

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Remediation Report and Closure Request

Maverick Permian, LLC

EVGSAU 3366-029 Flowline Release

Unit Letter E, Section 33, Township 17 South, Range 35 East

Lea County, New Mexico

Incident IDs# nJXK1609752883 and nPRS0420835421

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was initially contracted by ConocoPhillips (COP) to assess a historical release that occurred from a flowline associated with the EVGSAU 3366-029 flowline (API No. 30-025-21223). The release footprint is located in the Public Land Survey System (PLSS) Unit Letter E Section 33, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.792949°, - 103.470266°, as shown in **Figure 1** and **Figure 2**. In 2022 Maverick Permian LLC (Maverick) acquired the Site from COP, began operating the Site in June 2022, and undertook the remediation activities described in this report.

BACKGROUND

nPRS0420835421

According to the State of New Mexico OCD Permitting portal information, operations personnel discovered a 3-inch flowline leak on March 29, 2004, the result of external corrosion. Approximately 62 barrels (bbls) of produced water were reported released from the flowline and approximately 61 bbls of fluid were reported recovered by vac truck during the initial release. Immediate action included shutting in the well, repair of the flowline, and recovery of fluids. The initial C-141 report form is listed as submitted to the New Mexico Oil Conservation District (NMOCD) on July 26, 2004, and subsequently assigned the release Incident ID JXK1609752883. This release emanated from the same location as Incident ID nPRS0420835421 that occurred in 2016 as described below. The subsequent assessment and remediation activities described in this report under Incident ID nPRS0420835421 also cover this release.

nJXK1609752883

According to the State of New Mexico C-141 Initial Report, operations personnel discovered the flowline leak during routine checks on April 4, 2016. Approximately 5.77 barrels (bbls) of produced water and 10 bbls of oil were reported released from the flowline and approximately 10 bbls of fluid were reported recovered. The fluids migrated north-northeast along a low-lying area running parallel to a buried underground pipeline. Immediate action included isolating the well to repair the flowline in the battery facility. The initial C-141 report form was submitted to the New Mexico Oil Conservation District (NMOCD) on April 6, 2016, and subsequently assigned the release Incident ID nJXK1609752883. This release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD fully executed on May 9, 2019.

The original C-141 Form associated with this release was previously submitted to the NMOCD in the NMOCD-rejected COP *Interim Closure Report* dated April 13, 2021, submitted to the NMOCD on March 13, 2021, and again on October 21, 2022, and is available in the NMOCD Permitting portal under Incident ID nJXK1609752883.

Tetra Tech, Inc.

1500 CityWest Boulevard, Suite 1000, Houston, Texas 77042

Tel +1.832.251.5160 | tetratech.com/oga | tetratech.com

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

March 25, 2024

SITE CHARACTERIZATION

Receptors

Tetra Tech performed a Site characterization that identified no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). According to the NMOCD Oil and Gas Map online, the Site is in an area of low karst potential. Receptor site characterization data is included in **Attachment 1**.

Depth to Groundwater

According to the New Mexico Office of State Engineer's (NMOSE) Reporting System, there are three (3) water wells within ½ mile of the Site with an average depth to groundwater of 80 feet below ground surface (bgs). The depth to groundwater determination data is included in **Attachment 1**.

Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the Site is mapped as Kimbrough-Lea complex, dry, 0 to 3 Percent Slopes, which is classified as a loam soil. The USDA NCRS Soil Map and soil profile are provided in **Attachment 1**.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Total Petroleum Hydrocarbons (TPH), and chloride in soil.

Based on the site characterization accepted by the NMOCD in the Interim Closure Report and previous submissions related to Incident nJXK1609752883, and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site for groundwater between 51 and 100 feet bgs are as follows:

Closure Criteria for Soils Impacted by a Release

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (GRO+DRO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

Reclamation Requirements

Constituent	Remediation RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE ACTIVITIES

In accordance with 19.15.29.8. B. (4) NMAC "the responsible party may commence remediation immediately after discovery of a release", COP elected to begin initial remedial response and assessment of the impacted area in 2016. The visibly impacted soil in the release footprint was excavated by COP personnel with heavy equipment to approximately six inches bgs to remove the stained surface soils. During the initial response activities, liner material was observed at the surface in the southern portion of the release footprint and was assumed to be part of a former closed reserve pit. **Figure 3** depicts the release extent and initial response excavation area. Visibly impacted soil was excavated from an area equaling approximately 4,000 square feet during initial response activities.

INITIAL SITE ASSESSMENT

Initial Assessment Soil Sampling

Tetra Tech and their drilling subcontractor mobilized to the Site on August 9, 2017, to advance three (3) soil borings (SB-1 through SB-3) to define the extent of the impacted soils outside the assumed reserve pit footprint. Soil borings SB-1, SB-2, and SB-3 were drilled to total depths of 55, 20, and 25 feet bgs, respectively. The soil samples were field screened for organic vapors with a PID and chlorides with an ExStik. Selected samples were placed into laboratory-provided sample containers and transferred under chain of custody documentation to Pace Analytical Laboratory (Pace) for analysis of TPH by Method 8015M, and chloride by Method 300.0. Selected samples were analyzed for BTEX by Method 8260B. **Figure 3** depicts the release extent with the soil boring locations and soil boring location coordinates are presented in **Table 1**.

Initial Assessment Sampling Results

The laboratory analytical results from the August 2020 soil sampling event are summarized in **Table 2** screened against Reclamation Requirements. The laboratory analytical results for the samples analyzed reported concentrations of BTEX and TPH as less than Reclamation Requirements with the exception of the sample collected from SB-1 from the 2-3 foot depth interval which reported TPH at a concentration greater than the Reclamation Requirement. Chloride was reported at concentrations less than the Reclamation Requirement with the exception of samples collected from SB-1 and SB-3 from the 0-1 foot bgs depth interval. The laboratory analytical data packages including chain-of-custody documentation for Assessment Sampling are included in **Attachment 2**.

INITIAL REMEDIATION WORK PLAN

Based on the analytical results, COP proposed soil excavation and disposal in the areas of boring SB-1 and SB-3 to a depth of 4 feet bgs and the installation of a 40-mil poly liner in the excavation bottom to cap remaining chlorides in the subsurface soils, as shown on **Figure 3**. The excavation would then be backfilled with clean material to surface grade.

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

March 25, 2024

Within the revised Work Plan submitted to NMOCD on March 12, 2018, the remediation activities are described. The revised Work Plan is available on the NMOCD Imaging website. Tetra Tech has been unable to locate the email correspondence between NMOCD and COP indicating NMOCD's approval of the revised Work Plan.

INITIAL REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

Tetra Tech mobilized to the Site between January 21 and 30, 2019, to supervise the excavation and remediation activities. The excavation contractor excavated the remediation area to a depth of 4 feet bgs with plans to install a liner as shown in **Figure 4**. Approximately 540 cubic yards of material were transported for disposal to the R360 Halfway Landfill facility in Hobbs, New Mexico. Excavation widths and depths were guided based on the assessment and confirmation sampling data to remove impacted soils. During remedial activities, on-site personnel discovered liner material at the ground surface in the vicinity of SSW-2. Remedial activities were halted, and the excavation area south of SSW-2 was not expanded any farther so as to not disturb the assumed closed reserve pit.

Initial Remediation Confirmation Sampling

Confirmation samples were collected from the sidewalls and floors of the excavations to confirm that the impacted materials were properly removed. A total of 16 confirmation samples were collected during the remedial activities as shown in **Figure 3**. A total of three (3) floor samples (AH-1 through AH-3) and 13 sidewall samples were collected. Floor and sidewall confirmation samples were field screened for chlorides with an ExStik prior to collection into laboratory-supplied sample containers.

Confirmation samples were submitted to Pace for analysis of BTEX by method 8260B, TPH by Method 8015M, and chloride by Method 300.0. Laboratory analytical results reported BTEX, TPH, and chloride concentrations as less than Reclamation Requirements or Remediation RRALs, as applicable, with the exception of sidewall samples SSW-2 and WSW-2. The excavation was laterally expanded in the areas where the initial WSW-2 and SSW-2 sidewall samples were collected. The excavation near WSW-2 sample location was extended to include the soil below a set of polylines. The impacted soils were removed and are bound to the west by ESW-3. Final ESW-3, WSW-2, and SSW-2 sidewall confirmation sample locations were over-excavated during the Additional Remediation discussed below.

ESW-2 lies within the path of numerous flowlines and at the intersection of flowlines running west-northwest to east-southeast and a flowline running from east-northeast to west-southwest. This area is considered an area in active use for production operations and therefore does not need to be reclaimed in accordance with 19.15.29.13 D. ESW-2 is delineated laterally and vertically to Reclamation Requirements by samples collected from assessment sampling locations BH-20-3 and BH-20-3S, Initial Remediation sample location AH-2, and Additional Remediation sample locations SW-1 and SW-9. This area is proposed to be reclaimed during the plugging and abandonment of EVGSAU 3366-029 and the reclamation well pad and associated flowlines.

Confirmation sample laboratory analytical results screened against Reclamation Requirements and RRALs are summarized in **Table 3** and **Table 4** and laboratory analytical data packages including chain of custody documentation for Initial Remediation are included in **Attachment 3**

Initial Remediation Liner Installation and Excavation Backfill

Subsequent to the receipt of confirmation sample results, the excavation contractor installed a 40-mil poly liner in the base of the excavation. The excavation was then backfilled with clean material to surface grade. Photographic documentation of the Initial Remediation activities is included in **Attachment 6**.

Remediation Report and Closure Report
Maverick Permian, LLC
EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

March 25, 2024

ADDITIONAL SITE ASSESSMENT

Additional Assessment Sampling

To characterize the impacted area more fully, Tetra Tech conducted Additional Site Assessment soil sampling on May 21, 2020, in the vicinity of the release area. Three (3) borings (BH-20-1S through BH-20-3S) were installed using an air rotary drilling rig in the vicinity of the release footprint as shown in **Figure 5**. Two borings (BH-20-1S, and BH-20-3S) were installed to a depth of 5 feet bgs to the west and east of the release footprint. One boring (BH-20-2S) was installed within the release footprint south of the area excavated and backfilled in January 2019 to vertically delineate the previously unaddressed release area.

BH-20-3 was installed using an air rotary drilling rig to characterize an unrelated, adjacent footprint associated with duplicate Incident IDs nPAC0605541294 and nPRS0414755359 on May 21, 2020. Boring BH-20-3 was completed east of the historic release area, to a depth of 5 feet bgs to achieve horizontal delineation, and acts as delineation of the nJXK1609752883 extent to the north.

A total of 14 samples were collected from these four (4) borings and submitted to Pace Analytical Laboratory in Mount Juliet, Tennessee (Pace National) for analysis of BTEX by Method 8260B, TPH by Method 8015M, and chloride by Method 300.0.

Additional Assessment Sampling Results

The laboratory analytical results from the May 2020 Additional Assessment Sampling event are summarized in **Table 2** screened against Reclamation Requirements. The laboratory analytical results for the samples analyzed reported concentrations of BTEX, TPH, and chloride as less than Reclamation Requirements or Remediation RRALs, as applicable, with the exception of samples collected from BH-20-2S from the 0-1 foot and 2-3 foot bgs sample intervals which reported chloride concentrations as greater than the Reclamation Requirement. The laboratory analytical data packages including chain-of-custody documentation for Additional Assessment Sampling are included in **Attachment 4**.

ADDITIONAL REMEDIATION WORK PLAN

Based on the analytical results, COP proposed to remove the remaining impacted material in the vicinity of BH-20-2S as shown in **Figure 6**. Impacted soils within the release extent southwest of the January 2019 remediation area to be excavated using heavy equipment to a maximum depth of 4 feet bgs. Excavated soils to be transported offsite and disposed of at an NMOCD-approved disposal facility. Following soil removal, the excavation will be backfilled with clean material to surface grade. The COP estimated the volume of material to be remediated approximately 580 cubic yards.

Additionally, the Interim Closure Report requested the following variance from 19.15.29.12 D(1) NMAC:

"After characterization of this release, COP proposes a variance request from 19.15.29.12 D(1) NMAC for collecting confirmation samples within the assumed closed reserve pit extent. Based on the analytical results associated with boring location BH-20-2S, soils below four (4) feet bgs within the release footprint are below Site RRALs and do not pose a risk to groundwater in the area. Furthermore, depth to groundwater in the area is approximately 80 feet bgs.

Thus, in accordance with 19.15.29.14(A) NMAC, ConocoPhillips requests a variance for the placement of a liner within the excavated area as an alternative to confirmation sampling. The liner will be properly seated at the base of the excavation to impede residual chloride in soil moving upward into the rooting zone via capillary action. The liner will be domed and thus also provide an engineering control that will serve as a barrier to surface water infiltration and thus inhibit the downward migration of residual constituents from any

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

remaining impacted soil beneath the liner. Because the liner is emplaced, it will provide equal or better protection of fresh water, human health and the environment. The liner will impede any residual chloride in soil from leaching into the surficial layers of non-waste containing, uncontaminated, earthen material."

NMOCD REJECTION OF INTERIM CLOSURE REQUEST

On October 21, 2022, the NMOCD rejected the Interim Closure Request the Additional Remediation Work Plan and COP Variance Request. This section responds to relevant NMOCD comments to provide clarification, further detail, and/or actions taken by Maverick where appropriate in response to NMOCD comments. To provide clarity, the NMOCD rejection comments are reiterated below along with Maverick's response.

"Numerous samples do not meet the closure requirements of 19.15.29 NMAC. SSW-2, WSW-2, and AH-2 are above the reclamation standard of 600 mg/kg for chloride"

During the Additional Remediation undertaken by Maverick discussed below, Maverick over-excavated the area of SSW-2 and WSW-2 where samples from the Initial Remediation reported chloride concentrations as greater than the Reclamation Requirement of 600 mg/kg as shown in **Figure 6**.

AH-1 is a floor confirmation sample collected from 4 feet bgs and deeper from the base of the westernmost 4-foot excavation as shown in **Figure 4**. Based on the NMOCD accepted depth-to-groundwater characterization previously submitted in the *Work Plan for the ConocoPhillips Company, EGSAU 3366-029* work plan dated March 6, 2018 (see NMOCD Online Imaging 1RP-4233), and the Interim Closure Request submitted on April 13, 2021, and October 21, 2022, the Remediation RRAL for chloride for this sample is 10,000 mg/kg and no further action is required at this location.

"ESW-2 is above the reclamation standard of 100 mg/kg for TPH Variance request is denied"

Sample ESW-2 is a sidewall confirmation sample collected from the eastern excavation wall of the easternmost Initial Remediation excavation. This location lies within the path of numerous flowlines and at the intersection of flowlines running west-northwest to east-southeast and a flowline running from east-northeast to west-southwest. It is Maverick's position that a variance is not required in this area as it is in active use for production operations and therefore does not need to be reclaimed in accordance with 19.15.29.13 D.

ESW-2 is delineated laterally and vertically to Reclamation Requirements by samples collected from assessment sampling locations BH-20-3 and BH-20-3S, Initial Remediation sample location AH-2, and Additional Remediation sample locations SW-1 and SW-9. Maverick proposes to reclaim the area of ESW-2 during the plugging and abandonment of EVGSAU 3366-029 and reclamation well pad and associated flowlines.

"In Appendix G there are laboratory reports with samples that are not included on the maps or table. BH-20-1 (2-3) returned results of 1,170 mg/kg for chloride. BH-20-2 (0-1) returned results of 1,290 mg/kg for chloride and 1,101 mg/kg for TPH. BH-20-2 (2-3) returned results of 1,320 mg/kg for chloride. BH-20-2 (4-5) returned results of 1,160 mg/kg for chloride. BH-20-1, BH-20-2, BH-20-4, and BH-20-5 are not illustrated on the map or included in the tables. These sample points will need to be included on maps and tables. Based on the analytical results, additional remediation is warranted in these areas."

The Interim Closure Request states "One of the boring locations shown on Figure 5 (BH-20-3) was installed using an air rotary drilling rig to characterize an unrelated, adjacent footprint on May 21, 2020." In the Additional Site Assessment Section. The referenced Pace National laboratory analytical report L1223523 provided in **Attachment 4** associated with BH-20-3 contains analytical results from soil borings completed as part of the assessment of duplicate incidents nPAC0605541294 and nPRS0414755359. Both incidents

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

have been remediated and are listed in the NMOCD Permitting portal with the Status of "Incident Closure Approved" on April 14, 2023, and May 23, 2022, respectively.

The figures, tabulated analytical data, and associated remediation activities for BH-20-1, BH-20-2, BH-20-4, and BH-20-5 are available in the NMOCD Permitting Portal in the NMOCD-approved COP *Closure Request* dated May 3, 2022, under Incident ID nPRS0414755359. No further action is warranted in association with this comment.

CULTURAL RESOURCES SURVEY

To comply with 1.10.15 NMAC and New Mexico State Land Office (NMSLO) requirements, Tetra Tech contracted SWCA Environmental Consultants to perform an Archaeological Records Management Section (ARMS) review for the Site.

SWCA performed a literature and file search on September 22, 2023, using the New Mexico Cultural Resources Information System online database which included a review of known cultural resources, such as the built environment, archaeological sites, and State/National Register-listed properties. Other sources reviewed include the Bureau of Land Management (BLM) General Land Office (GLO) Records website, which included land patent and general land office survey data. The review was conducted for the Area of Potential Effects (APE) and 1 km surrounding the APE. The land the proposed project is located on is part of the June 21, 1898: New Mexico Territorial Grant (30 Stat. 484) patented on May 26, 1909.

The ARMS review found the project area and surrounding 1 km have been subject to four (4) cultural resource surveys, two (2) of which are qualifying. One previously recorded site (LA 179703) is located outside of the project area but within the 1k search buffer. The project area is entirely located on NMSLO-managed lands and is completely covered by one (1) qualifying survey conducted within the last ten years (NMCRIS 131135). All remediation work will remain within the previously qualifying survey area.

No subsurface cultural materials were encountered during remediation activities. The redacted ARMS Review letter is included in **Attachment 6**.

MAVERICK ADDITIONAL REMEDIATION AND CONFIRMATION SAMPLING

Excavation activities commenced on December 18, 2023, and concluded on January 18, 2024. Maverick's subcontractor, McNabb Partners (McNabb) used heavy equipment to excavate impacted soil from the remediation areas to maximum depths of 4 feet bgs as shown in **Figure 6**. To avoid potential contact by heavy equipment with pressurized lines within the remediation area, heavy equipment was maintained at a distance of at least 2 feet from pressurized lines where hydro-excavation and hand-digging were employed. McNabb excavated a total of 1,004 cubic yards of contaminated soil from an approximately 4,700 square foot area and transported the soil to R360 Halfway Disposal and Landfill in Hobbs, New Mexico for offsite disposal.

Additional Remediation Confirmation Sampling

Upon reaching the final lateral and vertical excavation extents of the excavation, Tetra Tech collected 28 final confirmation samples including 19 floor samples and nine (9) side wall samples from the excavated areas. The remediation excavation confirmation sampling area was comprised of an approximately 4,700 square foot base and 1,250 square feet of sidewall for a total area of 5,900 square feet and a sampling density of approximately one confirmation sample per 213 square feet.

Confirmation samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of BTEX by Method 8021B, TPH by Method 8015M, and chloride by Method SM4500 CL-B. Laboratory analytical results for submitted confirmation samples reported concentrations of BTEX, TPH, and chloride as less than respective Reclamation

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

March 25, 2024

Requirements for samples collected from depths shallower than 4 feet bgs. For all samples obtained at or below a depth of 4 feet bgs, laboratory analytical results reported constituent concentrations as less than Remediation RRALs and clean margins were demonstrated. Confirmation sampling locations and excavation extents are shown in **Figure 6**. Confirmation sampling locations and excavation extents of both the Initial and Additional Remediations are depicted in **Figure 7**.

Confirmation sample laboratory analytical results screened against Reclamation Requirements and Remediation RRALs are summarized in **Table 3** and **Table 4** and laboratory analytical data packages including chain of custody documentation for Additional Remediation are included in **Attachment 5**.

Additional Remediation Excavation Backfill

Between January 18 and 19, 2024, subsequent to the receipt of confirmation sample results, McNabb completed backfilling of the excavated areas with 854 cubic yards of clean soil, from Rancher Pit. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Attachment 7**.

Reclamation and Revegetation

To restore the impacted surface areas to the condition that existed prior to the release, the excavated areas have been backfilled with clean topsoil, and the disturbed areas have been graded back to match the surrounding topography and the pre-existing conditions prior to contouring to provide erosion control, long-term stability, prevent ponding of water, and preserve surface water flow patterns.

Subsequent to restoring topography and contouring the disturbed areas, disturbed areas of the Site were seeded with New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture to aid in vegetation growth to complete reclamation in accordance with the Site soil profile detailed above in the Site Characterization Section. Seeding was broadcast and raked in per the specifications for broadcast application in pound pure live seed per acre according to the NMSLO Seed Mix Loamy (L) data sheet provided in **Attachment 8**.

VARIANCE REQUEST

Tetra Tech and Maverick understand that failure to notify the NMOCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted. The remediation associated with this incident was conducted concurrently with a number of other remediations during the 2023 holiday period between Thanksgiving and the 2024 New Year. Tetra Tech failed to notify the NMOCD of Additional Remediation sampling two business days in advance in accordance with 19.15.29.12.D.(1).(a). Tetra Tech respectfully requests a variance for the failure to notify the NMOCD of sampling in consideration of the significant changes to the NMOCD notification process and changes that were implemented by the NMOCD in early December 2023.

Tetra Tech has reviewed the C-141N notification process and NMOCD *Public Notice Implementation of Digital C-141 and Incident Statuses* document dated December 1, 2023, and has shifted to strictly adhering to the sampling notification requirements of 19.15.29.12.D.(1).(a) NMAC and NMOCD notification guidance. Tetra Tech is currently submitting C-141N notifications two business days prior to conducting any remediation confirmation sampling.

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release

Incident IDs: nJXK1609752883 and nPRS0420835421

CONCLUSION

Based on the results of the confirmation sampling, the impacted soil within the release footprint with chloride concentrations greater than Reclamation Requirements and/or remediation RRALs has been removed and properly disposed of offsite and the excavated area has been backfilled with clean material, graded, and seeded with NMSLO approved seed mixture; Initial Remediation sample ESW-2 in the upper 4 feet is in a location of active production and delineated laterally and vertically to Reclamation Requirements which is proposed to be reclaimed during reclamation of the EVGSAU 3366-029 well and well pad. Therefore, Site remediation is complete. A Reclamation Report for the Site will be submitted to the NMOCD under separate cover containing the NMOCD required information. If you have any questions concerning the remediation activities for the Site, please contact Charles Terhune by email at Charles.Terhune@tetratech.com or by phone at (832) 252-2093.

Sincerely,

Chris Straub

Project Manager

Tetra Tech, Inc.

Charles H. Terhune IV, P.G.

Program Manager

Tetra Tech, Inc.

cc: Bryce Wagoner, Maverick Permian, LLC

New Mexico State Land Office

Remediation Report and Closure Report

Maverick Permian, LLC

EVGSAU 3366-029 Flowline Release

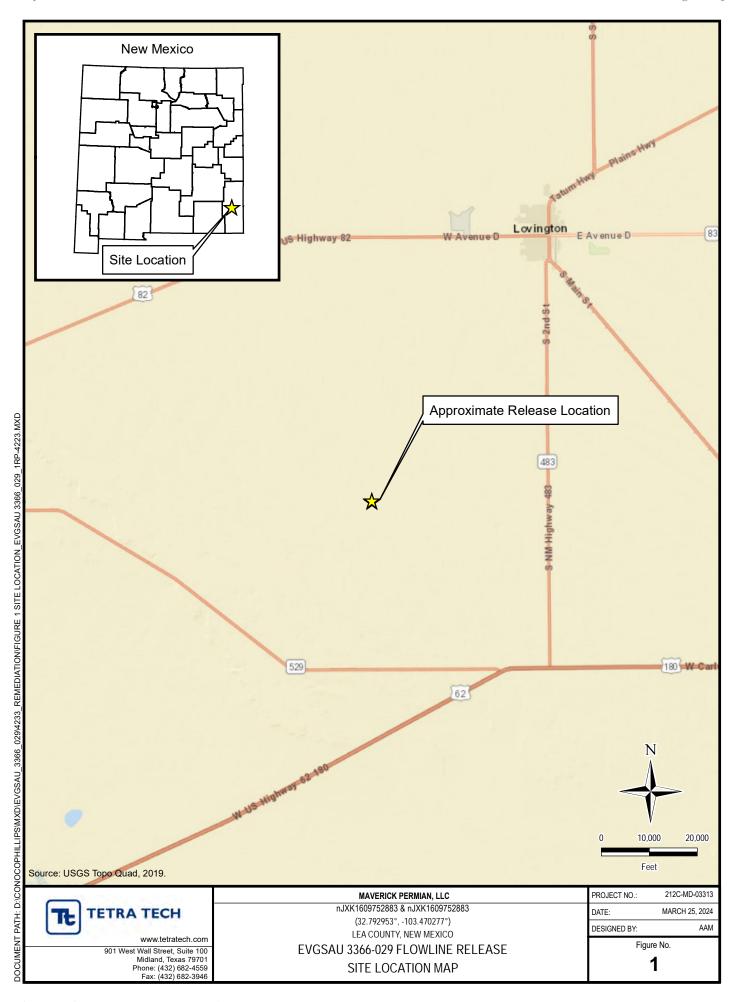
Incident IDs: nJXK1609752883 and nPRS0420835421

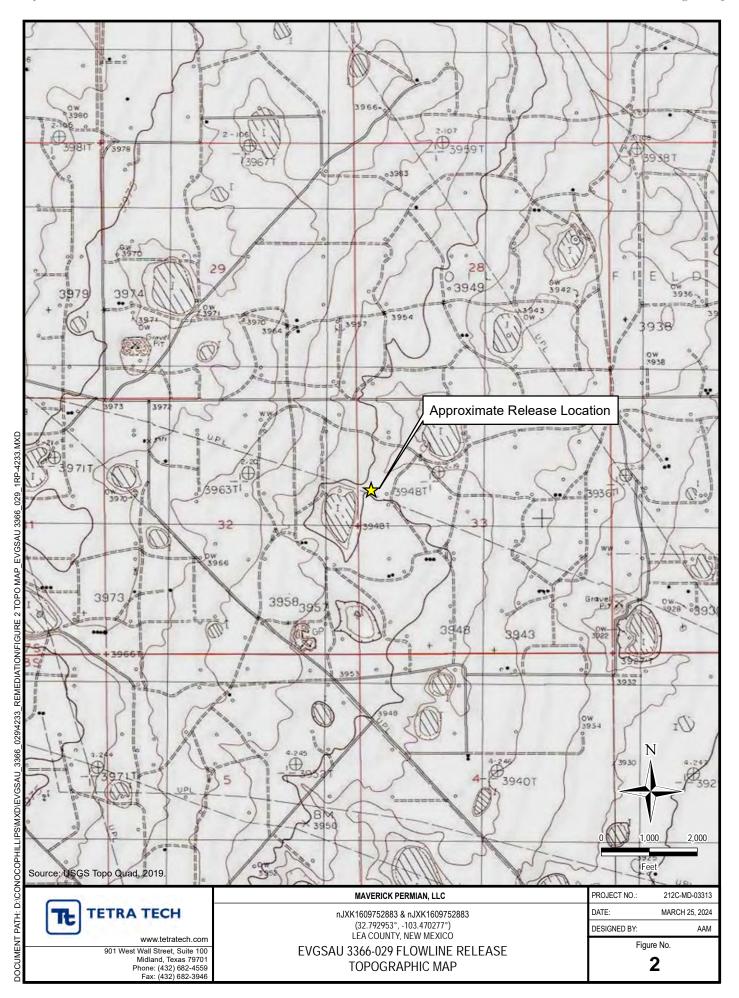
LIST OF ATTACHMENTS

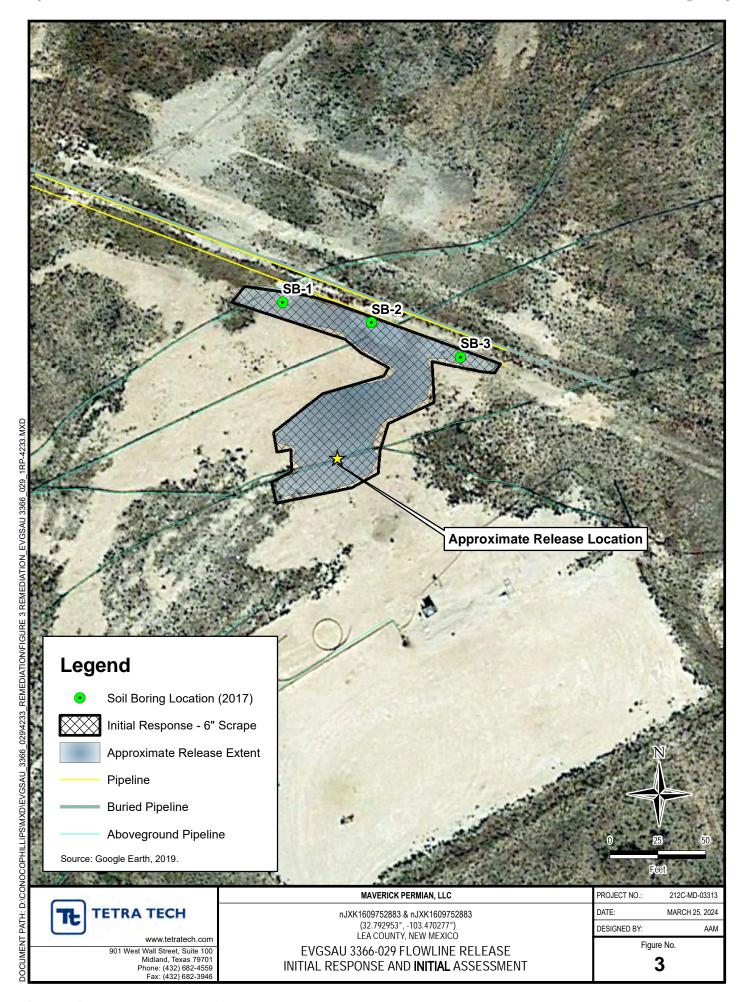
Figures

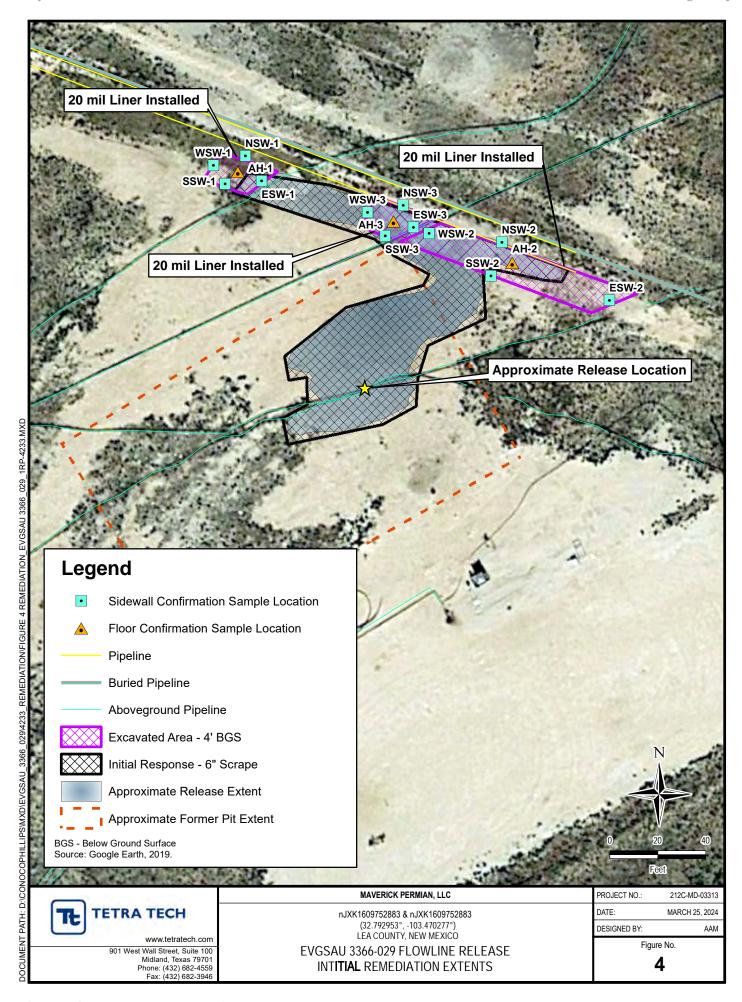
- Figure 1 Site Location Map
- Figure 2 Topographic Map
- Figure 3 Initial Response and Initial Assessment
- Figure 4 Initial Remediation Extent
- Figure 5 Additional Assessment Locations
- Figure 6 Additional Remediation Extent
- Figure 7 Combined Remediation Extent

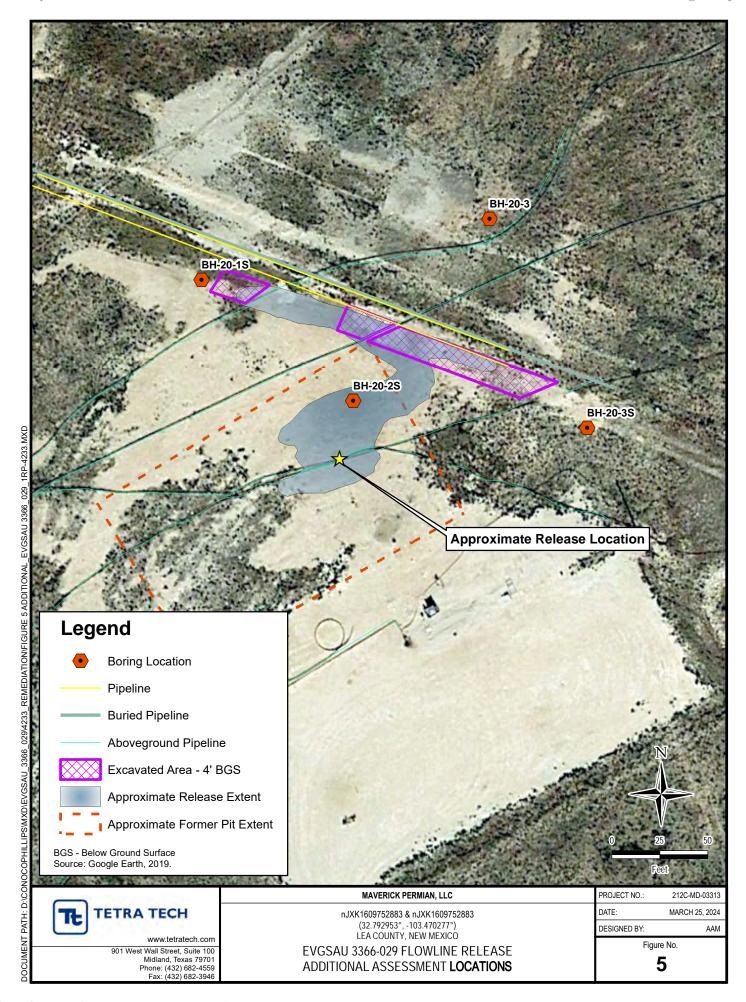
Tables

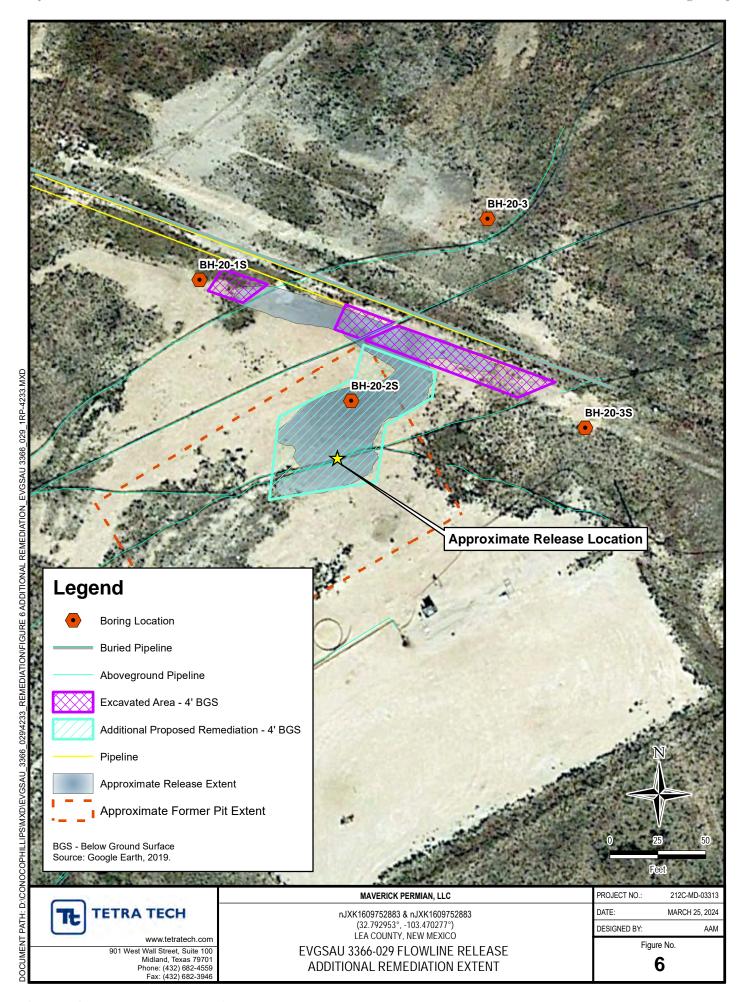

- Table 1 Soil Assessment Locations
- Table 2 Summary of Analytical Results Soil Assessment Sampling
- Table 3 Summary of Analytical Results Shallow Remediation Confirmation Sampling
- Table 4 Summary of Analytical Results Deep Remediation Confirmation Sampling

