA

# Analysis Batch: 71764

| Lab Sample ID       | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-5982-1          | PH01                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-2          | PH01A                  | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-10         | FS02                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-11         | FS03                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-12         | FS04                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-13         | FS05                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-14         | FS06                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-15         | FS07                   | Total/NA  | Solid  | 8021B  | 71343      |
| 890-5982-16         | SW01                   | Total/NA  | Solid  | 8021B  | 71343      |
| MB 880-71343/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 71343      |
| MB 880-71690/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 71690      |
| LCS 880-71343/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 71343      |
| LCSD 880-71343/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 71343      |
| 880-38189-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 71343      |
| 880-38189-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 71343      |

### Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 890-5982-3 PH02 Total/NA 8021B Solid 71633 890-5982-4 PH02A Total/NA Solid 8021B 71633 890-5982-5 PH03 Total/NA Solid 8021B 71633 890-5982-6 PH03A Total/NA Solid 8021B 71633 Total/NA MB 880-71633/5-A Method Blank Solid 8021B 71633 LCS 880-71633/1-A Lab Control Sample Total/NA Solid 8021B 71633 8021B Total/NA Solid LCSD 880-71633/2-A Lab Control Sample Dup 71633 890-5988-A-1-E MS Matrix Spike Total/NA Solid 8021B 71633 890-5988-A-1-F MSD Matrix Spike Duplicate Total/NA Solid 8021B 71633

# Analysis Batch: 71829

| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
|--------------------|------------------|-----------|--------|------------|------------|
| 890-5982-1         | PH01             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-2         | PH01A            | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-3         | PH02             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-4         | PH02A            | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-5         | PH03             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-6         | PH03A            | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-7         | PH04             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-8         | PH04A            | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-9         | FS01             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-10        | FS02             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-11        | FS03             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-12        | FS04             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-13        | FS05             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-14        | FS06             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-15        | FS07             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-16        | SW01             | Total/NA  | Solid  | Total BTEX |            |
| 890-5982-17        | SW02             | Total/NA  | Solid  | Total BTEX |            |
| nalysis Batch: 719 | 15               |           |        |            |            |
| Lab Sample ID      | Client Sample ID | Prep Type | Matrix | Method     | Prep Batch |
| 000 5000 47        | 014/00           | T-+-1/NIA | 0-11-1 | 0004D      | 74507      |

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method | Prep Batch |
|---------------|------------------|-----------|--------|--------|------------|
| 890-5982-17   | SW02             | Total/NA  | Solid  | 8021B  | 71537      |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# GC VOA (Continued)

# Analysis Batch: 71915 (Continued)

| Lab Sample ID         | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|-----------------------|------------------------|-----------|--------|--------|------------|
| MB 880-71537/5-A      | Method Blank           | Total/NA  | Solid  | 8021B  | 71537      |
| LCS 880-71537/1-A     | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 71537      |
| LCSD 880-71537/2-A    | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 71537      |
| 890-5981-A-1-E MS     | Matrix Spike           | Total/NA  | Solid  | 8021B  | 71537      |
| 890-5981-A-1-F MSD    | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 71537      |
| Analysis Batch: 72000 |                        |           |        |        |            |
|                       |                        |           |        |        |            |

| Lab Sample ID       | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|---------------------|------------------------|-----------|--------|--------|------------|
| 890-5982-7          | PH04                   | Total/NA  | Solid  | 8021B  | 71692      |
| 890-5982-8          | PH04A                  | Total/NA  | Solid  | 8021B  | 71692      |
| 890-5982-9          | FS01                   | Total/NA  | Solid  | 8021B  | 71692      |
| MB 880-71692/5-A    | Method Blank           | Total/NA  | Solid  | 8021B  | 71692      |
| LCS 880-71692/1-A   | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 71692      |
| LCSD 880-71692/2-A  | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 71692      |
| 880-38301-A-1-B MS  | Matrix Spike           | Total/NA  | Solid  | 8021B  | 71692      |
| 880-38301-A-1-C MSD | Matrix Spike Duplicate | Total/NA  | Solid  | 8021B  | 71692      |

# GC Semi VOA

# Prep Batch: 71251

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 390-5982-1         | PH01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5982-2         | PH01A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-3         | PH02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5982-4         | PH02A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-5         | PH03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-6         | PH03A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-7         | PH04                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-8         | PH04A                  | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-9         | FS01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-10        | FS02                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-11        | FS03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-12        | FS04                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-13        | FS05                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-14        | FS06                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-15        | FS07                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-16        | SW01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-17        | SW02                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-71251/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-71251/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| _CSD 880-71251/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 390-5982-1 MS      | PH01                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5982-1 MSD     | PH01                   | Total/NA  | Solid  | 8015NM Prep |            |

# Analysis Batch: 71655

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 890-5982-1    | PH01             | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-2    | PH01A            | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-3    | PH02             | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-4    | PH02A            | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-5    | PH03             | Total/NA  | Solid  | 8015B NM | 71251      |

# Eurofins Carlsbad

Page 58 of 123

5

Job ID: 890-5982-1 SDG: 03C1558301

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# GC Semi VOA (Continued)

# Analysis Batch: 71655 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-5982-6         | PH03A                  | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-7         | PH04                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-8         | PH04A                  | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-9         | FS01                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-10        | FS02                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-11        | FS03                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-12        | FS04                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-13        | FS05                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-14        | FS06                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-15        | FS07                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-16        | SW01                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-17        | SW02                   | Total/NA  | Solid  | 8015B NM | 71251      |
| MB 880-71251/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 71251      |
| LCS 880-71251/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 71251      |
| LCSD 880-71251/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-1 MS      | PH01                   | Total/NA  | Solid  | 8015B NM | 71251      |
| 890-5982-1 MSD     | PH01                   | Total/NA  | Solid  | 8015B NM | 71251      |

# Analysis Batch: 71888

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-5982-1    | PH01             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-2    | PH01A            | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-3    | PH02             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-4    | PH02A            | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-5    | PH03             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-6    | PH03A            | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-7    | PH04             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-8    | PH04A            | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-9    | FS01             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-10   | FS02             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-11   | FS03             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-12   | FS04             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-13   | FS05             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-14   | FS06             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-15   | FS07             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-16   | SW01             | Total/NA  | Solid  | 8015 NM |            |
| 890-5982-17   | SW02             | Total/NA  | Solid  | 8015 NM |            |

# HPLC/IC

# Leach Batch: 71219

| Lab Sample ID | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 890-5982-1    | PH01             | Soluble   | Solid  | DI Leach |            |
| 890-5982-2    | PH01A            | Soluble   | Solid  | DI Leach |            |
| 890-5982-3    | PH02             | Soluble   | Solid  | DI Leach |            |
| 890-5982-4    | PH02A            | Soluble   | Solid  | DI Leach |            |
| 890-5982-5    | PH03             | Soluble   | Solid  | DI Leach |            |
| 890-5982-6    | PH03A            | Soluble   | Solid  | DI Leach |            |
| 890-5982-7    | PH04             | Soluble   | Solid  | DI Leach |            |
| 890-5982-8    | PH04A            | Soluble   | Solid  | DI Leach |            |
| 890-5982-9    | FS01             | Soluble   | Solid  | DI Leach |            |

# Eurofins Carlsbad

Page 59 of 123

# Job ID: 890-5982-1 SDG: 03C1558301

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

# HPLC/IC (Continued)

# Leach Batch: 71219 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-5982-10        | FS02                   | Soluble   | Solid  | DI Leach |            |
| 890-5982-11        | FS03                   | Soluble   | Solid  | DI Leach |            |
| 890-5982-12        | FS04                   | Soluble   | Solid  | DI Leach |            |
| 890-5982-13        | FS05                   | Soluble   | Solid  | DI Leach |            |
| MB 880-71219/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |
| LCS 880-71219/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-71219/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-5982-4 MS      | PH02A                  | Soluble   | Solid  | DI Leach |            |
| 890-5982-4 MSD     | PH02A                  | Soluble   | Solid  | DI Leach |            |
| —                  |                        |           |        |          |            |

# Leach Batch: 71220

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |  |
|--------------------|------------------------|-----------|--------|----------|------------|--|
| 890-5982-14        | FS06                   | Soluble   | Solid  | DI Leach |            |  |
| 890-5982-15        | FS07                   | Soluble   | Solid  | DI Leach |            |  |
| 890-5982-16        | SW01                   | Soluble   | Solid  | DI Leach |            |  |
| 890-5982-17        | SW02                   | Soluble   | Solid  | DI Leach |            |  |
| MB 880-71220/1-A   | Method Blank           | Soluble   | Solid  | DI Leach |            |  |
| LCS 880-71220/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |  |
| LCSD 880-71220/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |  |
| 890-5982-14 MS     | FS06                   | Soluble   | Solid  | DI Leach |            |  |
| 890-5982-14 MSD    | FS06                   | Soluble   | Solid  | DI Leach |            |  |

# Analysis Batch: 71364

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-5982-1         | PH01                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-2         | PH01A                  | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-3         | PH02                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-4         | PH02A                  | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-5         | PH03                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-6         | PH03A                  | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-7         | PH04                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-8         | PH04A                  | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-9         | FS01                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-10        | FS02                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-11        | FS03                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-12        | FS04                   | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-13        | FS05                   | Soluble   | Solid  | 300.0  | 71219      |
| MB 880-71219/1-A   | Method Blank           | Soluble   | Solid  | 300.0  | 71219      |
| LCS 880-71219/2-A  | Lab Control Sample     | Soluble   | Solid  | 300.0  | 71219      |
| LCSD 880-71219/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-4 MS      | PH02A                  | Soluble   | Solid  | 300.0  | 71219      |
| 890-5982-4 MSD     | PH02A                  | Soluble   | Solid  | 300.0  | 71219      |

# Analysis Batch: 71365

| Lab Sample ID     | Client Sample ID   | Ргер Туре | Matrix | Method | Prep Batch |
|-------------------|--------------------|-----------|--------|--------|------------|
| 890-5982-14       | FS06               | Soluble   | Solid  | 300.0  | 71220      |
| 890-5982-15       | FS07               | Soluble   | Solid  | 300.0  | 71220      |
| 890-5982-16       | SW01               | Soluble   | Solid  | 300.0  | 71220      |
| 890-5982-17       | SW02               | Soluble   | Solid  | 300.0  | 71220      |
| MB 880-71220/1-A  | Method Blank       | Soluble   | Solid  | 300.0  | 71220      |
| LCS 880-71220/2-A | Lab Control Sample | Soluble   | Solid  | 300.0  | 71220      |

Eurofins Carlsbad

Page 60 of 123

# Job ID: 890-5982-1 SDG: 03C1558301

Job ID: 890-5982-1

SDG: 03C1558301

# **QC** Association Summary

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

HPLC/IC (Continued)

# Analysis Batch: 71365 (Continued)

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |  |
|--------------------|------------------------|-----------|--------|--------|------------|--|
| LCSD 880-71220/3-A | Lab Control Sample Dup | Soluble   | Solid  | 300.0  | 71220      |  |
| 890-5982-14 MS     | FS06                   | Soluble   | Solid  | 300.0  | 71220      |  |
| 890-5982-14 MSD    | FS06                   | Soluble   | Solid  | 300.0  | 71220      |  |

5

9

Job ID: 890-5982-1 SDG: 03C1558301

# Lab Sample ID: 890-5982-1 Matrix: Solid

Lab Sample ID: 890-5982-2

Date Collected: 01/17/24 09:30 Date Received: 01/17/24 16:35

**Client Sample ID: PH01** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 12:17 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 12:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 19:59 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.99 g  | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 19:59 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 5      | 50 mL   | 50 mL  | 71364  | 01/22/24 20:32 | SMC     | EET MID |

# **Client Sample ID: PH01A**

# Date Collected: 01/17/24 09:40

Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.00 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 12:38 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 12:38 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 21:05 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 21:05 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 20:39 | SMC     | EET MID |

# **Client Sample ID: PH02**

# Date Collected: 01/17/24 09:45

Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 71633  | 01/25/24 18:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71772  | 01/30/24 05:11 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/30/24 05:11 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 21:27 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 71251  | 01/19/24 17:02 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 21:27 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 5      | 50 mL   | 50 mL  | 71364  | 01/22/24 20:46 | SMC     | EET MID |

# **Client Sample ID: PH02A** Date Collected: 01/17/24 09:55 Date Received: 01/17/24 16:35

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 71633  | 01/29/24 10:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 71772  | 01/30/24 05:32 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 71829  | 01/30/24 05:32 | SM      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5982-3 Matrix: Solid

Lab Sample ID: 890-5982-4

Job ID: 890-5982-1 SDG: 03C1558301

# Lab Sample ID: 890-5982-4 Matrix: Solid

Lab Sample ID: 890-5982-5

Date Collected: 01/17/24 09:55 Date Received: 01/17/24 16:35

**Client Sample ID: PH02A** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 21:48 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 71251  | 01/19/24 17:02 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 21:48 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 20:53 | SMC     | EET MID |

# Client Sample ID: PH03

# Date Collected: 01/17/24 10:30 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 71633  | 01/29/24 10:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71772  | 01/30/24 05:52 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/30/24 05:52 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 22:11 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.04 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 22:11 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 21:13 | SMC     | EET MID |

# **Client Sample ID: PH03A**

Date Collected: 01/17/24 10:35 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 71633  | 01/29/24 10:00 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71772  | 01/30/24 06:13 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/30/24 06:13 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 22:34 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 22:34 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.05 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 21:20 | SMC     | EET MID |

# Client Sample ID: PH04

# Date Collected: 01/17/24 10:55 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 71692  | 01/26/24 11:33 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 72000  | 01/31/24 11:56 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/31/24 11:56 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 22:57 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.09 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 22:57 | SM      | EET MID |

Eurofins Carlsbad

# Lab Sample ID: 890-5982-6

Matrix: Solid

Matrix: Solid

Lab Sample ID: 890-5982-7 Matrix: Solid

# Lab Chronicle

Job ID: 890-5982-1 SDG: 03C1558301

# Lab Sample ID: 890-5982-7 Matrix: Solid

Lab Sample ID: 890-5982-8

Lab Sample ID: 890-5982-9

Date Collected: 01/17/24 10:55 Date Received: 01/17/24 16:35

**Client Sample ID: PH04** 

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 4.96 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0    |     | 5      | 50 mL   | 50 mL  | 71364  | 01/22/24 21:41 | SMC     | EET MID |

# **Client Sample ID: PH04A**

# Date Collected: 01/17/24 11:00 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 71692  | 01/26/24 11:33 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 72000  | 01/31/24 12:17 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/31/24 12:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 23:19 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.97 g  | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 23:19 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 21:47 | SMC     | EET MID |

# Client Sample ID: FS01 Date Collected: 01/17/24 13:40 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 71692  | 01/26/24 11:33 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 72000  | 01/31/24 12:37 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/31/24 12:37 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/26/24 23:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.92 g  | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/26/24 23:40 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 21:54 | SMC     | EET MID |

# **Client Sample ID: FS02** Date Collected: 01/17/24 13:45

# Lab Sample ID: 890-5982-10 Matrix: Solid

Date Received: 01/17/24 16:35

| _         | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.96 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 17:35 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 17:35 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 00:04 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 71251  | 01/19/24 17:02 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 00:04 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 22:01 | SMC     | EET MID |

**Eurofins Carlsbad** 

Page 64 of 123

Matrix: Solid

Matrix: Solid

9

# Released to Imaging: 4/22/2024 2:45:18 PM

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

**Client Sample ID: FS03** 

Date Collected: 01/17/24 13:50

Date Received: 01/17/24 16:35

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

5.02 g

5 mL

10.00 g

1 uL

4.96 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

71343

71764

71829

71888

71251

71655

71219

71364

Number

Dil

1

1

1

1

1

Factor

Run

Job ID: 890-5982-1 SDG: 03C1558301

# Lab Sample ID: 890-5982-11

Analyst

EL

MNR

SM

SM

ткс

SM

SA

SMC

Prepared

or Analyzed

01/22/24 14:55

01/29/24 17:55

01/29/24 17:55

01/27/24 00:49

01/19/24 17:02

01/27/24 00:49

01/19/24 14:36

01/22/24 22:08

Matrix: Solid

Lab

EET MID

Matrix: Solid

# 5 9

# Lab Sample ID: 890-5982-12 Matrix: Solid

Lab Sample ID: 890-5982-13

Lab Sample ID: 890-5982-14

| _ |   |
|---|---|
|   |   |
| - | 3 |

Date Collected: 01/17/24 14:00

**Client Sample ID: FS04** 

Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.04 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 18:16 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 18:16 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 01:12 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 01:12 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 22:15 | SMC     | EET MID |

# **Client Sample ID: FS05**

## Date Collected: 01/17/24 14:10 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 18:36 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 18:36 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 01:33 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.09 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 01:33 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.02 g  | 50 mL  | 71219  | 01/19/24 14:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71364  | 01/22/24 22:22 | SMC     | EET MID |

# **Client Sample ID: FS06** Date Collected: 01/17/24 14:15 Date Received: 01/17/24 16:35

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 18:57 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 71829  | 01/29/24 18:57 | SM      | EET MID |

**Eurofins Carlsbad** 

Released to Imaging: 4/22/2024 2:45:18 PM

Matrix: Solid

Batch

Туре

Prep

Analysis

Analysis

Analysis

Leach

Batch

Method

8015 NM

8015NM Prep

8015B NM

**DI Leach** 

300.0

**Client Sample ID: FS06** 

Date Collected: 01/17/24 14:15

Date Received: 01/17/24 16:35

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Amount

9.94 g

1 uL

5.04 g

50 mL

Final

Amount

10 mL

1 uL

50 mL

50 mL

Batch

71888

71251

71655

71220

71365

Number

Dil

1

1

1

Factor

Run

Job ID: 890-5982-1 SDG: 03C1558301

# Lab Sample ID: 890-5982-14

SM

SM

SA

SMC

Lab Sample ID: 890-5982-15

Lab Sample ID: 890-5982-16

Lab Sample ID: 890-5982-17

Prepared

or Analyzed

01/27/24 01:56

01/19/24 17:02

01/27/24 01:56

01/19/24 14:41

01/22/24 16:26

Matrix: Solid

EET MID

EET MID

EET MID

Matrix: Solid

Matrix: Solid

Matrix: Solid

# Analyst Lab EET MID TKC EET MID

9

# **Client Sample ID: FS07** Date Collected: 01/17/24 14:20

# Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 19:17 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 19:17 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 02:19 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.98 g  | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 02:19 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.95 g  | 50 mL  | 71220  | 01/19/24 14:41 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71365  | 01/22/24 16:42 | SMC     | EET MID |

# **Client Sample ID: SW01**

Date Collected: 01/17/24 14:25 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 71343  | 01/22/24 14:55 | EL      | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71764  | 01/29/24 19:38 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/29/24 19:38 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 02:41 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 71251  | 01/19/24 17:02 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 02:41 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.96 g  | 50 mL  | 71220  | 01/19/24 14:41 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71365  | 01/22/24 16:47 | SMC     | EET MID |

# **Client Sample ID: SW02**

## Date Collected: 01/17/24 14:30 Date Received: 01/17/24 16:35

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 71537  | 01/24/24 15:35 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 13:32 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 71829  | 01/30/24 13:32 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 71888  | 01/27/24 03:03 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.10 g | 10 mL  | 71251  | 01/19/24 17:02 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71655  | 01/27/24 03:03 | SM      | EET MID |

**Eurofins Carlsbad** 

# Released to Imaging: 4/22/2024 2:45:18 PM

# Lab Chronicle

Job ID: 890-5982-1 SDG: 03C1558301

# Client Sample ID: SW02 Date Collected: 01/17/24 14:30

Date Received: 01/17/24 16:35

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |   |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|---|
| Ргер Туре | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     | Ę |
| Soluble   | Leach    | DI Leach |     |        | 5.01 g  | 50 mL  | 71220  | 01/19/24 14:41 | SA      | EET MID | _ |
| Soluble   | Analysis | 300.0    |     | 1      | 50 mL   | 50 mL  | 71365  | 01/22/24 16:52 | SMC     | EET MID |   |

## Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

# Lab Sample ID: 890-5982-17 Matrix: Solid

| ent: Ensolum                   |                                 |                                 |                                          |                        | Job ID: 890-5982-1 | - |
|--------------------------------|---------------------------------|---------------------------------|------------------------------------------|------------------------|--------------------|---|
| oject/Site: PLU 18 Brush       | וy Draw TB                      |                                 |                                          |                        | SDG: 03C1558301    |   |
| boratory: Eurofins             | Midland                         |                                 |                                          |                        |                    |   |
| ess otherwise noted, all analy | tes for this laboratory were o  | overed under each accredit      | tation/certification below.              |                        |                    |   |
| uthority                       | Progra                          | am                              | Identification Number                    | Expiration Date        |                    |   |
| exas                           | NELAF                           | 2                               | T104704400-23-26                         | 06-30-24               |                    | Ì |
| The following analytes a       | are included in this report, bu | it the laboratory is not certif | ied by the governing authority. This lis | t may include analytes |                    |   |
| • •                            | oes not offer certification.    | -                               |                                          | , <u>.</u>             |                    |   |
| Analysis Method                | Prep Method                     | Matrix                          | Analyte                                  |                        |                    |   |
| 8015 NM<br>Total BTEX          |                                 | Solid<br>Solid                  | Total TPH<br>Total BTEX                  |                        |                    |   |
|                                |                                 | Solia                           |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |
|                                |                                 |                                 |                                          |                        |                    |   |

Client: Ensolum

Job ID: 890-5982-1 SDG: 03C1558301

| Method        | Method Description                                                                  | Protocol                       | Laboratory |
|---------------|-------------------------------------------------------------------------------------|--------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                                     | SW846                          | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                              | TAL SOP                        | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                                    | SW846                          | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                                    | SW846                          | EET MID    |
| 300.0         | Anions, Ion Chromatography                                                          | EPA                            | EET MID    |
| 5035          | Closed System Purge and Trap                                                        | SW846                          | EET MID    |
| 8015NM Prep   | Microextraction                                                                     | SW846                          | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure                                                  | ASTM                           | EET MID    |
| Protocol Refe | rences:                                                                             |                                |            |
| ASTM = A      | STM International                                                                   |                                |            |
| EPA = US      | Environmental Protection Agency                                                     |                                |            |
| SW846 = '     | "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition | November 1986 And Its Updates. |            |
| TAL SOP :     | = TestAmerica Laboratories, Standard Operating Procedure                            |                                |            |
| Laboratory Re | eferences:                                                                          |                                |            |
| EET MID =     | = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440       |                                |            |
|               |                                                                                     |                                |            |
|               |                                                                                     |                                |            |
|               |                                                                                     |                                |            |
|               |                                                                                     |                                |            |

Eurofins Carlsbad

Released to Imaging: 4/22/2024 2:45:18 PM

# Sample Summary

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       | Depth |
|---------------|------------------|--------|----------------|----------------|-------|
| 890-5982-1    | PH01             | Solid  | 01/17/24 09:30 | 01/17/24 16:35 | 0.5'  |
| 890-5982-2    | PH01A            | Solid  | 01/17/24 09:40 | 01/17/24 16:35 | 2'    |
| 890-5982-3    | PH02             | Solid  | 01/17/24 09:45 | 01/17/24 16:35 | 0.5'  |
| 890-5982-4    | PH02A            | Solid  | 01/17/24 09:55 | 01/17/24 16:35 | 2'    |
| 890-5982-5    | PH03             | Solid  | 01/17/24 10:30 | 01/17/24 16:35 | 0.5'  |
| 390-5982-6    | PH03A            | Solid  | 01/17/24 10:35 | 01/17/24 16:35 | 1'    |
| 890-5982-7    | PH04             | Solid  | 01/17/24 10:55 | 01/17/24 16:35 | 0.5'  |
| 890-5982-8    | PH04A            | Solid  | 01/17/24 11:00 | 01/17/24 16:35 | 1'    |
| 890-5982-9    | FS01             | Solid  | 01/17/24 13:40 | 01/17/24 16:35 | 1'    |
| 390-5982-10   | FS02             | Solid  | 01/17/24 13:45 | 01/17/24 16:35 | 1'    |
| 390-5982-11   | FS03             | Solid  | 01/17/24 13:50 | 01/17/24 16:35 | 1'    |
| 390-5982-12   | FS04             | Solid  | 01/17/24 14:00 | 01/17/24 16:35 | 1'    |
| 90-5982-13    | FS05             | Solid  | 01/17/24 14:10 | 01/17/24 16:35 | 1'    |
| 390-5982-14   | FS06             | Solid  | 01/17/24 14:15 | 01/17/24 16:35 | 1'    |
| 390-5982-15   | FS07             | Solid  | 01/17/24 14:20 | 01/17/24 16:35 | 1'    |
| 390-5982-16   | SW01             | Solid  | 01/17/24 14:25 | 01/17/24 16:35 | 0-1'  |
| 890-5982-17   | SW02             | Solid  | 01/17/24 14:30 | 01/17/24 16:35 | 0-1'  |

