

March 25, 2024

District Supervisor Oil Conservation Division, District 1 1625 North French Drive Hobbs, New Mexico 88240

Re: Remediation/Reclamation Report and Closure Request Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Unit Letter E, Section 33, Township 17 South, Range 35 East Lea County, New Mexico Incident IDs# nJXK1609752883 and nPRS0420835421

Dear Sir or Madam,

Tetra Tech, Inc. (Tetra Tech) was initially contracted by ConocoPhillips (COP) to assess a historical release that occurred from a flowline associated with the EVGSAU 3366-029 flowline (API No. 30-025-21223). The release footprint is located in the Public Land Survey System (PLSS) Unit Letter E Section 33, Township 17 South, Range 35 East, in Lea County, New Mexico (Site). The approximate release point occurred at coordinates 32.792949°, - 103.470266°, as shown in **Figure 1** and **Figure 2**. In 2022 Maverick Permian LLC (Maverick) acquired the Site from COP, began operating the Site in June 2022, and undertook the remediation activities described in this report.

BACKGROUND

nPRS0420835421

According to the State of New Mexico OCD Permitting portal information, operations personnel discovered a 3-inch flowline leak on March 29, 2004, the result of external corrosion. Approximately 62 barrels (bbls) of produced water were reported released from the flowline and approximately 61 bbls of fluid were reported recovered by vac truck during the initial release. Immediate action included shutting in the well, repair of the flowline, and recovery of fluids. The initial C-141 report form is listed as submitted to the New Mexico Oil Conservation District (NMOCD) on July 26, 2004, and subsequently assigned the release Incident ID JXK1609752883. This release emanated from the same location as Incident ID nPRS0420835421 that occurred in 2016 as described below. The subsequent assessment and remediation activities described in this report under Incident ID nPRS0420835421 also cover this release.

nJXK1609752883

According to the State of New Mexico C-141 Initial Report, operations personnel discovered the flowline leak during routine checks on April 4, 2016. Approximately 5.77 barrels (bbls) of produced water and 10 bbls of oil were reported released from the flowline and approximately 10 bbls of fluid were reported recovered. The fluids migrated northnortheast along a low-lying area running parallel to a buried underground pipeline. Immediate action included isolating the well to repair the flowline in the battery facility. The initial C-141 report form was submitted to the New Mexico Oil Conservation District (NMOCD) on April 6, 2016, and subsequently assigned the release Incident ID nJXK1609752883. This release is included in an Agreed Compliance Order-Releases (ACO-R) between COP and the NMOCD fully executed on May 9, 2019.

The original C-141 Form associated with this release was previously submitted to the NMOCD in the NMOCDrejected COP *Interim Closure Report* dated April 13, 2021, submitted to the NMOCD on March 13, 2021, and again on October 21, 2022, and is available in the NMOCD Permitting portal under Incident ID nJXK1609752883.

SITE CHARACTERIZATION

Receptors

Tetra Tech performed a Site characterization that identified no watercourses, sinkholes, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, playa lakes, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains within the distances specified in 19.15.29 New Mexico Administrative Code (NMAC). According to the NMOCD Oil and Gas Map online, the Site is in an area of low karst potential. Receptor site characterization data is included in **Attachment 1**.

Depth to Groundwater

According to the New Mexico Office of State Engineer's (NMOSE) Reporting System, there are three (3) water wells within $\frac{1}{2}$ mile of the Site with an average depth to groundwater of 80 feet below ground surface (bgs). The depth to groundwater determination data is included in **Attachment 1**.

Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the Site is mapped as Kimbrough-Lea complex, dry, 0 to 3 Percent Slopes, which is classified as a loam soil. The USDA NCRS Soil Map and soil profile are provided in **Attachment 1**.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels (RRALs) for Benzene, Toluene, Ethylbenzene, and Xylenes (BTEX), Total Petroleum Hydrocarbons (TPH), and chloride in soil.

Based on the site characterization accepted by the NMOCD in the Interim Closure Report and previous submissions related to Incident nJXK1609752883, and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site for groundwater between 51 and 100 feet bgs are as follows:

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (GRO+DRO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Closure Criteria for Soils Impacted by a Release

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Reclamation Requirements

Constituent	Remediation RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE ACTIVITIES

In accordance with 19.15.29.8. B. (4) NMAC "the responsible party may commence remediation immediately after discovery of a release", COP elected to begin initial remedial response and assessment of the impacted area in 2016. The visibly impacted soil in the release footprint was excavated by COP personnel with heavy equipment to approximately six inches bgs to remove the stained surface soils. During the initial response activities, liner material was observed at the surface in the southern portion of the release footprint and was assumed to be part of a former closed reserve pit. **Figure 3** depicts the release extent and initial response excavation area. Visibly impacted soil was excavated from an area equaling approximately 4,000 square feet during initial response activities.

INITIAL SITE ASSESSMENT

Initial Assessment Soil Sampling

Tetra Tech and their drilling subcontractor mobilized to the Site on August 9, 2017, to advance three (3) soil borings (SB-1 through SB-3) to define the extent of the impacted soils outside the assumed reserve pit footprint. Soil borings SB-1, SB-2, and SB-3 were drilled to total depths of 55, 20, and 25 feet bgs, respectively. The soil samples were field screened for organic vapors with a PID and chlorides with an ExStik. Selected samples were placed into laboratory-provided sample containers and transferred under chain of custody documentation to Pace Analytical Laboratory (Pace) for analysis of TPH by Method 8015M, and chloride by Method 300.0. Selected samples were analyzed for BTEX by Method 8260B. **Figure 3** depicts the release extent with the soil boring locations and soil boring location coordinates are presented in **Table 1**.

Initial Assessment Sampling Results

The laboratory analytical results from the August 2020 soil sampling event are summarized in **Table 2** screened against Reclamation Requirements. The laboratory analytical results for the samples analyzed reported concentrations of BTEX and TPH as less than Reclamation Requirements with the exception of the sample collected from SB-1 from the 2-3 foot depth interval which reported TPH at a concentration greater than the Reclamation Requirement. Chloride was reported at concentrations less than the Reclamation Requirement with the exception of samples collected from SB-1 and SB-3 from the 0-1 foot bgs depth interval. The laboratory analytical data packages including chain-of-custody documentation for Assessment Sampling are included in **Attachment 2**.

INITIAL REMEDIATION WORK PLAN

Based on the analytical results, COP proposed soil excavation and disposal in the areas of boring SB-1 and SB-3 to a depth of 4 feet bgs and the installation of a 40-mil poly liner in the excavation bottom to cap remaining chlorides in the subsurface soils, as shown on **Figure 3**. The excavation would then be backfilled with clean material to surface grade.

Within the revised Work Plan submitted to NMOCD on March 12, 2018, the remediation activities are described. The revised Work Plan is available on the NMOCD Imaging website. Tetra Tech has been unable to locate the email correspondence between NMOCD and COP indicating NMOCD's approval of the revised Work Plan.

INITIAL REMEDIATION ACTIVITIES AND CONFIRMATION SAMPLING

Tetra Tech mobilized to the Site between January 21 and 30, 2019, to supervise the excavation and remediation activities. The excavation contractor excavated the remediation area to a depth of 4 feet bgs with plans to install a liner as shown in **Figure 4.** Approximately 540 cubic yards of material were transported for disposal to the R360 Halfway Landfill facility in Hobbs, New Mexico. Excavation widths and depths were guided based on the assessment and confirmation sampling data to remove impacted soils. During remedial activities, on-site personnel discovered liner material at the ground surface in the vicinity of SSW-2. Remedial activities were halted, and the excavation area south of SSW-2 was not expanded any farther so as to not disturb the assumed closed reserve pit.

Initial Remediation Confirmation Sampling

Confirmation samples were collected from the sidewalls and floors of the excavations to confirm that the impacted materials were properly removed. A total of 16 confirmation samples were collected during the remedial activities as shown in **Figure 3**. A total of three (3) floor samples (AH-1 through AH-3) and 13 sidewall samples were collected. Floor and sidewall confirmation samples were field screened for chlorides with an ExStik prior to collection into laboratory-supplied sample containers.

Confirmation samples were submitted to Pace for analysis of BTEX by method 8260B, TPH by Method 8015M, and chloride by Method 300.0. Laboratory analytical results reported BTEX, TPH, and chloride concentrations as less than Reclamation Requirements or Remediation RRALs, as applicable, with the exception of sidewall samples SSW-2 and WSW-2. The excavation was laterally expanded in the areas where the initial WSW-2 and SSW-2 sidewall samples were collected. The excavation near WSW-2 sample location was extended to include the soil below a set of polylines. The impacted soils were removed and are bound to the west by ESW-3. Final ESW-3, WSW-2, and SSW-2 sidewall confirmation sample locations were over-excavated during the Additional Remediation discussed below.

ESW-2 lies within the path of numerous flowlines and at the intersection of flowlines running west-northwest to eastsoutheast and a flowline running from east-northeast to west-southwest. This area is considered an area in active use for production operations and therefore does not need to be reclaimed in accordance with 19.15.29.13 D. ESW-2 is delineated laterally and vertically to Reclamation Requirements by samples collected from assessment sampling locations BH-20-3 and BH-20-3S, Initial Remediation sample location AH-2, and Additional Remediation sample locations SW-1 and SW-9. This area is proposed to be reclaimed during the plugging and abandonment of EVGSAU 3366-029 and the reclamation well pad and associated flowlines.

Confirmation sample laboratory analytical results screened against Reclamation Requirements and RRALs are summarized in **Table 3** and **Table 4** and laboratory analytical data packages including chain of custody documentation for Initial Remediation are included in **Attachment 3**

Initial Remediation Liner Installation and Excavation Backfill

Subsequent to the receipt of confirmation sample results, the excavation contractor installed a 40-mil poly liner in the base of the excavation. The excavation was then backfilled with clean material to surface grade. Photographic documentation of the Initial Remediation activities is included in **Attachment 6**.

ADDITIONAL SITE ASSESSMENT

Additional Assessment Sampling

To characterize the impacted area more fully, Tetra Tech conducted Additional Site Assessment soil sampling on May 21, 2020, in the vicinity of the release area. Three (3) borings (BH-20-1S through BH-20-3S) were installed using an air rotary drilling rig in the vicinity of the release footprint as shown in **Figure 5**. Two borings (BH-20-1S, and BH-20-3S) were installed to a depth of 5 feet bgs to the west and east of the release footprint. One boring (BH-20-2S) was installed within the release footprint south of the area excavated and backfilled in January 2019 to vertically delineate the previously unaddressed release area.

BH-20-3 was installed using an air rotary drilling rig to characterize an unrelated, adjacent footprint associated with duplicate Incident IDs nPAC0605541294 and nPRS0414755359 on May 21, 2020. Boring BH-20-3 was completed east of the historic release area, to a depth of 5 feet bgs to achieve horizontal delineation, and acts as delineation of the nJXK1609752883 extent to the north.

A total of 14 samples were collected from these four (4) borings and submitted to Pace Analytical Laboratory in Mount Juliet, Tennessee (Pace National) for analysis of BTEX by Method 8260B, TPH by Method 8015M, and chloride by Method 300.0.

Additional Assessment Sampling Results

The laboratory analytical results from the May 2020 Additional Assessment Sampling event are summarized in **Table 2** screened against Reclamation Requirements. The laboratory analytical results for the samples analyzed reported concentrations of BTEX, TPH, and chloride as less than Reclamation Requirements or Remediation RRALs, as applicable, with the exception of samples collected from BH-20-2S from the 0-1 foot and 2-3 foot bgs sample intervals which reported chloride concentrations as greater than the Reclamation Requirement. The laboratory analytical data packages including chain-of-custody documentation for Additional Assessment Sampling are included in **Attachment 4**.

ADDITIONAL REMEDIATION WORK PLAN

Based on the analytical results, COP proposed to remove the remaining impacted material in the vicinity of BH-20-2S as shown in **Figure 6**. Impacted soils within the release extent southwest of the January 2019 remediation area to be excavated using heavy equipment to a maximum depth of 4 feet bgs. Excavated soils to be transported offsite and disposed of at an NMOCD-approved disposal facility. Following soil removal, the excavation will be backfilled with clean material to surface grade. The COP estimated the volume of material to be remediated approximately 580 cubic yards.

Additionally, the Interim Closure Report requested the following variance from 19.15.29.12 D(1) NMAC:

"After characterization of this release, COP proposes a variance request from 19.15.29.12 D(1) NMAC for collecting confirmation samples within the assumed closed reserve pit extent. Based on the analytical results associated with boring location BH-20-2S, soils below four (4) feet bgs within the release footprint are below Site RRALs and do not pose a risk to groundwater in the area. Furthermore, depth to groundwater in the area is approximately 80 feet bgs.

Thus, in accordance with 19.15.29.14(A) NMAC, ConocoPhillips requests a variance for the placement of a liner within the excavated area as an alternative to confirmation sampling. The liner will be properly seated at the base of the excavation to impede residual chloride in soil moving upward into the rooting zone via capillary action. The liner will be domed and thus also provide an engineering control that will serve as a barrier to surface water infiltration and thus inhibit the downward migration of residual constituents from any

remaining impacted soil beneath the liner. Because the liner is emplaced, it will provide equal or better protection of fresh water, human health and the environment. The liner will impede any residual chloride in soil from leaching into the surficial layers of non-waste containing, uncontaminated, earthen material."

NMOCD REJECTION OF INTERIM CLOSURE REQUEST

On October 21, 2022, the NMOCD rejected the Interim Closure Request the Additional Remediation Work Plan and COP Variance Request. This section responds to relevant NMOCD comments to provide clarification, further detail, and/or actions taken by Maverick where appropriate in response to NMOCD comments. To provide clarity, the NMOCD rejection comments are reiterated below along with Maverick's response.

"Numerous samples do not meet the closure requirements of 19.15.29 NMAC. SSW-2, WSW-2, and AH-2 are above the reclamation standard of 600 mg/kg for chloride"

During the Additional Remediation undertaken by Maverick discussed below, Maverick over-excavated the area of SSW-2 and WSW-2 where samples from the Initial Remediation reported chloride concentrations as greater than the Reclamation Requirement of 600 mg/kg as shown in **Figure 6**.

AH-1 is a floor confirmation sample collected from 4 feet bgs and deeper from the base of the westernmost 4-foot excavation as shown in **Figure 4**. Based on the NMOCD accepted depth-to-groundwater characterization previously submitted in the *Work Plan for the ConocoPhillips Company, EGSAU 3366-029* work plan dated March 6, 2018 (see NMOCD Online Imaging 1RP-4233), and the Interim Closure Request submitted on April 13, 2021, and October 21, 2022, the Remediation RRAL for chloride for this sample is 10,000 mg/kg and no further action is required at this location.

"ESW-2 is above the reclamation standard of 100 mg/kg for TPH Variance request is denied"

Sample ESW-2 is a sidewall confirmation sample collected from the eastern excavation wall of the easternmost Initial Remediation excavation. This location lies within the path of numerous flowlines and at the intersection of flowlines running west-northwest to east-southeast and a flowline running from east-northeast to west-southwest. It is Maverick's position that a variance is not required in this area as it is in active use for production operations and therefore does not need to be reclaimed in accordance with 19.15.29.13 D.

ESW-2 is delineated laterally and vertically to Reclamation Requirements by samples collected from assessment sampling locations BH-20-3 and BH-20-3S, Initial Remediation sample location AH-2, and Additional Remediation sample locations SW-1 and SW-9. Maverick proposes to reclaim the area of ESW-2 during the plugging and abandonment of EVGSAU 3366-029 and reclamation well pad and associated flowlines.

"In Appendix G there are laboratory reports with samples that are not included on the maps or table. BH-20-1 (2-3) returned results of 1,170 mg/kg for chloride. BH-20-2 (0-1) returned results of 1,290 mg/kg for chloride and 1,101 mg/kg for TPH. BH-20-2 (2-3) returned results of 1,320 mg/kg for chloride. BH-20-2 (4-5) returned results of 1,160 mg/kg for chloride. BH-20-1, BH-20-2, BH-20-4, and BH-20-5 are not illustrated on the map or included in the tables. These sample points will need to be included on maps and tables. Based on the analytical results, additional remediation is warranted in these areas."

The Interim Closure Request states "One of the boring locations shown on Figure 5 (BH-20-3) was installed using an air rotary drilling rig to characterize an unrelated, adjacent footprint on May 21, 2020." In the Additional Site Assessment Section. The referenced Pace National laboratory analytical report L1223523 provided in **Attachment 4** associated with BH-20-3 contains analytical results from soil borings completed as part of the assessment of duplicate incidents nPAC0605541294 and nPRS0414755359. Both incidents

have been remediated and are listed in the NMOCD Permitting portal with the Status of "Incident Closure Approved" on April 14, 2023, and May 23, 2022, respectively.

The figures, tabulated analytical data, and associated remediation activities for BH-20-1, BH-20-2, BH-20-4, and BH-20-5 are available in the NMOCD Permitting Portal in the NMOCD-approved COP *Closure Request* dated May 3, 2022, under Incident ID nPRS0414755359. No further action is warranted in association with this comment.

CULTURAL RESOURCES SURVEY

To comply with 1.10.15 NMAC and New Mexico State Land Office (NMSLO) requirements, Tetra Tech contracted SWCA Environmental Consultants to perform an Archaeological Records Management Section (ARMS) review for the Site.

SWCA performed a literature and file search on September 22, 2023, using the New Mexico Cultural Resources Information System online database which included a review of known cultural resources, such as the built environment, archaeological sites, and State/National Register-listed properties. Other sources reviewed include the Bureau of Land Management (BLM) General Land Office (GLO) Records website, which included land patent and general land office survey data. The review was conducted for the Area of Potential Effects (APE) and 1 km surrounding the APE. The land the proposed project is located on is part of the June 21, 1898: New Mexico Territorial Grant (30 Stat. 484) patented on May 26, 1909.

The ARMS review found the project area and surrounding 1 km have been subject to four (4) cultural resource surveys, two (2) of which are qualifying. One previously recorded site (LA 179703) is located outside of the project area but within the 1k search buffer. The project area is entirely located on NMSLO-managed lands and is completely covered by one (1) qualifying survey conducted within the last ten years (NMCRIS 131135). All remediation work will remain within the previously qualifying survey area.

No subsurface cultural materials were encountered during remediation activities. The redacted ARMS Review letter is included in **Attachment 6**.

MAVERICK ADDITIONAL REMEDIATION AND CONFIRMATION SAMPLING

Excavation activities commenced on December 18, 2023, and concluded on January 18, 2024. Maverick's subcontractor, McNabb Partners (McNabb) used heavy equipment to excavate impacted soil from the remediation areas to maximum depths of 4 feet bgs as shown in **Figure 6**. To avoid potential contact by heavy equipment with pressurized lines within the remediation area, heavy equipment was maintained at a distance of at least 2 feet from pressurized lines where hydro-excavation and hand-digging were employed. McNabb excavated a total of 1,004 cubic yards of contaminated soil from an approximately 4,700 square foot area and transported the soil to R360 Halfway Disposal and Landfill in Hobbs, New Mexico for offsite disposal.

Additional Remediation Confirmation Sampling

Upon reaching the final lateral and vertical excavation extents of the excavation, Tetra Tech collected 28 final confirmation samples including 19 floor samples and nine (9) side wall samples from the excavated areas. The remediation excavation confirmation sampling area was comprised of an approximately 4,700 square foot base and 1,250 square feet of sidewall for a total area of 5,900 square feet and a sampling density of approximately one confirmation sample per 213 square feet.

Confirmation samples were submitted to Cardinal Laboratory in Hobbs, New Mexico for analysis of BTEX by Method 8021B, TPH by Method 8015M, and chloride by Method SM4500 CL-B. Laboratory analytical results for submitted confirmation samples reported concentrations of BTEX, TPH, and chloride as less than respective Reclamation

Requirements for samples collected from depths shallower than 4 feet bgs. For all samples obtained at or below a depth of 4 feet bgs, laboratory analytical results reported constituent concentrations as less than Remediation RRALs and clean margins were demonstrated. Confirmation sampling locations and excavation extents are shown in **Figure 6**. Confirmation sampling locations and excavation extents of both the Initial and Additional Remediations are depicted in **Figure 7**.

Confirmation sample laboratory analytical results screened against Reclamation Requirements and Remediation RRALs are summarized in **Table 3** and **Table 4** and laboratory analytical data packages including chain of custody documentation for Additional Remediation are included in **Attachment 5**.

Additional Remediation Excavation Backfill

Between January 18 and 19, 2024, subsequent to the receipt of confirmation sample results, McNabb completed backfilling of the excavated areas with 854 cubic yards of clean soil, from Rancher Pit. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Attachment 7**.

Reclamation and Revegetation

To restore the impacted surface areas to the condition that existed prior to the release, the excavated areas have been backfilled with clean topsoil, and the disturbed areas have been graded back to match the surrounding topography and the pre-existing conditions prior to contouring to provide erosion control, long-term stability, prevent ponding of water, and preserve surface water flow patterns.

Subsequent to restoring topography and contouring the disturbed areas, disturbed areas of the Site were seeded with New Mexico State Land Office (NMSLO) Sandy (S) Sites Seed Mixture to aid in vegetation growth to complete reclamation in accordance with the Site soil profile detailed above in the Site Characterization Section. Seeding was broadcast and raked in per the specifications for broadcast application in pound pure live seed per acre according to the NMSLO Seed Mix Loamy (L) data sheet provided in **Attachment 8**.

VARIANCE REQUEST

Tetra Tech and Maverick understand that failure to notify the NMOCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted. The remediation associated with this incident was conducted concurrently with a number of other remediations during the 2023 holiday period between Thanksgiving and the 2024 New Year. Tetra Tech failed to notify the NMOCD of Additional Remediation sampling two business days in advance in accordance with 19.15.29.12.D.(1).(a). Tetra Tech respectfully requests a variance for the failure to notify the NMOCD of sampling in consideration of the significant changes to the NMOCD notification process and changes that were implemented by the NMOCD in early December 2023.

Tetra Tech has reviewed the C-141N notification process and NMOCD *Public Notice Implementation of Digital C-141 and Incident Statuses* document dated December 1, 2023, and has shifted to strictly adhering to the sampling notification requirements of 19.15.29.12.D.(1).(a) NMAC and NMOCD notification guidance. Tetra Tech is currently submitting C-141N notifications two business days prior to conducting any remediation confirmation sampling.

CONCLUSION

Based on the results of the confirmation sampling, the impacted soil within the release footprint with chloride concentrations greater than Reclamation Requirements and/or remediation RRALs has been removed and properly disposed of offsite and the excavated area has been backfilled with clean material, graded, and seeded with NMSLO approved seed mixture; Initial Remediation sample ESW-2 in the upper 4 feet is in a location of active production and delineated laterally and vertically to Reclamation Requirements which is proposed to be reclaimed during reclamation of the EVGSAU 3366-029 well and well pad. Therefore, Site remediation is complete. A Reclamation Report for the Site will be submitted to the NMOCD under separate cover containing the NMOCD required information. If you have any questions concerning the remediation activities for the Site, please contact Charles Terhune by email at <u>Charles.Terhune@tetratech.com</u> or by phone at (832) 252-2093.

Sincerely,

Chris Straub Project Manager Tetra Tech, Inc.

cc: Bryce Wagoner, Maverick Permian, LLC New Mexico State Land Office

Charles H. Terhune IV, P.G. Program Manager Tetra Tech, Inc.

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

LIST OF ATTACHMENTS

Figures

- Figure 1 Site Location Map
- Figure 2 Topographic Map
- Figure 3 Initial Response and Initial Assessment
- Figure 4 Initial Remediation Extent
- Figure 5 Additional Assessment Locations
- Figure 6 Additional Remediation Extent
- Figure 7 Combined Remediation Extent

Tables

- Table 1 Soil Assessment Locations
- Table 2 Summary of Analytical Results Soil Assessment Sampling
- Table 3 Summary of Analytical Results Shallow Remediation Confirmation Sampling
- Table 4 Summary of Analytical Results Deep Remediation Confirmation Sampling

Attachments

- Attachment 1 Site Characterization Data
- Attachment 2 Initial Assessment Laboratory Data
- Attachment 3 Initial Remediation Laboratory Data
- Attachment 4 Additional Assessment Laboratory Data
- Attachment 5 Maverick Remediation Laboratory Data
- Attachment 6 ARMS Review Letter
- Attachment 7 Photographic Documentation
- Attachment 8 NMSLO Seed Mixture Details

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

FIGURES

Released to Imaging: 4/22/2024 2:36:08 PM

Received by OCD: 4/22/2024 12:46:08 PM

Released to Imaging: 4/22/2024 2:36:08 PM

Ц **REMEDIATION/FIGU** 729/4233 2200 DOCUMENT PATH: D:\CONOCOPHILLIPS\MXD\EVGSAU

Released to Imaging: 4/22/2024 2:36:08 PM

Received by OCD: 4/22/2024 12:46:08 PM

.

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

TABLES

Released to Imaging: 4/22/2024 2:36:08 PM

TABLE 1 SOIL ASSESSMENT LOCATIONS INCIDENT NJXK1609752883 & nJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

Boring ID	Date	Latitude	Longitude
SB-1	8/9/2017	32.793201	-103.470447
SB-2	8/9/2017	32.793143	-103.470236
SB-3	8/9/2017	32.793094	-103.470076
BH-20-1S	5/21/2020	32.793209	-103.470508
BH-20-2S	5/21/2020	32.793032	-103.470253
BH-20-3	5/21/2020	32.793292	-103.470019
BH-20-3S	5/21/2020	32.793015	-103.469869

Received by OCD: 4/22/2024 12:46:08 PM

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT SAMPLING - INCIDENT IDS NJXK1609752883 & NJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

				BTEX ²								TPH ³									
		Sample Depth	Chloride	e ¹											GRO		DRO		ORO		Total TPH
Sample ID	Sample Date				Benzene	•	Toluene	•	Ethylbenze	ene	Total Xyle	nes	Total BT	EX	C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q		Q		Q	mg/kg	Q	mg/kg
Reclamation Requirem	ents (19.15.29 NMA		600		10								50								100
		0-1	780		-		-		-		-		-		-		-	Т	-		-
		2-3	470		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.6		432		99.2		531.2
		4-5	569		-		-		-		-		-		-		-		-		-
		6-7	723		-		-		-		-		-		-		-		-		-
		9-10	545		< 0.0055		< 0.0055		< 0.0055		< 0.0055		-		< 11.0		< 10.8		< 10.8		-
		14-15	1,510		-		-		-		-		-		-		-		-		-
SB-1	8/9/2017	19-20	686		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.7		< 10.5		< 10.5		-
	0/0/2011	24-25	1,500		-		-		-		-		-		-		-		-		-
		29-30	2,430		-		-		-		-		-		-		-		-		-
		34-35	2,640		-		-		-		-		-		-		-		-		-
		39-40	567		-		-		-		-		-		-		-		-		-
		44-45	114		-		-		-		-		-		-		-		-		-
		49-50	105		-		-		-		-		-		-		-		-		-
		54-55	112		-		-		-		-		-		-		-	_	-		-
		0-1	129		< 0.0057		< 0.0057		< 0.0057		< 0.0057		-		< 11.5		< 33.1	_	< 33.1		-
		2-3	291		-		-		-		-		-		-		-	_	-		-
	0/0/0047	4-5	208		< 0.0053		< 0.0053		< 0.0053		< 0.0053		-		< 10.6		25.4	_	33.1		58.5
SB-2	8/9/2017	6-7	245		-	-	-		-	-	-		-		-		-	-	-		-
		9-10 14-15	160 107		- < 0.0052		- < 0.0052		-		- < 0.0052		-		< 10.3		- < 9.8	_	- < 9.8		-
		14-15	107		< 0.0052		< 0.0052		< 0.0052		< 0.0052		-		< 10.5		< 9.0	-	× 9.0		-
		0-1	2,080		< 0.0062		< 0.0062		< 0.0062	-	< 0.0062		-		< 12.7		< 12.3	-	< 12.3		-
		2-3	487		< 0.0002		< 0.0002		< 0.0002		< 0.0002		-		< 1Z.7		< 12.5	_	< IZ.3		-
		4-5	2,180		< 0.0054		< 0.0054		< 0.0054		< 0.0054				< 11.0		< 10.8	-	< 10.8		-
		6-7	1,350		-		-						_		-		-	-	-		
SB-3	8/9/2017	9-10	672		_		_		_		_		-		-		_	-	_		-
		14-15	425		< 0.0054		< 0.0054		< 0.0054		< 0.0054		-		< 10.7		< 10.5		< 10.5		-
		19-20	131		-		-		-		-		-		-		-		-		-
		24-25	108		-	\vdash	-		-	1	-		-		-			+	-		-
		0-1	103		< 0.00103		< 0.00517		< 0.00258		< 0.00671		-		< 0.103		7.71	╈	18.8	В	26.51
BH-20-1S	5/21/2020	2-3	306		< 0.00106	1	< 0.00529		< 0.00265	1	< 0.00688		-		< 0.106		23.1		41.5		64.6
		4-5	3,720		< 0.00108	1	< 0.00539		< 0.0027	1	< 0.00701		-		< 0.108		< 4.32			ΒJ	0.782
		0-1	8,480		< 0.00109		0.0018	J	< 0.00273		< 0.00709		0.0018		< 0.109		323		422		745
		2-3	2,510		< 0.00104		< 0.00522		< 0.00261		< 0.00678		-		< 0.104		< 4.17		1.93	ΒJ	1.93
BH-20-2S	5/21/2020	4-5	227		< 0.00103		< 0.00516		< 0.00258		< 0.0067		-		< 0.103		< 4.12		1.55	ΒJ	1.55
		6-7	3,240		< 0.00108		< 0.00538		< 0.00269		< 0.00699		-		< 0.108		< 4.30		< 4.30		-
		9-10	327		< 0.001		< 0.00502		< 0.00251		< 0.00653		-		< 0.1		2.19	J	1.26	J	3.45
		0-1	93		< 0.00106		< 0.0053		< 0.00265		< 0.00689		-		< 0.106		9.77		19.3		29.1
BH-20-3	5/21/2020	2-3	20.7		< 0.00103		< 0.00516		< 0.00258		< 0.00671		-		< 0.103		4.86		10.4		15.3
		4-5	65.5		< 0.00104		< 0.0052		< 0.0026		< 0.00676		-		< 0.104		2.47	J	2.47	J	4.94
		0-1	114		< 0.00102		< 0.00508		< 0.00254		< 0.0066		-		< 0.102		9.25		25.7		35
BH-20-3S	5/21/2020	2-3	66.5		< 0.00102		< 0.00509		< 0.00255		< 0.00662		-		< 0.102		5.19		8.32		13.5
		4-5	24		< 0.00102		< 0.00512		< 0.00256		< 0.00666		-		< 0.102		< 4.10		< 4.10		-