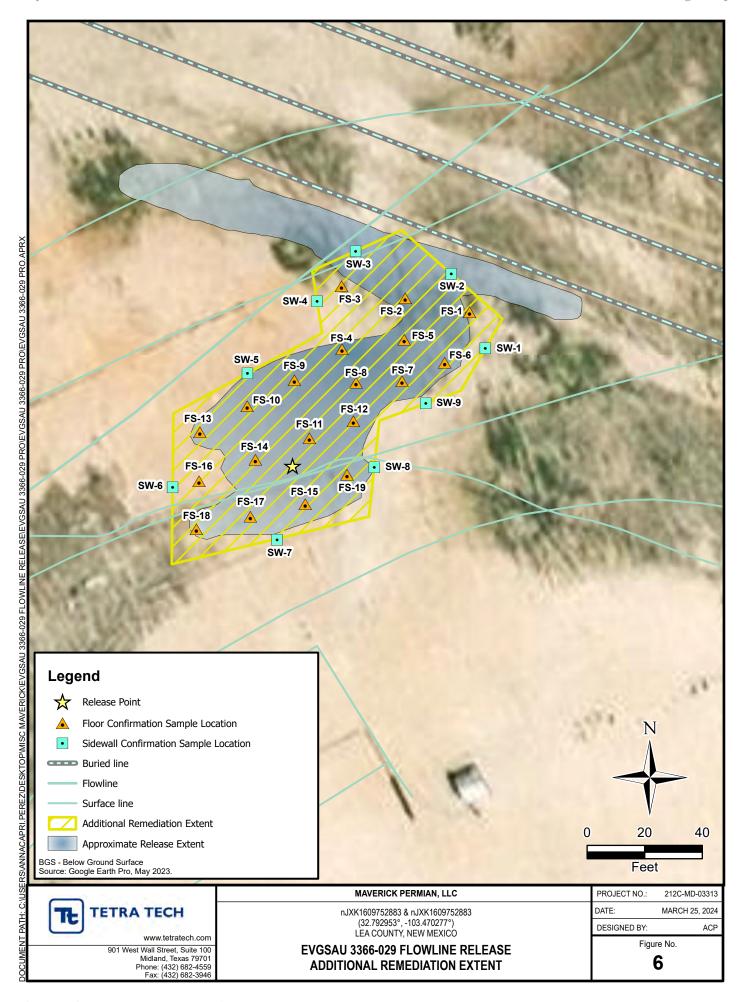

Attachments

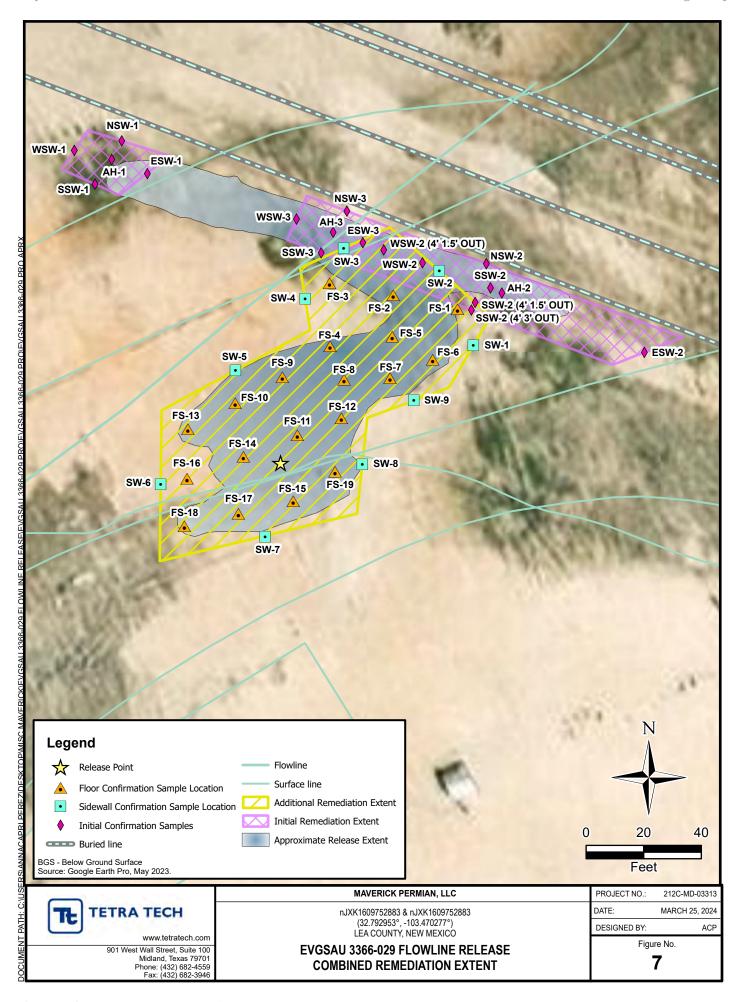

- Attachment 1 Site Characterization Data
- Attachment 2 Initial Assessment Laboratory Data
- Attachment 3 Initial Remediation Laboratory Data
- Attachment 4 Additional Assessment Laboratory Data
- Attachment 5 Maverick Remediation Laboratory Data
- Attachment 6 ARMS Review Letter
- Attachment 7 Photographic Documentation
- Attachment 8 NMSLO Seed Mixture Details


Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024


FIGURES







Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

TABLES

TABLE 1 SOIL ASSESSMENT LOCATIONS INCIDENT NJXK1609752883 & nJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

Boring ID	Date	Latitude	Longitude
SB-1	8/9/2017	32.793201	-103.470447
SB-2	8/9/2017	32.793143	-103.470236
SB-3	8/9/2017	32.793094	-103.470076
BH-20-1S	5/21/2020	32.793209	-103.470508
BH-20-2S	5/21/2020	32.793032	-103.470253
BH-20-3	5/21/2020	32.793292	-103.470019
BH-20-3S	5/21/2020	32.793015	-103.469869

SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT SAMPLING - INCIDENT IDS NJXK1609752883 & NJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

				BTEX ²															TPH ³		
		Sample Depth	Chloride	e ¹	_										GRO		DRO		ORO		Total TPH
Sample ID	Sample Date				Benzene		Toluene	•	Ethylbenze	ene	Total Xylen	ies	Total BTE	ΞX	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q		Q	mg/kg
Reclamation Requirem	ents (19.15.29 NM/	AC)	600		10								50								100
		0-1	780		-		-		-		-		-		-		-		-		-
		2-3	470		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.6		432		99.2		531.2
		4-5	569		-		-		-		-		-		-		-		-		-
		6-7	723		-		-		-		-		-		-		-		-		-
		9-10	545		< 0.0055		< 0.0055		< 0.0055		< 0.0055		-		< 11.0		< 10.8		< 10.8		-
		14-15	1,510		-		-		-		-		-		-		-		-		-
SB-1	8/9/2017	19-20	686		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.7		< 10.5		< 10.5		-
30-1	30-1 0/9/2017	24-25	1,500		1		-		-		-		1		1		-		-		-
		29-30	2,430		-		-		-		-		1		-		-		-		-
		34-35	2,640		-		-		-		-		-		-		-		-		-
		39-40	567		1		-		-		-		1		1		-		-		-
		44-45	114		-		-		-		-		-		-		-		-		-
		49-50	105		1		-		-		-		1		1		-		-		-
		54-55	112		1		-		-		-		-		1		-		-		-
		0-1	129		< 0.0057		< 0.0057		< 0.0057		< 0.0057		-		< 11.5		< 33.1		< 33.1		-
		2-3	291		-		-		-		-		-		-		-		-		-
		4-5	208		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.6		25.4		33.1		58.5
SB-2	8/9/2017	6-7	245		-		-		-		-		-		-		-		-		-
		9-10	160		-		-		-		-		-		-		-		-		-
		14-15	107		< 0.0052		< 0.0052		< 0.0052		< 0.0052		-		< 10.3		< 9.8		< 9.8		-
		19-20	111		-		-		-		-		-		-		-		-		-
		0-1	2,080		< 0.0062		< 0.0062		< 0.0062		< 0.0062		-		< 12.7		< 12.3		< 12.3		-
		2-3	487		-		-		-		-		-		-		-		-		-
		4-5	2,180		< 0.0054		< 0.0054		< 0.0054		< 0.0054		-		< 11.0		< 10.8		< 10.8		-
SB-3	8/9/2017	6-7	1,350		-		-		-		-		-		-		-		-		-
	0/0/2017	9-10	672		-		-		-		-		-		-		-		-		-
		14-15	425		< 0.0054		< 0.0054		< 0.0054		< 0.0054		-		< 10.7		< 10.5		< 10.5		-
		19-20	131		-		-		-		-		-		-		-		-		-
		24-25	108		-		-		-		-		-		-		-		-		-
		0-1	103		< 0.00103		< 0.00517		< 0.00258		< 0.00671		-		< 0.103		7.71		18.8	В	
BH-20-1S	5/21/2020	2-3	306	\perp	< 0.00106		< 0.00529		< 0.00265		< 0.00688		-		< 0.106		23.1		41.5		64.6
		4-5	3,720	ш	< 0.00108		< 0.00539		< 0.0027		< 0.00701		-		< 0.108		< 4.32		0.782	ВJ	
		0-1	8,480		< 0.00109		0.0018	J	< 0.00273		< 0.00709		0.0018		< 0.109		323		422	L.	745
		2-3	2,510		< 0.00104		< 0.00522		< 0.00261	-	< 0.00678		-		< 0.104		< 4.17		1.93	B J	
BH-20-2S	5/21/2020	4-5	227	\perp	< 0.00103		< 0.00516		< 0.00258		< 0.0067		-		< 0.103		< 4.12	1	1.55	ВJ	1.55
		6-7	3,240	+	< 0.00108		< 0.00538		< 0.00269		< 0.00699		-		< 0.108		< 4.30		< 4.30		
		9-10	327	igoplus	< 0.001		< 0.00502		< 0.00251		< 0.00653		-		< 0.1		2.19	J	1.26	J	3.45
D11 00 0	F 10.4 10.000	0-1	93	\perp	< 0.00106		< 0.0053		< 0.00265		< 0.00689		-		< 0.106		9.77	<u> </u>	19.3	<u> </u>	29.1
BH-20-3 5/21/2020	5/21/2020	2-3	20.7	\vdash	< 0.00103		< 0.00516		< 0.00258	-	< 0.00671		-		< 0.103		4.86		10.4		15.3
	-	4-5	65.5	+	< 0.00104	_	< 0.0052		< 0.0026	<u> </u>	< 0.00676		-		< 0.104		2.47	l J	2.47	J	4.94
D11 00 00	F 10.4 10.000	0-1	114	\perp	< 0.00102	_	< 0.00508		< 0.00254	1	< 0.0066		-		< 0.102		9.25	\vdash	25.7	\vdash	35
BH-20-3S 5/21/2020	2-3	66.5	+	< 0.00102		< 0.00509		< 0.00255		< 0.00662		-		< 0.102		5.19	-	8.32	-	13.5	
	4-5	24		< 0.00102		< 0.00512		< 0.00256		< 0.00666		-		< 0.102		< 4.10	1	< 4.10		-	

SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT SAMPLING - INCIDENT IDS NJXK1609752883 & NJXK1609752883

MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

					BTEX ²									TPH ³							
Sample ID	Sample Date	Sample Depth	Chloride	¹	Benzene		Toluene	,	Ethylbenze	20	Total Vylor	200	Total BTE	,	GRO		DRO		ORO		Total TPH
Sample 1D	Sample Date				Delizelle		Toluene		Ethylbenzene		Total Aylenes		TOTAL BIEN		C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Requirements (19.15.29 NMAC)			600		10								50								100

NOTES:

NS: Not Sampled

bgs: Below ground surface mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons

(-): Non-detect
GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

Method SM4500Cl-B
 Method 8021B

3: Method 8015M

Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC).

B: The same analyte is found in the associated blank

J: The reported value is an estimate

J3: The associated batch QC was outside the established QC range for precision

SUMMARY OF ANALYTICAL RESULTS SHALLOW SOIL CONFIRMATION SAMPLING - INCIDENT IDS nJXK1609752883 & nJXK1609752883 **MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE** LEA COUNTY, NEW MEXICO

					BTEX ²						TPH ³									
0 1 .15	0	Sample Depth	Chloride ¹				=41 11		-	T	T / I DITE	· ·	GRO		DRO		EXT DR	0	Total TPH	
Sample ID	Sample Date			Benzene	Toluene		Etnyibenzei	ne	Total Xylenes	S	Total BTE	X	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C	36	(GRO+DRO+EXT DRO)	
		feet bgs	mg/kg (Q mg/kg C	mg/kg	Q	mg/kg	Q	mg/kg Q	2	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	
Reclamation Requir	ements (19.15.	29 NMAC)	600	10							50								100	
Interim Remediation	n Sampling																			
NSW-1 (4')	1/28/2019	0.0 - 4.0	567	< 0.000420	< 0.00131	<	< 0.000556		< 0.00501		-		< 0.0228		7.3		6.65		13.95	
NSW-2 (4')	1/24/2019	0.0 - 4.0	337	< 0.000429	< 0.00134	<	< 0.000568		< 0.00513		-		< 0.0233		4.54		3.32	J	7.86	
NSW-3 (4')	1/29/2019	0.0 - 4.0	NS	NS	NS		NS		NS		-		NS		NS		NS		-	
ESW-1 (4')	1/31/2019	0.0 - 4.0	133	< 0.000443	< 0.00138	<	< 0.000586		< 0.00529		-		< 0.0240		1.96	J	< 0.303		1.96	
ESW-2 (4')	1/24/2019	0.0 - 4.0	103	< 0.000448 J	3 < 0.00140	<	< 0.000593		< 0.00535		-		< 0.0243		97.6		99.7		197.3	
ESW-3 (4')	1/29/2019	0.0 - 4.0	235	< 0.000431	< 0.00135	<	< 0.000572		< 0.00515		-		< 0.0234		3.58	J	1.55	J	5.13	
WSW-1 (4')	1/28/2019	0.0 - 4.0	466	< 0.000430	< 0.00134	<	< 0.000569		< 0.00513		-		< 0.0233		22.7		20.9		43.6	
WSW-2 (4')	1/24/2019	0.0 - 4.0	690	< 0.000421	< 0.00132	<	< 0.000558		< 0.00504		-		< 0.0229		51.1		32.8		83.9	
WSW-2 (4' 1.5' OUT)	1/24/2019	0.0 - 4.0	1070	< 0.000431	< 0.00135	<	< 0.000570		< 0.00514		-		< 0.0234		3.38	J	1.06	J	4.44	
WSW-3 (4')	1/29/2019	0.0 - 4.0	122	< 0.000436	< 0.00136	<	< 0.000577		< 0.00521		-		< 0.0236		2.04	J	< 0.299		2.04	
SSW-1 (4')	1/28/2019	0.0 - 4.0	173	< 0.000433	< 0.00135	<	< 0.000573		< 0.00517		-		< 0.0235		3.17	J	2.52	J	5.69	
SSW-2 (4')	1/24/2019	0.0 - 4.0	1150	< 0.000422	< 0.00132	<	< 0.000559		< 0.00504		-		< 0.0229		2.45	J	0.678	J	3.128	
SSW-2 (4' 1.5' OUT)	1/24/2019	0.0 - 4.0	2200	< 0.000432	< 0.00135	<	< 0.000572		< 0.00516		-		< 0.0234		3.12	J	1.21	J	4.33	
SSW-2 (4' 3' OUT)	1/29/2019	0.0 - 4.0	1430	< 0.000424 J	3 < 0.00133	J3 <	< 0.000562	J3	< 0.00507 J3	3	-		< 0.0230		< 1.71		< 0.290		-	
SSW-3 (4')	1/29/2019	0.0 - 4.0	NS	NS	NS		NS		NS		-		NS		NS		NS		-	
Additional Remedia	tion Sampling																			
SW - 1	1/4/2024	0.0 - 4.0	352	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 2	1/4/2024	0.0 - 4.0	320	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 3	1/12/2024	0.0 - 4.0	272	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 4	1/12/2024	0.0 - 4.0	688	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 4	1/18/2024	0.0 - 4.0	144	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 5	1/12/2024	0.0 - 4.0	256	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 6	1/12/2024	0.0 - 4.0	1,250	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		14		<10.0		14	
SW - 6	1/18/2024	0.0 - 4.0	128	<0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 7	1/10/2024	0.0 - 4.0	272	< 0.050	<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-	
SW - 8	1/10/2024	0.0 - 4.0	448	<0.050	<0.050		<0.050		<0.150	Γ	<0.300		<10.0		<10.0		<10.0		-	
SW - 9	1/12/2024	0.0 - 4.0	96	< 0.050	<0.050		< 0.050		<0.150		<0.300	目	<10.0		<10.0		<10.0		-	

NOTES:

bgs: Below ground surface

GRO: Gasoline Range Organics

1: Method 300.0 or SM4500Cl-B Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC).

mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

DRO: Diesel Range Organics

2: Method 8021B 3: Method 8015M Highlighted Rows indicate additional lateral excavation and resampling during Interim Remediation Sampling Highlighted Rows indicate excavation and sampling inclusive of this sample area during Additional Remediation

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for precision.

SUMMARY OF ANALYTICAL RESULTS DEEP CONFIRMATION SAMPLING - INCIDENT IDS nJXK1609752883 & nJXK1609752883 MAVERICK PERMIAN, LLC **EVGSAU 3366-029 FLOWLINE RELEASE** LEA COUNTY, NEW MEXICO

					BTEX ²						TPH ³								
Sample ID Sample Date		Sample Depth	Chlorid	e ¹	Donzono	Toluen		Ethylbonzono	Total Xylenes	Total BTEX		GRO	DRO		ORO		TPH	Total TPH	
Sample ID	Sample Date				Benzene	roiuen	e	Ethylbenzene	Total Aylenes	IOIAIDIEA	١ [C ₆ - C ₁₀	> C ₁₀ - 0	28	> C ₂₈ - C ₃	36	GRO+DRO	(GRO+DRO+ORO)	
		feet bgs	mg/kg	Q	mg/kg C	mg/kg	Q	mg/kg Q	mg/kg Q	mg/kg G	2	mg/kg Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg	
RRALs (Table I 19	9.15.29.12 NMAC)	10,000		10					50							1,000	2,500	
Interim Remediat	tion Sampling																		
AH-1 (4')	1/28/2019	4.0 - 4.5	80.5		< 0.000428	< 0.00134		< 0.000567	< 0.00511	-		< 0.0232	2.51	J	< 0.293		2.51	2.51	
AH-2 (4')	1/24/2019	4.0 - 4.5	926		< 0.000435	< 0.00136		< 0.000576	< 0.00520	-		< 0.0236	2.22	J	0.503	J	2.22	2.723	
AH-3 (4')	1/29/2019	4.0 - 4.5	147		< 0.000424	< 0.00132		< 0.000561	< 0.00506	-		< 0.0230	< 1.70		< 0.290		-	-	
Additional Remed	diation Sampling	1																	
FS - 1 (4.0')	1/4/2024	4.0 - 4.5	1,020		<0.050	< 0.050		<0.050	<0.150	<0.300		<10.0	16.7		<10.0		16.7	16.7	
FS - 2 (4.0')	1/4/2024	4.0 - 4.5	352		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	11.8		<10.0		11.8	11.8	
FS - 3 (4.0')	1/4/2024	4.0 - 4.5	256		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 4 (4.0')	1/4/2024	4.0 - 4.5	736		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 5 (4.0')	1/4/2024	4.0 - 4.5	2,320		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 6 (4.0')	1/4/2024	4.0 - 4.5	1,790		< 0.050	<0.050		<0.050	<0.150	<0.300		<10.0	15.3		<10.0		15.3	15.3	
FS - 7 (4.0')	1/4/2024	4.0 - 4.5	3,480		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 8 (4.0')	1/4/2024	4.0 - 4.5	1,940		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 9 (4.0')	1/4/2024	4.0 - 4.5	4,520		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 10 (4.0')	1/4/2024	4.0 - 4.5	3,520		<0.050	< 0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 11 (4.0')	1/4/2024	4.0 - 4.5	2,560		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 12 (4.0')	1/4/2024	4.0 - 4.5	2,400		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 13 (4.0')	1/4/2024	4.0 - 4.5	2,280		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 14 (4.0')	1/4/2024	4.0 - 4.5	2,360		<0.050	<0.050		<0.050	<0.150	<0.300		<10.0	<10.0		<10.0		-	-	
FS - 19 (4.0')	1/10/2024	4.0 - 4.5	3,920		< 0.050	< 0.050		< 0.050	<0.150	<0.300		<10.0	20		<10.0		20	20	

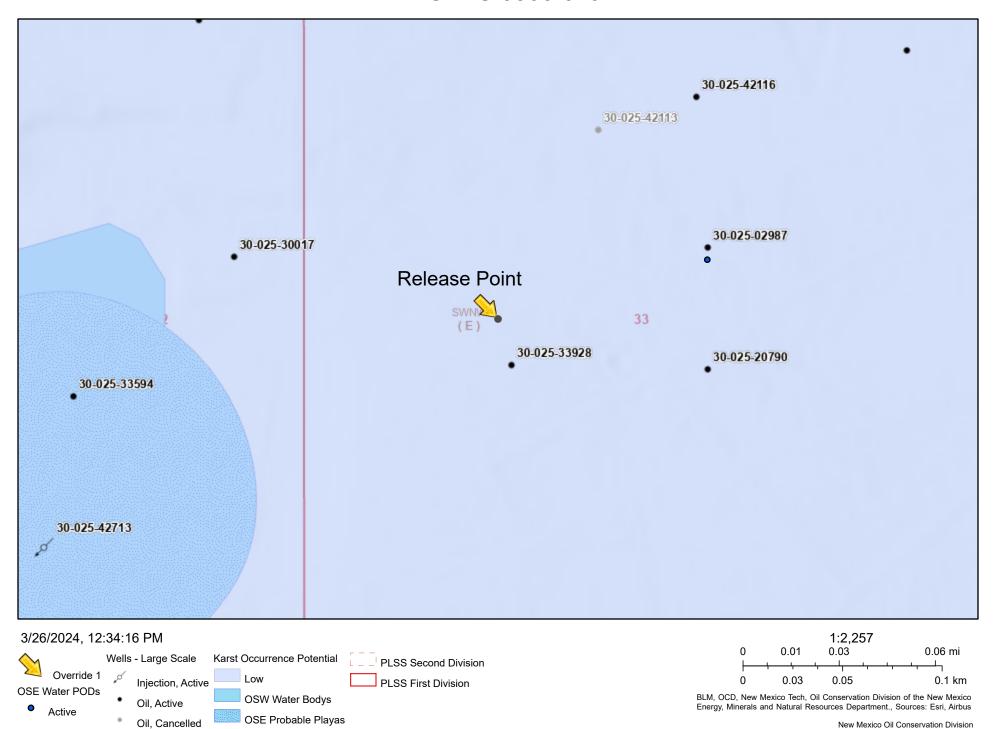
NOTES:

bgs: Below ground surface mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

GRO: Gasoline Range Organics DRO: Diesel Range Organics

1: Method SM4500CI-B 2: Method 8021B

3: Method 8015M


Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC. Areas where samples were collected were then over excavated to achieve clean margins.

J: The identification of the analyte is acceptable; the reported value is an estimate.

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 1 – SITE CHARACTERIZATION DATA

EVGSAU 3366-029

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW#### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)

(R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest) (NAD83 UTM in meters) (In feet)

	POD Sub-		QQO	•						Donth	Donth	Water
POD Number	Code basin	County		~	c Tws	Rng	х	Υ	Distance	-	-	Water Column
L 04829 S5	L,	LE	3	1 3	3 17S	35E	643347	3629400* 🌍	120	220	90	130
L 04880	L	LE	2 3	3 3	3 17S	35E	643757	3629002*	673	145	90	55
L 04578	L	LE		3	3 17S	35E	643962	3629198* 🌍	766	126	60	66

Average Depth to Water: 80 feet

> Minimum Depth: 60 feet

Maximum Depth: 90 feet

Record Count: 3

UTMNAD83 Radius Search (in meters):

Radius: 800 Easting (X): 643227.957 Northing (Y): 3629419

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Soil Map—Lea County, New Mexico (EVGSAU 3366-029)

MAP LEGEND

â

0

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

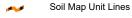
Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways


Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

EVGSAU 3366-029

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	2.9	100.0%
Totals for Area of Interest		2.9	100.0%

EVGSAU 3366-029

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet

Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F

Frost-free period: 180 to 220 days

Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent Lea and similar soils: 25 percent Minor components: 30 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Kimbrough

Setting

Landform: Playa rims, plains
Down-slope shape: Convex, linear
Across-slope shape: Concave, linear

Parent material: Loamy eolian deposits derived from sedimentary

rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam

Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 4 to 18 inches to petrocalcic

Drainage class: Well drained Runoff class: Very high

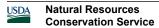
Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.01 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 95 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0


mmhos/cm)

Sodium adsorption ratio, maximum: 1.0

Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

EVGSAU 3366-029 Mexico

Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: D

Ecological site: R077DY049TX - Very Shallow 12-17" PZ

Hydric soil rating: No

Description of Lea

Setting

Landform: Plains

Down-slope shape: Convex Across-slope shape: Linear

Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated

caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam

Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent

Depth to restrictive feature: 22 to 30 inches to petrocalcic

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 90 percent

Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0

mmhos/cm)

Sodium adsorption ratio, maximum: 3.0

Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 7s

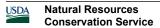
Hydrologic Soil Group: D

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ

Hydric soil rating: No

Minor Components

Kenhill


Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY038TX - Clay Loam 12-17" PZ

Hydric soil rating: No

Map Unit Description: Kimbrough-Lea complex, dry, 0 to 3 percent slopes---Lea County, New Mexico

EVGSAU 3366-029

Douro

Percent of map unit: 12 percent

Landform: Plains

Down-slope shape: Linear Across-slope shape: Linear

Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Playa rims, plains Down-slope shape: Convex, linear

Across-slope shape: Linear

Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX)

Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 2 - INITIAL ASSESSMENT LABORATORY DATA

August 25, 2017

Greg Pope TetraTech 4000 N. Big Spring St. Ste 401 Midland, TX 79705

RE: Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Dear Greg Pope:

Enclosed are the analytical results for sample(s) received by the laboratory on August 15, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melissa McCullough

Melion Mc Rellaugh

melissa.mccullough@pacelabs.com (972)727-1123

Project Manager

Enclosures

cc: Jeanne Fitch, Tetra Tech Todd Wells, TetraTech

REPORT OF LABORATORY ANALYSIS

400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

CERTIFICATIONS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118

Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021

Kansas Field Laboratory Accreditation: # E-92587

Missouri Certification: 10070

REPORT OF LABORATORY ANALYSIS

SAMPLE SUMMARY

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	Matrix	Date Collected	Date Received
7572014001	EVGSAU 3366-029 SB-01(0-1')	Solid	08/09/17 14:00	08/15/17 08:50
7572014002	EVGSAU 3366-029 SB-01(2-3')	Solid	08/09/17 14:00	08/15/17 08:50
7572014003	EVGSAU 3366-029 SB-01(4-5')	Solid	08/09/17 14:00	08/15/17 08:50
7572014004	EVGSAU 3366-029 SB-01(6-7')	Solid	08/09/17 14:00	08/15/17 08:50
7572014005	EVGSAU 3366-029 SB-01(9-10')	Solid	08/09/17 14:00	08/15/17 08:50
7572014006	EVGSAU 3366-029 SB-01(14-15')	Solid	08/09/17 14:00	08/15/17 08:50
7572014007	EVGSAU 3366-029 SB-01(19-20')	Solid	08/09/17 14:00	08/15/17 08:50
7572014008	EVGSAU 3366-029 SB-01(24-25')	Solid	08/09/17 14:00	08/15/17 08:50
7572014009	EVGSAU 3366-029 SB-01(29-30')	Solid	08/09/17 14:00	08/15/17 08:50
7572014010	EVGSAU 3366-029 SB-01(34-35')	Solid	08/09/17 14:00	08/15/17 08:50
7572014011	EVGSAU 3366-029 SB-01(39-40')	Solid	08/09/17 14:00	08/15/17 08:50
7572014012	EVGSAU 3366-029 SB-01(44-45')	Solid	08/09/17 14:00	08/15/17 08:50
7572014013	EVGSAU 3366-029 SB-01(49-50')	Solid	08/09/17 14:00	08/15/17 08:50
7572014014	EVGSAU 3366-029 SB-01(54-55')	Solid	08/09/17 14:00	08/15/17 08:50
7572014015	EVGSAU 3366-029 SB-2 (0-1')	Solid	08/09/17 15:00	08/15/17 08:50
7572014016	EVGSAU 3366-029 SB-2(2-3')	Solid	08/09/17 15:00	08/15/17 08:50
7572014017	EVGSAU 3366-029 SB-2 (4-5')	Solid	08/09/17 15:00	08/15/17 08:50
7572014018	EVGSAU 3366-029 SB-2(6-7')	Solid	08/09/17 15:00	08/15/17 08:50
7572014019	EVGSAU 3366-029 SB-2(9-10')	Solid	08/09/17 15:00	08/15/17 08:50
7572014020	EVGSAU 3366-029 SB-2 (14-15')	Solid	08/09/17 15:00	08/15/17 08:50
7572014021	EVGSAU 3366-029 SB-2(19-20')	Solid	08/08/17 15:00	08/15/17 08:50
7572014022	EVGSAU 3366-029 SB-3 (0-1')	Solid	08/09/17 17:00	08/15/17 08:50
7572014023	EVGSAU 3366-029 SB-3(2-3')	Solid	08/09/17 17:00	08/15/17 08:50
7572014024	EVGSAU 3366-029 SB-3 (4-5')	Solid	08/09/17 17:00	08/15/17 08:50
7572014025	EVGSAU 3366-029 SB-3(6-7')	Solid	08/09/17 17:00	08/15/17 08:50
7572014026	EVGSAU 3366-029 SB-3(9-10')	Solid	08/09/17 17:00	08/15/17 08:50
7572014027	EVGSAU 3366-029 SB-3 (14-15')	Solid	08/09/17 17:00	08/15/17 08:50
7572014028	EVGSAU 3366-029 SB-3(19-20')	Solid	08/09/17 17:00	08/15/17 08:50
7572014029	EVGSAU 3366-029 SB-3(24-25')	Solid	08/09/17 17:00	08/15/17 08:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laborator
7572014001	EVGSAU 3366-029 SB-01(0-1')	EPA 300.0	OL	1	PASI-K
7572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014003	EVGSAU 3366-029 SB-01(4-5')	EPA 300.0	OL	1	PASI-K
7572014004	EVGSAU 3366-029 SB-01(6-7')	EPA 300.0	OL	1	PASI-K
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014006	EVGSAU 3366-029 SB-01(14-15')	EPA 300.0	OL	1	PASI-K
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
572014008	EVGSAU 3366-029 SB-01(24-25')	EPA 300.0	OL	1	PASI-K
572014009	EVGSAU 3366-029 SB-01(29-30')	EPA 300.0	OL	1	PASI-K
572014010	EVGSAU 3366-029 SB-01(34-35')	EPA 300.0	OL	1	PASI-K
572014011	EVGSAU 3366-029 SB-01(39-40')	EPA 300.0	OL	1	PASI-K
572014012	EVGSAU 3366-029 SB-01(44-45')	EPA 300.0	OL	1	PASI-K
572014013	EVGSAU 3366-029 SB-01(49-50')	EPA 300.0	OL	1	PASI-K
572014014	EVGSAU 3366-029 SB-01(54-55')	EPA 300.0	OL	1	PASI-K
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
572014016	EVGSAU 3366-029 SB-2(2-3')	EPA 300.0	OL	1	PASI-K
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
572014018	EVGSAU 3366-029 SB-2(6-7')	EPA 300.0	OL	1	PASI-K
572014019	EVGSAU 3366-029 SB-2(9-10')	EPA 300.0	OL	1	PASI-K
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0	OL	1	PASI-K
7572014021	EVGSAU 3366-029 SB-2(19-20')	EPA 300.0	OL	1	PASI-K
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014023	EVGSAU 3366-029 SB-3(2-3')	EPA 300.0	OL	1	PASI-K
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014025	EVGSAU 3366-029 SB-3(6-7')	EPA 300.0	OL	1	PASI-K
7572014026	EVGSAU 3366-029 SB-3(9-10')	EPA 300.0	OL	1	PASI-K
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014028	EVGSAU 3366-029 SB-3(19-20')	EPA 300.0	OL	1	PASI-K
7572014029	EVGSAU 3366-029 SB-3(24-25')	EPA 300.0	OL	1	PASI-K

REPORT OF LABORATORY ANALYSIS

08/18/17 11:24 08/18/17 17:18 16887-00-6

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014001 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

780

01(0-1')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

101

10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014002 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(2-3')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Met	hod: EPA 8015E	B Preparation Me	thod: E	EPA 3546			
TPH-DRO (C10-C28)	432	mg/kg	10	1	08/23/17 08:36	08/24/17 12:44		
TPH-ORO (C28-C35)	99.2	mg/kg	10	1	08/23/17 08:36	08/24/17 12:44		
Surrogates								
n-Tetracosane (S)	172	%	65-119	1	08/23/17 08:36	08/24/17 12:44	646-31-1	S5
o-Terphenyl (S)	74	%	41-131	1	08/23/17 08:36	08/24/17 12:44	92-94-4	
Gasoline Range Organics	Analytical Met	nod: EPA 8015E	Preparation Me	thod: E	PA 5035A/5030B			
FPH-GRO Surrogates	ND	mg/kg	10.6	1	08/20/17 00:00	08/21/17 20:13		
I-Bromofluorobenzene (S)	95	%	64-122	1	08/20/17 00:00	08/21/17 20:13	460-00-4	
3260/5035A Volatile Organics	Analytical Met	nod: EPA 8260						
Benzene	ND	ug/kg	5.3	1		08/22/17 20:29	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 20:29	100-41-4	
Toluene Toluene	ND	ug/kg	5.3	1		08/22/17 20:29	108-88-3	
(ylene (Total) Surrogates	ND	ug/kg	5.3	1		08/22/17 20:29	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 20:29	2037-26-5	
I-Bromofluorobenzene (S)	106	%	87-115	1		08/22/17 20:29	460-00-4	
,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 20:29	17060-07-0	
300.0 IC Anions 28 Days	Analytical Met	nod: EPA 300.0	Preparation Met	hod: El	PA 300.0			
Chloride	470	mg/kg	103	10	08/18/17 11:24	08/18/17 17:31	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

08/18/17 11:24 08/18/17 17:44 16887-00-6

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014003 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

569

mg/kg

01(4-5')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

96.7

10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

08/18/17 11:24 08/18/17 17:57 16887-00-6

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014004 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

723

01(6-7')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

98.2

10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014005 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(9-10')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
015B Diesel Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	ethod: E	EPA 3546			
PH-DRO (C10-C28)	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 12:53		
PH-ORO (C28-C35)	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 12:53		
Surrogates								
-Tetracosane (S)	81	%	65-119	1	08/23/17 08:36	08/24/17 12:53	646-31-1	
-Terphenyl (S)	80	%	41-131	1	08/23/17 08:36	08/24/17 12:53	92-94-4	
Sasoline Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	ethod: E	PA 5035A/5030B			
PH-GRO Surrogates	ND	mg/kg	11.0	1	08/20/17 00:00	08/21/17 20:29		
-Bromofluorobenzene (S)	96	%	64-122	1	08/20/17 00:00	08/21/17 20:29	460-00-4	
260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.5	1		08/22/17 20:45	71-43-2	
Ethylbenzene	ND	ug/kg	5.5	1		08/22/17 20:45	100-41-4	
oluene	ND	ug/kg	5.5	1		08/22/17 20:45	108-88-3	
(ylene (Total) Surrogates	ND	ug/kg	5.5	1		08/22/17 20:45	1330-20-7	
oluene-d8 (S)	100	%	87-112	1		08/22/17 20:45	2037-26-5	
-Bromofluorobenzene (S)	105	%	87-115	1		08/22/17 20:45	460-00-4	
,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 20:45	17060-07-0	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: El	PA 300.0			
Chloride	545	mg/kg	109	10	08/18/17 11:24	08/18/17 18:10	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014006 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(14-15')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