Page 70 of 123

| Page<br>Comments<br>wrfields    RR<br>Sr/UST    TRR<br>Sr/UST    TR<br>Preser<br>None: NO<br>None: NO<br>None: NO<br>HclJ: Hc<br>H <sub>2</sub> Po4,: Hp<br>Na <sub>2</sub> S20;: NAS<br>Na <sub>2</sub> S20;: NAS<br>NA<br>NAPNO<br>C0(1,1, C0(7, C0(7, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 🐝 eurofins                                                                          | fins Environment Testing                                                                                                                                   |                                                                                                  | Crain of Custody<br>Houston, TX (281) 240-4200. Dates. TX (214) 902-0500<br>Midland, TX (432) 704-5440. San Antonio, TX (210) 509-3334<br>EL Paso, TX (915) 885-3443. Lubbook, TX (805) 794-1286<br>Hobbs. NM (575) 382-7550. Cartisbad, NM (575) 988-3198<br>Little Rock, AR (501) 224-5060 | 890-5982 Chain of Custody                                       |                            |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------|----------------------------|
| Comments<br>wnfields   RR<br>rr   relation   relation<br>rr   othin<br>Presen   relation<br>None: NO<br>Cool: Cool<br>Hold: HC<br>Hold: HC<br>Hold: HC<br>Hold: HC<br>Hold: HC<br>NetHoo,: NAB<br>NetHoo,: Nethoo,: Nethoo,: Nethoo,: Nethoo,: Nethoo,: Nethoo,: Nethoo,:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | CN                                                                                                                                                         | Bill to: (if diffe                                                                               | Hanne O                                                                                                                                                                                                                                                                                      | Page                                                            | 4                          |
| Additional     Dark f. Huy     Acrons     Ensult (Arrive)t     Ensult (Arrit)     Ensult (Arrive)t     Ensult (Arri                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                     | Ensolumille                                                                                                                                                | Company Ne                                                                                       | XTO EVI                                                                                                                                                                                                                                                                                      | Work Order Comments                                             |                            |
| Trust I train<br>Present Oth<br>None: No<br>Harod: Ha<br>Harod: Ha<br>Harod: Ha<br>Nassod: Na<br>Nassod: Nassod<br>Nassod: Nassod: Nassod<br>Nassod: Nas                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                                     | Davks                                                                                                                                                      |                                                                                                  | 3104 F (                                                                                                                                                                                                                                                                                     | State of Protect: PRP Brownfields RP                            | RC Superfund               |
| T D Oth<br>Preser<br>None: NO<br>Rou: Hc<br>Hcl: Hc<br>Hcl: Hc<br>Hcl: Hc<br>NaHSO:: NaB<br>NaSol: Hp<br>NaHSO: NaB<br>NaScoit Hc<br>NaScoit Hc<br>NaScoit CCT<br>COST CCT<br>DDCJILC<br>NRPP 23:<br>BCN BC<br>DDCJILC<br>NRPP 23:<br>DDCJILC<br>NRPP 23:<br>NRPP                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                     | 1 NIM 89.22                                                                                                                                                |                                                                                                  | Carlshad Nim 0.0                                                                                                                                                                                                                                                                             | Reporting: Level II   Level III   DST/IICT   TD                 |                            |
| Presen<br>None: NO<br>Cool: Cool<br>HCL: HC<br>H <sub>2</sub> PO4: HP<br>Na <sub>2</sub> S203: NAS<br>Na <sub>2</sub> S203<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S22<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S20<br>NA <sub>2</sub> S2 | Phone:                                                                              |                                                                                                                                                            | Email: (Gdrrecht                                                                                 | TY MAR EXXONINODIL. CA                                                                                                                                                                                                                                                                       |                                                                 | ther:                      |
| None: No<br>Hack: Hc<br>Hack: Hc<br>Hack: Hc<br>Hack: Hc<br>Nathod: NaB<br>Nachtage: NaS<br>Nacetage: NaS<br>Zn Acetage: NaS<br>NaCH+Ascorb<br>NaCH+Ascorb<br>NaCH+Ascorb<br>NaCH+Ascorb<br>NaCH+Ascorb<br>NaCH+Ascorb<br>Sample<br>C(6); C2<br>C2<br>2, C2<br>2, C2,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                     | PLU 18 BIVUSHUN DIAW TB                                                                                                                                    | Turn Around                                                                                      |                                                                                                                                                                                                                                                                                              |                                                                 |                            |
| Nome: NO<br>Cool: Cool<br>HCL: HC<br>H <sub>2</sub> PO4: HP<br>NaHSO4: NAS<br>Na2S2O5: NAS<br>Na2S2O5: NAS<br>NACHARTHNN<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>NACH4ASCOF<br>Sample<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibrille<br>Dibr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                     | 1558381 11                                                                                                                                                 | 1                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                 | rvative Codes              |
| Cool: Cool<br>HCL: HC<br>HsPO4: HP<br>NaHSO4: NAB<br>NaS205: NAS<br>NaS205: NAS<br>NAS204: NAS204<br>NAS204: NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS204<br>NAS212<br>NAS204<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS21<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS212<br>NAS2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 1                                                                                   | 3277-1263-92829                                                                                                                                            | le Date:                                                                                         |                                                                                                                                                                                                                                                                                              | None: NO                                                        | DI Water: H <sub>2</sub> O |
| H <sub>2</sub> S04: H <sub>2</sub><br>Na <sub>2</sub> S205: NAB<br>Na <sub>2</sub> S205: NAS<br>Zh Acetate+Nt<br>NaOH+Ascorb<br>Zh Acetate+Nt<br>NaOH+Ascorb<br>Zample<br>CúSt CP<br>205 lb 711<br>205 lb 7111<br>205 lb 71111<br>205 lb 71111<br>205 lb 71111<br>205 lb 711111111111111111111111111111111111                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | er's Name:                                                                          | 0'Dell                                                                                                                                                     | VT starts the day repoived t                                                                     |                                                                                                                                                                                                                                                                                              | Cool: Cool HCL: HC                                              | MeOH: Me<br>HNO.           |
| H <sub>3</sub> PO4: HP<br>NeHSO4: NaS<br>Na <sub>2</sub> S2O3: NaS<br>Zn Acetate+Nu<br>NaOH+Ascorb<br>NaOH+Ascorb<br>Sample<br>Cúlji CP<br>11<br>10<br>05 b11<br>10<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | SAMPLE RECEIP                                                                       | Temo Blank. Rod No                                                                                                                                         | Manu la manual de la manu                                                                        | T                                                                                                                                                                                                                                                                                            | H2S04: H2                                                       | NaOH: Na                   |
| Natisou: NAB<br>Nassos: Nas<br>Zn Acestate+Na<br>Nacht-Ascorb<br>Sample<br>Cúit Celt<br>105 lø 11<br>205 lø                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | amples Received Inte                                                                | (Vec) No Thormometer                                                                                                                                       | at loe:                                                                                          | eune<br>11                                                                                                                                                                                                                                                                                   | H <sub>3</sub> PO <sub>4</sub> : HP                             |                            |
| Nessos: Nas<br>Zn Acetate+Nu<br>NaOH+Ascorb<br>Sample<br>Sample<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL<br>DEL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ooler Custody Seals:                                                                | Yes No (NR                                                                                                                                                 | T                                                                                                | Para                                                                                                                                                                                                                                                                                         | NaHSO <sub>4</sub> : NAI                                        | SIBN                       |
| Zn Acetate+Nu<br>NaOH+Ascorb<br>Sample<br>C051 C27<br>205611<br>IIOC1012<br>DD232<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 23<br>BRD 24<br>BRD 24<br>B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | ample Custody Seals.                                                                | Yes No NA                                                                                                                                                  | +                                                                                                | لا أر                                                                                                                                                                                                                                                                                        | Na <sub>2</sub> S <sub>2</sub> O <sub>3</sub> : Na <sup>5</sup> | ISO3                       |
| Bample<br>Sample<br>Cust cer<br>Josu 11<br>Incide<br>Pobelille<br>As. 17470 1<br>245.17470 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | otal Containers:                                                                    |                                                                                                                                                            |                                                                                                  | X                                                                                                                                                                                                                                                                                            | Zn Acetate+N                                                    | NaOH: Zn                   |
| Sample<br>Cuit Cert<br>10560711<br>TINCI de<br>Bern Be<br>hoeilille<br>a sr TI Sn L<br>245.117470 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Sample Identif                                                                      | Matrix Date                                                                                                                                                | -                                                                                                | 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -                                                                                                                                                                                                                                                      | NaOH+Ascor                                                      | rbic Acid: SAPC            |
| COST COST COST COST COST COST COST COST                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Di 164                                                                              | maurix Sampled                                                                                                                                             | Depth                                                                                            | Cont                                                                                                                                                                                                                                                                                         | Sample                                                          | e Comments                 |
| Direction of the second of the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | LHUL                                                                                | -                                                                                                                                                          | -                                                                                                | XXXT                                                                                                                                                                                                                                                                                         | 0.4CT 0.01                                                      | · · · · · · ·              |
| Direction Ben Ben Ben Ben Ben Ben Ben Ben Ben Be                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | PHOIA                                                                               |                                                                                                                                                            | :40 2 6                                                                                          |                                                                                                                                                                                                                                                                                              |                                                                 | 11001                      |
| DDEJILE<br>DDEJILE<br>DDEJILE<br>As Sr TI Sn L<br>245.1/7470 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | PH02                                                                                | 0                                                                                                                                                          | 0                                                                                                |                                                                                                                                                                                                                                                                                              | TI DCOT                                                         | 2                          |
| BEN BE<br>DPEJIILE<br>a Sr TI Sh (<br>d5.1/7470 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | PH02A                                                                               |                                                                                                                                                            | 55 2                                                                                             |                                                                                                                                                                                                                                                                                              | TUCION                                                          | 201 4:                     |
| DEN BE<br>hbeilille<br>a sr TI Sh (<br>45.1/7470 /                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | PHOR                                                                                | 1 1                                                                                                                                                        | SV N                                                                                             |                                                                                                                                                                                                                                                                                              | NKPP23                                                          | 340W0921                   |
| DDEALINE<br>a Sr TI Sn (<br>245.1/7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PHOSA                                                                               | 1 1 1 10                                                                                                                                                   | 35 3                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                 | CI I I :                   |
| a Sr TI Sn (<br>245.1/7470 )                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | PHOH                                                                                | 11 11                                                                                                                                                      | 555 0                                                                                            |                                                                                                                                                                                                                                                                                              | DEALINE DEALINE                                                 | C Philo um. gom            |
| a Sr Tl Sn  <br>46.1/7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | PHUHA                                                                               | T T                                                                                                                                                        | A                                                                                                |                                                                                                                                                                                                                                                                                              |                                                                 |                            |
| a Sr TI Sh  <br>245.1 / 7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F.SO1                                                                               | 1 1 13                                                                                                                                                     | 1. C                                                                                             |                                                                                                                                                                                                                                                                                              |                                                                 |                            |
| a Sr TI Sn 1<br>245.1 / 7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | F.SO2                                                                               | V V 13                                                                                                                                                     |                                                                                                  |                                                                                                                                                                                                                                                                                              |                                                                 |                            |
| a Sr Tl Sn 1<br>245.1 / 7470                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Total 200.7 / 6010                                                                  | 200.8 / 6020: BF                                                                                                                                           | 13PDM                                                                                            |                                                                                                                                                                                                                                                                                              |                                                                 |                            |
| (6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | de Method(s) and I                                                                  | Metal(s) to be analyzed TC                                                                                                                                 | LP / SPLP 6010: 8Rt                                                                              | AL SO AS BA BO E CO CA CA CO CU FO PL<br>SRA SD AS BA BO CO CC CO PD MN MO                                                                                                                                                                                                                   | Na Sr TI Sn                                                     |                            |
| (0                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | ce: Signature of this docu<br>srvice. Eurofins Xenco wi<br>urofins Xenco. A minimun | ment and relinquichment of samplas constituta<br>It be liablo only for the cost of samplas and shal<br>In cherge of \$85.00 will be applied to coch projec | s a valid purchase order from<br>I not assume any responsibil<br>it and a charge of \$5 for each | cile ni company to Eurofina Xanco, its affiliates and subcontractors<br>by for any lasses or exponses incurred by the cilent # auch losses i<br>sample submitted to Eurofina Xenco, but not analyzed. These Sans i<br>earnple submitted to Eurofina Xenco. but not analyzed.                 | 243,11/4/0                                                      |                            |
| li (c.35 1/18                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relinquished by: (S                                                                 | ignature) Received by:                                                                                                                                     | (Signature)                                                                                      | Date/Time Relinguished by: (Signat                                                                                                                                                                                                                                                           | ure) Received by (Signature)                                    | Date/Time                  |
| 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | IN UNE                                                                              | 11 april                                                                                                                                                   |                                                                                                  | 81/1 SC:                                                                                                                                                                                                                                                                                     |                                                                 | Date/ Hille                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                     |                                                                                                                                                            |                                                                                                  | 4                                                                                                                                                                                                                                                                                            |                                                                 |                            |

Loc: 890 5982 Page 71 of 123

5

|                                                                    |                                                           |                                            |                                                      |                                                               |                                                          | Hobbs, NN                                   | X (910) 080-3<br>(575) 392-75<br>Little Rock,         | EL Paso, TX (915) 585-3443, Lubbock, TX (906) 794-1296<br>Hobbs, NM (575) 332-7550, Cartsbad, NM (575) 988-3198<br>Little Rock, AR (501) 224-5060 | X (806) 794-12<br>VI (575) 988-311<br>)60 | 98                                 | Work                                                                                                      | Work Order No:                     |                              |
|--------------------------------------------------------------------|-----------------------------------------------------------|--------------------------------------------|------------------------------------------------------|---------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------|-------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------|------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------|------------------------------|
| Project Manager:                                                   | Ren P                                                     | RALIII                                     | -                                                    |                                                               | the second second                                        |                                             | 1 minut                                               |                                                                                                                                                   |                                           | [                                  |                                                                                                           | Page                               | Je 2 of 2                    |
|                                                                    | 12                                                        | 1                                          | 211                                                  |                                                               | Dill 10: (if different)                                  | rerent)                                     | DAVIENT                                               | AT INCER                                                                                                                                          | 1                                         | T                                  | Wc                                                                                                        | Work Order Comments                | ints                         |
|                                                                    | 2100 11                                                   | ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~     | 21000                                                |                                                               | Company Name:                                            | lame:                                       | NIO                                                   | ENPANU                                                                                                                                            |                                           |                                    | Program: UST/PST   PRP Brownfields   PBc                                                                  | RP Brownfields                     | RPC Summer                   |
| T                                                                  | 1 1010                                                    | 1110                                       | 101 PUNKI                                            | MMH                                                           | Address:                                                 |                                             | 3104                                                  | 1261                                                                                                                                              | ne St                                     |                                    | State of Project:                                                                                         |                                    |                              |
| 17 818                                                             |                                                           | Z                                          | 7.700 M                                              | 20                                                            | City, State ZIP:                                         |                                             | ICarlsbad                                             | MM. DEd                                                                                                                                           | M 88220                                   |                                    | Reporting: Level II 🗌 Level III 🔲 PST/UST 🗍 TRRP                                                          | el III 🗌 PST/UST                   | TRRP 1 Level IV              |
| Phone:                                                             | Q han                                                     | - HGQ                                      | 7990                                                 | Email:                                                        | : loavett.                                               |                                             | ERNEE                                                 | GV CONREXXUNNODIL                                                                                                                                 | m.Com                                     |                                    | Deliverables: EDD                                                                                         | ADaPT                              |                              |
|                                                                    | PLU 18 BILLISHU DYAW TB                                   | unti.                                      | DY AN TE                                             |                                                               | Turn Around                                              | -                                           |                                                       |                                                                                                                                                   |                                           | Velo Dravi                         |                                                                                                           |                                    |                              |
| Project Number:                                                    | 030155530                                                 | 830                                        |                                                      | Rou                                                           | Rush                                                     | Pres.                                       | -                                                     |                                                                                                                                                   |                                           | WALLING REGUES!                    | ICSI                                                                                                      | Pr                                 | Preservative Codes           |
| Project Location: 3                                                | 32.13277                                                  | -103                                       | 07820                                                | Due Data-                                                     |                                                          | 000                                         |                                                       |                                                                                                                                                   |                                           | -                                  |                                                                                                           | None: NO                           | O DI Water: H <sub>2</sub> O |
| er's Name:                                                         | Mariaha                                                   |                                            | O'Dell                                               | TAT starts th                                                 | TAT starts the day received hu                           | 12                                          |                                                       |                                                                                                                                                   |                                           |                                    |                                                                                                           | Cool: Cool                         | ool MeOH: Me                 |
| PO#:                                                               |                                                           | 0                                          |                                                      | the lab, if rec                                               | the lab, if received by 4:30pm                           | +-                                          |                                                       |                                                                                                                                                   |                                           |                                    |                                                                                                           | HCL: HC                            | Ĩ                            |
| SAMPLE RECEIPT                                                     | -                                                         | Temp Blank:                                | Yes No                                               | Wet Ice:                                                      | Ves Mn                                                   | alene                                       | -                                                     |                                                                                                                                                   |                                           |                                    |                                                                                                           | H <sub>2</sub> S04: H <sub>2</sub> | I2 NaOH: Na                  |
| Samples Received Intact:                                           | _                                                         | Yes No                                     | Thermometer ID:                                      | ter ID:                                                       |                                                          | T                                           | 5                                                     | _                                                                                                                                                 |                                           | _                                  |                                                                                                           | H3PO4: HP                          | 4-                           |
| Cooler Custody Seals:                                              | Yes N                                                     | NO NIA                                     | -                                                    | Factor.                                                       |                                                          | 189                                         | n                                                     |                                                                                                                                                   |                                           | _                                  |                                                                                                           | NaHSO4: NABIS                      | : NABIS                      |
| Sample Custody Seals:                                              | Yes                                                       | A N/A                                      | Temperato                                            | Temperature Reading:                                          |                                                          | Т                                           | 21-                                                   |                                                                                                                                                   |                                           |                                    |                                                                                                           | Na2S2O3: NaSO3                     | : NaSO3                      |
| Total Containers:                                                  | _                                                         |                                            | Corrected 7                                          | Corrected Temperature:                                        |                                                          |                                             | X3                                                    | H                                                                                                                                                 |                                           | _                                  |                                                                                                           | Zn Aceta                           | Zn Acetate+NaOH: Zn          |
| Sample Identification                                              | cation                                                    | Matrix                                     | Date                                                 | Time                                                          | Grab/                                                    | b/ #of                                      | 14:                                                   | id ]                                                                                                                                              | _                                         |                                    |                                                                                                           | NaOH+A                             | NaOH+Ascorbic Acid; SAPC     |
|                                                                    |                                                           | INIGHT IN                                  | 0                                                    | 0                                                             | Depth Comp                                               |                                             | B                                                     | L                                                                                                                                                 |                                           |                                    |                                                                                                           | Sar                                | Samila Commente              |
| FS03                                                               |                                                           | S                                          | 117124                                               | 13:50                                                         | 1 1                                                      | 1                                           | XX                                                    | X                                                                                                                                                 | +                                         | +                                  |                                                                                                           |                                    | official and a series        |
| F.CO4                                                              |                                                           | 1                                          |                                                      | 111:NN                                                        | 1.1                                                      | 1-                                          |                                                       |                                                                                                                                                   | +                                         |                                    |                                                                                                           | - Cost                             | COST Center:                 |
| ES05                                                               |                                                           | -                                          |                                                      | 14:46                                                         | 11                                                       | F                                           |                                                       | -                                                                                                                                                 | +                                         | +                                  |                                                                                                           | 1901                               | 111001                       |
| FCOLO                                                              |                                                           | -                                          |                                                      | 111-15                                                        |                                                          | +                                           |                                                       |                                                                                                                                                   | -                                         | +                                  |                                                                                                           | TUC                                | ncident #:                   |
| FCOT                                                               |                                                           | -                                          |                                                      | 10-TI                                                         | 1.1                                                      | -                                           |                                                       |                                                                                                                                                   | -                                         | +                                  |                                                                                                           | 200 AN                             | 1233401000121                |
| S W01                                                              |                                                           | E                                          |                                                      | 20.11                                                         |                                                          | +                                           |                                                       |                                                                                                                                                   |                                           | -                                  |                                                                                                           | Ben                                | Belin:                       |
| SIMO                                                               |                                                           | 1                                          | A                                                    | 111.70                                                        | 1 1 1 2                                                  | ľ                                           | 2                                                     | 2                                                                                                                                                 | -                                         | -                                  |                                                                                                           | In heli                            | hhalille enserien inm        |
| TANKA                                                              |                                                           |                                            |                                                      | N-4-7                                                         | ATO                                                      | *                                           | *                                                     |                                                                                                                                                   |                                           |                                    |                                                                                                           |                                    | 1                            |
|                                                                    |                                                           |                                            |                                                      |                                                               |                                                          | 1                                           | 1                                                     |                                                                                                                                                   | +                                         |                                    |                                                                                                           |                                    |                              |
|                                                                    |                                                           |                                            |                                                      |                                                               | -                                                        | T                                           | 1                                                     | +                                                                                                                                                 | +                                         |                                    | in the                                                                                                    |                                    |                              |
| Total 200.7 / 6010                                                 | al o uuc                                                  | .064                                       |                                                      |                                                               |                                                          |                                             |                                                       |                                                                                                                                                   |                                           | _                                  | 141                                                                                                       |                                    |                              |
| Circle Method(s) and Metal(s) to be analyzed                       | ZUU.8 / 5020:<br>fetal(s) to be and                       | uzo:<br>s analyz                           | red 8R                                               | BRCRA 13PPM<br>TCLP / SPLP                                    | M Texas 11 AI                                            | I AI Sb<br>RCRA S                           | As Ba Be<br>b As Ba E                                 | Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni<br>Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se An Ti U                                                  | Cr Co Cu                                  | Fe Pb Mg                           | Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag<br>Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti II | a Na                               |                              |
| gnature of this docur<br>Eurofins Xenco will<br>S Xenco. A minimum | nent and relingu<br>be liable only fo<br>charge of \$85.0 | lishment of<br>vr line cost<br>0 will be a | f samples cons<br>of samples and<br>pplied to each p | titutes a valid pur<br>I shall not essum<br>vroject and a che | chase order fro<br>a any responsib<br>rge of \$5 for eac | m cliant cor<br>lity for any<br>fi semple a | ipany to Eurofi<br>lossas or exper<br>ibmitted to Eur | ns Xenco, its affili<br>tass incurred by t                                                                                                        | iates and subco<br>the client if such     | ntractors. It as<br>losses are due | erms and<br>as beyond                                                                                     | diffions<br>control                | 101/4/1                      |
| Relinquished by: (Signature)                                       | gnature)                                                  |                                            | Received                                             | Received by: (Signature)                                      | re)                                                      |                                             | Date/Time                                             | Relina                                                                                                                                            | Relinquished by /Signature                | Signatural                         | De uniorced uniess previously                                                                             | negotlated.                        |                              |
| 7.0000                                                             | 0                                                         | cue                                        | allonde                                              |                                                               |                                                          | 6:                                          | 51                                                    | 1/122                                                                                                                                             |                                           | lo interisio                       | received by. (Signature)                                                                                  | signature)                         | Date/Time                    |
|                                                                    |                                                           |                                            |                                                      |                                                               |                                                          |                                             |                                                       | 1                                                                                                                                                 |                                           |                                    |                                                                                                           |                                    |                              |
|                                                                    | Ì                                                         |                                            |                                                      |                                                               |                                                          |                                             |                                                       | 4                                                                                                                                                 |                                           |                                    |                                                                                                           | -                                  | Γ                            |

Chain of Custody

🐝 eurofins |

Page 72 of 123

Revised Date: 06/25/2020 Rev. 2020 2

5 6
14

Job Number: 890-5982-1 SDG Number: 03C1558301

List Source: Eurofins Carlsbad

## Login Sample Receipt Checklist

Client: Ensolum

#### Login Number: 5982 List Number: 1 Creator: Lopez, Abraham

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

Job Number: 890-5982-1 SDG Number: 03C1558301

List Source: Eurofins Midland

List Creation: 01/19/24 03:48 PM

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5982 List Number: 2 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present                                                                   | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information                                 | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 2/20/2024 3:46:53 PM



**Environment Testing** 

# **ANALYTICAL REPORT**

# PREPARED FOR

Attn: Ben Belill Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 2/1/2024 12:45:43 PM

# JOB DESCRIPTION

PLU 18 Brushy Draw TB 03C1558301

# **JOB NUMBER**

890-5992-1

RT OR Belill Ium I St. 400 701

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

# **Eurofins Carlsbad**

## Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

## **Authorization**

AMER

Generated 2/1/2024 12:45:43 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Laboratory Job ID: 890-5992-1 SDG: 03C1558301

# **Table of Contents**

| Cover Page             | 1  |
|------------------------|----|
| Table of Contents      | 3  |
| Definitions/Glossary   | 4  |
| Case Narrative         | 5  |
| Client Sample Results  | 7  |
| Surrogate Summary      | 19 |
| QC Sample Results      | 21 |
| QC Association Summary | 26 |
| Lab Chronicle          | 30 |
| Certification Summary  | 35 |
| Method Summary         | 36 |
| Sample Summary         | 37 |
| Chain of Custody       | 38 |
| Receipt Checklists     | 40 |
|                        |    |

2

|                | Definitions/Glossary                                                                                        |                    |    |
|----------------|-------------------------------------------------------------------------------------------------------------|--------------------|----|
| Client: Ensol  |                                                                                                             | Job ID: 890-5992-1 |    |
| Project/Site:  | PLU 18 Brushy Draw TB                                                                                       | SDG: 03C1558301    |    |
| Qualifiers     |                                                                                                             |                    | 3  |
| GC VOA         |                                                                                                             |                    |    |
| Qualifier      | Qualifier Description                                                                                       |                    |    |
| *+             | LCS and/or LCSD is outside acceptance limits, high biased.                                                  |                    |    |
| S1-            | Surrogate recovery exceeds control limits, low biased.                                                      |                    | 5  |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |                    |    |
| GC Semi VO     | A                                                                                                           |                    |    |
| Qualifier      | Qualifier Description                                                                                       |                    |    |
| S1+            | Surrogate recovery exceeds control limits, high biased.                                                     |                    |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |                    |    |
| HPLC/IC        |                                                                                                             |                    | 8  |
| Qualifier      | Qualifier Description                                                                                       |                    |    |
| U              | Indicates the analyte was analyzed for but not detected.                                                    |                    | 9  |
| Glossary       |                                                                                                             |                    | 10 |
| Abbreviation   | These commonly used abbreviations may or may not be present in this report.                                 |                    |    |
| ¤              | Listed under the "D" column to designate that the result is reported on a dry weight basis                  |                    |    |
| %R             | Percent Recovery                                                                                            |                    |    |
| CFL            | Contains Free Liquid                                                                                        |                    |    |
| CFU            | Colony Forming Unit                                                                                         |                    |    |
| CNF            | Contains No Free Liquid                                                                                     |                    | 40 |
| DER            | Duplicate Error Ratio (normalized absolute difference)                                                      |                    | 13 |
| Dil Fac        | Dilution Factor                                                                                             |                    |    |
| DL             | Detection Limit (DoD/DOE)                                                                                   |                    |    |
| DL, RA, RE, IN | Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample |                    |    |
| DLC            | Decision Level Concentration (Radiochemistry)                                                               |                    |    |
| EDL            | Estimated Detection Limit (Dioxin)                                                                          |                    |    |
| LOD            | Limit of Detection (DoD/DOE)                                                                                |                    |    |
| LOQ            | Limit of Quantitation (DoD/DOE)                                                                             |                    |    |
|                |                                                                                                             |                    |    |

MDA Minimum Detectable Activity (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

- MDC Minimum Detectable Concentration (Radiochemistry)
- MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation Limit

MCL

- NC
   Not Calculated

   ND
   Not Detected at the reporting limit (or MDL or EDL if shown)

   NEG
   Negative / Absent
- POS Positive / Present PQL Practical Quantitation Limit
- PRES
   Presumptive

   QC
   Quality Control
- RER
   Relative Error Ratio (Radiochemistry)

   RL
   Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQToxicity Equivalent Quotient (Dioxin)TNTCToo Numerous To Count

## **Case Narrative**

Job ID: 890-5992-1

quality control (QC) is further explained in narrative comments.

#### Job ID: 890-5992-1

## **Eurofins Carlsbad**

#### Job Narrative 890-5992-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

#### Receipt

The samples were received on 1/18/2024 3:24 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

#### **Receipt Exceptions**

method.

The following samples were received and analyzed from an unpreserved bulk soil jar: FS08 (890-5992-1), FS09 (890-5992-2) FS10 (890-5992-3), FS11 (890-5992-4), FS12 (890-5992-5), FS13 (890-5992-6), SW03 (890-5992-7), FS14 (890-5992-8), FS15 (890-5992-9), FS16 (890-5992-10), FS17 (890-5992-11), FS18 (890-5992-12), FS19 (890-5992-13), SW04 (890-5992-14) and SW05 (890-5992-15).

#### GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-71537 and 880-71635 and analytical batch 880-71915 was outside the control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS14 (890-5992-8) and FS16 (890-5992-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-71915 recovered over the higher control limit for Benzene, Toluene, Ethylbenzene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were ran within 12 hours of passing CCV; therefore, the data have been reported.