Received by OCD: 4/22/2024 12:46:08 PM

TABLE 2 SUMMARY OF ANALYTICAL RESULTS SOIL ASSESSMENT SAMPLING - INCIDENT IDS NJXK1609752883 & NJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

									BTEX ²										TPH ³		
Sample ID	Sample Date	Sample Depth	Chloride	Chloride ¹			Toluen	•	Ethylbonz	200	Total Vyla	Total Xylenes		Total BTEV		GRO			ORO		Total TPH
	Sample Date				Benzene	•	Toluell	e	Elliyibelize	ine		nes			C ₆ - C ₁₀		> C ₁₀ - C ₂₈ >		> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Requirem	ents (19.15.29 NM/	AC)	600		10								50								100
NOTES:																					
bgs: Below ground surface)	(-): Non-detect			1: Method SM	Bold and highlighted values indicate exceeded and highlighted values indicate									of Reclamation	on R	equirement	ts (19.	15.29 NMA	C).	

gi mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons NS: Not Sampled

- GRO: Gasoline Range Organics DRO: Diesel Range Organics ORO: Oil Range Organics
- 2: Method 8021B 3: Method 8015M

B: The same analyte is found in the associated blank

J: The reported value is an estimate

J3: The associated batch QC was outside the established QC range for precision

TABLE 3 SUMMARY OF ANALYTICAL RESULTS SHALLOW SOIL CONFIRMATION SAMPLING - INCIDENT IDS nJXK1609752883 & nJXK160975288 **MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE** LEA COUNTY, NEW MEXICO

									BTEX ²												
		Sample Depth	Chloride	e ¹			-						TUDTE		GRO		DRO		EXT DR)	Total TPH
Sample ID	Sample Date				Benzene		Toluene	•	Ethylbenzene	el	Total Xylen	es	Total BTE	X	C ₆ - C ₁₀		> C ₁₀ - C	28	> C ₂₈ - C	36	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg	Q	mg/kg G	3	mg/kg	Q	mg/kg Q	2	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg
Reclamation Requir	ements (19.15.)	29 NMAC)	600		10								50								100
Interim Remediation	n Sampling																				
NSW-1 (4')	1/28/2019	0.0 - 4.0	567		< 0.000420		< 0.00131		< 0.000556	<	< 0.00501		-		< 0.0228		7.3		6.65		13.95
NSW-2 (4')	1/24/2019	0.0 - 4.0	337		< 0.000429		< 0.00134		< 0.000568	<	< 0.00513		-		< 0.0233		4.54		3.32	J	7.86
NSW-3 (4')	1/29/2019	0.0 - 4.0	NS		NS		NS		NS		NS		-		NS		NS		NS		-
ESW-1 (4')	1/31/2019	0.0 - 4.0	133		< 0.000443		< 0.00138		< 0.000586	<	< 0.00529		-		< 0.0240		1.96	J	< 0.303		1.96
ESW-2 (4')	1/24/2019	0.0 - 4.0	103		< 0.000448 J	3	< 0.00140		< 0.000593	<	< 0.00535		-		< 0.0243		97.6		99.7		197.3
ESW-3 (4')	1/29/2019	0.0 - 4.0	235		< 0.000431		< 0.00135		< 0.000572	<	< 0.00515		-		< 0.0234		3.58	J	1.55	J	5.13
WSW-1 (4')	1/28/2019	0.0 - 4.0	466		< 0.000430		< 0.00134		< 0.000569	<	< 0.00513		-		< 0.0233		22.7		20.9		43.6
WSW-2 (4')	1/24/2019	0.0 - 4.0	690		< 0.000421		< 0.00132		< 0.000558	<	< 0.00504		-		< 0.0229		51.1		32.8		83.9
WSW-2 (4' 1.5' OUT)	1/24/2019	0.0 - 4.0	1070		< 0.000431		< 0.00135		< 0.000570	<	< 0.00514		-		< 0.0234		3.38	J	1.06	J	4.44
WSW-3 (4')	1/29/2019	0.0 - 4.0	122		< 0.000436		< 0.00136		< 0.000577	<	< 0.00521		-		< 0.0236		2.04	J	< 0.299		2.04
SSW-1 (4')	1/28/2019	0.0 - 4.0	173		< 0.000433		< 0.00135		< 0.000573	<	< 0.00517		-		< 0.0235		3.17	J	2.52	J	5.69
SSW-2 (4')	1/24/2019	0.0 - 4.0	1150		< 0.000422		< 0.00132		< 0.000559	<	< 0.00504		-		< 0.0229		2.45	J	0.678	J	3.128
SSW-2 (4' 1.5' OUT)	1/24/2019	0.0 - 4.0	2200		< 0.000432		< 0.00135		< 0.000572	<	< 0.00516		-		< 0.0234		3.12	J	1.21	J	4.33
SSW-2 (4' 3' OUT)	1/29/2019	0.0 - 4.0	1430		< 0.000424 J	3	< 0.00133	J3	< 0.000562 J3	3 <	< 0.00507	J3	-		< 0.0230		< 1.71		< 0.290		-
SSW-3 (4')	1/29/2019	0.0 - 4.0	NS		NS		NS		NS		NS		-		NS		NS		NS		-
Additional Remedia	tion Sampling																				
SW - 1	1/4/2024	0.0 - 4.0	352		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 2	1/4/2024	0.0 - 4.0	320		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 3	1/12/2024	0.0 - 4.0	272		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 4	1/12/2024	0.0 - 4.0	688		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 4	1/18/2024	0.0 - 4.0	144		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 5	1/12/2024	0.0 - 4.0	256		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 6	1/12/2024	0.0 - 4.0	1,250		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		14		<10.0		14
SW - 6	1/18/2024	0.0 - 4.0	128		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 7	1/10/2024	0.0 - 4.0	272		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 8	1/10/2024	0.0 - 4.0	448		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-
SW - 9	1/12/2024	0.0 - 4.0	96		<0.050		<0.050		<0.050		<0.150		<0.300		<10.0		<10.0		<10.0		-

NOTES:

bgs: Below ground surface

mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

- GRO: Gasoline Range Organics DRO: Diesel Range Organics
- 2: Method 8021B
- 3: Method 8015M

1: Method 300.0 or SM4500Cl-B Bold and highlighted values indicate exceedance of Reclamation Requirements (19.15.29 NMAC). Highlighted Rows indicate additional lateral excavation and resampling during Interim Remediation Sampling Highlighted Rows indicate excavation and sampling inclusive of this sample area during Additional Remediation

J: The identification of the analyte is acceptable; the reported value is an estimate.

J3: The associated batch QC was outside the established quality control range for precision.

2	2
)	J

TABLE 4 SUMMARY OF ANALYTICAL RESULTS DEEP CONFIRMATION SAMPLING - INCIDENT IDS nJXK1609752883 & nJXK1609752883 MAVERICK PERMIAN, LLC EVGSAU 3366-029 FLOWLINE RELEASE LEA COUNTY, NEW MEXICO

					BTEX ²											TPH ³							
Comple ID	Sample Date	Sample Depth	Chloride ¹	1	Dennene		Toluene		Ethydhonson			Total BTEX		GRO	D	RO		ORO		ТРН	Total TPH		
Sample ID	Sample Date				Benzene		roluene	•	Ethylbenzene		nes			C ₆ - C ₁₀	> C ₁	₀ - C ₂	8	> C ₂₈ - C	36	GRO+DRO	(GRO+DRO+ORO)		
		feet bgs	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg G	mg/kg	Q	mg/kg Q	۲ r	mg/kg Q	mg/	kg	Q	mg/kg	Q	mg/kg	mg/kg		
RRALs (Table I 19	9.15.29.12 NMAC)	10,000		10							50								1,000	2,500		
Interim Remediat	ion Sampling																						
AH-1 (4')	1/28/2019	4.0 - 4.5	80.5		< 0.000428		< 0.00134		< 0.000567	< 0.00511		-	<	0.0232	2.5	1	J	< 0.293		2.51	2.51		
AH-2 (4')	1/24/2019	4.0 - 4.5	926		< 0.000435		< 0.00136		< 0.000576	< 0.00520		-	<	0.0236	2.2	2	J	0.503	J	2.22	2.723		
AH-3 (4')	1/29/2019	4.0 - 4.5	147		< 0.000424		< 0.00132		< 0.000561	< 0.00506		-	<	0.0230	< 1.	70		< 0.290		-	-		
Additional Reme	diation Sampling	1																					
FS - 1 (4.0')	1/4/2024	4.0 - 4.5	1,020		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	16.	7		<10.0		16.7	16.7		
FS - 2 (4.0')	1/4/2024	4.0 - 4.5	352		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	11.	8		<10.0		11.8	11.8		
FS - 3 (4.0')	1/4/2024	4.0 - 4.5	256		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10	.0		<10.0		-	-		
FS - 4 (4.0')	1/4/2024	4.0 - 4.5	736		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10	.0		<10.0		-	-		
FS - 5 (4.0')	1/4/2024	4.0 - 4.5	2,320		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	<10	.0		<10.0		-	-		
FS - 6 (4.0')	1/4/2024	4.0 - 4.5	1,790		<0.050		<0.050		<0.050	<0.150		<0.300		<10.0	15.	3		<10.0		15.3	15.3		
FS - 7 (4.0')	1/4/2024	4.0 - 4.5	3,480		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 8 (4.0')	1/4/2024	4.0 - 4.5	1,940		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 9 (4.0')	1/4/2024	4.0 - 4.5	4,520		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 10 (4.0')	1/4/2024	4.0 - 4.5	3,520		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 11 (4.0')	1/4/2024	4.0 - 4.5	2,560		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 12 (4.0')	1/4/2024	4.0 - 4.5	2,400		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 13 (4.0')	1/4/2024	4.0 - 4.5	2,280		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 14 (4.0')	1/4/2024	4.0 - 4.5	2,360		<0.050		<0.050		<0.050	<0.150		<0.300	4	<10.0	<10	.0		<10.0		-	-		
FS - 19 (4.0')	1/10/2024	4.0 - 4.5	3,920		< 0.050		< 0.050		<0.050	<0.150		< 0.300		<10.0	20			<10.0		20	20		

NOTES:

bgs: Below ground surface mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons ORO: Oil Range Organics

GRO: Gasoline Range Organics DRO: Diesel Range Organics

1: Method SM4500CI-B

2: Method 8021B 3: Method 8015M

Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC. Areas where samples were collected were then over excavated to achieve clean margins.

J: The identification of the analyte is acceptable; the reported value is an estimate.

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 1 – SITE CHARACTERIZATION DATA

EVGSAU 3366-029

Received by OCD: 4/22/2024 12:46:08 PM EVGSAU 3366-029 Remediation

300-foot buffer demonstration

NWI Mapped PUBF Wetland

Page 28 of 306

Legend

臣

- 🖉 300-foot buffer
- 🥖 4' excavation
- 🥖 4'Additional Excavation

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	(0	quarter quarter					3=SW 4=3 gest)	'	D83 UTM in me	iters)	(1	In feet)	
	POD Sub-		QQ	-	_							-		Water
POD Number	Code basin C	county	[,] 64 16	4	Sec	Tws	Rng		X	Y	Distance	Well	Water	Column
L 04829 S5	L	LE	3	1	33	17S	35E	64334	7	3629400* 🌍	120	220	90	130
L 04880	L	LE	2	3	33	17S	35E	64375	57	3629002* 🌍	673	145	90	55
L 04578	L	LE			33	17S	35E	64396	62	3629198* 🌍	766	126	60	66
										Avera	ge Depth to	Water:	80	feet
											Minimum	Depth:	60	feet
											Maximum	Depth:	90	feet
Record Count: 3														

UTMNAD83 Radius Search (in meters):

Easting (X): 643227.957

Northing (Y): 3629419

Radius: 800

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Received by OCD: 4/22/2024 12:46:08 PM

Released to Imaging: 4/22/2024 2:36:08 PM

Web Soil Survey National Cooperative Soil Survey

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
KU	Kimbrough-Lea complex, dry, 0 to 3 percent slopes	2.9	100.0%
Totals for Area of Interest		2.9	100.0%

Map Unit Description: Kimbrough-Lea complex, dry, 0 to 3 percent slopes---Lea County, New Mexico

Lea County, New Mexico

KU—Kimbrough-Lea complex, dry, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 2tw46 Elevation: 2,500 to 4,800 feet Mean annual precipitation: 14 to 16 inches Mean annual air temperature: 57 to 63 degrees F Frost-free period: 180 to 220 days Farmland classification: Not prime farmland

Map Unit Composition

Kimbrough and similar soils: 45 percent *Lea and similar soils:* 25 percent *Minor components:* 30 percent *Estimates are based on observations, descriptions, and transects of the mapunit.*

Description of Kimbrough

Setting

Landform: Playa rims, plains Down-slope shape: Convex, linear Across-slope shape: Concave, linear Parent material: Loamy eolian deposits derived from sedimentary rock

Typical profile

A - 0 to 3 inches: gravelly loam Bw - 3 to 10 inches: loam Bkkm1 - 10 to 16 inches: cemented material Bkkm2 - 16 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 4 to 18 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.01 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 95 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.4 inches)

Interpretive groups

Land capability classification (irrigated): None specified

Map Unit Description: Kimbrough-Lea complex, dry, 0 to 3 percent slopes---Lea County, New Mexico

Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY049TX - Very Shallow 12-17" PZ Hydric soil rating: No

Description of Lea

Setting

Landform: Plains Down-slope shape: Convex Across-slope shape: Linear Parent material: Calcareous, loamy eolian deposits from the blackwater draw formation of pleistocene age over indurated caliche of pliocene age

Typical profile

A - 0 to 10 inches: loam Bk - 10 to 18 inches: loam Bkk - 18 to 26 inches: gravelly fine sandy loam Bkkm - 26 to 80 inches: cemented material

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 22 to 30 inches to petrocalcic
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 90 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 3.0
Available water supply, 0 to 60 inches: Very low (about 2.9 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7s Hydrologic Soil Group: D Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Hydric soil rating: No

Minor Components

Kenhill

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY038TX - Clay Loam 12-17" PZ Hydric soil rating: No

3/23/2024 Page 2 of 3 Map Unit Description: Kimbrough-Lea complex, dry, 0 to 3 percent slopes---Lea County, New Mexico

Douro

Percent of map unit: 12 percent Landform: Plains Down-slope shape: Linear Across-slope shape: Linear Ecological site: R077DY047TX - Sandy Loam 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

Spraberry

Percent of map unit: 6 percent Landform: Playa rims, plains Down-slope shape: Convex, linear Across-slope shape: Linear Ecological site: R077DY049TX - Very Shallow 12-17" PZ Other vegetative classification: Unnamed (G077DH000TX) Hydric soil rating: No

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 2 – INITIAL ASSESSMENT LABORATORY DATA

Pace Analytical Stages 2 Lef 306 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

August 25, 2017

Greg Pope TetraTech 4000 N. Big Spring St. Ste 401 Midland, TX 79705

RE: Project: 212C-MD-00938/EVGSAU 3366-029 Pace Project No.: 7572014

Dear Greg Pope:

Enclosed are the analytical results for sample(s) received by the laboratory on August 15, 2017. The results relate only to the samples included in this report. Results reported herein conform to the most current, applicable TNI/NELAC standards and the laboratory's Quality Assurance Manual, where applicable, unless otherwise noted in the body of the report.

If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Melion Mc Rillough

Melissa McCullough melissa.mccullough@pacelabs.com (972)727-1123 Project Manager

Enclosures

cc: Jeanne Fitch, Tetra Tech Todd Wells, TetraTech

REPORT OF LABORATORY ANALYSIS

CERTIFICATIONS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Kansas Certification IDs

9608 Loiret Boulevard, Lenexa, KS 66219 WY STR Certification #: 2456.01 Arkansas Certification #: 15-016-0 Illinois Certification #: 003097 Iowa Certification #: 118 Kansas/NELAP Certification #: E-10116 Louisiana Certification #: 03055 Nevada Certification #: KS000212008A Oklahoma Certification #: 9205/9935 Texas Certification #: T104704407 Utah Certification #: KS00021 Kansas Field Laboratory Accreditation: # E-92587 Missouri Certification: 10070

REPORT OF LABORATORY ANALYSIS

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical www.pacelabs.com

Pace Analytical States 2 Log 306 400 West Bethany Drive - Suite 190 Allen, TX 75013 (972)727-1123

SAMPLE SUMMARY

 Project:
 212C-MD-00938/EVGSAU 3366-029

 Pace Project No.:
 7572014

Lab ID	Sample ID	Matrix	Date Collected	Date Received
7572014001	EVGSAU 3366-029 SB-01(0-1')	Solid	08/09/17 14:00	08/15/17 08:50
7572014002	EVGSAU 3366-029 SB-01(2-3')	Solid	08/09/17 14:00	08/15/17 08:50
7572014003	EVGSAU 3366-029 SB-01(4-5')	Solid	08/09/17 14:00	08/15/17 08:50
7572014004	EVGSAU 3366-029 SB-01(6-7')	Solid	08/09/17 14:00	08/15/17 08:50
7572014005	EVGSAU 3366-029 SB-01(9-10')	Solid	08/09/17 14:00	08/15/17 08:50
7572014006	EVGSAU 3366-029 SB-01(14-15')	Solid	08/09/17 14:00	08/15/17 08:50
7572014007	EVGSAU 3366-029 SB-01(19-20')	Solid	08/09/17 14:00	08/15/17 08:50
7572014008	EVGSAU 3366-029 SB-01(24-25')	Solid	08/09/17 14:00	08/15/17 08:50
7572014009	EVGSAU 3366-029 SB-01(29-30')	Solid	08/09/17 14:00	08/15/17 08:50
7572014010	EVGSAU 3366-029 SB-01(34-35')	Solid	08/09/17 14:00	08/15/17 08:50
7572014011	EVGSAU 3366-029 SB-01(39-40')	Solid	08/09/17 14:00	08/15/17 08:50
7572014012	EVGSAU 3366-029 SB-01(44-45')	Solid	08/09/17 14:00	08/15/17 08:50
7572014013	EVGSAU 3366-029 SB-01(49-50')	Solid	08/09/17 14:00	08/15/17 08:50
7572014014	EVGSAU 3366-029 SB-01(54-55')	Solid	08/09/17 14:00	08/15/17 08:50
7572014015	EVGSAU 3366-029 SB-2 (0-1')	Solid	08/09/17 15:00	08/15/17 08:50
7572014016	EVGSAU 3366-029 SB-2(2-3')	Solid	08/09/17 15:00	08/15/17 08:50
7572014017	EVGSAU 3366-029 SB-2 (4-5')	Solid	08/09/17 15:00	08/15/17 08:50
7572014018	EVGSAU 3366-029 SB-2(6-7')	Solid	08/09/17 15:00	08/15/17 08:50
7572014019	EVGSAU 3366-029 SB-2(9-10')	Solid	08/09/17 15:00	08/15/17 08:50
7572014020	EVGSAU 3366-029 SB-2 (14-15')	Solid	08/09/17 15:00	08/15/17 08:50
7572014021	EVGSAU 3366-029 SB-2(19-20')	Solid	08/08/17 15:00	08/15/17 08:50
7572014022	EVGSAU 3366-029 SB-3 (0-1')	Solid	08/09/17 17:00	08/15/17 08:50
7572014023	EVGSAU 3366-029 SB-3(2-3')	Solid	08/09/17 17:00	08/15/17 08:50
7572014024	EVGSAU 3366-029 SB-3 (4-5')	Solid	08/09/17 17:00	08/15/17 08:50
7572014025	EVGSAU 3366-029 SB-3(6-7')	Solid	08/09/17 17:00	08/15/17 08:50
7572014026	EVGSAU 3366-029 SB-3(9-10')	Solid	08/09/17 17:00	08/15/17 08:50
7572014027	EVGSAU 3366-029 SB-3 (14-15')	Solid	08/09/17 17:00	08/15/17 08:50
7572014028	EVGSAU 3366-029 SB-3(19-20')	Solid	08/09/17 17:00	08/15/17 08:50
7572014029	EVGSAU 3366-029 SB-3(24-25')	Solid	08/09/17 17:00	08/15/17 08:50

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project:	212C-MD-00938/EVGSAU 3366-029
Pace Project No.:	7572014

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
7572014001	EVGSAU 3366-029 SB-01(0-1')	EPA 300.0	OL	1	PASI-K
572014002 EVGSAU 3366-029 SB-01(2-3')		EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014003	EVGSAU 3366-029 SB-01(4-5')	EPA 300.0	OL	1	PASI-K
7572014004	EVGSAU 3366-029 SB-01(6-7')	EPA 300.0	OL	1	PASI-K
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014006	EVGSAU 3366-029 SB-01(14-15')	EPA 300.0	OL	1	PASI-K
7572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014008	EVGSAU 3366-029 SB-01(24-25')	EPA 300.0	OL	1	PASI-K
7572014009	EVGSAU 3366-029 SB-01(29-30')	EPA 300.0	OL	1	PASI-K
7572014010	EVGSAU 3366-029 SB-01(34-35')	EPA 300.0	OL	1	PASI-K
7572014011	EVGSAU 3366-029 SB-01(39-40')	EPA 300.0	OL	1	PASI-K
7572014012	EVGSAU 3366-029 SB-01(44-45')	EPA 300.0	OL	1	PASI-K
7572014013	EVGSAU 3366-029 SB-01(49-50')	EPA 300.0	OL	1	PASI-K
7572014014	EVGSAU 3366-029 SB-01(54-55')	EPA 300.0	OL	1	PASI-K
7572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014016	EVGSAU 3366-029 SB-2(2-3')	EPA 300.0	OL	1	PASI-K
7572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014018	EVGSAU 3366-029 SB-2(6-7')	EPA 300.0	OL	1	PASI-K
7572014019	EVGSAU 3366-029 SB-2(9-10')	EPA 300.0	OL	1	PASI-K
7572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K

REPORT OF LABORATORY ANALYSIS

SAMPLE ANALYTE COUNT

Project: 212C-MD-00938/EVGSA	U 3366-029
------------------------------	------------

Pace Project No.:	7572014
-------------------	---------

Lab ID	Sample ID	Method	Analysts	Analytes Reported	Laboratory
		EPA 300.0	OL	1	PASI-K
7572014021	EVGSAU 3366-029 SB-2(19-20')	EPA 300.0	OL	1	PASI-K
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014023	EVGSAU 3366-029 SB-3(2-3')	EPA 300.0	OL	1	PASI-K
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014025	EVGSAU 3366-029 SB-3(6-7')	EPA 300.0	OL	1	PASI-K
7572014026	EVGSAU 3366-029 SB-3(9-10')	EPA 300.0	OL	1	PASI-K
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 8015B	AJM	4	PASI-K
		EPA 8015B	JTK	2	PASI-K
		EPA 8260	JKL	7	PASI-K
		EPA 300.0	OL	1	PASI-K
7572014028	EVGSAU 3366-029 SB-3(19-20')	EPA 300.0	OL	1	PASI-K
7572014029	EVGSAU 3366-029 SB-3(24-25')	EPA 300.0	OL	1	PASI-K

REPORT OF LABORATORY ANALYSIS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(0-1') Results reported on a "wet-weight"		7572014001	Collected: 08/09	/17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0								
Chloride	78	0 mg/kg	10 ⁻	10	08/18/17 11:24	08/18/17 17:1	8 16887-00-6	

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical[®] www.pacelabs.com

ANALYTICAL RESULTS

Project:	212C-MD-00938/EVGSAU 3366-029
1 10/000	2120 110 00000/2100/10 0000 020

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(2-3')	Lab ID: 757	2014002	Collected: 08/09/1	7 14:0	0 Received: 08	8/15/17 08:50 N	Aatrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 801	5B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	432	mg/kg	10	1	08/23/17 08:36	08/24/17 12:44		
TPH-ORO (C28-C35) Surrogates	99.2	mg/kg	10	1	08/23/17 08:36	08/24/17 12:44		
n-Tetracosane (S)	172	%	65-119	1	08/23/17 08:36	08/24/17 12:44	646-31-1	S5
p-Terphenyl (S)	74	%	41-131	1	08/23/17 08:36	08/24/17 12:44	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 801	5B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO	ND	mg/kg	10.6	1	08/20/17 00:00	08/21/17 20:13		
Surrogates 4-Bromofluorobenzene (S)	95	%	64-122	1	08/20/17 00:00	08/21/17 20:13	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/kg	5.3	1		08/22/17 20:29	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 20:29	100-41-4	
Toluene	ND	ug/kg	5.3	1		08/22/17 20:29	108-88-3	
Xylene (Total) Surrogates	ND	ug/kg	5.3	1		08/22/17 20:29	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 20:29	2037-26-5	
4-Bromofluorobenzene (S)	106	%	87-115	1		08/22/17 20:29	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 20:29	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0 Preparation Met	hod: E	PA 300.0			
Chloride	470	mg/kg	103	10	08/18/17 11:24	08/18/17 17:31	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(4-5') Results reported on a "wet-weight"		7572014003	Collected: 08/09	(17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0								
Chloride	56	9 mg/kg	96.7	10	08/18/17 11:24	08/18/17 17:4	4 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(6-7')	Lab ID: 7	572014004	Collected: 08/09/	17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Results reported on a "wet-weight"	Dasis							
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days Analytical Method: EPA 300.0 Preparation Method: EPA 300.0								
Chloride	723	mg/kg	98.2	10	08/18/17 11:24	08/18/17 17:5	7 16887-00-6	

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical[®] www.pacelabs.com

ANALYTICAL RESULTS

Project:	212C-MD-00938/EVGSAU 3366-029
1 10/000	2120 10 00000/20000000000000000000000000

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(9-10')	Lab ID: 757	2014005	Collected: 08/09/1	7 14:0	0 Received: 08	/15/17 08:50 N	Atrix: Solid	
Results reported on a "dry weight"	basis and are adj	iusted for pe	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Mether	nod: EPA 801	15B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 12:53		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 12:53		
n-Tetracosane (S)	81	%	65-119	1	08/23/17 08:36	08/24/17 12:53	646-31-1	
p-Terphenyl (S)	80	%	41-131	1	08/23/17 08:36	08/24/17 12:53	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 801	15B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO	ND	mg/kg	11.0	1	08/20/17 00:00	08/21/17 20:29		
<i>Surrogates</i> 4-Bromofluorobenzene (S)	96	%	64-122	1	08/20/17 00:00	08/21/17 20:29	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	60					
Benzene	ND	ug/kg	5.5	1		08/22/17 20:45	71-43-2	
Ethylbenzene	ND	ug/kg	5.5	1		08/22/17 20:45	100-41-4	
Toluene	ND	ug/kg	5.5	1		08/22/17 20:45	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	5.5	1		08/22/17 20:45	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 20:45	2037-26-5	
4-Bromofluorobenzene (S)	105	%	87-115	1		08/22/17 20:45	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 20:45	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0 Preparation Met	hod: E	PA 300.0			
Chloride	545	mg/kg	109	10	08/18/17 11:24	08/18/17 18:10	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(14-15') Results reported on a "wet-weight" b		7572014006	Collected: 08/09/*	17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	151	0 mg/kg	96.2	10	08/18/17 11:24	08/18/17 18:23	3 16887-00-6	