300.0 IC Anions 28 Days

1510 Chloride 08/18/17 11:24 08/18/17 18:23 16887-00-6 mg/kg 96.2 10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014007 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(19-20')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions,

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
3015B Diesel Range Organics	Analytical Metl	nod: EPA 8015	B Preparation Me	thod: E	PA 3546			
ГРН-DRO (C10-C28)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 14:09		
ГРН-ORO (C28-C35)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 14:09		
Surrogates								
n-Tetracosane (S)	80	%	65-119	1	08/23/17 08:36	08/24/17 14:09	646-31-1	
o-Terphenyl (S)	79	%	41-131	1	08/23/17 08:36	08/24/17 14:09	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	thod: E	PA 5035A/5030B			
ГРН-GRO Surrogates	ND	mg/kg	10.7	1	08/20/17 00:00	08/21/17 20:45		
4-Bromofluorobenzene (S)	94	%	64-122	1	08/20/17 00:00	08/21/17 20:45	460-00-4	
3260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.3	1		08/22/17 21:01	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 21:01	100-41-4	
Toluene	ND	ug/kg	5.3	1		08/22/17 21:01	108-88-3	
Kylene (Total) S <i>urrogates</i>	ND	ug/kg	5.3	1		08/22/17 21:01	1330-20-7	
Гoluene-d8 (S)	100	%	87-112	1		08/22/17 21:01	2037-26-5	
I-Bromofluorobenzene (S)	103	%	87-115	1		08/22/17 21:01	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 21:01	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: El	PA 300.0			
Chloride	686	mg/kg	103	10	08/18/17 11:24	08/18/17 18:36	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014008 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

1500

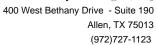
01(24-25')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0


98.2

10

08/18/17 11:24 08/18/17 19:14 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014009 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(29-30')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

Chloride 2430 mg/kg 195 20 08/18/17 11:24 08/19/17 09:15 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014010 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(34-35')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

Chloride 2640 mg/kg 196 20 08/18/17 11:24 08/19/17 09:28 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014011 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

567

01(39-40')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

101

10

08/22/17 10:47 08/22/17 10:47 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014012 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

114

01(44-45')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

101

10

08/22/17 13:03 08/22/17 13:03 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Page 18 of 47

400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014013 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(49-50')

Results reported on a "wet-weight" basis **Parameters** Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 105 Chloride mg/kg 97.8 10 08/22/17 13:18 08/22/17 13:18 16887-00-6

REPORT OF LABORATORY ANALYSIS

400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014014 Collected: 08/09/17 14:00 Received: 08/15/17 08:50 Matrix: Solid

01(54-55')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride 112 mg/kg 101 10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 (0- Lab ID: 7572014015 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

1')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	33.1	1	08/23/17 08:36	08/24/17 13:12		
TPH-ORO (C28-C35)	ND	mg/kg	33.1	1	08/23/17 08:36	08/24/17 13:12		
Surrogates n-Tetracosane (S)	81	%	65-119	1	08/23/17 08:36	08/24/17 13:12	646-31-1	
p-Terphenyl (S)	81	%	41-131	1	08/23/17 08:36	08/24/17 13:12	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO Surrogates	ND	mg/kg	11.5	1	08/20/17 00:00	08/21/17 21:01		
4-Bromofluorobenzene (S)	87	%	64-122	1	08/20/17 00:00	08/21/17 21:01	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.7	1		08/22/17 21:17	71-43-2	
Ethylbenzene	ND	ug/kg	5.7	1		08/22/17 21:17	100-41-4	
Toluene	ND	ug/kg	5.7	1		08/22/17 21:17	108-88-3	
Xylene (Total) Surrogates	ND	ug/kg	5.7	1		08/22/17 21:17	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 21:17	2037-26-5	
4-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 21:17	460-00-4	
1,2-Dichloroethane-d4 (S)	109	%	85-115	1		08/22/17 21:17	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: E	PA 300.0			
Chloride	129	mg/kg	116	10	08/22/17 13:48	08/22/17 13:48	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(2-Lab ID: 7572014016 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

3')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride 291 mg/kg 101 10

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 (4- Lab ID: 7572014017 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

5')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015E	3 Preparation Me	thod: E	EPA 3546			
TPH-DRO (C10-C28)	25.4	mg/kg	10.2	1	08/23/17 08:36	08/24/17 13:21		
TPH-ORO (C28-C35)	33.1	mg/kg	10.2	1	08/23/17 08:36	08/24/17 13:21		
Surrogates								
n-Tetracosane (S)	89	%	65-119	1	08/23/17 08:36	08/24/17 13:21	646-31-1	
p-Terphenyl (S)	85	%	41-131	1	08/23/17 08:36	08/24/17 13:21	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015E	3 Preparation Me	thod: E	EPA 5035A/5030B			
TPH-GRO Surrogates	ND	mg/kg	10.6	1	08/20/17 00:00	08/21/17 21:48		
4-Bromofluorobenzene (S)	94	%	64-122	1	08/20/17 00:00	08/21/17 21:48	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.3	1		08/22/17 21:33	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 21:33	100-41-4	
Toluene	ND	ug/kg	5.3	1		08/22/17 21:33	108-88-3	
Xylene (Total)	ND	ug/kg	5.3	1		08/22/17 21:33	1330-20-7	
Surrogates								
Toluene-d8 (S)	99	%	87-112	1		08/22/17 21:33	2037-26-5	
4-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 21:33	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	85-115	1		08/22/17 21:33	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: E	PA 300.0			
Chloride	208	mg/kg	103	10	08/22/17 15:31	08/22/17 15:31	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(6- Lab ID: 7572014018 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

245

7')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

96.5

10

08/22/17 15:46 08/22/17 15:46 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(9- Lab ID: 7572014019 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

160

10')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

98.8

10

08/22/17 16:02 08/22/17 16:02 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 Lab ID: 7572014020 Collected: 08/09/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

(14-15')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015B	Preparation Me	thod: E	EPA 3546			
ГРН-DRO (C10-C28)	ND	mg/kg	9.8	1	08/23/17 08:36	08/24/17 13:31		
ГРН-ORO (C28-C35)	ND	mg/kg	9.8	1	08/23/17 08:36	08/24/17 13:31		
Surrogates								
n-Tetracosane (S)	76	%	65-119	1	08/23/17 08:36	08/24/17 13:31	646-31-1	
o-Terphenyl (S)	79	%	41-131	1	08/23/17 08:36	08/24/17 13:31	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015B	Preparation Me	thod: E	PA 5035A/5030B			
ГРН-GRO Surrogates	ND	mg/kg	10.3	1	08/20/17 00:00	08/21/17 22:04		
1-Bromofluorobenzene (S)	97	%	64-122	1	08/20/17 00:00	08/21/17 22:04	460-00-4	
3260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.2	1		08/22/17 21:49	71-43-2	
Ethylbenzene	ND	ug/kg	5.2	1		08/22/17 21:49	100-41-4	
Toluene	ND	ug/kg	5.2	1		08/22/17 21:49	108-88-3	
Kylene (Total) S urrogates	ND	ug/kg	5.2	1		08/22/17 21:49	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 21:49	2037-26-5	
I-Bromofluorobenzene (S)	102	%	87-115	1		08/22/17 21:49	460-00-4	
,2-Dichloroethane-d4 (S)	107	%	85-115	1		08/22/17 21:49	17060-07-0	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: El	PA 300.0			
Chloride	107	mg/kg	104	10	08/22/17 16:17	08/22/17 16:17	16887-00-6	M1

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014021 Collected: 08/08/17 15:00 Received: 08/15/17 08:50 Matrix: Solid

2(19-20')

Results reported on a "wet-weight" basis

Parameters Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride 111 mg/kg 99.2 10 08/22/17 17:17 08/22/17 17:17 16887-00-6

REPORT OF LABORATORY ANALYSIS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 (0- Lab ID: 7572014022 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

1')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015I	B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	12.3	1	08/23/17 08:36	08/24/17 13:40		
TPH-ORO (C28-C35)	ND	mg/kg	12.3	1	08/23/17 08:36	08/24/17 13:40		
Surrogates n-Tetracosane (S)	68	%	65-119	1	08/23/17 08:36	08/24/17 13:40	646-31-1	
p-Terphenyl (S)	70	%	41-131	1	08/23/17 08:36	08/24/17 13:40	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015I	B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO Surrogates	ND	mg/kg	12.7	1	08/20/17 00:00	08/21/17 22:20		
4-Bromofluorobenzene (S)	95	%	64-122	1	08/20/17 00:00	08/21/17 22:20	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	6.2	1		08/22/17 22:05	71-43-2	
Ethylbenzene	ND	ug/kg	6.2	1		08/22/17 22:05	100-41-4	
Toluene	ND	ug/kg	6.2	1		08/22/17 22:05	108-88-3	
Xylene (Total)	ND	ug/kg	6.2	1		08/22/17 22:05	1330-20-7	
Surrogates Toluene-d8 (S)	99	%	87-112	1		08/22/17 22:05	2027 26 5	
4-Bromofluorobenzene (S)	102	%	87-11 <u>2</u>	1		08/22/17 22:05		
1,2-Dichloroethane-d4 (S)	109	%	85-115	1		08/22/17 22:05		
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: E	PA 300.0			
Chloride	2080	mg/kg	122	10	08/22/17 17:32	08/22/17 17:32	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(2- Lab ID: 7572014023 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

487

mg/kg

3')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

97.3

10

08/22/17 17:47 08/22/17 17:47 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 (4- Lab ID: 7572014024 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

5')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015	3 Preparation Me	thod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 13:50		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 13:50		
n-Tetracosane (S)	74	%	65-119	1	08/23/17 08:36	08/24/17 13:50	646-31-1	
p-Terphenyl (S)	74	%	41-131	1	08/23/17 08:36	08/24/17 13:50	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015E	B Preparation Me	thod: E	EPA 5035A/5030B			
TPH-GRO Surrogates	ND	mg/kg	11.0	1	08/20/17 00:00	08/21/17 22:36		
4-Bromofluorobenzene (S)	96	%	64-122	1	08/20/17 00:00	08/21/17 22:36	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.4	1		08/22/17 22:21	71-43-2	
Ethylbenzene	ND	ug/kg	5.4	1		08/22/17 22:21	100-41-4	
Toluene	ND	ug/kg	5.4	1		08/22/17 22:21	108-88-3	
Xylene (Total) Surrogates	ND	ug/kg	5.4	1		08/22/17 22:21	1330-20-7	
Toluene-d8 (S)	99	%	87-112	1		08/22/17 22:21	2037-26-5	
4-Bromofluorobenzene (S)	103	%	87-115	1		08/22/17 22:21	460-00-4	
1,2-Dichloroethane-d4 (S)	110	%	85-115	1		08/22/17 22:21	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: E	PA 300.0			
Chloride	2180	mg/kg	216	20	08/22/17 08:00	08/23/17 16:36	16887-00-6	

REPORT OF LABORATORY ANALYSIS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(6- Lab ID: 7572014025 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

7')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

Chloride 1350 mg/kg 101 10 08/22/17 18:18 08/22/17 18:18 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(9- Lab ID: 7572014026 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

10')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

Chloride 672 mg/kg 96.9 10 08/22/17 18:33 08/22/17 18:33 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 Lab ID: 7572014027 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

(14-15')

Results reported on a "dry weight" basis and are adjusted for percent moisture, sample size and any dilutions.

Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qua
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015I	3 Preparation Me	thod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 13:59		
TPH-ORO (C28-C35)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 13:59		
Surrogates								
n-Tetracosane (S)	84	%	65-119	1	08/23/17 08:36	08/24/17 13:59	646-31-1	
-Terphenyl (S)	85	%	41-131	1	08/23/17 08:36	08/24/17 13:59	92-94-4	
Sasoline Range Organics	Analytical Meth	nod: EPA 8015	B Preparation Me	thod: E	PA 5035A/5030B			
FPH-GRO Surrogates	ND	mg/kg	10.7	1	08/23/17 00:00	08/23/17 14:32		
I-Bromofluorobenzene (S)	100	%	64-122	1	08/23/17 00:00	08/23/17 14:32	460-00-4	
260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.4	1		08/22/17 22:37	71-43-2	
Ethylbenzene	ND	ug/kg	5.4	1		08/22/17 22:37	100-41-4	
Toluene Toluene	ND	ug/kg	5.4	1		08/22/17 22:37	108-88-3	
(ylene (Total)	ND	ug/kg	5.4	1		08/22/17 22:37	1330-20-7	
Surrogates								
「oluene-d8 (S)	100	%	87-112	1		08/22/17 22:37	2037-26-5	
I-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 22:37	460-00-4	
,2-Dichloroethane-d4 (S)	107	%	85-115	1		08/22/17 22:37	17060-07-0	
00.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: E	PA 300.0			
Chloride	425	mg/kg	103	10	08/22/17 18:48	08/22/17 18:48	16887-00-6	

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-Lab ID: 7572014028 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

3(19-20')

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual 300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0 Chloride 131 mg/kg 98.8 10 08/22/17 19:03 08/22/17 19:03 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- Lab ID: 7572014029 Collected: 08/09/17 17:00 Received: 08/15/17 08:50 Matrix: Solid

mg/kg

108

3(24-25')

Chloride

Results reported on a "wet-weight" basis

Parameters Results Units Report Limit DF Prepared Analyzed CAS No. Qual

300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0

97.7

10

08/22/17 19:18 08/22/17 19:18 16887-00-6

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

QC Batch: 490632 Analysis Method: EPA 8015B

QC Batch Method: EPA 5035A/5030B Analysis Description: Gasoline Range Organics

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024

METHOD BLANK: 2008512 Matrix: Solid

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024

Blank Reporting
Parameter Units Result Limit

ParameterUnitsResultLimitAnalyzedQualifiersTPH-GROmg/kgND10.008/21/17 15:45

4-Bromofluorobenzene (S) mg/kg ND 10.0 08/21/17 15:45

LABORATORY CONTROL SAMPLE: 2008513

Spike LCS LCS % Rec Parameter Units Conc. Result % Rec Limits Qualifiers TPH-GRO 50 48.4 97 85-130 mg/kg 4-Bromofluorobenzene (S) % 109 64-122

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2008514 2008515

MSD MS 7572002014 Spike Spike MS MSD MS MSD % Rec Max Parameter Units Result Conc. Conc. Result Result % Rec % Rec Limits **RPD** RPD Qual TPH-GRO mg/kg ND 56 56 58.0 56.0 102 98 85-125 12 4-Bromofluorobenzene (S) % 101 87 64-122

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

(972)727-1123

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

QC Batch: 491143 Analysis Method: EPA 8015B

QC Batch Method: EPA 5035A/5030B Analysis Description: Gasoline Range Organics

Associated Lab Samples: 7572014027

METHOD BLANK: 2010285 Matrix: Solid

Associated Lab Samples: 7572014027

Blank Reporting Limit Qualifiers Parameter Units Result Analyzed TPH-GRO ND 10.0 08/23/17 11:22 mg/kg 4-Bromofluorobenzene (S) % 110 64-122 08/23/17 11:22

LABORATORY CONTROL SAMPLE: 2010286

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
TPH-GRO	mg/kg	50	51.7	103	85-130	
4-Bromofluorobenzene (S)	%			105	64-122	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

I ARODATORY CONTROL SAMPLE.

QC Batch: 490867 Analysis Method: EPA 8260

QC Batch Method: EPA 8260 Analysis Description: 8260 MSV 5035A Volatile Organics

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024,

7572014027

METHOD BLANK: 2009313 Matrix: Solid

2000214

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024,

7572014027

		Blank	Reporting		
Parameter	Units	Result	Limit	Analyzed	Qualifiers
Benzene	ug/kg	ND	5.0	08/22/17 18:03	
Ethylbenzene	ug/kg	ND	5.0	08/22/17 18:03	
Toluene	ug/kg	ND	5.0	08/22/17 18:03	
Xylene (Total)	ug/kg	ND	5.0	08/22/17 18:03	
1,2-Dichloroethane-d4 (S)	%	105	85-115	08/22/17 18:03	
4-Bromofluorobenzene (S)	%	104	87-115	08/22/17 18:03	
Toluene-d8 (S)	%	101	87-112	08/22/17 18:03	

		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
Benzene	ug/kg	100	87.6	88	81-115	
Ethylbenzene	ug/kg	100	82.4	82	76-119	
Toluene	ug/kg	100	84.1	84	77-116	
Xylene (Total)	ug/kg	300	247	82	76-121	
1,2-Dichloroethane-d4 (S)	%			109	85-115	
4-Bromofluorobenzene (S)	%			105	87-115	
Toluene-d8 (S)	%			101	87-112	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 08/25/2017 11:00 AM

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

QC Batch: 491042 Analysis Method: EPA 8015B
QC Batch Method: EPA 3546 Analysis Description: EPA 8015B

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024,

7572014027

METHOD BLANK: 2009940 Matrix: Solid

Associated Lab Samples: 7572014002, 7572014005, 7572014007, 7572014015, 7572014017, 7572014020, 7572014022, 7572014024,

7572014027

Parameter	Units	Blank Result	Reporting Limit	Analyzed	Qualifiers
TPH-DRO (C10-C28)	mg/kg	ND	9.8	08/24/17 10:12	
TPH-ORO (C28-C35)	mg/kg	ND	9.8	08/24/17 10:12	
n-Tetracosane (S)	%	92	65-119	08/24/17 10:12	
p-Terphenyl (S)	%	92	41-131	08/24/17 10:12	

LABORATORY CONTROL SAMPLE:	2009941					
		Spike	LCS	LCS	% Rec	
Parameter	Units	Conc.	Result	% Rec	Limits	Qualifiers
TPH-DRO (C10-C28)	mg/kg	80.9	72.7	90	80-112	
n-Tetracosane (S)	%			86	65-119	
p-Terphenyl (S)	%			85	41-131	

MATRIX SPIKE & MATRIX SPI	IKE DUPLIC	CATE: 20099	42		2009943							
			MS	MSD								
		7572007029	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter	Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH-DRO (C10-C28)	mg/kg	212	92.9	95.5	361	208	161	-4	10-180	54	39	M1,R1
n-Tetracosane (S)	%						106	79	65-119		58	
p-Terphenyl (S)	%						97	77	41-131		56	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Chloride

QC Batch: 490442 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

ND

585

Associated Lab Samples: 7572014001, 7572014002, 7572014003, 7572014004, 7572014005, 7572014006, 7572014007, 7572014008,

7572014009, 7572014010

METHOD BLANK: 2007674 Matrix: Solid

mg/kg

Associated Lab Samples: 7572014001, 7572014002, 7572014003, 7572014004, 7572014005, 7572014006, 7572014007, 7572014008,

7572014009, 7572014010

Blank Reporting Units Parameter Result Limit Analyzed Qualifiers Chloride mg/kg ND 08/19/17 08:23 LABORATORY CONTROL SAMPLE: 2007675 LCS LCS Spike % Rec Parameter Units Conc. Result % Rec Limits Qualifiers Chloride 97 90-110 500 485 mg/kg MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2007677 2007676 MS MSD Spike 7572004016 Spike MS MSD MS MSD % Rec Max RPD RPD Parameter Units Result Conc. Result % Rec % Rec Limits Conc. Result Qual

MATRIX SPIKE SAMPLE:	2007678						
		7572004025	Spike	MS	MS	% Rec	
Parameter	Units	Result	Conc.	Result	% Rec	Limits	Qualifiers
Chloride	mg/kg	ND	687	139		5 80-120	M1

590

559

ND

89

3

80-120

15 M1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

80-120 M1

QUALITY CONTROL DATA

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

QC Batch: 490485 Analysis Method: EPA 300.0

QC Batch Method: EPA 300.0 Analysis Description: 300.0 IC Anions

Associated Lab Samples: 7572014011, 7572014012, 7572014013, 7572014014, 7572014015, 7572014016, 7572014017, 7572014018,

7572014019, 7572014020, 7572014021, 7572014022, 7572014023, 7572014024, 7572014025, 7572014026,

7572014027, 7572014028, 7572014029

METHOD BLANK: 2007886 Matrix: Solid

Associated Lab Samples: 7572014011, 7572014012, 7572014013, 7572014014, 7572014015, 7572014016, 7572014017, 7572014018,

7572014019, 7572014020, 7572014021, 7572014022, 7572014023, 7572014024, 7572014025, 7572014026,

7572014027, 7572014028, 7572014029

ParameterUnitsBlank Reporting ResultReporting LimitAnalyzedQualifiersChloridemg/kgND10008/23/17 15:50

LABORATORY CONTROL SAMPLE: 2007887

Chloride

LCS LCS % Rec Spike Parameter Units Conc. Result % Rec Limits Qualifiers Chloride mg/kg 500 476 95 90-110

MATRIX SPIKE & MATRIX SPIKE DUPLICATE: 2007888 2007889

mg/kg

MS MSD MSD MS MSD 7572014011 Spike Spike MS % Rec Max Parameter Units Result Conc Conc. Result Result % Rec % Rec Limits RPD RPD Qual Chloride 506 499 1040 1040 80-120 mg/kg 567 94 95 0 15

MATRIX SPIKE SAMPLE: 2007890

7572014020 Spike MS MS % Rec
Parameter Units Result Conc. Result % Rec Limits Qualifiers

107

504

139

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 08/25/2017 11:00 AM

QUALIFIERS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

BATCH QUALIFIERS

Batch: 490996

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 491374

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

Date: 08/25/2017 11:00 AM

M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.

R1 RPD value was outside control limits.

S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytica Batch
7572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 3546	491042	EPA 8015B	491258
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 3546	491042	EPA 8015B	491258
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 3546	491042	EPA 8015B	491258
7572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 3546	491042	EPA 8015B	491258
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 3546	491042	EPA 8015B	491258
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 3546	491042	EPA 8015B	491258
572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 3546	491042	EPA 8015B	491258
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 3546	491042	EPA 8015B	491258
572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 3546	491042	EPA 8015B	491258
572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 5035A/5030B	490632	EPA 8015B	490997
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 5035A/5030B	490632	EPA 8015B	490997
7572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 5035A/5030B	490632	EPA 8015B	490997
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 5035A/5030B	490632	EPA 8015B	490997
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 5035A/5030B	490632	EPA 8015B	490997
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 5035A/5030B	491143	EPA 8015B	491374
7572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 8260	490867		
572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 8260	490867		
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 8260	490867		
7572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 8260	490867		
7572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 8260	490867		
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 8260	490867		
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 8260	490867		
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 8260	490867		
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 8260	490867		
7572014001	EVGSAU 3366-029 SB-01(0-1')	EPA 300.0	490442	EPA 300.0	490562
7572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 300.0	490442	EPA 300.0	490562
7572014003	EVGSAU 3366-029 SB-01(4-5')	EPA 300.0	490442	EPA 300.0	490562
7572014004	EVGSAU 3366-029 SB-01(6-7')	EPA 300.0	490442	EPA 300.0	490562
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 300.0	490442	EPA 300.0	490562
7572014006	EVGSAU 3366-029 SB-01(14-15')	EPA 300.0	490442	EPA 300.0	490562
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 300.0	490442	EPA 300.0	490562
7572014008	EVGSAU 3366-029 SB-01(24-25')	EPA 300.0	490442	EPA 300.0	490562
7572014009	EVGSAU 3366-029 SB-01(29-30')	EPA 300.0	490442	EPA 300.0	490573
7572014010	EVGSAU 3366-029 SB-01(34-35')	EPA 300.0	490442	EPA 300.0	490573
7572014011	EVGSAU 3366-029 SB-01(39-40')	EPA 300.0	490485	EPA 300.0	491036
7572014012	EVGSAU 3366-029 SB-01(44-45')	EPA 300.0	490485	EPA 300.0	491036
572014013	EVGSAU 3366-029 SB-01(49-50')	EPA 300.0	490485	EPA 300.0	491036
572014014	EVGSAU 3366-029 SB-01(54-55')	EPA 300.0	490485	EPA 300.0	491036
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 300.0	490485	EPA 300.0	491036
572014015 572014016	EVGSAU 3366-029 SB-2(0-1)	EPA 300.0	490485	EPA 300.0	491036
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 300.0	490485	EPA 300.0	491036
572014017 572014018	EVGSAU 3366-029 SB-2(4-5)	EPA 300.0	490485	EPA 300.0	491036
J. 2017010	- 1 0000 0000 023 0D-2(0-1)	LI / 000.0	750705	L1 /1 000.0	731030

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Date: 08/25/2017 11:00 AM

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 300.0	490485	EPA 300.0	491036
7572014021	EVGSAU 3366-029 SB-2(19-20')	EPA 300.0	490485	EPA 300.0	491036
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 300.0	490485	EPA 300.0	491036
7572014023	EVGSAU 3366-029 SB-3(2-3')	EPA 300.0	490485	EPA 300.0	491036
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 300.0	490485	EPA 300.0	491104
7572014025	EVGSAU 3366-029 SB-3(6-7')	EPA 300.0	490485	EPA 300.0	491036
7572014026	EVGSAU 3366-029 SB-3(9-10')	EPA 300.0	490485	EPA 300.0	491036
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 300.0	490485	EPA 300.0	491036
7572014028	EVGSAU 3366-029 SB-3(19-20')	EPA 300.0	490485	EPA 300.0	491036
7572014029	EVGSAU 3366-029 SB-3(24-25')	EPA 300.0	490485	EPA 300.0	491036

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

Received by OCD: 4/5/2024 2:37:46 PM

Document Name: Sample Condition Upon Receipt

Document No.: F-DAL-C-001-rev.06 Document Revised: 7/25/16 Page 1 of 1

lssuing Authority: Pace Dallas Quality Office

Sample Condition Upon Receipt

⊠Dallas □Ft Worth	n □San Angelo	WO#:7572014
Client Name: Tetra Tech	Project Work order	7572014
Courier: FedEX of UPS = USPS = Client = Tracking#: 7420 89	Courier	
Custody Seal on Cooler/Box: Yes	No □ Seals Intact: Yes	
Packing Material: Bubble Wrap □ Thermometer Used: IR-(S4) Type of Cooler Temp °C: 4,3,4.0(Recorded)		None Other Sample Received on ice, cooling process has begun C(Actual) Temp should be above freezing to 6°C
Chain of Custody Present	Yes No D NA D	1
Chain of Custody filled out	Yes No D NA	2
Chain of Custody relinquished	Yes No D NA D	3
Sampler name & signature on COC	Yes No D NA D	
Sample received within HT	Yes No D NA D	
Short HT analyses (<72 hrs)	Yes D No NA D	
Rush TAT requested	Yes D No D NA D	
Sufficient Volume received	Yes No O NA O	The second secon
Correct Container used	Yes No D NA D	
Pace Container used	Yes O No O NA O	
Container Intact	Yes No D NA D	10
Unpreserved 5035A soil frozen within 48 h	rs Yes 🗆 No 🗆 NA 🗗	11
Filtered volume received for Dissolved test	S Yes D NOUTE INA	12
Sample labels match COC Include date/time/ID/analyses Matr	Yes No No NA	13 Samples 22-29 do not match
All containers needing preservation have b	een checked Yes 🗆 No 🗆 NA 🗅	14a. Lot# of pH strip: Original pH: <pre><pre>Criginal pH: <pre><pre>Criginal pH: <pre><pre>Criginal pH: <pre>Criginal p</pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre></pre>
Do containers require preservation at the l	ab Yes O No O NA O	14b. Preservation: Lot# and adjusted pH: pH<2 \(\text{pH} \) pH>9 \(\text{pH} \) pH>12 \(\text{pH} \)
All containers needing preservation are for Compliance with EPA recommendation Exception: VOA, coliform, O&G	yes □ No □ NA □	14c.
Are soil samples (volatiles) received in	Bulk Terracore EnCore NA	15.
Trip Blank present Trip Blank Custody Seals Intact Pace Trip Blank Lot# (if purchased):	Yes 🗆 No 🗆 NA 🗇 Yes 🗆 No 🗀 NA 🗇	
Headspace in VOA (>6mm)	Yes 🗆 No 🗅 NA 🗹	17.
Project sampled in USDA Regulated Area:	Yes No NA D	18. List State
Client Notification/Resolution/Comments:		
	Date:	

MOCTOR

3 6061 6668 926C 151 6668 0646 ŏ RUSH: Same Day 24 hr 48 hr 72 hr -Special Report Limits or TRRP Report Anion/Cation Balance Seneral Water Chemistry (see attached list) Circle or Specify Method No. SQT Sulfate Rush Charges Authorized Page × × × × × × × Tracking #: ANALYSIS REQUEST (Asbestos) MHON CB.2 8082 \ 608 GC/MS Semi. Vol. Circle) HAND DELIVERED PEDEX JUPS 8510C/625 GC/W2 AOL 8260B / 624 REMARKS TCLP Semi Volatiles CLP Metals Ag As Ba Cd Cr Pb Se Hg LAB USE ONLY Sample Temperature Total Metals Ag As Ba Cd Cr Pb Se Hg TPH 8015M (GRO - DRO - ORO - WEB) × × TRH TX1005 (EXI to C35) BTEX 8260B STEX 8021B -ILTERED (Y/N) If TPH exceeds 1,000 mg/kg, run deeper sample. If Benzene exceeds 10mg/kg or total BTEX exceeds 50 mg/kg, run deeper CONTAINERS 8/15/17 PRESERVATIVE METHOD 4000 N. Big Spring Street, Sie 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946 212C-MD-00938 ICE × FONF Clint Merritt Date: Date: HOF Ike Tavarez MATRIX TIOS **H**3TAW 14:00 14:00 14:00 14:00 14:00 14:00 14:00 14:00 14:00 14:00 ORIGINAL COPY LIME SAMPLING Sampler Signature: 8/9/2017 eceived by: Received by: 8/9/2017 8/9/2017 Received by: 8/9/2017 8/9/2017 8/9/2017 8/9/2017 8/9/2017 8/9/2017 8/9/2017 Site Manager Project #: **DATE** Tetra Tech, Inc. 8/14/17 17:00 Time: SAMPLE IDENTIFICATION Analysis Request of Chain of Custody Record Date: EVGSAU 3366-029 EVGSAU 3366-029 SB-1 (24'-25') EVGSAU 3366-029 SB-1 (29'-30') EVGSAU 3366-029 SB-1 (14-15") EVGSAU 3366-029 SB-1 (34'-35') EVGSAU 3366-029 SB-1 (19-20') EVGSAU 3366-029 SB-1 (9'-10') EVGSAU 3366-029 SB-1 (2'-3') EVGSAU 3366-029 SB-1 (4'-5') EVGSAU 3366-029 SB-1 (6'-7') EVGSAU 3366-029 SB-1 (0-1") Conoco Phillips Pace Analytical Lea Co NM (county, sample ceiving Laboratory: Relinquished by: Relinquished by telinquished by roject Location: Ę roject Name: LAB USE ONLY LAB # ient Name: Clint Merritt voice to: 8 Page 45 of 47 state)

Released to Imaging: 4/22/2024 10:33:37 AM

7573014 Page 82 of 306

4		Tetra Tech, Inc.			4000 N. Big 401 Midla Tel (43 Fax (43	4000 N. Big Spring Street, Ste 401 Midand, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946									1	
Client Name:	Conoco Phillips		Site Manager:		lke Tavarez	75			1	ANA	ANALYSIS	O				
Project Name:	EVGSAU 3366-029	59							<u>-</u>	Circle or	Specify	2	ethod No.	2 = ===================================		_
Project Location: state)	n: (county, Lea Co NM		Project #:		212C-I	212C-MD-00938								(1:		
Invoice to:								_		6)				sil bad		
Receiving Laboratory:	ratory: Pace Analytical		Sampler Signature:	ure:	Clint Merritt	erritt				H PS qd				oelte e		
Comments:	If TPH exceeds 1,000 mg/kg, run deeper sample. If Benzene exceeds 10mg/kg or total BTEX exceeds 50 mg/kg, run deeper sample	ın deeper sample. If Benzene	exceeds 10mg	g/kg or total	BTEX exce	eds 50 mg/kg	g, run deeper			ia Cd Cr		030/00/	SOI			
			SAMPLING	ING	MATRIX	PRESERVATIVE METHOD	SH	BTB of IXE)			-11-11-1	808	e)e)li			
LAB#	SAMPLE IDE	SAMPLE IDENTIFICATION	YEAR: ETAO	EMIT	MATER SOIL	ICE HNO ³ HCF	# CONTAINE	FILTERED (Y BTEX 8021B 6001XT H9T	TPH 8015M (PAH 8270C	TCLP Metals A TCLP Volatiles TCLP Semi Vo	3C/WS API' 8: 3C/WS API' 8: 3C/WS API' 8:	10HW 5CB,8 8085 \ 6	PLM (Asbestos Chloride Chloride Su	eneral Wate I noilsOvoinA		ploi
110	EVGSAU 3366-029 SB-1 (39'-40')	(,0;	8/9/2017	14:00	×	×	-	1		-		4	×		ŧ	1
610	EVGSAU 3366-029 SB-1 (44'-45')	5)	8/9/2017	14:00	×	×	-						×	Ė		F
013	EVGSAU 3366-029 SB-1 (49'-50')	(,0	8/9/2017	14:00	×	×	-						×			I
N T	EVGSAU 3366-029 SB-1 (54'-55')	5')	8/9/2017	14:00	×	×	-						×	E		I
015	EVGSAU 3366-029 SB-2 (0-1")		8/9/2017	15:00	×	×	7	×	×				×			
0)(0	EVGSAU 3366-029 SB-2 (2'-3')		8/9/2017	15:00	×	×	-						×			
017	EVGSAU 3366-029 SB-2 (4'-5')		8/9/2017	15:00	×	×	-	×	×				×			
50	EVGSAU 3366-029 SB-2 (6'-7')		8/9/2017	15:00	×	×	T						×			1
66	EVGSAU 3366-029 SB-2 (9'-10')	.0	8/9/2017	15:00	×	×	-						×	E		
0.K	EVGSAU 3366-029 SB-2 (14-15')	(.5	8/9/2017	15:00	×	×	-	×	- ×				×		E	
Relinquished by: Clint Merritt	M	Date: Time: 8/14/17 17:00	Received by:	1	Date	e: Time:	BISKINGE	-1	AB USE ONLY	REMARKS	3KS:					
Relinquished by:		Date: Time:	Received by:		Dafe	e. Time:	5	_	Sample Temperature	Ц	RUSH:	RUSH: Same Day	24 hr	48 hr 7	72 hr	
Relinquished by:		Date: Time:	Received by:		Date:	е: Тіте:		4.2	7.4.5		Rush Cha Special R	Rush Charges Authorized Special Report Limits or TRRP Report	orized ts or TRR	P Report		
Page 46 of 4			ORIGINAL COPY	YAOS				(Circle) H	HAND DELIVERED		(FEDEX JUPS	Tracking	# 74 74	20 87	51 B	200
١7																

Received by OCD: 4/5/2024 2:37:46 PM

Record
ody F
Cust
n of
Chai
to
dnes
Re
/sis
Analy

F	Tetra Tech, Inc.			4000 N. Big 401 Midia Tel (43 Fax (43	4000 N. Big Spring Street, Ste 401 Midand, Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946												
Client Name:	Conoco Phillips	Site Manager:		lke Tavarez	Ze					AN	YSIS F	REQUEST	100				
Project Name:	EVGSAU 3366-029						Ē	Ξ	Circle	0 -	Specify	y Method		No.)	-	1	
Project Location: state)	n: (county, Lea Co NM	Project #:		212C-1	212C-MD-00938	H	1							()			
Invoice to:							1	(0)						sij pəy			
Receiving Laboratory:	atory: Pace Analytical	Sampler Signat	nre:	Clint Merritt	erritt		F	MT- OF						e silac			_
Comments:	If TPH exceeds 1,000 mg/kg, run deeper sample. If Benzene exceeds 10mg/kg or total BTEX exceeds 50 mg/kg, run deeper sample	exceeds 10mg	y/kg or total	BTEX exce	eds 50 mg/kg	j, run deeper	85608										
		SAMPL	ING	MATRIX	PRESERVATIVE METHOD	St	GTB			selite					sjance		
LAB #	SAMPLE IDENTIFICATION	YEAR	IME	SOIL	CE INO ³ ICF	CONTAINE	TEX 8021B	PH 8270C PH 8015M (C	eA sisieM lsto GLP Metals Ag	CLP Volatiles CLP Semi Vola CI	C/MS Vol. 82	OHW CB,8 8085 \ e	LM (Asbestos) hloride	eneral Waler	8 noils2\noin	plo	
158	EVGSAU 3366-029 SB-2 (19'-20')	8/8/2017	00:0	×	1	1-	8	1	1	1	9	d		9	A	Н	
B	EVGSAU 3366-029 SB2 (0-1") *	8/9/2017	17:00	×	×	-	×	×		F			< ×			I	1
589	EVGSAU 3366-029 SBP-(2'-3')	8/9/2017	17:00	×	×	-							×	F		t	1
pC0	EVGSAU 3366-029 SB2 (4'-5")	8/9/2017	17:00	×	×	-	×	×		Ė			×	F			_
038	EVGSAU 3366-029 SB ² /6'-7')	8/9/2017	17:00	×	×	٦							×		F		1
0,90	EVGSAU 3366-029 SB2 (9'-10')	8/9/2017	17:00	×	×	·							×	F			_
160	EVGSAU 3366-029 SB 2 (14:-15)	8/9/2017	17:00	×	×	4	×	×		4			×	F			-
40	EVGSAU 3366-029 SBŽ-(19'-20')	8/9/2017	17:00	×	×	7							×		F		_
35	EVGSAU 3366-029 SB-2-(24∵25′)	8/9/2017	17:00	×	×	-	F						×	F			_
													×	E			-
Relinquished by:	95. Time: 8/14/17 17:00	Received by:	/"/	Date:	e: Time:	8/15/17		LAB USE ONLY	ONLY	REMARKS:	ij						-
Relinquished by:	y: Date: Time:	Received by.		Date	Jime:		Samp	Sample Temperature	ature		JSH: S	RUSH: Same Day	7 24 hr	. 48 hr	72 hr	v.	
Relinquished by:	/c. Date: Time:	Received by:		Date:	e: Time:		7	2	4.5		ish Cha ecial Re	Rush Charges Authorized Special Report Limits or TRRP Report	horized ilts or TF	RP Re	port		
1.0	corrected IDS to SB-3 per Brus Pape	6-16-17					(Circle)	HAND (HAND DELIVERED	D (FEDEX)	X) UPS	Tracking	9#: 7	120	5668	0/6/	_
ge 47 of 4		ORIGINAL	SOPY										14	22	8979	5061	•
47																	