Method 8021B: Surrogate recovery for the following samples were outside control limits: FS19 (890-5992-13) and SW04 (890-5992-14). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-71635 and analytical batch 880-71915 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-71509 and analytical batch 880-71993 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: FS08 (890-5992-1), FS10 (890-5992-3) and FS11 (890-5992-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: Surrogate recovery for the following samples were outside control limits: SW03 (890-5992-7), FS14 (890-5992-8) and FS19 (890-5992-13). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD\_NM: The method blank for preparation batch 880-71509 and analytical batch 880-71993 contained Gasoline Range Organics (GRO)-C6-C10 and Diesel Range Organics (Over C10-C28) above the method detection limit. This target analyte

#### **Client: Ensolum** Project: PLU 18 Brushy Draw TB

Job ID: 890-5992-1

**Eurofins Carlsbad** 

## Job ID: 890-5992-1 (Continued)

concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

#### HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

## **Client Sample Results**

Page 81 of 123

5

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

Lab Sample ID: 890-5992-1

## **Client Sample ID: FS08** Date Collected: 01/18/24 08:30

Client: Ensolum

Date Received: 01/18/24 15:24

| Analyte                                 | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed                | Dil Fac |
|-----------------------------------------|--------------|--------------|----------|-------|---|----------------|-------------------------|---------|
| Benzene                                 | <0.00201     | U            | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          | 1       |
| Toluene                                 | <0.00201     | U            | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          | 1       |
| Ethylbenzene                            | <0.00201     | U *+         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          | 1       |
| n-Xylene & p-Xylene                     | <0.00402     | U *+         | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          |         |
| o-Xylene                                | <0.00201     | U *+         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          |         |
| Kylenes, Total                          | <0.00402     | U *+         | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 21:50          |         |
| Surrogate                               | %Recovery    | Qualifier    | Limits   |       |   | Prepared       | Analyzed                | Dil Fa  |
| 4-Bromofluorobenzene (Surr)             | 75           |              | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 21:50          |         |
| 1,4-Difluorobenzene (Surr)              | 83           |              | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 21:50          |         |
| Method: TAL SOP Total BTEX - T          |              |              |          |       |   |                |                         |         |
| Analyte                                 |              | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed                | Dil Fa  |
| fotal BTEX                              | <0.00402     | U            | 0.00402  | mg/Kg |   |                | 01/30/24 21:50          |         |
| Method: SW846 8015 NM - Diese           |              |              |          |       |   |                |                         |         |
| Analyte<br>Total TPH                    |              | Qualifier    |          | Unit  | D | Prepared       | Analyzed 01/31/24 10:47 | Dil Fa  |
| lethod: SW846 8015B NM - Dies           |              | nice (DRO)   |          | mg/Kg |   |                |                         |         |
| Analyte                                 | • •          | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed                | Dil Fa  |
| Gasoline Range Organics                 | <49.6        |              | 49.6     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 10:47          |         |
| GRO)-C6-C10                             |              | -            |          |       |   |                |                         |         |
| Diesel Range Organics (Over<br>210-C28) | <49.6        | U            | 49.6     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 10:47          |         |
| Oll Range Organics (Over C28-C36)       | <49.6        | U            | 49.6     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 10:47          |         |
| Surrogate                               | %Recovery    | Qualifier    | Limits   |       |   | Prepared       | Analyzed                | Dil Fa  |
| -Chlorooctane                           | 134          | S1+          | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 10:47          |         |
| p-Terphenyl                             | 105          |              | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 10:47          |         |
| Method: EPA 300.0 - Anions, Ion         | Chromatograp | ohy - Solubl | e        |       |   |                |                         |         |
| Analyte                                 | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed                | Dil Fa  |
| Chloride                                | 78.8         |              | 5.02     | mg/Kg |   |                | 01/24/24 09:57          |         |
| ient Sample ID: FS09                    |              |              |          |       |   | Lab Sar        | nple ID: 890-           | 5992-2  |
| te Collected: 01/18/24 08:35            |              |              |          |       |   |                | Matri                   | x: Soli |
| ate Received: 01/18/24 15:24            |              |              |          |       |   |                |                         |         |
| Method: SW846 8021B - Volatile          | Organic Comp | ounds (GC)   | )        |       |   |                |                         |         |
| Analyte                                 | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed                | Dil Fa  |
|                                         |              |              |          |       |   |                |                         |         |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00199 | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| Ethylbenzene                | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| o-Xylene                    | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 82        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |
| 1,4-Difluorobenzene (Surr)  | 81        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:10 | 1       |

## **Client Sample Results**

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5992-2

## Client Sample ID: FS09

Client: Ensolum

Date Collected: 01/18/24 08:35 Date Received: 01/18/24 15:24

| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00398      | U           | 0.00398  | mg/Kg |   |                | 01/30/24 22:10 | 1       |
| Method: SW846 8015 NM - Diese     | I Range Organ | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <49.7         | U           | 49.7     | mg/Kg |   |                | 01/31/24 11:50 | 1       |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 11:50 | 1       |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 11:50 | 1       |
| C10-C28)                          |               |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 11:50 | 1       |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 120           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 11:50 | 1       |
| o-Terphenyl                       | 91            |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 11:50 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 23.4          |             | 5.03     | mg/Kg |   |                | 01/24/24 10:12 | 1       |

Date Collected: 01/18/24 08:40 Date Received: 01/18/24 15:24 ab Sample ID: 890-5992-3 Matrix: Solid

#### Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| Ethylbenzene                | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| o-Xylene                    | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 82        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |
| 1,4-Difluorobenzene (Surr)  | 85        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:31 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL D Unit Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 mg/Kg 01/30/24 22:31 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total TPH <49.5 U 01/31/24 12:12 49.5 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 1

|                             |         |      |       |                | -              |  |
|-----------------------------|---------|------|-------|----------------|----------------|--|
| Gasoline Range Organics     | <49.5 U | 49.5 | mg/Kg | 01/24/24 10:27 | 01/31/24 12:12 |  |
| (GRO)-C6-C10                |         |      |       |                |                |  |
| Diesel Range Organics (Over | <49.5 U | 49.5 | mg/Kg | 01/24/24 10:27 | 01/31/24 12:12 |  |
| C10-C28)                    |         |      |       |                |                |  |

Eurofins Carlsbad

Released to Imaging: 4/22/2024 2:45:18 PM

## **Client Sample Results**

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

Matrix: Solid

5

### **Client Sample ID: FS10** Date Collected: 01/18/24 08:40

Client: Ensolum

Date Received: 01/18/24 15:24

| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-------|---|----------------|----------------|---------|
| Oll Range Organics (Over C28-C36) | <49.5        | U           | 49.5     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 12:12 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 148          | S1+         | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 12:12 | 1       |
| o-Terphenyl                       | 118          |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 12:12 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 57.9         |             | 4.97     | mg/Kg |   |                | 01/24/24 10:18 | 1       |

#### Client Sample ID: FS11

Date Collected: 01/18/24 08:45

Date Received: 01/18/24 15:24

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00200 | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| Ethylbenzene                | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| m-Xylene & p-Xylene         | <0.00399  | U *+      | 0.00399  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| o-Xylene                    | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| Xylenes, Total              | <0.00399  | U *+      | 0.00399  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 78        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |
| 1,4-Difluorobenzene (Surr)  | 77        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 22:51 | 1       |

## Method: TAL SOP Total BTEX - Total BTEX Calculation

| Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
| Total BTEX | <0.00399 | U         | 0.00399 | mg/Kg |   |          | 01/30/24 22:51 | 1       |

| Method: SW846 8015 NM - Diesel | l Range Organics (DRO) (G | C)   |       |   |          |                |         |
|--------------------------------|---------------------------|------|-------|---|----------|----------------|---------|
| Analyte                        | Result Qualifier          | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| Total TPH                      | <49.9 U                   | 49.9 | mg/Kg |   |          | 01/31/24 12:33 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.9        | U           | 49.9     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 12:33 | 1       |
| (GRO)-C6-C10                      |              |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.9        | U           | 49.9     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 12:33 | 1       |
| C10-C28)                          |              |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.9        | U           | 49.9     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 12:33 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 138          | S1+         | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 12:33 | 1       |
| o-Terphenyl                       | 108          |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 12:33 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 35.5         |             | 4.97     | mg/Kg |   |                | 01/24/24 10:23 | 1       |

Lab Sample ID: 890-5992-3

## Released to Imaging: 4/22/2024 2:45:18 PM

## **Client Sample Results**

Job ID: 890-5992-1 SDG: 03C1558301

Lab Sample ID: 890-5992-5

## **Client Sample ID: FS12** Date Collected: 01/18/24 08:50

Client: Ensolum

Date Received: 01/18/24 15:24

| Analyte                                                       | Result          | Qualifier               | RL         | Unit          | D | Prepared       | Analyzed                   | Dil Fac  |
|---------------------------------------------------------------|-----------------|-------------------------|------------|---------------|---|----------------|----------------------------|----------|
| Benzene                                                       | <0.00201        | U                       | 0.00201    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| Toluene                                                       | <0.00201        | U                       | 0.00201    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| Ethylbenzene                                                  | <0.00201        | U *+                    | 0.00201    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| m-Xylene & p-Xylene                                           | <0.00402        | U *+                    | 0.00402    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| o-Xylene                                                      | <0.00201        | U *+                    | 0.00201    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| Xylenes, Total                                                | <0.00402        | U *+                    | 0.00402    | mg/Kg         |   | 01/25/24 18:02 | 01/30/24 23:12             |          |
| Surrogate                                                     | %Recovery       | Qualifier               | Limits     |               |   | Prepared       | Analyzed                   | Dil Fa   |
| 4-Bromofluorobenzene (Surr)                                   | 79              |                         | 70 - 130   |               |   | 01/25/24 18:02 | 01/30/24 23:12             | 3        |
| 1,4-Difluorobenzene (Surr)                                    | 77              |                         | 70 - 130   |               |   | 01/25/24 18:02 | 01/30/24 23:12             | 1        |
| Method: TAL SOP Total BTEX - 1                                |                 |                         |            |               |   |                |                            |          |
| Analyte                                                       |                 | Qualifier               | RL         | Unit          | D | Prepared       | Analyzed                   | Dil Fac  |
| Total BTEX                                                    | <0.00402        | U                       | 0.00402    | mg/Kg         |   |                | 01/30/24 23:12             |          |
| Method: SW846 8015 NM - Diese                                 |                 |                         |            |               |   |                |                            |          |
| Analyte<br>Total TPH                                          | Result<br><49.6 | Qualifier               | RL<br>49.6 | Unit<br>mg/Kg | D | Prepared       | Analyzed<br>01/31/24 12:55 | Dil Fa   |
| Method: SW846 8015B NM - Dies<br>Analyte                      |                 | nics (DRO)<br>Qualifier | (GC)<br>RL | Unit          | D | Prepared       | Analyzed                   | Dil Fa   |
| Analyte                                                       | Result          | Qualifier               | RL         | Unit          | D | Prepared       | Analyzed                   | Dil Fa   |
| Gasoline Range Organics<br>(GRO)-C6-C10                       | <49.6           | U                       | 49.6       | mg/Kg         |   | 01/24/24 10:27 | 01/31/24 12:55             |          |
| Diesel Range Organics (Over                                   | <49.6           | U                       | 49.6       | mg/Kg         |   | 01/24/24 10:27 | 01/31/24 12:55             |          |
| C10-C28)                                                      |                 |                         |            |               |   |                |                            |          |
| Oll Range Organics (Over C28-C36)                             | <49.6           | U                       | 49.6       | mg/Kg         |   | 01/24/24 10:27 | 01/31/24 12:55             |          |
| Surrogate                                                     | %Recovery       | Qualifier               | Limits     |               |   | Prepared       | Analyzed                   | Dil Fa   |
| 1-Chlorooctane                                                | 127             |                         | 70 - 130   |               |   | 01/24/24 10:27 | 01/31/24 12:55             |          |
| o-Terphenyl                                                   | 96              |                         | 70 - 130   |               |   | 01/24/24 10:27 | 01/31/24 12:55             |          |
| Method: EPA 300.0 - Anions, Ion                               | Chromatograp    | hy - Solubl             | e          |               |   |                |                            |          |
| Analyte                                                       | Result          | Qualifier               | RL         | Unit          | D | Prepared       | Analyzed                   | Dil Fa   |
| Chloride                                                      | 245             |                         | 4.96       | mg/Kg         |   |                | 01/24/24 10:28             |          |
| lient Sample ID: FS13                                         |                 |                         |            |               |   | Lab San        | nple ID: 890-              | 5992-6   |
| ate Collected: 01/18/24 09:35<br>ate Received: 01/18/24 15:24 |                 |                         |            |               |   |                | Matri                      | x: Solie |
|                                                               | Ormania Carro   |                         |            |               |   |                |                            |          |
| Method: SW846 8021B - Volatile                                | organic comp    | ounus (GC               | )          |               |   |                |                            |          |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00200 | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| Ethylbenzene                | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| m-Xylene & p-Xylene         | <0.00401  | U *+      | 0.00401  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| o-Xylene                    | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| Xylenes, Total              | <0.00401  | U *+      | 0.00401  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 79        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |
| 1,4-Difluorobenzene (Surr)  | 80        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 23:32 | 1       |

Eurofins Carlsbad

Page 84 of 123

Matrix: Solid

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5992-6

# **Client Sample ID: FS13**

Client: Ensolum

Date Collected: 01/18/24 09:35 Date Received: 01/18/24 15:24

| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00401      | U           | 0.00401  | mg/Kg |   |                | 01/30/24 23:32 | 1       |
| Method: SW846 8015 NM - Diesel    | Range Organ   | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <50.2         | U           | 50.2     | mg/Kg |   |                | 01/31/24 13:28 | 1       |
| Method: SW846 8015B NM - Diese    | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <50.2         | U           | 50.2     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 13:28 | 1       |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.2         | U           | 50.2     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 13:28 | 1       |
| C10-C28)                          |               |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.2         | U           | 50.2     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 13:28 | 1       |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 121           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 13:28 | 1       |
| o-Terphenyl                       | 92            |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 13:28 | 1       |
| Method: EPA 300.0 - Anions, Ion ( | Chromatograp  | hy - Solubl | le       |       |   |                |                |         |
| Analyte                           |               | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 379           |             | 4.99     | mg/Kg |   |                | 01/24/24 10:43 | 1       |

## Client Sample ID: SW03

Date Collected: 01/18/24 09:40 Date Received: 01/18/24 15:24

### Lab Sample ID: 890-5992-7 Matrix: Solid

### Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| Ethylbenzene                | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| o-Xylene                    | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 81        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |
| 1,4-Difluorobenzene (Surr)  | 83        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/30/24 23:53 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac 0.00398 Total BTEX <0.00398 U mg/Kg 01/30/24 23:53 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total TPH <50.5 U 50.5 01/31/24 13:49 mg/Kg 1

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac <50.5 U 50.5 01/24/24 10:27 01/31/24 13:49 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 <50.5 U 50.5 01/24/24 10:27 01/31/24 13:49 Diesel Range Organics (Over mg/Kg 1 C10-C28)

## **Client Sample Results**

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

Matrix: Solid

5

12 13

Lab Sample ID: 890-5992-7

### Client Sample ID: SW03 Date Collected: 01/18/24 09:40

Date Received: 01/18/24 15:24

Client: Ensolum

| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-------|---|----------------|----------------|---------|
| Oll Range Organics (Over C28-C36) | <50.5        | U           | 50.5     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 13:49 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 146          | S1+         | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 13:49 | 1       |
| o-Terphenyl                       | 114          |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 13:49 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubi | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          |              |             | 4.95     | mg/Kg |   |                | 01/24/24 10:48 | 1       |

Date Collected: 01/18/24 09:45

Date Received: 01/18/24 15:24

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00199 | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| Ethylbenzene                | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| o-Xylene                    | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 86        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |
| 1,4-Difluorobenzene (Surr)  | 69        | S1-       | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 00:13 | 1       |

## Method: TAL SOP Total BTEX - Total BTEX Calculation

| Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
| Total BTEX | <0.00398 | U         | 0.00398 | mg/Kg |   |          | 01/31/24 00:13 | 1       |
|            |          |           |         |       |   |          |                |         |

|   | Method: SW846 8015 NM - Diesel R | Range Organi | ics (DRO) (G | SC)  |       |   |          |                |         |
|---|----------------------------------|--------------|--------------|------|-------|---|----------|----------------|---------|
|   | Analyte                          | Result       | Qualifier    | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| L | Total TPH                        | <49.7        | U            | 49.7 | mg/Kg |   |          | 01/31/24 14:11 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|--------------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <49.7        | U            | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:11 | 1       |
| (GRO)-C6-C10                      |              |              |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.7        | U            | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:11 | 1       |
| C10-C28)                          |              |              |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.7        | U            | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:11 | 1       |
| Surrogate                         | %Recovery    | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 148          | S1+          | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 14:11 | 1       |
| o-Terphenyl                       | 118          |              | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 14:11 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 122          |              | 5.01     | mg/Kg |   |                | 01/24/24 10:54 | 1       |

## **Client Sample Results**

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

### Client Sample ID: FS15 Date Collected: 01/18/24 09:50

Date Received: 01/18/24 15:24

| Analyte                                                                                                                                                                                                                                    | Result                                                                      | Qualifier                        | RL                                                                                                     | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                                                                                                   | Dil Fac                         |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------------------------|---------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|
| Benzene                                                                                                                                                                                                                                    | <0.00200                                                                    | U                                | 0.00200                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             |                                 |
| Toluene                                                                                                                                                                                                                                    | <0.00200                                                                    | U                                | 0.00200                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             |                                 |
| Ethylbenzene                                                                                                                                                                                                                               | <0.00200                                                                    | U *+                             | 0.00200                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             | 1                               |
| m-Xylene & p-Xylene                                                                                                                                                                                                                        | <0.00399                                                                    | U *+                             | 0.00399                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             | 1                               |
| o-Xylene                                                                                                                                                                                                                                   | <0.00200                                                                    | U *+                             | 0.00200                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             | 1                               |
| Xylenes, Total                                                                                                                                                                                                                             | <0.00399                                                                    | U *+                             | 0.00399                                                                                                | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             |                                 |
| Surrogate                                                                                                                                                                                                                                  | %Recovery                                                                   | Qualifier                        | Limits                                                                                                 |                                 |          | Prepared                                                                                                                                       | Analyzed                                                                                                                                                                                                   | Dil Fa                          |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                                | 79                                                                          |                                  | 70 - 130                                                                                               |                                 |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             |                                 |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                                 | 76                                                                          |                                  | 70 - 130                                                                                               |                                 |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 00:34                                                                                                                                                                                             | 1                               |
| Method: TAL SOP Total BTEX - 1                                                                                                                                                                                                             | Total BTEX Cald                                                             | culation                         |                                                                                                        |                                 |          |                                                                                                                                                |                                                                                                                                                                                                            |                                 |
| Analyte                                                                                                                                                                                                                                    | Result                                                                      | Qualifier                        | RL                                                                                                     | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                                                                                                   | Dil Fac                         |
| Total BTEX                                                                                                                                                                                                                                 | <0.00399                                                                    | U                                | 0.00399                                                                                                | mg/Kg                           |          |                                                                                                                                                | 01/31/24 00:34                                                                                                                                                                                             | 1                               |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                              | el Range Organ                                                              | ics (DRO) (                      | GC)                                                                                                    |                                 |          |                                                                                                                                                |                                                                                                                                                                                                            |                                 |
| Analyte                                                                                                                                                                                                                                    | Result                                                                      | Qualifier                        | RL                                                                                                     | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                                                                                                   | Dil Fac                         |
| Total TPH                                                                                                                                                                                                                                  | <49.7                                                                       | U                                | 49.7                                                                                                   | mg/Kg                           |          |                                                                                                                                                | 01/31/24 14:33                                                                                                                                                                                             | 1                               |
|                                                                                                                                                                                                                                            |                                                                             |                                  |                                                                                                        |                                 |          |                                                                                                                                                |                                                                                                                                                                                                            |                                 |
|                                                                                                                                                                                                                                            |                                                                             |                                  | · · · ·                                                                                                |                                 | _        |                                                                                                                                                |                                                                                                                                                                                                            |                                 |
| Analyte                                                                                                                                                                                                                                    | Result                                                                      | Qualifier                        |                                                                                                        | Unit                            | <u>D</u> | Prepared                                                                                                                                       | Analyzed                                                                                                                                                                                                   |                                 |
| Analyte<br>Gasoline Range Organics                                                                                                                                                                                                         |                                                                             | Qualifier                        | · · · ·                                                                                                | Unit<br>mg/Kg                   | <u>D</u> | Prepared<br>01/24/24 10:27                                                                                                                     | Analyzed<br>01/31/24 14:33                                                                                                                                                                                 |                                 |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                                          | Result                                                                      | Qualifier<br>U                   |                                                                                                        |                                 | <u>D</u> |                                                                                                                                                |                                                                                                                                                                                                            | 1                               |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                              | Result<br><49.7                                                             | Qualifier<br>U<br>U              | <b>RL</b><br>49.7                                                                                      | mg/Kg                           | <u> </u> | 01/24/24 10:27                                                                                                                                 | 01/31/24 14:33                                                                                                                                                                                             | Dil Fac<br>1<br>1               |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                                         | Result<br><49.7<br><49.7                                                    | Qualifier<br>U<br>U<br>U         | RL           49.7           49.7                                                                       | mg/Kg<br>mg/Kg                  | <u> </u> | 01/24/24 10:27                                                                                                                                 | 01/31/24 14:33                                                                                                                                                                                             | 1<br>1<br>1                     |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate                                                                                            | Result<br><49.7<br><49.7<br><49.7                                           | Qualifier<br>U<br>U<br>U         | RL           49.7           49.7           49.7           49.7                                         | mg/Kg<br>mg/Kg                  | <u>D</u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27                                                                                             | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33                                                                                                                                                         | 1<br>1<br>1<br>Dil Fac          |
| Method: SW846 8015B NM - Dies<br>Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                          | Result<br><49.7<br><49.7<br><49.7<br><49.7<br>%Recovery                     | Qualifier<br>U<br>U<br>U         | RL           49.7           49.7           49.7           Limits                                       | mg/Kg<br>mg/Kg                  | <u> </u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><i>Prepared</i>                                                                          | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><b>Analyzed</b>                                                                                                                    | 1<br>1<br>1<br>1<br>1<br>1<br>1 |
| Analyte         Gasoline Range Organics         (GRO)-C6-C10         Diesel Range Organics (Over         C10-C28)         DII Range Organics (Over C28-C36)         Surrogate         1-Chlorooctane         p-Terphenyl                   | Result<br><49.7<br><49.7<br><49.7<br><49.7<br><b>%Recovery</b><br>127<br>97 | Qualifier<br>U<br>U<br>Qualifier | RL           49.7           49.7           49.7 <b>Limits</b> 70 - 130           70 - 130              | mg/Kg<br>mg/Kg                  | <u> </u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27                                                        | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><u>Analyzed</u><br>01/31/24 14:33                                                                                                  | Dil Fac                         |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ion                        | Result           <49.7                                                      | Qualifier<br>U<br>U<br>Qualifier | RL           49.7           49.7           49.7 <b>Limits</b> 70 - 130           70 - 130              | mg/Kg<br>mg/Kg                  | D        | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27                                                        | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><u>Analyzed</u><br>01/31/24 14:33                                                                                                  | 1                               |
| Analyte<br>Gasoline Range Organics<br>GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>DII Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>b-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte              | Result           <49.7                                                      | Qualifier<br>U<br>U<br>Qualifier | RL           49.7           49.7           49.7                                                        | mg/Kg<br>mg/Kg<br>mg/Kg         |          | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27<br>01/24/24 10:27                                      | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><i>Analyzed</i><br>01/31/24 14:33<br>01/31/24 14:33                                                                                | Dil Fac                         |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>p-Terphenyl<br>Method: EPA 300.0 - Anions, Ion<br>Analyte<br>Chloride | Result           <49.7                                                      | Qualifier<br>U<br>U<br>Qualifier | RL           49.7           49.7           49.7 <u>Limits</u> 70 - 130           70 - 130           RL | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit |          | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b> | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><i>Analyzed</i><br>01/31/24 14:33<br>01/31/24 14:33                                                                                | Dil Fa                          |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane                                                                          | Result           <49.7                                                      | Qualifier<br>U<br>U<br>Qualifier | RL           49.7           49.7           49.7 <u>Limits</u> 70 - 130           70 - 130           RL | mg/Kg<br>mg/Kg<br>mg/Kg<br>Unit |          | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b> | 01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><b>Analyzed</b><br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br>01/31/24 14:33<br><b>Analyzed</b><br>01/24/24 10:59<br><b>ple ID: 890-5</b> | Dil Fac                         |

-Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| Ethylbenzene                | <0.00201  | U *+      | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U *+      | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| o-Xylene                    | <0.00201  | U *+      | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| Xylenes, Total              | <0.00402  | U *+      | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 93        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |
| 1,4-Difluorobenzene (Surr)  | 68        | S1-       | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 00:54 | 1       |

Eurofins Carlsbad

Job ID: 890-5992-1

# SDG: 03C1558301

# Lab Sample ID: 890-5992-9

Matrix: Solid

Released to Imaging: 4/22/2024 2:45:18 PM

Job ID: 890-5992-1 SDG: 03C1558301

Lab Sample ID: 890-5992-10

# **Client Sample ID: FS16**

Client: Ensolum

Date Collected: 01/18/24 09:55 Date Received: 01/18/24 15:24

| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00402      | U           | 0.00402  | mg/Kg |   |                | 01/31/24 00:54 | 1       |
| Method: SW846 8015 NM - Diese     | I Range Organ | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <49.7         | U           | 49.7     | mg/Kg |   |                | 01/31/24 14:54 |         |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:54 |         |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:54 |         |
| C10-C28)                          |               |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.7         | U           | 49.7     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 14:54 |         |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fa  |
| 1-Chlorooctane                    | 128           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 14:54 |         |
| o-Terphenyl                       | 98            |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 14:54 |         |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hy - Solubl | e        |       |   |                |                |         |
| Analyte                           | • •           | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 8.30          |             | 4.99     | mg/Kg |   |                | 01/24/24 11:04 |         |

## Client Sample ID: FS17

Date Collected: 01/18/24 10:00 Date Received: 01/18/24 15:24

#### 890-5992-11 Sample ID: Matrix: Solid

## Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| Ethylbenzene                | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| m-Xylene & p-Xylene         | <0.00401  | U *+      | 0.00401  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| o-Xylene                    | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| Xylenes, Total              | <0.00401  | U *+      | 0.00401  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 77        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |
| 1,4-Difluorobenzene (Surr)  | 82        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 02:17 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00401 U 0.00401 mg/Kg 01/31/24 02:17 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total TPH <50.4 U 01/31/24 15:37 50.4 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RI Unit п Prepared Analyzed Dil Fac

| Analyte                     | Result | Quanner |      | onic  | ricparca           | Analyzea       | Dirruc |
|-----------------------------|--------|---------|------|-------|--------------------|----------------|--------|
| Gasoline Range Organics     | <50.4  | U       | 50.4 | mg/Kg | <br>01/24/24 10:27 | 01/31/24 15:37 | 1      |
| (GRO)-C6-C10                |        |         |      |       |                    |                |        |
| Diesel Range Organics (Over | <50.4  | U       | 50.4 | mg/Kg | 01/24/24 10:27     | 01/31/24 15:37 | 1      |
| C10-C28)                    |        |         |      |       |                    |                |        |

Eurofins Carlsbad

Matrix: Solid

Job ID: 890-5992-1 SDG: 03C1558301

Matrix: Solid

5

Lab Sample ID: 890-5992-11

## **Client Sample ID: FS17** Date Collected: 01/18/24 10:00

Client: Ensolum

Date Received: 01/18/24 15:24

| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
|-----------------------------------|--------------|-------------|----------|-------|---|----------------|----------------|----------|
| Oll Range Organics (Over C28-C36) | <50.4        | U           | 50.4     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 15:37 | 1        |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac  |
| 1-Chlorooctane                    |              |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 15:37 | 1        |
| o-Terphenyl                       | 90           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 15:37 | 1        |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |       |   |                |                |          |
| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac  |
| Chloride                          | 14.6         |             | 5.05     | mg/Kg |   |                | 01/24/24 11:09 | 1        |
| Client Sample ID: FS18            |              |             |          |       |   | Lab Sam        | ple ID: 890-5  | 992-12   |
| ate Collected: 01/18/24 10:05     |              |             |          |       |   |                | Matri          | x: Solid |
| Date Received: 01/18/24 15:24     |              |             |          |       |   |                |                |          |

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | < 0.00199 | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| Toluene                     | <0.00199  | U         | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| Ethylbenzene                | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| m-Xylene & p-Xylene         | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| o-Xylene                    | <0.00199  | U *+      | 0.00199  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| Xylenes, Total              | <0.00398  | U *+      | 0.00398  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 100       |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |
| 1,4-Difluorobenzene (Surr)  | 72        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 02:38 | 1       |

### Method: TAL SOP Total BTEX - Total BTEX Calculation

| Analyte    | Result   | Qualifier | RL      | Unit  | D | Prepared | Analyzed       | Dil Fac |
|------------|----------|-----------|---------|-------|---|----------|----------------|---------|
| Total BTEX | <0.00398 | U         | 0.00398 | mg/Kg |   |          | 01/31/24 02:38 | 1       |
| _          |          |           |         |       |   |          |                |         |

|   | Method: SW846 8015 NM - Diesel Ra | ange Organi | ics (DRO) (GO | C)   |       |   |          |                |         |
|---|-----------------------------------|-------------|---------------|------|-------|---|----------|----------------|---------|
|   | Analyte                           | Result      | Qualifier     | RL   | Unit  | D | Prepared | Analyzed       | Dil Fac |
| L | Total TPH                         | <50.5       | U             | 50.5 | mg/Kg |   |          | 01/31/24 15:58 | 1       |

#### Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|-------------|----------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics           | <50.5        | U           | 50.5     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 15:58 | 1       |
| (GRO)-C6-C10                      |              |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <50.5        | U           | 50.5     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 15:58 | 1       |
| C10-C28)                          |              |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <50.5        | U           | 50.5     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 15:58 | 1       |
| Surrogate                         | %Recovery    | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 127          |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 15:58 | 1       |
| o-Terphenyl                       | 96           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 15:58 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | hy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | <5.02        | U           | 5.02     | mg/Kg |   |                | 01/24/24 11:24 | 1       |