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical[®] www.pacelabs.com

ANALYTICAL RESULTS

Proiect:	212C-MD-00938/EVGSAU 3366-029
1 10/000	

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(19-20')	Lab ID: 757	2014007	Collected: 08/09/1	7 14:0	0 Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight"	basis and are adj	usted for pe	rcent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 801	5B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 14:09		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 14:09		
n-Tetracosane (S)	80	%	65-119	1	08/23/17 08:36	08/24/17 14:09	646-31-1	
p-Terphenyl (S)	79	%	41-131	1	08/23/17 08:36	08/24/17 14:09	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 801	5B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO <i>Surrogates</i>	ND	mg/kg	10.7	1	08/20/17 00:00	08/21/17 20:45		
4-Bromofluorobenzene (S)	94	%	64-122	1	08/20/17 00:00	08/21/17 20:45	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	0					
Benzene	ND	ug/kg	5.3	1		08/22/17 21:01	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 21:01	100-41-4	
Toluene	ND	ug/kg	5.3	1		08/22/17 21:01	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	5.3	1		08/22/17 21:01	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 21:01	2037-26-5	
4-Bromofluorobenzene (S)	103	%	87-115	1		08/22/17 21:01	460-00-4	
1,2-Dichloroethane-d4 (S)	108	%	85-115	1		08/22/17 21:01	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	.0 Preparation Met	hod: E	PA 300.0			
Chloride	686	mg/kg	103	10	08/18/17 11:24	08/18/17 18:36	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(24-25') Results reported on a "wet-weight" b		572014008	Collected: 08/09/1	7 14:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical M	lethod: EPA 300	0.0 Preparation Met	hod: EP	A 300.0			
Chloride	1500	mg/kg	98.2	10	08/18/17 11:24	08/18/17 19:1	4 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(29-30') Results reported on a "wet-weight" b		7572014009	Collected: 08/09/	17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	243	0 mg/kg	195	20	08/18/17 11:24	08/19/17 09:1	5 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(34-35') Results reported on a "wet-weight" I	Lab ID: 757 basis	2014010	Collected: 08/09/	17 14:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 30	0.0 Preparation Me	thod: EP/	A 300.0			
Chloride	2640	mg/kg	196	20	08/18/17 11:24	08/19/17 09:28	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(39-40') Results reported on a "wet-weight" b		7572014011	Collected: 08/09	/17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation M	ethod: EP	A 300.0			
Chloride	56	7 mg/kg	101	10	08/22/17 10:47	08/22/17 10:4	7 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(44-45') Results reported on a "wet-weight" b		7572014012	Collected: 08/09	/17 14:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation M	ethod: EP	A 300.0			
Chloride	11-	4 mg/kg	101	10	08/22/17 13:03	08/22/17 13:03	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(49-50') Results reported on a "wet-weight" b		7572014013	Collected: 08/09	/17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation M	ethod: EP	A 300.0			
Chloride	10	5 mg/kg	97.8	10	08/22/17 13:18	08/22/17 13:1	8 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 01(54-55') Results reported on a "wet-weight"		7572014014	Collected: 08/09	(17 14:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	ethod: EP	PA 300.0			
Chloride	11:	2 mg/kg	101	10	08/22/17 13:33	08/22/17 13:3	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 (0- 1')	Lab ID: 757	2014015 Co	ollected: 08/09/1	7 15:00	Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for perc	ent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015E	Preparation Me	ethod: E	PA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	33.1	1	08/23/17 08:36	08/24/17 13:12		
TPH-ORO (C28-C35) <i>Surrogates</i>	ND	mg/kg	33.1	1	08/23/17 08:36	08/24/17 13:12		
n-Tetracosane (S)	81	%	65-119	1	08/23/17 08:36	08/24/17 13:12	646-31-1	
p-Terphenyl (S)	81	%	41-131	1	08/23/17 08:36	08/24/17 13:12	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 8015E	B Preparation Me	ethod: E	PA 5035A/5030B			
TPH-GRO <i>Surrogates</i>	ND	mg/kg	11.5	1	08/20/17 00:00	08/21/17 21:01		
4-Bromofluorobenzene (S)	87	%	64-122	1	08/20/17 00:00	08/21/17 21:01	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	5.7	1		08/22/17 21:17	71-43-2	
Ethylbenzene	ND	ug/kg	5.7	1		08/22/17 21:17	100-41-4	
Toluene	ND	ug/kg	5.7	1		08/22/17 21:17	108-88-3	
Xylene (Total)	ND	ug/kg	5.7	1		08/22/17 21:17	1330-20-7	
Surrogates								
Toluene-d8 (S)	100	%	87-112	1		08/22/17 21:17		
4-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 21:17		
1,2-Dichloroethane-d4 (S)	109	%	85-115	1		08/22/17 21:17	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300.0	Preparation Met	hod: EF	PA 300.0			
Chloride	129	mg/kg	116	10	08/22/17 13:48	08/22/17 13:48	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(2- 3') Results reported on a "wet-weight" b		7572014016	Collected: 08/0	9/17 15:0	0 Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Lim	t DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation	Method: E	PA 300.0			
Chloride	29 [.]	1 mg/kg	10)1 10	08/22/17 14:03	08/22/17 14:0	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 (4- 5')	Lab ID: 757	7 2014017 C	ollected: 08/09/1	7 15:00	0 Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are ad	justed for perc	ent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Met	hod: EPA 8015	B Preparation Me	ethod: E	PA 3546			
TPH-DRO (C10-C28)	25.4	mg/kg	10.2	1	08/23/17 08:36	08/24/17 13:21		
TPH-ORO (C28-C35) <i>Surrogates</i>	33.1	mg/kg	10.2	1	08/23/17 08:36	08/24/17 13:21		
n-Tetracosane (S)	89	%	65-119	1	08/23/17 08:36	08/24/17 13:21	646-31-1	
p-Terphenyl (S)	85	%	41-131	1	08/23/17 08:36	08/24/17 13:21	92-94-4	
Gasoline Range Organics	Analytical Met	hod: EPA 8015	B Preparation Me	ethod: E	PA 5035A/5030B			
TPH-GRO <i>Surrogates</i>	ND	mg/kg	10.6	1	08/20/17 00:00	08/21/17 21:48		
4-Bromofluorobenzene (S)	94	%	64-122	1	08/20/17 00:00	08/21/17 21:48	460-00-4	
8260/5035A Volatile Organics	Analytical Met	hod: EPA 8260						
Benzene	ND	ug/kg	5.3	1		08/22/17 21:33	71-43-2	
Ethylbenzene	ND	ug/kg	5.3	1		08/22/17 21:33	100-41-4	
Toluene	ND	ug/kg	5.3	1		08/22/17 21:33	108-88-3	
Xylene (Total) Surrogates	ND	ug/kg	5.3	1		08/22/17 21:33	1330-20-7	
Toluene-d8 (S)	99	%	87-112	1		08/22/17 21:33	2037-26-5	
4-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 21:33	460-00-4	
1,2-Dichloroethane-d4 (S)	106	%	85-115	1		08/22/17 21:33	17060-07-0	
300.0 IC Anions 28 Days	Analytical Met	hod: EPA 300.0	Preparation Met	hod: El	PA 300.0			
Chloride	208	mg/kg	103	10	08/22/17 15:31	08/22/17 15:31	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(6- 7') Results reported on a "wet-weight" b		7572014018	Collected: 08/09/	17 15:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	24	5 mg/kg	96.5	10	08/22/17 15:46	08/22/17 15:46	6 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2(9- 10') Results reported on a "wet-weight" but		7572014019	Collected: 08/09/	17 15:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical N	Method: EPA 300	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	160	mg/kg	98.8	10	08/22/17 16:02	08/22/17 16:0	2 16887-00-6	

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical[®] www.pacelabs.com

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-2 (14-15')	Lab ID: 757	2014020	Collected: 08/09/1	7 15:00	0 Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" k	basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 80	15B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	9.8	1	08/23/17 08:36	08/24/17 13:31		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	9.8	1	08/23/17 08:36	08/24/17 13:31		
n-Tetracosane (S)	76	%	65-119	1	08/23/17 08:36	08/24/17 13:31	646-31-1	
p-Terphenyl (S)	79	%	41-131	1	08/23/17 08:36	08/24/17 13:31	92-94-4	
Gasoline Range Organics	Analytical Mether	nod: EPA 80 [°]	15B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO	ND	mg/kg	10.3	1	08/20/17 00:00	08/21/17 22:04		
<i>Surrogates</i> 4-Bromofluorobenzene (S)	97	%	64-122	1	08/20/17 00:00	08/21/17 22:04	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 82	60					
Benzene	ND	ug/kg	5.2	1		08/22/17 21:49	71-43-2	
Ethylbenzene	ND	ug/kg	5.2	1		08/22/17 21:49	100-41-4	
Toluene	ND	ug/kg	5.2	1		08/22/17 21:49	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	5.2	1		08/22/17 21:49	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 21:49	2037-26-5	
4-Bromofluorobenzene (S)	102	%	87-115	1		08/22/17 21:49	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	85-115	1		08/22/17 21:49	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Preparation Met	hod: El	PA 300.0			
Chloride	107	mg/kg	104	10	08/22/17 16:17	08/22/17 16:17	16887-00-6	M1

Project:	212C-MD-00938/EVGSAU 3366-029
	2120-101D-00330/L 000A0 3300-023

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 2(19-20') Results reported on a "wet-weight"		7572014021	Collected: 08/08	/17 15:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation M	ethod: EP	A 300.0			
Chloride	11	1 mg/kg	99.2	10	08/22/17 17:17	08/22/17 17:1	7 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 (0- 1')	Lab ID: 757	2014022 Co	ollected: 08/09/1	7 17:00	Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for perce	ent moisture, sa	mple s	ize and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 8015B	Preparation Me	ethod: E	PA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	12.3	1	08/23/17 08:36	08/24/17 13:40		
TPH-ORO (C28-C35) <i>Surrogates</i>	ND	mg/kg	12.3	1	08/23/17 08:36	08/24/17 13:40		
n-Tetracosane (S)	68	%	65-119	1	08/23/17 08:36	08/24/17 13:40	646-31-1	
p-Terphenyl (S)	70	%	41-131	1	08/23/17 08:36	08/24/17 13:40	92-94-4	
Gasoline Range Organics	Analytical Mether	nod: EPA 8015B	Preparation Me	ethod: E	PA 5035A/5030B			
TPH-GRO <i>Surrogates</i>	ND	mg/kg	12.7	1	08/20/17 00:00	08/21/17 22:20		
4-Bromofluorobenzene (S)	95	%	64-122	1	08/20/17 00:00	08/21/17 22:20	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 8260						
Benzene	ND	ug/kg	6.2	1		08/22/17 22:05	71-43-2	
Ethylbenzene	ND	ug/kg	6.2	1		08/22/17 22:05	100-41-4	
Toluene	ND	ug/kg	6.2	1		08/22/17 22:05	108-88-3	
Xylene (Total)	ND	ug/kg	6.2	1		08/22/17 22:05	1330-20-7	
Surrogates								
Toluene-d8 (S)	99	%	87-112	1		08/22/17 22:05		
4-Bromofluorobenzene (S)	102	%	87-115	1		08/22/17 22:05		
1,2-Dichloroethane-d4 (S)	109	%	85-115	1		08/22/17 22:05	17060-07-0	
300.0 IC Anions 28 Days	Analytical Mether	nod: EPA 300.0	Preparation Met	hod: EF	PA 300.0			
Chloride	2080	mg/kg	122	10	08/22/17 17:32	08/22/17 17:32	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(2- 3') Results reported on a "wet-weight" b		7572014023	Collected: 08/09/	17 17:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	48	7 mg/kg	97.3	10	08/22/17 17:47	08/22/17 17:4	7 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 (4- 5')	Lab ID: 757	2014024	Collected: 08/09/1	7 17:00) Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" ba	asis and are adj	usted for pe	ercent moisture, sa	mple s	ize and any dilut	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Meth	nod: EPA 801	15B Preparation Me	ethod: E	PA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 13:50		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	10.8	1	08/23/17 08:36	08/24/17 13:50		
n-Tetracosane (S)	74	%	65-119	1	08/23/17 08:36	08/24/17 13:50	646-31-1	
p-Terphenyl (S)	74	%	41-131	1	08/23/17 08:36	08/24/17 13:50	92-94-4	
Gasoline Range Organics	Analytical Meth	nod: EPA 801	15B Preparation Me	ethod: E	PA 5035A/5030B			
TPH-GRO	ND	mg/kg	11.0	1	08/20/17 00:00	08/21/17 22:36		
Surrogates 4-Bromofluorobenzene (S)	96	%	64-122	1	08/20/17 00:00	08/21/17 22:36	460-00-4	
8260/5035A Volatile Organics	Analytical Meth	nod: EPA 826	60					
Benzene	ND	ug/kg	5.4	1		08/22/17 22:21	71-43-2	
Ethylbenzene	ND	ug/kg	5.4	1		08/22/17 22:21	100-41-4	
Toluene	ND	ug/kg	5.4	1		08/22/17 22:21	108-88-3	
Xylene (Total)	ND	ug/kg	5.4	1		08/22/17 22:21	1330-20-7	
Surrogates								
Toluene-d8 (S)	99	%	87-112	1		08/22/17 22:21	2037-26-5	
4-Bromofluorobenzene (S)	103	%	87-115	1		08/22/17 22:21		
1,2-Dichloroethane-d4 (S)	110	%	85-115	1		08/22/17 22:21	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 300	0.0 Preparation Met	hod: EF	PA 300.0			
Chloride	2180	mg/kg	216	20	08/22/17 08:00	08/23/17 16:36	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(6- 7') Results reported on a "wet-weight" b		7572014025	Collected: 08/09/	17 17:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	1350	0 mg/kg	101	10	08/22/17 18:18	08/22/17 18:18	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3(9- 10') Results reported on a "wet-weight" b		7572014026	Collected: 08/09/	17 17:00	Received: 08	/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical I	Method: EPA 300	0.0 Preparation Me	thod: EP	A 300.0			
Chloride	672	2 mg/kg	96.9	10	08/22/17 18:33	08/22/17 18:3	3 16887-00-6	

Received by OCD: 4/22/2024 12:46:08 PM Pace Analytical[®] www.pacelabs.com

ANALYTICAL RESULTS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB-3 (14-15')	Lab ID: 757	2014027	Collected: 08/09/1	7 17:0	0 Received: 08	/15/17 08:50 N	latrix: Solid	
Results reported on a "dry weight" k	basis and are adj	iusted for p	ercent moisture, sa	mple s	size and any dilu	tions.		
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
8015B Diesel Range Organics	Analytical Mether	nod: EPA 80	15B Preparation Me	ethod: E	EPA 3546			
TPH-DRO (C10-C28)	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 13:59		
TPH-ORO (C28-C35) Surrogates	ND	mg/kg	10.5	1	08/23/17 08:36	08/24/17 13:59		
n-Tetracosane (S)	84	%	65-119	1	08/23/17 08:36	08/24/17 13:59	646-31-1	
p-Terphenyl (S)	85	%	41-131	1	08/23/17 08:36	08/24/17 13:59	92-94-4	
Gasoline Range Organics	Analytical Mether	nod: EPA 80	15B Preparation Me	ethod: E	EPA 5035A/5030B			
TPH-GRO	ND	mg/kg	10.7	1	08/23/17 00:00	08/23/17 14:32		
<i>Surrogates</i> 4-Bromofluorobenzene (S)	100	%	64-122	1	08/23/17 00:00	08/23/17 14:32	460-00-4	
8260/5035A Volatile Organics	Analytical Mether	nod: EPA 82	60					
Benzene	ND	ug/kg	5.4	1		08/22/17 22:37	71-43-2	
Ethylbenzene	ND	ug/kg	5.4	1		08/22/17 22:37	100-41-4	
Toluene	ND	ug/kg	5.4	1		08/22/17 22:37	108-88-3	
Xylene (Total) <i>Surrogates</i>	ND	ug/kg	5.4	1		08/22/17 22:37	1330-20-7	
Toluene-d8 (S)	100	%	87-112	1		08/22/17 22:37	2037-26-5	
4-Bromofluorobenzene (S)	104	%	87-115	1		08/22/17 22:37	460-00-4	
1,2-Dichloroethane-d4 (S)	107	%	85-115	1		08/22/17 22:37	17060-07-0	
300.0 IC Anions 28 Days	Analytical Meth	nod: EPA 30	0.0 Preparation Met	hod: E	PA 300.0			
Chloride	425	mg/kg	103	10	08/22/17 18:48	08/22/17 18:48	16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 3(19-20') Results reported on a "wet-weight" b		7572014028	Collected: 08/09	/17 17:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation M	ethod: EP	A 300.0			
Chloride	13	1 mg/kg	98.8	10	08/22/17 19:03	08/22/17 19:03	3 16887-00-6	

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Sample: EVGSAU 3366-029 SB- 3(24-25') Results reported on a "wet-weight"		7572014029	Collected: 08/09,	17 17:00	Received: 08	8/15/17 08:50	Matrix: Solid	
Parameters	Results	Units	Report Limit	DF	Prepared	Analyzed	CAS No.	Qual
300.0 IC Anions 28 Days	Analytical	Method: EPA 30	0.0 Preparation Me	ethod: EP	A 300.0			
Chloride	10	8 mg/kg	97.7	10	08/22/17 19:18	08/22/17 19:1	8 16887-00-6	

QUALITY CONTROL DATA

- ,		938/EVG	SAU 3366-02	9									
Pace Project No.:	7572014												
QC Batch:	490632			Analys	is Method:	: E	PA 8015B						
QC Batch Method:	EPA 5035A/	5030B		Analys	is Descript	tion: G	Basoline Rar	nge Organic	s				
Associated Lab Sam	ples: 75720	014002,	7572014005,	7572014007,	, 7572014	015, 75720	014017, 757	2014020, 7	572014022	2, 7572014	1024		
METHOD BLANK:	2008512			Ν	latrix: Sol	id							
Associated Lab Sam	ples: 75720	014002,	7572014005,			-	014017, 757	2014020, 7	572014022	2, 7572014	1024		
Param	eter		Units	Blank Resulf		eporting Limit	Analyz	zed	Qualifiers				
TPH-GRO 4-Bromofluorobenze	ne (S)		mg/kg %		ND 112	10.0 64-122							
LABORATORY CON	TROL SAMPL	_E: 20	08513										
Param	eter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		ualifiers	_		
TPH-GRO 4-Bromofluorobenze	ne (S)		mg/kg %	50		48.4	97 109		-130 -122		-		
MATRIX SPIKE & M	ATRIX SPIKE	DUPLIC	ATE: 2008	514 MS	MSD	2008515							
			7572002014	Spike	Spike	MS	MSD	MS	MSD	% Rec		Max	
Parameter		Units	Result	Conc.	Conc.	Result	Result	% Rec	% Rec	Limits	RPD	RPD	Qual
TPH-GRO 4-Bromofluorobenzer		mg/kg %	ND	56	56	58.0	56.0	102 101	98 87	85-125 64-122	4	12	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA

- ,	12C-MD-00938/E 572014	EVGSAU 3366-02	9						
QC Batch:	491143		Analysis	Method:	EPA 8015B	EPA 8015B			
QC Batch Method: EPA 5035A/5030B			Analysis	Analysis Description:		Gasoline Range Organics			
Associated Lab Samp	les: 75720140	27							
METHOD BLANK: 2	010285		Mat	trix: Solid					
Associated Lab Samp	les: 75720140	27							
			Blank	Reporti	ng				
Parame	Parameter		Result	Limit	Analyz	ed Quali	fiers		
TPH-GRO		mg/kg	1	ND	10.0 08/23/17	11:22			
4-Bromofluorobenzene	e (S)	%	1	10 64	-122 08/23/17 [·]	11:22			
LABORATORY CONT	ROL SAMPLE:	2010286							
			Spike	LCS	LCS	% Rec			
Parame	Parameter Units		Conc.	Result	% Rec	Limits	Qualifiers		
TPH-GRO		mg/kg	50	51.7	103	85-130			
4-Bromofluorobenzene	e (S)	%			105	64-122			

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

Project:	212C-ME	0-00938/EV	GSAU 3366-029	Э				
Pace Project No.:	7572014							
QC Batch:	490867			Analysis Met	hod: Ef	PA 8260		
QC Batch Method:	EPA 82	60		Analysis Des	cription: 82	260 MSV 5035A	Volatile Orga	anics
Associated Lab Samp		2572014002 2572014027		7572014007, 7572	014015, 75720 [,]	14017, 75720140	020, 757201	4022, 7572014024
METHOD BLANK: 2	2009313			Matrix:	Solid			
Associated Lab Samp		2572014002 2572014027		7572014007, 7572	014015, 75720 ⁻	14017, 75720140	20, 757201	4022, 7572014024,
				Blank	Reporting			
Parame	eter		Units	Result	Limit	Analyzed	Qualif	iers
Benzene			ug/kg	ND	5.0	08/22/17 18:03		
Ethylbenzene			ug/kg	ND	5.0	08/22/17 18:03	;	
Toluene			ug/kg	ND	5.0	08/22/17 18:03	5	
Xylene (Total)			ug/kg	ND	5.0	08/22/17 18:03	5	
1,2-Dichloroethane-d	4 (S)		%	105	85-115	08/22/17 18:03	5	
4-Bromofluorobenzer	ne (S)		%	104	87-115	08/22/17 18:03	5	
Toluene-d8 (S)			%	101	87-112	08/22/17 18:03	5	
LABORATORY CON	TROL SA	MPLE: 2	009314					
Dama			11-26-		LCS		% Rec	Qualifian

	Spike	LCS	LCS	% Rec	
Units	Conc.	Result	% Rec	Limits	Qualifiers
ug/kg	100	87.6	88	81-115	
ug/kg	100	82.4	82	76-119	
ug/kg	100	84.1	84	77-116	
ug/kg	300	247	82	76-121	
%			109	85-115	
%			105	87-115	
%			101	87-112	
	ug/kg ug/kg ug/kg % %	Units Conc. ug/kg 100 ug/kg 100 ug/kg 100 ug/kg 300 % %	Units Conc. Result ug/kg 100 87.6 ug/kg 100 82.4 ug/kg 100 84.1 ug/kg 300 247 % % %	Units Conc. Result % Rec ug/kg 100 87.6 88 ug/kg 100 82.4 82 ug/kg 100 84.1 84 ug/kg 300 247 82 % 109 105 105	Units Conc. Result % Rec Limits ug/kg 100 87.6 88 81-115 ug/kg 100 82.4 82 76-119 ug/kg 100 84.1 84 77-116 ug/kg 300 247 82 76-121 % 109 85-115 109 85-115 % 105 87-115 105 87-115

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project: 212	C-MD-00938/EV	GSAU 3366-029										
Pace Project No.: 757	2014											
QC Batch: 49	1042		Analysi	s Method:	EF	PA 8015B						
QC Batch Method: El	PA 3546		Analysi	s Descript	ion: EF	PA 8015B						
Associated Lab Samples	: 7572014002 7572014027	, 7572014005, 7	572014007,	75720140	015, 757201	4017, 7572	2014020, 75	572014022	2, 7572014	1024,		
METHOD BLANK: 200	9940		M	latrix: Soli	d							
Associated Lab Samples	: 7572014002 7572014027	, 7572014005, 7	572014007,	75720140	015, 757201	4017, 7572	2014020, 75	572014022	2, 7572014	024,		
			Blank		eporting							
Parameter		Units	Result		Limit	Analyz	ed	Qualifiers				
TPH-DRO (C10-C28)		mg/kg		ND	9.8	08/24/17	10:12					
		mg/kg		ND	9.8	08/24/17	10:12					
TPH-ORO (C28-C35)		iiig/ikg										
n-Tetracosane (S)		% %		92 92	65-119 41-131	08/24/17 08/24/17	-					
n-Tetracosane (S) p-Terphenyl (S)	DL SAMPLE: 2	%	Snika	92	41-131	08/24/17	10:12					
TPH-ORO (C28-C35) n-Tetracosane (S) p-Terphenyl (S) LABORATORY CONTRO Parameter	DL SAMPLE: 2	%	Spike Conc.	-	41-131		-		ualifiers			
n-Tetracosane (S) p-Terphenyl (S) LABORATORY CONTRO	DL SAMPLE: 2	% % 009941	•	92 LCS	41-131	08/24/17	10:12 % Rec Limits		ualifiers			
n-Tetracosane (S) p-Terphenyl (S) LABORATORY CONTRO Parameter	DL SAMPLE: 2	009941 Units mg/kg %	Conc.	92 LCS	41-131	08/24/17 LCS % Rec	10:12 % Rec Limits 80	Q	ualifiers			
n-Tetracosane (S) p-Terphenyl (S) _ABORATORY CONTRO Parameter TPH-DRO (C10-C28)	DL SAMPLE: 2	009941 Units mg/kg	Conc.	92 LCS	41-131	08/24/17 LCS % Rec 90	10:12 % Rec Limits 80 65	Q1 -112	ualifiers			
n-Tetracosane (S) p-Terphenyl (S) _ABORATORY CONTRO Parameter TPH-DRO (C10-C28) n-Tetracosane (S) p-Terphenyl (S)		% % 009941 Units mg/kg % %	80.9	92 LCS	41-131	08/24/17 LCS % Rec 90 86	10:12 % Rec Limits 80 65	Q1 -112 5-119	ualifiers			
n-Tetracosane (S) p-Terphenyl (S) LABORATORY CONTRO Parameter TPH-DRO (C10-C28) n-Tetracosane (S)		% % 009941 Units mg/kg % %	80.9	92 LCS	41-131 	08/24/17 LCS % Rec 90 86 85	10:12 % Rec Limits 80 65 41	Qi -112 -119 -131				
n-Tetracosane (S) p-Terphenyl (S) _ABORATORY CONTRO Parameter TPH-DRO (C10-C28) n-Tetracosane (S) p-Terphenyl (S) MATRIX SPIKE & MATR	IX SPIKE DUPLI	% % 009941 Units mg/kg % % CATE: 20099 7572007029	42 MS Spike	92 LCS Resu MSD Spike	41-131 	08/24/17 LCS % Rec 90 86 85 MSD	10:12 % Rec Limits 80 65 41	Qi -112 -119 -131 MSD	% Rec		Мах	
n-Tetracosane (S) p-Terphenyl (S) _ABORATORY CONTRO Parameter TPH-DRO (C10-C28) n-Tetracosane (S) p-Terphenyl (S)		% % 009941 Units mg/kg % % CATE: 20099	42 MS	92 LCS Resu MSD	41-131 	08/24/17 LCS % Rec 90 86 85	10:12 % Rec Limits 80 65 41	Qi -112 -119 -131		RPD	Max RPD	Qua
n-Tetracosane (S) p-Terphenyl (S) ABORATORY CONTRO Parameter IPH-DRO (C10-C28) n-Tetracosane (S) p-Terphenyl (S) MATRIX SPIKE & MATR Parameter	IX SPIKE DUPLI	% % 009941 Units mg/kg % % CATE: 20099 7572007029 Result	42 MS Spike	92 LCS Resu MSD Spike	41-131 	08/24/17 LCS % Rec 90 86 85 MSD	10:12 % Rec Limits 80 65 41	Qi -112 -119 -131 MSD	% Rec Limits	RPD 54	RPD	
n-Tetracosane (S) p-Terphenyl (S) LABORATORY CONTRO Parameter TPH-DRO (C10-C28) n-Tetracosane (S) p-Terphenyl (S) MATRIX SPIKE & MATR	IX SPIKE DUPLI Units	% % 009941 Units mg/kg % % CATE: 20099 7572007029 Result	42 MS Spike Conc.	92 LCS Resu MSD Spike Conc.	41-131 1t 72.7 2009943 MS Result	08/24/17 LCS % Rec 90 86 85 85 MSD Result	10:12 % Rec Limits 80 65 41 MS % Rec	Qi -112 -119 -131 MSD % Rec	% Rec Limits		RPD	Qua /11,R1

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

Project:	212C-N	1D-00938/EVG	SAU 3366-029										
Pace Project No.:	757201	4											
QC Batch:	49044	2		Analys	is Method	: E	PA 300.0						
QC Batch Method:	EPA 3	0.00		Analys	is Descrip	tion: 3	800.0 IC Anic	ons					
Associated Lab San	nples:	7572014001, 7572014009,	7572014002, 7 7572014010	572014003	, 7572014	004, 75720	014005, 7572	2014006, 7	572014007	, 7572014	008,		
METHOD BLANK:	200767	4		N	Aatrix: Sol	lid							
Associated Lab San	nples:	7572014001, 7572014009,	7572014002, 7 7572014010	572014003	, 7572014	004, 75720	014005, 7572	2014006, 7	572014007	, 7572014	008,		
Paran	neter		Units	Blank Resul		Reporting Limit	Analyz	ed	Qualifiers				
Chloride			mg/kg		ND	100	08/19/17	08:23		_			
LABORATORY COM	NTROL S	SAMPLE: 20	007675										
Paran	neter		Units	Spike Conc.	LCS Resi		LCS % Rec	% Reo Limits		alifiers			
Chloride			mg/kg	500		485	97	90	D-110				
MATRIX SPIKE & M	IATRIX S		CATE: 20076	76		2007677							
Paramete	٩r	Units	7572004016 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/kg	ND	585	590		·	89	3	80-120			M1
MATRIX SPIKE SAI	MPLE:	20	07678										
Paran	neter		Units	757200 Res		Spike Conc.	MS Result		1S Rec	% Rec Limits		Qual	fiers
Chloride			mg/kg		ND	687	1	39	5	80-1	20 M	1	

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

Project:		0938/EVGS	AU 3366-029										
Pace Project No.:	7572014												
QC Batch:	490485			Analysi	s Method	: E	PA 300.0						
QC Batch Method:	EPA 300.0)		Analysi	s Descrip	tion: 3	00.0 IC Anio	ns					
Associated Lab Sam	757	2014019, 7	572014012, 7 572014020, 7 572014028, 7	572014021,									
METHOD BLANK:	2007886			N	latrix: Sol	id							
Associated Lab Sam	757	2014019, 7	572014012, 75 572014020, 7 572014028, 7	572014021,									
				Blank	R	eporting							
Param	neter		Units	Result	:	Limit	Analyz	ed	Qualifiers	_			
Chloride			mg/kg		ND	100	08/23/17	15:50					
LABORATORY CON	ITROL SAM	PLE: 2007	7887										
Param	ieter		Units	Spike Conc.	LCS Resu		LCS % Rec	% Rec Limits		alifiers			
Chloride			mg/kg	500		476	95	90	-110		-		
MATRIX SPIKE & M	ATRIX SPIK	E DUPLICA	TE: 20078	88		2007889							
Paramete	r	Units	7572014011 Result	MS Spike Conc.	MSD Spike Conc.	MS Result	MSD Result	MS % Rec	MSD % Rec	% Rec Limits	RPD	Max RPD	Qual
Chloride		mg/kg	567	506	499	1040	1040	94	95	80-120			
MATRIX SPIKE SAM	IPLE:	200	7890										
Param	eter		Units	757201 Resu		Spike Conc.	MS Result	M % F	-	% Rec Limits		Qualif	iers
Chloride			mg/kg		107	504		39	6		 120 M		

Results presented on this page are in the units indicated by the "Units" column except where an alternate unit is presented to the right of the result.

REPORT OF LABORATORY ANALYSIS

Date: 08/25/2017 11:00 AM

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALIFIERS

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

DEFINITIONS

DF - Dilution Factor, if reported, represents the factor applied to the reported data due to dilution of the sample aliquot.

ND - Not Detected at or above adjusted reporting limit.

TNTC - Too Numerous To Count

J - Estimated concentration above the adjusted method detection limit and below the adjusted reporting limit.

MDL - Adjusted Method Detection Limit.

PQL - Practical Quantitation Limit.

RL - Reporting Limit.

S - Surrogate

1,2-Diphenylhydrazine decomposes to and cannot be separated from Azobenzene using Method 8270. The result for each analyte is a combined concentration.

Consistent with EPA guidelines, unrounded data are displayed and have been used to calculate % recovery and RPD values.