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 3 – INITIAL REMEDIATION LABORATORY DATA

ANALYTICAL REPORT

February 05, 2019

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1065066

Samples Received: 01/29/2019

Project Number: 212C-MD-01576

EVGSAU 3366-029 Description:

Report To: Kayla Taylor

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

1
2
3
5
6
6
7
8
9
10
11
12
13
13
15
16
17
18
19
20

Sc: Sample Chain of Custody

21

			Collected by	Collected date/time	Received date/time
ESW-2 (4') L1065066-01 Solid			Devin Dominguez	01/24/19 09:20	01/29/19 08:00
, ,	Batch	Dilution	Preparation	Analysis	Analyst
Method	DdlCII	Dilution	date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1230766	1	01/31/19 11:34	01/31/19 11:42	KDW
Wet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 20:17	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 16:18	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 16:41	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 03:38	DMW
			Collected by	Collected date/time	Received date/time
NSW-2 (4') L1065066-02 Solid			Devin Dominguez	01/24/19 09:23	01/29/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 20:31	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 16:40	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 17:01	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 03:52	DMW
			Collected by	Collected date/time	Received date/time
SSW-2 (4') L1065066-03 Solid			Devin Dominguez	01/24/19 09:25	01/29/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 20:46	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 17:02	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230742 WG1230859	1 1	01/30/19 16:22 01/31/19 11:57	01/31/19 17:21 02/01/19 04:05	ACG DMW
			Collected by	Collected date/time	Received date/time
AH-2 (4') L1065066-04 Solid			Devin Dominguez	01/24/19 09:28	01/29/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 21:00	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 17:24	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 17:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 02:57	DMW
			Collected by	Collected date/time	Received date/time
WSW-2 (4') L1065066-05 Solid			Devin Dominguez	01/24/19 09:30	01/29/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1230766 WG1229855	1	01/30/19 10:00	01/30/19 21:15	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1223033 WG1231900	1	01/30/19 16:22	02/03/19 17:46	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231300	1	01/30/19 16:22	01/31/19 18:00	ACG
Carri Valatila Opposia Carra anna (CC) ha Matha d CC	W042200F0	'	04/04/40 44 57	0.010440.0440	7.00

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1230859

01/31/19 11:57

02/01/19 04:19

DMW

			Collected by	Collected date/time	Received date/time
SSW-2 (4' 1.5' OUT) L1065066-06 Solid			Devin Dominguez	01/24/19 16:00	01/29/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 21:58	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 18:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 18:20	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 04:33	DMW
			Collected by	Collected date/time	Received date/time
WSW-2 (4' 1.5' OUT) L1065066-07 Solid			Devin Dominguez	01/25/19 11:50	01/29/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 22:12	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 18:31	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 18:40	ACG

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

SAMPLE RESULTS - 01 L1065066

ONE LAB. NAT Page 90 of 306

Collected date/time: 01/24/19 09:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	89.3		1	01/31/2019 11:42	WG1230766

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	103		0.890	10.0	11.2	1	01/30/2019 20:17	WG1229855

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0243	0.100	0.112	1	02/03/2019 16:18	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 16:18	WG1231900

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000448	0.00100	0.00112	1	01/31/2019 16:41	WG1230742
Toluene	U		0.00140	0.00500	0.00560	1	01/31/2019 16:41	WG1230742
Ethylbenzene	U		0.000593	0.00250	0.00280	1	01/31/2019 16:41	WG1230742
Total Xylenes	U		0.00535	0.00650	0.00728	1	01/31/2019 16:41	WG1230742
(S) Toluene-d8	130				75.0-131		01/31/2019 16:41	WG1230742
(S) Dibromofluoromethane	84.4				65.0-129		01/31/2019 16:41	WG1230742
(S) a,a,a-Trifluorotoluene	85.2				80.0-120		01/31/2019 16:41	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 16:41	WG1230742

Sc

Gl

_	•							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	97.6		1.80	4.00	4.48	1	02/01/2019 03:38	WG1230859
C28-C40 Oil Range	99.7		0.307	4.00	4.48	1	02/01/2019 03:38	WG1230859
(S) o-Terphenyl	64.5				18.0-148		02/01/2019 03:38	WG1230859

ONE LAB. NAT Page 91 of 306

Collected date/time: 01/24/19 09:23

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.3		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	377		0.853	10.0	10.7	1	01/30/2019 20:31	WG1229855

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.100	0.107	1	02/03/2019 16:40	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 16:40	WG1231900

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00100	0.00107	1	01/31/2019 17:01	WG1230742
Toluene	U		0.00134	0.00500	0.00536	1	01/31/2019 17:01	WG1230742
Ethylbenzene	U		0.000568	0.00250	0.00268	1	01/31/2019 17:01	WG1230742
Total Xylenes	U		0.00513	0.00650	0.00697	1	01/31/2019 17:01	WG1230742
(S) Toluene-d8	127				75.0-131		01/31/2019 17:01	WG1230742
(S) Dibromofluoromethane	88.0				65.0-129		01/31/2019 17:01	WG1230742
(S) a,a,a-Trifluorotoluene	85.2				80.0-120		01/31/2019 17:01	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 17:01	WG1230742

Gl

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.54		1.73	4.00	4.29	1	02/01/2019 03:52	WG1230859
C28-C40 Oil Range	3.32	<u>J</u>	0.294	4.00	4.29	1	02/01/2019 03:52	WG1230859
(S) o-Terphenvl	109				18.0-148		02/01/2019 03:52	WG1230859

ONE LAB. NAT Page 92 of 306

Collected date/time: 01/24/19 09:25

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.8		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1150		4.20	10.0	52.8	5	01/30/2019 20:46	WG1229855

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.106	1	02/03/2019 17:02	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	99.9				77.0-120		02/03/2019 17:02	WG1231900

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	01/31/2019 17:21	WG1230742
Toluene	U		0.00132	0.00500	0.00528	1	01/31/2019 17:21	WG1230742
Ethylbenzene	U		0.000559	0.00250	0.00264	1	01/31/2019 17:21	WG1230742
Total Xylenes	U		0.00504	0.00650	0.00686	1	01/31/2019 17:21	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 17:21	WG1230742
(S) Dibromofluoromethane	87.4				65.0-129		01/31/2019 17:21	WG1230742
(S) a,a,a-Trifluorotoluene	84.2				80.0-120		01/31/2019 17:21	WG1230742
(S) 4-Bromofluorobenzene	104				67.0-138		01/31/2019 17:21	WG1230742

Sc

Gl

_	· · · · · · · · · · · · · · · · · · ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.45	<u>J</u>	1.70	4.00	4.22	1	02/01/2019 04:05	WG1230859
C28-C40 Oil Range	0.678	<u>J</u>	0.289	4.00	4.22	1	02/01/2019 04:05	WG1230859
(S) o-Terphenyl	94.8				18.0-148		02/01/2019 04:05	WG1230859

ONE LAB. NAT Page 93 of 306

Collected date/time: 01/24/19 09:28

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.0		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	926		0.864	10.0	10.9	1	01/30/2019 21:00	WG1229855

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.100	0.109	1	02/03/2019 17:24	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	99.5				77.0-120		02/03/2019 17:24	WG1231900

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	01/31/2019 17:40	WG1230742
Toluene	U		0.00136	0.00500	0.00543	1	01/31/2019 17:40	WG1230742
Ethylbenzene	U		0.000576	0.00250	0.00272	1	01/31/2019 17:40	WG1230742
Total Xylenes	U		0.00520	0.00650	0.00707	1	01/31/2019 17:40	WG1230742
(S) Toluene-d8	127				75.0-131		01/31/2019 17:40	WG1230742
(S) Dibromofluoromethane	90.0				65.0-129		01/31/2019 17:40	WG1230742
(S) a,a,a-Trifluorotoluene	86.2				80.0-120		01/31/2019 17:40	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 17:40	WG1230742

_	· · · · · · · · · · · · · · · · · · ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.22	J	1.75	4.00	4.35	1	02/01/2019 02:57	WG1230859
C28-C40 Oil Range	0.503	<u>J</u>	0.298	4.00	4.35	1	02/01/2019 02:57	WG1230859
(S) o-Terphenyl	94.1				18.0-148		02/01/2019 02:57	WG1230859

Collected date/time: 01/24/19 09:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	690		0.838	10.0	10.5	1	01/30/2019 21:15	WG1229855

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.105	1	02/03/2019 17:46	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 17:46	WG1231900

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	01/31/2019 18:00	WG1230742
Toluene	U		0.00132	0.00500	0.00527	1	01/31/2019 18:00	WG1230742
Ethylbenzene	U		0.000558	0.00250	0.00263	1	01/31/2019 18:00	WG1230742
Total Xylenes	U		0.00504	0.00650	0.00685	1	01/31/2019 18:00	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:00	WG1230742
(S) Dibromofluoromethane	86.0				65.0-129		01/31/2019 18:00	WG1230742
(S) a,a,a-Trifluorotoluene	84.7				80.0-120		01/31/2019 18:00	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 18:00	WG1230742

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	51.1		1.70	4.00	4.21	1	02/01/2019 04:19	WG1230859
C28-C40 Oil Range	32.8		0.289	4.00	4.21	1	02/01/2019 04:19	WG1230859
(S) o-Terphenyl	65.4				18.0-148		02/01/2019 04:19	WG1230859

Collected date/time: 01/24/19 16:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.7		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	2200		4.29	10.0	54.0	5	01/30/2019 21:58	WG1229855

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	02/03/2019 18:09	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 18:09	WG1231900

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	01/31/2019 18:20	WG1230742
Toluene	U		0.00135	0.00500	0.00540	1	01/31/2019 18:20	WG1230742
Ethylbenzene	U		0.000572	0.00250	0.00270	1	01/31/2019 18:20	WG1230742
Total Xylenes	U		0.00516	0.00650	0.00702	1	01/31/2019 18:20	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:20	WG1230742
(S) Dibromofluoromethane	88.1				65.0-129		01/31/2019 18:20	WG1230742
(S) a,a,a-Trifluorotoluene	84.8				80.0-120		01/31/2019 18:20	WG1230742
(S) 4-Bromofluorobenzene	108				67.0-138		01/31/2019 18:20	WG1230742

Sc

Gl

_	· · · · · · · · · · · · · · · · · · ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.12	J	1.74	4.00	4.32	1	02/01/2019 04:33	WG1230859
C28-C40 Oil Range	1.21	<u>J</u>	0.296	4.00	4.32	1	02/01/2019 04:33	WG1230859
(S) o-Terphenyl	115				18.0-148		02/01/2019 04:33	WG1230859

ONE LAB. NAT Page 96 of 306

Collected date/time: 01/25/19 11:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.9		1	02/01/2019 09:49	WG1230768

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1070		4.28	10.0	53.8	5	01/30/2019 22:12	WG1229855

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	02/03/2019 18:31	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	99.8				77.0-120		02/03/2019 18:31	WG1231900

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	01/31/2019 18:40	WG1230742
Toluene	U		0.00135	0.00500	0.00538	1	01/31/2019 18:40	WG1230742
Ethylbenzene	U		0.000570	0.00250	0.00269	1	01/31/2019 18:40	WG1230742
Total Xylenes	U		0.00514	0.00650	0.00700	1	01/31/2019 18:40	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:40	WG1230742
(S) Dibromofluoromethane	88.1				65.0-129		01/31/2019 18:40	WG1230742
(S) a,a,a-Trifluorotoluene	83.6				80.0-120		01/31/2019 18:40	WG1230742
(S) 4-Bromofluorobenzene	98.0				67.0-138		01/31/2019 18:40	WG1230742

Sc

Gl

	· ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.38	<u>J</u>	1.73	4.00	4.31	1	02/01/2019 04:46	WG1230859
C28-C40 Oil Range	1.06	J	0.295	4.00	4.31	1	02/01/2019 04:46	WG1230859
(S) o-Terphenyl	122				18.0-148		02/01/2019 04:46	WG1230859

ONE LAB. NAT Page 97. of 306

L1065066-01

Total Solids by Method 2540 G-2011

Method	Blank	(MB)
--------	-------	------

Total Solids

(MB) R3380414-1 01/31/19 11:42 MB RDL MB Result MB Qualifier MB MDL Analyte % % %

L1065023-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1065023-14 01/31/19 11:42 • (DUP) R3380414-3 01/31/19 11:42

0.000

DUP RPD Original Result DUP Result Dilution DUP RPD **DUP Qualifier** Limits % % %

% Analyte Total Solids 79.0 78.3 0.882 10

Laboratory Control Sample (LCS)

(LCS) R3380414-2 01/31/19 11:42

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	

85.0-115 Total Solids 50.0 50.0 100

Ss

²Qc

GI

Sc

ONE LAB. NAT Page 98 of 306

Total Solids by Method 2540 G-2011 L1065066-02,03,04,05,06,07

Method Blank (MB)

(MB) R3380933-1 02/01/19 09:49 MB RDL MB Result MB Qualifier MB MDL Analyte % % % Total Solids 0.00100

L1065067-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1065067-03 02/01/19 09:49 • (DUP) R3380933-3 02/01/19 09:49

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.3	82.2	1	1.40		10

Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3380933-2 02/01/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NATRAGE 99 of 306

Wet Chemistry by Method 300.0

L1065066-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3380133-1 01/30/19 15:31										
	MB Result	MB Qualifier	MB MDL	MB RDL						
Analyte	mg/kg		mg/kg	mg/kg						
Chloride	3.85	J	0.795	10.0						

(OS) L1064854-03 01/30/19 19	9:48 • (DUP) R3380133-5	01/30/19 20:02
------------------------------	-------------------------	----------------

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	9.43	7.08	1	28.5	J P1	20

L1065075-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1065075-04 01/31/19 08:47 • (DUP) R3380133-7 01/31/19 09:01

(03) 21003073 04 01/31/15	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	140	151	1	7.54		20

Laboratory Control Sample (LCS)

(LCS) R3380133-2	01/30/19 16:25
------------------	----------------

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	215	108	90.0-110	

L1062014-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1062014-05 01/30/19 23:10 • (MS) R3380133-3 01/30/19 17:09 • (MSD) R3380133-4 01/30/19 17:23

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	583	7650	7880	7880	39.4	39.6	1	80.0-120	<u>E V</u>	<u>E V</u>	0.0104	20

ONE LAB. NAPagev100 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1065066-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3380936-3 02/03/19 12:41							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	U		0.0217	0.100			
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380936-1 02/03/19 11:35 • (LCSD) R3380936-2 02/03/19 11:57										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.37	6.32	116	115	72.0-127			0.650	20
(S) a,a,a-Trifluorotoluene(FID)				109	108	77.0-120				

ONE LAB. NAPagev191 of 306

Volatile Organic Compounds (GC/MS) by Method 8260B

L1065066-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3380815-3 01/31/19	11:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	116			75.0-131
(S) Dibromofluoromethane	97.2			65.0-129
(S) a,a,a-Trifluorotoluene	88.2			80.0-120
(S) 4-Bromofluorobenzene	98.5			67.0-138

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380815-1 01/31/	/19 09:06 • (LCSD) R3380815-2	01/31/19 09:40)							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	L
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Benzene	0.125	0.118	0.115	94.4	92.2	70.0-123			2.29	20	
Ethylbenzene	0.125	0.100	0.100	80.3	80.1	74.0-126			0.265	20	-
Toluene	0.125	0.148	0.150	119	120	75.0-121			0.922	20	
Xylenes, Total	0.375	0.362	0.365	96.5	97.3	72.0-127			0.825	20	L
(S) Toluene-d8				101	102	75.0-131					
(S) Dibromofluoromethane	е			111	108	65.0-129					
(S) a,a,a-Trifluorotoluene				91.5	92.0	80.0-120					
(S) 4-Bromofluorobenzene	ي			108	108	67.0-138					

L1065066-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065066-01 01/31/19 16:41 • (MS) R3380815-4 01/31/19 19:58 • (MSD) R3380815-5 01/31/19 20:18

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.140	U	0.0583	0.0876	41.7	62.6	1	10.0-149		<u>J3</u>	40.2	37
Ethylbenzene	0.140	U	0.0698	0.0919	49.9	65.7	1	10.0-160			27.2	38
Toluene	0.140	U	0.114	0.139	81.8	99.4	1	10.0-156			19.4	38
Xylenes, Total	0.420	U	0.297	0.336	70.7	80.0	1	10.0-160			12.4	38
(S) Toluene-d8					117	117		75.0-131				
(S) Dibromofluoromethane					87.4	88.8		65.0-129				
(S) a,a,a-Trifluorotoluene					86.1	84.4		80.0-120				
(S) 4-Bromofluorobenzene					101	101		67.0-138				

ONE LAB. NA Page 102 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1065066-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3380484-1 02/01/1	19 02:15			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	120			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380484-2 02/01/19 02:29 • (LCSD) R3380484-3 02/01/19 02:43											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	44.6	44.3	89.2	88.6	50.0-150			0.675	20	
(S) o-Terphenyl				135	130	18.0-148					

L1065066-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065066-04 02/01/19 02:57 • (MS) R3380484-4 02/01/19 03:10 • (MSD) R3380484-5 02/01/19 03:24

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.3	2.22	37.2	41.7	64.3	72.7	1	50.0-150			11.6	20
(S) o-Terphenyl					95.5	112		18.0-148				

ConocoPhillips - Tetra Tech

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(alm.)	Doculto are reported based on the discussibility of the country of
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.

Sample Summary (Ss)	times of preparation and/or analysis.

Sample Results (Sr)

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

each sample will provide the name and method number for the analysis reported.

This section of your report will provide the results of all testing performed on your samples. These results are provided

by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for

This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

TE	Tetra Tech, Inc.					fland,T	Street exas 7:	1030	00			T.		I				1					age			10	
Client Name:	ConocoPhillips	Site Manager	1	V.	Fa	ix (432	682-3	940	_			-				_								LK	165	00	0
Project Name:	EVGSAU 3366-029	100		Na	ıyla Ta	ayio			_			-		-	(Ci	rele			YSIS pec					Vo.)			
Project Location: (cc state)	Lea County, New Mexico	Project #:			2120	-ME	1.01	176	_	_		+		1			1	1		Ń	1	1		1	11	1	11
Invoice to:					2120	-IVIL	7-01	3/0	-	-	-	-				M							П	f field			
Receiving Laboratory:	Pace Analytical	Sampler Sign	ature:		Devir	n Do	mino	lue2		-	-	-		D-MRO	Se Hg	Se Hg		K						attached feet			
Comments:	PTETRA		7					-				80929	C35)	HO-OH	Sd Cr Pb	Cd Cr Pb		1	4	C/625		1		Son			1-1-
		SAME	LING	M	ATRIX	I		RVATI	IVE	35	(Z	ATEX.	(Ext to C.	GHD-D	J As Ba C	g As Ba	lafiloe	8	808/62	Vol. 8279C/625	8			Shem	10.00		
LAB#	SAMPLE IDENTIFICATION	DATE SUS	TIME	WATER	SOIL	HCL	HNO	None		CONTAINERS	FILTERED (Y/N)	BTEX 8021B	H TX1005	PAH 8270C	tal Metals A	TCLP Metals Ag As Ba Cd Cr Pb Se Hg	TCLP Volatiles	T Settli	GC/MS Vol. 8260B / 624	GCMS Semi. V	NORM BURZIE	PLM (Asbestos)	8	oride neral W	ON/C	HC100 L	
SEPTEMBER 1	ESW-2 (4')	1/24/2019	920	-	X	T	_	X		1	N	X	-	Y A	To	10	2 5	HCI S	GC	200	N S	PC	-	G G	Ani		HON HON
277	NSW-2 (4")	1/24/2019	923	-	x		-	x		1	N	X	5	_			+	+	H	+	+		X	1	H	+	-9
	SSW-2 (4')	1/24/2019	925	-	x			x		1	N	×	_	1		-	+	+	H	+	+	H	X	-	1	+	-01
ATE	AH-2 (4')	1/24/2019	928	-	X		-	X		1	N	X	1	_	Н	+	+	+	H	+	+	Н	X	+	-	\perp	.05
	WSW-2 (4')	1/24/2019	930	-	X			K		1	N	×	>	-	Н	+	+	+	Н	+	+	Н	X	-	1		- 64
100 200	SSW-2 (4' 1.5' out)	1/24/2019	1600	-	X			<		1	N	v	X	-			+	+	-	+	-		X	-			.05
	WSW-2 (4' 15' out)	1/25/2019	1150	-	X		_	C		1	N	X	×	-		1				+		3	X				- 96 - F3_
(E-3)	List Holle B											H	+	-	+	+	1	-	-	-						П	
Relinquished by:	Date: Time: 1-28-19 13:30	Received by:	tend	2)ate:		ime:	3			LAE	a US	SE C	ONL	Y R	EMA	ARKS	S: STA	IND	ARC						
Relinquished by:	Date: Time:	Received by:	350			ate:		ime:		G.		Samp	lo Ter	mpers	dure			201	SH:					48	hr 72	the	94
	Date: Time.	Received by	15		. 100	9//	19	ime;	00)								Spe	icial F	Зеро	rt Lin	nits o		RP R	epart		
		ORIGINAL	COPY		B2	29						(Circle) HA	ND D	ELIVI	ERED	FE		O :			-				=	

Pace Analytical National Cer Cooler Re	nter for Testing & Innova ceipt Form	tion	
Client: COPTETRA	SDG#	LIDE	5066
Cooler Received/Opened On: 1/29/19	Temperature:		50.5
Received By: Kristin Willis	1 的主用 一种艺术		
Signature: Willi6			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?			
COC Signed / Accurate?		/	-
Bottles arrive intact?			
Correct bottles used?		-	
Sufficient volume sent?		1	2. 1
If Applicable			
VOA Zero headspace?	AME CAPATEL A	1	SHEEP ST
Preservation Correct / Checked?			

ANALYTICAL REPORT

February 08, 2019

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1065691 Samples Received: 01/31/2019

Project Number: 212C-MD-01576

EVGSAU 3366-029 Description:

Report To: Kayla Taylor

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
ESW-1 (4') L1065691-01	6
NSW-1 (4') L1065691-02	7
SSW-1 (4') L1065691-03	8
AH-1 (4') L1065691-04	9
WSW-1 (4') L1065691-05	10
WSW-3 (4') L1065691-06	11
ESW-3 (4') L1065691-07	12
AH-3 (4') L1065691-08	13
SSW-2 (4' 3' OUT) L1065691-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	17
Volatile Organic Compounds (GC/MS) by Method 8260B	20
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23

Sc: Sample Chain of Custody

24

SAMPLE SUMMARY

ESW-1 (4') L1065691-01 Solid			Collected by Devin Dominguez	Collected date/time 01/28/19 15:50	Received date/time 01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:10	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 20:23	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 00:27	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:12	DMW
			Collected by	Collected date/time	Received date/time
NSW-1 (4') L1065691-02 Solid			Devin Dominguez	01/28/19 15:53	01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:25	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 20:45	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 00:48	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:26	DMW
SSW-1 (4') L1065691-03 Solid			Collected by Devin Dominguez	Collected date/time 01/28/19 15:56	Received date/time 01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:40	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:07	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:08	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:40	DMW
			Collected by	Collected date/time	Received date/time
AH-1 (4') L1065691-04 Solid			Devin Dominguez	01/28/19 15:59	01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:56	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:29	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:29	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:53	DMW
			Collected by	Collected date/time	Received date/time
WSW-1 (4') L1065691-05 Solid			Devin Dominguez	01/28/19 16:04	01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 21:42	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:52	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:49	JBE

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1231397

02/01/19 19:55

02/02/19 07:43

DMW

SAMPLE SUMMARY

WSW-3 (4') L1065691-06 Solid			Collected by Devin Dominguez	Collected date/time 01/29/19 11:49	Received date/time 01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
Total Calida hu Mathad 2540 C 2014	WC1221410	1	date/time	date/time	KDW
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 21:57	ST ACG
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900 WG1231846	1	02/01/19 15:56 02/01/19 15:56	02/03/19 22:14 02/03/19 02:10	JBE
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846 WG1231397	1	02/01/19 15:56	02/03/19 02:10	DMM
Semi-Volatile Organic Compounds (GC) by Method 8015	MG1521231	ı	02/01/19 19.55	02/02/19 00.46	DIVIVV
			Collected by	Collected date/time	Received date/time
ESW-3 (4') L1065691-07 Solid			Devin Dominguez	01/29/19 11:51	01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 22:13	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 22:36	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 02:30	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 07:02	DMW
			Collected by	Collected date/time	Received date/time
AH-3 (4') L1065691-08 Solid			Devin Dominguez	01/29/19 11:53	01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 22:28	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1232503	1	02/05/19 11:49	02/05/19 12:08	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 02:51	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 07:16	DMW
			Collected by	Collected date/time	Received date/time
SSW-2 (4' 3' OUT) L1065691-09 Solid			Devin Dominguez	01/29/19 14:30	01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	5	02/02/19 14:00	02/02/19 22:44	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1232168	1	02/01/19 15:56	02/04/19 15:19	BMB
• • • • •					

WG1231846

WG1231397

1

1

02/01/19 15:56

02/01/19 19:55

02/03/19 03:11

02/02/19 07:30

JBE DMW

Volatile Organic Compounds (GC/MS) by Method 8260B

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Collected date/time: 01/28/19 15:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.4		1	02/04/2019 13:23	<u>WG1231410</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	133		0.880	10.0	11.1	1	02/02/2019 20:10	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.100	0.111	1	02/03/2019 20:23	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 20:23	WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000443	0.00100	0.00111	1	02/03/2019 00:27	WG1231846
Toluene	U		0.00138	0.00500	0.00553	1	02/03/2019 00:27	WG1231846
Ethylbenzene	U		0.000586	0.00250	0.00277	1	02/03/2019 00:27	WG1231846
Total Xylenes	U		0.00529	0.00650	0.00719	1	02/03/2019 00:27	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 00:27	WG1231846
(S) Dibromofluoromethane	97.5				65.0-129		02/03/2019 00:27	WG1231846
(S) a,a,a-Trifluorotoluene	105				80.0-120		02/03/2019 00:27	WG1231846
(S) 4-Bromofluorobenzene	93.4				67.0-138		02/03/2019 00:27	WG1231846

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.96	J	1.78	4.00	4.43	1	02/02/2019 05:12	WG1231397
C28-C40 Oil Range	U		0.303	4.00	4.43	1	02/02/2019 05:12	WG1231397
(S) o-Terphenyl	105				18.0-148		02/02/2019 05:12	WG1231397

ONE LAB. NAPage 113 of 306

Collected date/time: 01/28/19 15:53

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	95.3		1	02/04/2019 13:23	<u>WG1231410</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	567		0.834	10.0	10.5	1	02/02/2019 20:25	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0228	0.100	0.105	1	02/03/2019 20:45	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 20:45	WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	02/03/2019 00:48	WG1231846
Toluene	U		0.00131	0.00500	0.00524	1	02/03/2019 00:48	WG1231846
Ethylbenzene	U		0.000556	0.00250	0.00262	1	02/03/2019 00:48	WG1231846
Total Xylenes	U		0.00501	0.00650	0.00682	1	02/03/2019 00:48	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 00:48	WG1231846
(S) Dibromofluoromethane	96.4				65.0-129		02/03/2019 00:48	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 00:48	WG1231846
(S) 4-Bromofluorobenzene	99.5				67.0-138		02/03/2019 00:48	WG1231846

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.30		1.69	4.00	4.20	1	02/02/2019 05:26	WG1231397
C28-C40 Oil Range	6.65		0.287	4.00	4.20	1	02/02/2019 05:26	WG1231397
(S) o-Terphenyl	91.2				18.0-148		02/02/2019 05:26	WG1231397

ONE LAB. NAPage 114 of 306

Collected date/time: 01/28/19 15:56

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.5		1	02/04/2019 13:23	WG1231410

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	173		0.860	10.0	10.8	1	02/02/2019 20:40	WG1231380

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0235	0.100	0.108	1	02/03/2019 21:07	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 21:07	WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	02/03/2019 01:08	WG1231846
Toluene	U		0.00135	0.00500	0.00541	1	02/03/2019 01:08	WG1231846
Ethylbenzene	U		0.000573	0.00250	0.00270	1	02/03/2019 01:08	WG1231846
Total Xylenes	U		0.00517	0.00650	0.00703	1	02/03/2019 01:08	WG1231846
(S) Toluene-d8	108				75.0-131		02/03/2019 01:08	WG1231846
(S) Dibromofluoromethane	92.4				65.0-129		02/03/2019 01:08	WG1231846
(S) a,a,a-Trifluorotoluene	106				80.0-120		02/03/2019 01:08	WG1231846
(S) 4-Bromofluorobenzene	94.9				67.0-138		02/03/2019 01:08	WG1231846

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.17	J	1.74	4.00	4.33	1	02/02/2019 05:40	WG1231397
C28-C40 Oil Range	2.52	J	0.296	4.00	4.33	1	02/02/2019 05:40	WG1231397
(S) o-Terphenyl	84.4				18.0-148		02/02/2019 05:40	WG1231397

ONE LAB. NAPage 115 of 306

Collected date/time: 01/28/19 15:59

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.5		1	02/04/2019 13:23	<u>WG1231410</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	80.5		0.851	10.0	10.7	1	02/02/2019 20:56	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.100	0.107	1	02/03/2019 21:29	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 21:29	WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00100	0.00107	1	02/03/2019 01:29	WG1231846
Toluene	U		0.00134	0.00500	0.00535	1	02/03/2019 01:29	WG1231846
Ethylbenzene	U		0.000567	0.00250	0.00267	1	02/03/2019 01:29	WG1231846
Total Xylenes	U		0.00511	0.00650	0.00695	1	02/03/2019 01:29	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 01:29	WG1231846
(S) Dibromofluoromethane	91.5				65.0-129		02/03/2019 01:29	WG1231846
(S) a,a,a-Trifluorotoluene	104				80.0-120		02/03/2019 01:29	WG1231846
(S) 4-Bromofluorobenzene	96.0				67.0-138		02/03/2019 01:29	WG1231846

Sc

[°]Qc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.51	J	1.72	4.00	4.28	1	02/02/2019 05:53	WG1231397
C28-C40 Oil Range	U		0.293	4.00	4.28	1	02/02/2019 05:53	WG1231397
(S) o-Terphenvl	95.0				18.0-148		02/02/2019 05:53	WG1231397

ONE LAB. NAPage 116 of 306

Collected date/time: 01/28/19 16:04

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.1		1	02/04/2019 13:23	<u>WG1231410</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	466		0.854	10.0	10.7	1	02/02/2019 21:42	WG1231380

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.100	0.107	1	02/03/2019 21:52	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 21:52	WG1231900

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000430	0.00100	0.00107	1	02/03/2019 01:49	WG1231846
Toluene	U		0.00134	0.00500	0.00537	1	02/03/2019 01:49	WG1231846
Ethylbenzene	U		0.000569	0.00250	0.00269	1	02/03/2019 01:49	WG1231846
Total Xylenes	U		0.00513	0.00650	0.00698	1	02/03/2019 01:49	WG1231846
(S) Toluene-d8	111				75.0-131		02/03/2019 01:49	WG1231846
(S) Dibromofluoromethane	92.4				65.0-129		02/03/2019 01:49	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 01:49	WG1231846
(S) 4-Bromofluorobenzene	95.6				67.0-138		02/03/2019 01:49	WG1231846

Sc

Gl

_	· · · · · · · · · · · · · · · · · · ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.7		1.73	4.00	4.30	1	02/02/2019 07:43	WG1231397
C28-C40 Oil Range	20.9		0.294	4.00	4.30	1	02/02/2019 07:43	WG1231397
(S) o-Terphenyl	68.8				18.0-148		02/02/2019 07:43	WG1231397

Collected date/time: 01/29/19 11:49

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.8		1	02/04/2019 13:23	WG1231410

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	122		0.866	10.0	10.9	1	02/02/2019 21:57	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0236	0.100	0.109	1	02/03/2019 22:14	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 22:14	WG1231900

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000436	0.00100	0.00109	1	02/03/2019 02:10	WG1231846
Toluene	U		0.00136	0.00500	0.00545	1	02/03/2019 02:10	WG1231846
Ethylbenzene	U		0.000577	0.00250	0.00272	1	02/03/2019 02:10	WG1231846
Total Xylenes	U		0.00521	0.00650	0.00708	1	02/03/2019 02:10	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 02:10	WG1231846
(S) Dibromofluoromethane	90.1				65.0-129		02/03/2019 02:10	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 02:10	WG1231846
(S) 4-Bromofluorobenzene	88.2				67.0-138		02/03/2019 02:10	WG1231846

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.04	<u>J</u>	1.75	4.00	4.36	1	02/02/2019 06:48	WG1231397
C28-C40 Oil Range	U		0.299	4.00	4.36	1	02/02/2019 06:48	WG1231397
(S) o-Terphenyl	106				18.0-148		02/02/2019 06:48	WG1231397

Collected date/time: 01/29/19 11:51

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	92.7		1	02/04/2019 13:23	WG1231410

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	235		0.858	10.0	10.8	1	02/02/2019 22:13	WG1231380

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	02/03/2019 22:36	WG1231900
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 22:36	WG1231900

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	02/03/2019 02:30	WG1231846
Toluene	U		0.00135	0.00500	0.00539	1	02/03/2019 02:30	WG1231846
Ethylbenzene	U		0.000572	0.00250	0.00270	1	02/03/2019 02:30	WG1231846
Total Xylenes	U		0.00515	0.00650	0.00701	1	02/03/2019 02:30	WG1231846
(S) Toluene-d8	114				75.0-131		02/03/2019 02:30	WG1231846
(S) Dibromofluoromethane	91.2				65.0-129		02/03/2019 02:30	WG1231846
(S) a,a,a-Trifluorotoluene	106				80.0-120		02/03/2019 02:30	WG1231846
(S) 4-Bromofluorobenzene	98.4				67.0-138		02/03/2019 02:30	WG1231846

Sc

_	· · · · · · · · · · · · · · · · · · ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.58	J	1.74	4.00	4.31	1	02/02/2019 07:02	WG1231397
C28-C40 Oil Range	1.55	<u>J</u>	0.295	4.00	4.31	1	02/02/2019 07:02	WG1231397
(S) o-Terphenyl	109				18.0-148		02/02/2019 07:02	WG1231397

ONE LAB. NAPage 119 of 306

Collected date/time: 01/29/19 11:53

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.4		1	02/04/2019 13:23	WG1231410

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	147		0.842	10.0	10.6	1	02/02/2019 22:28	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.100	0.106	1	02/05/2019 12:08	WG1232503
(S) a,a,a-Trifluorotoluene(FID)	96.6				77.0-120		02/05/2019 12:08	WG1232503

СQс

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000424	0.00100	0.00106	1	02/03/2019 02:51	WG1231846
Toluene	U		0.00132	0.00500	0.00529	1	02/03/2019 02:51	WG1231846
Ethylbenzene	U		0.000561	0.00250	0.00265	1	02/03/2019 02:51	WG1231846
Total Xylenes	U		0.00506	0.00650	0.00688	1	02/03/2019 02:51	WG1231846
(S) Toluene-d8	112				75.0-131		02/03/2019 02:51	WG1231846
(S) Dibromofluoromethane	97.1				65.0-129		02/03/2019 02:51	WG1231846
(S) a,a,a-Trifluorotoluene	107				80.0-120		02/03/2019 02:51	WG1231846
(S) 4-Bromofluorobenzene	96.1				67.0-138		02/03/2019 02:51	WG1231846

Sc

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.24	1	02/02/2019 07:16	WG1231397
C28-C40 Oil Range	U		0.290	4.00	4.24	1	02/02/2019 07:16	WG1231397
(S) o-Terphenvl	118				18.0-148		02/02/2019 07:16	WG1231397