Eurofins Carlsbad

# Page 15 of 41

Released to Imaging: 4/22/2024 2:45:18 PM

## **Client Sample Results**

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

## Client Sample ID: FS19

Date Collected: 01/18/24 10:20 Date Received: 01/18/24 15:24

|                                                                                                                                                                                                                                | Result                            | Qualifier                                    | RL                                                                                           | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                   | Dil Fac                            |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|----------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------|----------|------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|------------------------------------|
| Benzene                                                                                                                                                                                                                        | <0.00199                          | U                                            | 0.00199                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| Toluene                                                                                                                                                                                                                        | <0.00199                          | U                                            | 0.00199                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| Ethylbenzene                                                                                                                                                                                                                   | <0.00199                          | U *+                                         | 0.00199                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| m-Xylene & p-Xylene                                                                                                                                                                                                            | <0.00398                          | U *+                                         | 0.00398                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| o-Xylene                                                                                                                                                                                                                       | <0.00199                          | U *+                                         | 0.00199                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| Xylenes, Total                                                                                                                                                                                                                 | <0.00398                          | U *+                                         | 0.00398                                                                                      | mg/Kg                           |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| Surrogate                                                                                                                                                                                                                      | %Recovery                         | Qualifier                                    | Limits                                                                                       |                                 |          | Prepared                                                                                                                                       | Analyzed                                                                                                                   | Dil Fac                            |
| 4-Bromofluorobenzene (Surr)                                                                                                                                                                                                    | 84                                |                                              | 70 - 130                                                                                     |                                 |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| 1,4-Difluorobenzene (Surr)                                                                                                                                                                                                     | 68                                | S1-                                          | 70 - 130                                                                                     |                                 |          | 01/25/24 18:02                                                                                                                                 | 01/31/24 02:58                                                                                                             | 1                                  |
| Method: TAL SOP Total BTEX -                                                                                                                                                                                                   | Total BTEX Calo                   | culation                                     |                                                                                              |                                 |          |                                                                                                                                                |                                                                                                                            |                                    |
| Analyte                                                                                                                                                                                                                        | Result                            | Qualifier                                    | RL                                                                                           | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                   | Dil Fac                            |
| Total BTEX                                                                                                                                                                                                                     | <0.00398                          | U                                            | 0.00398                                                                                      | mg/Kg                           |          |                                                                                                                                                | 01/31/24 02:58                                                                                                             | 1                                  |
| Method: SW846 8015 NM - Diese                                                                                                                                                                                                  | el Range Organ                    | ics (DRO) (                                  | GC)                                                                                          |                                 |          |                                                                                                                                                |                                                                                                                            |                                    |
| Analyte                                                                                                                                                                                                                        | Result                            | Qualifier                                    | RL                                                                                           | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                   | Dil Fac                            |
| Total TPH                                                                                                                                                                                                                      | <50.4                             | U                                            | 50.4                                                                                         | mg/Kg                           |          |                                                                                                                                                | 01/31/24 16:19                                                                                                             | 1                                  |
|                                                                                                                                                                                                                                |                                   |                                              |                                                                                              | mg/rtg                          |          |                                                                                                                                                | 0.00.021.00.00                                                                                                             |                                    |
| <br>Method: SW846 8015B NM - Die                                                                                                                                                                                               | sel Range Orga                    | nics (DRO)                                   |                                                                                              | mgridg                          |          |                                                                                                                                                | 0.00.021.101.10                                                                                                            |                                    |
| Method: SW846 8015B NM - Die<br>Analyte                                                                                                                                                                                        |                                   | <mark>INICS (DRO)</mark><br>Qualifier        |                                                                                              | Unit                            | D        | Prepared                                                                                                                                       | Analyzed                                                                                                                   | Dil Fac                            |
|                                                                                                                                                                                                                                |                                   | Qualifier                                    | (GC)                                                                                         |                                 | <u>D</u> | Prepared<br>01/24/24 10:27                                                                                                                     |                                                                                                                            | Dil Fac                            |
| Analyte                                                                                                                                                                                                                        | Result                            | Qualifier                                    | (GC)                                                                                         | Unit                            | <u>D</u> |                                                                                                                                                | Analyzed                                                                                                                   |                                    |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over                                                                                                                                              | Result                            | Qualifier<br>U                               | (GC)                                                                                         | Unit                            | <u>D</u> |                                                                                                                                                | Analyzed                                                                                                                   |                                    |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10                                                                                                                                                                             | Result<br><50.4                   | <b>Qualifier</b><br>U<br>U                   | (GC)<br><u>RL</u><br><u>50.4</u>                                                             | Unit<br>mg/Kg                   | <u> </u> | 01/24/24 10:27                                                                                                                                 | Analyzed<br>01/31/24 16:19                                                                                                 | 1                                  |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)                                                                                                                                  | Result<br><50.4<br><50.4          | Qualifier<br>U<br>U<br>U                     | (GC)<br><u>RL</u><br>50.4<br>50.4                                                            | Unit<br>mg/Kg<br>mg/Kg          | <u>D</u> | 01/24/24 10:27                                                                                                                                 | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19                                                                               | 1                                  |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)                                                                                             | Result<br><50.4<br><50.4<br><50.4 | Qualifier<br>U<br>U<br>U<br>Qualifier        | (GC)<br><u>RL</u><br>50.4<br>50.4<br>50.4                                                    | Unit<br>mg/Kg<br>mg/Kg          | <u>D</u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27                                                                                             | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19                                                             | 1<br>1<br>1                        |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate                                                                                | Result           <50.4            | Qualifier<br>U<br>U<br>U<br>Qualifier        | (GC)<br><u>RL</u><br>50.4<br>50.4<br>50.4<br>Limits                                          | Unit<br>mg/Kg<br>mg/Kg          | <u>D</u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b>                                                                          | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed                                                 | 1<br>1<br>1<br><b>Dil Fac</b><br>1 |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane                                                              | Result           <50.4            | Qualifier<br>U<br>U<br>Q<br>Qualifier<br>S1+ | (GC)<br><u>RL</u><br>50.4<br>50.4<br>50.4<br><u>Limits</u><br>70 - 130<br>70 - 130           | Unit<br>mg/Kg<br>mg/Kg          | <u>D</u> | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27                                      | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed<br>01/31/24 16:19                               | 1<br>1<br>1<br><i>Dil Fac</i>      |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl                                               | Result           <50.4            | Qualifier<br>U<br>U<br>Q<br>Qualifier<br>S1+ | (GC)<br><u>RL</u><br>50.4<br>50.4<br>50.4<br><u>Limits</u><br>70 - 130<br>70 - 130           | Unit<br>mg/Kg<br>mg/Kg          | D        | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27                                      | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed<br>01/31/24 16:19                               | 1<br>1<br>1<br>1<br>1<br>1<br>1    |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ior            | Result           <50.4            | Qualifier<br>U<br>U<br>Q<br>Qualifier<br>S1+ | (GC)<br><u>RL</u><br>50.4<br>50.4<br>50.4<br><u>Limits</u><br>70 - 130<br>70 - 130           | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg |          | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27<br>01/24/24 10:27                                      | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed<br>01/31/24 16:19<br>01/31/24 16:19             | 1<br>1<br>1<br><b>Dil Fac</b><br>1 |
| Analyte<br>Gasoline Range Organics<br>(GRO)-C6-C10<br>Diesel Range Organics (Over<br>C10-C28)<br>Oll Range Organics (Over C28-C36)<br>Surrogate<br>1-Chlorooctane<br>o-Terphenyl<br>Method: EPA 300.0 - Anions, Ior<br>Analyte | Result           <50.4            | Qualifier<br>U<br>U<br>Q<br>Qualifier<br>S1+ | (GC)<br><u>RL</u><br>50.4<br>50.4<br><u>Limits</u><br>70 - 130<br>70 - 130<br>70 - 130<br>RL | Unit<br>mg/Kg<br>mg/Kg<br>mg/Kg |          | 01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b><br>01/24/24 10:27<br>01/24/24 10:27<br>01/24/24 10:27<br><b>Prepared</b> | Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed<br>01/31/24 16:19<br>01/31/24 16:19<br>Analyzed | 1<br>1<br>Dil Fac                  |

| Method: SW846 8021B | - Volatile Organi | ic Compounds (GC) |  |
|---------------------|-------------------|-------------------|--|

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| Toluene                     | <0.00200  | U         | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| Ethylbenzene                | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| m-Xylene & p-Xylene         | <0.00399  | U *+      | 0.00399  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| o-Xylene                    | <0.00200  | U *+      | 0.00200  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| Xylenes, Total              | <0.00399  | U *+      | 0.00399  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 86        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |
| 1,4-Difluorobenzene (Surr)  | 62        | S1-       | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 03:19 | 1       |

Eurofins Carlsbad

Page 90 of 123

5

Job ID: 890-5992-1 SDG: 03C1558301

## Lab Sample ID: 890-5992-13

Matrix: Solid

**Released to Imaging: 4/22/2024 2:45:18 PM** 

Job ID: 890-5992-1 SDG: 03C1558301

Lab Sample ID: 890-5992-14

## **Client Sample ID: SW04**

Client: Ensolum

Date Collected: 01/18/24 10:10 Date Received: 01/18/24 15:24

| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|---------------|-------------|----------|-------|---|----------------|----------------|---------|
| Total BTEX                        | <0.00399      | U           | 0.00399  | mg/Kg |   |                | 01/31/24 03:19 | 1       |
| Method: SW846 8015 NM - Diese     | I Range Organ | ics (DRO) ( | GC)      |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Total TPH                         | <49.8         | U           | 49.8     | mg/Kg |   |                | 01/31/24 16:40 | 1       |
| Method: SW846 8015B NM - Dies     | el Range Orga | nics (DRO)  | (GC)     |       |   |                |                |         |
| Analyte                           | Result        | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Gasoline Range Organics           | <49.8         | U           | 49.8     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 16:40 | 1       |
| (GRO)-C6-C10                      |               |             |          |       |   |                |                |         |
| Diesel Range Organics (Over       | <49.8         | U           | 49.8     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 16:40 | 1       |
| C10-C28)                          |               |             |          |       |   |                |                |         |
| Oll Range Organics (Over C28-C36) | <49.8         | U           | 49.8     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 16:40 | 1       |
| Surrogate                         | %Recovery     | Qualifier   | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 128           |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 16:40 | 1       |
| o-Terphenyl                       | 99            |             | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 16:40 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp  | hv - Solubl | e        |       |   |                |                |         |
| Analyte                           | •••           | Qualifier   | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          | 141           |             | 4.97     | mg/Kg |   |                | 01/24/24 11:45 | 1       |

### Client Sample ID: SW05

Date Collected: 01/18/24 10:15 Date Received: 01/18/24 15:24

## Method: SW846 8021B - Volatile Organic Compounds (GC)

| Analyte                     | Result    | Qualifier | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|-----------|-----------|----------|-------|---|----------------|----------------|---------|
| Benzene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| Toluene                     | <0.00201  | U         | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| Ethylbenzene                | <0.00201  | U *+      | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| m-Xylene & p-Xylene         | <0.00402  | U *+      | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| o-Xylene                    | <0.00201  | U *+      | 0.00201  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| Xylenes, Total              | <0.00402  | U *+      | 0.00402  | mg/Kg |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| Surrogate                   | %Recovery | Qualifier | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 4-Bromofluorobenzene (Surr) | 92        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |
| 1,4-Difluorobenzene (Surr)  | 71        |           | 70 - 130 |       |   | 01/25/24 18:02 | 01/31/24 03:39 | 1       |

#### Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00402 U 0.00402 mg/Kg 01/31/24 03:39 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Analyzed Dil Fac Prepared Total TPH <49.9 U 01/31/24 17:01 49.9 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

| Analyte                     | Result | Qualifier | RL   | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------|--------|-----------|------|-------|---|----------------|----------------|---------|
| Gasoline Range Organics     | <49.9  | U         | 49.9 | mg/Kg |   | 01/24/24 10:27 | 01/31/24 17:01 | 1       |
| (GRO)-C6-C10                |        |           |      |       |   |                |                |         |
| Diesel Range Organics (Over | <49.9  | U         | 49.9 | mg/Kg |   | 01/24/24 10:27 | 01/31/24 17:01 | 1       |
| C10-C28)                    |        |           |      |       |   |                |                |         |

Eurofins Carlsbad

Matrix: Solid

5

Lab Sample ID: 890-5992-15 Matrix: Solid

## **Client Sample Results**

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

## Client Sample ID: SW05

Date Collected: 01/18/24 10:15 Date Received: 01/18/24 15:24

## Job ID: 890-5992-1 SDG: 03C1558301

## Lab Sample ID: 890-5992-15

Matrix: Solid

| Analyte                           | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
|-----------------------------------|--------------|--------------|----------|-------|---|----------------|----------------|---------|
| Oll Range Organics (Over C28-C36) | <49.9        | U            | 49.9     | mg/Kg |   | 01/24/24 10:27 | 01/31/24 17:01 | 1       |
| Surrogate                         | %Recovery    | Qualifier    | Limits   |       |   | Prepared       | Analyzed       | Dil Fac |
| 1-Chlorooctane                    | 120          |              | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 17:01 | 1       |
| o-Terphenyl                       | 93           |              | 70 - 130 |       |   | 01/24/24 10:27 | 01/31/24 17:01 | 1       |
| Method: EPA 300.0 - Anions, Ion   | Chromatograp | ohy - Solubl | e        |       |   |                |                |         |
| Analyte                           | Result       | Qualifier    | RL       | Unit  | D | Prepared       | Analyzed       | Dil Fac |
| Chloride                          |              |              | 4.97     | mg/Kg |   |                | 01/24/24 11:50 | 1       |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

#### Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

|                    |                        |          |          | Percent Surrogate Recovery (Acceptance Limits) |    |
|--------------------|------------------------|----------|----------|------------------------------------------------|----|
|                    |                        | BFB1     | DFBZ1    |                                                |    |
| Lab Sample ID      | Client Sample ID       | (70-130) | (70-130) |                                                | 5  |
| 890-5992-1         | FS08                   | 75       | 83       |                                                |    |
| 890-5992-1 MS      | FS08                   | 119      | 97       |                                                | 6  |
| 890-5992-1 MSD     | FS08                   | 120      | 104      |                                                |    |
| 890-5992-2         | FS09                   | 82       | 81       |                                                |    |
| 890-5992-3         | FS10                   | 82       | 85       |                                                |    |
| 890-5992-4         | FS11                   | 78       | 77       |                                                | 8  |
| 890-5992-5         | FS12                   | 79       | 77       |                                                |    |
| 890-5992-6         | FS13                   | 79       | 80       |                                                | 9  |
| 890-5992-7         | SW03                   | 81       | 83       |                                                | 3  |
| 890-5992-8         | FS14                   | 86       | 69 S1-   |                                                |    |
| 890-5992-9         | FS15                   | 79       | 76       |                                                |    |
| 890-5992-10        | FS16                   | 93       | 68 S1-   |                                                |    |
| 890-5992-11        | FS17                   | 77       | 82       |                                                |    |
| 890-5992-12        | FS18                   | 100      | 72       |                                                |    |
| 890-5992-13        | FS19                   | 84       | 68 S1-   |                                                |    |
| 890-5992-14        | SW04                   | 86       | 62 S1-   |                                                |    |
| 890-5992-15        | SW05                   | 92       | 71       |                                                | 13 |
| LCS 880-71635/1-A  | Lab Control Sample     | 112      | 99       |                                                |    |
| LCSD 880-71635/2-A | Lab Control Sample Dup | 117      | 83       |                                                |    |
| MB 880-71537/5-A   | Method Blank           | 67 S1-   | 88       |                                                |    |
| MB 880-71635/5-A   | Method Blank           | 68 S1-   | 88       |                                                |    |

#### Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

#### Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

1CO1 Lab Sample ID **Client Sample ID** (70-130) 890-5992-1 FS08 134 S1+

| •                 | •                  |         |     |
|-------------------|--------------------|---------|-----|
| 890-5992-1        | FS08               | 134 S1+ | 105 |
| 890-5992-1 MS     | FS08               | 125     | 85  |
| 890-5992-1 MSD    | FS08               | 123     | 84  |
| 890-5992-2        | FS09               | 120     | 91  |
| 890-5992-3        | FS10               | 148 S1+ | 118 |
| 890-5992-4        | FS11               | 138 S1+ | 108 |
| 890-5992-5        | FS12               | 127     | 96  |
| 890-5992-6        | FS13               | 121     | 92  |
| 890-5992-7        | SW03               | 146 S1+ | 114 |
| 890-5992-8        | FS14               | 148 S1+ | 118 |
| 890-5992-9        | FS15               | 127     | 97  |
| 890-5992-10       | FS16               | 128     | 98  |
| 890-5992-11       | FS17               | 114     | 90  |
| 890-5992-12       | FS18               | 127     | 96  |
| 890-5992-13       | FS19               | 132 S1+ | 105 |
| 890-5992-14       | SW04               | 128     | 99  |
| 890-5992-15       | SW05               | 120     | 93  |
| LCS 880-71509/2-A | Lab Control Sample | 95      | 80  |
|                   |                    |         |     |

OTPH1

(70-130)

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Eurofins Carlsbad

Page 93 of 123

Prep Type: Total/NA

#### **Surrogate Summary** Client: Ensolum Job ID: 890-5992-1 Project/Site: PLU 18 Brushy Draw TB SDG: 03C1558301 Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 5 Lab Sample ID Client Sample ID (70-130) (70-130) LCSD 880-71509/3-A Lab Control Sample Dup 102 95 MB 880-71509/1-A Method Blank 140 S1+ 113 6 Surrogate Legend 1CO = 1-Chlorooctane OTPH = o-Terphenyl

## Method: 8021B - Volatile Organic Compounds (GC)

| Lab Sample ID: MB 880-71537/5-A<br>Matrix: Solid | L.       |                      |               |        |          |              |          |            | Client Sa             | mple ID: Metho<br>Prep Type: | Total/NA |
|--------------------------------------------------|----------|----------------------|---------------|--------|----------|--------------|----------|------------|-----------------------|------------------------------|----------|
| Analysis Batch: 71915                            |          |                      |               |        |          |              |          |            |                       | Prep Batc                    | h: 71537 |
| Analyta                                          |          | 3 MB<br>It Qualifier | Ы             |        | L In     | .14          |          | Б          | repored               | Apolyzod                     |          |
| Analyte<br>Benzene                               | <0.0020  |                      | RL<br>0.00200 |        | Ur       |              | <u>D</u> |            | repared<br>4/24 15:35 | Analyzed 01/30/24 10:46      | Dil Fac  |
| Toluene                                          | <0.0020  |                      | 0.00200       |        | -        | g/Kg<br>g/Kg |          |            | 4/24 15:35            | 01/30/24 10:46               | 1        |
| Ethylbenzene                                     | <0.0020  |                      | 0.00200       |        | -        | g/Kg<br>g/Kg |          |            | 4/24 15:35            | 01/30/24 10:46               | 1        |
|                                                  | <0.0020  |                      | 0.00200       |        |          |              |          |            | 4/24 15:35            | 01/30/24 10:46               |          |
| m-Xylene & p-Xylene                              |          |                      |               |        |          | g/Kg         |          |            |                       | 01/30/24 10:46               | 1        |
| o-Xylene                                         | <0.0020  |                      | 0.00200       |        | -        | g/Kg         |          |            | 4/24 15:35            |                              | -        |
| Xylenes, Total                                   | <0.0040  | 5 0                  | 0.00400       |        | mç       | g/Kg         |          | 01/2       | 4/24 15:35            | 01/30/24 10:46               | 1        |
|                                                  | M        | 3 <i>MB</i>          |               |        |          |              |          |            |                       |                              |          |
| Surrogate                                        | %Recover |                      | Limits        |        |          |              |          | P          | repared               | Analyzed                     | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                      | 6        | 7 S1-                | 70 - 130      |        |          |              |          | 01/2       | 4/24 15:35            | 01/30/24 10:46               | 1        |
| 1,4-Difluorobenzene (Surr)                       | 8        | 8                    | 70 - 130      |        |          |              |          | 01/2       | 4/24 15:35            | 01/30/24 10:46               | 1        |
| -<br>Lab Sample ID: MB 880-71635/5-A             |          |                      |               |        |          |              |          |            | Client Sa             | mple ID: Metho               | od Blank |
| Matrix: Solid                                    |          |                      |               |        |          |              |          |            |                       | Prep Type:                   |          |
| Analysis Batch: 71915                            |          |                      |               |        |          |              |          |            |                       | Prep Batc                    |          |
| · · · · · <b>· · · · ·</b> · · · · · · · · ·     | м        | З МВ                 |               |        |          |              |          |            |                       |                              |          |
| Analyte                                          | Resu     | t Qualifier          | RL            |        | Un       | it           | D        | Р          | repared               | Analyzed                     | Dil Fac  |
| Benzene                                          | <0.0020  | D U                  | 0.00200       |        | mg       | g/Kg         | _        | 01/2       | 5/24 18:02            | 01/30/24 21:28               | 1        |
| Toluene                                          | <0.0020  | D U                  | 0.00200       |        |          | g/Kg         |          | 01/2       | 5/24 18:02            | 01/30/24 21:28               | 1        |
| Ethylbenzene                                     | <0.0020  |                      | 0.00200       |        |          | g/Kg         |          | 01/2       | 5/24 18:02            | 01/30/24 21:28               | 1        |
| m-Xylene & p-Xylene                              | <0.0040  |                      | 0.00400       |        |          | g/Kg         |          |            | 5/24 18:02            | 01/30/24 21:28               | 1        |
| o-Xylene                                         | <0.0020  |                      | 0.00200       |        | -        | g/Kg         |          |            | 5/24 18:02            | 01/30/24 21:28               | 1        |
| Xylenes, Total                                   | <0.0040  |                      | 0.00400       |        | -        | g/Kg         |          |            | 5/24 18:02            | 01/30/24 21:28               | 1        |
|                                                  | М        | 3 <i>MB</i>          |               |        |          |              |          |            |                       |                              |          |
| Surrogate                                        | %Recover |                      | Limits        |        |          |              |          | P          | repared               | Analyzed                     | Dil Fac  |
| 4-Bromofluorobenzene (Surr)                      | 6        |                      | 70 - 130      |        |          |              |          |            | 25/24 18:02           | 01/30/24 21:28               | <u></u>  |
| 1,4-Difluorobenzene (Surr)                       | 8        |                      | 70 - 130      |        |          |              |          |            | 25/24 18:02           | 01/30/24 21:28               | 1        |
|                                                  | _        |                      |               |        |          |              |          |            | _                     |                              |          |
| Lab Sample ID: LCS 880-71635/1-/                 | A        |                      |               |        |          |              | C        | lient      | Sample                | ID: Lab Control              |          |
| Matrix: Solid                                    |          |                      |               |        |          |              |          |            |                       | Prep Type:                   |          |
| Analysis Batch: 71915                            |          |                      | • "           |        |          |              |          |            |                       | Prep Batc                    | h: 71635 |
| • • •                                            |          |                      | Spike         |        | LCS      |              |          | _          |                       | %Rec                         |          |
| Analyte                                          |          |                      | Added         |        | Qualifie |              |          | _ <u>D</u> | %Rec                  | Limits                       |          |
| Benzene                                          |          |                      | 0.100         | 0.1170 |          | mg/Kg        |          |            | 117                   | 70 - 130                     |          |
| Toluene                                          |          |                      | 0.100         | 0.1224 | <b>.</b> | mg/Kg        |          |            | 122                   | 70 - 130                     |          |
| Ethylbenzene                                     |          |                      | 0.100         | 0.1364 |          | mg/Kg        |          |            | 136                   | 70 - 130                     |          |
| m-Xylene & p-Xylene                              |          |                      | 0.200         | 0.2868 | *+       | mg/Kg        |          |            | 143                   | 70 - 130                     |          |
| o-Xylene                                         |          |                      | 0.100         | 0.1392 | *+       | mg/Kg        |          |            | 139                   | 70 - 130                     |          |
|                                                  | LCS LC   |                      |               |        |          |              |          |            |                       |                              |          |
|                                                  |          | alifier              | Limits        |        |          |              |          |            |                       |                              |          |
| 4-Bromofluorobenzene (Surr)                      | 112      |                      | 70 - 130      |        |          |              |          |            |                       |                              |          |
| 1,4-Difluorobenzene (Surr)                       | 99       |                      | 70 - 130      |        |          |              |          |            |                       |                              |          |
| -<br>Lab Sample ID: LCSD 880-71635/2             | 2-A      |                      |               |        |          | Cli          | ient     | Sam        | nple ID: La           | ab Control Sam               | ple Dup  |
| Matrix: Solid                                    |          |                      |               |        |          |              |          |            |                       | Prep Type:                   |          |
| Analysis Batch: 71915                            |          |                      |               |        |          |              |          |            |                       | Prep Batc                    |          |
|                                                  |          |                      | Spike         | LCSD   | LCSD     |              |          |            |                       | %Rec                         | RPD      |

Job ID: 890-5992-1 SDG: 03C1558301

| 5 |   |
|---|---|
| C | 3 |
| 1 |   |

Result Qualifier Analyte Added Unit D %Rec Limits RPD Limit Benzene 0.100 0.1110 mg/Kg 111 70 - 130 5 35

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB Job ID: 890-5992-1 SDG: 03C1558301

Page 96 of 123

## Method: 8021B - Volatile Organic Compounds (GC) (Continued)

| Lab Sample ID: LCSD 880-7163  | 5/2-A      |            |          |         |           | Clie  | nt Sam | ple ID: | Lab Contro |          |        |
|-------------------------------|------------|------------|----------|---------|-----------|-------|--------|---------|------------|----------|--------|
| Matrix: Solid                 |            |            |          |         |           |       |        |         |            | ype: To  |        |
| Analysis Batch: 71915         |            |            | • "      |         |           |       |        |         |            | Batch:   |        |
|                               |            |            | Spike    |         | LCSD      |       | _      | ~ =     | %Rec       |          | RPD    |
| Analyte                       |            |            | Added    |         | Qualifier | Unit  | D      | %Rec    | Limits     | RPD      | Limi   |
| Toluene                       |            |            | 0.100    | 0.1192  |           | mg/Kg |        | 119     | 70 - 130   | 3        | 3      |
| Ethylbenzene                  |            |            | 0.100    | 0.1370  |           | mg/Kg |        | 137     | 70 - 130   | 0        | 3      |
| m-Xylene & p-Xylene           |            |            | 0.200    |         | *+        | mg/Kg |        | 144     | 70 - 130   | 0        | 3      |
| o-Xylene                      |            |            | 0.100    | 0.1386  | *+        | mg/Kg |        | 139     | 70 - 130   | 0        | 3      |
|                               | LCSD       | LCSD       |          |         |           |       |        |         |            |          |        |
| Surrogate                     | %Recovery  | Qualifier  | Limits   |         |           |       |        |         |            |          |        |
| 4-Bromofluorobenzene (Surr)   | 117        |            | 70 - 130 |         |           |       |        |         |            |          |        |
| 1,4-Difluorobenzene (Surr)    | 83         |            | 70 - 130 |         |           |       |        |         |            |          |        |
| A h. 4                        | •          | Sample     | Spike    |         | MS        | 1114  |        | 0/ D    | %Rec       |          |        |
| Analysis Batch: 71915         | <b>.</b> . | <b>.</b> . | • "      |         |           |       |        |         |            | Batch:   | 7163   |
| Analyte                       | •          | Qualifier  | Added    |         | Qualifier | Unit  | D      | %Rec    | Limits     |          |        |
| Benzene                       | <0.00201   |            | 0.0996   | 0.09181 |           | mg/Kg |        | 92      | 70 - 130   |          |        |
| Toluene                       | <0.00201   |            | 0.0996   | 0.1004  |           | mg/Kg |        | 100     | 70 - 130   |          |        |
| Ethylbenzene                  | <0.00201   | U *+       | 0.0996   | 0.1170  |           | mg/Kg |        | 117     | 70 - 130   |          |        |
| m-Xylene & p-Xylene           | <0.00402   | U *+       | 0.199    | 0.2380  |           | mg/Kg |        | 119     | 70 - 130   |          |        |
| o-Xylene                      | <0.00201   | U *+       | 0.0996   | 0.1137  |           | mg/Kg |        | 114     | 70 - 130   |          |        |
|                               | MS         | MS         |          |         |           |       |        |         |            |          |        |
| Surrogate                     | %Recovery  | Qualifier  | Limits   |         |           |       |        |         |            |          |        |
| 4-Bromofluorobenzene (Surr)   | 119        |            | 70 - 130 |         |           |       |        |         |            |          |        |
| 1,4-Difluorobenzene (Surr)    | 97         |            | 70 - 130 |         |           |       |        |         |            |          |        |
| Lab Sample ID: 890-5992-1 MSE | )          |            |          |         |           |       |        |         | Client Sa  | mple ID: | FSO    |
| Matrix: Solid                 |            |            |          |         |           |       |        |         |            | ype: To  |        |
| Analysis Batch: 71915         |            |            |          |         |           |       |        |         |            | Batch:   |        |
|                               | Sample     | Sample     | Spike    | MSD     | MSD       |       |        |         | %Rec       | Daton    | RPE    |
| Analyta                       | -          | Qualifian  |          | Desult  | Qualifier | 11    | _      | 0/ Dee  | , incite   | 000      | L inch |

|                     | eampie    | •         | • pinte |         |           |       |   |      | /01.000  |     |       |
|---------------------|-----------|-----------|---------|---------|-----------|-------|---|------|----------|-----|-------|
| Analyte             | Result    | Qualifier | Added   | Result  | Qualifier | Unit  | D | %Rec | Limits   | RPD | Limit |
| Benzene             | <0.00201  | U         | 0.0990  | 0.09254 |           | mg/Kg |   | 93   | 70 - 130 | 1   | 35    |
| Toluene             | <0.00201  | U         | 0.0990  | 0.09780 |           | mg/Kg |   | 98   | 70 - 130 | 3   | 35    |
| Ethylbenzene        | <0.00201  | U *+      | 0.0990  | 0.1158  |           | mg/Kg |   | 117  | 70 - 130 | 1   | 35    |
| m-Xylene & p-Xylene | <0.00402  | U *+      | 0.198   | 0.2366  |           | mg/Kg |   | 120  | 70 - 130 | 1   | 35    |
| o-Xylene            | <0.00201  | U *+      | 0.0990  | 0.1127  |           | mg/Kg |   | 114  | 70 - 130 | 1   | 35    |
|                     | MSD       | MSD       |         |         |           |       |   |      |          |     |       |
| Surrogate           | %Recovery | Qualifier | Limits  |         |           |       |   |      |          |     |       |

70 - 130

70 - 130

## Method: 8015B NM - Diesel Range Organics (DRO) (GC)

120

104

| Lab Sample ID: MB 880-71509/1-A<br>Matrix: Solid<br>Analysis Batch: 71993 | мв    | МВ        |      |       |   | Client Sa      | mple ID: Metho<br>Prep Type: <sup>-</sup><br>Prep Batcl | Total/NA |
|---------------------------------------------------------------------------|-------|-----------|------|-------|---|----------------|---------------------------------------------------------|----------|
| Analyte                                                                   |       | Qualifier | RL   | Unit  | D | Prepared       | Analyzed                                                | Dil Fac  |
| Gasoline Range Organics<br>(GRO)-C6-C10                                   | <50.0 | U         | 50.0 | mg/Kg |   | 01/24/24 10:27 | 01/31/24 08:11                                          | 1        |