LCS(D) - Laboratory Control Sample (Duplicate)

MS(D) - Matrix Spike (Duplicate)

DUP - Sample Duplicate

RPD - Relative Percent Difference

NC - Not Calculable.

SG - Silica Gel - Clean-Up

U - Indicates the compound was analyzed for, but not detected.

N-Nitrosodiphenylamine decomposes and cannot be separated from Diphenylamine using Method 8270. The result reported for each analyte is a combined concentration.

Pace Analytical is TNI accredited. Contact your Pace PM for the current list of accredited analytes.

TNI - The Nelac Institute

LABORATORIES

PASI-K Pace Analytical Services - Kansas City

BATCH QUALIFIERS

Batch: 490996

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

Batch: 491374

[M5] A matrix spike/matrix spike duplicate was not performed for this batch due to insufficient sample volume.

ANALYTE QUALIFIERS

- M1 Matrix spike recovery exceeded QC limits. Batch accepted based on laboratory control sample (LCS) recovery.
- R1 RPD value was outside control limits.
- S5 Surrogate recovery outside control limits due to matrix interferences (not confirmed by re-analysis).

REPORT OF LABORATORY ANALYSIS

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 3546	491042	EPA 8015B	491258
7572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 3546	491042	EPA 8015B	491258
7572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 3546	491042	EPA 8015B	491258
7572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 3546	491042	EPA 8015B	491258
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 3546	491042	EPA 8015B	491258
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 3546	491042	EPA 8015B	491258
572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 3546	491042	EPA 8015B	491258
572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 3546	491042	EPA 8015B	491258
572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 3546	491042	EPA 8015B	491258
572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 5035A/5030B	490632	EPA 8015B	490997
572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 5035A/5030B	491143	EPA 8015B	491374
572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 8260	490867		
572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 8260	490867		
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 8260	490867		
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 8260	490867		
572014017	EVGSAU 3366-029 SB-2 (4-5')	EPA 8260	490867		
572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 8260	490867		
572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 8260	490867		
572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 8260	490867		
572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 8260	490867		
572014001	EVGSAU 3366-029 SB-01(0-1')	EPA 300.0	490442	EPA 300.0	490562
572014002	EVGSAU 3366-029 SB-01(2-3')	EPA 300.0	490442	EPA 300.0	490562
572014003	EVGSAU 3366-029 SB-01(4-5')	EPA 300.0	490442	EPA 300.0	490562
572014004	EVGSAU 3366-029 SB-01(6-7')	EPA 300.0	490442	EPA 300.0	490562
572014005	EVGSAU 3366-029 SB-01(9-10')	EPA 300.0	490442	EPA 300.0	490562
572014006	EVGSAU 3366-029 SB-01(14-15')	EPA 300.0	490442	EPA 300.0	490562
572014007	EVGSAU 3366-029 SB-01(19-20')	EPA 300.0	490442	EPA 300.0	490562
572014008	EVGSAU 3366-029 SB-01(24-25')	EPA 300.0	490442	EPA 300.0	490562
572014009	EVGSAU 3366-029 SB-01(29-30')	EPA 300.0	490442	EPA 300.0	490573
572014010	EVGSAU 3366-029 SB-01(34-35')	EPA 300.0	490442	EPA 300.0	490573
572014011	EVGSAU 3366-029 SB-01(39-40')	EPA 300.0	490485	EPA 300.0	491036
572014012	EVGSAU 3366-029 SB-01(44-45')	EPA 300.0	490485	EPA 300.0	491036
572014013	EVGSAU 3366-029 SB-01(49-50')	EPA 300.0	490485	EPA 300.0	491036
572014014	EVGSAU 3366-029 SB-01(54-55')	EPA 300.0	490485	EPA 300.0	491036
572014015	EVGSAU 3366-029 SB-2 (0-1')	EPA 300.0	490485	EPA 300.0	491036
572014016	EVGSAU 3366-029 SB-2(2-3')	EPA 300.0	490485	EPA 300.0	491036
572014010	EVGSAU 3366-029 SB-2 (4-5')	EPA 300.0	490485	EPA 300.0	491036
572014017	EVGSAU 3366-029 SB-2(4-3)	EPA 300.0	490485	EPA 300.0	491036

REPORT OF LABORATORY ANALYSIS

This report shall not be reproduced, except in full, without the written consent of Pace Analytical Services, LLC.

QUALITY CONTROL DATA CROSS REFERENCE TABLE

Project: 212C-MD-00938/EVGSAU 3366-029

Pace Project No.: 7572014

Lab ID	Sample ID	QC Batch Method	QC Batch	Analytical Method	Analytical Batch
7572014020	EVGSAU 3366-029 SB-2 (14-15')	EPA 300.0	490485	EPA 300.0	491036
7572014021	EVGSAU 3366-029 SB-2(19-20')	EPA 300.0	490485	EPA 300.0	491036
7572014022	EVGSAU 3366-029 SB-3 (0-1')	EPA 300.0	490485	EPA 300.0	491036
7572014023	EVGSAU 3366-029 SB-3(2-3')	EPA 300.0	490485	EPA 300.0	491036
7572014024	EVGSAU 3366-029 SB-3 (4-5')	EPA 300.0	490485	EPA 300.0	491104
7572014025	EVGSAU 3366-029 SB-3(6-7')	EPA 300.0	490485	EPA 300.0	491036
7572014026	EVGSAU 3366-029 SB-3(9-10')	EPA 300.0	490485	EPA 300.0	491036
7572014027	EVGSAU 3366-029 SB-3 (14-15')	EPA 300.0	490485	EPA 300.0	491036
7572014028	EVGSAU 3366-029 SB-3(19-20')	EPA 300.0	490485	EPA 300.0	491036
7572014029	EVGSAU 3366-029 SB-3(24-25')	EPA 300.0	490485	EPA 300.0	491036

REPORT OF LABORATORY ANALYSIS

Pace Analytical"	Document Name: Sample Condition Upon Receipt	Document Revised: 7/25/16 Page 1 of 1
FaceAnalytical	Document No.: F-DAL-C-001-rev.06	lssuing Authority: Pace Dallas Quality Office
	Sample Condition Upon F	
⊠Dallas □Ft Worth	□San Angelo	WO#:7572014
Client Name: Tetra Tech	Project Work order:	
racking#: 7970 UPS USPS Client Co	01910 / 7420 8979	1 1909
ustody Seal on Cooler/Box: Yes	No Seals Intact: Yes	Non NAn
	Subble Bags	None Other
hermometer Used: IR-CS4 Type of Ice	가지 않는 아이들에 가는 속도 한 것을 가지 않는 것이 같이 많이 많이 많이 많이 많이 많이 많이 했다.	mple Received on ice, cooling process has begun
boler temp C: 4, 3, 4.0(Recorded) _C	2. C (Correction Factor) -1.5, 9.C	(Actual) Temp should be above freezing to 6°C
hain of Custody Present	Yes No D NA D	1
hain of Custody filled out	Yes No D NA D	2
hain of Custody relinquished	Yes No D NA D	3
ampler name & signature on COC	Yes No D NA D	4
ample received within HT	Yes No D NA D	5
hort HT analyses (<72 hrs)	Yes D No P NA D	6
ush TAT requested	Yes D No D NA D	7
ufficient Volume received	Yes No D NA D	8
Correct Container used	Yes No D NA D	9
ace Container used	Yes No I NA I	
ontainer Intact	Yes No D NA D	10
Inpreserved 5035A soil frozen within 48 hrs	Yes D NO D NA	11
iltered volume received for Dissolved tests	Yes D NOTES INA 6	12
ample labels match COC	Yes No NA	13 samples 22-29 do not match
nclude date/time/ID/analyses Matrix:	EOUD	
All containers needing preservation have bee	n checked Yes No NA D	14a. Lot# of pH strip: Original pH: <= or >= 2= 9= 12= or received Neutral = Lot# of lodine strip: Lot# of Lead Acetate strip:
Do containers require preservation at the lab	Yes D No D NA D	14b. Preservation: Lot# and adjusted pH: pH<2
All containers needing preservation are found Compliance with EPA recommendation Exception: VOA, coliform, O&G	itobein Yes 🗆 No 🗆 NA 🗆 Yes 🗆 No 🗗	14c.
Are soil samples (volatiles) received in Bul		15.
rip Blank present	Yes D No D NA D	16.
rip Blank Custody Seals Intact	Yes D No D NA D	
ace Trip Blank Lot# (if purchased):		
leadspace in VOA (>6mm)	Yes D No D NA Z	17.
I II II DOD A D III IA	Yes 🖵 No 🗆 NA 🗆	18. List State
Project sampled in USDA Regulated Area: Client Notification/Resolution/Comments:	Dator	
	Dater	

Received by OCD: 4/22/2024 12:46:08 PM

Released to Imaging: 4/22/2024 2:36:08 PM Page 44 of 47

Macher

Page 81 of 306

E.	Tetra Tech. Inc.			4000 N. Big 401 Midit Tel (40 Fax (4	4000 N. Big Spring Sifret, Site 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	9. in										
Client Name:	Conoco Phillips	Site Manager:		Ike Tavarez	Zə		-				SIS RE(QUEST	2.0			
Project Name:	EVGSAU 3366-029						Ē		Circle	or spe	Specify I	Method	ON DO.	2		E
Project Location: state)	feounty, Lea Co NM	Project #:		212C-	2C-MD-00938									(18		-
Invoice to:							Г	(08	-		_			il bed	_	_
Receiving Laboratory:	ttory: Pace Analytical	Sampler Signature:	ture:	Clint Merritt	erritt		T	BO - ME			213	_		oslis es		
Comments:	If TPH exceeds 1,000 mg/kg, run deeper sample. If Benzene exceeds 10mg/ sample	te exceeds 10n	ng/kg or tota	I BTEX exc	eeds 50 mg	kg or total BTEX exceeds 50 mg/kg, run deeper	80928 X						SOT	in the second		-
		SAMPLING	LING	MATRIX	PRESERVATIVE METHOD	1	BTB	_	l sA g/		8 .loV		etallu	202101010101		
LAB # LAB USE)	SAMPLE IDENTIFICATION	YEAR.	TIME	MATER SOIL	ICE HNO ³ HCF	CONTAINE	FILTERED (Y BISOB XETE BISOB XETE	54H 8520C L6H 8012W (L6H 1X1002	A slateM latoT A slateM 9101	rcup Volatiles rcup Semi Vo rcu	3C/WS 26ml, 8 3C/WS 26ml, 8 3C/WS Vol. 8	PCB's 8082 / 0 PCB's 8082 / 0 PCB's 8082 / 0	Shloride	3eneral Wate ≜nion/Cation		bioł
8	EVGSAU 3366-029 SB-1 (0-1')	8/9/2017	14:00	×	×	-	-						×	1.0		-
600	EVGSAU 3366-029 SB-1 (2'-3')	8/9/2017	14:00	×	×	1	×	×					×	-		-
603	EVGSAU 3366-029 SB-1 (4'-5')	8/9/2017	14:00	×	×	F							×			
000	EVGSAU 3366-029 SB-1 (6'-7')	8/9/2017	14:00	×	×	Ŧ							×			-
005	EVGSAU 3366-029 SB-1 (9'-10')	8/9/2017	14:00	×	×	1	×	×					×			
000	EVGSAU 3366-029 SB-1 (14-15')	8/9/2017	14:00	×	×	Γ	-						×			
007	EVGSAU 3366-029 SB-1 (19-20')	8/9/2017	14:00	×	×	F	×	×					×			
200	EVGSAU 3366-029 SB-1 (24'-25')	8/9/2017	14:00	×	×	1							×		-	
600	EVGSAU 3366-029 SB-1 (29'-30')	8/9/2017	14:00	×	×	7	-						×			
010	EVGSAU 3366-029 SB-1 (34-35')	8/9/2017	14:00	×	×	-							×			5
Relinquished by: Clint Merritt	C Date: Time: 8/14/17 17:00	Received by:	A	Date	tte: Time:	×1 1/2	LAE	LAB USE ONLY		REMARKS						
Relinquished by:	c Date: Time:	Received by:	1	Date			Samp	Sample Temperature	ture	L RUI	TRUSH: Same Day		24 hr	48 hr 72 hr	72 hr	
Relinquished by:	c Date: Time:	Received by:		Da	Date: Time:		4.	5,4	h	Bus Chus	Rush Charges Authorized	es Autho ort Limits	rized or TRRI	P Repor	Ŧ	
Page 45 of		ORIGINAL COPY	COPY				(Circle	(Circle) HAND DELIVERED	ELIVERE	PEDEX UPS	10 L	Tracking #:	ozhL :	20 80	626	909

Released to Imaging: 4/22/2024 2:36:08 PM

•

r573614 Page 82 of 306

(F)	Tetra Tech. Inc.			4000 N. Bi 401 Mid Tel (4 Fax (4	4000 N. Big Spring Street, Sle 401 Midland,Texas 79705 Tel (432) 682-4559 Fax (432) 682-3946	8									
Client Name:	Conoco Phillips	Site Manager:		Ike Tavarez	ez		-		1.0	NALYS	ANALYSIS REQUEST	IEST			
Project Name:	EVGSAU 3366-029						Г	0	Circle	or Spe	Specify Method	thod	No.)		
Project Location: (c state)	(county, Lea Co NM	Project #:		212C	212C-MD-00938		Г		_		_		()s	_	_
Invoice to:							Г		_	_		_	sil bad		_
Receiving Laboratory:	Pace Analytical	Sampler Signature	ure:	Clint Merritt	lerritt		Т					-	loette et		_
Comments: If TPH s sample	excet	exceeds 10m	J/kg or total	BTEX exce	seds 50 mg	g or total BTEX exceeds 50 mg/kg, run deeper	80928 X	о · ояа		169	11.00	-	nistry (se TDS		
		SAMPLIN	DNI	MATRIX	PRESERVATIVE METHOD	รษ	BTB	- OHĐ	a sy By		28 'lo\	(1	ifate r Cher		_
LAB# (LABUSE)	SAMPLE IDENTIFICATION	YEAR: ATE	IME	Ajter Oil	SE NO ³ CF	СОИТАІИЕ	LTERED (Y 15X 80218 71055 71055 71055	AH 8270C	A slefeM lefo A slefeM 913 SellfeloV 913	oV imeS 9JC CI C/MS Vol. 8: C/MS Vol. 8:	, ime2 2M/C	MAC sots9dsA) M. 9bitoli	aloride Su aneral Wate	l noileO\noir	plo
D() EVG	EVGSAU 3366-029 SB-1 (39'-40')	8/9/2017	1-00	s ×	1	-	8	LI L	1	н	bi B	ld	_		н
CID EVG	EVGSAU 3366-029 SB-1 (44'-45')	8/9/2017	14:00	×	×	-	F		-	-		< >			-
C/7 EVG	EVGSAU 3366-029 SB-1 (49'-50')	8/9/2017	14:00	×	×	-	-			-		×	-		
DId EVGS	EVGSAU 3366-029 SB-1 (54'-55')	8/9/2017	14:00	×	×	Ŧ						×			
OIS EVGS	EVGSAU 3366-029 SB-2 (0-1°)	8/9/2017	15:00	×	×	-	×	×				×			
OI D EVG	EVGSAU 3366-029 SB-2 (2'-3')	8/9/2017	15:00	×	×	+						×	1		
0171 EVG	EVGSAU 3366-029 SB-2 (4'-5')	8/9/2017	15:00	×	×	+	×	×				×	-		
ON EVGS	EVGSAU 3366-029 SB-2 (6'-7')	8/9/2017	15:00	×	×	-						×			
C (EVG	EVGSAU 3366-029 SB-2 (9'-10')	8/9/2017	15:00	×	×	Ŧ						×			
030 EVES	EVGSAU 3366-029 SB-2 (14-15')	8/9/2017	15:00	×	×	+	×	×				×			
Relinquished by: Clint Merritt	Date: Time: 8/14/17 17:00	Received by:		S L	te: Time.	Blickn.	LAB	AB USE ONLY		REMARKS:					
Relinquished by:	Date: Time:	Received by:		Date	fe: Time:		11	Sample Temperature	Ire	RUSH	RUSH: Same Day	Day 24 hr	hr 48 hr	nr 72 hr	
Relinquished by:	Date: Time:	Received by:		Da	Date: Time:		4.	2, 4.	M	Rush	Rush Charges Authorized	uthorized	IRRP R	eport	
Page 46 of		ORIGINAL COPY	COPY				(Circle)	(Circle) HAND DELIVERED	LIVERED	FEDEX	JUPS Trac	racking #:	1420	PT 78	0161

Released to Imaging: 4/22/2024 2:36:08 PM

757 Jory Page 83 of 306

Claractions Concoo Printings Read Namage: Intel Taivates Anna Yasis Raction Peade Name: EVGSAU 3366-029 Peade Name: EVGICal Col Col Specify Mei Propertity Anna Yasis Raction Peade Name: EVGSAU 3366-029 Peade Analytical Col Col Col For Specify Mei Propertity Anna Yasis Raction Anna Yasis Raction Peade Name: EVGSAU 3366-029 Peade Analytical Concol For Name Peade Analytical Col Col Col For Specify Mei Propertity Anna Yasis Raction Memory Low Peade Analytical Sample Specific Science Sample Specific Science Anna Yasis Raction Anna Yasis Raction Concol For Name Sample Specific Science Sample Specific Science Sample Specific Science Sample Specific Science Anna Yasis Raction Concol For Name Sample Specific Science Sample Specific Science Sample Specific Science Sample Specific Science Specific Science Specific Science Mainter Sample Specific Science Mainter Sample Specific Science Sammere Sammere Sampl	
EVCSAU 3366-029 EVCSAU 3366-029 Control Contro Control Control	ANALYSIS REQUEST
County, I.ea Co NM Total Pace Analytical Polyter t. 212C-MD-00938 or. Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical or. Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical or. Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical or. Pace Analytical Sampler Signature Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical or. Pace Analytical Sampler Signature Antimetrical Analytical Clint Merriti Pace Analytical Clint Merriti Pace Analytical Filter Filter Filter Martinit Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filter Filt	Circle or Specify Method No.)
От: Pace Analytical Clint Merriti Pace Analytical Bane Same Clint Merriti Pace Analytical Clint Merriti Clint Merriti Pace Analytical Sampler Sample: Clint Merriti Pace Analytical Sampler Sample: Clint Merriti Pace Analytical Sample: Clint Merriti Pace Analytical Sample: Clint Merriti Pace Analytical Sample: Clint Merriti Sample: Clint Merriti Clint Merriti Sample: Clint Merriti Clint Merriti Sample: Clint Merriti Merriti Sample: Febre: Martinix	():
Орг. Расе Алају(cal) Campuer Signature: Orint Merritt Pace Analytical Campuer Signature: Clint Merritt Clint Merritt Pace Analytical Sample signature: Clint Merritt Clint Merritt Pace Analytical Sample signature: Clint Merritt Clint Merritt Pace Analytical Sample signature: Clint Merritt Pace Analytical Sample signature: Sample signature: Sample signature: Clint Merritt Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: Sample signature: For An apple signature: Sample signature: The Sample signature: Sample signature: For An apple signature	6
If TH Pacceeds 1,000 mg/kg, run deeper sample. If Benzene exceeds 1,000 mg/kg, run deeper sample. The sample reservations is sample. The sample reservation is sample reservation. Date: Time: Date: Time: 	H aS de
SAMPLE IDENTIFICATION SAMPLE IDENTIFICATION MATTENT	Pia Cd Cr I TDS 624 624
SAMPLE IDENTIFICATION Refer Tener Ender Tener Ender Tener Tener<	9 84 8 181165 2608 / 201. 82 808 11816 11816 11816
EVGSAU 3366-029 SB-2 (19:-20) (8/2017) 15:00 X 1 X 1 1 X X X 1 X X X 1 X X X X X X	Total Metals A(CCLP Metals A CCLP Volatiles CCLP Semi Vo SC/MS Semi Vo SC/MS Vol. 82 CCLP Semi Vo SC/MS Vol. 82 CCLP Semi Vo STORN Vol. 82 CCLP Semi Vo Storide SC/MS Vol. 82 CCLP Semi Vo Storide SC/MS Volatiles Storide SC/MS Semi Vo Storide SC/MS Volatiles Storide SC/MS Semi Vo Storide SC/MS Volatiles Storide SC/MS Semi Vo Storide SC/MS Semi Vo SC/MS SC/MS Semi Vo SC/MS SC/MS SC/MSC/MS SC/MS SC/MS SC
EVGSAU 3366-029 SBŽ-(0-1) X 89/2017 17:00 X 17:00 X 12 X	
EVGSAU 3366-029 SB ² -(1-5) EVGSAU 3366-029 SB ² -(1-5) EVGSAU 3366-029 SB ² -(1-7) EVGSAU 3366-029 SB ² -(1-7) EVGSAU 3366-029 SB ² -(1-15) EVGSAU 340	< ×
EVGSAU 3366-029 SB $\frac{2}{2}$ -(4'-5') B/9/2017 17:00 X X 1 X <	
EVGSAU 3366-029 SB $\frac{2}{2}$ -(6-7') 8/9/2017 17:00 X I I I I I I I I I I I I I I I I I X X I I X X I I X X I I X X I I X X I I X X I X X X I X <t< td=""><td></td></t<>	
EVGSAU 3366-029 SB ² (14 ⁻¹⁵) 8/9/2017 17:00 X 1 X	×
EVGSAU 3366-029 SBŽ-(19'-20') 8/9/2017 17:00 X X 1 X <td>×</td>	×
EVGSAU 3366-029 SBŽ-(19'-20') EVGSAU 3366-029 SBŽ-(24'-25') By 2017 17:00 X X 1	
EVGSAU 3366-029 SB-2(24-25') 8/9/2017 17:00 X X X 1 1 1 1 1 1 17:00 X X X X X X X X X X X X X X X X X X	X
Date: Time: Date: Time: Stick/n LAB USE ONLY 8/14/17 17:00 Received by: Date: Time: Stick/n REV Date: Time: Received by: Date: Time: Sample Temperature Date: Time: Received by: Date: Time: Sample Temperature Date: Time: Received by: Date: Time: Sample Temperature	
Date: Time: Time: Time: Time: Time: RIS/IC REW B14/17 17:00 Ecceved by: Ecceved by: <td< td=""><td></td></td<>	
Date: Time: Received by: Date: Time: Sample Temperature Date: Time: Received by: Date: Time: 4, 2, 4, 5	-
Date: Time: Received by: Date: Time: 4,2,4,5	ature RUSH: Same Day 24 hr 48 hr 72 hr
	<pre>/ .5</pre>
24 CD/TC/CC/ ID'S to SB-3 per Bras 8-16-17 [CITCLE (FEDER) HAND DELIVERED (FEDER) UPS TRACK	FEDEX

Released to Imaging: 4/22/2024 2:36:08 PM

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 3 – INITIAL REMEDIATION LABORATORY DATA

Received by OCD: 4/22/2024 12:46:08 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description: L1065066 01/29/2019 212C-MD-01576 EVGSAU 3366-029

Report To:

Kayla Taylor 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
ESW-2 (4') L1065066-01	6
NSW-2 (4') L1065066-02	7
SSW-2 (4') L1065066-03	8
AH-2 (4') L1065066-04	9
WSW-2 (4') L1065066-05	10
SSW-2 (4' 1.5' OUT) L1065066-06	11
WSW-2 (4' 1.5' OUT) L1065066-07	12
Qc: Quality Control Summary	13
Total Solids by Method 2540 G-2011	13
Wet Chemistry by Method 300.0	15
Volatile Organic Compounds (GC) by Method 8015D/GRO	16
Volatile Organic Compounds (GC/MS) by Method 8260B	17
Semi-Volatile Organic Compounds (GC) by Method 8015	18
GI: Glossary of Terms	19
Al: Accreditations & Locations	20
Sc: Sample Chain of Custody	21

SDG: L1065066 DATE/TIME:

02/05/19 08:59

PAGE: 2 of 22 Received by OCD: 4/22/2024 12:46:08 PM

SAMPLE SUMMARY

ONE LAB. NAT Page 87. of 306

ESW-2 (4') L1065066-01 Solid			Collected by Devin Dominguez	Collected date/time 01/24/19 09:20	Received date/time 01/29/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1230766	1	01/31/19 11:34	01/31/19 11:42	KDW
Wet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 20:17	ST
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 16:18	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 16:41	ACG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 03:38	DMW
			Collected by	Collected date/time	Received date/time
NSW-2 (4') L1065066-02 Solid			Devin Dominguez	01/24/19 09:23	01/29/19 08:00
lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Vet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 20:31	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 16:40	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 17:01	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 03:52	DMW
			Collected by	Collected date/time	Received date/time
SSW-2 (4') L1065066-03 Solid			Devin Dominguez	01/24/19 09:25	01/29/19 08:00
lethod	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
et Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 20:46	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 17:02	ACG
olatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 17:21	ACG
emi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 04:05	DMW
AH-2 (4') L1065066-04 Solid			Collected by Devin Dominguez	Collected date/time 01/24/19 09:28	Received date/time 01/29/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
	Baten	Bildtion	date/time	date/time	, inclusion
otal Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Vet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 21:00	ST
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 17:24	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 17:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 02:57	DMW
			Collected by	Collected date/time	Received date/time
WSW-2 (4') L1065066-05 Solid			Devin Dominguez	01/24/19 09:30	01/29/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
otal Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Vet Chemistry by Method 300.0	WG1229855	1	01/30/19 10:00	01/30/19 21:15	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 17:46	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 18:00	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 04:19	DMW

PROJECT: 212C-MD-01576

SDG: L1065066

DATE/TIME: 02/05/19 08:59

PAGE: 3 of 22

SAMPLE SUMMARY

ONE LAB. NAT Rage 88 of 306

Qc

Gl

Â

Sc

SSW-2 (4' 1.5' OUT) L1065066-06 Solid			Collected by Devin Dominguez	Collected date/time 01/24/19 16:00	Received date/time 01/29/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 21:58	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 18:09	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 18:20	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 04:33	DMW
WSW-2 (4' 1.5' OUT) L1065066-07 Solid			Collected by Devin Dominguez	Collected date/time 01/25/19 11:50	Received date/time 01/29/19 08:00

Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1230768	1	02/01/19 09:37	02/01/19 09:49	KBC
Wet Chemistry by Method 300.0	WG1229855	5	01/30/19 10:00	01/30/19 22:12	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	01/30/19 16:22	02/03/19 18:31	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1230742	1	01/30/19 16:22	01/31/19 18:40	ACG
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1230859	1	01/31/19 11:57	02/01/19 04:46	DMW

SDG: L1065066

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1065066 DATE/TIME: 02/05/19 08:59

9

PAGE: 5 of 22

SAMPLE RESULTS - 01 L1065066

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	89.3		1	01/31/2019 11:42	WG1230766	Tc

Wet Chemistry by Method 300.0

									-
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	103		0.890	10.0	11.2	1	01/30/2019 20:17	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	103		0.890	10.0	11.2	1	01/30/2019 20:17	WG1229855
Volatile Organic Com	oounds (GC) b	y Method	8015D/GF	RO				
Volatile Organic Comp	pounds (GC) b	y Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp		-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000448	0.00100	0.00112	1	01/31/2019 16:41	WG1230742
Toluene	U		0.00140	0.00500	0.00560	1	01/31/2019 16:41	WG1230742
Ethylbenzene	U		0.000593	0.00250	0.00280	1	01/31/2019 16:41	WG1230742
Total Xylenes	U		0.00535	0.00650	0.00728	1	01/31/2019 16:41	WG1230742
(S) Toluene-d8	130				75.0-131		01/31/2019 16:41	WG1230742
(S) Dibromofluoromethane	84.4				65.0-129		01/31/2019 16:41	WG1230742
(S) a,a,a-Trifluorotoluene	85.2				80.0-120		01/31/2019 16:41	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 16:41	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	97.6		1.80	4.00	4.48	1	02/01/2019 03:38	WG1230859
C28-C40 Oil Range	99.7		0.307	4.00	4.48	1	02/01/2019 03:38	WG1230859
(S) o-Terphenyl	64.5				18.0-148		02/01/2019 03:38	WG1230859

SDG: L1065066

DATE/TIME: 02/05/19 08:59 PAGE: 6 of 22 SAMPLE RESULTS - 02 L1065066

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		 2
Total Solids	93.3		1	02/01/2019 09:49	WG1230768	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
			· · · · · · · · · · · · · · · · · · ·	j					
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	377		0.853	10.0	10.7	1	01/30/2019 20:31	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		0
TPH (GC/FID) Low Fraction	U		0.0233	0.100	0.107	1	02/03/2019 16:40	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 16:40	WG1231900	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000429	0.00100	0.00107	1	01/31/2019 17:01	WG1230742
Toluene	U		0.00134	0.00500	0.00536	1	01/31/2019 17:01	WG1230742
Ethylbenzene	U		0.000568	0.00250	0.00268	1	01/31/2019 17:01	WG1230742
Total Xylenes	U		0.00513	0.00650	0.00697	1	01/31/2019 17:01	WG1230742
(S) Toluene-d8	127				75.0-131		01/31/2019 17:01	WG1230742
(S) Dibromofluoromethane	88.0				65.0-129		01/31/2019 17:01	WG1230742
(S) a,a,a-Trifluorotoluene	85.2				80.0-120		01/31/2019 17:01	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 17:01	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.54		1.73	4.00	4.29	1	02/01/2019 03:52	WG1230859
C28-C40 Oil Range	3.32	J	0.294	4.00	4.29	1	02/01/2019 03:52	WG1230859
(S) o-Terphenyl	109				18.0-148		02/01/2019 03:52	WG1230859