Collected date/time: 01/29/19 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	94.3		1	02/04/2019 13:23	<u>WG1231410</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1430		4.22	10.0	53.0	5	02/02/2019 22:44	WG1231380

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.100	0.106	1	02/04/2019 15:19	WG1232168
(S) a,a,a-Trifluorotoluene(FID)	104				77.0-120		02/04/2019 15:19	WG1232168

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	J3	0.000424	0.00100	0.00106	1	02/03/2019 03:11	WG1231846
Toluene	U	<u>J3</u>	0.00133	0.00500	0.00530	1	02/03/2019 03:11	WG1231846
Ethylbenzene	U	<u>J3</u>	0.000562	0.00250	0.00265	1	02/03/2019 03:11	WG1231846
Total Xylenes	U	<u>J3</u>	0.00507	0.00650	0.00689	1	02/03/2019 03:11	WG1231846
(S) Toluene-d8	108				75.0-131		02/03/2019 03:11	WG1231846
(S) Dibromofluoromethane	93.6				65.0-129		02/03/2019 03:11	WG1231846
(S) a,a,a-Trifluorotoluene	102				80.0-120		02/03/2019 03:11	WG1231846
(S) 4-Bromofluorobenzene	98.6				67.0-138		02/03/2019 03:11	WG1231846

	· ·							
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.00	4.24	1	02/02/2019 07:30	WG1231397
C28-C40 Oil Range	U		0.290	4.00	4.24	1	02/02/2019 07:30	WG1231397
(S) o-Terphenyl	112				18.0-148		02/02/2019 07:30	WG1231397

ONE LAB. NA Page 121 of 306

Total Solids by Method 2540 G-2011

L1065691-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3381196-1 02	2/04/19 13:23			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

[†]Cn

L1065691-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1065691-01	02/04/19 13:23 •	(DUP) R3381196-3	02/04/19 13:23	

Laboratory Control Sample (LCS)

(LCS) R3381196-2	02/04/19 13:23
------------------	----------------

(LCS) R3381196-2 02/04/	19 13:23 Spike Amount LCS Result	ult LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	100	85.0-115

ONE LAB. NAPagev122 of 306

Wet Chemistry by Method 300.0

L1065691-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3381191-1 02	2/02/19 15:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	0.909	1	0.795	10.0

L1065677-34 Original Sample (OS) • Duplicate (DUP)

(OS) L1065677-34 02/02/1	9 16:19 • (DUP)	R3381191-3	02/02/19 16	:34		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2050	2030	5	0.897		20

(OS) | 1065703-01 02/02/19 22:59 . (DLIP) P3381191-6 02/02/19 23:15

(03) 11003/03-01 02/02/	19 22.59 • (DUF	7) K3301131-0	02/02/19 2	23.13			
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	12.1	10.7	1	13.0		20	

(LCS) R3381191-2 02/02/19	15:45				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	212	106	90.0-110	

L1065677-39 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

/OSTI 1065677 30 02/02/10 17:51 . (MS) D2321101 / 02/02/10 18:37 . (MSD) D3321101 5 02/02/10 18:53

(O3) L1003077-39 02/02/	19 17.51 • (IVIS) F	(3301191-4 02/	02/19 10.3/ • (IV	יופווסכנא (עכוי	5 02/02/19 16.	.55						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	533	4590	4830	4930	44.8	63.4	1	80.0-120	EV	<u>E V</u>	2.03	20

ONE LAB. NAPagev123 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1065691-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3380936-3 02/03	/19 12:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

<u>с</u>р

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380936-1 02/03	3/19 11:35 • (LCSE	D) R3380936-2	2 02/03/19 11:5	7						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.37	6.32	116	115	72.0-127			0.650	20
(S) a,a,a-Trifluorotoluene(FID)				109	108	77.0-120				

ONE LAB. NA Rage 124 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1065691-09

Method Blank (MB)

(MB) R3381047-5 02/04/1	19 11:53			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

СР

³Ss

[†]Cn

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3381047-3 02/04/19 10:47 • (LCSD) R3381047-4 02/04/19 11:09										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	5.65	5.61	103	102	72.0-127			0.658	20
(S) a,a,a-Trifluorotoluene(FID)				104	103	77.0-120				

ONE LAB. NAPagev125 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1065691-08

Method Blank (MB)

(MB) R3381319-3 02/05/1	9 10:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3381319-1 02/05/19 09:15 • (LCSD) R3381319-2 02/05/19 09:35										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.14	5.78	112	105	72.0-127			6.13	20
(S) a,a,a-Trifluorotoluene(FID)				119	118	77.0-120				

ONE LAB. NA Page 126 of 306

Volatile Organic Compounds (GC/MS) by Method 8260B

L1065691-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3381426-2 02/02/19	(MB) R3381426-2 02/02/19 21:43							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Benzene	U		0.000400	0.00100				
Ethylbenzene	U		0.000530	0.00250				
Toluene	U		0.00125	0.00500				
Xylenes, Total	U		0.00478	0.00650				
(S) Toluene-d8	115			75.0-131				
(S) Dibromofluoromethane	92.1			65.0-129				
(S) a,a,a-Trifluorotoluene	104			80.0-120				
(S) 4-Bromofluorobenzene	94.5			67.0-138				

3 C c

Laboratory Control Sample (LCS)

(LCS) R3381426-1 02/	/02/19 20:22					- (
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		8
Benzene	0.125	0.110	87.8	70.0-123		- 1
Ethylbenzene	0.125	0.120	96.2	74.0-126		9
Toluene	0.125	0.126	101	75.0-121] (
Xylenes, Total	0.375	0.416	111	72.0-127		L
(S) Toluene-d8			108	75.0-131		
(S) Dibromofluorometho	ane		109	65.0-129		
(S) a,a,a-Trifluorotoluer	ne e		110	80.0-120		
(S) 4-Bromofluorobenze	ene		102	67.0-138		

Sc

PAGE:

20 of 25

L1065691-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065691-09 02/03/19 03:11 • (MS) R3381426-3	02/03/19 04:54 • (MSD) R3381426-4 02/03/19 05:15
---	--

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.133	U	0.0827	0.0371	62.4	28.0	1	10.0-149		<u>J3</u>	76.1	37
Ethylbenzene	0.133	U	0.0909	0.0367	68.6	27.7	1	10.0-160		<u>J3</u>	85.0	38
Toluene	0.133	U	0.0952	0.0438	71.8	33.0	1	10.0-156		<u>J3</u>	74.0	38
Xylenes, Total	0.398	U	0.317	0.140	79.7	35.3	1	10.0-160		<u>J3</u>	77.2	38
(S) Toluene-d8					104	107		75.0-131				
(S) Dibromofluoromethane					93.3	96.3		65.0-129				
(S) a,a,a-Trifluorotoluene					102	107		80.0-120				
(S) 4-Bromofluorobenzene					100	99.2		67.0-138				

ONE LAB. NA Page 127 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1065691-01,02,03,04,05,06,07,08,09

Method Blank (MB)

(MB) R3380776-1 02/01/19	9 23:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	136			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380776-2 02/0	2/19 00:10 • (LCS	SD) R3380776	-3 02/02/19 00	0:24						
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Extractable Petroleum Hydrocarbon	50.0	40.6	39.1	81.2	78.2	50.0-150			3.76	20
C10-C28 Diesel Range	50.0	45.9	44.4	91.8	88.8	50.0-150			3.32	20
(S) o-Terphenyl				146	132	18.0-148				

L1065349-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065349-04 02/	02/19 04:31 • (MS)	R3380776-4 (02/02/19 04:4	5 • (MSD) R338	30776-5 02/0	02/19 04:58							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Extractable Petroleum Hydrocarbon	49.7	ND	42.5	45.2	85.5	90.4	1	50.0-150			6.16	20	
C10-C28 Diesel Range	49.7	9.11	54.1	56.7	90.5	95.2	1	50.0-150			4.69	20	
(S) o-Terphenyl					67.4	113		18.0-148					

ConocoPhillips - Tetra Tech

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

Appreviations and	Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky 16	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T 104704245-17-14
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA – ISO 17025 ⁵	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Client Name:	Tetra Tech, Inc.					Midla:	net Wall 53 dland, Taxa H (432) 68 ox (432) 68	Nan 7970 882-4550	1704 159					_	_							Pa	age		-	10	of.
	ConocoPhillips	Site Manager	III.	V	Kayla 1	_	_	_		-		1	_	_	_	_		_									
roject Name:	EVGSAU 3366-029		-	- 100	дую	lay	lor	_		_	_	1			(C)	rel	AN	IAL'	YSI	SRE	EQU	JEST	L. W	-			
roject Location: (c	Lea County, New Mexico	Project #:			_	_							11	1	1		f T		Jec	T.	We	lhor 1	4 Nr	0.)	1 1	1	47
voice to:	Lea County, New Mexico	1,104,000			217	2C-1	-MD-0	0157	76			av.	11		11		11	119		11	A	11	11	1		4	1
ceiving Laboratory:												+		6	13		1	1		11	1			d list)	11		1
	Pace Analytical	Sampler Signa	nature:	_	De	rin/	Don	Till and	-	_	_	4/	17	MH	e.Hg	e Hg	al		1	11		11	1	attached	11		1
mments:	MARTE TO 1	_		_	Dov	Wil	Domi	ngu	ΘZ			1	1	ORO - MRO)	PB S	PbS			1			11	1	se atta	1		1
	COPIETKA											8250	C36)	90	Sd Cr	CdC			1	B270C/625		11	TDS			17	
		SAM	IPLING	N	MATRIX	IX.		RESERV	RVATIVE	To		118	(Ext to C3	GRO-DRO-	S Ba	IS BB	17	A A	8260B / 624		11	11	=	amish	900	1	1
LAB#	SAMPLE IDENTIFICATION	YEAR: 2019		1	П	+	T	MEIM	1	NEB	(V/N	12	お同	1	AgA	Ag A	PS THE	100	8280	Vol	OF S	夏	ulfate	5	Balar	17	
GM(V)		DATE	TIME	WATER	를		10	8 111	98	CONTAINERS	FILTERED (Y/N)	X 8021B	TPH TX1005	BB750C	Total Metals Ag As Ba Cd Cr Pb Se Hg	Metais	Volatiles Semi Volatiles	1	GC/MS Vol. 8	GC/MS Semi, Vol. PCB's 8082 / 608	8	PLM (Asbestos) Chlorids 300.0	Chloride Sulfate TDS	al Wate	Anion/Cation TPH 8015R	11	1
65691-01	ESW-1 (4')	1/28/2019		_	_	-	HCL HNC	_	_	Ď.	글	BTEX	TPH TPH	PAH	Total	TOLP	TOLP S	RC I	3C/M	SCAM.	PCB's NORM	LM (A	hloric	ehera	Anion/C: TPH 801	11	1
02	NSW-1 (4')	1/28/2019	1550 1553	-	X	4	1	X	1	1	N	_	X		T	1	1	1	1	212	Z	a b	20	D A	其片	1	+
03	SSW-1 (4')	1/28/2019	1556	-	X	+	4	X	4	1	N	×	X			1	1	1	A	+	++	1 x		+	+	H	E
04	AH-1 (4')	1/28/2019	1559	-	X	+	+	X		1	N	X	X			1		H	T	1	1	×	- 1	1	+	H	Ē
09	WSW-1 (4')	1/28/2019	1604	-	X	+	4	X		1	N.	X	X			1	1	H	1		11	X		+	+	H	e
06	WSW-3 (4')	1/29/2019	1149	-	X	+	_	X		1	N	X	X			1	1	H	1	+	1	X		+	+	4	Ē
07	ESW-3 (4')	1/29/2019		-	X	+	_	X		1	N	X	X					T	1	+	1	X	-	+	H	4	Ë
08	AH-3 (4')	1/29/2019	1151	-	X	+		X	1	1	N	Х	X			T		T	1	+	1	X	_	+	+	4	É
09	SSW-2 (4: 3' out)	1/29/2019	1153	_	X	+	_	X	1	1	N	X	X					1	+	1	1	X		+	+	+	-
quished by:	Date: Time:	Received by:		. 3	X	Date:	_	X		1	N	X	X					1	+	+	1	x	-	+	H	+	Ħ
KIMIYU	L XCULON 1-3019 1615	1/2/	Aci	1	1	Attite		Time		5		LAF	USE	- 0	and of		EMAR					1.0		بيا		1	Ä
uished by:	0.4	Received by:			10	20/	19	_	60 50	0		LAD	USI	- Or	NLY	17	X	S	TAI	NDA	RD	1					
		Model Face Day			- 4	Date	1	Time	4			Sample	e Terr	inerati	ALC: N	17		RUS	6E B	Same	Day	24.h	tir. V	B he	72 h	ir.	
luished by:	Date: Time:	Received by:										0.41			150									/ 14-	35-10	6	
		11				Date:	700	Time:				0.4	1.0	124	4	13				arges /							
		Marr	m		01	1/3	31/	119	08	200	. 1					11	15	Speci	al R	.apon	Limit	ts or TP	RRP	Repr	ort.		
							-	-	- 40	130	\rightarrow										ticking #:		Array	1000			

RAD SCREEN CO TO

Pace Analytica	National Center for T Cooler Receipt For		ation	
Client:	COPTETRA	SDG#	1 1/2/	5691
Cooler Received/Opened On: 01/3	1/19	Temperature:	0.5	T
Received By: Thomas Virden		1 7	4,5	
Signature: Mann				
Receipt Check List		NP	Yes	No
COC Seal Present / Intact?			163	INO
COC Signed / Accurate?				
Bottles arrive intact?	2		/	
Correct bottles used?			/	
Sufficient volume sent?			/	
If Applicable			/	
VOA Zero headspace?				
Preservation Correct / Checked?				

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 4 - ADDITIONAL ASSESSMENT LABORATORY DATA

ANALYTICAL REPORT

June 08, 2020

³Ss

⁴Cn

⁵Sr

⁶Qc

[′]Gl

°AI

⁹Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1223377

Samples Received: 05/29/2020

Project Number: 212C-MD-01576

Description: EVGSAU 3366-029

Report To: Christian Llull

901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Project Manager

Results relate only to the litems tested or collisated and are reported as prunded values. This test report shall not be reproduced, excent in full without writer approal of the blockney. Where applicable, sampling content by Page Applicable, sampling content by No.20 MT.L. 2007 and ENV.SOP-MT.L.2008. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

All the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-20-1S (0-1) L1223377-01	5
BH-20-1S (2-3) L1223377-02	6
BH-20-1S (4-5) L1223377-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 300.0	9
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Semi-Volatile Organic Compounds (GC) by Method 8015

			Collected by	Collected date/time 05/21/20 13:00	Received date 05/29/20 09	
3H-20-1S (0-1) L1223377-01 Solid			Joe Tyler	05/21/20 15.00	05/29/20 09	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1487467	1	05/31/20 12:00	06/01/20 02:39	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 13:16	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/30/20 23:57	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1484968	1	06/02/20 07:56	06/05/20 15:12	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-1S (2-3) L1223377-02 Solid			Joe Tyler	05/21/20 13:05	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1487467	1	05/31/20 12:00	06/01/20 03:04	MCG	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 13:40	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/31/20 00:16	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1484968	1	06/02/20 07:56	06/05/20 15:39	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-1S (4-5) L1223377-03 Solid			Joe Tyler	05/21/20 13:10	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1487467	10	05/31/20 12:00	06/01/20 03:29	MCG	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 14:05	ADM	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/31/20 00:36	ADM	Mt. Juliet, TN

WG1484968

1

06/02/20 07:56

06/03/20 05:45

KME

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ONE LAB. NAPagev137 of 306

Collected date/time: 05/21/20 13:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.8		1	06/03/2020 22:18	WG1486307

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	103		9.50	20.7	1	06/01/2020 02:39	WG1487467

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/31/2020 13:16	WG1484936
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		05/31/2020 13:16	WG1484936

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	<u>'</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/30/2020 23:57	WG1484818
Toluene	U		0.00134	0.00517	1	05/30/2020 23:57	WG1484818
Ethylbenzene	U		0.000761	0.00258	1	05/30/2020 23:57	WG1484818
Total Xylenes	U		0.000909	0.00671	1	05/30/2020 23:57	WG1484818
(S) Toluene-d8	112			75.0-131		05/30/2020 23:57	WG1484818
(S) 4-Bromofluorobenzene	103			67.0-138		05/30/2020 23:57	WG1484818
(S) 1,2-Dichloroethane-d4	89.3			70.0-130		05/30/2020 23:57	WG1484818

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.71		1.66	4.13	1	06/05/2020 15:12	WG1484968
C28-C40 Oil Range	18.8	В	0.283	4.13	1	06/05/2020 15:12	WG1484968
(S) o-Terphenyl	103			18.0-148		06/05/2020 15:12	WG1484968

Collected date/time: 05/21/20 13:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.5		1	06/03/2020 22:18	WG1486307

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	306		9.74	21.2	1	06/01/2020 03:04	WG1487467

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	05/31/2020 13:40	WG1484936
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		05/31/2020 13:40	WG1484936

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	'	·	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	05/31/2020 00:16	WG1484818
Toluene	U		0.00138	0.00529	1	05/31/2020 00:16	WG1484818
Ethylbenzene	U		0.000780	0.00265	1	05/31/2020 00:16	WG1484818
Total Xylenes	U		0.000931	0.00688	1	05/31/2020 00:16	WG1484818
(S) Toluene-d8	113			75.0-131		05/31/2020 00:16	WG1484818
(S) 4-Bromofluorobenzene	104			67.0-138		05/31/2020 00:16	WG1484818
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		05/31/2020 00:16	WG1484818

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	23.1		1.70	4.23	1	06/05/2020 15:39	WG1484968
C28-C40 Oil Range	41.5		0.290	4.23	1	06/05/2020 15:39	WG1484968
(S) o-Terphenvl	94.1			18.0-148		06/05/2020 15:39	WG1484968

Collected date/time: 05/21/20 13:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	92.7		1	06/03/2020 22:18	WG1486307

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3720		99.2	216	10	06/01/2020 03:29	WG1487467

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	05/31/2020 14:05	WG1484936
(S) a,a,a-Trifluorotoluene(FID)	96.7			77.0-120		05/31/2020 14:05	WG1484936

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	05/31/2020 00:36	WG1484818
Toluene	U		0.00140	0.00539	1	05/31/2020 00:36	WG1484818
Ethylbenzene	U		0.000795	0.00270	1	05/31/2020 00:36	WG1484818
Total Xylenes	U		0.000949	0.00701	1	05/31/2020 00:36	WG1484818
(S) Toluene-d8	112			75.0-131		05/31/2020 00:36	WG1484818
(S) 4-Bromofluorobenzene	105			67.0-138		05/31/2020 00:36	WG1484818
(S) 1,2-Dichloroethane-d4	89.3			70.0-130		05/31/2020 00:36	WG1484818

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.32	1	06/03/2020 05:45	WG1484968
C28-C40 Oil Range	0.782	ВJ	0.296	4.32	1	06/03/2020 05:45	WG1484968
(S) o-Terphenyl	63.4			18.0-148		06/03/2020 05:45	WG1484968

ONE LAB. NA Page 140 of 306

Total Solids by Method 2540 G-2011

L1223377-01,02,03

Method Blank (MB)

(MB) R3535059-1	06/03/20 22:18			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1223377-03 Original Sample (OS) • Duplicate (DUP)

	()	111111111111111111111111111111111111111	00/02/20 22/10		1 DOFORAGO 2	00/02/20 22/10
- 1	().51	11 12 2.5.5 / /-12.5	06/03/20 22:18 •	ロルロヒ	1 R.30.30009-3	Ub/U3/2U 2218

(00) = =================================	Original Result				DUP RPD	DUP Qualifier	DUP RPD Limits
alyte	%		%		%		%
Total Solids	92.7	olids	92.5 1	1	0.259		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3535059-2 06/03/20 22

(LCS) R3535059-2 06/03	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

ONE LAB. NA Page 141 of 306

Wet Chemistry by Method 300.0

L1223377-01,02,03

Method Blank (MB)

(MB) R3535239-1 05/31/20	0 15:12			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

Ss

(OS) L1223377-03	06/01/20 03:29 • (DUP) R3535239-3 06/01/20 03:54	
	0:: 10 1: 0100	

	Original Result DUP Result (dry) (dry)		Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	3720	3670	10	126		20		

Laboratory Control Sample (LCS)

(LCS) R3535239-2	05/31/20 15:36
------------------	----------------

(LCS) R3535239-2 U5/31/		LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg mg/kg	%	%	
Chloride	200 204	102	90.0-110	

ONE LAB. NA Page 142 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223377-01,02,03

Method Blank (MB)

(MB) R3534673-2 05/31/2	20 12:19			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	99.6			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3534673-1 05/31/2	20 11:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.78	123	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			106	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(O5) • (M5) R3534673-3 O5/31/20 22:43 • (M5D) R3534673-4 O5/31/20 23:07												
	Spike Amount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	102	72.7	78.8	71.3	77.3	25	10.0-151			8.05	28	
(S) a a a-Trifluorotoluene(FID)				104	105		77.0-120					

ONE LAB. NA Page 143 of 306

Volatile Organic Compounds (GC/MS) by Method 8260B

L1223377-01,02,03

Method Blank (MB)

MB) R3535126-2 05/30/20 20:50												
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	mg/kg		mg/kg	mg/kg								
Benzene	U		0.000467	0.00100								
Ethylbenzene	U		0.000737	0.00250								
Toluene	U		0.00130	0.00500								
Xylenes, Total	U		0.000880	0.00650								
(S) Toluene-d8	109			75.0-131								
(S) 4-Bromofluorobenzene	105			67.0-138								
(S) 1,2-Dichloroethane-d4	92.8			70.0-130								

Laboratory Control Sample (LCS)

(LCS) R3535126-1 05/30/2	20 19:53				· ·
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.0998	79.8	70.0-123	
Ethylbenzene	0.125	0.123	98.4	74.0-126	
Toluene	0.125	0.110	88.0	75.0-121	
Xylenes, Total	0.375	0.365	97.3	72.0-127	
(S) Toluene-d8			108	75.0-131	
(S) 4-Bromofluorobenzene			109	67.0-138	
(S) 1.2-Dichloroethane-d4			100	70 0-130	

L1223377-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223377-01 05/30/20 23:57 • (MS) R3535126-3 05/31/20 04:06 • (MSD) R3535126-4 05/31/20 04:26												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.129	U	0.120	0.116	92.8	89.6	1	10.0-149			3.51	37
Ethylbenzene	0.129	U	0.151	0.145	117	112	1	10.0-160			4.20	38
Toluene	0.129	U	0.139	0.132	108	102	1	10.0-156			5.32	38
Xylenes, Total	0.387	U	0.433	0.415	112	107	1	10.0-160			4.14	38
(S) Toluene-d8					112	109		75.0-131				
(S) 4-Bromofluorobenzene					101	104		67.0-138				
(S) 1,2-Dichloroethane-d4					87.4	92.5		70.0-130				

ONE LAB. NA Page 144 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1223377-01,02,03

Method Blank (MB)

(MB) R3534522-1 06/03/20 04:25							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	2.60	<u>J</u>	0.274	4.00			
(S) o-Terphenyl	68.2			18.0-148			

Laboratory Control Sample (LCS)

(LCS) R3534522-2 06/03/20 04:41											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
C10-C28 Diesel Range	50.0	34.6	69.2	50.0-150							
(S) o-Terphenyl			59.0	18.0-148							

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534522-3 06/03/20 19:44 • (MSD) R3534522-4 06/03/20 20:00												
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	49.4		165	146	151	113	10	50.0-150	<u>J5</u>		12.2	20
(S) o-Terphenyl					130	123		18.0-148				

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qua	lifier	С	Description

В	The same analyte is found in the associated blank.	
J	The identification of the analyte is acceptable; the reported value is an estimate.	
.15	The sample matrix interfered with the ability to make any accurate determination; spike value is high	

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
Iowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

	I	Page	147	of s	300
Page		1	of	1	

TŁ	Tetra Tech, Inc.				901	Mid	land, el (43	All Stre Texa (32) 682 (32) 68	s 797 2-455	59	00										17	u	357	1			
Client Name:	Conoco Phillips	Site Manag	er:	Chr	istian	Llull												ALY						1			
Project Name:	EVGSAU 3366-29	Contact Inf	o:		ail: ch				rated	ch.com	1	1	1	(Cir	cle	or	S	oec	ify	Me	eth 	od 	No.)	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-ME	0-015	576					11			1	1	F0	18									
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	701										1			1	ı				1				list)			П
Receiving Laboratory:		Sampler Si	gnature:		Joe T	yler					E	1	- MRO		Se Hg	Se rig								attached li			П
Comments: COPTE	ETRA Acctnum											8260B	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)		otal Metals Ag As Ba Cd Cr Pb Se Hg	2000			4	C/625			0	ees)			П
		SAMI	PLING	MA	ATRIX	PF		ERVA		S	2	BTEX	at to C3		As Ba C	As ba	iles		(H)	l. 8270			A TOS	hemistr	ance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020				T				AINER	(N/N) G	8021B	005 (E) 5M (GF	00	als Ag A	als Ag	Semi Volatiles		ol. 826	Semi. Vol.	00/30	(Asbestos)	300.0	/ater Cl	/Cation Balance	x	П
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	ICE		# CONTAINERS	FILTERED	BTEX 802	TPH TX1005 (Ext to C35) TPH 8015M (GRO - DRC	PAH 82700	Total Meta	TCI P Vol	TCLP Sen	RCI	GC/MS Vol.	GC/MS Semi. Vol.	NORM	PLM (Asb	Chloride 3	General Water Chemistry	Anion/Cati	TPH 8015R	НОГР
	BH-20-1S (0'-1')	05/21/20	1300		X			Х		1	N	Х	X										X				10
	BH-20-1S (2'-3')	05/21/20	1305		X			X		1	N	Х	X										X			4	7
	BH-20-1S (4'-5')	05/21/20	1310		X			X		1	N	X	×										X				
																-											
				Ħ																			+			+	
Relinquished by:	Date: Time: Struct 5-28-23 2-35 Date: Time:	Received by	th	1):	52	ate:	3 T	ime:	2:3		Sam	LAB Of	NLY		R	X	Sta	ndar		Day	241	hr. 4	8 hr.	72 hr.	#	
Relinquished by:	528-25 1(0:00 Date: Time:	Received by	Weh	Th	> 2	5/	ate:		ime:	99	S. (X)							Rus Spe					RRP	Repor	t		
		ORIGINA	AL COPY					1	~	,		(Cire	cle) H	AND	DELI	VER	ED	FED	EX	UPS	T	rackir	ng #:				
Released to Imagi	ing: 4/22/2024 10:33:37 AM	17	90	38	730	0		29	114	0																	

Pace Analytical National Center for Testing & Inc	novation	
Cooler Receipt Form		
Client: Copteto	12233	17
Cooler Received/Opened On: 5 129 20 Temperatu	re: Amb	
Received By: Lakeacher Webster		
Signature: <. W/ILT		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?	/	
COC Signed / Accurate?	/	
Bottles arrive intact?	/	
Correct bottles used?		等 多 美 的 美
Sufficient volume sent?	/	
If Applicable		
VOA Zero headspace?		
Preservation Correct / Checked?		

ANALYTICAL REPORT

June 10, 2020

¹Cp

³Ss

ConocoPhillips - Tetra Tech

Sample Delivery Group:

Samples Received: 05/29/2020

Project Number: 212C-MD-01576

Description: EVGSAU 3366-029

Report To: Christian Llull

901 West Wall

Suite 100

L1223380

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-50P-MTJL-0067 and ENV-50P MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
BH-20-2S (0-1) L1223380-01	6
BH-20-2S (2-3) L1223380-02	7
BH-20-2S (4-5) L1223380-03	8
BH-20-2S (6-7) L1223380-04	9
BH-20-2S (9-10) L1223380-05	10
BH-20-3S (0-1) L1223380-06	11
BH-20-3S (2-3) L1223380-07	12
BH-20-3S (4-5) L1223380-08	13
Qc: Quality Control Summary	14
Total Solids by Method 2540 G-2011	14
Wet Chemistry by Method 300.0	15
Volatile Organic Compounds (GC) by Method 8015D/GRO	16
Volatile Organic Compounds (GC/MS) by Method 8260B	17
Semi-Volatile Organic Compounds (GC) by Method 8015	18
GI: Glossary of Terms	20
Al: Accreditations & Locations	21

Sc: Sample Chain of Custody

22

			Collected by	Collected date/time	Received da	te/time
BH-20-2S (0-1) L1223380-01 Solid			Joe Tyler	05/21/20 13:30	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Method	Daten	Dilution	date/time	date/time	Allalyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1485960	20	06/04/20 21:20	06/05/20 03:58	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 17:59	BMB	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 15:37	JHH	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	5	06/02/20 12:46	06/03/20 18:03	FM	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-20-2S (2-3) L1223380-02 Solid			Joe Tyler	05/21/20 13:35	05/29/20 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, Ti
Vet Chemistry by Method 300.0	WG1485960	10	06/04/20 21:20	06/05/20 04:13	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 18:48	BMB	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 15:57	JHH	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 20:22	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	ite/time
3H-20-2S (4-5) L1223380-03 Solid			Joe Tyler	05/21/20 13:40	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T. 10 H. 1 H. H. 10F10 0 004	W0440000		date/time	date/time	1/51//	
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 04:27	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:08	BMB	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:16	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 20:35	KME	Mt. Juliet, T
			Collected by	Collected date/time	Received da	
BH-20-2S (6-7) L1223380-04 Solid			Joe Tyler	05/21/20 13:50	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, Ti
Vet Chemistry by Method 300.0	WG1485960	10	06/04/20 21:20	06/05/20 04:42	ELN	Mt. Juliet, TI
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:29	BMB	Mt. Juliet, TI
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:35	JHH	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 12:06	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	
BH-20-2S (9-10) L1223380-05 Solid			Joe Tyler	05/21/20 14:00	05/29/20 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, T
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 04:57	ELN	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:50	BMB	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:54	JHH	Mt. Juliet, TI
Comi Valetile Overeie Companyele (CC) by Method 2015	WC1400E70	4	00/02/20 07:22	00/00/20 12:20	INI	MA Lulian TA

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1488579

06/03/20 07:23

06/09/20 12:20

JN

Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

			Collected by	Collected date/time	Received da	te/time
BH-20-3S (0-1) L1223380-06 Solid			Joe Tyler	05/21/20 14:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 05:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 20:28	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:13	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 13:00	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-3S (2-3) L1223380-07 Solid			Joe Tyler	05/21/20 14:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 05:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 21:02	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:32	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 12:47	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-3S (4-5) L1223380-08 Solid			Joe Tyler	05/21/20 14:40	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 06:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 21:22	BMB	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:51	JHH	Mt. Juliet, TN

WG1488579

1

06/03/20 07:23

06/09/20 12:33

JN

Mt. Juliet, TN

Chris McCord Project Manager

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

ONE LAB. NAPagev154 of 306

Collected date/time: 05/21/20 13:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.7		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	8480		201	436	20	06/05/2020 03:58	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	06/01/2020 17:59	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	90.5			77.0-120		06/01/2020 17:59	WG1485339

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	1 (
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
enzene	U		0.000509	0.00109	1	06/01/2020 15:37	WG1485369
oluene	0.00180	<u>J</u>	0.00142	0.00545	1	06/01/2020 15:37	WG1485369
thylbenzene	U		0.000804	0.00273	1	06/01/2020 15:37	WG1485369
otal Xylenes	U		0.000960	0.00709	1	06/01/2020 15:37	WG1485369
(S) Toluene-d8	108			75.0-131		06/01/2020 15:37	WG1485369
(S) 4-Bromofluorobenzene	105			67.0-138		06/01/2020 15:37	WG1485369
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		06/01/2020 15:37	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	323		8.78	21.8	5	06/03/2020 18:03	WG1485512
C28-C40 Oil Range	422		1.49	21.8	5	06/03/2020 18:03	WG1485512
(S) o-Terphenyl	62.6			18.0-148		06/03/2020 18:03	WG1485512

ONE LAB. NAPage 155 of 306

Collected date/time: 05/21/20 13:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.9		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2510		96.0	209	10	06/05/2020 04:13	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	06/01/2020 18:48	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/01/2020 18:48	WG1485339

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/01/2020 15:57	WG1485369
Toluene	U		0.00136	0.00522	1	06/01/2020 15:57	WG1485369
Ethylbenzene	U		0.000769	0.00261	1	06/01/2020 15:57	WG1485369
Total Xylenes	U		0.000918	0.00678	1	06/01/2020 15:57	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 15:57	WG1485369
(S) 4-Bromofluorobenzene	107			67.0-138		06/01/2020 15:57	WG1485369
(S) 1,2-Dichloroethane-d4	90.8			70.0-130		06/01/2020 15:57	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	06/02/2020 20:22	WG1485512
C28-C40 Oil Range	1.93	ВJ	0.286	4.17	1	06/02/2020 20:22	WG1485512
(S) o-Terphenyl	65.7			18.0-148		06/02/2020 20:22	WG1485512

ONE LAB. NAPage 156 of 306

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.0		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	227		9.49	20.6	1	06/05/2020 04:27	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/01/2020 19:08	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 19:08	WG1485339

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	'	, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/01/2020 16:16	WG1485369
Toluene	U		0.00134	0.00516	1	06/01/2020 16:16	WG1485369
Ethylbenzene	U		0.000760	0.00258	1	06/01/2020 16:16	WG1485369
Total Xylenes	U		0.000907	0.00670	1	06/01/2020 16:16	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 16:16	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:16	WG1485369
(S) 1,2-Dichloroethane-d4	89.5			70.0-130		06/01/2020 16:16	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	06/02/2020 20:35	WG1485512
C28-C40 Oil Range	1.55	BJ	0.283	4.12	1	06/02/2020 20:35	WG1485512
(S) o-Terphenyl	73.7			18.0-148		06/02/2020 20:35	WG1485512

Collected date/time: 05/21/20 13:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	93.0		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3240		98.9	215	10	06/05/2020 04:42	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	06/01/2020 19:29	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 19:29	WG1485339

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	'				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	06/01/2020 16:35	WG1485369
Toluene	U		0.00140	0.00538	1	06/01/2020 16:35	WG1485369
Ethylbenzene	U		0.000793	0.00269	1	06/01/2020 16:35	WG1485369
Total Xylenes	U		0.000946	0.00699	1	06/01/2020 16:35	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 16:35	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:35	WG1485369
(S) 1,2-Dichloroethane-d4	90.4			70.0-130		06/01/2020 16:35	WG1485369

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	06/09/2020 12:06	WG1488579
C28-C40 Oil Range	U		0.295	4.30	1	06/09/2020 12:06	WG1488579
(S) o-Terphenyl	82.5			18.0-148		06/09/2020 12:06	WG1488579

Collected date/time: 05/21/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	99.6		1	06/03/2020 21:57	<u>WG1486309</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	327		9.24	20.1	1	06/05/2020 04:57	WG1485960

Ss

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	06/01/2020 19:50	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		06/01/2020 19:50	WG1485339

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, ,	'				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	1	06/01/2020 16:54	WG1485369
Toluene	U		0.00131	0.00502	1	06/01/2020 16:54	WG1485369
Ethylbenzene	U		0.000740	0.00251	1	06/01/2020 16:54	WG1485369
Total Xylenes	U		0.000884	0.00653	1	06/01/2020 16:54	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 16:54	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:54	WG1485369
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		06/01/2020 16:54	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.19	<u>J</u>	1.62	4.02	1	06/09/2020 12:20	WG1488579
C28-C40 Oil Range	1.26	<u>J</u>	0.275	4.02	1	06/09/2020 12:20	WG1488579
(S) o-Terphenyl	89.6			18.0-148		06/09/2020 12:20	WG1488579

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	98.4		1	06/03/2020 21:57	<u>WG1486309</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	114		9.35	20.3	1	06/05/2020 05:12	WG1485960

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	06/01/2020 20:28	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 20:28	WG1485339

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00102	1	06/01/2020 17:13	WG1485369
Toluene	U		0.00132	0.00508	1	06/01/2020 17:13	WG1485369
Ethylbenzene	U		0.000749	0.00254	1	06/01/2020 17:13	WG1485369
Total Xylenes	U		0.000894	0.00660	1	06/01/2020 17:13	WG1485369
(S) Toluene-d8	110			<i>75.0-131</i>		06/01/2020 17:13	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:13	WG1485369
(S) 1,2-Dichloroethane-d4	92.0			70.0-130		06/01/2020 17:13	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.25		1.64	4.06	1	06/09/2020 13:00	WG1488579
C28-C40 Oil Range	25.7		0.278	4.06	1	06/09/2020 13:00	WG1488579
(S) o-Terphenyl	97.0			18.0-148		06/09/2020 13:00	WG1488579

ONE LAB. NAPage 160 of 306

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.1		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	66.5		9.37	20.4	1	06/05/2020 05:27	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	06/01/2020 21:02	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/01/2020 21:02	WG1485339