Eurofins Carlsbad

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| ietilou. 6015B Nill - Diesei Ka            | inge org   | Janics (D     |                      | ontinue | -u)       |        |       |                                  |             |         |         |
|--------------------------------------------|------------|---------------|----------------------|---------|-----------|--------|-------|----------------------------------|-------------|---------|---------|
| Lab Sample ID: MB 880-71509/1-A            |            |               |                      |         |           |        |       | Client Sa                        | ample ID: N | lethod  | Blank   |
| Matrix: Solid                              |            |               |                      |         |           |        |       |                                  | Prep Ty     | /pe: To | tal/NA  |
| Analysis Batch: 71993                      |            |               |                      |         |           |        |       |                                  | Prep l      | Batch:  | 71509   |
|                                            | I          | MB MB         |                      |         |           |        |       |                                  |             |         |         |
| Analyte                                    | Res        | ult Qualifier | F                    | RL      | Unit      |        | D     | Prepared                         | Analyze     | d       | Dil Fac |
| Diesel Range Organics (Over                | <5         | 0.0 U         | 50                   | .0      | mg/K      | g      | _ (   | 01/24/24 10:27                   | 01/31/24 0  | 8:11    | 1       |
| C10-C28)                                   |            |               |                      |         |           |        |       |                                  |             |         |         |
| Oll Range Organics (Over C28-C36)          | <5         | 0.0 U         | 50                   | .0      | mg/K      | g      | (     | 01/24/24 10:27                   | 01/31/24 0  | 8:11    | 1       |
|                                            |            | ИВ МВ         |                      |         |           |        |       |                                  |             |         |         |
| Surrogate                                  |            |               | Lingita              |         |           |        |       | Dramarad                         | Analyza     |         |         |
| -Chlorooctane                              | %Recov     | ery Qualifier | Limits<br>70 - 130   |         |           |        | -     | Prepared                         | Analyze     |         | Dil Fac |
|                                            |            | 113           | 70 - 130<br>70 - 130 |         |           |        |       | 01/24/24 10:27<br>01/24/24 10:27 | 01/31/24 0  |         | 1       |
| p-Terphenyl                                |            | 113           | 70 - 130             |         |           |        | (     | )1/24/24 10.27                   | 01/31/24 0  | 0.11    | 1       |
| _ab Sample ID: LCS 880-71509/2-A           |            |               |                      |         |           |        | Cli   | ent Sample                       | ID: Lah Co  | ntrol S | amplo   |
| Aatrix: Solid                              | •          |               |                      |         |           |        | 01    | on cample                        | Prep Ty     |         |         |
|                                            |            |               |                      |         |           |        |       |                                  |             | Batch:  |         |
| Analysis Batch: 71993                      |            |               | Spike                | 1.09    | LCS       |        |       |                                  | %Rec        | Datch.  | 71509   |
| a shife                                    |            |               | -                    |         | Qualifier | 11     |       |                                  | Limits      |         |         |
| Analyte Gasoline Range Organics            |            |               | Added                | 1097    | Quaimer   |        |       | D %Rec                           |             |         |         |
| GRO)-C6-C10                                |            |               | 1000                 | 1097    |           | mg/Kg  |       | 110                              | 70 - 130    |         |         |
| Diesel Range Organics (Over                |            |               | 1000                 | 985.1   |           | mg/Kg  |       | 99                               | 70 - 130    |         |         |
| C10-C28)                                   |            |               | 1000                 | 000.1   |           | mg/rtg |       | 00                               | 10-100      |         |         |
|                                            |            |               |                      |         |           |        |       |                                  |             |         |         |
|                                            | LCS L      |               |                      |         |           |        |       |                                  |             |         |         |
|                                            |            | Qualifier     | Limits               |         |           |        |       |                                  |             |         |         |
| -Chlorooctane                              | 95         |               | 70 - 130             |         |           |        |       |                                  |             |         |         |
| p-Terphenyl                                | 80         |               | 70 - 130             |         |           |        |       |                                  |             |         |         |
| ch Somple ID: 1 CSD 990 74500/2            |            |               |                      |         |           | 0      |       | emple ID. I                      | ah Cantual  | Comm    | - Dum   |
| Lab Sample ID: LCSD 880-71509/3            | -A         |               |                      |         |           | CI     | ent s | ample ID: L                      |             | -       |         |
| Matrix: Solid                              |            |               |                      |         |           |        |       |                                  | Prep Ty     | -       |         |
| Analysis Batch: 71993                      |            |               | • "                  |         |           |        |       |                                  |             | Batch:  |         |
|                                            |            |               | Spike                |         | LCSD      |        |       |                                  | %Rec        |         | RPD     |
| Analyte                                    |            |               | Added                |         | Qualifier | Unit   |       | D %Rec                           | Limits      | RPD     | Limit   |
| Gasoline Range Organics                    |            |               | 1000                 | 1063    |           | mg/Kg  |       | 106                              | 70 - 130    | 3       | 20      |
| GRO)-C6-C10<br>Diesel Range Organics (Over |            |               | 1000                 | 945.1   |           | malka  |       | 95                               | 70 - 130    | 4       | 20      |
| C10-C28)                                   |            |               | 1000                 | 940.1   |           | mg/Kg  |       | 90                               | 10 - 130    | 4       | 20      |
|                                            |            |               |                      |         |           |        |       |                                  |             |         |         |
|                                            | LCSD L     | .CSD          |                      |         |           |        |       |                                  |             |         |         |
| Surrogate %                                | Recovery ( | Qualifier     | Limits               |         |           |        |       |                                  |             |         |         |
| l-Chlorooctane                             | 102        |               | 70 - 130             |         |           |        |       |                                  |             |         |         |
| p-Terphenyl                                | 95         |               | 70 - 130             |         |           |        |       |                                  |             |         |         |
|                                            |            |               |                      |         |           |        |       |                                  |             |         |         |
| ab Sample ID: 890-5992-1 MS                |            |               |                      |         |           |        |       |                                  | Client Sam  | -       |         |
| Matrix: Solid                              |            |               |                      |         |           |        |       |                                  | Prep Ty     | /pe: To | tal/NA  |
| Analysis Batch: 71993                      |            |               |                      |         |           |        |       |                                  | Prep l      | Batch:  | 71509   |
|                                            | Sample S   | Sample        | Spike                | MS      | MS        |        |       |                                  | %Rec        |         |         |
| Analyte                                    | Result C   | Qualifier     | Added                | Result  | Qualifier | Unit   |       | D %Rec                           | Limits      |         |         |
| Gasoline Range Organics                    | <49.6 l    | J             | 1010                 | 996.3   |           | mg/Kg  |       | 97                               | 70 - 130    |         |         |
| GRO)-C6-C10                                |            |               |                      |         |           |        |       |                                  |             |         |         |
|                                            | . 10 0 1   |               | 1010                 | 1000    |           |        |       | 105                              | 70 400      |         |         |

|                | MS        | MS        |          |
|----------------|-----------|-----------|----------|
| Surrogate      | %Recovery | Qualifier | Limits   |
| 1-Chlorooctane | 125       |           | 70 - 130 |
| o-Terphenyl    | 85        |           | 70 - 130 |

<49.6 U

Eurofins Carlsbad

Page 97 of 123

Job ID: 890-5992-1

SDG: 03C1558301

Diesel Range Organics (Over

C10-C28)

1010

1288

mg/Kg

125

70 - 130

Job ID: 890-5992-1 SDG: 03C1558301

## Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

| Lab Sample ID: 890-5992-1 I                                                                                                                                                                                                                                                                                                                                                                                                                            | MSD                                                                 |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         | Client Sa                                                                                                                                                                     | mple ID:                                                                                             | : <b>г</b> аџ                                                    |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|---------------------|----------------------------------------------------------------|----------------------------------------------------------------------------|----------------------------------------------------------|----------------------------------------|---------------|-------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               | Туре: То                                                                                             |                                                                  |
| Analysis Batch: 71993                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               | Batch:                                                                                               |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample                                                              | Sample              | Spike                                                          | MSD                                                                        | MSD                                                      |                                        |               |                                                                         | %Rec                                                                                                                                                                          | , Batom                                                                                              | RP                                                               |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                     | Qualifier           | Added                                                          |                                                                            | Qualifier                                                | Unit                                   | D             | %Rec                                                                    | Limits                                                                                                                                                                        | RPD                                                                                                  | Lim                                                              |
| Gasoline Range Organics                                                                                                                                                                                                                                                                                                                                                                                                                                | <49.6                                                               | · · ·               | 1010                                                           | 984.8                                                                      |                                                          | mg/Kg                                  |               | 96                                                                      | 70 - 130                                                                                                                                                                      | 1                                                                                                    | 2                                                                |
| (GRO)-C6-C10                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                     | 0                   | 1010                                                           | 004.0                                                                      |                                                          | mg/rtg                                 |               | 50                                                                      | 10 - 100                                                                                                                                                                      | I                                                                                                    | 2                                                                |
| Diesel Range Organics (Over                                                                                                                                                                                                                                                                                                                                                                                                                            | <49.6                                                               | U                   | 1010                                                           | 1282                                                                       |                                                          | mg/Kg                                  |               | 125                                                                     | 70 - 130                                                                                                                                                                      | 0                                                                                                    | 2                                                                |
| C10-C28)                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | MSD                                                                 | MED                 |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| Surrogata                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                     |                     | Limits                                                         |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| Surrogate<br>1-Chlorooctane                                                                                                                                                                                                                                                                                                                                                                                                                            | % <i>Recovery</i>                                                   | Quaimer             | 70 - 130                                                       |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 84                                                                  |                     | 70 - 130<br>70 - 130                                           |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| o-Terphenyl                                                                                                                                                                                                                                                                                                                                                                                                                                            | 04                                                                  |                     | 70 - 130                                                       |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| lethod: 300.0 - Anions,                                                                                                                                                                                                                                                                                                                                                                                                                                | Ion Chromat                                                         | ography             |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| Lab Sample ID: MB 880-713                                                                                                                                                                                                                                                                                                                                                                                                                              | 10/1-A                                                              |                     |                                                                |                                                                            |                                                          |                                        |               | Client S                                                                | Sample ID:                                                                                                                                                                    |                                                                                                      |                                                                  |
| Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         | Prep                                                                                                                                                                          | Type: So                                                                                             | olub                                                             |
| Analysis Batch: 71389                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | MB MB               |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               |                                                                                                      |                                                                  |
| Analyte                                                                                                                                                                                                                                                                                                                                                                                                                                                | Re                                                                  | esult Qualifier     |                                                                |                                                                            | Unit                                                     |                                        | D P           | repared                                                                 | Analyz                                                                                                                                                                        |                                                                                                      | Dil Fa                                                           |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     |                     |                                                                |                                                                            |                                                          |                                        |               |                                                                         |                                                                                                                                                                               | 09.41                                                                                                |                                                                  |
| Chloride                                                                                                                                                                                                                                                                                                                                                                                                                                               | <                                                                   | <5.00 U             |                                                                | 5.00                                                                       | mg/Kg                                                    | )                                      |               |                                                                         | 01/24/24                                                                                                                                                                      | 00.41                                                                                                |                                                                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                     | \$5.00 U            |                                                                | 5.00                                                                       | mg/Kę                                                    | ]                                      | Client        | Sample                                                                  |                                                                                                                                                                               |                                                                                                      | amnl                                                             |
| Lab Sample ID: LCS 880-713                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                     | 5.00 U              |                                                                | 5.00                                                                       | mg/Kg                                                    | ]                                      | Client        | Sample                                                                  | e ID: Lab C                                                                                                                                                                   | ontrol Sa                                                                                            |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | ≤5.00 U             |                                                                | 5.00                                                                       | mg/K                                                     | ]                                      | Client        | Sample                                                                  | e ID: Lab C                                                                                                                                                                   |                                                                                                      |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                     | :5.00 U             | Snike                                                          |                                                                            | -                                                        | ]                                      | Client        | Sample                                                                  | e ID: Lab C<br>Prep                                                                                                                                                           | ontrol Sa                                                                                            |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389                                                                                                                                                                                                                                                                                                                                                                                   |                                                                     | ≈5.00 U             | Spike                                                          | LCS                                                                        | LCS                                                      |                                        |               | -                                                                       | e ID: Lab C<br>Prep<br>%Rec                                                                                                                                                   | ontrol Sa                                                                                            |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br><sup>Analyte</sup>                                                                                                                                                                                                                                                                                                                                                             |                                                                     | :5.00 U             | Added                                                          | LCS<br>Result                                                              | -                                                        | Unit                                   | Client        | %Rec                                                                    | e ID: Lab C<br>Prep<br>%Rec<br>Limits                                                                                                                                         | ontrol Sa                                                                                            |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br><sup>Analyte</sup>                                                                                                                                                                                                                                                                                                                                                             |                                                                     | :5.00 U             |                                                                | LCS                                                                        | LCS                                                      |                                        |               | -                                                                       | e ID: Lab C<br>Prep<br>%Rec                                                                                                                                                   | ontrol Sa                                                                                            |                                                                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride                                                                                                                                                                                                                                                                                                                                                            | 310/2-A                                                             | <5.00 U             | Added                                                          | LCS<br>Result                                                              | LCS                                                      | Unit<br>mg/Kg                          | D             | <b>%Rec</b><br>95                                                       | <b>B ID: Lab C</b><br>Prep<br>%Rec<br>Limits<br>90 - 110                                                                                                                      | ontrol Sa<br>Type: So                                                                                | olub                                                             |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7                                                                                                                                                                                                                                                                                                                               | 310/2-A                                                             | <5.00 U             | Added                                                          | LCS<br>Result                                                              | LCS                                                      | Unit<br>mg/Kg                          | D             | <b>%Rec</b><br>95                                                       | <ul> <li>ID: Lab Control</li> <li>Prep</li> <li>%Rec</li> <li>Limits</li> <li>90 - 110</li> <li>Lab Control</li> </ul>                                                        | ontrol Sampl                                                                                         | olub<br>e Du                                                     |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid                                                                                                                                                                                                                                                                                                              | 310/2-A                                                             | <5.00 U             | Added                                                          | LCS<br>Result                                                              | LCS                                                      | Unit<br>mg/Kg                          | D             | <b>%Rec</b><br>95                                                       | <ul> <li>ID: Lab Control</li> <li>Prep</li> <li>%Rec</li> <li>Limits</li> <li>90 - 110</li> <li>Lab Control</li> </ul>                                                        | ontrol Sa<br>Type: So                                                                                | olub<br>e Du                                                     |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid                                                                                                                                                                                                                                                                                                              | 310/2-A                                                             | <5.00 U             | <b>Added</b><br>250                                            | LCS<br>Result<br>238.7                                                     | LCS<br>Qualifier                                         | Unit<br>mg/Kg                          | D             | <b>%Rec</b><br>95                                                       | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep                                                                                                       | ontrol Sampl                                                                                         | e Du<br>olub                                                     |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389                                                                                                                                                                                                                                                                                     | 310/2-A                                                             | <5.00 U             | Added<br>250<br>Spike                                          | LCS<br>Result<br>238.7<br>LCSD                                             | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clie                  | D_<br>ent San | %Rec<br>95                                                              | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                               | ontrol Sa<br>Type: So<br><br>ol Sampl<br>Type: So                                                    | olub<br>e Du<br>olub<br>RF                                       |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte                                                                                                                                                                                                                                                                          | 310/2-A                                                             | <5.00 U             | Added<br>250<br>Spike<br>Added                                 | LCS<br>Result<br>238.7<br>LCSD<br>Result                                   | LCS<br>Qualifier                                         | Unit<br>mg/Kg<br>Clia                  | D             | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits                                                                                     | ontrol Sampl                                                                                         | e Du<br>olub<br>olub<br>RP<br>Lim                                |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte                                                                                                                                                                                                                                                                          | 310/2-A                                                             | <                   | Added<br>250<br>Spike                                          | LCS<br>Result<br>238.7<br>LCSD                                             | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clie                  | D_<br>ent San | %Rec<br>95                                                              | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec                                                                                               | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br>                                                    | e Du<br>olub<br>olub<br>RP<br>Lim                                |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride                                                                                                                                                                                                                                                              | 310/2-A<br><br>1310/3-A<br>                                         | <                   | Added<br>250<br>Spike<br>Added                                 | LCS<br>Result<br>238.7<br>LCSD<br>Result                                   | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clia                  | D_<br>ent San | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits                                                                                     | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0                                     | e Du<br>olub<br>olub<br>RP<br>Lim                                |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I                                                                                                                                                                                                                               | 310/2-A<br><br>1310/3-A<br>                                         | <5.00 U             | Added<br>250<br>Spike<br>Added                                 | LCS<br>Result<br>238.7<br>LCSD<br>Result                                   | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clia                  | D_<br>ent San | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa                                                            | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:                         | e Du<br>olub<br>olub<br>RP<br>Lim<br>2<br>: FS0                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid                                                                                                                                                                                                              | 310/2-A<br><br>1310/3-A<br>                                         | <                   | Added<br>250<br>Spike<br>Added                                 | LCS<br>Result<br>238.7<br>LCSD<br>Result                                   | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clia                  | D_<br>ent San | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa                                                            | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0                                     | e Du<br>olubi<br>RP<br>Lim<br>2<br>: FS0                         |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid                                                                                                                                                                                                              | 310/2-A<br>1310/3-A                                                 |                     | Added<br>250<br>Spike<br>Added<br>250                          | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0                          | LCS<br>Qualifier<br>LCSD                                 | Unit<br>mg/Kg<br>Clia                  | D_<br>ent San | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa                                                            | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:                         | e Du<br>olubi<br>RP<br>Lim<br>2<br>: FS0                         |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389                                                                                                                                                                                     | 810/2-A<br>1310/3-A<br>VIS<br>Sample                                |                     | Added<br>250<br>Spike<br>Added                                 | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0                          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clie<br>Unit<br>mg/Kg | D             | %Rec         95           aple ID:         %Rec           95         95 | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep<br>%Rec                                            | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:                         | e Du<br>olubi<br>RP<br>Lim<br>2<br>: FS0                         |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte                                                                                                                                                                          | 810/2-A<br>1310/3-A<br>VIS<br>Sample                                |                     | Added<br>250<br>Spike<br>Added<br>250<br>Spike                 | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0                          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia                  | D_<br>ent San | %Rec<br>95<br>nple ID:<br>%Rec                                          | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep                                                    | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:                         | e Du<br>olubi<br>RP<br>Lim<br>2<br>: FS0                         |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte                                                                                                                                                                          | 810/2-A<br>1310/3-A<br>VIS<br>Sample<br>Result                      |                     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep<br>%Rec<br>Limits                                  | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:                         | e Du<br>olub<br>olub<br>RP<br>Lim<br>2<br>: FS0                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride                                                                                                                                                              | 810/2-A<br>1310/3-A<br>VIS<br>Sample<br>Result<br>78.8              |                     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep<br>%Rec<br>Limits                                  | ontrol Sa<br>Type: So<br>DI Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:<br>Type: So             | olub<br>e Du<br>olub<br>RP<br>Lim<br>2<br>: FS0<br>olub          |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I                                                                                                                               | 810/2-A<br>1310/3-A<br>VIS<br>Sample<br>Result<br>78.8              |                     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>90 - 110<br>Client Sa                                   | ontrol Sa<br>Type: So<br>DI Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:<br>Type: So             | e Du<br>olub<br>RF<br>Lin<br>: FSC<br>olub                       |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid                                                                                                              | 810/2-A<br>1310/3-A<br>VIS<br>Sample<br>Result<br>78.8              |                     | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result          | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>90 - 110<br>Client Sa                                   | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:<br>Type: So<br>mple ID: | e Du<br>olub<br>RF<br>Lin<br>2<br>5 FS0<br>olub                  |
| Lab Sample ID: LCS 880-713<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: LCSD 880-7<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid<br>Analysis Batch: 71389<br>Analyte<br>Chloride<br>Lab Sample ID: 890-5992-1 I<br>Matrix: Solid                                                                                                              | 810/2-A<br>1310/3-A<br>VIS<br>Sample<br>Result<br>78.8              | Sample<br>Qualifier | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added        | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result<br>325.0 | LCS<br>Qualifier<br>LCSD<br>Qualifier                    | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>90 - 110<br>Client Sa                                   | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:<br>Type: So<br>mple ID: | e Du<br>olub<br>RP<br>Lim<br>2<br>: FS0<br>olub<br>: FS0<br>olub |
| Chloride Lab Sample ID: LCS 880-713 Matrix: Solid Analysis Batch: 71389 Analyte Chloride Lab Sample ID: LCSD 880-7 Matrix: Solid Analysis Batch: 71389 Analyte Chloride Lab Sample ID: 890-5992-1 I Matrix: Solid Analysis Batch: 71389 Analyte Chloride Lab Sample ID: 890-5992-1 I Matrix: Solid Analysis Batch: 71389 Analyte Chloride Lab Sample ID: 890-5992-1 I Matrix: Solid Analysis Batch: 71389 Analyte Chloride Lab Sample ID: 890-5992-1 I | 810/2-A<br>1310/3-A<br>MS<br><u>Result</u><br>78.8<br>MSD<br>Sample | Sample<br>Qualifier | Added<br>250<br>Spike<br>Added<br>250<br>Spike<br>Added<br>251 | LCS<br>Result<br>238.7<br>LCSD<br>Result<br>238.0<br>MS<br>Result<br>325.0 | LCS<br>Qualifier<br>LCSD<br>Qualifier<br>MS<br>Qualifier | Unit<br>mg/Kg<br>Clia<br>Unit<br>Mg/Kg | D             | %Rec           95           mple ID:           %Rec           95        | e ID: Lab C<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Lab Contro<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep<br>%Rec<br>Limits<br>90 - 110<br>Client Sa<br>Prep | ontrol Sa<br>Type: So<br>ol Sampl<br>Type: So<br><u>RPD</u><br>0<br>mple ID:<br>Type: So<br>mple ID: | e Du<br>olubi<br>RP<br>Lim<br>2<br>: FS0<br>olubi                |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB Job ID: 890-5992-1 SDG: 03C1558301

## Method: 300.0 - Anions, Ion Chromatography (Continued)

| Lab Sample ID: 890-5992-11 MS<br>Matrix: Solid |        |           |       |        |           |       |   |      | Client Sar<br>Prep | mple ID<br>Type: S |        |
|------------------------------------------------|--------|-----------|-------|--------|-----------|-------|---|------|--------------------|--------------------|--------|
| Analysis Batch: 71389                          |        |           |       |        |           |       |   |      |                    |                    |        |
| -                                              | Sample | Sample    | Spike | MS     | MS        |       |   |      | %Rec               |                    |        |
| Analyte                                        | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits             |                    |        |
| Chloride                                       | 14.6   |           | 253   | 263.1  |           | mg/Kg |   | 98   | 90 - 110           |                    |        |
| Lab Sample ID: 890-5992-11 MSD                 |        |           |       |        |           |       |   |      | Client Sar         | mple ID            | : FS17 |
| Matrix: Solid                                  |        |           |       |        |           |       |   |      | Prep               | Type: S            | oluble |
| Analysis Batch: 71389                          |        |           |       |        |           |       |   |      |                    |                    |        |
|                                                | Sample | Sample    | Spike | MSD    | MSD       |       |   |      | %Rec               |                    | RPD    |
| Analyte                                        | Result | Qualifier | Added | Result | Qualifier | Unit  | D | %Rec | Limits             | RPD                | Limit  |
| Chloride                                       | 14.6   |           | 253   | 266.4  |           | mg/Kg |   | 100  | 90 - 110           | 1                  | 20     |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB Job ID: 890-5992-1

SDG: 03C1558301

#### **GC VOA**

#### Prep Batch: 71537

| Lab Sample ID     | Client Sample ID | Ргер Туре | Matrix | Method | Prep Batch |
|-------------------|------------------|-----------|--------|--------|------------|
| MB 880-71537/5-A  | Method Blank     | Total/NA  | Solid  | 5035   |            |
| Prep Batch: 71635 |                  |           |        |        |            |

#### Lab Sample ID **Client Sample ID** Prep Type Matrix Method Prep Batch 890-5992-1 FS08 Total/NA Solid 5035 890-5992-2 FS09 Total/NA Solid 5035 890-5992-3 FS10 Total/NA Solid 5035 8 890-5992-4 FS11 Total/NA 5035 Solid 890-5992-5 FS12 Total/NA Solid 5035 890-5992-6 FS13 Total/NA Solid 5035 890-5992-7 SW03 Total/NA Solid 5035 890-5992-8 FS14 Total/NA Solid 5035 890-5992-9 FS15 Total/NA Solid 5035 890-5992-10 FS16 Total/NA Solid 5035 890-5992-11 FS17 Total/NA Solid 5035 890-5992-12 FS18 Total/NA Solid 5035 890-5992-13 FS19 Total/NA Solid 5035 13 890-5992-14 SW04 Total/NA Solid 5035 890-5992-15 SW05 Total/NA Solid 5035 Total/NA MB 880-71635/5-A Method Blank Solid 5035 Total/NA Solid 5035 LCS 880-71635/1-A Lab Control Sample LCSD 880-71635/2-A Lab Control Sample Dup Total/NA Solid 5035 FS08 890-5992-1 MS Total/NA Solid 5035 890-5992-1 MSD FS08 Total/NA Solid 5035

#### Analysis Batch: 71915

| Lab Sample ID      | Client Sample ID       | Ргер Туре | Matrix | Method | Prep Batch |
|--------------------|------------------------|-----------|--------|--------|------------|
| 890-5992-1         | FS08                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-2         | FS09                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-3         | FS10                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-4         | FS11                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-5         | FS12                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-6         | FS13                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-7         | SW03                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-8         | FS14                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-9         | FS15                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-10        | FS16                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-11        | FS17                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-12        | FS18                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-13        | FS19                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-14        | SW04                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-15        | SW05                   | Total/NA  | Solid  | 8021B  | 71635      |
| MB 880-71537/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 71537      |
| MB 880-71635/5-A   | Method Blank           | Total/NA  | Solid  | 8021B  | 71635      |
| LCS 880-71635/1-A  | Lab Control Sample     | Total/NA  | Solid  | 8021B  | 71635      |
| LCSD 880-71635/2-A | Lab Control Sample Dup | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-1 MS      | FS08                   | Total/NA  | Solid  | 8021B  | 71635      |
| 890-5992-1 MSD     | FS08                   | Total/NA  | Solid  | 8021B  | 71635      |

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

Job ID: 890-5992-1 SDG: 03C1558301

## GC VOA

#### Analysis Batch: 72053

| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method      | Prep Batch |
|------------------|------------------|-----------|--------|-------------|------------|
| 890-5992-1       | FS08             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-2       | FS09             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-3       | FS10             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-4       | FS11             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-5       | FS12             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-6       | FS13             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-7       | SW03             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-8       | FS14             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-9       | FS15             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-10      | FS16             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-11      | FS17             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-12      | FS18             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-13      | FS19             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-14      | SW04             | Total/NA  | Solid  | Total BTEX  |            |
| 890-5992-15      | SW05             | Total/NA  | Solid  | Total BTEX  |            |
| C Semi VOA       |                  |           |        |             |            |
| rep Batch: 71509 |                  |           |        |             |            |
| Lab Sample ID    | Client Sample ID | Prep Type | Matrix | Method      | Prep Batch |
| 890-5992-1       | FS08             | Total/NA  | Solid  | 8015NM Prep |            |

#### GC Semi VOA

#### Prep Batch: 71509

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method      | Prep Batch |
|--------------------|------------------------|-----------|--------|-------------|------------|
| 890-5992-1         | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-2         | FS09                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-3         | FS10                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-4         | FS11                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-5         | FS12                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-6         | FS13                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-7         | SW03                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-8         | FS14                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-9         | FS15                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-10        | FS16                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-11        | FS17                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-12        | FS18                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-13        | FS19                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-14        | SW04                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-15        | SW05                   | Total/NA  | Solid  | 8015NM Prep |            |
| MB 880-71509/1-A   | Method Blank           | Total/NA  | Solid  | 8015NM Prep |            |
| LCS 880-71509/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015NM Prep |            |
| LCSD 880-71509/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-1 MS      | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |
| 890-5992-1 MSD     | FS08                   | Total/NA  | Solid  | 8015NM Prep |            |

#### Analysis Batch: 71993

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method   | Prep Batch |
|---------------|------------------|-----------|--------|----------|------------|
| 890-5992-1    | FS08             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-2    | FS09             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-3    | FS10             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-4    | FS11             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-5    | FS12             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-6    | FS13             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-7    | SW03             | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-8    | FS14             | Total/NA  | Solid  | 8015B NM | 71509      |

Eurofins Carlsbad

Page 101 of 123

## **Released to Imaging: 4/22/2024 2:45:18 PM**

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

## GC Semi VOA (Continued)

#### Analysis Batch: 71993 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| 890-5992-9         | FS15                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-10        | FS16                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-11        | FS17                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-12        | FS18                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-13        | FS19                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-14        | SW04                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-15        | SW05                   | Total/NA  | Solid  | 8015B NM | 71509      |
| MB 880-71509/1-A   | Method Blank           | Total/NA  | Solid  | 8015B NM | 71509      |
| LCS 880-71509/2-A  | Lab Control Sample     | Total/NA  | Solid  | 8015B NM | 71509      |
| LCSD 880-71509/3-A | Lab Control Sample Dup | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-1 MS      | FS08                   | Total/NA  | Solid  | 8015B NM | 71509      |
| 890-5992-1 MSD     | FS08                   | Total/NA  | Solid  | 8015B NM | 71509      |