SDG: L1065066

PAGE: 7 of 22

²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011

						l'Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	94.8		1	02/01/2019 09:49	WG1230768	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1150		4.20	10.0	52.8	5	01/30/2019 20:46	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ŭ
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.106	1	02/03/2019 17:02	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	99.9				77.0-120		02/03/2019 17:02	WG1231900	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000422	0.00100	0.00106	1	01/31/2019 17:21	WG1230742
Toluene	U		0.00132	0.00500	0.00528	1	01/31/2019 17:21	WG1230742
Ethylbenzene	U		0.000559	0.00250	0.00264	1	01/31/2019 17:21	WG1230742
Total Xylenes	U		0.00504	0.00650	0.00686	1	01/31/2019 17:21	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 17:21	WG1230742
(S) Dibromofluoromethane	87.4				65.0-129		01/31/2019 17:21	WG1230742
(S) a,a,a-Trifluorotoluene	84.2				80.0-120		01/31/2019 17:21	WG1230742
(S) 4-Bromofluorobenzene	104				67.0-138		01/31/2019 17:21	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.45	J	1.70	4.00	4.22	1	02/01/2019 04:05	WG1230859
C28-C40 Oil Range	0.678	J	0.289	4.00	4.22	1	02/01/2019 04:05	WG1230859
(S) o-Terphenyl	94.8				18.0-148		02/01/2019 04:05	WG1230859

SDG: L1065066 [02 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 04 L1065066

Â

Sc

Total Solids by Method 2540 G-2011

	F	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	9	%			date / time		2
Total Solids	ç	92.0		1	02/01/2019 09:49	WG1230768	Tc

Wet Chemistry by Method 300.0

									× ۱
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	926		0.864	10.0	10.9	1	01/30/2019 21:00	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	926		0.864	10.0	10.9	1	01/30/2019 21:00	WG1229855
Volatile Organic Com	oounds (GC) b	by Method	8015D/GF	20				
Volatile Organic Com	Result (dry)	oy Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
	, ,				MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
Volatile Organic Comp Analyte TPH (GC/FID) Low Fraction	Result (dry)		SDL (dry)	Unadj. MQL		Dilution	,	Batch WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000435	0.00100	0.00109	1	01/31/2019 17:40	WG1230742
Toluene	U		0.00136	0.00500	0.00543	1	01/31/2019 17:40	WG1230742
Ethylbenzene	U		0.000576	0.00250	0.00272	1	01/31/2019 17:40	WG1230742
Total Xylenes	U		0.00520	0.00650	0.00707	1	01/31/2019 17:40	WG1230742
(S) Toluene-d8	127				75.0-131		01/31/2019 17:40	WG1230742
(S) Dibromofluoromethane	90.0				65.0-129		01/31/2019 17:40	WG1230742
(S) a,a,a-Trifluorotoluene	86.2				80.0-120		01/31/2019 17:40	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 17:40	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.22	J	1.75	4.00	4.35	1	02/01/2019 02:57	WG1230859
C28-C40 Oil Range	0.503	J	0.298	4.00	4.35	1	02/01/2019 02:57	WG1230859
(S) o-Terphenyl	94.1				18.0-148		02/01/2019 02:57	WG1230859

SDG: L1065066

DATE/TIME: 02/05/19 08:59 PAGE: 9 of 22

SAMPLE RESULTS - 05 L1065066

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					E E
Total Solids	94.9		1	02/01/2019 09:49	WG1230768				
Wet Chemistry b	by Method 300.0								
Wet Chemistry b	by Method 300.0 Result (dry)	Qualifier	SDL (c	lry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	[
Wet Chemistry b	-	Qualifier	SDL (c mg/kg		MQL (dry) mg/kg	Dilution	Analysis date / time	Batch	[

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	690		0.838	10.0	10.5	1	01/30/2019 21:15	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	ounds (GC) k	by Method	8015D/GI	RO					^₅ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQc
TPH (GC/FID) Low Fraction	U		0.0229	0.100	0.105	1	02/03/2019 17:46	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 17:46	WG1231900	7 GI
									G

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000421	0.00100	0.00105	1	01/31/2019 18:00	WG1230742
Toluene	U		0.00132	0.00500	0.00527	1	01/31/2019 18:00	WG1230742
Ethylbenzene	U		0.000558	0.00250	0.00263	1	01/31/2019 18:00	WG1230742
Total Xylenes	U		0.00504	0.00650	0.00685	1	01/31/2019 18:00	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:00	WG1230742
(S) Dibromofluoromethane	86.0				65.0-129		01/31/2019 18:00	WG1230742
(S) a,a,a-Trifluorotoluene	84.7				80.0-120		01/31/2019 18:00	WG1230742
(S) 4-Bromofluorobenzene	101				67.0-138		01/31/2019 18:00	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	51.1		1.70	4.00	4.21	1	02/01/2019 04:19	WG1230859
C28-C40 Oil Range	32.8		0.289	4.00	4.21	1	02/01/2019 04:19	WG1230859
(S) o-Terphenyl	65.4				18.0-148		02/01/2019 04:19	WG1230859

SDG: L1065066

DATE/TIME: 02/05/19 08:59

SAMPLE RESULTS - 06 L1065066

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					2
Total Solids	92.7		1	02/01/2019 09:49	WG1230768				² Tc
Wet Chemistry b	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (d	dry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	g mg/kg	mg/kg		date / time		4 Cr
Chloride	2200		4.29	10.0	54.0	5	01/30/2019 21:58	WG1229855	

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	2200		4.29	10.0	54.0	5	01/30/2019 21:58	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	oounds (GC) k	by Method	8015D/GI	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ଁ Q c
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	02/03/2019 18:09	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	101				77.0-120		02/03/2019 18:09	WG1231900	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000432	0.00100	0.00108	1	01/31/2019 18:20	WG1230742
Toluene	U		0.00135	0.00500	0.00540	1	01/31/2019 18:20	WG1230742
Ethylbenzene	U		0.000572	0.00250	0.00270	1	01/31/2019 18:20	WG1230742
Total Xylenes	U		0.00516	0.00650	0.00702	1	01/31/2019 18:20	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:20	WG1230742
(S) Dibromofluoromethane	88.1				65.0-129		01/31/2019 18:20	WG1230742
(S) a,a,a-Trifluorotoluene	84.8				80.0-120		01/31/2019 18:20	WG1230742
(S) 4-Bromofluorobenzene	108				67.0-138		01/31/2019 18:20	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.12	J	1.74	4.00	4.32	1	02/01/2019 04:33	WG1230859
C28-C40 Oil Range	1.21	J	0.296	4.00	4.32	1	02/01/2019 04:33	WG1230859
(S) o-Terphenyl	115				18.0-148		02/01/2019 04:33	WG1230859

SDG: L1065066

DATE/TIME: 02/05/19 08:59

SAMPLE RESULTS - 07 L1065066

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	92.9		1	02/01/2019 09:49	WG1230768	Tc

Wet Chemistry by Method 300.0

									, ~
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	1070		4.28	10.0	53.8	5	01/30/2019 22:12	WG1229855	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result	Qualifier	Dilution	Analysis	Batch				
Analyte	%			date / time					
Total Solids	92.9		1	02/01/2019 09:49	WG1230768				
Wet Chemistry by Met	hod 300.0								
	Result (dry)	Qualifier	SDL (d	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
Chloride	1070		4.28	10.0	53.8	5	01/30/2019 22:12	WG1229855	
Volatile Organic Comp	ounds (GC)	by Metho	d 8015	D/GRO					
	Result (dry)	Qualifier	SDL (d	ry) Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.023	0.100	0.108	1	02/03/2019 18:31	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	99.8				77.0-120		02/03/2019 18:31	WG1231900	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	01/31/2019 18:40	WG1230742
Toluene	U		0.00135	0.00500	0.00538	1	01/31/2019 18:40	WG1230742
Ethylbenzene	U		0.000570	0.00250	0.00269	1	01/31/2019 18:40	WG1230742
Total Xylenes	U		0.00514	0.00650	0.00700	1	01/31/2019 18:40	WG1230742
(S) Toluene-d8	128				75.0-131		01/31/2019 18:40	WG1230742
(S) Dibromofluoromethane	88.1				65.0-129		01/31/2019 18:40	WG1230742
(S) a,a,a-Trifluorotoluene	83.6				80.0-120		01/31/2019 18:40	WG1230742
(S) 4-Bromofluorobenzene	98.0				67.0-138		01/31/2019 18:40	WG1230742

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.38	J	1.73	4.00	4.31	1	02/01/2019 04:46	WG1230859
C28-C40 Oil Range	1.06	J	0.295	4.00	4.31	1	02/01/2019 04:46	WG1230859
(S) o-Terphenyl	122				18.0-148		02/01/2019 04:46	WG1230859

SDG: L1065066

DATE/TIME: 02/05/19 08:59

PAGE: 12 of 22

Req @ q by 0 9 B 6/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

ONE LAB. NAT Rage 97 of 306

Тс

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3380414-1 01/31	/19 11:42			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.000			

L1065023-14 Original Sample (OS) • Duplicate (DUP)

(OS) L1065023-14 01/31/19 11:42 • (DUP) R3380414-3 01/31/19 11:42

(Original Resi	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD .imits	
Analyte	%	%		%		6	
Total Solids	79.0	78.3	1	0.882		0	

Laboratory Control Sample (LCS)

(LCS) R3380414-2 01/3	31/19 11:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 02/05/19 08:59

Req @ q by 0 9 B g/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3380933-1 02	/01/19 09:49			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	%		%	%
Total Solids	0.00100			

L1065067-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1065067-03 02/0)1/19 09:49 • (Dl	JP) R3380933-:	3 02/01/19) 09:49		
	Original Resu	It DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	83.3	82.2	1	1.40		10

Laboratory Control Sample (LCS)

(LCS) R3380933-2 02	2/01/19 09:49				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 02/05/19 08:59

Regeinedby 0605 \$22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1065066-01,02,03,04,05,06,07

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3380133-1 01/30	0/19 15:31			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	3.85	J	0.795	10.0

L1064854-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1064854-03 01/30/	19 19:48 • (DUP)	R3380133-5	01/30/19 2	0:02					
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits			
Analyte	mg/kg	mg/kg		%		%			
Chloride	9.43	7.08	1	28.5	<u>J P1</u>	20			

L1065075-04 Original Sample (OS) • Duplicate (DUP)

L1065075-04 Orig	ginal Sample	• (OS) • Du	uplicate	(DUP)		
DS) L1065075-04 01/3	1/19 08:47 • (DUP)	R3380133-7	01/31/19 0	9:01		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	140	151	1	7.54		20

Laboratory Control Sample (LCS)

(LCS) R3380133-2 01/30/	19 16:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	215	108	90.0-110	

L1062014-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1062014-05 01/30/19 23:10 • (MS) R3380133-3 01/30/19 17:09 • (MSD) R3380133-4 01/30/19 17:23												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	583	7650	7880	7880	39.4	39.6	1	80.0-120	EV	EV	0.0104	20

Released to	Imaging? 4/22/2024 2:36:08 PM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01576

SDG: L1065066

DATE/TIME: 02/05/19 08:59

PAGE: 15 of 22

Res cy q 2by 05 0: (1/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPage 100 of 306

Method Blank (MB)

(MB) R3380936-3 02/03	/19 12:41			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
TPH (GC/FID) Low Fraction	U		0.0217	0.100
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380936-1 02/03/19 11:35 • (LCSD) R3380936-2 02/03/19 11:57										
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
TPH (GC/FID) Low Fraction	5.50	6.37	6.32	116	115	72.0-127			0.650	20
(S) a,a,a-Trifluorotoluene(FID)				109	108	77.0-120				

Cp Tc Ss ¹Cn Sr Qc GI Â

Sc

DATE/TIME: 02/05/19 08:59

PAGE: 16 of 22 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NARagevill of 306

Ср

Τс

Ss

Cn

Śr

[°]Qc

GI

ΆI

Sc

Method Blank (MB)

(MB) R3380815-3 01/31/19	11:58			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.000400	0.00100
Ethylbenzene	U		0.000530	0.00250
Toluene	U		0.00125	0.00500
Xylenes, Total	U		0.00478	0.00650
(S) Toluene-d8	116			75.0-131
(S) Dibromofluoromethane	97.2			65.0-129
(S) a,a,a-Trifluorotoluene	88.2			80.0-120
(S) 4-Bromofluorobenzene	98.5			67.0-138

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380815-1 01/31/19	(LCS) R3380815-1 01/31/19 09:06 • (LCSD) R3380815-2 01/31/19 09:40									
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%
Benzene	0.125	0.118	0.115	94.4	92.2	70.0-123			2.29	20
Ethylbenzene	0.125	0.100	0.100	80.3	80.1	74.0-126			0.265	20
Toluene	0.125	0.148	0.150	119	120	75.0-121			0.922	20
Xylenes, Total	0.375	0.362	0.365	96.5	97.3	72.0-127			0.825	20
(S) Toluene-d8				101	102	75.0-131				
(S) Dibromofluoromethane				111	108	65.0-129				
(S) a,a,a-Trifluorotoluene				91.5	92.0	80.0-120				
(S) 4-Bromofluorobenzene				108	108	67.0-138				

L1065066-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065066-01 01/31/19 16:41 • (MS) R3380815-4 01/31/19 19:58 • (MSD) R3380815-5 01/31/19 20:18

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.140	U	0.0583	0.0876	41.7	62.6	1	10.0-149		<u>J3</u>	40.2	37
Ethylbenzene	0.140	U	0.0698	0.0919	49.9	65.7	1	10.0-160			27.2	38
Toluene	0.140	U	0.114	0.139	81.8	99.4	1	10.0-156			19.4	38
Xylenes, Total	0.420	U	0.297	0.336	70.7	80.0	1	10.0-160			12.4	38
(S) Toluene-d8					117	117		75.0-131				
(S) Dibromofluoromethane					87.4	88.8		65.0-129				
(S) a,a,a-Trifluorotoluene					86.1	84.4		80.0-120				
(S) 4-Bromofluorobenzene					101	101		67.0-138				

PROJECT: 212C-MD-01576

SDG: L1065066 DATE/TIME: 02/05/19 08:59

PAGE: 17 of 22 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

¹Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

	(0)				
(MB) R3380484-1 02/0	1/19 02:15				`
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	
(S) o-Terphenyl	120			18.0-148	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380484-2 02/	01/19 02:29 • (LCS	SD) R3380484	1-3 02/01/19 02	:43							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
C10-C28 Diesel Range	50.0	44.6	44.3	89.2	88.6	50.0-150			0.675	20	
(S) o-Terphenyl				135	130	18.0-148					

L1065066-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065066-04 02/01/19 02:57 • (MS) R3380484-4 02/01/19 03:10 • (MSD) R3380484-5 02/01/19 03:24												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	54.3	2.22	37.2	41.7	64.3	72.7	1	50.0-150			11.6	20

DATE/TIME: 02/05/19 08:59

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDC	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Unadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
P1	RPD value not applicable for sample concentrations less than 5 times the reporting limit.
V	The sample concentration is too high to evaluate accurate spike recoveries.

SDG: L1065066

Received by OCD: 4/22/2024 12:46:08 PACCREDITATIONS & LOCATIONS

Page 104 of 306 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana ¹	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1065066 DATE/TIME: 02/05/19 08:59

Analysis Re	quest of Chain of Custody Record	-	1.0	1.1					_													Pag	e			of	
Tb	Tetra Tech. Inc.			90	Mid	st Wali S Nerd, Tex I (432) 6 x (432) 6	xas 75 682-45	50			10	1							1110				5	106	50		
Client Name:	ConocoPhillips	Site Manager: Kayla Taylor										ANALYSIS REQUEST															
Project Name:	EVGSAU 3366-029	ingin ingini									(Circle or Specify Method No.)																
Project Location: state)	(county, Lea County, New Mexico	Project #:	-	21	20	-MD-	-015	76	-	-	-			1						1	11	1		1	1	11	1
Invoice to:		-	-	-			-		-	-		П	8	L	Ŀ				T					d fist)			
Receiving Laborat	tory: Pace Analytical	Sampler Signature: Devin Dominguez							-		OHO - MHO)	Sa Ho	a Cd Cr Pb Se Hg	1	2							attached (ist)					
Comments:	COPTETRA		1						-	-	BC60B	1.1	A. E.	d Cr Pb	Cd Cr Pb		1		8270C/625			-	TDS	nistry (sée :			1
		SAM	PLING	MAT	TRIX PRESERVATIVE METHOD			RS (V		ALEX	Ext to C	GHO-DHO	As Ba C	g As Ba		aties	82605 / 624	Vol. 8270	I COL			ate	등 을	GIGINICO			
LAB# (LAB USE ONLY)	SAMPLE IDENTIFICATION	VEAR: 2019	TIME	WATER		HCL	HNOa	None	CONTAINERS	FILTERED (Y/N)	BTEX 8021B	PH TX1005	PAH 8270C	tal Metals Ad	CLP Metals Ag As Ba	FCLP Volatiles	TCLP Semi Vol	MS Vol.		8082 /	NORM PI M (Asheetnet	Chloride 300.0	aride	General Water Chi Anion/Cation Balar	TPH 8015R		
1000	ESW-2 (4')	1/24/2019	920	> o	-	12 12	_	2 Z	1	E N	140		- 1.64	2	70	5	2	BC/	B	PO	ON		ŝ	Ger	É.		Hold
12.7	NSW-2 (4')	1/24/2019	923	X	1		-	-	1	N	x	_	x x	+	-	-	+	+	+	\square	+	X	4	-	++	-9	-
	SSW-2 (4')	1/24/2019	925	X		\vdash	1		1	N	x	-	x	-	-	-	+	+	-	$\left \right $	+	X		-	++	-9	
1 Berlin	AH-2 (4')	1/24/2019	928	X			1	_	1	N	x	-	< l	+		-	+	+	-	$\left \right $	+	X	-	+	++	.0	-
	WSW-2 (4')	1/24/2019	930	X			1,	-	1	N	x	-	<	+	\vdash	-	+	+	-	-	+	X	+	+	++	· d	-
1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	SSW-2 (4' 1.5' out)	1/24/2019	1600	X	0		5	-	1	N	x	_	<	-		-	+	+	-	-	+	X	+	+	++	.0	-
	WSW-2 (4' 15' out)	1/25/2019	1150	X			>	-	1	N	×	-	(E			1					×	1	+	+	-9	_
	The line of the line of the											+	+	-		+	1	-				-	+	+	H	-	
Relinquished by:	Laula 1-28-19 13:30	Received by:	and	20	0	ate:	1	ime: 1343	2		LA	BU	SE (LY				AN	DA	RD					1	Ħ
Relinquished by: Relinquished by:	Date: Time: Date: Time.	Received by: Received by		1	D	ate:	_	me:	0		Sam	ple Te	mpera	ature			23				Day Autho			8 hr	72 h		94
1.17		VIN	15	1	1000		9	80)							-				port l	Limits	or T	ARP	Repo	nt		
		ORIGINAL	COPY	B	322	29		-		-	{Circl	0) HA	ND D	ELIN	/ERE	DF	EDE	X U	PS	Trac	cking #	:;				-	

1.0-1=0.9节

ient: COPTETRA SDG#		LIDE	5066
Cooler Received/Opened On: 1/29/19	Temperature:	142	
Received By: Kristin Willis			
Signature: WilliG	energia di Statistica.		_
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?	Contraction of the		1200
COC Signed / Accurate?		1	
Bottles arrive intact?		1	1
Correct bottles used?		1	
Sufficient volume sent?		1	1
If Applicable			
VOA Zero headspace?	ALC: AND THE A	1. 1.	13.2
Preservation Correct / Checked?			

Received by OCD: 4/22/2024 12:46:08 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description: L1065691 01/31/2019 212C-MD-01576 EVGSAU 3366-029

Report To:

Kayla Taylor 901 West Wall Suite 100 Midland, TX 79701

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace National is performed per guidance provided in laboratory standard operating procedures: 060302, 060303, and 060304.

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
ESW-1 (4') L1065691-01	6
NSW-1 (4') L1065691-02	7
SSW-1 (4') L1065691-03	8
AH-1 (4') L1065691-04	9
WSW-1 (4') L1065691-05	10
WSW-3 (4') L1065691-06	11
ESW-3 (4') L1065691-07	12
AH-3 (4') L1065691-08	13
SSW-2 (4' 3' OUT) L1065691-09	14
Qc: Quality Control Summary	15
Total Solids by Method 2540 G-2011	15
Wet Chemistry by Method 300.0	16
Volatile Organic Compounds (GC) by Method 8015D/GRO	17
Volatile Organic Compounds (GC/MS) by Method 8260B	20
Semi-Volatile Organic Compounds (GC) by Method 8015	21
GI: Glossary of Terms	22
Al: Accreditations & Locations	23
Sc: Sample Chain of Custody	24

SDG: L1065691

DATE/TIME: 02/08/19 15:55 PAGE: 2 of 25
Received by OCD: 4/22/2024 12:46:08 PM

SAMPLE SUMMARY

ONE LAB. NAPagev109 of 306

ESW-1 (4') L1065691-01 Solid			Collected by Devin Dominguez	Collected date/time 01/28/19 15:50	Received date/time 01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:10	ST
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 20:23	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 00:27	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:12	DMW
			Collected by Devin Dominguez	Collected date/time 01/28/19 15:53	Received date/time 01/31/19 08:00
NSW-1 (4') L1065691-02 Solid			Devin Donniguez	01/20/10 10:00	01/01/10/00:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
			date/time	date/time	
otal Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Net Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:25	ST
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 20:45	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 00:48	JBE
emi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:26	DMW
			Collected by	Collected data/time	Received date/time
SSW-1 (4') L1065691-03 Solid			Devin Dominguez	Collected date/time 01/28/19 15:56	01/31/19 08:00
Aethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
	WC1221410	1			KDW
otal Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Vet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:40	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:07	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:08	JBE
emi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:40	DMW
			Collected by	Collected date/time	Received date/time
AH-1 (4') L1065691-04 Solid			Devin Dominguez	01/28/19 15:59	01/31/19 08:00
/lethod	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Fotal Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Vet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 20:56	ST
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:29	ACG
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:29	JBE
emi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 05:53	DMW
			Collected by	Collected date/time	Received date/time
WSW-1 (4') L1065691-05 Solid			Devin Dominguez	01/28/19 16:04	01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Vet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 21:42	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 21:52	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 01:49	JBE
Polatile organic compounds (como) by method of ob			02/01/19 19:55	02/02/19 07:43	DMW

PROJECT: 212C-MD-01576

SDG: L1065691

DATE/TIME: 02/08/19 15:55 PAGE: 3 of 25

	SAMPLE SI	JMMAF	2Y	ON	E LAB. NA Pege vi
WSW-3 (4') L1065691-06 Solid			Collected by Devin Dominguez	Collected date/time 01/29/19 11:49	Received date/time 01/31/19 08:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011	WG1231410	1	02/04/19 13:11	02/04/19 13:23	KDW
Wet Chemistry by Method 300.0	WG1231380	1	02/02/19 14:00	02/02/19 21:57	ST
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231900	1	02/01/19 15:56	02/03/19 22:14	ACG
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1231846	1	02/01/19 15:56	02/03/19 02:10	JBE
emi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 06:48	DMW
			Collected by	Collected date/time	Received date/time
ESW-3 (4') L1065691-07 Solid			Devin Dominguez	01/29/19 11:51	01/31/19 08:00
Method	Batch	Dilution	Preparation	Analysis	Analyst
atal Salida by Mathad 2E40 C 2011	WC1221410	1	date/time	date/time	KDW
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1231410 WG1231380	1	02/04/19 13:11 02/02/19 14:00	02/04/19 13:23 02/02/19 22:13	ST
olatile Organic Compounds (GC) by Method 8015D/GRO	WG1231380	1	02/01/19 15:56	02/03/19 22:36	ACG
/olatile Organic Compounds (GC/MS) by Method 80102/0100	WG1231846	1	02/01/19 15:56	02/03/19 02:30	JBE
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231397	1	02/01/19 19:55	02/02/19 07:02	DMW
			Collected by	Collected date/time	Received date/time
			5		
AH-3 (4') 1065691-08 Solid			Devin Dominguez	01/29/19 11:53	01/31/19 08:00
	Batch	Dilution			
	Batch	Dilution	Preparation date/time	01/29/19 11:53 Analysis date/time	01/31/19 08:00 Analyst
Aethod	Batch WG1231410	Dilution 1	Preparation	Analysis	
otal Solids by Method 2540 G-2011			Preparation date/time	Analysis date/time	Analyst
Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1231410	1	Preparation date/time 02/04/19 13:11	Analysis date/time 02/04/19 13:23	Analyst KDW
Aethod otal Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1231410 WG1231380	1	Preparation date/time 02/04/19 13:11 02/02/19 14:00	Analysis date/time 02/04/19 13:23 02/02/19 22:28	Analyst KDW ST
AH-3 (4') L1065691-08 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231410 WG1231380 WG1232503	1 1 1	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08	Analyst KDW ST ACG
Method Fotal Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B	WG1231410 WG1231380 WG1232503 WG1231846	1 1 1 1	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51	Analyst KDW ST ACG JBE
Method Fotal Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B	WG1231410 WG1231380 WG1232503 WG1231846	1 1 1 1	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/05/19 02:51 02/02/19 07:16	Analyst KDW ST ACG JBE DMW
Method Total Solids by Method 2540 G-2011 Vet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 SSW-2 (4' 3' OUT) L1065691-09 Solid	WG1231410 WG1231380 WG1232503 WG1231846	1 1 1 1	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55 Collected by	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51 02/02/19 07:16 Collected date/time	Analyst KDW ST ACG JBE DMW Received date/time
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 SSW-2 (4' 3' OUT) L1065691-09 Solid Method	WG1231410 WG1231380 WG1232503 WG1231846 WG1231397	1 1 1 1	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55 Collected by Devin Dominguez Preparation	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51 02/02/19 07:16 Collected date/time 01/29/19 14:30 Analysis	Analyst KDW ST ACG JBE DMW Received date/time 01/31/19 08:00
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 SSW-2 (4' 3' OUT) L1065691-09 Solid Method Total Solids by Method 2540 G-2011	WG1231410 WG1231380 WG1232503 WG1231846 WG1231397 Batch	1 1 1 1 Dilution	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55 Collected by Devin Dominguez Preparation date/time	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51 02/02/19 07:16 Collected date/time 01/29/19 14:30 Analysis date/time	Analyst KDW ST ACG JBE DMW Received date/time 01/31/19 08:00 Analyst
Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015 SSW-2 (4' 3' OUT) L1065691-09 Solid Method Total Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0	WG1231410 WG1231380 WG1232503 WG1231846 WG1231397 Batch WG1231410	1 1 1 1 1 Dilution	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55 Collected by Devin Dominguez Preparation date/time 02/04/19 13:11	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51 02/02/19 07:16 Collected date/time 01/29/19 14:30 Analysis date/time 02/04/19 13:23	Analyst KDW ST ACG JBE DMW Received date/time 01/31/19 08:00 Analyst KDW
Method Fotal Solids by Method 2540 G-2011 Wet Chemistry by Method 300.0 /olatile Organic Compounds (GC) by Method 8015D/GRO /olatile Organic Compounds (GC/MS) by Method 8260B Semi-Volatile Organic Compounds (GC) by Method 8015	WG1231410 WG1231380 WG1232503 WG1231846 WG1231397 Batch WG1231410 WG1231410 WG1231380	1 1 1 1 1 Dilution 1 5	Preparation date/time 02/04/19 13:11 02/02/19 14:00 02/05/19 11:49 02/01/19 15:56 02/01/19 19:55 Collected by Devin Dominguez Preparation date/time 02/04/19 13:11 02/02/19 14:00	Analysis date/time 02/04/19 13:23 02/02/19 22:28 02/05/19 12:08 02/03/19 02:51 02/02/19 07:16 Collected date/time 01/29/19 14:30 Analysis date/time 02/04/19 13:23 02/02/19 22:44	Analyst KDW ST ACG JBE DMW Received date/time 01/31/19 08:00 Analyst KDW ST

SDG: L1065691

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1065691 DATE/TIME: 02/08/19 15:55

i

PAGE: 5 of 25

SAMPLE RESULTS - 01 L1065691

Â

Sc

Total Solids by Method 2540 G-2011

						 1°Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	90.4		1	02/04/2019 13:23	WG1231410	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Me	thod 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	133		0.880	10.0	11.1	1	02/02/2019 20:10	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
mg/kg		mg/kg	mg/kg	mg/kg		date / time	
133		0.880	10.0	11.1	1	02/02/2019 20:10	WG1231380
. ,	-	8015D/GF SDL (dry)	CO Unadi, MQL				
()/	Quaimer		,	MQL (dry)	Dilution	Analysis	Batch
mg/kg	Quaimer	mg/kg	mg/kg	MQL (dry) mg/kg 0.111	Dilution	Analysis date / time 02/03/2019 20:23	<u>Batch</u> WG1231900
	mg/kg 133 Dounds (GC) k	mg/kg 133	mg/kg mg/kg 133 0.880 bounds (GC) by Method 8015D/GF	mg/kg mg/kg mg/kg 133 0.880 10.0 bounds (GC) by Method 8015D/GRO	mg/kg mg/kg mg/kg mg/kg 133 0.880 10.0 11.1 bounds (GC) by Method 8015D/GRO 10.0 10.0 11.1	mg/kg mg/kg mg/kg mg/kg 133 0.880 10.0 11.1 1 bounds (GC) by Method 8015D/GRO 10.0 11.1 1	mg/kg mg/kg mg/kg mg/kg date / time 133 0.880 10.0 11.1 1 02/02/2019 20:10 bounds (GC) by Method 8015D/GRO 0.00 0.00 0.00 0.00 0.00

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000443	0.00100	0.00111	1	02/03/2019 00:27	WG1231846
Toluene	U		0.00138	0.00500	0.00553	1	02/03/2019 00:27	WG1231846
Ethylbenzene	U		0.000586	0.00250	0.00277	1	02/03/2019 00:27	WG1231846
Total Xylenes	U		0.00529	0.00650	0.00719	1	02/03/2019 00:27	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 00:27	WG1231846
(S) Dibromofluoromethane	97.5				65.0-129		02/03/2019 00:27	WG1231846
(S) a,a,a-Trifluorotoluene	105				80.0-120		02/03/2019 00:27	WG1231846
(S) 4-Bromofluorobenzene	93.4				67.0-138		02/03/2019 00:27	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.96	J	1.78	4.00	4.43	1	02/02/2019 05:12	WG1231397
C28-C40 Oil Range	U		0.303	4.00	4.43	1	02/02/2019 05:12	WG1231397
(S) o-Terphenyl	105				18.0-148		02/02/2019 05:12	WG1231397