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	06/01/2020 17:32	WG1485369
Toluene	U		0.00132	0.00509	1	06/01/2020 17:32	WG1485369
Ethylbenzene	U		0.000751	0.00255	1	06/01/2020 17:32	WG1485369
Total Xylenes	U		0.000897	0.00662	1	06/01/2020 17:32	WG1485369
(S) Toluene-d8	109			<i>75.0-131</i>		06/01/2020 17:32	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:32	WG1485369
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		06/01/2020 17:32	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.19		1.64	4.08	1	06/09/2020 12:47	WG1488579
C28-C40 Oil Range	8.32		0.279	4.08	1	06/09/2020 12:47	WG1488579
(S) o-Terphenyl	97.1			18.0-148		06/09/2020 12:47	WG1488579

ONE LAB. NA Page 161 of 306

Collected date/time: 05/21/20 14:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.6		1	06/03/2020 21:57	WG1486309

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	24.0		9.43	20.5	1	06/05/2020 06:12	WG1485960

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/01/2020 21:22	WG1485339
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		06/01/2020 21:22	WG1485339

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00102	1	06/01/2020 17:51	WG1485369
Toluene	U		0.00133	0.00512	1	06/01/2020 17:51	WG1485369
Ethylbenzene	U		0.000755	0.00256	1	06/01/2020 17:51	WG1485369
Total Xylenes	U		0.000902	0.00666	1	06/01/2020 17:51	WG1485369
(S) Toluene-d8	111			75.0-131		06/01/2020 17:51	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:51	WG1485369
(S) 1,2-Dichloroethane-d4	89.7			70.0-130		06/01/2020 17:51	WG1485369

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	06/09/2020 12:33	WG1488579
C28-C40 Oil Range	U		0.281	4.10	1	06/09/2020 12:33	WG1488579
(S) o-Terphenyl	100			18.0-148		06/09/2020 12:33	WG1488579

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 162 of 306

Total Solids by Method 2540 G-2011

L1223380-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3535057-1 O	6/03/20 21:57			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

Ss

L1223380-04 Original Sample (OS) • Duplicate (DUP)

(OC) 11222200 04	00/02/20 21/07	(DLID) DOFOCOTO	00/02/20 21/07
1USLLIZZ338U-U4	U0/U3/ZU ZE57 (• (DUP) R3535057-3	Ub/U3/ZU Z 1:5/

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.0	93.9	1	0.947		10

Laboratory Control Sample (LCS)

(1 (CC)	D2E2E0E7 2	06/02/20 21:57	7
(LCS)	R353505/-2	06/03/20 21:57	/

(LCS) R3535057-2 06/03/	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 163 of 306

Wet Chemistry by Method 300.0

L1223380-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3535396-1 06	6/04/20 23:59			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

[†]Cn

(OS) L1223379-04	06/05/20 01:28 • (DUF	P) R3535396-3	06/05/20	0 01:43
	Original Result	DUP Result	Dilution	חחם חחם

	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	175	174	1	0.587		20

(OS) L1223380-08 06/05/20 06:12 • (DUP) R3535396-6 06/05/20 06:27	(OS) L1223380-08	06/05/20 06:12 •	(DUP) R3535396-6	06/05/20 06:27
---	------------------	------------------	------------------	----------------

(00) 1/12/2000 00 00/00/2	Original Result (dry)	′	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	24.0	25.2	1	4.90		20

Laboratory Control Sample (LCS)

, ,	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	206	103	90.0-110	

L1223379-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223379-08 06/05/20 03:13 • (MS) R3535396-4	1 06/05/20 03:28 • (MSD) R3535396-5 06/05/20 03:43
---	--

(03) [1223379=00 00/03/.	20 03.13 • (1013)	K333330-4	00/03/20 03.2	0 • (IVISD) KSS	33390-3 00/0	3/20 03.43						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	523	278	817	804	103	101	1	80.0-120			1.66	20

Reserved 18 99 13 5/2024 2:37:46 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 164 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223380-01,02,03,04,05,06,07,08

Method Blank (MB)

(MB) R3534748-2 06/01/	20 12:27				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534748-1 06/01/2	20 11:46				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.46	81.1	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			95.4	77.0-120	

Reserved 18 9916 \$\, 5/2024 2:37:46 PM

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev165 of 306

L1223380-01,02,03,04,05,06,07,08 Volatile Organic Compounds (GC/MS) by Method 8260B

Method Blank (MB)

ИВ) R3534492-2 06/01/2	20 11:09					
	MB Result	MB Qualifier	MB MDL	MB RDL		
nalyte	mg/kg		mg/kg	mg/kg		
nzene	U		0.000467	0.00100		
benzene	U		0.000737	0.00250		
oluene	U		0.00130	0.00500		
enes, Total	U		0.000880	0.00650		
Toluene-d8	110			75.0-131		
S) 4-Bromofluorobenzene	105			67.0-138		
(S) 1,2-Dichloroethane-d4	88.2			70.0-130		

Laboratory Control Sample (LCS)

(LCS) R3534492-1 06/01	1/20 10:11					E
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.108	86.4	70.0-123		8
Ethylbenzene	0.125	0.133	106	74.0-126		
Toluene	0.125	0.121	96.8	75.0-121		Ī
Xylenes, Total	0.375	0.394	105	72.0-127		1
(S) Toluene-d8			109	75.0-131		L
(S) 4-Bromofluorobenzene			107	67.0-138		
(S) 1,2-Dichloroethane-d4			96.4	70.0-130		

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev166 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1223380-01,02,03

Method Blank (MB)

(MB) R3534383-1 06/02/	20 19:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	0.428	<u>J</u>	0.274	4.00
(S) o-Terphenyl	64.4			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3534383-2 06/0	2/20 19:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.6	73.2	50.0-150	
(S) o-Terphenyl			84.1	18.0-148	

L1223380-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223380-01 06/03/20 18:03 • (MS) R3534744-1 06/03/20 18:16 • (MSD) R3534744-2 06/03/20 18:30

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.7	323	387	387	120	120	5	50.0-150			0.000	20
(S) o-Terphenyl					56.9	62.2		18.0-148				

ConocoPhillips - Tetra Tech

Reserved 18 857: 5/5/2024 2:37:46 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 167 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015 <u>L1223380-04,05,06,07,08</u>

Method Blank (MB)

(MB) R3536640-1 06/09/20 11:12				
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	95.0			18.0-148

2____

⁴Cn

Laboratory Control Sample (LCS)

(LCS) R3536640-2 06/9	09/20 11:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	59.6	119	50.0-150	
(S) o-Terphenyl			97.4	18.0-148	

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	a Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qua	lifier	С	Description

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable: the reported value is an estimate.

Qc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana ¹	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina 1	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01
A2LA - ISO 17025 5	1461.02
Canada	1461.01
EPA-Crypto	TN00003

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

901 West Wall Street, Suite 100	
	Page 170 of 306 Page: 1 of 1

TE	Tetra Tech, Inc.					Midla Tel	nd, (432	Texas 2) 682 2) 682	797	'01 9	00										17	223	38	0			
Client Name:	Conoco Phillips	Site Manage	er:	Chi	ristian I	Llull						Γ										UES					
Project Name:	EVGSAU 3366-29	Contact Info):		ail: chr				ratec	h.com	1	1	1	1	(Ci	rcl	e c	or S	Spe 	cif	y IV	leth	od	No	.)		
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	2C-MD	-0157	6									1	1	FO)20)							
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79	701		100									í				-1					1		list)			
Receiving Laboratory:	Pace Analytical	Sampler Sig	nature:		Joe Ty	yler							000	- N	Se Hg	Se Hg								attached list)			
Comments: COPTE	TRA Acctnum									1		8260B	100	חס-סיים	Cd Cr Pb	Ag As Ba Cd Cr Pb Se Hg			24	8270C/625				(see			
		SAME	LING	M	ATRIX			RVAT		RS	(Y/N)	BTEX	(Ext to C	O-OHD	As Ba	g As Ba		Volatiles	8260B / 624		80			E	alance		
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020		T		П				AINE		21B	TX1005 (F	-		Metals Ag	latiles	mi Vol	ol. 82	Semi. Vol.	B's 8082/608	oestos)	300.0	Sulfate Nater Che	on/Cation Balance	SR	
(LAB USE)		DATE	TIME	WATER	SOIL	HCL	HNO3	ICE		# CONTAINERS	FILTERED	BTEX 8021B		PAH 8270C	Total Metals	TCLP Me	TCLP Volatiles	TCLP Semi	GC/MS Vol.	GC/MS S	PCB's 80	PLM (Asbestos)	Chloride 300.0	Chloride General V	Anion/Ca	TPH 8015R	НОГР
	BH-20-2S (0'-1')	05/21/20	1330		Х			X		1	N	Х		X									X				i
	BH-20-2S (2'-3')	05/21/20	1335		Х			X		1	N	X		X									Х				7
	BH-20-2S (4'-5') •	05/21/20	1340		Х			X		1	N	X		X									X				4
	BH-20-2S (6'-7')	05/21/20	1350		X			X		1	N	X		X									Х				1
	BH-20-2S (9'-10') r	05/21/20	1400		X			X		1	N	X		X									X				0
	BH-20-3S (0'-1')	05/21/20	1430	1	X			X		1	N	X		X									X				1
	BH-20-3S (2'-3') '	05/21/20	1435		X			X		1	N	X		X									X				-
	BH-20-3S (4'-5') t	05/21/20	1440	-	X			X		1	N	X		X	-		-	-					X				
Relinquished by:	Date: Time:	Received by	· h/	-	1	Da	ate:	T	ime:			F	LA	BU	SE		-	MAR									
Relinquistred by:	Fred 5-28-25 12:35 Date: Time:	Received by	100		5	28°	te:		12 ime:	3	>	Sar		NL	Y	ire		X S			me Da	ıy 24	hr.	48 hr.	721	hr.	
Holder	U 5-28-25 (Givo	Fedt)		5	28-	_	_	\rightarrow	0:0	D		pio	S. Inpi				F	Rush (Charg	jes Au	thorize	d				
Relinquished by:	Date: Time:	Received by	We	A		0	te:	de	ime:	09	i.a							3	Specia	al Rep	oort Lin	nits or	TRR	P Repo	ort		
	1	ORIGINA 790	COPY)	20	21	10	7				(Ci	rcle)	HAN	D DE	ELIVE	REI	D F	EDEX	U	PS	Tracki	ng #				

Pace Analytical National Center for Testing & I	nnovation	
Cooler Receipt Form		
Client: Colteta	1223	398
Cooler Received/Opened On: 5 / 27/ 20 Temperat	ture: Amb	
Received By: Lakeacher Webster		
Signature: With To		
Paceint Check List NP		NIO
Receipt Check List NP	Yes	No
COC Seal Present / Intact?	Yes	140
Receipt check List	Yes	NO
COC Seal Present / Intact?	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate?	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact?	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used?	Yes	NO
COC Seal Present / Intact? COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?	Yes	NO

ANALYTICAL REPORT

June 10, 2020

¹Cp

³Ss

[†]Cn

Šr

°Qc

[']Gl

ΔI

[®]Sc

ConocoPhillips - Tetra Tech

Sample Delivery Group: L1223523

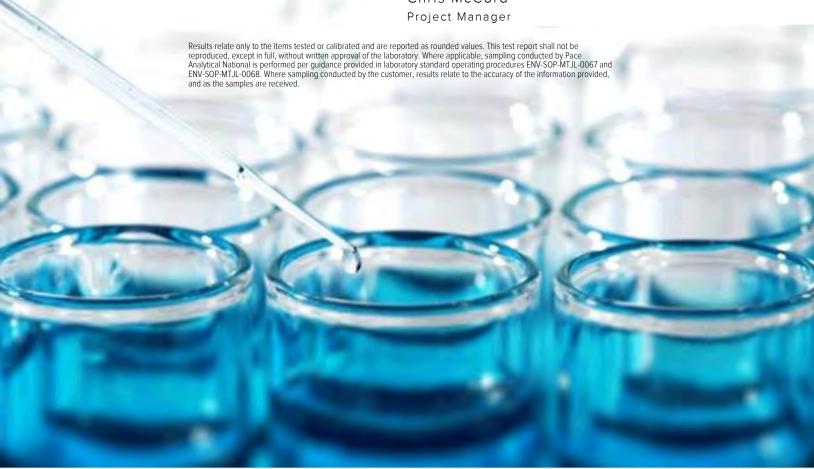
Samples Received: 05/29/2020

Project Number: 212C-MD-01576

Description: EVGSAU 3366-029

Site: LEA COUNTY, NM

Report To: Christian Llull


901 West Wall

Suite 100

Midland, TX 79701

Entire Report Reviewed By:

Chris McCord

Cp: Cover Page	
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
BH-20-1 (0-1) L1223523-01	9
BH-20-1 (2-3) L1223523-02	10
BH-20-1 (4-5) L1223523-03	11
BH-20-1 (6-7) L1223523-04	12
BH-20-1 (9-10) L1223523-05	13
BH-20-1 (14-15) L1223523-06	14
BH-20-2 (0-1) L1223523-07	15
BH-20-2 (2-3) L1223523-08	16
BH-20-2 (4-5) L1223523-09	17
BH-20-2 (6-7) L1223523-10	18
BH-20-2 (9-10) L1223523-11	19
BH-20-2 (14-15) L1223523-12	20
BH-20-2 (19-20) L1223523-13	2
BH-20-2 (24-25) L1223523-14	22
BH-20-2 (29-30) L1223523-15	23
BH-20-2 (39-40) L1223523-16	24
BH-20-3 (0-1) L1223523-17	25
BH-20-3 (2-3) L1223523-18	26
BH-20-3 (4-5) L1223523-19	27
BH-20-4 (0-1) L1223523-20	28
BH-20-4 (2-3) L1223523-21	29
BH-20-4 (4-5) L1223523-22	30
BH-20-5 (0-1) L1223523-23	3
BH-20-5 (2-3) L1223523-24	32
BH-20-5 (4-5) L1223523-25	33
Qc: Quality Control Summary	34
Total Solids by Method 2540 G-2011	34
Wet Chemistry by Method 300.0	38
Volatile Organic Compounds (GC) by Method 8015D/GRO	40
Volatile Organic Compounds (GC/MS) by Method 8260B	46
Semi-Volatile Organic Compounds (GC) by Method 8015	50
GI: Glossary of Terms	53
Al: Accreditations & Locations	54
Sc: Sample Chain of Custody	55

			Collected by	Collected date/time		
BH-20-1 (0-1) L1223523-01 Solid			Joe Tyler	05/20/20 14:00	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 09:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 00:25	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:47	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-1 (2-3) L1223523-02 Solid			Joe Tyler	05/20/20 14:05	05/29/20 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 18:02	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 09:42	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 00:46	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:21	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Pacaivad da	ta/tima
BH-20-1 (4-5) L1223523-03 Solid			Joe Tyler	05/20/20 14:10	05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:31	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 10:06	DWR	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 01:06	DWR	Mt. Juliet, Th
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 20:42	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
BH-20-1 (6-7) L1223523-04 Solid			Joe Tyler	05/20/20 14:15	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 18:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 16:01	BMB	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 01:26	DWR	Mt. Juliet, Ti
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 20:56	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-1 (9-10) L1223523-05 Solid			Joe Tyler	05/20/20 14:20	05/29/20 09	9:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, Ti
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:50	ELN	Mt. Juliet, Ti
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 16:25	BMB	Mt. Juliet, Ti
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486515	1	06/02/20 08:39	06/03/20 15:21	DWR	Mt. Juliet, TN
Comi Valetile Overeia Compounds (CC) by Method 2015	WC1100313	1	00/02/20 00:30	00/03/20 13.21	LAME	Mt Juliat TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1486068

06/03/20 05:20

06/03/20 21:09

KME

Mt. Juliet, TN

DI LOO 4 (44 45) 14000500 00 0 1: 1			Collected by Joe Tyler	Collected date/time 05/20/20 14:30	Received da 05/29/20 09	
BH-20-1 (14-15) L1223523-06 Solid						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tabal Callida Inc. Matha et 25 40 C 2044	VALCA A D.C. A A D.		date/time	date/time	I/DC	MA LUCE A TAI
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356 WG1486129	1 1	06/02/20 08:39 06/02/20 08:39	06/03/20 16:49	BMB DWR	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/02/20 08:39	06/03/20 02:07 06/03/20 21:22	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-2 (0-1) L1223523-07 Solid			Joe Tyler	05/20/20 14:50	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 19:18	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 17:12	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 02:28	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	5	06/03/20 05:20	06/04/20 00:26	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-2 (2-3) L1223523-08 Solid			Joe Tyler	05/20/20 15:00	05/29/20 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 02:24	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 09:55	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 02:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:34	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-2 (4-5) L1223523-09 Solid			Joe Tyler	05/20/20 15:05	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	,,,,	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 02:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 10:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:08	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	to/timo
BH-20-2 (6-7) L1223523-10 Solid			Joe Tyler	05/20/20 15:10	05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 03:14	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 10:40	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:29	DWR	Mt. Juliet, TN
		_				

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1486068

06/03/20 05:20

06/03/20 22:54

KME

Mt. Juliet, TN

SAMPLE SUMMARY

BH-20-2 (9-10) L1223523-11 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 15:20	Received date 05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TI
et Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 03:31	ELN	Mt. Juliet, TI
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 11:02	DWR	Mt. Juliet, TI
olatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:49	DWR	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 21:35	KME	Mt. Juliet, Ti
			Collected by	Collected date/time	Received da	te/time
3H-20-2 (14-15) L1223523-12 Solid			Joe Tyler	05/20/20 15:30	05/29/20 09	:00
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
otal Solids by Method 2540 G-2011	WG1486420	1	date/time 06/04/20 17:43	date/time 06/04/20 18:01	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1486420 WG1486010	5	06/02/20 22:30	06/03/20 03:48	ELN	Mt. Juliet, TN
platile Organic Compounds (GC) by Method 8015D/GRO	WG1486010 WG1486242	1	06/02/20 08:39	06/03/20 11:25	DWR	Mt. Juliet, TI
platile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 04:09	DWR	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486129 WG1486068	1	06/03/20 05:20	06/03/20 21:49	KME	Mt. Juliet, Ti
totalic organic compounds (co, s, meaned co)		·	00,00,20 00.20	0 0, 0 0, 2 0 2 1 10		ma sanet, ri
			Collected by	Collected date/time	Received da	te/time
3H-20-2 (19-20) L1223523-13 Solid			Joe Tyler	05/20/20 15:40	05/29/20 09	:00
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, Ti
et Chemistry by Method 300.0	WG1486010	10	06/02/20 22:30	06/03/20 04:05	ELN	Mt. Juliet, TI
platile Organic Compounds (GC) by Method 8015D/GRO	WG1486589	1	06/02/20 08:39	06/03/20 16:06	ACG	Mt. Juliet, Ti
platile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 04:30	DWR	Mt. Juliet, Ti
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:02	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-2 (24-25) L1223523-14 Solid			Joe Tyler	05/20/20 15:50	05/29/20 09	:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
et Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 05:47	ELN	Mt. Juliet, Ti
platile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:49	06/03/20 12:10	DWR	Mt. Juliet, Th
platile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 04:50	DWR	Mt. Juliet, TI
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:15	KME	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
3H-20-2 (29-30) L1223523-15 Solid			Joe Tyler	05/20/20 16:10	05/29/20 09	:00
ethod	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
tal Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, Ti
et Chemistry by Method 300.0	WG1486010	10	06/02/20 22:30	06/03/20 06:03	ELN	Mt. Juliet, TI
platile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:49	06/03/20 12:32	DWR	Mt. Juliet, TI
platile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 05:10	DWR	Mt. Juliet, Th
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:28	KME	Mt. Juliet, Ti

DI LOGO (400 40) 4000 500 40 00 11			Collected by Joe Tyler	Collected date/time 05/20/20 16:30	Received date 05/29/20 09	
BH-20-2 (39-40) L1223523-16 Solid						
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
Tabal Calida In. Madhad 20140 C 2014	WC140C420	4	date/time	date/time	KDW	MA LUCE A TAI
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:20	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1 1	06/02/20 08:49 06/02/20 08:49	06/03/20 12:54	DWR DWR	Mt. Juliet, TN Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486129 WG1486068	1	06/02/20 08:49	06/03/20 05:31 06/03/20 22:41	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-3 (0-1) L1223523-17 Solid			Joe Tyler	05/21/20 10:00	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
T	W04400400		date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:37	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 09:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 05:51	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 02:30	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-3 (2-3) L1223523-18 Solid			Joe Tyler	05/21/20 10:05	05/29/20 09	00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:54	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 10:21	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 06:11	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 22:24	DMG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-3 (4-5) L1223523-19 Solid			Joe Tyler	05/21/20 10:10	05/29/20 09	9:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:11	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 10:45	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 06:32	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:31	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-4 (0-1) L1223523-20 Solid			Joe Tyler	05/21/20 10:40	05/29/20 09	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:28	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:09	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 06:52	DWR	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1486508

06/03/20 19:01

06/08/20 02:56

JN

Mt. Juliet, TN

PH 20 4 (2.3) 11223522 21 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:45	Received da 05/29/20 09	
BH-20-4 (2-3) L1223523-21 Solid		D.I				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:45	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:33	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 09:37	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 02:43	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-4 (4-5) L1223523-22 Solid			Joe Tyler	05/21/20 10:50	05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 08:36	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:57	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 09:56	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:44	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-5 (0-1) L1223523-23 Solid			Joe Tyler	05/21/20 11:30	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 08:53	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 01:24	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 10:15	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	10	06/03/20 19:01	06/08/20 03:36	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
3H-20-5 (2-3) L1223523-24 Solid			Joe Tyler	05/21/20 11:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
otal Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 09:10	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 01:44	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1486294	1	06/02/20 08:49	06/03/20 10:13	JHH	Mt. Juliet, TN
emi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 03:10	JN	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
3H-20-5 (4-5) L1223523-25 Solid			Joe Tyler	05/21/20 11:40	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
otal Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Vet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 09:26	ELN	Mt. Juliet, TN
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 02:05	JHH	Mt. Juliet, TN
olatile Organic Compounds (GC/MS) by Method 8260B	WG1486294	1	06/02/20 08:49	06/03/20 10:33	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:57	JN	Mt. Juliet, TN

Semi-Volatile Organic Compounds (GC) by Method 8015

WG1488541

1

06/09/20 04:05

06/09/20 13:28

JN

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

3 Ss

ONE LAB. NAPage 180 of 306

Collected date/time: 05/20/20 14:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.6		1	06/04/2020 14:19	<u>WG1486415</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	232		9.83	21.4	1	06/03/2020 17:53	WG1486008

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	06/03/2020 09:18	WG1485898
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		06/03/2020 09:18	WG1485898

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00107	1	06/03/2020 00:25	WG1486129
Toluene	U		0.00139	0.00534	1	06/03/2020 00:25	WG1486129
Ethylbenzene	U		0.000787	0.00267	1	06/03/2020 00:25	WG1486129
Total Xylenes	U		0.000940	0.00694	1	06/03/2020 00:25	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 00:25	WG1486129
(S) 4-Bromofluorobenzene	87.7			67.0-138		06/03/2020 00:25	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 00:25	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.4		1.72	4.27	1	06/03/2020 23:47	WG1486068
C28-C40 Oil Range	69.9		0.293	4.27	1	06/03/2020 23:47	WG1486068
(S) o-Terphenvl	77.8			18.0-148		06/03/2020 23:47	WG1486068

ONE LAB. NAPage 181 of 306

Collected date/time: 05/20/20 14:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	90.4		1	06/04/2020 14:19	WG1486415

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1170		50.9	111	5	06/03/2020 18:02	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	06/03/2020 09:42	WG1485898
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		06/03/2020 09:42	WG1485898

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	,		<u>′</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	06/03/2020 00:46	WG1486129
Toluene	U		0.00144	0.00553	1	06/03/2020 00:46	WG1486129
Ethylbenzene	U		0.000815	0.00277	1	06/03/2020 00:46	WG1486129
Total Xylenes	U		0.000974	0.00719	1	06/03/2020 00:46	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 00:46	WG1486129
(S) 4-Bromofluorobenzene	98.6			67.0-138		06/03/2020 00:46	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 00:46	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.17		1.78	4.43	1	06/03/2020 23:21	WG1486068
C28-C40 Oil Range	12.6		0.303	4.43	1	06/03/2020 23:21	WG1486068
(S) o-Terphenyl	71.0			18.0-148		06/03/2020 23:21	WG1486068

Collected date/time: 05/20/20 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	06/04/2020 14:19	<u>WG1486415</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	574		9.50	20.7	1	06/03/2020 18:31	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 10:06	WG1485898
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		06/03/2020 10:06	WG1485898

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·	'	·	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 01:06	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 01:06	WG1486129
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 01:06	WG1486129
Total Xylenes	U		0.000909	0.00671	1	06/03/2020 01:06	WG1486129
(S) Toluene-d8	120			75.0-131		06/03/2020 01:06	WG1486129
(S) 4-Bromofluorobenzene	103			67.0-138		06/03/2020 01:06	WG1486129
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 01:06	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 20:42	WG1486068
C28-C40 Oil Range	2.60	<u>J</u>	0.283	4.13	1	06/03/2020 20:42	WG1486068
(S) o-Terphenyl	86.8			18.0-148		06/03/2020 20:42	WG1486068

ONE LAB. NAPage 183 of 306

Collected date/time: 05/20/20 14:15

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	91.5		1	06/04/2020 14:19	WG1486415

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1870		50.3	109	5	06/03/2020 18:40	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	06/03/2020 16:01	WG1486356
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120		06/03/2020 16:01	WG1486356

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	06/03/2020 01:26	WG1486129
Toluene	U		0.00142	0.00546	1	06/03/2020 01:26	WG1486129
Ethylbenzene	U		0.000806	0.00273	1	06/03/2020 01:26	WG1486129
Total Xylenes	U		0.000962	0.00710	1	06/03/2020 01:26	WG1486129
(S) Toluene-d8	116			<i>75.0-131</i>		06/03/2020 01:26	WG1486129
(S) 4-Bromofluorobenzene	98.7			67.0-138		06/03/2020 01:26	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 01:26	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	06/03/2020 20:56	WG1486068
C28-C40 Oil Range	0.632	<u>J</u>	0.299	4.37	1	06/03/2020 20:56	WG1486068
(S) o-Terphenyl	65.0			18.0-148		06/03/2020 20:56	WG1486068

ONE LAB. NAPage 184 of 306

Collected date/time: 05/20/20 14:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.9		1	06/04/2020 18:21	<u>WG1486419</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	375		9.70	21.1	1	06/03/2020 18:50	WG1486008

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	06/03/2020 16:25	WG1486356
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		06/03/2020 16:25	WG1486356

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		·					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	06/03/2020 15:21	WG1486515
Toluene	U		0.00137	0.00527	1	06/03/2020 15:21	WG1486515
Ethylbenzene	U		0.000777	0.00264	1	06/03/2020 15:21	WG1486515
Total Xylenes	0.00111	<u>J</u>	0.000928	0.00685	1	06/03/2020 15:21	WG1486515
(S) Toluene-d8	108			<i>75.0-131</i>		06/03/2020 15:21	WG1486515
(S) 4-Bromofluorobenzene	118			67.0-138		06/03/2020 15:21	WG1486515
(S) 1,2-Dichloroethane-d4	<i>77.3</i>			70.0-130		06/03/2020 15:21	WG1486515

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	06/03/2020 21:09	WG1486068
C28-C40 Oil Range	0.958	<u>J</u>	0.289	4.22	1	06/03/2020 21:09	WG1486068
(S) o-Terphenyl	62.2			18.0-148		06/03/2020 21:09	WG1486068

ONE LAB. NAPage 185 of 306

Collected date/time: 05/20/20 14:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.9		1	06/04/2020 18:21	<u>WG1486419</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	124		9.50	20.6	1	06/03/2020 18:59	WG1486008

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 16:49	WG1486356
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		06/03/2020 16:49	<u>WG1486356</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

· ·		, ,	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 02:07	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 02:07	WG1486129
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 02:07	WG1486129
Total Xylenes	U		0.000908	0.00671	1	06/03/2020 02:07	WG1486129
(S) Toluene-d8	116			<i>75.0-131</i>		06/03/2020 02:07	WG1486129
(S) 4-Bromofluorobenzene	97.8			67.0-138		06/03/2020 02:07	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 02:07	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 21:22	WG1486068
C28-C40 Oil Range	U		0.283	4.13	1	06/03/2020 21:22	WG1486068
(S) o-Terphenyl	73.3			18.0-148		06/03/2020 21:22	WG1486068

Collected date/time: 05/20/20 14:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	93.1		1	06/04/2020 18:21	WG1486419

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1290		49.4	107	5	06/03/2020 19:18	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	06/03/2020 17:12	WG1486356
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		06/03/2020 17:12	<u>WG1486356</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00107	1	06/03/2020 02:28	WG1486129
Toluene	U		0.00140	0.00537	1	06/03/2020 02:28	WG1486129
Ethylbenzene	U		0.000792	0.00269	1	06/03/2020 02:28	WG1486129
Total Xylenes	U		0.000946	0.00698	1	06/03/2020 02:28	WG1486129
(S) Toluene-d8	114			75.0-131		06/03/2020 02:28	WG1486129
(S) 4-Bromofluorobenzene	98.7			67.0-138		06/03/2020 02:28	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 02:28	WG1486129

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	351		8.65	21.5	5	06/04/2020 00:26	WG1486068
C28-C40 Oil Range	750		1.47	21.5	5	06/04/2020 00:26	WG1486068
(S) o-Terphenyl	106			18.0-148		06/04/2020 00:26	WG1486068

ONE LAB. NAPage 187 of 306

Collected date/time: 05/20/20 15:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	90.3		1	06/04/2020 18:21	<u>WG1486419</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1320		50.9	111	5	06/03/2020 02:24	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0623	ВЈ	0.0240	0.111	1	06/03/2020 09:55	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 09:55	WG1486242

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

			<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	06/03/2020 02:48	WG1486129
Toluene	U		0.00144	0.00554	1	06/03/2020 02:48	WG1486129
Ethylbenzene	U		0.000816	0.00277	1	06/03/2020 02:48	WG1486129
Total Xylenes	U		0.000974	0.00720	1	06/03/2020 02:48	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 02:48	WG1486129
(S) 4-Bromofluorobenzene	97.9			67.0-138		06/03/2020 02:48	WG1486129
(S) 1,2-Dichloroethane-d4	112			70.0-130		06/03/2020 02:48	WG1486129

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.5		1.78	4.43	1	06/03/2020 23:34	WG1486068
C28-C40 Oil Range	63.0		0.303	4.43	1	06/03/2020 23:34	WG1486068
(S) o-Terphenyl	52.4			18.0-148		06/03/2020 23:34	WG1486068

Collected date/time: 05/20/20 15:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.0		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1160		47.4	103	5	06/03/2020 02:57	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0572	ВЈ	0.0224	0.103	1	06/03/2020 10:18	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		06/03/2020 10:18	WG1486242

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	06/03/2020 03:08	WG1486129
luene	U		0.00134	0.00515	1	06/03/2020 03:08	WG1486129
hylbenzene	U		0.000760	0.00258	1	06/03/2020 03:08	WG1486129
otal Xylenes	U		0.000907	0.00670	1	06/03/2020 03:08	WG1486129
(S) Toluene-d8	184	<u>J1</u>		<i>75.0-131</i>		06/03/2020 03:08	WG1486129
(S) 4-Bromofluorobenzene	99.0			67.0-138		06/03/2020 03:08	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 03:08	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.63		1.66	4.12	1	06/03/2020 23:08	WG1486068
C28-C40 Oil Range	16.9		0.282	4.12	1	06/03/2020 23:08	WG1486068
(S) o-Terphenyl	72.3			18.0-148		06/03/2020 23:08	WG1486068

ONE LAB. NAPage 189 of 306

Collected date/time: 05/20/20 15:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	97.7		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	875		47.1	102	5	06/03/2020 03:14	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0487	ВЈ	0.0222	0.102	1	06/03/2020 10:40	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		06/03/2020 10:40	WG1486242

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	· / ·	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	06/03/2020 03:29	WG1486129
Toluene	U		0.00133	0.00512	1	06/03/2020 03:29	WG1486129
Ethylbenzene	U		0.000754	0.00256	1	06/03/2020 03:29	WG1486129
Total Xylenes	U		0.000901	0.00665	1	06/03/2020 03:29	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 03:29	WG1486129
(S) 4-Bromofluorobenzene	97.9			67.0-138		06/03/2020 03:29	WG1486129
(S) 1,2-Dichloroethane-d4	112			70.0-130		06/03/2020 03:29	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.07	<u>J</u>	1.65	4.09	1	06/03/2020 22:54	WG1486068
C28-C40 Oil Range	3.00	<u>J</u>	0.280	4.09	1	06/03/2020 22:54	WG1486068
(S) o-Terphenyl	67.4			18.0-148		06/03/2020 22:54	WG1486068

ONE LAB. NAPage 190 of 306

Collected date/time: 05/20/20 15:20

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	99.2		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	781		46.4	101	5	06/03/2020 03:31	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0540	ВЈ	0.0219	0.101	1	06/03/2020 11:02	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.2			77.0-120		06/03/2020 11:02	WG1486242

СQс

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		, ,	<u>'</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	06/03/2020 03:49	WG1486129
Toluene	U		0.00131	0.00504	1	06/03/2020 03:49	WG1486129
Ethylbenzene	U		0.000743	0.00252	1	06/03/2020 03:49	WG1486129
Total Xylenes	U		0.000887	0.00655	1	06/03/2020 03:49	WG1486129
(S) Toluene-d8	136	<u>J1</u>		75.0-131		06/03/2020 03:49	WG1486129
(S) 4-Bromofluorobenzene	72.0			67.0-138		06/03/2020 03:49	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 03:49	WG1486129

Sc

Gl

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.03	1	06/03/2020 21:35	WG1486068
C28-C40 Oil Range	0.975	<u>J</u>	0.276	4.03	1	06/03/2020 21:35	WG1486068
(S) o-Terphenyl	<i>75.1</i>			18.0-148		06/03/2020 21:35	WG1486068

Collected date/time: 05/20/20 15:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1630		48.0	104	5	06/03/2020 03:48	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0646	<u>B J</u>	0.0226	0.104	1	06/03/2020 11:25	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120		06/03/2020 11:25	WG1486242

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•	'	, .	•				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/03/2020 04:09	WG1486129
Toluene	U		0.00136	0.00522	1	06/03/2020 04:09	WG1486129
Ethylbenzene	U		0.000769	0.00261	1	06/03/2020 04:09	WG1486129
Total Xylenes	U		0.000918	0.00678	1	06/03/2020 04:09	WG1486129
(S) Toluene-d8	171	<u>J1</u>		<i>75.0-131</i>		06/03/2020 04:09	WG1486129
(S) 4-Bromofluorobenzene	88.2			67.0-138		06/03/2020 04:09	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 04:09	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	06/03/2020 21:49	WG1486068
C28-C40 Oil Range	0.623	<u>J</u>	0.286	4.17	1	06/03/2020 21:49	WG1486068
(S) o-Terphenyl	70.0			18.0-148		06/03/2020 21:49	WG1486068

Collected date/time: 05/20/20 15:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	84.6		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2600		109	236	10	06/03/2020 04:05	WG1486010

Ss

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0257	0.118	1	06/03/2020 16:06	WG1486589
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		06/03/2020 16:06	WG1486589

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

•		•					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000552	0.00118	1	06/03/2020 04:30	WG1486129
Toluene	U		0.00154	0.00591	1	06/03/2020 04:30	WG1486129
Ethylbenzene	U		0.000871	0.00296	1	06/03/2020 04:30	WG1486129
Total Xylenes	U		0.00104	0.00769	1	06/03/2020 04:30	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 04:30	WG1486129
(S) 4-Bromofluorobenzene	95.4			67.0-138		06/03/2020 04:30	WG1486129
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/03/2020 04:30	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.90	4.73	1	06/03/2020 22:02	WG1486068
C28-C40 Oil Range	U		0.324	4.73	1	06/03/2020 22:02	WG1486068
(S) o-Terphenyl	68.4			18.0-148		06/03/2020 22:02	WG1486068

ONE LAB. NAPage 193 of 306

Collected date/time: 05/20/20 15:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1670		47.4	103	5	06/03/2020 05:47	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0537	ВЈ	0.0224	0.103	1	06/03/2020 12:10	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 12:10	WG1486242

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 04:50	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 04:50	WG1486129
Ethylbenzene	U		0.000760	0.00258	1	06/03/2020 04:50	WG1486129
Total Xylenes	U		0.000908	0.00670	1	06/03/2020 04:50	WG1486129
(S) Toluene-d8	123			<i>75.0-131</i>		06/03/2020 04:50	WG1486129
(S) 4-Bromofluorobenzene	105			67.0-138		06/03/2020 04:50	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 04:50	WG1486129

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 22:15	WG1486068
C28-C40 Oil Range	0.781	J	0.283	4.13	1	06/03/2020 22:15	WG1486068
(S) o-Terphenyl	70.4			18.0-148		06/03/2020 22:15	WG1486068