#### Analysis Batch: 72146

| Lab Sample ID | Client Sample ID | Prep Type | Matrix | Method  | Prep Batch |
|---------------|------------------|-----------|--------|---------|------------|
| 890-5992-1    | FS08             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-2    | FS09             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-3    | FS10             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-4    | FS11             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-5    | FS12             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-6    | FS13             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-7    | SW03             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-8    | FS14             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-9    | FS15             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-10   | FS16             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-11   | FS17             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-12   | FS18             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-13   | FS19             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-14   | SW04             | Total/NA  | Solid  | 8015 NM |            |
| 890-5992-15   | SW05             | Total/NA  | Solid  | 8015 NM |            |

## HPLC/IC

#### Leach Batch: 71310

| Lab Sample ID    | Client Sample ID | Ргер Туре | Matrix | Method   | Prep Batch |
|------------------|------------------|-----------|--------|----------|------------|
| 890-5992-1       | FS08             | Soluble   | Solid  | DI Leach |            |
| 890-5992-2       | FS09             | Soluble   | Solid  | DI Leach |            |
| 890-5992-3       | FS10             | Soluble   | Solid  | DI Leach |            |
| 890-5992-4       | FS11             | Soluble   | Solid  | DI Leach |            |
| 890-5992-5       | FS12             | Soluble   | Solid  | DI Leach |            |
| 890-5992-6       | FS13             | Soluble   | Solid  | DI Leach |            |
| 890-5992-7       | SW03             | Soluble   | Solid  | DI Leach |            |
| 890-5992-8       | FS14             | Soluble   | Solid  | DI Leach |            |
| 890-5992-9       | FS15             | Soluble   | Solid  | DI Leach |            |
| 890-5992-10      | FS16             | Soluble   | Solid  | DI Leach |            |
| 890-5992-11      | FS17             | Soluble   | Solid  | DI Leach |            |
| 890-5992-12      | FS18             | Soluble   | Solid  | DI Leach |            |
| 890-5992-13      | FS19             | Soluble   | Solid  | DI Leach |            |
| 890-5992-14      | SW04             | Soluble   | Solid  | DI Leach |            |
| 890-5992-15      | SW05             | Soluble   | Solid  | DI Leach |            |
| MB 880-71310/1-A | Method Blank     | Soluble   | Solid  | DI Leach |            |

#### Eurofins Carlsbad

Page 102 of 123

#### Job ID: 890-5992-1 SDG: 03C1558301

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

## HPLC/IC (Continued)

## Leach Batch: 71310 (Continued)

| Lab Sample ID      | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
|--------------------|------------------------|-----------|--------|----------|------------|
| LCS 880-71310/2-A  | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-71310/3-A | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-5992-1 MS      | FS08                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-1 MSD     | FS08                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-11 MS     | FS17                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-11 MSD    | FS17                   | Soluble   | Solid  | DI Leach |            |

#### Analysis Batch: 71389

| each Batch: 71310 (C | ontinued)              |           |        |          |            |
|----------------------|------------------------|-----------|--------|----------|------------|
| Lab Sample ID        | Client Sample ID       | Ргер Туре | Matrix | Method   | Prep Batch |
| LCS 880-71310/2-A    | Lab Control Sample     | Soluble   | Solid  | DI Leach |            |
| LCSD 880-71310/3-A   | Lab Control Sample Dup | Soluble   | Solid  | DI Leach |            |
| 890-5992-1 MS        | FS08                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-1 MSD       | FS08                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-11 MS       | FS17                   | Soluble   | Solid  | DI Leach |            |
| 890-5992-11 MSD      | FS17                   | Soluble   | Solid  | DI Leach |            |
| nalysis Batch: 71389 |                        |           |        |          |            |
| Lab Sample ID        | Client Sample ID       | Prep Type | Matrix | Method   | Prep Batch |
| 890-5992-1           | FS08                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-2           | FS09                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-3           | FS10                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-4           | FS11                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-5           | FS12                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-6           | FS13                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-7           | SW03                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-8           | FS14                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-9           | FS15                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-10          | FS16                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-11          | FS17                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-12          | FS18                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-13          | FS19                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-14          | SW04                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-15          | SW05                   | Soluble   | Solid  | 300.0    | 71310      |
| MB 880-71310/1-A     | Method Blank           | Soluble   | Solid  | 300.0    | 71310      |
| LCS 880-71310/2-A    | Lab Control Sample     | Soluble   | Solid  | 300.0    | 71310      |
| LCSD 880-71310/3-A   | Lab Control Sample Dup | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-1 MS        | FS08                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-1 MSD       | FS08                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-11 MS       | FS17                   | Soluble   | Solid  | 300.0    | 71310      |
| 890-5992-11 MSD      | FS17                   | Soluble   | Solid  | 300.0    | 71310      |

Job ID: 890-5992-1

SDG: 03C1558301

5

9

Job ID: 890-5992-1 SDG: 03C1558301

#### Lab Sample ID: 890-5992-1 Matrix: Solid

Lab Sample ID: 890-5992-2

Lab Sample ID: 890-5992-3

Lab Sample ID: 890-5992-4

Matrix: Solid

Matrix: Solid

Date Collected: 01/18/24 08:30 Date Received: 01/18/24 15:24

**Client Sample ID: FS08** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 21:50 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 21:50 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 10:47 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.08 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 10:47 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 09:57 | SMC     | EET MID |

## **Client Sample ID: FS09**

## Date Collected: 01/18/24 08:35

Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 22:10 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 22:10 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 11:50 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 11:50 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:12 | SMC     | EET MID |

## **Client Sample ID: FS10**

#### Date Collected: 01/18/24 08:40 Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 22:31 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 22:31 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 12:12 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.10 g | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 12:12 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:18 | SMC     | EET MID |

#### **Client Sample ID: FS11** Date Collected: 01/18/24 08:45 Date Received: 01/18/24 15:24

|           | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 22:51 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 72053  | 01/30/24 22:51 | SM      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Job ID: 890-5992-1 SDG: 03C1558301

## Lab Sample ID: 890-5992-4 Matrix: Solid

Date Collected: 01/18/24 08:45 Date Received: 01/18/24 15:24

**Client Sample ID: FS11** 

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 12:33 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 12:33 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:23 | SMC     | EET MID |

#### **Client Sample ID: FS12** Date Collected: 01/18/24 08:50

## Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 23:12 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 23:12 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 12:55 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.09 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 12:55 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:28 | SMC     | EET MID |

#### **Client Sample ID: FS13**

Date Collected: 01/18/24 09:35 Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.99 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 23:32 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 23:32 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 13:28 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.97 g  | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 13:28 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:43 | SMC     | EET MID |

### **Client Sample ID: SW03**

#### Date Collected: 01/18/24 09:40 Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/30/24 23:53 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/30/24 23:53 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 13:49 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.90 g  | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 13:49 | SM      | EET MID |

**Eurofins Carlsbad** 

5 Lab Sample ID: 890-5992-5 9 Matrix: Solid

# Lab Sample ID: 890-5992-6

Matrix: Solid

Lab Sample ID: 890-5992-7 Matrix: Solid

## Lab Chronicle

Job ID: 890-5992-1 SDG: 03C1558301

## Lab Sample ID: 890-5992-7 Matrix: Solid

Lab Sample ID: 890-5992-8

Lab Sample ID: 890-5992-9

Date Collected: 01/18/24 09:40 Date Received: 01/18/24 15:24

Client Sample ID: SW03

Client: Ensolum

|           | Batch    | Batch    |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|----------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method   | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Soluble   | Leach    | DI Leach |     |        | 5.05 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0    |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:48 | SMC     | EET MID |

## **Client Sample ID: FS14**

#### Date Collected: 01/18/24 09:45 Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 00:13 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 00:13 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 14:11 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 14:11 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.99 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:54 | SMC     | EET MID |

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.01 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 00:34 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 00:34 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 14:33 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 14:33 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.97 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 10:59 | SMC     | EET MID |

#### **Client Sample ID: FS16** Date Collected: 01/18/24 09:55 Date Received: 01/18/24 15:24

# Lab Sample ID: 890-5992-10

Matrix: Solid

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.97 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 00:54 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 00:54 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 14:54 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.06 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 14:54 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.01 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 11:04 | SMC     | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Matrix: Solid

9

# **Client Sample ID: FS15** Date Collected: 01/18/24 09:50 Date Received: 01/18/24 15:24

Released to Imaging: 4/22/2024 2:45:18 PM

Batch

Batch

**Client Sample ID: FS17** 

Date Collected: 01/18/24 10:00

Date Received: 01/18/24 15:24

Client: Ensolum

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Initial

Job ID: 890-5992-1 SDG: 03C1558301

# Lab Sample ID: 890-5992-11

Analyst

MNR

MNR

SM

SM

ткс

SM

SA

SMC

Lab Sample ID: 890-5992-12

Lab Sample ID: 890-5992-13

Lab Sample ID: 890-5992-14

Prepared

Matrix: Solid

Lab

EET MID

Matrix: Solid

Matrix: Solid

#### **Client Sample ID: FS18** Date Collected: 01/18/24 10:05

Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.02 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 02:38 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 02:38 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 15:58 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.91 g  | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 15:58 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 4.98 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 11:24 | SMC     | EET MID |

#### **Client Sample ID: FS19** Date Collected: 01/18/24 10:20

#### Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 5.03 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 02:58 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 02:58 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 16:19 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 9.93 g  | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 16:19 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.04 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 11:30 | SMC     | EET MID |

#### **Client Sample ID: SW04** Date Collected: 01/18/24 10:10 Date Received: 01/18/24 15:24

| _         | Batch    | Batch      |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method     | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035       |     |        | 5.01 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B      |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 03:19 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX |     | 1      |         |        | 72053  | 01/31/24 03:19 | SM      | EET MID |

**Eurofins Carlsbad** 

Matrix: Solid

Batch

Final

| Туре     | Method      | Run | Factor | Amount | Amount | Number | or Analyzed    |   |
|----------|-------------|-----|--------|--------|--------|--------|----------------|---|
| Prep     | 5035        |     |        | 4.99 g | 5 mL   | 71635  | 01/25/24 18:02 | Ì |
| Analysis | 8021B       |     | 1      | 5 mL   | 5 mL   | 71915  | 01/31/24 02:17 |   |
| Analysis | Total BTEX  |     | 1      |        |        | 72053  | 01/31/24 02:17 | ; |
| Analysis | 8015 NM     |     | 1      |        |        | 72146  | 01/31/24 15:37 | ; |
| Prep     | 8015NM Prep |     |        | 9.92 g | 10 mL  | 71509  | 01/24/24 10:27 |   |
| Analysis | 8015B NM    |     | 1      | 1 uL   | 1 uL   | 71993  | 01/31/24 15:37 | ; |
| Leach    | DI Leach    |     |        | 4.95 g | 50 mL  | 71310  | 01/22/24 10:36 | ; |
| Analysis | 300.0       |     | 1      | 50 mL  | 50 mL  | 71389  | 01/24/24 11:09 |   |

Dil

# Released to Imaging: 4/22/2024 2:45:18 PM

Job ID: 890-5992-1 SDG: 03C1558301

# Lab Sample ID: 890-5992-14

Lab Sample ID: 890-5992-15

Matrix: Solid

Matrix: Solid

#### **Client Sample ID: SW04** Date Collected: 01/18/24 10:10 Date Received: 01/18/24 15:24

Client: Ensolum

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Ргер Туре | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 16:40 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.05 g | 10 mL  | 71509  | 01/24/24 10:27 | ткс     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 16:40 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 11:45 | SMC     | EET MID |

#### **Client Sample ID: SW05** Date Collected: 01/18/24 10:15

## Date Received: 01/18/24 15:24

|           | Batch    | Batch       |     | Dil    | Initial | Final  | Batch  | Prepared       |         |         |
|-----------|----------|-------------|-----|--------|---------|--------|--------|----------------|---------|---------|
| Prep Type | Туре     | Method      | Run | Factor | Amount  | Amount | Number | or Analyzed    | Analyst | Lab     |
| Total/NA  | Prep     | 5035        |     |        | 4.98 g  | 5 mL   | 71635  | 01/25/24 18:02 | MNR     | EET MID |
| Total/NA  | Analysis | 8021B       |     | 1      | 5 mL    | 5 mL   | 71915  | 01/31/24 03:39 | MNR     | EET MID |
| Total/NA  | Analysis | Total BTEX  |     | 1      |         |        | 72053  | 01/31/24 03:39 | SM      | EET MID |
| Total/NA  | Analysis | 8015 NM     |     | 1      |         |        | 72146  | 01/31/24 17:01 | SM      | EET MID |
| Total/NA  | Prep     | 8015NM Prep |     |        | 10.03 g | 10 mL  | 71509  | 01/24/24 10:27 | TKC     | EET MID |
| Total/NA  | Analysis | 8015B NM    |     | 1      | 1 uL    | 1 uL   | 71993  | 01/31/24 17:01 | SM      | EET MID |
| Soluble   | Leach    | DI Leach    |     |        | 5.03 g  | 50 mL  | 71310  | 01/22/24 10:36 | SA      | EET MID |
| Soluble   | Analysis | 300.0       |     | 1      | 50 mL   | 50 mL  | 71389  | 01/24/24 11:50 | SMC     | EET MID |

#### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

5
|                                                         | Acc                                                           | reditation/Cerf               | tification Summary                        |                         |                                       |   |
|---------------------------------------------------------|---------------------------------------------------------------|-------------------------------|-------------------------------------------|-------------------------|---------------------------------------|---|
| lient: Ensolum<br>roject/Site: PLU 18 Brusł             | hy Draw TB                                                    |                               |                                           |                         | Job ID: 890-5992-1<br>SDG: 03C1558301 | 2 |
| aboratory: Eurofins<br>nless otherwise noted, all analy |                                                               | overed under each accredi     | tation/certification below.               |                         |                                       |   |
| Authority                                               | Progra                                                        |                               | Identification Number                     | Expiration Date         |                                       |   |
| Texas                                                   | NELAP                                                         | ,                             | T104704400-23-26                          | 06-30-24                |                                       |   |
| • ,                                                     | are included in this report, but oes not offer certification. | the laboratory is not certifi | fied by the governing authority. This lis | st may include analytes |                                       |   |
| Analysis Method                                         | Prep Method                                                   | Matrix                        | Analyte                                   |                         |                                       |   |
| 8015 NM                                                 |                                                               | Solid                         | Total TPH                                 |                         |                                       |   |
| Total BTEX                                              |                                                               | Solid                         | Total BTEX                                |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       | ľ |
|                                                         |                                                               |                               |                                           |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       |   |
|                                                         |                                                               |                               |                                           |                         |                                       | Ī |

Eurofins Carlsbad

**Released to Imaging: 4/22/2024 2:45:18 PM** 

Project/Site: PLU 18 Brushy Draw TB

Client: Ensolum

## Job ID: 890-5992-1 SDG: 03C1558301

| Method        | Method Description                                                           | Protocol                               | Laboratory |
|---------------|------------------------------------------------------------------------------|----------------------------------------|------------|
| 8021B         | Volatile Organic Compounds (GC)                                              | SW846                                  | EET MID    |
| Total BTEX    | Total BTEX Calculation                                                       | TAL SOP                                | EET MID    |
| 8015 NM       | Diesel Range Organics (DRO) (GC)                                             | SW846                                  | EET MID    |
| 8015B NM      | Diesel Range Organics (DRO) (GC)                                             | SW846                                  | EET MID    |
| 300.0         | Anions, Ion Chromatography                                                   | EPA                                    | EET MID    |
| 5035          | Closed System Purge and Trap                                                 | SW846                                  | EET MID    |
| 8015NM Prep   | Microextraction                                                              | SW846                                  | EET MID    |
| DI Leach      | Deionized Water Leaching Procedure                                           | ASTM                                   | EET MID    |
| Protocol Refe | rences:                                                                      |                                        |            |
| ASTM = A      | STM International                                                            |                                        |            |
| EPA = US      | Environmental Protection Agency                                              |                                        |            |
| SW846 = "     | Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E | dition, November 1986 And Its Updates. |            |

### Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

Released to Imaging: 4/22/2024 2:45:18 PM

## Sample Summary

Client: Ensolum Project/Site: PLU 18 Brushy Draw TB

| Lab Sample ID | Client Sample ID | Matrix | Collected      | Received       |
|---------------|------------------|--------|----------------|----------------|
| 890-5992-1    | FS08             | Solid  | 01/18/24 08:30 | 01/18/24 15:24 |
| 890-5992-2    | FS09             | Solid  | 01/18/24 08:35 | 01/18/24 15:24 |
| 890-5992-3    | FS10             | Solid  | 01/18/24 08:40 | 01/18/24 15:24 |
| 890-5992-4    | FS11             | Solid  | 01/18/24 08:45 | 01/18/24 15:24 |
| 890-5992-5    | FS12             | Solid  | 01/18/24 08:50 | 01/18/24 15:24 |
| 890-5992-6    | FS13             | Solid  | 01/18/24 09:35 | 01/18/24 15:24 |
| 890-5992-7    | SW03             | Solid  | 01/18/24 09:40 | 01/18/24 15:24 |
| 890-5992-8    | FS14             | Solid  | 01/18/24 09:45 | 01/18/24 15:24 |
| 890-5992-9    | FS15             | Solid  | 01/18/24 09:50 | 01/18/24 15:24 |
| 890-5992-10   | FS16             | Solid  | 01/18/24 09:55 | 01/18/24 15:24 |
| 890-5992-11   | FS17             | Solid  | 01/18/24 10:00 | 01/18/24 15:24 |
| 890-5992-12   | FS18             | Solid  | 01/18/24 10:05 | 01/18/24 15:24 |
| 890-5992-13   | FS19             | Solid  | 01/18/24 10:20 | 01/18/24 15:24 |
| 890-5992-14   | SW04             | Solid  | 01/18/24 10:10 | 01/18/24 15:24 |
| 890-5992-15   | SW05             | Solid  | 01/18/24 10:15 | 01/18/24 15:24 |
|               |                  |        |                |                |
|               |                  |        |                |                |
|               |                  |        |                |                |
|               |                  |        |                |                |
|               |                  |        |                |                |
|               |                  |        |                |                |
|               |                  |        |                |                |

| Protectionnes:         FLI.1.         Interviewer         G.Y.O.E.         E.V.O.O.         With Conditionant State         A.O.E.         E.V.O.O.         With Conditionant State         A.O.E.         E.V.O.O.         Mith Conditionant State         A.O.E.         Mith Conditionant State         Mith Conditionant State         A.O.E.         Mith Conditionant State         Mith ConditionantS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                          | Xe                                                                           | Хепсо                                         | Anto                                                        | P                                                                   | Midt<br>EL I<br>Hot                                                   | and, TX (432<br>Paso, TX (91:<br>bbs, NM (575 | 0 704-5440, San Ani<br>5) 585-3443, Lubboo<br>5) 392-7550, Carlsba      | Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334<br>EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296<br>Hobbs, NM (575) 392-7550, Carlsbard, MM (575) 988-3199 | 6 ald 890                                             | 890-5992 Chain of Custody |                                                     | 1 c           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------|---------------------------|-----------------------------------------------------|---------------|
| UST/PST BRP Brownfields R<br>ext:<br>Level III PST/UST 0th<br>EDD Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preserve<br>Preser                                                                                                                                                                                                                                                                                                                                              |                                                                                                          |                                                                              | CLUIT                                         |                                                             |                                                                     | Bill to: (if diffen                                                   | ent)                                          | Garrett                                                                 | Green                                                                                                                                                                          |                                                       | WWW.Xenco.c               | 1                                                   | - of C        |
| Evel III _ Level III _ PST/UST _ TR<br>Evel III _ Level III _ PST/UST _ TR<br>Evel III _ Level III _ PST/UST _ TR<br>Preserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>Reserve<br>R | y Name:                                                                                                  | ENIMUR                                                                       | J-V                                           | TC                                                          |                                                                     | Company Nam                                                           | 1et                                           |                                                                         | revolu                                                                                                                                                                         | Program:                                              |                           |                                                     |               |
| EDD Coth<br>EDD Coth<br>EDD Concol<br>None: NO<br>Cool: Cool<br>H-50 4: HP<br>NaHSO 4: HP<br>NaHSO 4: HP<br>NaSS 403: NaSC<br>Zh Acetate-Na<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaSC<br>Zh Acetate-Na<br>NaOH-Ascorbi<br>NaSC<br>Zh Acetate-Na<br>NaOH-Ascorbi<br>NaSC<br>Zh Acetate-Na<br>NaOH-Ascorbi<br>NaSC<br>Zh Acetate-Na<br>NaOH-Ascorbi<br>NaSC<br>Zh Acetate-Na<br>NaSC<br>Zh Acetate-Na<br>Na<br>NaSC<br>Zh Acetate-Na<br>Na<br>Na<br>NaSC<br>Zh Acetate-Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>Na<br>N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          | HEN 27TO                                                                     | INNO                                          |                                                             |                                                                     | Address:                                                              | 14.1                                          | ш                                                                       | 2                                                                                                                                                                              | State of Pr                                           | oject:                    |                                                     |               |
| EDD     ADaPT     Oth       Preserve     Preserve       Preserve     None: NO       None: NO     Cool: Cool       H, PO 4: HP     NAHSO 4: HP       NaHSO 4: NABI     Na, S, 20, S, NASC       Thy MAPO 73;     NACHATENHA       NOH+Ascorbi     Sample C       Sample C     COST- C       NOH+Ascorbi     BREIN       Sample C     Sample C       NASCONDI     NACP073;       NACP111     BREIN       Se Ag SiO2 Na Sr TI Sn U V Zn       Hg: 1631 / 245, 1 / 7470 / 7471       Hg: 1631 / 245, 1 / 7470 / 7471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ate ZIP:                                                                                                 | DEGSHE                                                                       | WN.                                           |                                                             | (marked                                                             | City, State ZIP:                                                      |                                               | ()                                                                      | MN.                                                                                                                                                                            |                                                       | Level II   Level III      |                                                     |               |
| Preserve<br>Preserve<br>None: NO<br>None: NO<br>Cool: Cool<br>HCL: HC<br>H,504: HP<br>Na45.04: NASC<br>Na5.04: NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>NASC<br>N                                                                                                                                                                                                                                                                                                      |                                                                                                          | 99 (1991)                                                                    | 1                                             | 0852                                                        | Email:                                                              |                                                                       | .Green                                        | 1.1                                                                     |                                                                                                                                                                                |                                                       | es: EDD                   | Ô                                                   |               |
| rreserve<br>reserve<br>None: NO<br>Cool: Cool<br>HCL:HC<br>HJ:PO.: HP<br>NaHSO.: MABI<br>NaHSO.: MAB                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                          | LU 18 Bird                                                                   |                                               | STAWERC                                                     | Tum                                                                 | Around                                                                |                                               |                                                                         |                                                                                                                                                                                | SIS REQUEST                                           |                           |                                                     |               |
| сейсой<br>HC: HC<br>HC: HC<br>Na55,03: NASC<br>Zn Acetate-Ma<br>NOH+Ascorbi<br>Sample (<br>Sample (<br>C 057- C 0<br>DDE-[1] (]<br>DDD-[1] (]<br>DDD-[1] (]<br>BC: N<br>HG: 1631/245,177470/7471<br>HG: 1631/245,177470/7471<br>HG: 1631/245,177470/7471<br>Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                          | 030 1551                                                                     | REDI                                          |                                                             | Routine                                                             | Rush                                                                  |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | Nona: NO                                            | auve codes    |
| HCL: HC<br>Hybol: HP<br>HCL: HC<br>Hybol: HP<br>NaHSO .: NABI<br>Na 5.0.3: NaSC<br>Na 5.0.3: NaSC<br>Na Acetate+Na<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>NaOH-Ascorbi<br>Sample C<br>Sample C<br>Sampl                                                                   | T                                                                                                        | LLZST. Z                                                                     | -103                                          |                                                             | Due Date:                                                           | Edays                                                                 | -                                             |                                                                         |                                                                                                                                                                                |                                                       |                           | Cool: Cool                                          | MeOH: Ma      |
| H,504;H2<br>H,F004;H2<br>NaH504;H4<br>NaSt 205,NaSC<br>Zn Acetate-Na<br>NaOH+Ascorbi<br>Sample C<br>Sample C<br>Sampl                                                             | THE REAL PLAN                                                                                            | 101 101 10                                                                   |                                               | til                                                         | TAT starts the the the lab, if rece                                 | day received by<br>ived by 4:30pm                                     |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | HCL:HC                                              | HNO 3:HN      |
| H, Po 4: HP<br>NaHSO 4: NABI<br>Na 5, 203: NASC<br>Zn Acetate-Ma<br>NaOH-Ascorbi<br>Sample (<br>Sample (<br>C 0, 57-<br>C 0, 71, 11<br>B C 10<br>D D C 11<br>D D D C 11<br>D D D D C 11<br>D D D C 11<br>D D D C 11<br>D D D D D D D D D D D D D D D D D D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | AMPLE RECEIPT                                                                                            | Temp Blai                                                                    |                                               | Yes No                                                      | Wet Ice:                                                            | (ac) NO                                                               | rers                                          | -                                                                       |                                                                                                                                                                                |                                                       |                           | H,504:H2                                            | NaOH: Na      |
| NaHSD 2: NABI<br>Nasy 2: 03: NABI<br>NaOHAScorbi<br>Sample C<br>Sample C<br>Sample C<br>Sample C<br>Semple C<br>Sempl                                                             | amples Received Intact;                                                                                  |                                                                              |                                               | hermometer                                                  | r D:                                                                | TNArbor                                                               | 10                                            | <                                                                       |                                                                                                                                                                                |                                                       |                           | H SPO SH                                            |               |
| Zn Acetate+Nas<br>Zn Acetate+Nas<br>NaOH+Ascorbi<br>Sample (<br>Sample (<br>Sampl                                                             | ooler Custody Seals:                                                                                     | Yes No (                                                                     |                                               | Correction Fa                                               |                                                                     | 2+0                                                                   | Para                                          | 50                                                                      |                                                                                                                                                                                | -                                                     |                           | NaHSO 4: NAE                                        | SIS           |
| Convectation to the second of the second of the sample of sample o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ample Custody Seals:                                                                                     | Yes No                                                                       |                                               | Temperature                                                 |                                                                     | 1.2                                                                   | í ·                                           | 21.                                                                     |                                                                                                                                                                                |                                                       |                           | Na <sub>2</sub> 5 <sub>2</sub> 0 <sub>3</sub> : NaS | ° 0           |
| Sample C<br>Sample C<br>Sam                                                       | otal Containers:                                                                                         |                                                                              |                                               | Corrected Ter                                               | mperature:                                                          | 1.4                                                                   |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | Zn Acetate+N                                        | aOH: Zn       |
| Sample of a sample of a sample of a sector                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Sample Identificat                                                                                       |                                                                              |                                               | 1.1                                                         | -                                                                   | _                                                                     |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           |                                                     | ור שרוח: סעור |
| TDV.id/e/n1<br>NAP/07.33<br>C.0.57-C.0.3111<br>B.Ch B.C.11<br>B.Ch B.C.11/C<br>B.C.11/C<br>B.C.11/C<br>B.C.11/C<br>B.C.11/C<br>Hg: 1631/245.1/7470 /7471<br>Hg: 1631/245.1/7470 /7471<br>Celved by: (Signature) Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | F508                                                                                                     |                                                                              | 1                                             | -                                                           | 0:20                                                                | duo 1 1                                                               | -                                             | 1 > >                                                                   |                                                                                                                                                                                |                                                       |                           | aidmec                                              | Comments      |
| NRP273<br>C057-C0<br>Beh Seli<br>Beh Seli<br>Beh Seli<br>Beh ille<br>Beh Seli<br>Beh 10<br>V Zn<br>Hg: 1631/245.1/7470/7471<br>Hg: 1631/245.1/7470/7471<br>received by: (Signature) Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | FSOG                                                                                                     |                                                                              | 2 -                                           | - 1                                                         | 8. 25                                                               | 1 11                                                                  | 1-                                            | <-                                                                      |                                                                                                                                                                                |                                                       |                           | Trublent                                            | . 舟           |
| C057-C0<br>105(07111<br>Bern Beri<br>Bern Beri<br>Bern Beri<br>Bern Beri<br>Bern Bri<br>Bern Arti<br>Hg: 1631/245.1/7470/7471<br>Hg: 1631/245.1/7470/7471<br>Hg: 1631/245.1/7470/7471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | FSIO                                                                                                     |                                                                              | F                                             | F                                                           | UTT-0                                                               | 10                                                                    |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | NAPP73                                              | 34060921      |
| Interference         Interferee         Interference         Interference <td>175J</td> <td></td> <td>-</td> <td></td> <td>2:45</td> <td>21</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>COST CR</td> <td>hter:</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 175J                                                                                                     |                                                                              | -                                             |                                                             | 2:45                                                                | 21                                                                    |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | COST CR                                             | hter:         |
| Bch Bcli         Bch Bcli         Bch         <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | F512                                                                                                     |                                                                              | F                                             |                                                             | 02:00                                                               | 10                                                                    |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | 11020111                                            | 1001          |
| Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn<br>Hg: 1631/245.1/7470 /7471<br>celved by: (Signature) Da                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | F113                                                                                                     |                                                                              | +                                             |                                                             | 0.35                                                                | 11                                                                    |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | Beh Bel                                             | 11:           |
| Se Ag SiO <sub>2</sub> Na Sr TI Sn U V<br>Hg: 1631 / 245.1 / 7470 / 747<br>Hg: 1631 / 245.1 / 7470 / 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | SWD3                                                                                                     |                                                                              | -                                             | -                                                           | U THU                                                               | 1-0-0                                                                 |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           | beli 110                                            | e nselum.d    |
| Se Ag SiO <sub>2</sub> Na Sr TI Sn U V<br>Hg: 1631 / 245.1 / 7470 / 747<br>Hg: 1631 / 245.1 / 7470 / 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FS14                                                                                                     |                                                                              | F                                             | -                                                           | 0:45                                                                | 110                                                                   |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           |                                                     |               |
| Se Ag SiO <sub>2</sub> Na Sr TI Sn U V<br>Hg: 1631 / 245.1 / 7470 / 747<br>Hg: 1631 / 245.1 / 7470 / 747                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | FS15                                                                                                     | -                                                                            | -                                             | 1                                                           | 0:50                                                                | 2.                                                                    |                                               |                                                                         |                                                                                                                                                                                |                                                       |                           |                                                     |               |
| Se Ag SiO <sub>2</sub> Na Sr TI Sn U V<br>Hg: 1631 / 245.1 / 7470 / 747<br>celved by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | FSIO                                                                                                     |                                                                              | >                                             | >                                                           | 0:55                                                                | 21 V                                                                  | PA                                            | AA                                                                      |                                                                                                                                                                                |                                                       |                           |                                                     |               |
| celved by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Total 200.7 / 6010<br>cle Method(s) and A                                                                | 200.8 / 6020<br>Metal(s) to be                                               | ):<br>analyz                                  | 8RC<br>ed                                                   | RA 13PPM<br>TCLP/SPLF                                               | Texas 11 A<br>6010 : 8RCF                                             | NI Sb As                                      | Ba Be B Cd                                                              | Ca Cr Co Cu Fe P                                                                                                                                                               | b Mg Mn Mo Ni<br>Ni Sa Ag Ti U                        | Se Ag SiO <sub>2</sub>    | r TI Sn U V Z                                       | E             |
| celved by: (Signature)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ce: Signature of this document a<br>rvice. Eurofins Xenco will be liat<br>rofires Xenco. A minimum charg | and relinquishment of<br>ble only for the cost of<br>pe of SBS.00 will be ap | f samples co<br>of samples a<br>optied to ear | onstitutes a valid<br>nd shall not assu<br>ch project and a | f purchase order fiv<br>ume any responsible<br>i charge of 55 for e | om client company t<br>lifty for any losses or<br>ach sample submitte | to Eurofins Xer<br>expenses incu              | nco, its affiliates and su<br>urred by the dient if su<br>Vence but not | ubcontractors. It assigns stand<br>ich fosses are due to circumsta                                                                                                             | lard terms and conditions<br>inces beyond the control |                           | 1/5/ / 0/6/ / 1                                     |               |
| Cel alebre 15:24 //y mecaverage received by contraction of the second of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Relinquished by: (Sign                                                                                   | ature)                                                                       | Re                                            | ceived by:                                                  | (Signature)                                                         |                                                                       | Date                                          | e/Time                                                                  | Relinduished hv. (Si                                                                                                                                                           | ed unless previously negotiat                         | barrent true feiture      |                                                     |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 1 calle                                                                                                  | 2                                                                            | O                                             | Julia                                                       |                                                                     |                                                                       | 15:2                                          | 4 1/13                                                                  | al-la participation of                                                                                                                                                         |                                                       | received by: (Signatur    |                                                     | ate/Time      |
| 9                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                          |                                                                              |                                               |                                                             |                                                                     |                                                                       |                                               | 4                                                                       |                                                                                                                                                                                |                                                       |                           | -                                                   |               |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                          |                                                                              |                                               |                                                             |                                                                     |                                                                       |                                               | 9                                                                       |                                                                                                                                                                                |                                                       |                           |                                                     |               |