SAMPLE RESULTS - 02

Total Solids by Method 2540 G-2011

Collected date/time: 01/28/19 15:53

						I Cr	\sim
	Result	Qualifier	Dilution	Analysis	Batch		J
Analyte	%			date / time		2	_
Total Solids	95.3		1	02/04/2019 13:23	WG1231410	Tc	2

Wet Chemistry by Method 300.0

									- U
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	567		0.834	10.0	10.5	1	02/02/2019 20:25	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		Ŭ
TPH (GC/FID) Low Fraction	U		0.0228	0.100	0.105	1	02/03/2019 20:45	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 20:45	WG1231900	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000420	0.00100	0.00105	1	02/03/2019 00:48	WG1231846
Toluene	U		0.00131	0.00500	0.00524	1	02/03/2019 00:48	WG1231846
Ethylbenzene	U		0.000556	0.00250	0.00262	1	02/03/2019 00:48	WG1231846
Total Xylenes	U		0.00501	0.00650	0.00682	1	02/03/2019 00:48	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 00:48	WG1231846
(S) Dibromofluoromethane	96.4				65.0-129		02/03/2019 00:48	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 00:48	WG1231846
(S) 4-Bromofluorobenzene	99.5				67.0-138		02/03/2019 00:48	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.30		1.69	4.00	4.20	1	02/02/2019 05:26	WG1231397
C28-C40 Oil Range	6.65		0.287	4.00	4.20	1	02/02/2019 05:26	WG1231397
(S) o-Terphenyl	91.2				18.0-148		02/02/2019 05:26	WG1231397

SDG: L1065691 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl

Â

Sc

SAMPLE RESULTS - 03 L1065691

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср	l
Analyte		%			date / time		2	L L
Total Solids		92.5		1	02/04/2019 13:23	WG1231410	Tc	

Wet Chemistry by Method 300.0

									- U
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	173		0.860	10.0	10.8	1	02/02/2019 20:40	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
Chloride	173		0.860	10.0	10.8	1	02/02/2019 20:40	WG1231380
Volatile Organic Comp	bounds (GC) b	y Method	8015D/GI	RO				
Volatile Organic Comp	Result (dry)	y Method Qualifier	8015D/GI SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp	. , ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution	,	Batch WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000433	0.00100	0.00108	1	02/03/2019 01:08	WG1231846
Toluene	U		0.00135	0.00500	0.00541	1	02/03/2019 01:08	WG1231846
Ethylbenzene	U		0.000573	0.00250	0.00270	1	02/03/2019 01:08	WG1231846
Total Xylenes	U		0.00517	0.00650	0.00703	1	02/03/2019 01:08	WG1231846
(S) Toluene-d8	108				75.0-131		02/03/2019 01:08	WG1231846
(S) Dibromofluoromethane	92.4				65.0-129		02/03/2019 01:08	WG1231846
(S) a,a,a-Trifluorotoluene	106				80.0-120		02/03/2019 01:08	WG1231846
(S) 4-Bromofluorobenzene	94.9				67.0-138		02/03/2019 01:08	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.17	J	1.74	4.00	4.33	1	02/02/2019 05:40	WG1231397
C28-C40 Oil Range	2.52	J	0.296	4.00	4.33	1	02/02/2019 05:40	WG1231397
(S) o-Terphenyl	84.4				18.0-148		02/02/2019 05:40	WG1231397

SDG: L1065691

SAMPLE RESULTS - 04 L1065691

A

Sc

Total Solids by Method 2540 G-2011

Collected date/time: 01/28/19 15:59

						 Cn
	Result	Qualifier	Dilution	Analysis	Batch	Cp
Analyte	%			date / time		2
Total Solids	93.5		1	02/04/2019 13:23	WG1231410	Tc

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	80.5		0.851	10.0	10.7	1	02/02/2019 20:56	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Analyte	Result (dry) mg/kg	Qualifier	SDL (dry) mg/kg	Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
Chloride	80.5		0.851	10.0	10.7	1	02/02/2019 20:56	WG1231380
Volatile Organic Comp	ounds (GC) b	y Method	8015D/GF	20				
Volatile Organic Comp	. ,	y Method Qualifier			MQL (drv)	Dilution	Analysis	Batch
Volatile Organic Comp	Dounds (GC) b Result (dry) mg/kg	-	8015D/GF SDL (dry) mg/kg	RO Unadj. MQL mg/kg	MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	,	Dilution	,	Batch WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000428	0.00100	0.00107	1	02/03/2019 01:29	WG1231846
Toluene	U		0.00134	0.00500	0.00535	1	02/03/2019 01:29	WG1231846
Ethylbenzene	U		0.000567	0.00250	0.00267	1	02/03/2019 01:29	WG1231846
Total Xylenes	U		0.00511	0.00650	0.00695	1	02/03/2019 01:29	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 01:29	WG1231846
(S) Dibromofluoromethane	91.5				65.0-129		02/03/2019 01:29	WG1231846
(S) a,a,a-Trifluorotoluene	104				80.0-120		02/03/2019 01:29	WG1231846
(S) 4-Bromofluorobenzene	96.0				67.0-138		02/03/2019 01:29	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.51	J	1.72	4.00	4.28	1	02/02/2019 05:53	WG1231397
C28-C40 Oil Range	U		0.293	4.00	4.28	1	02/02/2019 05:53	WG1231397
(S) o-Terphenyl	95.0				18.0-148		02/02/2019 05:53	WG1231397

SDG: L1065691

SAMPLE RESULTS - 05 L1065691

Â

Sc

Collected date/time: 01/28/19 16:04 Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	
nalyte	%			date / time		
otal Solids	93.1		1	02/04/2019 13:23	<u>WG1231410</u>	
Net Chemistry by	Matha al 200 0					

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	466		0.854	10.0	10.7	1	02/02/2019 21:42	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cr
Chloride	466		0.854	10.0	10.7	1	02/02/2019 21:42	WG1231380	
Volatile Organic Comp	oounds (GC) k	by Method	8015D/G	RO					⁵ Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ľQo
TPH (GC/FID) Low Fraction	U		0.0233	0.100	0.107	1	02/03/2019 21:52	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 21:52	WG1231900	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000430	0.00100	0.00107	1	02/03/2019 01:49	WG1231846
Toluene	U		0.00134	0.00500	0.00537	1	02/03/2019 01:49	WG1231846
Ethylbenzene	U		0.000569	0.00250	0.00269	1	02/03/2019 01:49	WG1231846
Total Xylenes	U		0.00513	0.00650	0.00698	1	02/03/2019 01:49	WG1231846
(S) Toluene-d8	111				75.0-131		02/03/2019 01:49	WG1231846
(S) Dibromofluoromethane	92.4				65.0-129		02/03/2019 01:49	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 01:49	WG1231846
(S) 4-Bromofluorobenzene	95.6				67.0-138		02/03/2019 01:49	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.7		1.73	4.00	4.30	1	02/02/2019 07:43	WG1231397
C28-C40 Oil Range	20.9		0.294	4.00	4.30	1	02/02/2019 07:43	WG1231397
(S) o-Terphenyl	68.8				18.0-148		02/02/2019 07:43	WG1231397

SDG: L1065691

SAMPLE RESULTS - 06 L1065691

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср	I
Analyte	%			date / time		2	i
Total Solids	91.8		1	02/04/2019 13:23	WG1231410	Tc	l

Wet Chemistry by Method 300.0

									\sim
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4
Chloride	122		0.866	10.0	10.9	1	02/02/2019 21:57	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	122		0.866	10.0	10.9	1	02/02/2019 21:57	WG1231380
Volatile Organic Com	pounds (GC) b	y Method	8015D/GI	20				
Volatile Organic Com	Result (dry)	y Method Qualifier	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Comp Analyte	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL	· • •	Dilution	,	Batch WG1231900

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000436	0.00100	0.00109	1	02/03/2019 02:10	WG1231846
Toluene	U		0.00136	0.00500	0.00545	1	02/03/2019 02:10	WG1231846
Ethylbenzene	U		0.000577	0.00250	0.00272	1	02/03/2019 02:10	WG1231846
Total Xylenes	U		0.00521	0.00650	0.00708	1	02/03/2019 02:10	WG1231846
(S) Toluene-d8	110				75.0-131		02/03/2019 02:10	WG1231846
(S) Dibromofluoromethane	90.1				65.0-129		02/03/2019 02:10	WG1231846
(S) a,a,a-Trifluorotoluene	103				80.0-120		02/03/2019 02:10	WG1231846
(S) 4-Bromofluorobenzene	88.2				67.0-138		02/03/2019 02:10	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.04	J	1.75	4.00	4.36	1	02/02/2019 06:48	WG1231397
C28-C40 Oil Range	U		0.299	4.00	4.36	1	02/02/2019 06:48	WG1231397
(S) o-Terphenyl	106				18.0-148		02/02/2019 06:48	WG1231397

SDG: L1065691

SAMPLE RESULTS - 07 L1065691

Â

Sc

Total Solids by Method 2540 G-2011

	Resu	ılt <u>Qualifier</u>	Dilution	Analysis	Batch	Ср	
Analyte	%			date / time		2	1
Total Solids	92.7		1	02/04/2019 13:23	WG1231410	Tc	l

Wet Chemistry by Method 300.0

Wet Chemistry	by Method 300.0								³ Ss
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴ Cn
Chloride	235		0.858	10.0	10.8	1	02/02/2019 22:13	WG1231380	СП

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Comp	ounds (GC) k	by Method	I 8015D/GI	RO					⁵Sr
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ိုင္ရင
TPH (GC/FID) Low Fraction	U		0.0234	0.100	0.108	1	02/03/2019 22:36	WG1231900	
(S) a,a,a-Trifluorotoluene(FID)	100				77.0-120		02/03/2019 22:36	WG1231900	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000431	0.00100	0.00108	1	02/03/2019 02:30	WG1231846
Toluene	U		0.00135	0.00500	0.00539	1	02/03/2019 02:30	WG1231846
Ethylbenzene	U		0.000572	0.00250	0.00270	1	02/03/2019 02:30	WG1231846
Total Xylenes	U		0.00515	0.00650	0.00701	1	02/03/2019 02:30	WG1231846
(S) Toluene-d8	114				75.0-131		02/03/2019 02:30	WG1231846
(S) Dibromofluoromethane	91.2				65.0-129		02/03/2019 02:30	WG1231846
(S) a,a,a-Trifluorotoluene	106				80.0-120		02/03/2019 02:30	WG1231846
(S) 4-Bromofluorobenzene	98.4				67.0-138		02/03/2019 02:30	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.58	J	1.74	4.00	4.31	1	02/02/2019 07:02	WG1231397
C28-C40 Oil Range	1.55	J	0.295	4.00	4.31	1	02/02/2019 07:02	WG1231397
(S) o-Terphenyl	109				18.0-148		02/02/2019 07:02	WG1231397

SDG: L1065691

SAMPLE RESULTS - 08 L1065691

Â

Sc

Total Solids by Method 2540 G-2011

						10	Cn
	Result	Qualifier	Dilution	Analysis	Batch	Ľ	~P
Analyte	%			date / time		2	
Total Solids	94.4		1	02/04/2019 13:23	WG1231410		Тс

Wet Chemistry by Method 300.0

Wet Chemistry by	y Method 300.0								³ S
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	— L
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		4 —
Chloride	147		0.842	10.0	10.6	1	02/02/2019 22:28	WG1231380	$ \Box$

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic Compounds (GC) by Method 8015D/GRO									
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		ČQC
TPH (GC/FID) Low Fraction	U		0.0230	0.100	0.106	1	02/05/2019 12:08	WG1232503	
(S) a,a,a-Trifluorotoluene(FID)	96.6				77.0-120		02/05/2019 12:08	WG1232503	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U		0.000424	0.00100	0.00106	1	02/03/2019 02:51	WG1231846
Toluene	U		0.00132	0.00500	0.00529	1	02/03/2019 02:51	WG1231846
Ethylbenzene	U		0.000561	0.00250	0.00265	1	02/03/2019 02:51	WG1231846
Total Xylenes	U		0.00506	0.00650	0.00688	1	02/03/2019 02:51	WG1231846
(S) Toluene-d8	112				75.0-131		02/03/2019 02:51	WG1231846
(S) Dibromofluoromethane	97.1				65.0-129		02/03/2019 02:51	WG1231846
(S) a,a,a-Trifluorotoluene	107				80.0-120		02/03/2019 02:51	WG1231846
(S) 4-Bromofluorobenzene	96.1				67.0-138		02/03/2019 02:51	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.00	4.24	1	02/02/2019 07:16	WG1231397
C28-C40 Oil Range	U		0.290	4.00	4.24	1	02/02/2019 07:16	WG1231397
(S) o-Terphenyl	118				18.0-148		02/02/2019 07:16	WG1231397

SAMPLE RESULTS - 09 L1065691

A

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.3		1	02/04/2019 13:23	<u>WG1231410</u>	Tc

Wet Chemistry by Method 300.0

									- U
	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time		⁴
Chloride	1430		4.22	10.0	53.0	5	02/02/2019 22:44	WG1231380	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Chloride	1430		4.22	10.0	53.0	5	02/02/2019 22:44	WG1231380
Volatile Organic Com	oounds (GC) b	y Method	8015D/GF	20				
Volatile Organic Com	Result (dry)	oy Method <u>Qualifier</u>	8015D/GF SDL (dry)	RO Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Volatile Organic Com Analyte	. ,	-			MQL (dry) mg/kg	Dilution	Analysis date / time	Batch
	Result (dry)	-	SDL (dry)	Unadj. MQL		Dilution 1	,	Batch WG1232168

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
Benzene	U	<u>J3</u>	0.000424	0.00100	0.00106	1	02/03/2019 03:11	WG1231846
Toluene	U	J3	0.00133	0.00500	0.00530	1	02/03/2019 03:11	WG1231846
Ethylbenzene	U	J3	0.000562	0.00250	0.00265	1	02/03/2019 03:11	WG1231846
Total Xylenes	U	J3	0.00507	0.00650	0.00689	1	02/03/2019 03:11	WG1231846
(S) Toluene-d8	108				75.0-131		02/03/2019 03:11	WG1231846
(S) Dibromofluoromethane	93.6				65.0-129		02/03/2019 03:11	WG1231846
(S) a,a,a-Trifluorotoluene	102				80.0-120		02/03/2019 03:11	WG1231846
(S) 4-Bromofluorobenzene	98.6				67.0-138		02/03/2019 03:11	WG1231846

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	SDL (dry)	Unadj. MQL	MQL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.71	4.00	4.24	1	02/02/2019 07:30	WG1231397
C28-C40 Oil Range	U		0.290	4.00	4.24	1	02/02/2019 07:30	WG1231397
(S) o-Terphenyl	112				18.0-148		02/02/2019 07:30	WG1231397

Regeiredby OCD: 4/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1065691-01,02,03,04,05,06,07,08,09

Qc

GI

Â

Sc

Method Blank (MB)

Method Blank					l'Cn'
(MB) R3381196-1 02	2/04/19 13:23	-			Ср
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³ Ss

L1065691-01 Original Sample (OS) • Duplicate (DUP)

L1065691-01 Original Sample (OS) • Duplicate (DUP)										
OS) L1065691-01 02/04/19 13:23 • (DUP) R3381196-3 02/04/19 13:23										
	Original Resu	ult DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	⁵ S			
Analyte	%	%		%		%				
Total Solids	90.4	89.8	1	0.695		10	6			

Laboratory Control Sample (LCS)

(LCS) R3381196-2 02/04	4/19 13:23				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1065691

DATE/TIME: 02/08/19 15:55

PAGE: 15 of 25

Res cire oby 05 8 0/22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1065691-01,02,03,04,05,06,07,08,09

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3381191-1 02/02/19 15:30						
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Chloride	0.909	J	0.795	10.0		

L1065677-34 Original Sample (OS) • Duplicate (DUP)

(OS) L1065677-34 02/02/	19 16:19 • (DUP)	R3381191-3 0	2/02/19 16	:34		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	2050	2030	5	0.897		20

L1065703-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1065703-01 02/02/19 22:59 • (DUP) R3381191-6 02/02/19 23:15	
Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD (dry) (dry)	
Analyte mg/kg mg/kg % %	
Chloride 12.1 10.7 1 13.0 20	

Laboratory Control Sample (LCS)

(LCS) R3381191-2 02/02/19 15:45								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Chloride	200	212	106	90.0-110				

L1065677-39 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065677-39 02/02/19 17:51 • (MS) R3381191-4 02/02/19 18:37 • (MSD) R3381191-5 02/02/19 18:53												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	533	4590	4830	4930	44.8	63.4	1	80.0-120	EV	EV	2.03	20

Released to	Imaging? 4/22/2024	2:36:08	PM								
ConocoPhillips - Tetra Tech											

PROJECT: 212C-MD-01576

SDG: L1065691

DATE/TIME: 02/08/19 15:55

PAGE:

16 of 25

Res cy q 2by 05 0: (1/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NARagev123 of 306

Method Blank (MB)

(MB) R3380936-3 02/03/	/19 12:41				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380936-1 02/03/19 11:35 • (LCSD) R3380936-2 02/03/19 11:57												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	6.37	6.32	116	115	72.0-127			0.650	20		
(S) a,a,a-Trifluorotoluene(FID)				109	108	77.0-120						

Sc

Ср

DATE/TIME: 02/08/19 15:55 PAGE: 17 of 25 Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NARagev124 of 306

Method Blank (MB)

Method Blank (ME)				
(MB) R3381047-5 02/04/	19 11:53				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3381047-3 02/04/19 10:47 • (LCSD) R3381047-4 02/04/19 11:09												
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits		
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%		
TPH (GC/FID) Low Fraction	5.50	5.65	5.61	103	102	72.0-127			0.658	20		
(S) a.a.a-Trifluorotoluene(FID)				104	103	77.0-120						

Sc

DATE/TIME: 02/08/19 15:55 PAGE: 18 of 25

Req @ q by OGD 3/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPage 125 of 306

Method Blank (MB)

(MB) R3381319-3 02/05/19 10:17									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120					

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3381319-1 02/05/19 09:15 • (LCSD) R3381319-2 02/05/19 09:35											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.50	6.14	5.78	112	105	72.0-127			6.13	20	
(S) a.a.a-Trifluorotoluene(FID)				119	118	77.0-120					

¹Cp ²Tc ³Ss ⁴Cn Sr Qc GI Â Sc

SDG: L1065691 DATE/TIME: 02/08/19 15:55 PAGE: 19 of 25 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY L1065691-01,02,03,04,05,06,07,08,09

Τс

Ss

Cn

Śr

ິQc

GI

A

Sc

Method Blank (MB)

(MB) R3381426-2 02/02/19	/IB) R3381426-2 02/02/19 21:43							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
Benzene	U		0.000400	0.00100				
Ethylbenzene	U		0.000530	0.00250				
Toluene	U		0.00125	0.00500				
Xylenes, Total	U		0.00478	0.00650				
(S) Toluene-d8	115			75.0-131				
(S) Dibromofluoromethane	92.1			65.0-129				
(S) a,a,a-Trifluorotoluene	104			80.0-120				
(S) 4-Bromofluorobenzene	94.5			67.0-138				

Laboratory Control Sample (LCS)

(LCS) R3381426-1 02/02/1	LCS) R3381426-1 02/02/19 20:22							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier			
Analyte	mg/kg	mg/kg	%	%				
Benzene	0.125	0.110	87.8	70.0-123				
Ethylbenzene	0.125	0.120	96.2	74.0-126				
Toluene	0.125	0.126	101	75.0-121				
Xylenes, Total	0.375	0.416	111	72.0-127				
(S) Toluene-d8			108	75.0-131				
(S) Dibromofluoromethane			109	65.0-129				
(S) a,a,a-Trifluorotoluene			110	80.0-120				
(S) 4-Bromofluorobenzene			102	67.0-138				

L1065691-09 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065691-09 02/03/19 03:11 • (MS) R3381426-3 02/03/19 04:54 • (MSD) R3381426-4 02/03/19 05:15

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.133	U	0.0827	0.0371	62.4	28.0	1	10.0-149		<u>J3</u>	76.1	37
Ethylbenzene	0.133	U	0.0909	0.0367	68.6	27.7	1	10.0-160		<u>13</u>	85.0	38
Toluene	0.133	U	0.0952	0.0438	71.8	33.0	1	10.0-156		<u>13</u>	74.0	38
Xylenes, Total	0.398	U	0.317	0.140	79.7	35.3	1	10.0-160		<u>13</u>	77.2	38
(S) Toluene-d8					104	107		75.0-131				
(S) Dibromofluoromethane					93.3	96.3		65.0-129				
(S) a,a,a-Trifluorotoluene					102	107		80.0-120				
(S) 4-Bromofluorobenzene					100	99.2		67.0-138				

PROJECT: 212C-MD-01576

SDG: L1065691 DATE/TIME: 02/08/19 15:55

PAGE: 20 of 25 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R3380776-1 02/01/	/19 23:56			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
C10-C28 Diesel Range	U		1.61	4.00
C28-C40 Oil Range	U		0.274	4.00
(S) o-Terphenyl	136			18.0-148

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3380776-2 02/02/19 00:10 • (LCSD) R3380776-3 02/02/19 00:24											
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
Extractable Petroleum Hydrocarbon	50.0	40.6	39.1	81.2	78.2	50.0-150			3.76	20	
C10-C28 Diesel Range	50.0	45.9	44.4	91.8	88.8	50.0-150			3.32	20	
(S) o-Terphenyl				146	132	18.0-148					

L1065349-04 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1065349-04 02/02/19 04:31 • (MS) R3380776-4 02/02/19 04:45 • (MSD) R3380776-5 02/02/19 04:58													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	L
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Extractable Petroleum Hydrocarbon	49.7	ND	42.5	45.2	85.5	90.4	1	50.0-150			6.16	20	
C10-C28 Diesel Range	49.7	9.11	54.1	56.7	90.5	95.2	1	50.0-150			4.69	20	
(S) o-Terphenyl					67.4	113		18.0-148					

SDG: L1065691 DATE/TIME: 02/08/19 15:55 PAGE: 21 of 25

Sc

Τс

Ss

Cn

Sr

*Q*c

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Abbreviations and Definitions

(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MQL (dry)	Method Quantitation Limit.
MQL	Method Quantitation Limit.
ND	Not detected at the Method Quantitation Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
SDL	Sample Detection Limit.
SDL (dry)	Sample Detection Limit.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Sample Detection Limit.
Jnadj. MQL	Unadjusted Method Quantitation Limit.
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality contro sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates an times of preparation and/or analysis.

Qualifier	Description
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.
V	The sample concentration is too high to evaluate accurate spike recoveries.

Received by OCD: 4/22/2024 12:46:08 PACCREDITATIONS & LOCATIONS

Page 129 of 306 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T 104704245-17-14
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1065691

Analysis Request of Chain of Custody Record

T	Tetra Tech, Inc.				T	Toi (4	et Walt Sh land, Taxa I (432) 68 I (432) 68	×40 797 682-455	1704 159		-	-	-	_	_	_	-	-	_	-	-	_			Pag	ge		_	1	1 of	-
Client Name:	ConocoPhillips	Side Manage	AF:	Kr	ayla Ta		_	12-31-	-		_	-	T	_	_		_	1	_	_	_	_			_	_					
Project Name:	EVGSAU 3366-029			- Hall	yia ii	ay	101	-	_	_		_	4		1	(C)	ire	A	NA	LY	SIS	RE	Me	JES	ST	-	2				_
Project Location: state)	(county, Lea County, New Mexico	Project #:		-		-		-	-	_		_	11	1T	1	1	1	1	I	ĨĨ	11	ñ		1	04	1	0.)	1	r)	1	í.
Invoice to:		_			2120	-W	ND-0	1157	/6					11			17	17	17		1	1	1	1			T	-	17	()	
Receiving Laboratory	Pace Analytical	Sampler Sign	nature:	_		-	_	_	_	_	_			lour.	Intilly	태	HO	[]	[]	$\left \right $	1						attached list)		11	11	61
Comments:	(ADTE TO)				Devin	10	Jomi	ingu	/ØZ		_		A	ORO - MROI	5	r Pb Se	r Pb Se	$\left \right $	[]	11		-					(see attac	11		1	1
1	CUPIEIKA			_		_	_						X 826	C36)	5	CdC	a Cd C	1	1	1	624	B270C/625				TDS	stry (s		11		
LAB #			IPLING	MA	ATRIX	1		METH	HOD	1	2	(N)	BTEX	Ext to SHO -		As Ba	g As B	1	atiles	I	0 / B06		2			ala	Chemi	lance	1	A	1
(LAB #	SAMPLE IDENTIFICATION	YEAR: 2ms	TIME	WATER	The second secon		HCL HNO ₃	2	лe	CONTAINERS	MILLING	FILTERED (V/N)	B021B	TX1005 BD15M (8270C	Total Metals Ag As Ba Cd Cr Pb Se Hg	Metals A	Volatiles	² Semi Volatiles	60	Vol. 8	Semi. 8082 /	Gun	PLM (Asbestos)	da 300.0	Chloride Sultate TDS	al Water (Anion/Cation Bala	BUISH		
L1065491-01	ESW-1 (4')	1/28/2019	戸 1550	N N	the second se	HCL	11	_		- 44	4 1	-		_		Total	TOL	TOLP	TCLP	RCI	GC/MS	PCB's	NORM	PLM (hlaric	Chloric	iener	nion	TPH 80	AV	10.01
02	NSW-1 (4')	1/28/2019	1553	X		+	+'	X	-	1	-	-	Х	X		1		T	T	T	T	T	17	1	X	H	f	4 r	4	+	ł
03	SSW-1 (4')	1/28/2019	1556	X	-	£	+	X	-	47	-	-	X	X	-	1	T	1	T	T	t	t	T	H	X	-	1	+	t	+	+
04	AH-1 (4')	1/28/2019	1559	Î	-	F	+	X	-	17	-	-	X	X	-	1	1	1	I	T	T	T	U	D	X		1	1	+	+	+
04	WSW-1 (4')	1/28/2019	1604	Îx	-	F	-	X	+	47	-	_	X	X	-	1		1	I	T	T	T	\square	+-+	X	-	T	+	+	+	+
04	WSW-3 (4')	1/29/2019	1149	Îx	-	F		X		1	10	_	Х	X		1		I	I	T		T	T	+-+	X		+	+	+	+	+
07	ESW-3 (4')	1/29/2019	1151	Îx	-	E	+++	-	'	1	N	_	X	X	4	1		T	I	T	T	\Box	T	+ +	x		+	+	+	+	+
08	AH-3 (4')	1/29/2019	1153	×		F	-	X	+-'	1	-	-	Х	X	4	I	T	L	T	T	T	T	T	++	x	t	+	+	+	t	+
09	SSW-2 (4' 3' out)	1/29/2019	1430	X	-	P		X	+'	1	-	-	X	X		T	T	L	T	T	17	D	Ē.		x	+	+	+	+	+	+
elinguished by:	la Acylon 13019 1615	Received by:				Pate:		Time //	ie:	1	N	1	LAB	USE	EOI	NLY		EMA			TAN	NDAI	ARD	3	x	1	t	t	t	E	t
elinquished by:	Date: Time: Date: Time:	Received by:				Date;	. ,	Time			1		iample T			1000	1.14	-	RU	USH	Sa	lame (Day	y 24			8 ht	721	hr		
		Received by:	m		Dat	199		Time:	e: 08	Riv	0	10	0.45	12.04	> *	4	1 .	-					Auto				Rep	noc			
		ORIGINAL C	COPY									(G)	ircle) H	HAND	DEL	IVER	HED -	FE	DEX	5	PS	Tra	icking a	18	_	_	_	1	_	-	_
			C. I	Fr	038	5					1	17							-	-	-		-	-	-	-	-	-	-	-	è

RAD SCREEN, CE THY

Client:	COPTETRA	SDG#	1 1/26	05691
Cooler Received/Opened On: 01/31/19		Temperature:	0.5	T
Received By: Thomas Virden			415	_
Signature:				
Receipt Check List		NP	Yes	Ne
COC Seal Present / Intact?	and the second sec		Tes	No
COC Signed / Accurate?				-
Bottles arrive intact?			/	-
Correct bottles used?			/	-
Sufficient volume sent?			/	-
f Applicable			/	
VOA Zero headspace?				
Preservation Correct / Checked?	_		-	

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 4 – ADDITIONAL ASSESSMENT LABORATORY DATA

Received by OCD: 4/22/2024 12:46:08 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1223377 05/29/2020 212C-MD-01576 EVGSAU 3366-029

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223377 DATE/TIME: 06/08/20 17:53

PAGE: 1 of 16

Page 133 of 306

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
BH-20-1S (0-1) L1223377-01	5
BH-20-1S (2-3) L1223377-02	6
BH-20-1S (4-5) L1223377-03	7
Qc: Quality Control Summary	8
Total Solids by Method 2540 G-2011	8
Wet Chemistry by Method 300.0	9
Volatile Organic Compounds (GC) by Method 8015D/GRO	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
Semi-Volatile Organic Compounds (GC) by Method 8015	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SDG: L1223377

PAGE: 2 of 16

SAMPLE SUMMARY

ONE LAB. NAPagev135 of 306

			Collected by Joe Tyler	Collected date/time 05/21/20 13:00	Received da 05/29/20 09	
BH-20-1S (0-1) L1223377-01 Solid			Soc Tyler	03/21/20 13:00	03/23/20 03	.00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1487467	1	05/31/20 12:00	06/01/20 02:39	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 13:16	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/30/20 23:57	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1484968	1	06/02/20 07:56	06/05/20 15:12	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-1S (2-3) L1223377-02 Solid			Joe Tyler	05/21/20 13:05	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1487467	1	05/31/20 12:00	06/01/20 03:04	MCG	Mt. Juliet, T
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 13:40	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/31/20 00:16	ADM	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1484968	1	06/02/20 07:56	06/05/20 15:39	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
BH-20-1S (4-5) L1223377-03 Solid			Joe Tyler	05/21/20 13:10	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486307	1	06/03/20 22:07	06/03/20 22:18	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1487467	10	05/31/20 12:00	06/01/20 03:29	MCG	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1484936	1	05/30/20 09:57	05/31/20 14:05	ADM	Mt. Juliet, T
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1484818	1	05/30/20 09:57	05/31/20 00:36	ADM	Mt. Juliet, TI
	WG1484968			06/03/20 05:45	KME	Mt. Juliet, TI