Collected date/time: 05/20/20 16:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.1		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2420		97.8	213	10	06/03/2020 06:03	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0697	ВЈ	0.0231	0.106	1	06/03/2020 12:32	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 12:32	<u>WG1486242</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, , ,	<u>′</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00106	1	06/03/2020 05:10	WG1486129
Toluene	U		0.00138	0.00532	1	06/03/2020 05:10	WG1486129
Ethylbenzene	U		0.000784	0.00266	1	06/03/2020 05:10	WG1486129
Total Xylenes	U		0.000936	0.00691	1	06/03/2020 05:10	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 05:10	WG1486129
(S) 4-Bromofluorobenzene	98.4			67.0-138		06/03/2020 05:10	WG1486129
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 05:10	WG1486129

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.85	<u>J</u>	1.71	4.25	1	06/03/2020 22:28	WG1486068
C28-C40 Oil Range	2.35	<u>J</u>	0.291	4.25	1	06/03/2020 22:28	WG1486068
(S) o-Terphenyl	68.4			18.0-148		06/03/2020 22:28	WG1486068

Collected date/time: 05/20/20 16:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	95.8		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	400		9.60	20.9	1	06/03/2020 06:20	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0552	ВЈ	0.0227	0.104	1	06/03/2020 12:54	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		06/03/2020 12:54	<u>WG1486242</u>

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

		, , ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/03/2020 05:31	WG1486129
Toluene	U		0.00136	0.00522	1	06/03/2020 05:31	WG1486129
Ethylbenzene	U		0.000769	0.00261	1	06/03/2020 05:31	WG1486129
Total Xylenes	U		0.000919	0.00679	1	06/03/2020 05:31	WG1486129
(S) Toluene-d8	138	<u>J1</u>		75.0-131		06/03/2020 05:31	WG1486129
(S) 4-Bromofluorobenzene	87.4			67.0-138		06/03/2020 05:31	WG1486129
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 05:31	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.85	<u>J</u>	1.68	4.18	1	06/03/2020 22:41	WG1486068
C28-C40 Oil Range	5.37		0.286	4.18	1	06/03/2020 22:41	WG1486068
(S) o-Terphenyl	68.9			18.0-148		06/03/2020 22:41	WG1486068

ONE LAB. NA Page 196 of 306

Collected date/time: 05/21/20 10:00

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	94.4		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	93.0		9.75	21.2	1	06/03/2020 06:37	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	06/04/2020 09:57	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	94.4			77.0-120		06/04/2020 09:57	WG1486611

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	06/03/2020 05:51	WG1486129
Toluene	U		0.00138	0.00530	1	06/03/2020 05:51	WG1486129
Ethylbenzene	U		0.000781	0.00265	1	06/03/2020 05:51	WG1486129
Total Xylenes	U		0.000932	0.00689	1	06/03/2020 05:51	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 05:51	WG1486129
(S) 4-Bromofluorobenzene	99.2			67.0-138		06/03/2020 05:51	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 05:51	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.77		1.71	4.24	1	06/08/2020 02:30	WG1486508
C28-C40 Oil Range	19.3		0.290	4.24	1	06/08/2020 02:30	WG1486508
(S) o-Terphenyl	118			18.0-148		06/08/2020 02:30	WG1486508

ONE LAB. NAPage 197 of 306

Collected date/time: 05/21/20 10:05

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.9		1	06/04/2020 18:01	WG1486420

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	20.7		9.50	20.6	1	06/03/2020 06:54	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/04/2020 10:21	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		06/04/2020 10:21	WG1486611

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		, , ,	,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 06:11	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 06:11	WG1486129
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 06:11	WG1486129
Total Xylenes	U		0.000908	0.00671	1	06/03/2020 06:11	WG1486129
(S) Toluene-d8	122			75.0-131		06/03/2020 06:11	WG1486129
(S) 4-Bromofluorobenzene	123			67.0-138		06/03/2020 06:11	WG1486129
(S) 1,2-Dichloroethane-d4	108			70.0-130		06/03/2020 06:11	WG1486129

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.86		1.66	4.13	1	06/08/2020 22:24	WG1486508
C28-C40 Oil Range	10.4		0.283	4.13	1	06/08/2020 22:24	WG1486508
(S) o-Terphenyl	122			18.0-148		06/08/2020 22:24	WG1486508

ONE LAB. NAPage 198 of 306

Collected date/time: 05/21/20 10:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch
Analyte	%			date / time	
Total Solids	96.1		1	06/04/2020 17:36	<u>WG1486421</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	65.5		9.57	20.8	1	06/03/2020 07:11	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	06/04/2020 10:45	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		06/04/2020 10:45	<u>WG1486611</u>

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

9	1 \	, ,	·				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
enzene	U		0.000486	0.00104	1	06/03/2020 06:32	WG1486129
oluene	U		0.00135	0.00520	1	06/03/2020 06:32	WG1486129
thylbenzene	U		0.000767	0.00260	1	06/03/2020 06:32	WG1486129
otal Xylenes	U		0.000916	0.00676	1	06/03/2020 06:32	WG1486129
(S) Toluene-d8	117			75.0-131		06/03/2020 06:32	WG1486129
(S) 4-Bromofluorobenzene	69.8			67.0-138		06/03/2020 06:32	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 06:32	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.47	<u>J</u>	1.68	4.16	1	06/08/2020 00:31	WG1486508
C28-C40 Oil Range	2.47	<u>J</u>	0.285	4.16	1	06/08/2020 00:31	WG1486508
(S) o-Terphenyl	121			18.0-148		06/08/2020 00:31	WG1486508

ONE LAB. NAPagev199 of 306

Collected date/time: 05/21/20 10:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	98.6		1	06/04/2020 17:36	<u>WG1486421</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	27.8		9.33	20.3	1	06/03/2020 07:28	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0913	<u>J</u>	0.0220	0.101	1	06/04/2020 11:09	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	96.7			77.0-120		06/04/2020 11:09	WG1486611

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	06/03/2020 06:52	WG1486129
oluene	U		0.00132	0.00507	1	06/03/2020 06:52	WG1486129
Ethylbenzene	U		0.000747	0.00254	1	06/03/2020 06:52	WG1486129
otal Xylenes	U		0.000892	0.00659	1	06/03/2020 06:52	WG1486129
(S) Toluene-d8	115			<i>75.0-131</i>		06/03/2020 06:52	WG1486129
(S) 4-Bromofluorobenzene	61.5	<u>J2</u>		67.0-138		06/03/2020 06:52	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 06:52	WG1486129

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.6		1.63	4.06	1	06/08/2020 02:56	WG1486508
C28-C40 Oil Range	25.1		0.278	4.06	1	06/08/2020 02:56	WG1486508
(S) o-Terphenyl	139			18.0-148		06/08/2020 02:56	WG1486508

ONE LAB. NAPage 200 of 306

Collected date/time: 05/21/20 10:45

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.3		1	06/04/2020 17:36	WG1486421

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	19.8	<u>J</u>	9.45	20.5	1	06/03/2020 07:45	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/04/2020 11:33	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		06/04/2020 11:33	WG1486611

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

			<u> </u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/03/2020 09:37	WG1486258
Toluene	U		0.00134	0.00514	1	06/03/2020 09:37	WG1486258
Ethylbenzene	U		0.000757	0.00257	1	06/03/2020 09:37	WG1486258
Total Xylenes	U		0.000904	0.00668	1	06/03/2020 09:37	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 09:37	WG1486258
(S) 4-Bromofluorobenzene	89.1			67.0-138		06/03/2020 09:37	WG1486258
(S) 1,2-Dichloroethane-d4	105			70.0-130		06/03/2020 09:37	WG1486258

Sc

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.70		1.65	4.11	1	06/08/2020 02:43	WG1486508
C28-C40 Oil Range	21.1		0.281	4.11	1	06/08/2020 02:43	WG1486508
(S) o-Terphenyl	130			18.0-148		06/08/2020 02:43	WG1486508

Collected date/time: 05/21/20 10:50

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	97.3		1	06/04/2020 17:36	<u>WG1486421</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	273		9.46	20.6	1	06/03/2020 08:36	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/04/2020 11:57	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		06/04/2020 11:57	WG1486611

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/03/2020 09:56	WG1486258
Toluene	U		0.00134	0.00514	1	06/03/2020 09:56	WG1486258
Ethylbenzene	U		0.000758	0.00257	1	06/03/2020 09:56	WG1486258
Total Xylenes	U		0.000905	0.00668	1	06/03/2020 09:56	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 09:56	WG1486258
(S) 4-Bromofluorobenzene	87.5			67.0-138		06/03/2020 09:56	WG1486258
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		06/03/2020 09:56	WG1486258

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.07	<u>J</u>	1.66	4.11	1	06/08/2020 00:44	WG1486508
C28-C40 Oil Range	2.52	<u>J</u>	0.282	4.11	1	06/08/2020 00:44	WG1486508
(S) o-Terphenyl	98.1			18.0-148		06/08/2020 00:44	WG1486508

ONE LAB. NAPage 202 of 306

Collected date/time: 05/21/20 11:30

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.3		1	06/04/2020 17:36	<u>WG1486421</u>

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	20.2	<u>J</u>	9.56	20.8	1	06/03/2020 08:53	WG1486010

Cn

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0262	<u>J</u>	0.0225	0.104	1	06/04/2020 01:24	WG1486617
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		06/04/2020 01:24	WG1486617

СQс

Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	06/03/2020 10:15	WG1486258
Toluene	U		0.00135	0.00519	1	06/03/2020 10:15	WG1486258
Ethylbenzene	U		0.000766	0.00260	1	06/03/2020 10:15	WG1486258
Total Xylenes	U		0.000914	0.00675	1	06/03/2020 10:15	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 10:15	WG1486258
(S) 4-Bromofluorobenzene	88.2			67.0-138		06/03/2020 10:15	WG1486258
(S) 1,2-Dichloroethane-d4	98.9			70.0-130		06/03/2020 10:15	WG1486258

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	605		16.7	41.6	10	06/08/2020 03:36	WG1486508
C28-C40 Oil Range	977		2.85	41.6	10	06/08/2020 03:36	WG1486508
(S) o-Terphenyl	198	J1		18.0-148		06/08/2020 03:36	WG1486508

Sample Narrative:

L1223523-23 WG1486508: Surrogate failure due to matrix interference

ONE LAB. NAPage 203 of 306

Collected date/time: 05/21/20 11:35

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.8		1	06/04/2020 17:36	WG1486421

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.50	20.7	1	06/03/2020 09:10	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/04/2020 01:44	WG1486617
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		06/04/2020 01:44	WG1486617

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

	'	, ,					
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 10:13	WG1486294
Toluene	U		0.00134	0.00516	1	06/03/2020 10:13	WG1486294
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 10:13	WG1486294
Total Xylenes	U		0.000909	0.00671	1	06/03/2020 10:13	WG1486294
(S) Toluene-d8	99.6			75.0-131		06/03/2020 10:13	WG1486294
(S) 4-Bromofluorobenzene	94.9			67.0-138		06/03/2020 10:13	WG1486294
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		06/03/2020 10:13	WG1486294

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.6		1.66	4.13	1	06/08/2020 03:10	WG1486508
C28-C40 Oil Range	38.6		0.283	4.13	1	06/08/2020 03:10	WG1486508
(S) o-Terphenyl	130			18.0-148		06/08/2020 03:10	WG1486508

ONE LAB. NAPage 204 of 306

Collected date/time: 05/21/20 11:40

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	<u>Batch</u>
Analyte	%			date / time	
Total Solids	96.3		1	06/04/2020 17:36	WG1486421

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	<u>Batch</u>
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	U		9.55	20.8	1	06/03/2020 09:26	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0225	0.104	1	06/04/2020 02:05	WG1486617
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/04/2020 02:05	WG1486617

СQс

Gl

Cn

Volatile Organic Compounds (GC/MS) by Method 8260B

		, ,	<u>′</u>				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	06/03/2020 10:33	WG1486294
Toluene	U		0.00135	0.00519	1	06/03/2020 10:33	WG1486294
Ethylbenzene	U		0.000765	0.00260	1	06/03/2020 10:33	WG1486294
Total Xylenes	U		0.000914	0.00675	1	06/03/2020 10:33	WG1486294
(S) Toluene-d8	98.4			75.0-131		06/03/2020 10:33	WG1486294
(S) 4-Bromofluorobenzene	95.2			67.0-138		06/03/2020 10:33	WG1486294
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		06/03/2020 10:33	WG1486294

Semi-Volatile Organic Compounds (GC) by Method 8015

- Committee Comm		(,	, - ,				
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.09	J	1.67	4.15	1	06/08/2020 00:57	WG1486508
C10-C28 Diesel Range	U	<u>Q</u>	1.67	4.15	1	06/09/2020 13:28	WG1488541
C28-C40 Oil Range	5.18		0.284	4.15	1	06/08/2020 00:57	WG1486508
C28-C40 Oil Range	1.13	JQ	0.284	4.15	1	06/09/2020 13:28	WG1488541
(S) o-Terphenyl	115			18.0-148		06/08/2020 00:57	WG1486508
(S) o-Terphenyl	63.5			18.0-148		06/09/2020 13:28	WG1488541

Sample Narrative:

L1223523-25 WG1486508, WG1488541: Duplicate Analysis performed due to contamination. Results don't confirm; both analyses reported

33 of 58

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 205 of 306

L1223523-01,02,03,04

Method Blank (MB)

(MB) R3535378-1 06/04/20 14:19 MB Result MB RDL MB Qualifier MB MDL Analyte % % % Total Solids 0.000

Ss

L1223485-24 Original Sample (OS) • Duplicate (DUP)

(OS) L1223485-24 06/04/20 14:19 • (DUP) R3535378-3 06/04/20 14:19

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.9	85.4	1	0.523		10

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3535378-2 06/04/20 14:19

ONE LAB. NA Page 206 of 306

L1223523-05,06,07,08 Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3535553-1 06/04/20 18:21 MB Result MB MDL MB RDL MB Qualifier Analyte % % % Total Solids 0.00100

Ss

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3535553-3 06/04/20 18:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte		%		%		%
Total Solids		93.6	1	0.111		10

Laboratory Control Sample (LCS)

(LCS) R3535553-2 06/04/20 18:21

, ,	Spike Amount LCS Result	lt LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.0	100	85.0-115

ONE LAB. NA Page 207 of 306

Total Solids by Method 2540 G-2011 L1223523-09,10,11,12,13,14,15,16,17,18

10ta: 00ta 2, method 2010 0 201

Method Blank (MB)

 MB R3535512-1
 O6/O4/20 18:01

 MB Result
 MB Qualifier
 MB MDL
 MB RDL

 Analyte
 %
 %

 Total Solids
 0.00100

²Tc

³Ss

L1223523-10 Original Sample (OS) • Duplicate (DUP)

(OS) L1223523-10 06/04/20 18:01 • (DUP) R3535512-3 06/04/20 18:01

	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	%	%		%		%	
Total Solids	97.7	97.9	1	0.148		10	

⁴Cn

(LCS) R3535512-2 06/04/20 18:01

	Spike Amount LCS Result	LCS Rec.	Rec. Limits
Analyte	% %	%	%
Total Solids	50.0 50.1	100	85.0-115

ONE LAB. NA Page 208 of 306

L1223523-19,20,21,22,23,24,25 Total Solids by Method 2540 G-2011

Method Blank (MB)

(MB) R3535509-1	06/04/20 17:36			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

Ss

L1223523-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1223523-20 06/04/20 17:36 • (DUP) R3535509-3 06/04/20 17:36

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	98.6	98.7	1	0.118		10

Laboratory Control Sample (LCS)

(LCS) R3535509-2 06/04	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.7	99.4	85.0-115	

ONE LAB. NA Page 209 of 306

Wet Chemistry by Method 300.0

L1223523-01,02,03,04,05,06,07

Method Blank (MB)

(MB) R3534872-1 06/03/20 14:32									
	MB Result	MB Result MB Qualifier		MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	U		9.20	20.0					

Ss

(OS) L1223384-22 06/03/20 15:30 • (DUP) R3534872-3 06/03/20 15:39								
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	83.5	86.3	1	3.27		20		

(OS) L1223523-06_06/03/20 18:59 • (DLIP) R3534872-6_06/03/20 19:09

(00) 11220020 00 00,00,72	Original Result (dry)	′	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	124	119	1	3.69		20

Laboratory Control Sample (LCS)

(LCS) R3534872-2 06/03/2	20 14:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	187	93.7	90 0-110	

L1223384-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) I 1223384-25 06/03/20 16:08 • (MS) P3534872-4 06/03/20 16:37 • (MSD) P3534872-5 06/03/20 16:46

(03) 21223304 23 00/03/	, ,	Original Result (dry)		, ,		MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	544	27.1	548	559	95.6	97.8	1	80.0-120			2.13	20

20

ONE LAB. NA Page 210 of 306

Wet Chemistry by Method 300.0

L1223523-08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

Method Blank (MB)

Chloride

Analyte Chloride

(MB) R3534486-1 06/0	3/20 01:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1223523-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1223523-08 06/03/2	20 02:24 • (DU	P) R3534486-3	3 06/03/2	20 02:40		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%

5

2.47

1350

L1223768-02 Original Sample (OS) • Duplicate (DUP)

1320

(OS) L1223768-02 06/03/20 10:00 • (DUP) R3534486-6 06/03/20 10:17

(03) [1223708-02 00/03/	Original Result	,	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/kg	mg/kg		%		%	
Chloride	57.3	54.7	1	4.48		20	

(LCS) R3534486-2	06/03/20 01:47
	Spike Amoun

Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
mg/kg	mg/kg	%	%	
200	205	103	90.0-110	

L1223523-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-14 06/03/20 04:22 • (MS) R3534486-4 06/03/20 05:13 • (MSD) R3534486-5 06/03/20 05:30

(O3) L1223323-14 00/0	3) [1223323-14] 00/03/20 04.22 • (M3) R3334460-4 00/03/20 03.13 • (M3D) R3334460-3 00/03/20 03.30											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	516	1850	2410	2300	110	88.1	1	80.0-120	<u>E</u>	<u>E</u>	4.81	20

Reserved la 1981 9/5/2024 2:37:46 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 211 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223523-01,02,03

Method Blank (MB)

(MB) R3534484-2 06/02	/20 23:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3534484-1 06/02/20 22:36							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127			
(S) a,a,a-Trifluorotoluene(FID)			105	77.0-120			

ONE LAB. NA Page 212 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223523-08,09,10,11,12,14,15,16

Method Blank (MB)

(MB) R3534476-2 06/03/	20 08:03			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	0.0483	<u>J</u>	0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120

Laboratory Control Sample (LCS)

(LCS) R3534476-1 06/03/20 07:18								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
TPH (GC/FID) Low Fraction	5.50	5.59	102	72.0-127				
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120				

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(05)	. (MS	D353//76-3	06/03/20 17:31	MSD	D353//76-/	06/03/20 17:53
100	• (1713	/ NOOOH4/0-0	00/03/20 17.31	(17130	1 1 2 3 3 3 4 4 7 6 4	00/03/20 17.33

(US) • (IVIS) RSSS4476-3	OS) • (NIS) RSSS4476-3 00/05/20 17.51 • (NISD) RSSS4476-4 00/05/20 17.53											
	Spike Amount O	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	129		80.6	82.7	76.0	78.0	25	10.0-151			2.57	28
(S) a a a-Trifluorotoluene(FID)					105	105		77.0-120				

ONE LAB. NA Page 213 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223523-04,05,06,07

Method Blank (MB)

(MB) R3534732-2 06/03/20 15:13									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120					

Laboratory Control Sample (LCS)

(LCS) R3534732-1 06/03/20 14:25											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
TPH (GC/FID) Low Fraction	5.50	5.42	98.5	72.0-127							
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120							

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OC)	(MAC) DOFO 4700 0	00/04/20 00:00	 (MSD) R3534732-4 	00/04/20 00/24
1(1)51	 (IVIS) R3534737-3 	06/04/20 00:00	 (IVISID) R3534732-4 	06/04/20 00:24

	Spike Amount Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%	-
TPH (GC/FID) Low Fraction	2.58	1.78	1.84	82.8	85.6	1	10.0-151			3.31	28	
(S) a,a,a-Trifluorotoluene(FID)				107	107		77.0-120					

ONE LAB. NAPage 214 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223523-13

Method Blank (MB)

(MB) R3534704-3 06/03/	/20 12:24			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120

(LCS) R3534704-2 06/03					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.84	106	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			101	77.0-120	

ONE LAB. NA Page 215 of 306

Volatile Organic Compounds (GC) by Method 8015D/GRO

L1223523-17,18,19,20,21,22

Method Blank (MB)

(MB) R3534893-2 06/04/20 02:24									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120					

Laboratory Control Sample (LCS)

(LCS) R3534893-1 06/04/	(LCS) R3534893-1 06/04/20 01:36											
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier							
Analyte	mg/kg	mg/kg	%	%								
TPH (GC/FID) Low Fraction	5.50	4.24	77.1	72.0-127								
(S) a,a,a-Trifluorotoluene(FID)			107	77.0-120								

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

|--|

(US) • (IVIS) RSSS4695-3	(US) • (NIS) RSSS4693-3 · UG/U4/20 12.21 • (NISD) RSSS4693-4 · UG/U4/20 12.45											
	Spike Amount Ori	iginal Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	129		92.9	64.5	96.5	67.0	25	10.0-151		<u>J3</u>	36.1	28
(S) a.a.a-Trifluorotoluene(FID)					108	109		77.0-120				

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 216 of 306

L1223523-23,24,25

Method Blank (MB)

(MB) R3534993-2 06/04/20 00:42 MB MDL MB RDL MB Result MB Qualifier Analyte mg/kg mg/kg mg/kg U TPH (GC/FID) Low Fraction 0.0217 0.100 (S) a,a,a-Trifluorotoluene(FID) 108 77.0-120

²Tc

³Ss

[†]Cn

Laboratory Control Sample (LCS)

(LCS) R3534993-1 06/04/20 00:01					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127	
(S) a,a,a-Trifluorotoluene(FID)			99.9	77.0-120	

ONE LAB. NA Page 217 of 306

Volatile Organic Compounds (GC/MS) by Method 8260B

L1223523-01,02,03,04,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3534611-2 06/03/2	0 00:05				L
	MB Result	MB Qualifier	MB MDL	MB RDL	2.
Analyte	mg/kg		mg/kg	mg/kg	ļ
Benzene	U		0.000467	0.00100	느
Ethylbenzene	U		0.000737	0.00250	3
Toluene	U		0.00130	0.00500	Ľ
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	119			75.0-131	1
(S) 4-Bromofluorobenzene	81.1			67.0-138	느
(S) 1,2-Dichloroethane-d4	111			70.0-130	5
					Ľ

Laboratory Control Sample (LCS)

(LCS) R3534611-1 06/02/2	20 22:55				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.105	84.0	70.0-123	
Ethylbenzene	0.125	0.111	88.8	74.0-126	
Toluene	0.125	0.107	85.6	75.0-121	
Xylenes, Total	0.375	0.321	85.6	72.0-127	
(S) Toluene-d8			109	75.0-131	
(S) 4-Bromofluorobenzene			98.3	67.0-138	
(S) 1 2-Dichloroethane-d4			117	70 0-130	

L1223523-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-20 06/03	/20 06:52 • (MS	S) R3534611-3 (06/03/20 07:12	• (MSD) R353	4611-4 06/03/2	20 07:49						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.127	U	0.111	0.161	87.2	127	1	10.0-149		<u>J3</u>	37.3	37
Ethylbenzene	0.127	U	0.123	0.120	96.8	94.4	1	10.0-160			2.51	38
Toluene	0.127	U	0.166	0.0960	131	75.8	1	10.0-156		<u>J3</u>	53.6	38
Xylenes, Total	0.380	U	0.302	0.349	79.5	91.7	1	10.0-160			14.3	38
(S) Toluene-d8					161	91.8		75.0-131	<u>J1</u>			
(S) 4-Bromofluorobenzene					85.1	101		67.0-138				
(S) 1,2-Dichloroethane-d4					113	161		70.0-130		<u>J1</u>		

ONE LAB. NAPage 218 of 306

L1223523-21,22,23 Volatile Organic Compounds (GC/MS) by Method 8260B

109

70.0-130

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3534502-2 06/03/	/20 08:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Kylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	106			75.0-131	
(S) 4-Bromofluorobenzene	84.7			67.0-138	
(S) 1,2-Dichloroethane-d4	96.2			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3534502-1 06/03/2	20 07:50				r.
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	L
Benzene	0.125	0.109	87.2	70.0-123	
Ethylbenzene	0.125	0.101	80.8	74.0-126	
Toluene	0.125	0.102	81.6	75.0-121	
Xylenes, Total	0.375	0.283	75.5	72.0-127	
(S) Toluene-d8			98.6	75.0-131	
(S) 4-Bromofluorobenzene			93.7	67.0-138	

ONE LAB. NAPage 219 of 306

Volatile Organic Compounds (GC/MS) by Method 8260B

L1223523-24,25

Method Blank (MB)

(MB) R3534949-1 06/03/2	20 08:40			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	101			75.0-131
(S) 4-Bromofluorobenzene	94.7			67.0-138
(S) 1,2-Dichloroethane-d4	92.0			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3534949-2 06/03	/20 08:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.113	90.4	70.0-123	
Ethylbenzene	0.125	0.122	97.6	74.0-126	
Toluene	0.125	0.106	84.8	75.0-121	
Xylenes, Total	0.375	0.354	94.4	72.0-127	
(S) Toluene-d8			94.3	75.0-131	
(S) 4-Bromofluorobenzene			96.8	67.0-138	
(S) 1,2-Dichloroethane-d4			102	70.0-130	

L1223420-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223420-05 06/03/	/20 15:55 • (MS) R3534949-3	06/03/20 16:34	4 • (MSD) R353	4949-4 06/03	/20 16:53						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.0933	0.111	70.9	84.0	1	10.0-149			16.9	37
Ethylbenzene	0.132	U	0.0995	0.123	75.6	93.6	1	10.0-160			21.3	38
Toluene	0.132	U	0.0957	0.112	72.7	84.8	1	10.0-156			15.3	38
Xylenes, Total	0.395	U	0.262	0.315	66.4	79.7	1	10.0-160			18.2	38
(S) Toluene-d8					97.8	98.1		75.0-131				
(S) 4-Bromofluorobenzene					92.4	92.3		67.0-138				
(S) 1,2-Dichloroethane-d4					81.6	76.7		70.0-130				

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NAPage 220 of 306

L1223523-05

Method Blank (MB)

(MB) R3534692-2 06/03/	20 09:01			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000467	0.00100
Ethylbenzene	U		0.000737	0.00250
Toluene	U		0.00130	0.00500
Xylenes, Total	U		0.000880	0.00650
(S) Toluene-d8	107			75.0-131
(S) 4-Bromofluorobenzene	73.0			67.0-138
(S) 1,2-Dichloroethane-d4	80.3			70.0-130

Laboratory Control Sample (LCS)

(LCS) R3534692-1 06/03/20 07:45

(LC3) K3334032-1 00/03	5/20 07.43				F	7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier /	(
Analyte	mg/kg	mg/kg	%	%	L	_
Benzene	0.125	0.111	88.8	70.0-123		3
Ethylbenzene	0.125	0.111	88.8	74.0-126		
Toluene	0.125	0.105	84.0	75.0-121		_ a
Xylenes, Total	0.375	0.286	76.3	72.0-127		′
(S) Toluene-d8			93.1	75.0-131		-
(S) 4-Bromofluorobenzene			108	67.0-138		
(S) 1,2-Dichloroethane-d4			94.0	70.0-130		

Reserved 18 8 CH5 \$ 5/2024 2:37:46 PM

QUALITY CONTROL SUMMARY

ONE LAB. NA Page 221 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1223523-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Method Blank (MB)

(MB) R3534745-1 06/03	3/20 16:17			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	65.9			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3534745-2 06/03	3/20 16:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.6	79.2	50.0-150	
(S) o-Terphenyl			90.8	18.0-148	

L1223523-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-01 06/03/20 23:47 • (MS) R3534745-3 06/04/20 00:00 • (MSD) R3534745-4 06/04/20 00:13

, ,	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	l
C10-C28 Diesel Range	53.4	25.4	70.9	65.8	85.2	75.6	1	50.0-150			7.50	20	
(S) o-Terphenyl					67.6	77.2		18.0-148					

ONE LAB. NA Page 222 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

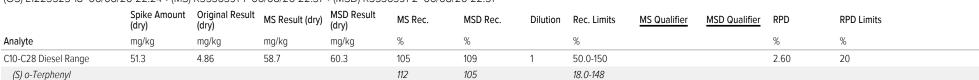
L1223523-17,18,19,20,21,22,23,24,25

Method Blank (MB)

(MB) R3535684-1 06/05	5/20 13:06			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	94.4			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3535684-2 06/	05/20 13:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	42.6	85.2	50.0-150	
(S) o-Terphenyl			76.9	18.0-148	



L1223523-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-18 06/08/20 22:24 • (MS) R3536391-1 06/08/20 22:37 • (MSD) R3536391-2 06/08/20 22:51

ONE LAB. NA Page 223 of 306

Semi-Volatile Organic Compounds (GC) by Method 8015

L1223523-25

Method Blank (MB)

(MB) R3536639-1 06/09	9/20 11:39			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	65.5			18.0-148

Laboratory Control Sample (LCS)

(LCS) R3536639-2 06/09/20 11:52							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	36.8	73.6	50.0-150			
(S) o-Terphenyl			61.1	18.0-148			

L1224474-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1224474-07 06/09/20 19:00 • (MS) R3536639-3 06/09/20 19:14 • (MSD) R3536639-4 06/09/20 19:27

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.7	U	35.1	39.8	63.0	71.0	1	50.0-150			12.6	20
(S) o-Terphenyl					46.1	58.7		18.0-148				

ConocoPhillips - Tetra Tech

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qual	lifier	Description

В	The same analyte is found in the associated blank.
Е	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660
Alaska	17-026
Arizona	AZ0612
Arkansas	88-0469
California	2932
Colorado	TN00003
Connecticut	PH-0197
Florida	E87487
Georgia	NELAP
Georgia ¹	923
Idaho	TN00003
Illinois	200008
Indiana	C-TN-01
lowa	364
Kansas	E-10277
Kentucky ^{1 6}	90010
Kentucky ²	16
Louisiana	Al30792
Louisiana 1	LA180010
Maine	TN0002
Maryland	324
Massachusetts	M-TN003
Michigan	9958
Minnesota	047-999-395
Mississippi	TN00003
Missouri	340
Montana	CERT0086

Nebraska	NE-OS-15-05
Nevada	TN-03-2002-34
New Hampshire	2975
New Jersey-NELAP	TN002
New Mexico ¹	n/a
New York	11742
North Carolina	Env375
North Carolina ¹	DW21704
North Carolina ³	41
North Dakota	R-140
Ohio-VAP	CL0069
Oklahoma	9915
Oregon	TN200002
Pennsylvania	68-02979
Rhode Island	LAO00356
South Carolina	84004
South Dakota	n/a
Tennessee 1 4	2006
Texas	T104704245-18-15
Texas ⁵	LAB0152
Utah	TN00003
Vermont	VT2006
Virginia	460132
Washington	C847
West Virginia	233
Wisconsin	9980939910
Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	
A2LA - ISO 17025 5	1461.02	
Canada	1461.01	
EPA-Crypto	TN00003	

AIHA-LAP,LLC EMLAP	100789
DOD	1461.01
USDA	P330-15-00234

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

L1223523

Page 226 of 306
Page: 1 of 3

TE	Tetra Tech, Inc.			1567		Midlar Tel (nd, T 432)	exas 7 682-4	79701 1559			n a			\$100 G	10)84								
Client Name:	Conoco Phillips	Site Manage	r:	Chri	istian	Ĺlull		ig fi	程。 10 10	409			A7 4										A CONTRACTOR OF THE PARTY OF TH		
Project Name:	EVGSAU 3366-029	Contact Info							tech.	com			11	(0	irc	le	or S	Spe	cif	y M 	eth	od	No.) 	115
Project Location: (county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0157	6				A Second	1			10-4						r a				
Invoice to:	ject Location: unty, state) Lea County, New Mexico Pro Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 79701 eiving Laboratory: Pace Analytical San mments: COPTETRA Acctnum				T																		st)		
Invoice to:			iched li																						
Sampler Signature: Sampler				y (see attached list)																					
Control Name: Concord Phillips Site Manager: Christal: C	te IL	lance																							
LAB#	SAMPLE IDENTIFICATION	YEAR: 2020								NINE				- 1	A A	tilles	i Vola	2 2 1000	1 = 1	-	stos)	0.00	Sulfa ater C	on Bal	
- A		DATE	TIME	NATER	SOIL	1 CL	LNO3	NONE		CONT	TILTERE	STEX 802		AH 8270	CLP Met	CLP Vola		SC/MS Vo	C/MS Se	CB's 808	LM (Asbe		Chloride Sulfate TDS General Water Chemistry	nion/Cation Balance	TPH 8015R
413	BH-20-1 (0'-1') (05/20/20	1400				200		1	1		Х		1	1 2		- 1	1 0	0	A 2	- 0	X	3 0	A F	-0
	BH-20-1 (2'-3')	05/20/20	1405		Х	\Box	7		id.	1	N	x	Х			2.0						х	15		C
g*1 =	BH-20-1 (4'-5')	05/20/20	1410	100	X		>	(\top	1	N	х	X				7					Х			0
	BH-20-1 (6'-7')	05/20/20	1415		X	p.)	(2	1	N	х	X			100	1		100			X			-0
	BH-20-1 (9'-10')	05/20/20	1420		Х)	(1	N	х	X								1	х		H	-0
	BH-20-1 (14'-15')	05/20/20	1430	П	X	lise I	,	(1	N	X	X		100					inid -		X	dr.	\Box	-00
	BH-20-2 (0'-1')	05/20/20	1450		X)	ζ .	4	1	N	х	X			i.						X			-0
	BH-20-2 (2'-3')	05/20/20	1500	11	Х)	(1	N	X	X			5.7						X			-€
	BH-20-2 (4'-5')	05/20/20	1505	П	Х)	(1	N	Х	X				\vdash					х			+6
	BH-20-2 (6'-7')	05/20/20	1510	H	X		>	(1	Ν	х	X									х			+1
	D- Asuras 52020 12:30	Lale	El		/5	-28	21	-1	23	30		L				RE			lard					2	
Religiquished by:	-1/1000	Received by:			5	_333				·u')				ture		_						48 hr.	72 hr.	
Relinquished by:	Date: Time:	Received by:	la	1				Tim	ne:			l	.0				900						Repo	rt	

(1277523

Page 227 of 306
Page: 2 of 3

TE	Tetra Tech, Inc.				901	Midla Tel	nd, T (432)	Street, exas 79 682-45 682-39	9701 559	100														i e	
Client Name:	Conoco Phillips	Site Manage	er:	Chri	stian	Llull		-				1												7.5	
Project Name:	EVGSAU 3366-029	Contact Info):			ristiar 512) 3		etetrate	ech.c	om		H	Ť	(Ci	rcle	01	r Sp	ec	ify 	Me	the	od I	۱٥.)	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:		1674	1 3 7	0-0157	Capit .							4							0.00				
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1				020					1						Or Specify Meth LCFb Semi Volatiles TCFb Semi Volatiles BUSH: Semi Vol. 8270C/625 CC/WS Vol. 8260B / 624 CC/WS Semi Vol. 8270C/625 CC/WS Semi Vol. 8270C/625 EMARKS: X Standard RUSH: Same Day 24 Rush Charges Authorize Special Report Limits or			list)					
Receiving Laborator		Sampler Sig	nature:	100	loe T	yler	Jacob Control				1		MRO)	Se Hg	Se Hg	**************************************				attached lis		110			
Comments: COPT	ETRA Acctnum					4				- 1	8260B	5)	DRO - ORO - MRO)	Cd Cr Pb Se	Cr Pb	TCLP Metals Ag As Ba Cd Cr Pb TCLP Volatiles TCLP Semi Volatiles TCLP Semi Volatiles GC/MS Vol. 8260B / 624 GC/MS Semi. Vol. 8270C/625 PCB's 8082 / 608 NORM NORM	s	ees)							
		SAME	LING	MA	TRIX	PR	ESEF	RVATIV		(N/X)				As Ba	As Ba	atiles		0 6	82		PHY AND	tte TDS	E	lance	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	НСГ	HNO3	NONE	CONTAINERS			TX1005	PAH 8070C	Metals Ag	CLP Metals Ag	CLP Semi Vola			Semi. 8082 /		M (Asbestos)	Chloride 300.0 Chloride Sulfate	Water	Anion/Cation Balar TPH 8015R	НОГР
	BH-20-2 (9'-10') +	05/20/20	1520	_	X	1	7 3		1		-	F	<u>Λ</u>	E	FF	F	Œ.	0 0	5 0	Ž		Σ Ū	Ō.	Z F	Ĭ
	BH-20-2 (14'-15')	05/20/20	1530		x		,		1	I N	4 3	H	x			1		1	+			X	\Box		
	BH-20-2 (19'-20') 1	05/20/20	1540		x)	1	1	N	-		X					+				X	+		
	BH-20-2 (24'-25')	05/20/20	1550		x)		1	N	×		x				11	+	+			x	+		1
	BH-20-2 (29'-30') *	05/20/20	1610	1	x	\Box	,		1	N	X	100	x		-	- 0			商亡	+	-	X			t
	BH-20-2 (39'-40') I	05/20/20	1630	4	x	\forall	,		1	N	×		X						+		-	X	+		7
	BH-20-3 (0'-1')	05/21/20	1000	T	x	\Box	>		1	N	x		X		+	+				-	-	x	+	+	-
	BH-20-3 (2'-3') v	05/21/20	1005		x	1	>		1	N	X		X			17.0	11					X	1	+	i
	BH-20-3 (4'-5') 1	05/21/20	1010		x		×		1	N	x		X	H	-15		11					x		late:	+
	BH-20-4 (0'-1')	05/21/20	1040		x		×		1	N	x		X	H	1	+	\forall	+	+		25	x		+	+7
Relinquished by: Relinquished by:	Date: Time: 5-28-20 (2:35) Date: Time:	Received by:	RC	Ĺ)	Da S2 Da	8-20	Time	2:0	3	San	0	B U			X	Sta	ndar		Day	24 h	r. 48	3 hr. 7	72 hr.	-U
Refinquished by:	Date: Time:	Received by:	h		3	Da 5/2	19/2	Time	250	00		1.										RP F	Report		
		ORIGINA	L COPY	26	10	20	24	99/	30		(Cir	cle)	HANE	DEL	IVER	ED	FEDE	EX	UPS	Tr	acking	j#:	4		

Analysis Request of Chain of Custody Record

L1223523

Page 228 of 306
Page: 3 of 3

32) 682-4559 32) 682-3946			計		4(3)					***						
		UFO									EST		la V			
ull@tetratech.com -1667		1	((irc	le d	or s	pe	ecii	y 10	/let	tho	a N	0.)			
															Legs.	1
		-											list)			1
1.46		ORO - MRO		Cr Pb Se Hg									attached			
	8260B	E .		Cd Cr Pb	in the		4	C/625				TDS	y (see at	4		
ERVATIVE SETHOD SE SE	BTEX 8	(Ext to C35) GRO - DRO		As Ba		atiles	ACA / ROACR	Vol. 8270	808			ate	Chemistr	alance	-	
ONE CONTAIN	X 8021B	PH TX1005 (otal Metals Ag	CLP Volatiles	CLP Semi Volatiles	ACI	-	8082/		PLM (Asbestos Chloride 300.0	Chloride Sulfate	seneral Water	Anion/Cation Balance TPH 8015R		ногр
2 Z # L X 1 N	X	X	۵		-	- 1	I O	0	<u>a</u>	2 (X		0 .	1		7
X 1 N	x	X	\Box	1					П	\Box	×				-	22
X 1 N	X	X	1								×					3
X 1 N	Х	X	137					T		48	×			w 2 - 7	1	-20
X 1 N	X	X	i.	A E							×	(H	-43
		1				218	ð			H	\mp			+	-	
							9			THE P		3 19				1
			34									1				
23 12:35 Time:	-	ON ple Te	ILY mpera	ature	RE	x	Stan RUSI Rush	ndard H: Sa	ame [Author	orized					
2	23 12:35 E: Time:	23 12:35 Sam 25 16:00 Si Time:	25 12:35 ON Sample Te Samp	LAB US ONLY Sample Tempera Time: Time: Time: Abo 0900	LAB USE ONLY Sample Temperature Time: Time: Abo 0900	LABUSE ONLY Sample Temperature Time: Time: Abo O900	LAB USE ONLY X ONLY Sample Temperature Time: Also 0900	LAB USE ONLY Sample Temperature Rush Time: Time: Sample Temperature Rush Spec	AB USE ONLY Sample Temperature RUSH: Sample Temperature Rush Chart Special Re	LAB USE ONLY Standard I Rush: Same I Rush Charges A Special Report I	Time: Sample Temperature RUSH: Same Day Rush Charges Autho Special Report Limits	X Standard X	X Standard X	AB USE ONLY Sample Temperature RUSH: Same Day 24 hr. 48 hr. 7 Rush Charges Authorized Time: Special Report Limits or TRRP Report	X Standard X	X Standard X

Pace Analytical National Center for Testing & Inno	vation	
Cooler Receipt Form		
Client: COPTETRA	L12235	23
Cooler Received/Opened On: 5 /29/ 20 Temperature:	10	
Received By: Paul Minnich		
Signature: Sent funch		
and the state of t		
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		
Bottles arrive intact?	V	
Correct bottles used?		2 2 2
Sufficient volume sent?		Althorn Miles
If Applicable	BEAUTIFUL STREET	
VOA Zero headspace?	· · · · · · · · · · · · · · · · · · ·	機能をお表します
Preservation Correct / Checked?		