Page 112 of 123

Loc: 890 5992

| Intro of different     Calificatif     Calificatif     Calificatif     Calificatif     Calificatif     Calificatif     Store     Calificatif     Store     Calificatif     Store     Calificatif     Store     Store     Calificatif     Store     Store <th< th=""><th>Bill to: If differenti         CARVETT         City CE (I         Work Order Comments         Comments</th><th>Bitter traiterent         Carter freen         Nonwarenco.com         Rage         2         0         2           Consons Mance         XTD<e< td="">         E         CAPERA         Monix Conder comments         Spectrum         Sp</e<></th><th></th><th>EL Paso, TX (<br/>Hobbs, NM (</th><th>muarto, ix (932) /04-9440, San Antonio, TX (210) 505-3334<br/>EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296<br/>Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199</th><th>509-3334<br/>-1296<br/>8-3199</th><th>Work Order No:</th><th></th></th<>                                                                                    | Bill to: If differenti         CARVETT         City CE (I         Work Order Comments                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Bitter traiterent         Carter freen         Nonwarenco.com         Rage         2         0         2           Consons Mance         XTD <e< td="">         E         CAPERA         Monix Conder comments         Spectrum         Sp</e<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           | EL Paso, TX (<br>Hobbs, NM (                               | muarto, ix (932) /04-9440, San Antonio, TX (210) 505-3334<br>EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296<br>Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199 | 509-3334<br>-1296<br>8-3199                                                            | Work Order No:               |                       |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------------------------|-----------------------|
| Initial interfaction     GAMGHT GAREAL     GAMGHT GAREAL     Work Order Comments       KL HAVU     Konstate:     S10H E. OLORIN A. RAD     Proprint:     Under Comments       Stort     Empiry Name:     XTD E ACRIAL     Arran F. Derland     Reporting:     Report:     Reporting:     Reporting:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Initiation         GAURETT         Gruperin         Work Order Comments           Initiation         XTD         Enternal         Recomments         Recomments           Initiation         Recomments         Recomments         Recomments         Recomments           Initiation                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Initiation         GatWeth         Giveen         Work Order Comments           comparytance         XTD         Enterdul         Regram         Struct         The Interdul           demonstration         Struct         Enterdul         Regram         Struct         The Interdul           demonstration         Struct         Struct         Regram         Struct         Demonstration           demonstration         Rescand         Excord         Rescand         None: NO         Diversity           Data         Rescand         Advance         Advance         Rescandance         None: NO         Diversity           Data         Rescandance         Rescandance         Rescandance         None: NO         Diversity           Data         Rescandance         Rescandance         Rescandance         None: NO         Diversity           Period         Rescandance         Rescandance         Rescandance         Rescandance         Rescandance           Data         Rescandance         Rescandance         Rescandance         Rescandance         Rescandance           Data         Rescandance         Rescandance         Rescandance         Rescandance         Rescandance           Rescandance         Rescandance         Rescan                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                           |                                                            |                                                                                                                                                                              |                                                                                        |                              | 2                     |
| ALL     Compare/Name:     XTD     E. CYLRIM     Regime ustray:     Renormated     Renormation       22     Example     Calarity State     Renormation     Renormation     Renormative Codes     Renormative Codes       MM     Turn Anound     Renormation     Renormative Codes     Renormative Codes     Renormative Codes       MM     Turn Renormative Codes     Renormative Codes     Renormative Codes     Renormative Codes       MM     Nations Reducting     Renormative Codes     Renormative Codes     Renormative Codes       MM     Nations Reducting     Renormative Codes     Renormative Codes     Renormative Codes       MM     Nations Reducting     Renormative Codes     Renormative Codes     Renormative Codes       MM     Nations Reducting     Renormative Codes     Renormative Codes     Renormative Codes       MM     Nations Reducting     Renormative Codes     Renormative Codes     Renormative Reducting       MM     Renormative Codes     Renormative Codes     Renormative Reducting     Renormative Reducting       MM     Renormative Codes     Renormative Codes     Renormative Reducting     Renormative Reductive Reducting<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Company Name:         XTD         En En KIM         Program:         USTPST         PRP         Brownladed         Renofination           Motoress:         31.014         E.         CVR.000, ALM         BB220.0         Presentative Codes           City.state.zn:         Cidy.ND0, ALM         BB220.0         Presentative Codes         Presentative Codes           Interactive         Expondend         AMANISS RECUEST         Presentative Codes         Presentative Codes           Interactive         Presentative Codes         AMANISS RECUEST         Presentative Codes         Presentative Codes           Interactive         Presentative Codes         Presentative Codes         Presentative Codes         Presentative Codes           Interactive State         Presentative Codes         Presentative Codes         Presentative Codes           Interactive State         Presentative Codes         Presentative Codes         Presentative Codes           Interactive State         Presentative Codes         Presentative Codes         Presentative Codes           Interactive Codes         Presentative Codes         Presentative Codes         Presentative Codes           Interactive State         Presentative Codes         Presentative Codes         Presentative Codes           Interactit         Presentative Codes         P                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Company Name         XTD         Enclude         Ref         Browniddd         Ref         Supplied           Indress:         53.03 H         E., CY R/M, GT         Address:         53.03 H         Final PST/NST         Preservative Codes           Indress:         1.03 L/M         B/M         B/M         B/M         Preservative Codes           Indress:         1.03 L/M         Example         Address:         Done:         Done:         Done:         Done:           Indress:         ED         Address:         ED         Address:         ED         Done:                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           | (ill to: (if different)                                    | 100                                                                                                                                                                          |                                                                                        | Work Order Comm              | ents                  |
| KL HMU     Iddress:     310H E. GYRÖN G.     EXRAT     Bate of Project:       56020     Email [DÖHT/CHH: GYRON ANN, 88020     Eventing: Level III     Level III     Determing: Level III       50020     Email [DÖHT/CHH: GYRON G. EVXDN MMM). C0M     B80200     Determing: Level III     Level III     Determing: Level III       50020     Email [DÖHT/CHH: GYRON G.     Prosentative Codes     ANMYSIS REQUEST     Prosenvative Codes       AD40     Due Date:     Dian     Dome: NO     Di Warren H     Prosenvative Codes       AD40     Due Date:     Dian     Prosenvative Codes     Mono: NO     Di Warren       AD41     Dian     Prosenvative     Prosenvative Codes     Prosenvative       AD41     Dian     Prosenvative     Prosenvative     Prosenvative       AD41     Prosenvative     Prosenvative     Prosenvative     Prosenvative       AD41     Prosenvative     Prosenvative     Prosenvative     Prosenvative       AD50     Prosenvative     Prosenvative     Prosenvative     Prosenvative <tr< td=""><td>Address:         3:10/H         E.         Circle AC         Site of Project.         Site of Project.           ctv, state 21:         CQM/SDQAD_NIM_R02.20         Reporting: Level III         Inserting Project.         Preservative Codes           mAximum         Preservative Codes         Anarray Properting: Level III         Preservative Codes           mAximum         Preservative Codes         Preservative Codes         Preservative Codes           monoid         Preservative Codes         Preservative Codes         Preservative Codes           Preservative Codes         Preservative Codes         Preservative Codes         Preservative Codes           Preservative Compositive compositive comonon presevative codes         Preservative Codes</td><td>kotress:         3104         E. Griffio (T.<br/>Struct)         Struct (T.<br/>Beroning: Level (II)         Struct (III)         Struct (III)</td><td></td><td>ompany Name:</td><td>IXTO ENERGU</td><td>Program:</td><td></td><td></td></tr<>                                                                                         | Address:         3:10/H         E.         Circle AC         Site of Project.         Site of Project.           ctv, state 21:         CQM/SDQAD_NIM_R02.20         Reporting: Level III         Inserting Project.         Preservative Codes           mAximum         Preservative Codes         Anarray Properting: Level III         Preservative Codes           mAximum         Preservative Codes         Preservative Codes         Preservative Codes           monoid         Preservative Codes         Preservative Codes         Preservative Codes           Preservative Codes         Preservative Codes         Preservative Codes         Preservative Codes           Preservative Compositive compositive comonon presevative codes         Preservative Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | kotress:         3104         E. Griffio (T.<br>Struct)         Struct (T.<br>Beroning: Level (II)         Struct (III)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                                                                           | ompany Name:                                               | IXTO ENERGU                                                                                                                                                                  | Program:                                                                               |                              |                       |
| SQD_0     Carry State Zie.     Carry State Zie.     Carry State Zie.     Carry State Zie.     Desting The Turn Level II     Level II     Level II       2.2     Email:     DâYT CHT Cyr. CM C. EXX DM MUDII. CUM     Destine allow.     Email:     Distribution     Anarran Contex.       2.2     Email:     Distribution     Email:     Distribution     Anarran Contex.     Doints.     Presentative Codes.       2.3     Roburine     Distribution     Email:     Anarran Contex.     None: NO     Diversities.       2.4     Roburine     Distribution     Email:     Anarran Contex.     None: NO     Diversities.       2.04     Distribution     Email:     Enail     Market M                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Icity: State ZIF:     CGN/LODAD     NM     BAD220       I: Giv: State ZIF:     CGN/LODAD     NM     Bioracije:     EDD     ADETT     Uner:       I: Giv: State ZIF:     CGN/LODAD     NM     Bioracije:     EDD     ADETT     Other:       I: Mount     Rese     Presentative Codes     None: NO     NV WE:     None: NO     NV WE:       I: Durin     Res     Presentative Codes     None: NO     NV WE:     None: NO     NV WE:       I: Durin     Res     Res     Presentative Codes     None: NO     NV WE:     None: NO     NV WE:       I: Durin     Res     Res     None: NO     NV WE:     None: NO     NV WE:     None: NO     NV WE:       I: Rice No     Res     Res     Res     Res     None: NO     NV WE:     No: NO       I: Rice No     Res     Res     Res     Res     Res     No: NO     No: NO       I: Rice No     Res     Res     Res     Res     Res     Res     Res       I: Rice No     Res     Res     Res     Res     Res     Res     Res       I: Rice No     Res     Res     Res     Res     Res     Res     Res       I: Rin No     Res     Res     Res<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Carry State ZIF:     Deter I     Other     Other       Mound     MAUNIS     Emponention     AMALYSIS REQUEST     Presenvative Codes       Mound     MA     MAUNIS     Presenvative Codes     Mono: NO     DI Was: NO     NO<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                           | iddress:                                                   | ц.                                                                                                                                                                           | 17+ State of Proj                                                                      | ]                            |                       |
| 2.2     Email [0]GIT/CHI. GIVEN (2: EXXUN MM)1. GIV     Deterative:     Dom:       MUTB     Tun Aound     Auxivsts Recurst     Presenvative: Codes       All De Date:     Date:     Date:     Date:     None: NO       All Discond     Presenvative: Codes     None: NO     None: NO       All Discond     Presenvative: Code     No     No       Discond     Presenvative: Code<                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | LE Chât CHH. Given Q. EXXUM MUNIL. CUM     Delocrables     Dol O       Intent     maximum     Preservative Codes       Intent     Preservative Codes     Preservative Codes       Intent     Preservative Codit     Preser                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | th Châtr CH. Green C. EXX DT MUDII. CUTA<br>Thround The Monte and the Codes<br>Through the Monte and the Code and the Code and the Monte and Monte an                                                                                                                                                                                              |                                                                                                           | ity, State ZIP:                                            | MM. DEOS                                                                                                                                                                     |                                                                                        | LevelIII                     | TRRP                  |
| WUTB     Turn Acound     Presenvative Codes       All UP Date     Then, The day service of the day                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | In Around         Investment         Preservative Codes           Diani         Pers.         None: NO         None: NO         None: NO         None: NO           Explore         Explore         None: NO         None: NO         None: NO         None: NO           Explore         Explore         None: NO         None: NO         None: NO         None: NO           Resolversality         Explore         None: NO         None: NO         None: NO         None: NO           Presentation         Explore         None: NO         None: NO         None: NO         None: NO           Presentation         Explore         None: NO         None: NO         None: NO         None: NO           Present         Explore         None: NO         None: NO         None: NO         None: NO           Present         Explore         Explore         None: NO         None: NO         None: NO           Present         Explore         Explore         Explore         Explore         Explore           Present         Explore         Explore         Explore         Explore         Explore           Present         Explore         Explore         Explore         Explore         Explore           Present <td>Induction     Preservative Codes       Drain     Preservative Codes       Individual     Preservative Codes</td> <td>Email:</td> <td>1.1</td> <td>C EXXDA MUDI</td> <td></td> <td>EDD ADa</td> <td>Other:</td>                                                                                                                                                                       | Induction     Preservative Codes       Drain     Preservative Codes       Individual     Preservative Codes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Email:                                                                                                    | 1.1                                                        | C EXXDA MUDI                                                                                                                                                                 |                                                                                        | EDD ADa                      | Other:                |
| Effectorie         Effectorie         Parts         None: No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | Image         Parts         Image         Image <th< td=""><td>Drun         Rest         None: No         <th< td=""><td></td><td>ound</td><td></td><td>ANAI VSIS REOLIEST</td><td></td><td>Durean making Cadaa</td></th<></td></th<> | Drun         Rest         None: No         No <th< td=""><td></td><td>ound</td><td></td><td>ANAI VSIS REOLIEST</td><td></td><td>Durean making Cadaa</td></th<>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           | ound                                                       |                                                                                                                                                                              | ANAI VSIS REOLIEST                                                                     |                              | Durean making Cadaa   |
| A24     Due Date:     5. day S       Image: Solution of the solution                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E Jays       Monthage       Monthage       Monthage       Monthage         Re dyrrecendly<br>received by 430pm       Re dyrrecend by<br>received by 430pm       Re dyrrecend by<br>Hyo.:HP       Monthage       Monthage         Yes No.       Re dyrrecend by<br>received by 430pm       Re dyrrecend by<br>Hyo.:HP       Monthage       Monthage         Yes No.       Re dyrrecend by<br>received by 430pm       Re dyrrecend by<br>Hyo.:HP       Montyage       Montyage         Perth       Gond       Re dyrrecend by<br>Montyage       Montyage       Montyage       Montyage         Perth       Gond       Re dyrrecend by<br>Montyage       Montyage       Montyage       Montyage         2'       C       1       X       X       Investorie       Montyage         2'       C       1       X       Montyage       Montyage       Montyage         2'       C       1       X       Investorie       Montyage       Investorie       Montyage         2'       C       1       X       Montyage       Investorie       Montyage       Investorie       Montyage         2'       C       1       X       Montyage       Investorie       Montyage       Investorie       Investorie       Montyage       Investorie       Montyage                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | E     Alay S     Monotonia       referencing ty<br>exercine that<br>referencing a state<br>in the function of the state<br>in the state state in the state<br>in the state state in the state in the state<br>in the state state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state in the state<br>in the state state in the state in the state in the state in the state<br>in the state state in the state<br>in the state in                                                                                                                                                                                                              | K Rout                                                                                                    | sh                                                         |                                                                                                                                                                              |                                                                                        | Nin                          | CI VOLIVE             |
| Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Me dayrectived by<br>received by 430pm       Me dayrectived by<br>his 0, the<br>manual biology       Mo control on<br>the dayrectived by<br>his 0, the<br>manual biology       Mo control on<br>his 0, the<br>manual biology         Yes       No       March on<br>the day 430pm       March on<br>his 0, the<br>manual biology       March on<br>his 0, the<br>manual biology         Yes       No       March on<br>the day 430pm       March on<br>his 0, the<br>march on<br>his 0, the<br>his                                                                                                                                                                                                                                                                                                   | Re dyreceived by<br>cereived by 430pm     House has<br>here and here in the dyreceived by<br>here in the | Due Date:                                                                                                 | in                                                         |                                                                                                                                                                              |                                                                                        |                              |                       |
| No     Wetcher     Yes     No     H-50-LH     M-50-LH     M-50-LH       monneerD:     Animatic Science     Animatic Science <t< td=""><td>Yes     No     H-50.4,H-3     MaORMa       Yes     An     An     H-50.4,H-3     MaORMa       An     An     An     An     An       An     An</td><td>Yes     No.     H5.0.c.H3     MacRine Mathematical       Peepin     Comp     Comp     Commons     Commons       21     C     1     X     X     MacRine MacRin</td><td></td><td>y received by</td><td></td><td></td><td>HCL</td><td></td></t<> | Yes     No     H-50.4,H-3     MaORMa       Yes     An     An     H-50.4,H-3     MaORMa       An     An     An     An     An       An     An                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Yes     No.     H5.0.c.H3     MacRine Mathematical       Peepin     Comp     Comp     Commons     Commons       21     C     1     X     X     MacRine MacRin                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                           | y received by                                              |                                                                                                                                                                              |                                                                                        | HCL                          |                       |
| momenter D:     momenter D:       retion Factor:     And States       extract Reaphing:     And States       extract Temperature:     And States       extract Temperature:     And States       And States     And States       And And States     And And States       And And States     And And States       And                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | Peetin     Rank     M-JOO.:NM       Deptin     Rank     #of     M-JOO.:NM       Deptin     Rank     #of     M-JOO.:NM       Deptin     Cont     Cont     Cont     Cont       21     C     1     X     X     In Accentic Acid: SAC       21     C     1     X     X     In Accentic Acid: SAC       21     C     1     X     X     In Accentic Acid: SAC       21     C     1     X     X     In Accentic Acid: SAC       21     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     X     In Accentic Acid: SAC       22     C     1     X     In Accentic Acid: SAC     In Accentic Acid: SAC       22     D     V     V     V     In CO.     In CO.       23     D     V     V     V     In CO.       0.21                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | And Control     And Control     And Control       And Control     Control     Control     Control       Depth     Control     Control     Control       Depth     Control     Control     Control       Direction     Con                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 1                                                                                                         | 1                                                          |                                                                                                                                                                              |                                                                                        | 2 <sup>2</sup> H             |                       |
| construction       Ear of the second se                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Protect       Protect       Naiss, 0; NASS         Naiss, 0; NASS       Naiss, 0; NASS         Naiss, 0; Naiss, 0; NASS       Naiss, 0; NASS         Naiss, 0; NASS       Naiss, 0; NASS         Naiss, 0; Nais, 0; Naiss, 0; Naiss, 0; Naiss, 0; Naiss, 0; N                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | End     End     End     End       Depth     Grant     G     H     KNasSO       Depth     Grant     G     H     KNasSO       Depth     Grant     G     H     KNasSO       21     C     L     X     K        22     L     K     K     K       21     C     L     X     K       22     L     K     K     K       21     C     L     K     K       22     K     K     K     K       21     C     L     K     K       22     K     K     K     K       23     K     K     K     K       24     K     K     K     K       25     K     K     K     K       26     K     K     K     K                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Tharmomater                                                                                               |                                                            | ç                                                                                                                                                                            |                                                                                        | H <sub>3</sub> P             | 0 ±; HP               |
| Accordination     Na_5 5_0; NaSO a       Defaulte Reading:     State Fragmentule:       Content Reading:     S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Image: State of the state o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: Signal and the signal and t                                                                                                                                                                                                                              | ~                                                                                                         | arai                                                       | 50                                                                                                                                                                           |                                                                                        | NaH                          | SO 4: NABIS           |
| Defaulte resolution:       Sampled       The section of the sampled is the sa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Image: Second                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Image: Second                                                                                                                                                                                                                              | T                                                                                                         | ł                                                          | p                                                                                                                                                                            |                                                                                        | Na <sub>2</sub>              | 1203:NaSO 3           |
| Acted Imperature:         Constrained         Constrained         Constrained         Sample Comments           are         Time         Depth         Graik         # of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Depth       Grant       For       NaOHHAscorbic Acid: SAPC         Depth       Conn       Cont       C       1       X       X       Sample Comments         2'1       C       1       X       X       Include M1 + #::       NA PP 2:33 Hollo Dog         2'1       C       1       X       X       Include M1 + #::       NA PP 2:33 Hollo Dog         2'1       C       1       X       V       V       V       V       V         0'2'1       C       1       X       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V       V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Depth     remb     #of     A     NaOH+Ascorbic Acid: SAPC       Depth     comp     comp     comp     Sample Comments       2'     C     1     X     X     Tr\Ci(LG \mathcal{D} + \mathcal{H}; C)       2'     C     1     X     X     Intercorbic Acid: SAPC       2'     C     1     X     X     Intercorbic Acid: SAPC       2'     C     1     X     X     Intercorbic Acid: SAPC       2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Sample Comments       2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       0'-2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       0'-2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       0'-2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       0'-2'     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       1     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC     Intercorbic Acid: SAPC       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | T                                                                                                         |                                                            | ł                                                                                                                                                                            |                                                                                        | ZnA                          | cetate+NaOH: Zn       |
| ate         Time         carab         #of         C         L         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X         X </td <td>Depth     Grate/<br/>Carpo     For     C     1     X     X       2'     C     1     X     X     Into (du n + #::<br/>NAP PP 233 40 10 00)       2'     C     1     X     X     Into (du n + #::<br/>NAP PP 233 40 10 00)       2'     C     1     X     X     Into (du n + #::<br/>NAP PP 233 40 10 00)       2'     C     1     X     NAP PP 233 40 10 000       2'     D     N     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     NAP PP 2451 11 001     NAP PP 2451 11 001       M     Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO<sub>2</sub> Na Sr TI Sn U V Zn     NAP PP 26010 : SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U     Hg: 1631 / 2451 / 7470 / 7471       M     Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U     Hg: 1631 / 2451 / 7470 / 7471     Hg: 1631 / 6451 / 7470 / 7471       M     Texas 11 Ai</td> <td>Depth     Grand     # of     A     K     Sample Comments       2'     C     1     X     X     Indiange     Indiange       2'     L     V     V     V     Indiange     Indiange       0-2'     V     V     V     V     Indiange     Indiange       0-2'     V     V     V     V     Indiange       0-2'     V     V     V     Indiange     Indiang</td> <td>Corrected lemperature:</td> <td></td> <td>10</td> <td></td> <td>NaO</td> <td>H+Ascorbic Acid: SAPC</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Depth     Grate/<br>Carpo     For     C     1     X     X       2'     C     1     X     X     Into (du n + #::<br>NAP PP 233 40 10 00)       2'     C     1     X     X     Into (du n + #::<br>NAP PP 233 40 10 00)       2'     C     1     X     X     Into (du n + #::<br>NAP PP 233 40 10 00)       2'     C     1     X     NAP PP 233 40 10 000       2'     D     N     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     V     NAP PP 233 40 10 000       0'2'     V     V     NAP PP 2451 11 001     NAP PP 2451 11 001       M     Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn     NAP PP 26010 : SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U     Hg: 1631 / 2451 / 7470 / 7471       M     Texas 11 AI Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U     Hg: 1631 / 2451 / 7470 / 7471     Hg: 1631 / 6451 / 7470 / 7471       M     Texas 11 Ai                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Depth     Grand     # of     A     K     Sample Comments       2'     C     1     X     X     Indiange     Indiange       2'     L     V     V     V     Indiange     Indiange       0-2'     V     V     V     V     Indiange     Indiange       0-2'     V     V     V     V     Indiange       0-2'     V     V     V     Indiange     Indiang                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Corrected lemperature:                                                                                    |                                                            | 10                                                                                                                                                                           |                                                                                        | NaO                          | H+Ascorbic Acid: SAPC |
| 3[24] 10:00       2'       C       1       X       X       Incident *:         10:05       2'       1       1       1       1       1       1       1         10:05       2'       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       1       0       2       1       1       0       0       2       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       0       1       1       1       1       1       1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 21       C       1       X       X       Incident *:         21       C       1       X       X       NAPP 233406090         21       0.21       0.21       1       1.054011.001         20       X       X       N       Pole 111.001         0.21       X       X       N       Pole 111.001         N       X       X       N       Pole 111.001         N       Texas 11       Al Sa Ba Be B Cd Ca Cr Co Le Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn         M       Texas 11       Al Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn         PIP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       Hg: 1631/245.1/7470 /7471         Affection is and conditions       Affection fixed and actimated to terms and conditions         Affection standed terms and conditions       Affection fixed and bardened terms and conditions                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 21     C     1     X     X     Incident #:       21     C     1     X     NA PP 233 tholeogo       22     NA PP 233 tholeogo     NA PP 233 tholeogo       0.21     V     V     NA PP 1033 tholeogo       0.21     V     V     NA PP 233 tholeogo       0.21     V     V     NA PP 1033 tholeogo       0.21     V     V     NA PP 1030 tholeogo       0.21     V     V     NA PP 1001 tholeogo       0.21     V     NA PP 1001 tholeogo     NA PP 1001 tholeogo       0.21     V     NA PP 1001 tholeogo     NA PP 1001 tholeogo       0.21     NA PP 1001 tholeogo     NA PP 1001 tholeogo     NA PP 1001 tholeogo       NA Texas 11 Al Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn     NA PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn       NM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn     PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn       NM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn     PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn     PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Ph Mn Mo Ni K Se Ag 5l02, Na Sr Tl Sn U V Zn       PP 6010 : 8RCRA Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Time<br>Sampled                                                                                           | Grab/<br>Comp                                              | 11                                                                                                                                                                           |                                                                                        |                              | Sample Comments       |
| 10:05 2'                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 21     NAPP 233 Hole 040       21     NAPP 233 Hole 040       21     NAPP 233 Hole 040       0-21     NAPP 240       0-21     NAPP 240       NAPP 240                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | 21     NAPP 233 Hold OQ       21     NAPP 233 Hold OQ       21     NAPP 233 Hold OQ       0-21     NAPP 233 Hold OQ       NAPP 233 Hold OQ     NAPP 233 Hold OQ       NAPP 233 Hold OQ     NAPP 233 Hold OQ       NAPP 233 Hold OQ     NAPP 233 Hold OQ       NAPP 211 Al Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sh As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       PP 6010 : 8RCRA Sh As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U       <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 1128/24                                                                                                   | -                                                          | XXX                                                                                                                                                                          |                                                                                        | A 1.                         | いいのちょう                |
| 10:20     2'     1     1     1       10:10     0.2'     V     V     V     1050       10:15     0.2'     V     V     V     1051       10:15     0.2'     V     V     V     1001       10:15     0.2'     V     V     V     V       10:15     0.2'     V     V     V       10:15                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 21     NMK PI 25.540.00040       0.21     0.21       0.21     0.21       0.21     0.21       0.21     0.21       0.21     0.21       0.21     0.21       0.22     0.22       0.21     0.21       0.22     0.22       0.22     0.22       0.22     0.22       0.22     0.22       0.22     0.22       0.22     0.22       0.22     0.22       0.22     0.23       0.22     0.24       0.22     0.25       0.22     0.25       0.22     0.25       0.23     0.23       0.24     0.10       0.25     0.245       0.25     0.25       0.26     0.10       0.27     0.25       0.26     0.10       0.27     0.245       0.27     0.27       0.26     0.27       0.27     0.245       0.27     0.27       0.27     0.27       0.27     0.27       0.27     0.27       0.27     0.27       0.27     0.27       0.27     0.27       0.27     0.26 </td <td>21     NMK VI 25.3-H0.00 VI.       0.21     V       0.22     V       0.21     V       0.22     V       0.23     V       0.245     V       0.25     V       0.26     V       0.27     V</td> <td>1 10:05</td> <td>1 1 12</td> <td></td> <td></td> <td>VIN</td> <td>N10-2-141-0044</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 21     NMK VI 25.3-H0.00 VI.       0.21     V       0.22     V       0.21     V       0.22     V       0.23     V       0.245     V       0.25     V       0.26     V       0.27     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | 1 10:05                                                                                                   | 1 1 12                                                     |                                                                                                                                                                              |                                                                                        | VIN                          | N10-2-141-0044        |
| 10:10         0.2         1         10:50         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:15         0.2         10:16         0.11         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2         0.2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 0-2':     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V     V                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 0-21     1     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105     105 <td>+</td> <td></td> <td></td> <td></td> <td>HN HN</td> <td>174000455247</td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | +                                                                                                         |                                                            |                                                                                                                                                                              |                                                                                        | HN HN                        | 174000455247          |
| 10:15 0-2:1 ◆ V V V V Beli11:<br>10:15 0-2:1 ◆ V V V V P Beli11:<br>BCRA 13PM Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Lie Ph M M O Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zh<br>TCLP/SPLP6010: SRCRA Sh As Ba Be Cd Cr Co Cu Ph M M O Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 07: V       V       V       N       Ben Belitit:         07: V       V       V       N       Ben Belitit:         N       Texas 11       N       Sen Belitit:       DbelititeEnsitie         N       Texas 11       Al Sb As Ba Be B Cd Ca Cr Co U Fb Mg Mn Mo Ni K Se Ag St0, Na Sr TI Sn U V Zn       PLP6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag St0, Na Sr TI Sn U V Zn         PLP6010: 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U       Hg: 1631/245.1/7470 /7471         offen dent compary to Eurofina Xenco. It assigna standard terms and conditions       Affect on the standard terms and conditions         of term dent compary to Eurofina Xenco. It analyzed These terms will be enforced unless pervelously negotiated.       Detection                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 02:1     V     V     V     Delitit:       02:1     V     V     V     Bern Belitit:       01:1     Delitit:     Bern Belitit:     Bern Belitit:       0.1:1     Delitit:     Delitit:     Bern Belitit:       0.1:1     Bern Bern Bern Bern Bern Bern Bern Bern                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | -                                                                                                         | 16.                                                        |                                                                                                                                                                              |                                                                                        |                              | T LU WILL             |
| Ben Belitt:       Ben Belitt:       Ben Belitt:       Ben Belitt:       Bind       Bind    <                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | W.C.C.       Sch Belitit:         D.C.C.       D.D.E.LILLERISTIC         D.D.E.LILLERISTIC       D.D.E.LILLERISTIC         D.M. Texas 11 AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn         PLP6010 : BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn         PlL6010 : BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn         PlL6010 : strend strend by the clean fractor based are doe for matanced to and tons         And dent company to Eurofina Stance by the clean fractor based are doe for chromatered to and tons         And least company to Eurofina Stance by the clean fractor based are doe for chromatered to and tons         Areach sample submatted to Eurofina Stance by the clean fractor based area doe to chromatered unless pervedualy negotitated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | Mode     Description       M     Texas 11     All Sb                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 10:15                                                                                                     | 1. 1.0                                                     | 1. 11 1                                                                                                                                                                      |                                                                                        | 70                           | TOOTTLING             |
| BRCRA 13PPM Texas 11 Al Sb As Ba Be Cd Cr Co Cu Pb Ma Mo Ni Se Ag SiO2 Na Sr TI Sn U V Zh                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | M     Texas 11     Al Sb As Ba Be B Cd Cr Co Cu Fb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       PLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       Flore diant company to Eurofina Xenco. Its adilians and addret terms and conditions       referent dent company to Eurofina Xenco. Its adilians and addret terms and conditions       referent sample submitted to Eurofina Xenco. Its analyzed These terms will be enforced unless pervedualy negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M     Texas 11     All Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       M     Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V Zn       PL6010 : 8RCRA Sb As Ba Be Cd Ca Cr Co Cu Pb Mn Mo Ni Se Ag Ti U     Hg: 1631/245.1/7470 /7471       er fem dient company to Eurefina Xenco. Its affigats and subcentractors. It saggar standard terms and conditions     Mile standard terms and conditions       eithen dient company to Eurefina Xenco. Its affigates and subcentractors. It saggar standard terms and conditions     Distribution       eithen dient company to Eurefina Xenco. Its affigates and subcentractors. It saggar standard terms and conditions     Distribution       eithen dient company to Eurefina Xenco. Its affigates and subcentractors. It saggar standard terms and conditions     Distribution       0     Date/Time     Relinquished by: (Sign ature)     Date/Time                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | CT-OT .                                                                                                   | * . 7.                                                     | ~ ~                                                                                                                                                                          |                                                                                        | 111 Be                       | > Belill:             |
| BRCRA 13PPM Texas 11 AI Sb As Ba Be Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>TCLP/SPLP6010 : BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Sa Ag Ti U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | M Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>PLP 6010 : 8RCRA Sb As Ba Be Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>refrem clerr compary to Eurofine Sonton Its Series and autocontractors. It assigns standard terms and conditions<br>relibility for any losses or expension hourined by the client Such bases are due to chromatence beyond the control<br>for each sample submitted to Eurofine Stence. Unices teams will be enforced unless previously negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | M     Texas 11     AI     Short     AI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                           |                                                            |                                                                                                                                                                              |                                                                                        | pk                           | elilleensolum.dor     |
| BRCRA 13PPM Texas 11 AI Sb As Ba Be B Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Sa Ag Ti U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | M         Texas 11         AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr           PLP 6010         SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U         Hg: 1631/245.1/           PLP 6010         SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U         Hg: 1631/245.1/           PLP 6010         SRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U         Hg: 1631/245.1/           Se from clem. company to Eucline Xenco. Its affinites and accontractors. It assigns abander terms and codultons         Second coductor Stance           Set Found dem company to Eucline Xenco. but not analyzed These and activities and advective coductors. These area and coductor rescloued.         Second coductor Stance                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | M     Texas 11     AI     SIO2     Na     Sr     TI     SNO       M     Texas 11     AI     SD     AS     Ba     BC     AC     Ca     Cr     Co     Cu     FM     Mn     Mo     Ni     K     Se     AG     SiO2     Na     Sr     TI     Si     U     V       PLP 6010     SRCRA     Sb     As     Ba     BC     Ca     Cr     Co     Cu     PM     Mn     Mo     Ni     K     Se     Ag     SiO2     Na     Sr     TI     U     V       PLP 6010     SRCRA     Sb     As     Ba     Ed     Cr     Co     Cu     PM     Mn     No     Ni     K     Ag     TI     U     V       PLP 6010     SRCRA     Sb     As     Ba     Ed     Cr     Co     Cu     PM     Mn     No     Ni     K     Ag     TI     V     V       Protocol     SRCRA     Sb     As     Ba     Cd     Cr     Co     Cu     PM     Mn     No     Ni     K     SiO2     Na     Si     Ti     V     V       Protocol     Si     Si     Si     Si     Si <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                                            |                                                                                                                                                                              |                                                                                        |                              |                       |
| BRCRA 13PPM Texas 11     AI SD As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>TCLP/SPLP6010 : BRCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Sa Ag TI U                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | M Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr PLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Ti U Hg: 1631/245.1,     efform clean company to Eurofens Kenco. Its affinites and autocontractors. It sadgras abadran'terms and conditions     analybits or any losses or expension hourned by the client favoi bisses and due to chroundance abyord the control     for axploses or expension hourned by the client favoi bisses and due to chroundance abyord the control     for each sample submitted to Eurofine Xenro. but not analyzed These terms will be enforced unless previously megotited.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | M     Texas 11     AI     Sb     AS     Si     Si     Ti     Si                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                           |                                                            |                                                                                                                                                                              |                                                                                        | Ov .                         |                       |
| BRCRA 13PPM Texas 11 AI SD As Ba Be B Cd Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag 5i0 <sub>2</sub> Na Sr<br>TCLP/SPLP6010 : BRCPA Sh As Ba Be Cd Cr Co Cu Ph Mn Mn Ni Sa Ag Ti U Hondesia                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | PM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr<br>PLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg: 1631/245.1/<br>efform clear company to Eurofine Xenco, its affiliates and subcontractors, it assigns standard terms and conditions<br>relibility for any losses or expension hourned by the client Such bases are due to chroundance by spond the control<br>for each sample submitted to Eurofine Xenco, but not analyzed. These tarms will be enforced unless previously negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | M     Texas 11     AI Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO <sub>2</sub> Na Sr TI Sn U V.       PLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag TI U     Hg: 1631/245.1/7470 /747       er fem dient company to Eurofine Xenco. Its affliques and subcentractors. It satigns standard terms and conditions     Hg: 1631/245.1/7470 /747       er fem dient company to Eurofine Xenco. Its affliques and subcentractors. It satigns standard terms and conditions     Hg: 1631/245.1/7470 /747       er fem dient company to Eurofine Xenco. Its affliques and subcentractors. It satigns standard terms and conditions     Hg: 1631/245.1/7470 /747       for each sample submitted to Eurofine Xenco. Its affliques and subcentractors. It satigns standard terms and conditions     Date/Titme       for each sample submitted to Eurofine Xenco. Jui not analyzed. These terms will be enforced unlists previously megodiated.     Received by: (Signature)       (5)     Type     Type                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                           |                                                            |                                                                                                                                                                              |                                                                                        | 22                           |                       |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | er from client company to Eurofine Xenco, its affiliates and subcontractors. It assigns standard terms and conclutors<br>resibility for any losses or expenses incurred by the client if such losses are due to direumstances beyond the control<br>for each sample submitted to Eurofine Xenco, but not analyzed. These tarms will be enforced unless previously negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | er from clear company to Eurefine Stores to a filling or the standard terms and conditions<br>for a company to Eurefine Stores in a affiliates and atteornitacions. It assigns standard terms and conditions<br>multiply for any losses or expension incrimed by the clear if such bases are due to chromatarice beyond the control<br>for each sample submitted to Eurofic analyzed. These terms will be enforced unless previously negotiated.<br>(f) Date/Lime Relinquished by: (Sign atture) Received by: (Sign atture) (f) (f) (f) (f) (f) (f) (f) (f) (f) (f                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           | Texas 11 AI Sb                                             | As Ba Be B Cd Ca Cr Co                                                                                                                                                       | Cu Fe Pb Mg Mn Mo Ni F                                                                 | Se Ag SiO <sub>2</sub> Na Sr | U V Zn                |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | Date/Time Relinquished by: (Signature) Received by: (Signature) (ちごてい パノルロ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | of Eurofins Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for ea | ty for any losses or expense<br>ch sample submitted to Eur | is incurred by the client if such losses are du<br>ofins Xenro, but not analyzed. These terms                                                                                | Le to dircumstances beyond the control<br>Will be anforced unless previously negotiate | bd.                          |                       |
| reactory or any reason are generates incurred by the cient if such losses are due to chramtatance beyond the control<br>for each sample submitted to Eurofine Xenno, but not analyzed. These terms will be enforced unless previously negotiated.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | alut                                                                                                      | (b.                                                        | x1/1 h2:                                                                                                                                                                     |                                                                                        | F                            |                       |
| reasony for any tasses a receiprate induction of the careful of according to a characterized by the careful of                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | :24 1/14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                           |                                                            | 9                                                                                                                                                                            |                                                                                        |                              |                       |