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01576

SDG: L1223377

DATE/TIME: 06/08/20 17:53

PAGE: 4 of 16

SAMPLE RESULTS - 01 L1223377

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.8		1	06/03/2020 22:18	WG1486307	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	/ by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	103		9.50	20.7	1	06/01/2020 02:39	WG1487467	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		6
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	05/31/2020 13:16	WG1484936	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		05/31/2020 13:16	WG1484936	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	05/30/2020 23:57	WG1484818
Toluene	U		0.00134	0.00517	1	05/30/2020 23:57	WG1484818
Ethylbenzene	U		0.000761	0.00258	1	05/30/2020 23:57	WG1484818
Total Xylenes	U		0.000909	0.00671	1	05/30/2020 23:57	<u>WG1484818</u>
(S) Toluene-d8	112			75.0-131		05/30/2020 23:57	WG1484818
(S) 4-Bromofluorobenzene	103			67.0-138		05/30/2020 23:57	<u>WG1484818</u>
(S) 1,2-Dichloroethane-d4	89.3			70.0-130		05/30/2020 23:57	WG1484818

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.71		1.66	4.13	1	06/05/2020 15:12	WG1484968
C28-C40 Oil Range	18.8	B	0.283	4.13	1	06/05/2020 15:12	WG1484968
(S) o-Terphenyl	103			18.0-148		06/05/2020 15:12	WG1484968

SAMPLE RESULTS - 02 L1223377

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier Dilution	Analysis	Batch	Ср
Analyte	%		date / time		2
Total Solids	94.5	1	06/03/2020 22:18	<u>WG1486307</u>	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	306		9.74	21.2	1	06/01/2020 03:04	WG1487467	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanter	mg/kg	mg/kg	Dilution	date / time	Bateri	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	05/31/2020 13:40	WG1484936	[
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		05/31/2020 13:40	WG1484936	-

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000494	0.00106	1	05/31/2020 00:16	<u>WG1484818</u>
Toluene	U		0.00138	0.00529	1	05/31/2020 00:16	<u>WG1484818</u>
Ethylbenzene	U		0.000780	0.00265	1	05/31/2020 00:16	WG1484818
Total Xylenes	U		0.000931	0.00688	1	05/31/2020 00:16	<u>WG1484818</u>
(S) Toluene-d8	113			75.0-131		05/31/2020 00:16	WG1484818
(S) 4-Bromofluorobenzene	104			67.0-138		05/31/2020 00:16	<u>WG1484818</u>
(S) 1,2-Dichloroethane-d4	87.1			70.0-130		05/31/2020 00:16	WG1484818

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	23.1		1.70	4.23	1	06/05/2020 15:39	WG1484968
C28-C40 Oil Range	41.5		0.290	4.23	1	06/05/2020 15:39	WG1484968
(S) o-Terphenyl	94.1			18.0-148		06/05/2020 15:39	WG1484968

SAMPLE RESULTS - 03 L1223377

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	92.7		1	06/03/2020 22:18	WG1486307	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3720		99.2	216	10	06/01/2020 03:29	WG1487467

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilution	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0234	0.108	1	05/31/2020 14:05	WG1484936	
(S) a,a,a-Trifluorotoluene(FID)	96.7			77.0-120		05/31/2020 14:05	<u>WG1484936</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000504	0.00108	1	05/31/2020 00:36	WG1484818
Toluene	U		0.00140	0.00539	1	05/31/2020 00:36	WG1484818
Ethylbenzene	U		0.000795	0.00270	1	05/31/2020 00:36	WG1484818
Total Xylenes	U		0.000949	0.00701	1	05/31/2020 00:36	WG1484818
(S) Toluene-d8	112			75.0-131		05/31/2020 00:36	WG1484818
(S) 4-Bromofluorobenzene	105			67.0-138		05/31/2020 00:36	WG1484818
(S) 1,2-Dichloroethane-d4	89.3			70.0-130		05/31/2020 00:36	WG1484818

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.74	4.32	1	06/03/2020 05:45	WG1484968
C28-C40 Oil Range	0.782	<u>B J</u>	0.296	4.32	1	06/03/2020 05:45	<u>WG1484968</u>
(S) o-Terphenyl	63.4			18.0-148		06/03/2020 05:45	WG1484968

Reg @ q 4 8 8 5 10 7/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223377-01,02,03

Ср

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

(MB) R3535059-1 (06/03/20 22:18				
	MB Result	MB Qualifier	MB MDL	IB RDL	2
Analyte	%		%		T
Total Solids	0.00100				
					³ S

L1223377-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1223377-03 06/03	/20 22:18 • (DUF	P) R3535059-	3 06/03/2	0 22:18		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	92.7	92.5	1	0.259		10

Laboratory Control Sample (LCS)

(LCS) R3535059-2 06	6/03/20 22:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1223377

DATE/TIME: 06/08/20 17:53

PAGE: 8 of 16

Reg co q 4 18 9 9 15: 7/22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY

Тс

Ss

Cn

Sr

ິQc

Gl

A

Sc

Method Blank (MB)

(MB) R3535239-1 0	(MB) R3535239-1 05/31/20 15:12					
	MB Result	MB Qualifier	MB MDL	MB RDL		
Analyte	mg/kg		mg/kg	mg/kg		
Chloride	U		9.20	20.0		

L1223377-03 Original Sample (OS) • Duplicate (DUP)

(OS) L1223377-03 06/01/	20 03:29 • (DUF) R3535239-3	3 06/01/20	03:54		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	3720	3670	10	1.26		20

Laboratory Control Sample (LCS)

(LCS) R3535239-2 05	(LCS) R3535239-2 05/31/20 15:36									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
Chloride	200	204	102	90.0-110						

SDG: L1223377 DATE/TIME: 06/08/20 17:53

PAGE: 9 of 16

Reading 06 0 8/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)								
(MB) R3534673-2 05/31/20 12:19									
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
TPH (GC/FID) Low Fraction	U		0.0217	0.100					
(S) a,a,a-Trifluorotoluene(FID)	99.6			77.0-120					

Laboratory Control Sample (LCS)

(LCS) R3534673-1 05/31/2	0 11:31				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	6.78	123	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			106	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534673-3 05/31/20 22:43 • (MSD) R3534673-4 05/31/20 23:07													
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%	
TPH (GC/FID) Low Fraction	102		72.7	78.8	71.3	77.3	25	10.0-151			8.05	28	
(S) a,a,a-Trifluorotoluene(FID)					104	105		77.0-120					

SDG: L1223377 DATE/TIME: 06/08/20 17:53 PAGE: 10 of 16 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

[°]Qc

GI

A

Sc

Method Blank (MB)

(MB) R3535126-2 05/30	/20 20:50				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	109			75.0-131	
(S) 4-Bromofluorobenzene	105			67.0-138	
(S) 1,2-Dichloroethane-d4	92.8			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3535126-1 05/30	/20 19:53				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.0998	79.8	70.0-123	
Ethylbenzene	0.125	0.123	98.4	74.0-126	
Toluene	0.125	0.110	88.0	75.0-121	
Xylenes, Total	0.375	0.365	97.3	72.0-127	
(S) Toluene-d8			108	75.0-131	
(S) 4-Bromofluorobenzene			109	67.0-138	
(S) 1,2-Dichloroethane-d4			100	70.0-130	

L1223377-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223377-01 05/30/2	OS) L1223377-01 05/30/20 23:57 • (MS) R3535126-3 05/31/20 04:06 • (MSD) R3535126-4 05/31/20 04:26												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
Benzene	0.129	U	0.120	0.116	92.8	89.6	1	10.0-149			3.51	37	
Ethylbenzene	0.129	U	0.151	0.145	117	112	1	10.0-160			4.20	38	
Toluene	0.129	U	0.139	0.132	108	102	1	10.0-156			5.32	38	
Xylenes, Total	0.387	U	0.433	0.415	112	107	1	10.0-160			4.14	38	
(S) Toluene-d8					112	109		75.0-131					
(S) 4-Bromofluorobenzene					101	104		67.0-138					
(S) 1,2-Dichloroethane-d4					87.4	92.5		70.0-130					

SDG: L1223377 DATE/TIME: 06/08/20 17:53 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Cn

Â

Sc

Method Blank (MB)

	2)					l'Cn				
(MB) R3534522-1 06/03/20 04:25										
	MB Result	MB Qualifier	MB MDL	MB RDL		2				
Analyte	mg/kg		mg/kg	mg/kg		Tc				
C10-C28 Diesel Range	U		1.61	4.00						
C28-C40 Oil Range	2.60	J	0.274	4.00		³ Ss				
(S) o-Terphenyl	68.2			18.0-148						

Laboratory Control Sample (LCS)

(LCS) R3534522-2 06/0	03/20 04:41				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	34.6	69.2	50.0-150	
(S) o-Terphenyl			59.0	18.0-148	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534522-3 06/03/20 19:44 • (MSD) R3534522-4 06/03/20 20:00												
	Spike Amount Original Res	ult MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	S
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%	
C10-C28 Diesel Range	49.4	165	146	151	113	10	50.0-150	<u>J5</u>		12.2	20	L
(S) o-Terphenyl				130	123		18.0-148					
Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

Qualifier	Description
В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.
J5	The sample matrix interfered with the ability to make any accurate determination; spike value is high.

SDG: L1223377

Received by OCD: 4/22/2024 12:46:08 PACCREDITATIONS & LOCATIONS

Page 146 of 306 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223377 DATE/TIME: 06/08/20 17:53

Received by OCD: 4/22/2024 12:46:08 PM Analysis Request of Chain of Custody Record

Tł	Tetra Tech, Inc.				901	Midla Tel	nd, (43)	II Stree Texas 2) 682- 2) 682	797	'01 9	00											122	345	11			
Client Name:	Conoco Phillips	Site Manag	er:	Chri	stian	Llull			-			Γ									REC			1			
Project Name:	EVGSAU 3366-29	Contact Info	o:			ristian 512) 3		ll@tetra 1667	atec	h.com	1	1	1	1	(Ci	ircl	e	or S	Spe 	ecif	fy Ⅳ I I	leth	noc	IN	0.)	1	
Project Location: (county, state)	Lea County, New Mexico	Project #:				-0157	-					1			1		F	01	8	-							
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01					-								1			1	1	T		T			list)		
Receiving Laboratory:	Pace Analytical	Sampler Sig	gnature:		Joe T	yler	-				-	1	100M		se Hg	Se Hg									attached li		
Comments: COPTET	RA Acctnum				1		-		_		-	8260B	(0		I Cr Pb S	Ag As Ba Cd Cr Pb Se Hg	2			C/625					(see		
	A PARTY AND A PART	SAM	PLING	MA	TRIX			RVAT	IVE	SS	Î	X	(Ext to C35)		As Ba Co	As Ba C		tiles	0B / 624	8					hemistry		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020)		T				Π	AINEF	D (Y/I		005 (E)	-		als Ag	atiles	ni Volat	ol. 8260B		82 / 60	M (Asbestos)	0.00	Sulfate	ater Che	E	
(LAB USE)	1	DATE	TIME	WATER	SOIL	HCL	HNO3	NONE		# CONTAINERS	FILTERED (Y/N)		TPH TX1005	AH 8270C	Fotal Metals	FCLP Metals	ICLP Volatil	TCLP Semi Volatiles	GC/MS Vol.	GC/MS Se	PCB's 8082 / 608	PLM (Asbe	Chloride 300.0	Chloride	General Water Chemi Anion/Cation Balance	TPH 8015R	НОГР
	BH-20-1S (0'-1')	05/21/20	1300		X		-	X		1	N	X		<	-		F					2 11	X			F	1
	BH-20-1S (2'-3')	05/21/20	1305		x			x		1	N	X)	<		Π			T				X			\square	-
	BH-20-1S (4'-5') 1	05/21/20	1310		X		_	х		1	N	х)	<									X			\square	-
	9.8°																								-		
Relinquished by:	Date: Time:	Received by		Н		Da	te:	Tir	ne:								RE	MAR	KG.								
	Anniel 5-28-23 12:35 Date: Time:	Received by	th	J			F	3		2:3	2		LAE O	NL	Y		[XS	Stanc	dard	me Da	iy 24	4 hr.	48 h	r. 72	2 hr.	
Relinquished by:	K 5-28-23 16:00 Date: Time:	Received by	4/0/	1	5	Dat	-		1(ne:	j.u	2										ges Au			P Re	port		
Released to Imagin	g: 4/22/2024 2:36:08 PM	ORIGINA	90	30	30	20		120	14	07	u	(Cir	cle)	HANI	D DE	LIVE	REI	D FE	EDEX	x U	PS	Track	king #		_	-	

Pace Analytical National Center	for resting & inno	vation	
Cooler Receip	t Form		
Client: Copteter		12233	17
Cooler Received/Opened On: 5 129 1 20	Temperature:	Amb	
Received By: Lakeacher Webster			
Signature: X. MIIIT			
		Constant of the second	
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		/	1
COC Seal Present / Intact? COC Signed / Accurate?			
COC Signed / Accurate?			
COC Signed / Accurate? Bottles arrive intact?			
COC Signed / Accurate? Bottles arrive intact? Correct bottles used?			
COC Signed / Accurate? Bottles arrive intact? Correct bottles used? Sufficient volume sent?			

Received by OCD: 4/22/2024 12:46:08 PM

ANALYTICAL REPORT

ConocoPhillips - Tetra Tech

Sample Delivery Group: Samples Received: Project Number: Description:

Report To:

L1223380 05/29/2020 212C-MD-01576 EVGSAU 3366-029

Christian Llull 901 West Wall Suite 100 Midland, TX 79701

Ср Тс Ss Cn Sr ʹQc Gl AI Sc

Page 149 of 306

Entire Report Reviewed By:

Chu, toph

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223380 DATE/TIME: 06/10/20 08:34

PAGE: 1 of 23

Tc: Table of Contents 2 Ss: Sample Summary 3 Cn: Case Narrative 5 Sr: Sample Results 6 BH-20-2S (0-1) L1223380-01 BH-20-2S (2-3) L1223380-02 BH-20-2S (2-3) L1223380-02 BH-20-2S (4-5) L1223380-03 BH-20-2S (6-7) L1223380-04 BH-20-2S (9-10) L1223380-04 BH-20-2S (9-10) L1223380-05 BH-20-3S (0-1) L1223380-06 BH-20-3S (0-1) L1223380-07 BH-20-3S (2-3) L1223380-07 BH-20-3S (4-5) L1223380-08 Gc: Quality Control Summary 14 Total Solids by Method 2540 G-2011 14
Cn: Case Narrative 5 Sr: Sample Results 6 BH-20-2S (0-1) L1223380-01 6 BH-20-2S (2-3) L1223380-02 7 BH-20-2S (4-5) L1223380-03 8 BH-20-2S (6-7) L1223380-03 8 BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-05 10 BH-20-3S (2-3) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
Sr: Sample Results 6 BH-20-2S (0-1) L1223380-01 6 BH-20-2S (2-3) L1223380-02 7 BH-20-2S (4-5) L1223380-03 8 BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-2S (0-1) L1223380-01 6 BH-20-2S (2-3) L1223380-02 7 BH-20-2S (4-5) L1223380-03 8 BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-05 10 BH-20-3S (2-3) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 CC: Quality Control Summary 14
BH-20-2S (2-3) L1223380-02 7 BH-20-2S (4-5) L1223380-03 8 BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-2S (4-5) L1223380-03 8 BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-2S (6-7) L1223380-04 9 BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-2S (9-10) L1223380-05 10 BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-3S (0-1) L1223380-06 11 BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-3S (2-3) L1223380-07 12 BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
BH-20-3S (4-5) L1223380-08 13 Qc: Quality Control Summary 14
Qc: Quality Control Summary 14
Total Solids by Method 2540 G-2011 14
Wet Chemistry by Method 300.015
Volatile Organic Compounds (GC) by Method 8015D/GRO 16
Volatile Organic Compounds (GC/MS) by Method 8260B 17
Semi-Volatile Organic Compounds (GC) by Method 8015 18
GI: Glossary of Terms 20
Al: Accreditations & Locations 21
Sc: Sample Chain of Custody 22

PROJECT: 212C-MD-01576

SDG: L1223380

DATE/TIME: 06/10/20 08:34

PAGE: 2 of 23

ONE LAB. NAPagev151 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-2S (0-1) L1223380-01 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 13:30	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	20	06/04/20 21:20	06/05/20 03:58	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 17:59	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 15:37	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	5	06/02/20 12:46	06/03/20 18:03	FM	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-20-2S (2-3) L1223380-02 Solid			Joe Tyler	05/21/20 13:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	10	06/04/20 21:20	06/05/20 04:13	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 18:48	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 15:57	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 20:22	KME	Mt. Juliet, TN
BH-20-2S (4-5) L1223380-03 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 13:40	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 04:27	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:08	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:16	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1485512	1	06/02/20 12:46	06/02/20 20:35	KME	Mt. Juliet, TN
BH-20-2S (6-7) L1223380-04 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 13:50	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	10	06/04/20 21:20	06/05/20 04:42	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:29	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:35	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 12:06	JN	Mt. Juliet, TN
BH-20-2S (9-10) L1223380-05 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 14:00	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 04:57	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 19:50	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 16:54	JHH	Mt. Juliet, TN
	WG1488579	1	06/03/20 07:23	06/09/20 12:20	JN	Mt. Juliet, TN

PROJECT: 212C-MD-01576

SDG: L1223380 DATE/TIME: 06/10/20 08:34

34

PAGE: 3 of 23

ONE LAB. NAPagev152 of 306

			Collected by	Collected date/time		
BH-20-3S (0-1) L1223380-06 Solid			Joe Tyler	05/21/20 14:30	05/29/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 05:12	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 20:28	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:13	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 13:00	JN	Mt. Juliet, Th
			Collected by	Collected date/time	Received da	te/time
BH-20-3S (2-3) L1223380-07 Solid			Joe Tyler	05/21/20 14:35	05/29/20 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 05:27	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 21:02	BMB	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:32	JHH	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488579	1	06/03/20 07:23	06/09/20 12:47	JN	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
BH-20-3S (4-5) L1223380-08 Solid			Joe Tyler	05/21/20 14:40	05/29/20 09	0:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG1486309	1	06/03/20 21:45	06/03/20 21:57	KDW	Mt. Juliet, TI
Wet Chemistry by Method 300.0	WG1485960	1	06/04/20 21:20	06/05/20 06:12	ELN	Mt. Juliet, TI
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485339	1	05/30/20 10:49	06/01/20 21:22	BMB	Mt. Juliet, TI
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1485369	1	05/30/20 10:49	06/01/20 17:51	JHH	Mt. Juliet, TI
	WG1488579	1	06/03/20 07:23	06/09/20 12:33	JN	Mt. Juliet, TI

SDG: L1223380

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223380

G: 3380 DATE/TIME: 06/10/20 08:34

PAGE: 5 of 23

SAMPLE RESULTS - 01

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	 Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.7		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	8480		201	436	20	06/05/2020 03:58	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	bach	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	06/01/2020 17:59	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	90.5			77.0-120		06/01/2020 17:59	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000509	0.00109	1	06/01/2020 15:37	WG1485369
Toluene	0.00180	J	0.00142	0.00545	1	06/01/2020 15:37	WG1485369
Ethylbenzene	U		0.000804	0.00273	1	06/01/2020 15:37	WG1485369
Total Xylenes	U		0.000960	0.00709	1	06/01/2020 15:37	WG1485369
(S) Toluene-d8	108			75.0-131		06/01/2020 15:37	WG1485369
(S) 4-Bromofluorobenzene	105			67.0-138		06/01/2020 15:37	WG1485369
(S) 1,2-Dichloroethane-d4	92.1			70.0-130		06/01/2020 15:37	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	323		8.78	21.8	5	06/03/2020 18:03	WG1485512
C28-C40 Oil Range	422		1.49	21.8	5	06/03/2020 18:03	WG1485512
(S) o-Terphenyl	62.6			18.0-148		06/03/2020 18:03	WG1485512

SDG: L1223380 DATE/TIME: 06/10/20 08:34

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	95.9		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2510		96.0	209	10	06/05/2020 04:13	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	06/01/2020 18:48	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/01/2020 18:48	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/01/2020 15:57	WG1485369
Toluene	U		0.00136	0.00522	1	06/01/2020 15:57	WG1485369
Ethylbenzene	U		0.000769	0.00261	1	06/01/2020 15:57	WG1485369
Total Xylenes	U		0.000918	0.00678	1	06/01/2020 15:57	<u>WG1485369</u>
(S) Toluene-d8	110			75.0-131		06/01/2020 15:57	WG1485369
(S) 4-Bromofluorobenzene	107			67.0-138		06/01/2020 15:57	<u>WG1485369</u>
(S) 1,2-Dichloroethane-d4	90.8			70.0-130		06/01/2020 15:57	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	06/02/2020 20:22	WG1485512
C28-C40 Oil Range	1.93	<u>B J</u>	0.286	4.17	1	06/02/2020 20:22	WG1485512
(S) o-Terphenyl	65.7			18.0-148		06/02/2020 20:22	WG1485512

SDG: L1223380

Received by 994:	\$/22/2024	12:46:08 PM
Collected date/time:	•	

SAMPLE RESULTS - 03 L1223380

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.0		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	/ by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	227		9.49	20.6	1	06/05/2020 04:27	WG1485960	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	ma/ka	Quanner	mg/kg	mg/kg	Dilation	date / time	Bateri	
,	шу/ку		5 5	5 5				
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/01/2020 19:08	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 19:08	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/01/2020 16:16	WG1485369
Toluene	U		0.00134	0.00516	1	06/01/2020 16:16	WG1485369
Ethylbenzene	U		0.000760	0.00258	1	06/01/2020 16:16	WG1485369
Total Xylenes	U		0.000907	0.00670	1	06/01/2020 16:16	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 16:16	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:16	WG1485369
(S) 1,2-Dichloroethane-d4	89.5			70.0-130		06/01/2020 16:16	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.12	1	06/02/2020 20:35	WG1485512
C28-C40 Oil Range	1.55	<u>B J</u>	0.283	4.12	1	06/02/2020 20:35	WG1485512
(S) o-Terphenyl	73.7			18.0-148		06/02/2020 20:35	WG1485512

SDG: L1223380

SAMPLE RESULTS - 04

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.0		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	3240		98.9	215	10	06/05/2020 04:42	WG1485960

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.10101	date / time		
TPH (GC/FID) Low Fraction	U		0.0233	0.108	1	06/01/2020 19:29	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 19:29	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00108	1	06/01/2020 16:35	<u>WG1485369</u>
Toluene	U		0.00140	0.00538	1	06/01/2020 16:35	<u>WG1485369</u>
Ethylbenzene	U		0.000793	0.00269	1	06/01/2020 16:35	WG1485369
Total Xylenes	U		0.000946	0.00699	1	06/01/2020 16:35	<u>WG1485369</u>
(S) Toluene-d8	110			75.0-131		06/01/2020 16:35	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:35	<u>WG1485369</u>
(S) 1,2-Dichloroethane-d4	90.4			70.0-130		06/01/2020 16:35	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.73	4.30	1	06/09/2020 12:06	WG1488579
C28-C40 Oil Range	U		0.295	4.30	1	06/09/2020 12:06	WG1488579
(S) o-Terphenyl	82.5			18.0-148		06/09/2020 12:06	WG1488579

SDG: L1223380 DATE/TIME: 06/10/20 08:34

SAMPLE RESULTS - 05

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	-	Ср
Analyte		%			date / time		ſ	2
Total Solids		99.6		1	06/03/2020 21:57	WG1486309		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	327		9.24	20.1	1	06/05/2020 04:57	WG1485960	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0218	0.100	1	06/01/2020 19:50	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		06/01/2020 19:50	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000469	0.00100	1	06/01/2020 16:54	<u>WG1485369</u>
Toluene	U		0.00131	0.00502	1	06/01/2020 16:54	WG1485369
Ethylbenzene	U		0.000740	0.00251	1	06/01/2020 16:54	WG1485369
Total Xylenes	U		0.000884	0.00653	1	06/01/2020 16:54	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 16:54	WG1485369
(S) 4-Bromofluorobenzene	106			67.0-138		06/01/2020 16:54	WG1485369
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		06/01/2020 16:54	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.19	J	1.62	4.02	1	06/09/2020 12:20	<u>WG1488579</u>
C28-C40 Oil Range	1.26	J	0.275	4.02	1	06/09/2020 12:20	<u>WG1488579</u>
(S) o-Terphenyl	89.6			18.0-148		06/09/2020 12:20	WG1488579

SDG: L1223380 DATE/TIME: 06/10/20 08:34

Received by 99D:	4×22/2024	12:46:08	PM
Collected date/time:			

SAMPLE RESULTS - 06 L1223380

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.4		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0									
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time		⁴ Cn	
Chloride	114		9.35	20.3	1	06/05/2020 05:12	WG1485960	CI	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Batch	
TPH (GC/FID) Low Fraction	U		0.0220	0.102	1	06/01/2020 20:28	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	101			77.0-120		06/01/2020 20:28	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00102	1	06/01/2020 17:13	WG1485369
Toluene	U		0.00132	0.00508	1	06/01/2020 17:13	WG1485369
Ethylbenzene	U		0.000749	0.00254	1	06/01/2020 17:13	WG1485369
Total Xylenes	U		0.000894	0.00660	1	06/01/2020 17:13	WG1485369
(S) Toluene-d8	110			75.0-131		06/01/2020 17:13	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:13	WG1485369
(S) 1,2-Dichloroethane-d4	92.0			70.0-130		06/01/2020 17:13	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.25		1.64	4.06	1	06/09/2020 13:00	WG1488579
C28-C40 Oil Range	25.7		0.278	4.06	1	06/09/2020 13:00	WG1488579
(S) o-Terphenyl	97.0			18.0-148		06/09/2020 13:00	WG1488579

SDG: L1223380

DATE/TIME: 06/10/20 08:34 SAMPLE RESULTS - 07 L1223380

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	98.1		1	06/03/2020 21:57	WG1486309	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ S
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	66.5		9.37	20.4	1	06/05/2020 05:27	WG1485960	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0221	0.102	1	06/01/2020 21:02	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	103			77.0-120		06/01/2020 21:02	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000476	0.00102	1	06/01/2020 17:32	WG1485369
Toluene	U		0.00132	0.00509	1	06/01/2020 17:32	<u>WG1485369</u>
Ethylbenzene	U		0.000751	0.00255	1	06/01/2020 17:32	WG1485369
Total Xylenes	U		0.000897	0.00662	1	06/01/2020 17:32	WG1485369
(S) Toluene-d8	109			75.0-131		06/01/2020 17:32	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:32	WG1485369
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		06/01/2020 17:32	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.19		1.64	4.08	1	06/09/2020 12:47	WG1488579
C28-C40 Oil Range	8.32		0.279	4.08	1	06/09/2020 12:47	WG1488579
(S) o-Terphenyl	97.1			18.0-148		06/09/2020 12:47	WG1488579

SDG: L1223380

Rectized by 994: \$72/2024 12:46:08 PM Collected date/time: 05/21/20 14:40

SAMPLE RESULTS - 08 L1223380

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	—	Ср
Analyte		%			date / time			2
Total Solids		97.6		1	06/03/2020 21:57	WG1486309		Tc

Wet Chemistry by Method 300.0

Wet Chemistry by Method 300.0 3									³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg	mg/kg		date / time			⁴ Cn
Chloride	24.0		9.43	20.5	1	06/05/2020 06:12	WG1485960		

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0222	0.102	1	06/01/2020 21:22	WG1485339	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		06/01/2020 21:22	WG1485339	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000479	0.00102	1	06/01/2020 17:51	<u>WG1485369</u>
Toluene	U		0.00133	0.00512	1	06/01/2020 17:51	WG1485369
Ethylbenzene	U		0.000755	0.00256	1	06/01/2020 17:51	WG1485369
Total Xylenes	U		0.000902	0.00666	1	06/01/2020 17:51	WG1485369
(S) Toluene-d8	111			75.0-131		06/01/2020 17:51	WG1485369
(S) 4-Bromofluorobenzene	104			67.0-138		06/01/2020 17:51	WG1485369
(S) 1,2-Dichloroethane-d4	89.7			70.0-130		06/01/2020 17:51	WG1485369

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.65	4.10	1	06/09/2020 12:33	WG1488579
C28-C40 Oil Range	U		0.281	4.10	1	06/09/2020 12:33	WG1488579
(S) o-Terphenyl	100			18.0-148		06/09/2020 12:33	WG1488579

SDG: L1223380

DATE/TIME: 06/10/20 08:34

Reg @ q 4 8 8 5 10 9/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223380-01,02,03,04,05,06,07,08

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

Method Blank	(IVIB)				
(MB) R3535057-1 (06/03/20 21:57				Ξ.
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	6	
Total Solids	0.00100				

L1223380-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1223380-04 06	5/03/20 21:57 • (DL	JP) R3535057-	-3 06/03/2	20 21:57		
	Original Resul	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	93.0	93.9	1	0.947		10

Laboratory Control Sample (LCS)

(LCS) R3535057-2 06	6/03/20 21:57				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

SDG: L1223380

DATE/TIME: 06/10/20 08:34

PAGE: 14 of 23

Reg @ q 4 8 9 6 0 22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1223380-01,02,03,04,05,06,07,08

Ср

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3535396-1 06	1B) R3535396-1 06/04/20 23:59								
	MB Result	MB Qualifier	MB MDL	MB RDL					
Analyte	mg/kg		mg/kg	mg/kg					
Chloride	U		9.20	20.0					

L1223379-04 Original Sample (OS) • Duplicate (DUP)

(OS) L1223379-04 06/05	5/20 01:28 • (DUF	P) R3535396-3	3 06/05/2	0 01:43		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	175	174	1	0.587		20

L1223380-08 Original Sample (OS) • Duplicate (DUP)

L1223380-08 O	riginal Sample	e (OS) • Du	iplicate	(DUP)		
(OS) L1223380-08 06	6/05/20 06:12 • (DU	P) R3535396	-6 06/05/	20 06:27		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	24.0	25.2	1	4.90		20

Laboratory Control Sample (LCS)

(LCS) R3535396-2 06/0	6) R3535396-2 06/05/20 00:14										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
Chloride	200	206	103	90.0-110							

L1223379-08 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223379-08 06/05/	(OS) L1223379-08 06/05/20 03:13 • (MS) R3535396-4 06/05/20 03:28 • (MSD) R3535396-5 06/05/20 03:43											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	523	278	817	804	103	101	1	80.0-120			1.66	20

Released to Imaging ? 4/22/2024 2:36:08 PM	PROJECT:	SDG:	DATE/TIME:	PAGE:
ConocoPhillips - Tetra Tech	212C-MD-01576	L1223380	06/10/20 08:34	15 of 23

Reg cive dig BGB g/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

Method Blank (MB)

)				- P.
(MB) R3534748-2 06/01/	/20 12:27				(
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120	3

Laboratory Control Sample (LCS)

(LCS) R3534748-1 06/01/	CS) R3534748-1 06/01/20 11:46									
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier					
Analyte	mg/kg	mg/kg	%	%						
TPH (GC/FID) Low Fraction	5.50	4.46	81.1	72.0-127						
(S) a.a.a-Trifluorotoluene(FID)			95.4	77.0-120						

DATE/TIME: 06/10/20 08:34 PAGE: 16 of 23 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Qc

Method Blank (MB)

	1				
(MB) R3534492-2 06/01/	/20 11:09				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	110			75.0-131	
(S) 4-Bromofluorobenzene	105			67.0-138	
(S) 1,2-Dichloroethane-d4	88.2			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3534492-1 06/01/20 10:11										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	ľ G				
Analyte	mg/kg	mg/kg	%	%						
Benzene	0.125	0.108	86.4	70.0-123		8				
Ethylbenzene	0.125	0.133	106	74.0-126						
Toluene	0.125	0.121	96.8	75.0-121		9				
Xylenes, Total	0.375	0.394	105	72.0-127		Sc				
(S) Toluene-d8			109	75.0-131						
(S) 4-Bromofluorobenzene	a		107	67.0-138						
(S) 1,2-Dichloroethane-d4			96.4	70.0-130						

SDG: L1223380 DATE/TIME: 06/10/20 08:34 PAGE: 17 of 23 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Â

Sc

Method Blank (MB)

Method Blank (M	ы)						
MB) R3534383-1 06/0	2/20 19:30				 		
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C40 Oil Range	0.428	Ţ	0.274	4.00			
(S) o-Terphenyl	64.4			18.0-148			

Laboratory Control Sample (LCS)

(LCS) R3534383-2 06/0	02/20 19:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.6	73.2	50.0-150	
(S) o-Terphenyl			84.1	18.0-148	

L1223380-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223380-01 06/03/20 18:03 • (MS) R3534744-1 06/03/20 18:16 • (MSD) R3534744-2 06/03/20 18:30												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.7	323	387	387	120	120	5	50.0-150			0.000	20
(S) o-Terphenyl					56.9	62.2		18.0-148				

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

⁺Cn

Sr

ິQc

GI

Â

Sc

Method Blank (MB)

	D)				l'Cn
(MB) R3536640-1 06/0	9/20 11:12				1 Ch
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	95.0			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3536640-2 06/0	LCS) R3536640-2 06/09/20 11:25										
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier						
Analyte	mg/kg	mg/kg	%	%							
C10-C28 Diesel Range	50.0	59.6	119	50.0-150							
(S) o-Terphenyl			97.4	18.0-148							

DATE/TIME: 06/10/20 08:34 PAGE: 19 of 23

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
(dry)	Results are reported based on the dry weight of the sample. [this will only be present on a dry report basis for soils].
MDL	Method Detection Limit.
MDL (dry)	Method Detection Limit.
RDL	Reported Detection Limit.
RDL (dry)	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description
В	The same analyte is found in the associated blank.