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 5 – MAVERICK REMEDIATION LABORATORY DATA

January 09, 2024

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/05/24 9:36.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE $100\,$

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Applyand By 14

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 1 (4.0') (H240044-01)

DTEV 0021D

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	176	87.9	200	8.79	
DRO >C10-C28*	16.7	10.0	01/08/2024	ND	180	89.9	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	114 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 2 (4.0') (H240044-02)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	176	87.9	200	8.79	
DRO >C10-C28*	11.8	10.0	01/05/2024	ND	180	89.9	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	130 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	145	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 3 (4.0') (H240044-03)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	QM-07
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	124	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	144	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 4 (4.0') (H240044-04)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	736	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	116	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: **EVGSAU 3366-029 FLOWLINE RELEASE** Sampling Condition: Cool & Intact Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 5 (4.0') (H240044-05)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2320	16.0	01/05/2024	ND	416	104	400	3.77	QM-07
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	114 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	130 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: **EVGSAU 3366-029 FLOWLINE RELEASE** Sampling Condition: Cool & Intact Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 6 (4.0') (H240044-06)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1790	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	15.3	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH
CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 7 (4.0') (H240044-07)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.4	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3480	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	114	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	132	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: FS - 8 (4.0') (H240044-08)

BTEX 8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1940	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	120 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	140 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: FS - 9 (4.0') (H240044-09)

BTEX 8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4520	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	111 9	26 48.2-13	4						
Surrogate: 1-Chlorooctadecane	128 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 10 (4.0') (H240044-10)

BTEX 8021B

Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
< 0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
<0.300	0.300	01/05/2024	ND					
96.7	% 71.5-13	4						
mg/	/kg	Analyze	d By: AC					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
3520	16.0	01/05/2024	ND	416	104	400	3.77	
mg/kg		Analyzed By: MS						
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
<10.0	10.0	01/05/2024	ND					
120 9	% 48.2-13	4						
138 9	% 49.1-14	8						
	<0.050 <0.050 <0.050 <0.150 <0.300 96.7 mg/ Result 3520 mg/ Result <10.0 <10.0 120.9	<0.050 <0.050 <0.050 <0.050 <0.050 <0.150 <0.300 0.300 96.7 % 71.5-13 mg/kg Result Reporting Limit 3520 16.0 mg/kg Result Reporting Limit <10.0 10.0 <10.0 10.0 <10.0 48.2-13	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 11 (4.0') (H240044-11)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050 0.050		01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150 0.150		01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2560 16.0		01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/08/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	123	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	138	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 12 (4.0') (H240044-12)

BTEX 8021B

	<u> </u>			• •					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2400	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	128	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	147	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 13 (4.0') (H240044-13)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2280	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	119	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	137	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 14 (4.0') (H240044-14)

BTEX 8021B

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050 0.050		01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050 0.050		01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2360	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	121	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	140	% 49.1-14	18						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 1 (H240044-15)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050 0.050		01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150 0.150		01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352 16.0		01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/08/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	124	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	137	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/05/2024 Sampling Date: 01/04/2024

Reported: 01/09/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Dionica Hinojos

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 2 (H240044-16)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150 0.150		01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/kg		Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	112	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	127	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

ecovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

	by d by:	D. Fall by:	3/2024	2:37:4 d by	O P.W		16SW-2	5 SW-1	W FS-14 (4.0")	(3 FS-13 (4.0')	// FS-12 (4.0')	FS-11 (4.0')	Y SEE	#	hhoohet	9	Laboratory:		state)	ame:	Pa	ge 250 of .
	Date: Time:	Date: Time:	5.2	Date: Time:					0')	0')	0')	0')		SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	EVGSAU 3366-29 Flowline Release	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:	Received by:					1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	DATE	YEAR: 2023	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
	7					IV.	×	×	×	×	×	×	WATER SOIL		MATRIX		Jorge		2120	281-755-8965 chuck.terhune@tetratech	Chuck	901 M
	16/7c/ Date: Time:	Date: Time:					×	×	×	×	×	_	HCL HNO ₃ ICE		PRESERVATIVE METHOD		e Fernadez		212C-MD-03313	5-8965 etratech.com	Chuck Terhune	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
	1.56	277										\dashv	# CONTAI									
	W	Sample 1	OF										BTEX 8021 TPH TX100	05 (E	Ext to C					= 1		
J ghilt	3.300	Sample Temperature	LAB USE ONLY							×	×	-	TPH 8015N PAH 82700 Total Metals	C s Ag	As Ba	Cd Cr Pt	Se Hg			(Circ		
			REMARKS:										TCLP Metal TCLP Volati TCLP Semi	les		Cd Cr P	b Se H	9		_ or		
Special F	Rush Ch	X RUSH:	RKS:										RCI GC/MS Vol. GC/MS Sem							Specif		
eport Lim	Rush Charges Authorized	Same Da	Standa									F	PCB's 8082 NORM	2/60	08	0.020			20 C	y Met	REQUEST	
ilts or T	horized	y 24 hr	MARKS: Standard TAT			>	< ;	× ;	× !	× ;	× ;	× (Sulf	fate -	TDS				Method No.		
짂		A	Y	_	-		-	-	+	+	+		Seneral Wa mion/Catio			stry (see	attach	ed list))	_ 0		

January 15, 2024

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/11/24 11:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

 $901~\mbox{WEST}$ WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/11/2024 Sampling Date: 01/10/2024

Reported: 01/15/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 19 (4.0') (H240122-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050 0.050		01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150 0.150		01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	20.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.7	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/11/2024 Sampling Date: 01/10/2024

Reported: 01/15/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: SW - 7 (H240122-02)

BTEX 8021B

	9/	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050	0.050	01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150	0.150	01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	<10.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	93.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/11/2024 Sampling Date: 01/10/2024

Reported: 01/15/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: SW - 8 (H240122-03)

BTEX 8021B

	9,	9	7	7: :					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050	0.050	01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150	0.150	01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	<10.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	86.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

January 16, 2024

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/15/24 11:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keine

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 15 (4.0') (H240158-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	896	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	90.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: FS - 16 (4.0') (H240158-02)

BTEX 8021B

DILX GOZID	ıııg,	ng .	Allulyzo	u by. 511					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	864	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	89.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

Sample ID: FS - 17 (4.0') (H240158-03)

RTFY 8021R

B1EX 8021B	mg,	кg	Апануге	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2720	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	22.4	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	89.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: FS - 18 (4.0') (H240158-04)

BTEX 8021B

	<u> </u>			. ,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1880	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	93.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 3 (H240158-05)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	87.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: SW - 4 (H240158-06)

BTEX 8021B

	<u> </u>			. ,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	688	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	81.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 5 (H240158-07)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/16/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/16/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/16/2024	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 6 (H240158-08)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	13.6	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	78.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/15/2024 Sampling Date: 01/12/2024

Reported: 01/16/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Analyzed By: JH

Project Location: MAVERICK - LEA CO NM

mg/kg

Sample ID: SW - 9 (H240158-09)

BTEX 8021B

	9/	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	82.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

	by OCD: 4/5/2 Relinquished by OCD Relinquished by		Relinquished by				1						(LABUSE ONLY	HABAL HAB	dodne		Comments:	Receiving Laboratory:	invoice to:	Project Location: (county, state)	Project Name:	Client Name:	Tage 2
	d by:		d by	9 SW-9	8-WS 8	7 SW-5	SW-4	SW-3	4 FS-18 (4.0")	3 FS-17 (4.0')	FS-16 (4.0')	FS-15 (4.0')	_	ä	4					on:		_	
	Date: Time:	- 14	Date: Time: 18						7)	3)	3)		SAMPLE IDENTIFICATION			כמו כווומו במציי	Cardinal Labe	Attn: Chuck Terhune	Lea County, NM	EVGSAU 3366-29 Flowline Release	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:	24 Class Dec	47 //	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	DATE	YEAR: 2023	SAMPLING			Sampler Signature:		Project #:		Site Manager:	
2	Maka N	La		×	×	×	×	×	×	×	×	×	WAT		MAIKIX			Jorge		2120	chuck.terhune@tetratech.c	Chuck Terhune	901 W Midil Tel Fax
		Date: Time:		×	×	×	×	×	×	×	×	×	HCL HNC ICE	3	METHOD	٦.		e Fernadez		212C-MD-03313	tratech.com	erhune -8965	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 882-4569 Fax (432) 882-3846
	21-18-20		1850	+	+	+	+	+	+	+	+	+	+	NTAIN	_	\dashv							
(Cir	0	2		>	×	×	×	×	7	< >	< >	< >		TX100	_	TEX 8		3			_		
(Circle) HA	世の	ONLY	LAB USE	>	< >	< >	< >	×	()	< >	< >	× >	TPH	8015N	И (GF	O - DR	0-0	ORO -	MRO)			6	
HAND DELIVERED	140	ONLY	USE		1	+	\pm	+	#	#	\pm	1	Tota	Metals	s Ag A	s Ba C As Ba (d Cr	Pb Se	Hg			ircle	
FIVEX			R	-	+	+	+	+	\pm	\pm			TCL	P Volat	iles		od Ci	FD O	rig			OF ANA	
- 1		X RUSH:	REMARKS:	H	\mp	\mp	+	+	+	+	+	+	RCI	P Semi								or Speci	
5	Rush C	HSH	Ś	H	#	7	7	7	7	7	7	\dashv				0B / 62 I. 8270		25					
9	Repo	Sam	Sta		\Rightarrow	\Rightarrow	#	#	\Rightarrow	1		7	PCE	3's 808	2/60	8						fy Metho	
- 1	s Auth	Same Day	Standard		\pm			+					PLN	(Asbe	estos)							thod	3
6	Rush Charges Authorized Special Report Limits or T	24 hr	rd TAT	H	×	×	×	×	×	×	×	×	Chl	oride oride	Sulf		rds			10.2		No	
	Rush Charges Authorized Special Report Limits or TRRP Report		7	H		-	-	-								Chemi alance	stry	(see a	ttache	d list)		-	
- 1	Report	48 hr 72 hr		H	7	7	\exists	-	-														
		N		$\overline{}$	_	_																	ge 12 of

January 19, 2024

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/18/24 13:04.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE

 $901~\mbox{WEST}$ WALL STREET , STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/18/2024 Sampling Date: 01/18/2024

Reported: 01/19/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyand By 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 4 (H240215-01)

DTEV 0021D

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.14	107	2.00	11.0	
Toluene*	<0.050	0.050	01/18/2024	ND	2.16	108	2.00	6.37	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.22	111	2.00	8.56	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	6.60	110	6.00	8.99	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	oloride, SM4500Cl-B mg/kg			Analyzed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	01/18/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/18/2024	ND	190	95.0	200	2.91	
DRO >C10-C28*	<10.0	10.0	01/18/2024	ND	179	89.5	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	01/18/2024	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

TETRA TECH CHUCK TERHUNE

901 WEST WALL STREET, STE 100

MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 01/18/2024 Sampling Date: 01/18/2024

Reported: 01/19/2024 Sampling Type: Soil

Project Name: EVGSAU 3366-029 FLOWLINE RELEASE Sampling Condition: Cool & Intact
Project Number: 212C - MD - 03313 Sample Received By: Tamara Oldaker

Applyzod By: 14

Project Location: MAVERICK - LEA CO NM

ma/ka

Sample ID: SW - 6 (H240215-02)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.14	107	2.00	11.0	
Toluene*	<0.050	0.050	01/18/2024	ND	2.16	108	2.00	6.37	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.22	111	2.00	8.56	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	6.60	110	6.00	8.99	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/19/2024	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/18/2024	ND	190	95.0	200	2.91	
DRO >C10-C28*	<10.0	10.0	01/18/2024	ND	179	89.5	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	01/18/2024	ND					
Surrogate: 1-Chlorooctane	109	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

QM-07 The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS

recovery.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Receivea	l by OCD: 4/	582024	2:37:4 by:	6 PM				2 SW-6	/ SW-4		# 00000	Judans	8	J Laboratory:	itate)	ocation:	Pane:	273 of 3
	Date: Time:	-29	Date: Time: / 7/) 4							SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	EVGSAU 3366-29 Flowline Release	wavelick Natural Resources	Tetra Tech, Inc.
OBIGINALCOBY	Received by: Received by:	Burok					1/18/2024	1/18/2024	T	DATE ZUZZ	SAMPLING		Sampler Signature:		rioject#:			Site Manager
	Date: Time:	Charle 1-18.					×		H	NATER SOIL HCL HNO ₃	MATRIX PRESERVATIVE	1	Jorge Fernadez		212C-MD-03313	281-755-8965 chuck.terhune@tetratech.com	Chuck Terhune	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
(Circle) HAND DELIVERED FEDEX UPS Tracking#	Sample Temperature 3, 82 Rush Charges Authorized	SZY ONLY REMARKS: Standard TAT					×	× × × × × × × × × × × × × × × × × × ×	FIII BTTP PA Tot TC TC TC TC GC GC PCE NOI PLM Chic	MS Vol. 82 MS Semi. V B's 8082 / 6 RM (Asbestos) oride	(Ext to GRO - GR	DRO - (c) a Cd Cr Ba Cd Cr 624 TDS	ORO - MR Pb Se Hg Pb Se Hg			(Circle or Specify Method No	ANALYSIS REQUEST	
11 1	48 hr 72	4/22/2	024 10	0:33:37	AM			A	Anic	on/Cation B	alanc	e (Se	e attache	d list)				5 of 5

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 6 – ARMS REVIEW LETTER

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505.254.1115 Fax 505.254.1116 www.swca.com

October 4, 2023

TO: Ethan Ortega, Division Director & Archaeologist, New Mexico State Land Office, Santa Fe, New

Mexico

FROM: SWCA Environmental Consultants

SUBJECT: Completion of an Archaeological Records Management Section (ARMS) Review for the EVGSAU 3366-

029 Flowline Inadvertent Release Project on New Mexico State Land Office (NMSLO) lands in Lea County,

NM

Company Ref No: None-Provided

PROJECT DESCRIPTION:

Tetra Tech, Inc. has requested that SWCA Environmental Consultants (SWCA) conduct an Archaeological Resources Management Section (ARMS) review for an inadvertent release in Lea County, New Mexico. The proposed project is located on lands managed by the New Mexico State Land Office (NMSLO) approximately 20.1 kilometers (12.5 miles) southwest of Lovington, NM in T17S R35E, Section 33.

A literature and file search were conducted on September 22, 2023, using the New Mexico Cultural Resources Information System online database which included a review of known cultural resources, such as the built environment, archaeological sites, and State/National Register listed properties. Other sources reviewed include the BLM GLO Records web site, http://www.glorecords.blm.gov, which include land patent and general land office survey data. As this area was not settled by Spain, land grant records were not reviewed. The review was conducted for the Area of Potential Effects (APE) and 1 km surrounding the APE. The land the proposed project is located on is part of the June 21, 1898: New Mexico Territorial Grant (30 Stat. 484) patented on May 26, 1909.

Recommendation:

The project area and surrounding 1 km have been subject to four (4) cultural resource surveys, two (2) of which are qualifying. One previously recorded site (LA 179703) is located outside of the project area but within the 1k search buffer. The project area is entirely located on NMSLO-managed lands and is completely covered by one (1) qualifying survey conducted within the last ten years (NMCRIS 131135). All remediation work will remain within the previously qualifying survey area. SWCA recommends the completion of an ARMS letter to satisfy the requirements for release remediation. If cultural materials are identified during ground disturbing activities, work must stop and the NMSLO must be contacted.

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese

Attached: (1) Review Results, (1) ARMS Map

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505:254.1115 Fax 505:254.1116 www.swca.com

Archaeological Resources Management Section (ARMS) Review Results

Table 1. Cultural surveys within 1 km (0.62 miles) of the proposed project area.

NMCRIS No.	Performing Organization	Date of Investigation	Acres Surveyed	Sites Visited
23638	Agency for Conservation Archaeology Eastern New Mexico University	8/9/1988	222.82	4
78253	San Juan County Museum Association Division of Conservation Archaeology	6/5/2001	0.83	0
131135	Lone Mountain Archaeological Services	7/11/2014	890.58	3
151899	Lone Mountain Archaeological Services	11/29/2022	15.80	0

Table 2. Cultural resources within 1 km (0.62 miles) of the proposed project area.

LA No.	Discovering NMCRIS No.	Site Type/Cultural Affiliation and Age	Eligibility	Relationship to APE
179703	131135	Artifact scatter with features/ Unknown Historic (A.D. 1550–1970)	Not Evaluated by SHPO	Outside

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese

Attached: (1) Review Results, (1) ARMS Map

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese

Attached: (1) Review Results, (1) ARMS Map

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese

Attached: (1) Review Results, (1) ARMS Map

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505.254.1115 Fax 505.254.1116 www.swca.com

*Redacted

Figure 2. NMCRIS screenshot showing the location of the EVGSAI 3366-029 Flowline inadvertent release location (blue square) with a 1-km (0.62-mile) buffer area (blue circle). Previously conducted investigations are brown and yellow polygons, and previously recorded sites are tan polygons.

▲—LA 179703

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 7 – PHOTOGRAPHIC DOCUMENTATION

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View southeast. Initial spill assessment	1
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east. Initial spill assessment	2
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

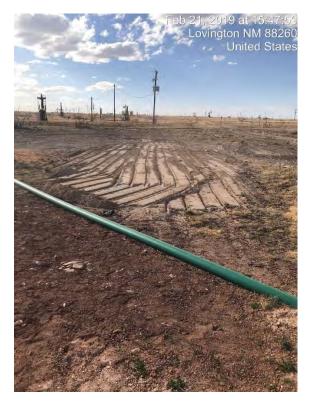
TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View north. Initial spill assessment	3
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west. Initial spill assessment	4
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View northwest. Area of western portion of excavation.	5
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	1/28/2019

TETRA TECH, INC.	DESCRIPTION	View west. Area of central portion of excavation.	6
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	1/25/2019

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View east. Area of central portion of excavation.	7
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	1/29/2019


TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View southeast. Area of eastern portion of excavation.	8
	SITE NAME	EVGSAU 3366-029 Flowline Release	1/29/2019

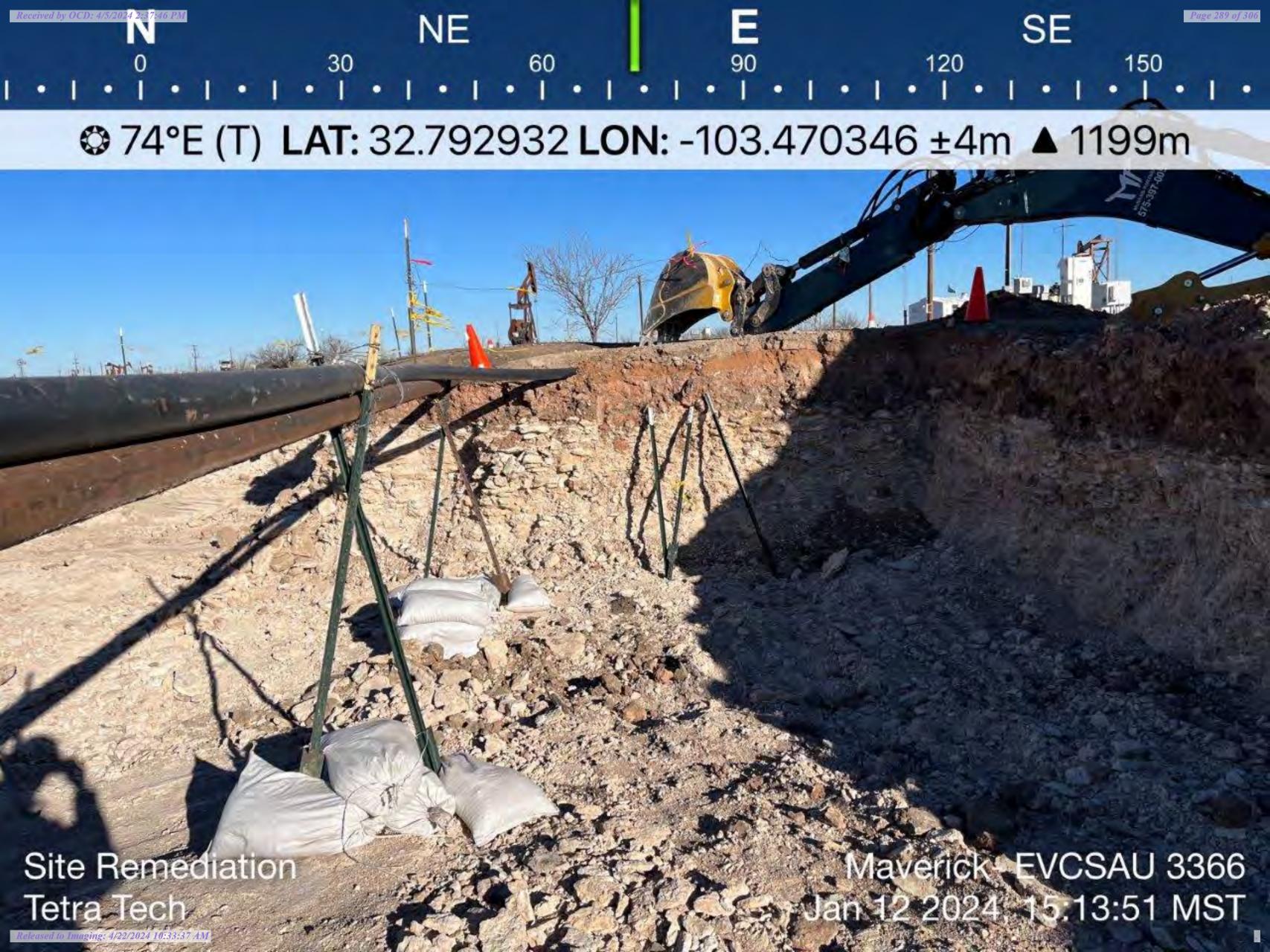
TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Input of liner into excavation.	9
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View north. Placement of liner into excavation.	10
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

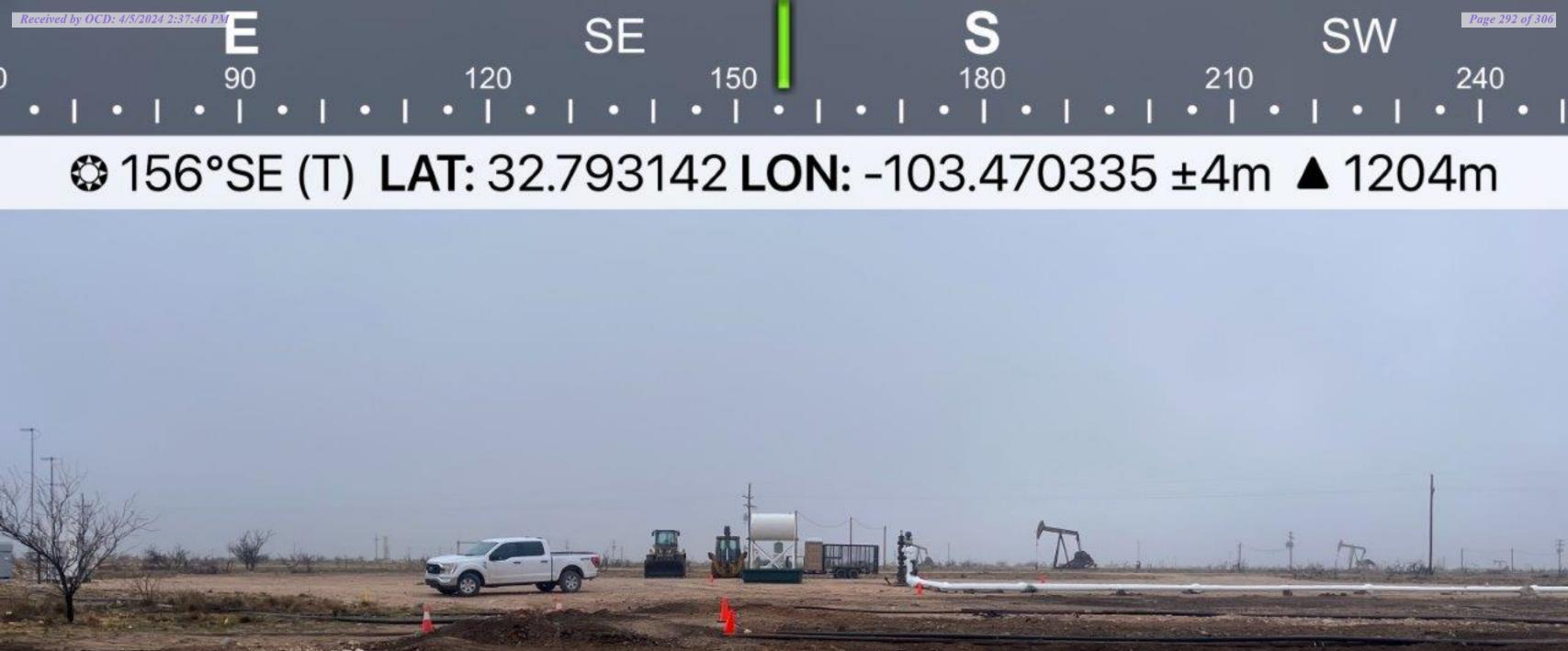
TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Backfill of western portion of excavation.	11
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View southeast. Backfill of central portion of excavation.	12
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Backfill of eastern portion of excavation.	13
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019



② 166°S (T) LAT: 32.793121 LON: -103.470205 ±4m ▲ 1199m



Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421 March 25, 2024

ATTACHMENT 8 - NMSLO SEED MIXTURE

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sand bluestem	Elida, VNS, So.	2.0	${f F}$
Little bluestem	Cimarron, Pastura	3.0	${f F}$
Black grama	VNS, Southern	777771.0	D
Sand dropseed	VNS, Southern	4.0	\mathbf{S}
Plains bristlegrass	VNS, Southern	2.0	\mathbf{D}
		1 1/1/8	
Forbs:	200000	0000 U AS	3
Firewheel (Gaillardia)	VNS, Southern	1.0	D
Annual Sunflower	VNS, Southern	1.0	D
		700 C	B
Shrubs:		0	B
Fourwing Saltbush	VNS, Southern	1.0	F
	7 May 1		Om B
	Total PLS/ac	re 16.0	8 B
N			ST B

 $S = Small\ seed\ drill\ box,\ D = Standard\ seed\ drill\ box,\ F = Fluffy\ seed\ drill\ box\ VNS = Variety\ Not\ Stated,\ PLS = Pure\ Live\ Seed$

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

SLO Seed Mix

SM Series

3 REVEGETATION PLANS & SEEDING

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

Table 3 - Revegetation Plans, Codes, and Soil Types for Southeastern New Mexico

REVEGTATION PLANS	CODE	SOIL TEXTURES
Clay	С	Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)
Loam	L	Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam
Sandy Loam	SL	Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam
Gypsum	LG	
Shallow	SH	Rocky Loam, Cobbly Loam
Course	CS	Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam
Sandy	S	Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand
Blow Sand	BS	Fine Sand, Sand, Coarse Sand
Mountain Meadow	MM	Clay, Loam
Mountain Upland	MU	Clay Loam, Loam

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Action 330601

QUESTIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Prerequisites	
Incident ID (n#)	nJXK1609752883
Incident Name	NJXK1609752883 EVGGSAU 3366-029 @ 30-025-02987
Incident Type	Produced Water Release
Incident Status	Reclamation Report Approved
Incident Well	[30-025-02987] EAST VACUUM (GSA) UNIT #029

Location of Release Source	
Please answer all the questions in this group.	
Site Name	EVGGSAU 3366-029
Date Release Discovered	04/04/2016
Surface Owner	State

Incident Details	
Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Crude Oil Released: 10 BBL Recovered: 5 BBL Lost: 5 BBL.
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 6 BBL Recovered: 5 BBL Lost: 1 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170 1220 S. St Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 330601

Phone:(505) 476-3470 Fax:(505) 476-3462	
QUESTI	IONS (continued)
Operator: Maverick Permian LLC 1000 Main Street, Suite 2900 Houston, TX 77002	OGRID: 331199 Action Number: 330601 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	I lation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releate OCD does not relieve the operator of liability should their operations have failed to	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

Name: Chuck Terhune

Date: 04/05/2024

Email: chuck.terhune@tetratech.com

I hereby agree and sign off to the above statement

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 330601

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 300 and 500 (ft.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1000 (ft.) and ½ (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 300 and 500 (ft.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	Yes	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provide	ded to the appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contam	ination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 CI B)	8480	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	745	
GRO+DRO (EPA SW-846 Method 8015M)	432	
BTEX (EPA SW-846 Method 8021B or 8260B)	0.1	
Benzene (EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes con which includes the anticipated timelines for beginning and completing the remediation.	mpleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC	
On what estimated date will the remediation commence	12/18/2023	
On what date will (or did) the final sampling or liner inspection occur	01/18/2024	
On what date will (or was) the remediation complete(d)	01/19/2024	
What is the estimated surface area (in square feet) that will be reclaimed	4700	
What is the estimated volume (in cubic yards) that will be reclaimed	1004	
What is the estimated surface area (in square feet) that will be remediated	4700	
What is the estimated volume (in cubic yards) that will be remediated	1004	
These estimated dates and measurements are recognized to be the best guess or calculation	n at the time of submission and may (be) change(d) over time as more remediation efforts are completed.	
	ted in accordance with the physical realities encountered during remediation. If the responsible party has any need to	

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

<u>District II</u> 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

<u>District III</u> 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462 State of New Mexico
Energy, Minerals and Natural Resources
Oil Conservation Division
1220 S. St Francis Dr.
Santa Fe, NM 87505

QUESTIONS, Page 4

Action 330601

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:	
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	No
OR is the off-site disposal site, to be used, an NMED facility	No
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No
(In Situ) Soil Vapor Extraction	No
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No
Ground Water Abatement pursuant to 19.15.30 NMAC	No
OTHER (Non-listed remedial process)	No

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Chuck Terhune

Email: chuck.terhune@tetratech.com

Date: 04/05/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 5

Action 330601

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

<u>District II</u> 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720 **District III**

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 330601

QUESTIONS	(continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	326132
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/18/2024
What was the (estimated) number of samples that were to be gathered	2
What was the sampling surface area in square feet	400

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	4700	
What was the total volume (cubic yards) remediated	1004	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	4700	
What was the total volume (in cubic yards) reclaimed	1004	
Summarize any additional remediation activities not included by answers (above)	his is a historical release with a history of multiple rounds of assessments and remediaition for two incidents. Additional details are provided in the Remediation Report and Closure Request attached to this C-141 Submission.	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Chuck Terhune
I hereby agree and sign off to the above statement
Email: chuck.terhune@tetratech.com
Date: 04/05/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 330601

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	Yes
What was the total reclamation surface area (in square feet) for this site	4700
What was the total volume of replacement material (in cubic yards) for this site	1004
	four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 ver must include a top layer, which is either the background thickness of topsoil or one foot of suitable material
Is the soil top layer complete and is it suitable material to establish vegetation	Yes
On what (estimated) date will (or was) the reseeding commence(d)	01/22/2024
Summarize any additional reclamation activities not included by answers (above)	Graded and contoured the area back to match the surrounding area after backfilling with clean soil sourced from nearby pits. The area was subsequently seeded with NMSLO seed mix for the appropriate soil type. The Area will be monitored for revegetation and the revegetation report will be submitted once complete.
	eclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form

NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete

Name: Chuck Terhune I hereby agree and sign off to the above statement Email: chuck.terhune@tetratech.com Date: 04/05/2024

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 8

Action 330601

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report	
Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied.	
Requesting a restoration complete approval with this submission	No
Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.	

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 330601

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	330601
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

Created By	Condition	Condition Date
amaxwell	Reclamation approved.	4/22/2024
amaxwell	All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.	4/22/2024
amaxwell	OR Per 19.15.29.13 E. NMAC, if a reclamation and revegetation report has been submitted to the surface owner, it may be used if the requirements of the surface owner provide equal or better protection of freshwater, human health, and the environment. A copy of the approval of the reclamation and revegetation report from the surface owner and a copy of the approved reclamation and revegetation report will need to be submitted to the OCD via the Permitting website.	4/22/2024
amaxwell	A revegetation report will not be accepted until revegetation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	4/22/2024