Page 113 of 123

5 6

13

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5992 List Number: 1 Creator: Lopez, Abraham

| Question                                                                         | Answer | Comment                             |
|----------------------------------------------------------------------------------|--------|-------------------------------------|
| The cooler's custody seal, if present, is intact.                                | True   |                                     |
| Sample custody seals, if present, are intact.                                    | True   |                                     |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |                                     |
| Samples were received on ice.                                                    | True   |                                     |
| Cooler Temperature is acceptable.                                                | True   |                                     |
| Cooler Temperature is recorded.                                                  | True   |                                     |
| COC is present.                                                                  | True   |                                     |
| COC is filled out in ink and legible.                                            | True   |                                     |
| COC is filled out with all pertinent information.                                | True   |                                     |
| Is the Field Sampler's name present on COC?                                      | True   |                                     |
| There are no discrepancies between the containers received and the COC.          | True   |                                     |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |                                     |
| Sample containers have legible labels.                                           | True   |                                     |
| Containers are not broken or leaking.                                            | True   |                                     |
| Sample collection date/times are provided.                                       | True   |                                     |
| Appropriate sample containers are used.                                          | N/A    | Refer to Job Narrative for details. |
| Sample bottles are completely filled.                                            | True   |                                     |
| Sample Preservation Verified.                                                    | N/A    |                                     |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |                                     |
| Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").  | N/A    |                                     |

Job Number: 890-5992-1 SDG Number: 03C1558301

List Source: Eurofins Carlsbad

## Login Sample Receipt Checklist

Client: Ensolum

Login Number: 5992 List Number: 2 Creator: Rodriguez, Leticia

| Question                                                                         | Answer | Comment |
|----------------------------------------------------------------------------------|--------|---------|
| The cooler's custody seal, if present, is intact.                                | N/A    |         |
| Sample custody seals, if present, are intact.                                    | N/A    |         |
| The cooler or samples do not appear to have been compromised or tampered with.   | True   |         |
| Samples were received on ice.                                                    | True   |         |
| Cooler Temperature is acceptable.                                                | True   |         |
| Cooler Temperature is recorded.                                                  | True   |         |
| COC is present                                                                   | True   |         |
| COC is filled out in ink and legible.                                            | True   |         |
| COC is filled out with all pertinent information                                 | True   |         |
| Is the Field Sampler's name present on COC?                                      | True   |         |
| There are no discrepancies between the containers received and the COC.          | True   |         |
| Samples are received within Holding Time (excluding tests with immediate HTs)    | True   |         |
| Sample containers have legible labels.                                           | True   |         |
| Containers are not broken or leaking.                                            | True   |         |
| Sample collection date/times are provided.                                       | True   |         |
| Appropriate sample containers are used.                                          | True   |         |
| Sample bottles are completely filled.                                            | True   |         |
| Sample Preservation Verified.                                                    | N/A    |         |
| There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs | True   |         |
| Containers requiring zero headspace have no headspace or bubble is               | N/A    |         |

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-5992-1 SDG Number: 03C1558301

List Source: Eurofins Midland List Creation: 01/22/24 08:25 AM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 316120

| QUESTION               | 15                                                          |
|------------------------|-------------------------------------------------------------|
| Operator:              | OGRID:                                                      |
| XTO ENERGY, INC        | 5380                                                        |
| 6401 Holiday Hill Road | Action Number:                                              |
| Midland, TX 79707      | 316120                                                      |
|                        | Action Type:                                                |
|                        | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

### QUESTIONS

| Prerequisites    |                                           |
|------------------|-------------------------------------------|
| Incident ID (n#) | nAPP2334060921                            |
| Incident Name    | NAPP2334060921 PLU 18 BRUSHY DRAW CTB @ 0 |
| Incident Type    | Produced Water Release                    |
| Incident Status  | Remediation Closure Report Received       |

#### Location of Release Source

| Please answer all the questions in this group. |                        |
|------------------------------------------------|------------------------|
| Site Name                                      | PLU 18 Brushy Draw CTB |
| Date Release Discovered                        | 11/22/2023             |
| Surface Owner                                  | Federal                |

### Incident Details

| Please answer all the questions in this group.                                                          |                        |
|---------------------------------------------------------------------------------------------------------|------------------------|
| Incident Type                                                                                           | Produced Water Release |
| Did this release result in a fire or is the result of a fire                                            | No                     |
| Did this release result in any injuries                                                                 | No                     |
| Has this release reached or does it have a reasonable probability of reaching a<br>watercourse          | No                     |
| Has this release endangered or does it have a reasonable probability of<br>endangering public health    | No                     |
| Has this release substantially damaged or will it substantially damage property or the environment      | No                     |
| Is this release of a volume that is or may with reasonable probability be<br>detrimental to fresh water | No                     |

### Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Crude Oil Released (bbls) Details Not answered.

| Produced Water Released (bbls) Details                                                                                                                  | Cause: Equipment Failure   Pump   Produced Water   Released: 8 BBL   Recovered: 4 BBL   Lost: 4 BBL. |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------|
| Is the concentration of chloride in the produced water >10,000 mg/l                                                                                     | Yes                                                                                                  |
| Condensate Released (bbls) Details                                                                                                                      | Not answered.                                                                                        |
| Natural Gas Vented (Mcf) Details                                                                                                                        | Not answered.                                                                                        |
| Natural Gas Flared (Mcf) Details                                                                                                                        | Not answered.                                                                                        |
| Other Released Details                                                                                                                                  | Not answered.                                                                                        |
| Are there additional details for the questions above (i.e. any answer containing<br>Other, Specify, Unknown, and/or Fire, or any negative lost amounts) | Not answered.                                                                                        |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico** Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 316120

**QUESTIONS** (continued)

| Operator:              | OGRID:                                                      |
|------------------------|-------------------------------------------------------------|
| XTO ENERGY, INC        | 5380                                                        |
| 6401 Holiday Hill Road | Action Number:                                              |
| Midland, TX 79707      | 316120                                                      |
|                        | Action Type:                                                |
|                        | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

### QUESTIONS

| Nature and Volume of Release (continued)                                                                                                                |                                                                                   |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| Is this a gas only submission (i.e. only significant Mcf values reported)                                                                               | No, according to supplied volumes this does not appear to be a "gas only" report. |
| Was this a major release as defined by Subsection A of 19.15.29.7 NMAC                                                                                  | No                                                                                |
| Reasons why this would be considered a submission for a notification of a majo release                                                                  | r<br>Unavailable.                                                                 |
| With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form. |                                                                                   |

### Initial Response

| The responsible party must undertake the following actions immediately unless they could create a s                                                                                          | safety hazard that would result in injury.                                                                                                                                                                                                                                                                                                                                                             |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| The source of the release has been stopped                                                                                                                                                   | True                                                                                                                                                                                                                                                                                                                                                                                                   |
| The impacted area has been secured to protect human health and the<br>environment                                                                                                            | True                                                                                                                                                                                                                                                                                                                                                                                                   |
| Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices                                                                           | True                                                                                                                                                                                                                                                                                                                                                                                                   |
| All free liquids and recoverable materials have been removed and managed<br>appropriately                                                                                                    | True                                                                                                                                                                                                                                                                                                                                                                                                   |
| If all the actions described above have not been undertaken, explain why                                                                                                                     | Not answered.                                                                                                                                                                                                                                                                                                                                                                                          |
|                                                                                                                                                                                              | iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of<br>ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of<br>evaluation in the follow-up C-141 submission.                                                                                                                       |
|                                                                                                                                                                                              |                                                                                                                                                                                                                                                                                                                                                                                                        |
| to report and/or file certain release notifications and perform corrective actions for releat<br>the OCD does not relieve the operator of liability should their operations have failed to a | knowledge and understand that pursuant to OCD rules and regulations all operators are required<br>ases which may endanger public health or the environment. The acceptance of a C-141 report by<br>adequately investigate and remediate contamination that pose a threat to groundwater, surface<br>t does not relieve the operator of responsibility for compliance with any other federal, state, or |
| I hereby agree and sign off to the above statement                                                                                                                                           | Name: Garrett Green<br>Title: SHE Coordinator<br>Email: garrett.green@exxonmobil.com<br>Date: 12/06/2023                                                                                                                                                                                                                                                                                               |

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3470 Fax: (505) 476-3462

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 316120

QUESTIONS (continued)

| Operator:              | OGRID:                                                      |
|------------------------|-------------------------------------------------------------|
| XTO ENERGY, INC        | 5380                                                        |
| 6401 Holiday Hill Road | Action Number:                                              |
| Midland, TX 79707      | 316120                                                      |
|                        | Action Type:                                                |
|                        | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

### QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

| What is the shallowest depth to groundwater beneath the area affected by the<br>release in feet below ground surface (ft bgs) | Between 100 and 500 (ft.)  |  |
|-------------------------------------------------------------------------------------------------------------------------------|----------------------------|--|
| What method was used to determine the depth to ground water                                                                   | OCD Imaging Records Lookup |  |
| Did this release impact groundwater or surface water                                                                          | No                         |  |
| What is the minimum distance, between the closest lateral extents of the release and the following surface areas:             |                            |  |
| A continuously flowing watercourse or any other significant watercourse                                                       | Between ½ and 1 (mi.)      |  |
| Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)                                             | Greater than 5 (mi.)       |  |
| An occupied permanent residence, school, hospital, institution, or church                                                     | Between 1 and 5 (mi.)      |  |
| A spring or a private domestic fresh water well used by less than five households<br>for domestic or stock watering purposes  | Between 1 and 5 (mi.)      |  |
| Any other fresh water well or spring                                                                                          | Between 1 and 5 (mi.)      |  |
| Incorporated municipal boundaries or a defined municipal fresh water well field                                               | Greater than 5 (mi.)       |  |
| A wetland                                                                                                                     | Between ½ and 1 (mi.)      |  |
| A subsurface mine                                                                                                             | Greater than 5 (mi.)       |  |
| An (non-karst) unstable area                                                                                                  | Greater than 5 (mi.)       |  |
| Categorize the risk of this well / site being in a karst geology                                                              | Low                        |  |
| A 100-year floodplain                                                                                                         | Between 1 and 5 (mi.)      |  |
| Did the release impact areas not on an exploration, development, production, or<br>storage site                               | No                         |  |

#### Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 441 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 56.3 GRO+DRO (EPA SW-846 Method 8015M) 56.3 BTEX (EPA SW-846 Method 8021B or 8260B) 0 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 01/17/2024 On what date will (or did) the final sampling or liner inspection occur 01/18/2024 On what date will (or was) the remediation complete(d) 01/18/2024 What is the estimated surface area (in square feet) that will be reclaimed 3345 What is the estimated volume (in cubic yards) that will be reclaimed 190 What is the estimated surface area (in square feet) that will be remediated 3345 What is the estimated volume (in cubic yards) that will be remediated 190 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Phone: (505) 476-3470 Fax: (505) 476-3462

## State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 316120

| QUESTIONS (continued)  |                                                             |  |
|------------------------|-------------------------------------------------------------|--|
| Operator:              | OGRID:                                                      |  |
| XTO ENERGY, INC        | 5380                                                        |  |
| 6401 Holiday Hill Road | Action Number:                                              |  |
| Midland, TX 79707      | 316120                                                      |  |
|                        | Action Type:                                                |  |
|                        | IC-1411 Remediation Closure Request C-141 (C-141-V-Closure) |  |

### QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered (In Situ) Soil Vapor Extraction Not answered. (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered. (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered. (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered. Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Garrett Green Title: SHE Coordinator I hereby agree and sign off to the above statement Email: garrett.green@exxonmobil.com

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Date: 02/20/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 316120

| QUESTIONS (continued)                       |                                                                             |
|---------------------------------------------|-----------------------------------------------------------------------------|
| Operator:<br>XTO ENERGY, INC                | OGRID:<br>5380                                                              |
| 6401 Holiday Hill Road<br>Midland, TX 79707 | Action Number:<br>316120                                                    |
|                                             | Action Type:<br>[C-141] Remediation Closure Request C-141 (C-141-v-Closure) |
| QUESTIONS                                   |                                                                             |
| Deferral Requests Only                      |                                                                             |

| Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation. |    |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|--|
| Requesting a deferral of the remediation closure due date with the approval of this<br>submission                                                                                              | No |  |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

## **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 316120

| QUESTIONS (continued)  |                                                             |
|------------------------|-------------------------------------------------------------|
| Operator:              | OGRID:                                                      |
| XTO ENERGY, INC        | 5380                                                        |
| 6401 Holiday Hill Road | Action Number:                                              |
| Midland, TX 79707      | 316120                                                      |
|                        | Action Type:                                                |
|                        | [C-141] Remediation Closure Request C-141 (C-141-v-Closure) |

QUESTIONS

| Sampling Event Information                                                                      |            |
|-------------------------------------------------------------------------------------------------|------------|
| Last sampling notification (C-141N) recorded                                                    | 302589     |
| Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC | 01/19/2024 |
| What was the (estimated) number of samples that were to be gathered                             | 30         |
| What was the sampling surface area in square feet                                               | 6000       |

**Remediation Closure Request** 

| Only answer the questions in this group if seeking remediation closure for this release because all r                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Requesting a remediation closure approval with this submission                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Have the lateral and vertical extents of contamination been fully delineated                                                                                                                                                                                                                                                                                                                                                                                                                                                            | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Was this release entirely contained within a lined containment area                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | No                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| All areas reasonably needed for production or subsequent drilling operations have<br>been stabilized, returned to the sites existing grade, and have a soil cover that<br>prevents ponding of water, minimizing dust and erosion                                                                                                                                                                                                                                                                                                        | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| What was the total surface area (in square feet) remediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 3345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| What was the total volume (cubic yards) remediated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene                                                                                                                                                                                                                                                      | Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| What was the total surface area (in square feet) reclaimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3345                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| What was the total volume (in cubic yards) reclaimed                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | 190                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| Summarize any additional remediation activities not included by answers (above)                                                                                                                                                                                                                                                                                                                                                                                                                                                         | Site assessment, delineation, and excavation activities were conducted at the Site to address the November 2023 release of produced water. Laboratory analytical results for excavation soil samples collected from the final excavation extent indicated all COC concentrations were compliant with the Site Closure Criteria and reclamation requirement. Based on laboratory analytical results, no further remediation is required. The release is vertically defined by confirmation floor soil samples FS01 through FS19 and laterally defined by confirmation foor soil samples SW01 through SW05. No additional excavation will be needed at the time of pad abandonment or major facility reconstruction as a result of this release. Following pad abandonment or major facility reconstruction, the work area will be reseeded with the recommended BLM seed mixture. On January 18, 2024, XTO backfilled the northern half of the excavation because the area was subject to high traffic. The caliche material used for the backfill was purchased locally and the area recontoured to match pre-existing Site conditions. Photographic documentation of the backfilled the week of February 19, 2024. Excavation of soil has mitigated adverse conditions at this Site. The release has been vertically and laterally defined. The lined containment was inspected and appears to be operating as designed. Depth to groundwater is confirmed to be greater than 100 feet bgs and no other sensitive receptors were identified near the release extent. XTO believes these remedial actions are protective of human health, the environment, and groundwater. As such, XTO respectfully requests no further remediation for Incident Number NAPP2334060921. |
| The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a<br>comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of<br>final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC. |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

, human health or the environment. In additi not relieve the operator of resp any other federal, local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

| I hereby agree and sign off to the above statement | Name: Garrett Green<br>Title: SHE Coordinator |
|----------------------------------------------------|-----------------------------------------------|
|                                                    | Email: garrett.green@exxonmobil.com           |
|                                                    | Date: 02/20/2024                              |

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 316120

Page 122 of 123

**QUESTIONS** (continued) Operator: OGRID: XTO ENERGY, INC 5380 6401 Holiday Hill Road Action Number: Midland, TX 79707 316120 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure) QUESTIONS Reclamation Report

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission

No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

# **State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 316120

CONDITIONS Operator: OGRID: **XTO ENERGY, INC** 5380 6401 Holiday Hill Road Action Number: Midland, TX 79707 316120 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

### CONDITIONS

| Created By | Condition                                                                                                                                                     | Condition<br>Date |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| rhamlet    | We have received your Remediation Closure Report for Incident #NAPP2334060921 PLU 18 BRUSHY DRAW CTB, thank you. This Remediation Closure Report is approved. | 4/22/2024         |