В	The same analyte is found in the associated blank.
J	The identification of the analyte is acceptable; the reported value is an estimate.

SDG: L1223380

Received by OCD: 4/22/2024 12:46:08 PACCREDITATIONS & LOCATIONS

Page 169 of 306 ONE LAB. NATIONWIDE.

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey–NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio–VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas ⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 5	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223380 DATE/TIME: 06/10/20 08:34 ¹ Cp ² Tc ³ Ss ⁴ Cn ⁵ Sr ⁶ Qc ⁷ Gl ⁸ Al ⁹ Sc Received by OCD: 4/22/2024 12:46:08 PM Analysis Request of Chain of Custody Record

TE	Point 901 West Wall Street, Suite 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946 Fax (432) 682-3946							00						-			1	22	.33	80						
Client Name:	Conoco Phillips	Site Manage	er:	Ch	ristian	Llull							ANALYSIS REQUEST (Circle or Specify Method No.)													
Project Name:	EVGSAU 3366-29	Contact Info	IContact Into:					nail: christian.llull@tetratech.com one: (512) 338-1667					1	(Ci	rcle	or			fy N	/let	tho:		0.)	11	
Project Location: (county, state)	Lea County, New Mexico	Project #: 212C-MD-01576								1				1	F	02	20			1						
Invoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970				1					-		1	6			4	1			11	1	7		list)		
Receiving Laboratory:	Pace Analytical	Sampler Signature: Joe Tyler							0 - MRO		Se Hg	Se Hg								attached						
Comments: COPTE	TRA Acctnum									-		8260B	DRO - ORO		Ag As Ba Cd Cr Pb Se Hg	Cd Cr Pb			4 0C/625					(see		
		SAMF	LING	M	ATRIX	PR		THO		RS	(N/,	X	GRO - DI		As Ba C	g As Ba	atiles		8260B / 624 i. Vol. 8270C/					Chemistry		
LAB # (LAB USE)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNO ₃	ICE		# CONTAINERS	FILTERED (Y/N)	BTEX 8021B	PH 8015M (Metals	CLP Metals A	CLP Semi Volatiles		SC/MS Vol. 8260E	CB's 8082 / 608	JORM	PLM (Asbestos) Chloride 300.0	Chloride Sulfate	General Water Chemi Anion/Cation Balance	TPH 8015R	НОГР
	BH-20-2S (0'-1')	05/21/20	1330	-	X	-	-	X		1	N	X	×	-				L.		-	2 1	X			F	i
	BH-20-2S (2'-3')	05/21/20	1335	\top	X			X		1	N	X	×	:						\square		X	\square		T	7
	BH-20-2S (4'-5') •	05/21/20	1340	T	x			x		1	N	X	×	(\square		X	\square			2
	BH-20-2S (6'-7')	05/21/20	1350		X			X		1	N	x x							Π		X	Π			1	
	BH-20-2S (9'-10')	05/21/20	1400		X			X		1	N	X	×	(Π		X	Π	T	T	7
	BH-20-3S (0'-1')	05/21/20	1430		X			x		1	N	X	×	(Π		X	\square			1
	BH-20-3S (2'-3')	05/21/20	1435		X			х		1	N	X	×	(X				-
	BH-20-3S (4'-5') t	05/21/20	1440		x			x		1	N	x	×									X				
Relinguished by:	Date: Time:	Received by		-	Ļ		ate:	T	Time:				1			-	EMA	BKS	2.							
	August 5-28-25 12:35 Date: Time:	Received by	Du	1	5	18		ò		:3-	>	Sam	0	BUS NLY	,		X] Sta	ndard		Day	24 hr.	48 h	hr. 72	2 hr.	
Relinquished by:	0 5-28-23 (Givo Date: Time:	Received by	Z		5-	28-	Zi ate:	_	16. Time:	2:0	D] Rus	h Cha	rges A	uthori	ized				
nemiquisned by.	Date. Time.	X.	We	A	h	5	10	ata	2	de	à:a] Spe	ecial Re	port L	imits	or TRI	RP Re	port		
	17	ORIGINA)	2	91	1					(Circ	le) I	HAND	DE	LIVER	RED	FED	EX	JPS	Trac	cking	#:			

Pace Analytical National Center for	Testing & Innov	vation	
Cooler Receipt Fo	orm		
Client: Coltetra		1223	79.0
Cooler Received/Opened On: 5 / 2/1 20	Temperature:	And	
Received By: Lakeacher Webster			
Signature:			
Receipt Check List	NP	Yes	No
COC Seal Present / Intact?		1	
COC Signed / Accurate?		1	
Bottles arrive intact?			
Correct bottles used?			相對於他的口法
Sufficient volume sent?	The second second	/	
If Applicable		The second second	
VOA Zero headspace?			
Preservation Correct / Checked?		1987年中国	

Received by OCD: 4/22/2024 12:46:08 PM

ANALYTICAL REPORT June 10, 2020

ConocoPhillips - Tetra Tech

Sample Delivery Group:	L1223523					
Samples Received:	05/29/2020					
Project Number:	212C-MD-01576					
Description:	EVGSAU 3366-029					
Site:	LEA COUNTY, NM					
Report To:	Christian Llull					
	901 West Wall					
	Suite 100					
	Midland, TX 79701					

Ср Тс Ss Cn Śr *Q*c Gl ΆI Sc

Page 172 of 306

Entire Report Reviewed By: Chu, forth June

Chris McCord Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01576

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 1 of 58

Ср

Ss

Cn

Sr

Qc

Gl

Â

Sc

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	8
Sr: Sample Results	9
BH-20-1 (0-1) L1223523-01	9
BH-20-1 (2-3) L1223523-02	10
BH-20-1 (4-5) L1223523-03	11
BH-20-1 (6-7) L1223523-04	12
BH-20-1 (9-10) L1223523-05	13
BH-20-1 (14-15) L1223523-06	14
BH-20-2 (0-1) L1223523-07	15
BH-20-2 (2-3) L1223523-08	16
BH-20-2 (4-5) L1223523-09	17
BH-20-2 (6-7) L1223523-10	18
BH-20-2 (9-10) L1223523-11	19
BH-20-2 (14-15) L1223523-12	20
BH-20-2 (19-20) L1223523-13	21
BH-20-2 (24-25) L1223523-14	22
BH-20-2 (29-30) L1223523-15	23
BH-20-2 (39-40) L1223523-16	24
BH-20-3 (0-1) L1223523-17	25
BH-20-3 (2-3) L1223523-18	26
BH-20-3 (4-5) L1223523-19	27
BH-20-4 (0-1) L1223523-20	28
BH-20-4 (2-3) L1223523-21	29
BH-20-4 (4-5) L1223523-22	30
BH-20-5 (0-1) L1223523-23	31
BH-20-5 (2-3) L1223523-24	32
BH-20-5 (4-5) L1223523-25	33
Qc: Quality Control Summary	34
Total Solids by Method 2540 G-2011	34
Wet Chemistry by Method 300.0	38
Volatile Organic Compounds (GC) by Method 8015D/GRO	40
Volatile Organic Compounds (GC/MS) by Method 8260B	46
Semi-Volatile Organic Compounds (GC) by Method 8015	50
GI: Glossary of Terms	53
Al: Accreditations & Locations	54
Sc: Sample Chain of Custody	55
······	

PROJECT: 212C-MD-01576

SDG: L1223523

.

PAGE: 2 of 58

ONE LAB. NAPagev174 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-1 (0-1) L1223523-01 Solid			Joe Tyler	05/20/20 14:00	05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 17:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 09:18	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 00:25	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:47	KME	Mt. Juliet, TN
BH-20-1 (2-3) L1223523-02 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 14:05	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 18:02	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 09:42	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 00:46	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:21	KME	Mt. Juliet, TN
BH-20-1 (4-5) L1223523-03 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 14:10	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:31	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1485898	1	06/02/20 08:39	06/03/20 10:06	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 01:06	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 20:42	KME	Mt. Juliet, TN
BH-20-1 (6-7) L1223523-04 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 14:15	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486415	1	06/04/20 14:11	06/04/20 14:19	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 18:40	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 16:01	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 01:26	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 20:56	KME	Mt. Juliet, TN
BH-20-1 (9-10) L1223523-05 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 14:20	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:50	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 16:25	BMB	Mt. Juliet, TN
	WG1486515	1	06/02/20 08:39	06/03/20 15:21	DWR	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	101100010					

PROJECT: 212C-MD-01576

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 3 of 58

ONE LAB. NAPagev175 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-1 (14-15) L1223523-06 Solid	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time	jet	
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	1	06/03/20 09:34	06/03/20 18:59	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 16:49	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 02:07	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 21:22	KME	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-20-2 (0-1) L1223523-07 Solid			Joe Tyler	05/20/20 14:50	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486008	5	06/03/20 09:34	06/03/20 19:18	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486356	1	06/02/20 08:39	06/03/20 17:12	BMB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 02:28	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	5	06/03/20 05:20	06/04/20 00:26	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-20-2 (2-3) L1223523-08 Solid			Joe Tyler	05/20/20 15:00	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486419	1	06/04/20 18:06	06/04/20 18:21	KBC	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 02:24	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 09:55	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 02:48	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:34	KME	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	
BH-20-2 (4-5) L1223523-09 Solid			Joe Tyler	05/20/20 15:05	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Fotal Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Net Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 02:57	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 10:18	ADM	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:08	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 23:08	KME	Mt. Juliet, TN
			Collected by	Collected date/time		
BH-20-2 (6-7) L1223523-10 Solid			Joe Tyler	05/20/20 15:10	05/29/20 09	:00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 03:14	ELN	Mt. Juliet, TN
/olatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 10:40	ADM	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:29	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:54	KME	Mt. Juliet, TN

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30

1 IME:) 18:30 PAGE: 4 of 58

ONE LAB. NAPagev176 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-2 (9-10) L1223523-11 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 15:20	Received dat 05/29/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time			
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 03:31	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 11:02	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 03:49	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 21:35	KME	Mt. Juliet, TN	
			Collected by	Collected date/time	Received dat		
BH-20-2 (14-15) L1223523-12 Solid			Joe Tyler	05/20/20 15:30	05/29/20 09	:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 03:48	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:39	06/03/20 11:25	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 04:09	DWR	Mt. Juliet, TM	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 21:49	KME	Mt. Juliet, TN	
BH-20-2 (19-20) L1223523-13 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 15:40	Received da 05/29/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	,		
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	10	06/02/20 22:30	06/03/20 04:05	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486589	1	06/02/20 08:39	06/03/20 16:06	ACG	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:39	06/03/20 04:30	DWR	Mt. Juliet, T	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:02	KME	Mt. Juliet, Th	
BH-20-2 (24-25) L1223523-14 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 15:50	Received da 05/29/20 09		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TI	
Wet Chemistry by Method 300.0	WG1486010	5	06/02/20 22:30	06/03/20 05:47	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:49	06/03/20 12:10	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 04:50	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:15	KME	Mt. Juliet, T	
BH-20-2 (29-30) L1223523-15 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 16:10		Received date/time 05/29/20 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	10	06/02/20 22:30	06/03/20 06:03	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:49	06/03/20 12:32	DWR	Mt. Juliet, TN	
5	WG1486129	1	06/02/20 08:49	06/03/20 05:10	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B					2		

PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30

ME: 18:30 PAGE: 5 of 58

ONE LAB. NAPagev177 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-2 (39-40) L1223523-16 Solid			Collected by Joe Tyler	Collected date/time 05/20/20 16:30	Received da 05/29/20 09		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:20	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486242	1	06/02/20 08:49	06/03/20 12:54	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 05:31	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486068	1	06/03/20 05:20	06/03/20 22:41	KME	Mt. Juliet, TN	
			Collected by	Collected date/time	Received da		
BH-20-3 (0-1) L1223523-17 Solid			Joe Tyler	05/21/20 10:00	05/29/20 09):00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:37	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 09:57	BMB	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 05:51	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 02:30	JN	Mt. Juliet, TN	
BH-20-3 (2-3) L1223523-18 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:05	Received da 05/29/20 09		
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location	
			date/time	date/time	,		
Total Solids by Method 2540 G-2011	WG1486420	1	06/04/20 17:43	06/04/20 18:01	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 06:54	ELN	Mt. Juliet, TI	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 10:21	BMB	Mt. Juliet, TI	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 06:11	DWR	Mt. Juliet, TI	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 22:24	DMG	Mt. Juliet, T	
BH-20-3 (4-5) L1223523-19 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:10	Received da 05/29/20 09		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, Tl	
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:11	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 10:45	BMB	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486129	1	06/02/20 08:49	06/03/20 06:32	DWR	Mt. Juliet, TN	
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:31	JN	Mt. Juliet, TN	
BH-20-4 (0-1) L1223523-20 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:40		Received date/time 05/29/20 09:00	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location	
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN	
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:28	ELN	Mt. Juliet, TN	
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:09	BMB	Mt. Juliet, TN	
	WG1486129	1	06/02/20 08:49	06/03/20 06:52	DWR	Mt. Juliet, TN	
Volatile Organic Compounds (GC/MS) by Method 8260B			JU, JE/EU UU. IJ	00,00120 00.0Z	2	····· Junct, H	

PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30

ИЕ: 8:30 PAGE: 6 of 58 Received by OCD: 4/22/2024 12:46:08 PM

SAMPLE SUMMARY

ONE LAB. NAPagev178 of 306

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

BH-20-4 (2-3) L1223523-21 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:45	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 07:45	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:33	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 09:37	ACG	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 02:43	JN	Mt. Juliet, TN
BH-20-4 (4-5) L1223523-22 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 10:50	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 08:36	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486611	1	06/02/20 08:49	06/04/20 11:57	BMB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 09:56	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:44	JN	Mt. Juliet, TN
BH-20-5 (0-1) L1223523-23 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 11:30	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 08:53	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 01:24	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486258	1	06/02/20 08:49	06/03/20 10:15	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	10	06/03/20 19:01	06/08/20 03:36	JN	Mt. Juliet, TN
BH-20-5 (2-3) L1223523-24 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 11:35	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 09:10	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 01:44	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486294	1	06/02/20 08:49	06/03/20 10:13	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 03:10	JN	Mt. Juliet, TN
BH-20-5 (4-5) L1223523-25 Solid			Collected by Joe Tyler	Collected date/time 05/21/20 11:40	Received da 05/29/20 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG1486421	1	06/04/20 17:24	06/04/20 17:36	KDW	Mt. Juliet, TN
Wet Chemistry by Method 300.0	WG1486010	1	06/02/20 22:30	06/03/20 09:26	ELN	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015D/GRO	WG1486617	1	06/02/20 08:49	06/04/20 02:05	JHH	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG1486294	1	06/02/20 08:49	06/03/20 10:33	JHH	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1486508	1	06/03/20 19:01	06/08/20 00:57	JN	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015	WG1488541	1	06/09/20 04:05	06/09/20 13:28	JN	Mt. Juliet, TN

PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30

PAGE: 7 of 58

CASE NARRATIVE

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris McCord Project Manager

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223523

3

DATE/TIME: 06/10/20 18:30 PAGE: 8 of 58

Верение ву ФСД:) 4/22/2024 12:46:08 РМ Collected date/time: 05/20/20 14:00

SAMPLE RESULTS - 01 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	93.6		1	06/04/2020 14:19	WG1486415	Tc

Wet Chemistry by Method 300.0

Wet Chemistry	y by Method 300	0.0						³Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	232		9.83	21.4	1	06/03/2020 17:53	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamer	mg/kg	mg/kg	Diration	date / time	Baten	
TPH (GC/FID) Low Fraction	U		0.0232	0.107	1	06/03/2020 09:18	WG1485898	
(S) a,a,a-Trifluorotoluene(FID)	96.9			77.0-120		06/03/2020 09:18	WG1485898	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000499	0.00107	1	06/03/2020 00:25	WG1486129
Toluene	U		0.00139	0.00534	1	06/03/2020 00:25	WG1486129
Ethylbenzene	U		0.000787	0.00267	1	06/03/2020 00:25	WG1486129
Total Xylenes	U		0.000940	0.00694	1	06/03/2020 00:25	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 00:25	WG1486129
(S) 4-Bromofluorobenzene	87.7			67.0-138		06/03/2020 00:25	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 00:25	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	25.4		1.72	4.27	1	06/03/2020 23:47	<u>WG1486068</u>
C28-C40 Oil Range	69.9		0.293	4.27	1	06/03/2020 23:47	<u>WG1486068</u>
(S) o-Terphenyl	77.8			18.0-148		06/03/2020 23:47	WG1486068

SDG: L1223523

DATE/TIME: 06/10/20 18:30
Received by (2) 4/22/2024 12:46:08 PM Collected date/time: 05/20/20 14:05

SAMPLE RESULTS - 02

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	90.4		1	06/04/2020 14:19	WG1486415		Тс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1170		50.9	111	5	06/03/2020 18:02	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifior	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Qualifier	WDL (ury)	KDL (ury)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0240	0.111	1	06/03/2020 09:42	WG1485898	
(S) a,a,a-Trifluorotoluene(FID)	99.3			77.0-120		06/03/2020 09:42	WG1485898	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	06/03/2020 00:46	WG1486129
Toluene	U		0.00144	0.00553	1	06/03/2020 00:46	WG1486129
Ethylbenzene	U		0.000815	0.00277	1	06/03/2020 00:46	WG1486129
Total Xylenes	U		0.000974	0.00719	1	06/03/2020 00:46	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 00:46	WG1486129
(S) 4-Bromofluorobenzene	98.6			67.0-138		06/03/2020 00:46	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 00:46	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	5.17		1.78	4.43	1	06/03/2020 23:21	WG1486068
C28-C40 Oil Range	12.6		0.303	4.43	1	06/03/2020 23:21	<u>WG1486068</u>
(S) o-Terphenyl	71.0			18.0-148		06/03/2020 23:21	WG1486068

SDG: L1223523

Received by OCD;	4/22/2024 12:46:08 PM
Collected date/time:	05/20/20 14:10

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	96.8		1	06/04/2020 14:19	WG1486415	ľΤ	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4
Chloride	574		9.50	20.7	1	06/03/2020 18:31	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilation	date / time	Baten	
,	шу/ку		5 5	5 5				
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 10:06	<u>WG1485898</u>	L
(S) a,a,a-Trifluorotoluene(FID)	96.8			77.0-120		06/03/2020 10:06	WG1485898	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 01:06	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 01:06	WG1486129
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 01:06	WG1486129
Total Xylenes	U		0.000909	0.00671	1	06/03/2020 01:06	WG1486129
(S) Toluene-d8	120			75.0-131		06/03/2020 01:06	WG1486129
(S) 4-Bromofluorobenzene	103			67.0-138		06/03/2020 01:06	WG1486129
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 01:06	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 20:42	WG1486068
C28-C40 Oil Range	2.60	J	0.283	4.13	1	06/03/2020 20:42	<u>WG1486068</u>
(S) o-Terphenyl	86.8			18.0-148		06/03/2020 20:42	WG1486068

SDG: L1223523 DATE/TIME: 06/10/20 18:30

³Ss ⁴Cn

⁵Sr

Â

Sc

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

						I Cr	ς.
	Result	Qualifier	Dilution	Analysis	Batch		'
Analyte	%			date / time		2	
Total Solids	91.5		1	06/04/2020 14:19	WG1486415	Tc	

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1870		50.3	109	5	06/03/2020 18:40	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	ma/ka	Quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0237	0.109	1	06/03/2020 16:01	WG1486356	
(S) a,a,a-Trifluorotoluene(FID)	99.9			77.0-120		06/03/2020 16:01	WG1486356	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000510	0.00109	1	06/03/2020 01:26	<u>WG1486129</u>
Toluene	U		0.00142	0.00546	1	06/03/2020 01:26	WG1486129
Ethylbenzene	U		0.000806	0.00273	1	06/03/2020 01:26	WG1486129
Total Xylenes	U		0.000962	0.00710	1	06/03/2020 01:26	WG1486129
(S) Toluene-d8	116			75.0-131		06/03/2020 01:26	WG1486129
(S) 4-Bromofluorobenzene	98.7			67.0-138		06/03/2020 01:26	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 01:26	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.76	4.37	1	06/03/2020 20:56	WG1486068
C28-C40 Oil Range	0.632	J	0.299	4.37	1	06/03/2020 20:56	<u>WG1486068</u>
(S) o-Terphenyl	65.0			18.0-148		06/03/2020 20:56	WG1486068

Received by OGD:	4/22/2024	12:46:08 PM
Collected date/time:	•	

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	_
Total Solids	94.9		1	06/04/2020 18:21	WG1486419	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	375		9.70	21.1	1	06/03/2020 18:50	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanter	mg/kg	mg/kg	Dilation	date / time	Batch	e
TPH (GC/FID) Low Fraction	U		0.0229	0.105	1	06/03/2020 16:25	WG1486356	
(S) a,a,a-Trifluorotoluene(FID)	97.5			77.0-120		06/03/2020 16:25	WG1486356	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000492	0.00105	1	06/03/2020 15:21	WG1486515
Toluene	U		0.00137	0.00527	1	06/03/2020 15:21	WG1486515
Ethylbenzene	U		0.000777	0.00264	1	06/03/2020 15:21	WG1486515
Total Xylenes	0.00111	J	0.000928	0.00685	1	06/03/2020 15:21	WG1486515
(S) Toluene-d8	108			75.0-131		06/03/2020 15:21	WG1486515
(S) 4-Bromofluorobenzene	118			67.0-138		06/03/2020 15:21	WG1486515
(S) 1,2-Dichloroethane-d4	77.3			70.0-130		06/03/2020 15:21	WG1486515

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.70	4.22	1	06/03/2020 21:09	<u>WG1486068</u>
C28-C40 Oil Range	0.958	J	0.289	4.22	1	06/03/2020 21:09	<u>WG1486068</u>
(S) o-Terphenyl	62.2			18.0-148		06/03/2020 21:09	WG1486068

Received by POP	1 \$/22/2024	12:46:08 PM
Collected date/time:	•	

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

							I C	n
		Result	Qualifier	Dilution	Analysis	Batch		Ρ
Analy	te	%			date / time		2	_
Total	Solids	96.9		1	06/04/2020 18:21	WG1486419	Tc	С

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	124		9.50	20.6	1	06/03/2020 18:59	WG1486008	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Quanner	mg/kg	mg/kg	Dilution	date / time	baten	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/03/2020 16:49	WG1486356	
(S) a,a,a-Trifluorotoluene(FID)	98.4			77.0-120		06/03/2020 16:49	WG1486356	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 02:07	<u>WG1486129</u>
Toluene	U		0.00134	0.00516	1	06/03/2020 02:07	<u>WG1486129</u>
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 02:07	WG1486129
Total Xylenes	U		0.000908	0.00671	1	06/03/2020 02:07	<u>WG1486129</u>
(S) Toluene-d8	116			75.0-131		06/03/2020 02:07	WG1486129
(S) 4-Bromofluorobenzene	97.8			67.0-138		06/03/2020 02:07	<u>WG1486129</u>
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 02:07	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 21:22	WG1486068
C28-C40 Oil Range	U		0.283	4.13	1	06/03/2020 21:22	<u>WG1486068</u>
(S) o-Terphenyl	73.3			18.0-148		06/03/2020 21:22	WG1486068

SDG: L1223523

Received by QGD1 /4/22/2024 12:46:08 PM Collected date/time: 05/20/20 14:50

SAMPLE RESULTS - 07

Ss

Cn

A

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.1		1	06/04/2020 18:21	WG1486419	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1290		49.4	107	5	06/03/2020 19:18	WG1486008

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0233	0.107	1	06/03/2020 17:12	WG1486356	
(S) a,a,a-Trifluorotoluene(FID)	95.8			77.0-120		06/03/2020 17:12	WG1486356	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000502	0.00107	1	06/03/2020 02:28	WG1486129
Toluene	U		0.00140	0.00537	1	06/03/2020 02:28	WG1486129
Ethylbenzene	U		0.000792	0.00269	1	06/03/2020 02:28	WG1486129
Total Xylenes	U		0.000946	0.00698	1	06/03/2020 02:28	WG1486129
(S) Toluene-d8	114			75.0-131		06/03/2020 02:28	WG1486129
(S) 4-Bromofluorobenzene	98.7			67.0-138		06/03/2020 02:28	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 02:28	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	351		8.65	21.5	5	06/04/2020 00:26	<u>WG1486068</u>
C28-C40 Oil Range	750		1.47	21.5	5	06/04/2020 00:26	<u>WG1486068</u>
(S) o-Terphenyl	106			18.0-148		06/04/2020 00:26	WG1486068

SDG: L1223523

Received by QQD3	4/22/2024 12:46:08 PM
Collected date/time:	05/20/20 15:00

³Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	90.3		1	06/04/2020 18:21	WG1486419	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	1320		50.9	111	5	06/03/2020 02:24	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Patch	
	Result (uly)	Qualifier	MDL (ury)	RDL (ury)	Dilution	Analysis	Batch	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0623	<u>B J</u>	0.0240	0.111	1	06/03/2020 09:55	WG1486242	L
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 09:55	WG1486242	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000517	0.00111	1	06/03/2020 02:48	WG1486129
Toluene	U		0.00144	0.00554	1	06/03/2020 02:48	<u>WG1486129</u>
Ethylbenzene	U		0.000816	0.00277	1	06/03/2020 02:48	WG1486129
Total Xylenes	U		0.000974	0.00720	1	06/03/2020 02:48	<u>WG1486129</u>
(S) Toluene-d8	113			75.0-131		06/03/2020 02:48	WG1486129
(S) 4-Bromofluorobenzene	97.9			67.0-138		06/03/2020 02:48	<u>WG1486129</u>
(S) 1,2-Dichloroethane-d4	112			70.0-130		06/03/2020 02:48	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	30.5		1.78	4.43	1	06/03/2020 23:34	<u>WG1486068</u>
C28-C40 Oil Range	63.0		0.303	4.43	1	06/03/2020 23:34	<u>WG1486068</u>
(S) o-Terphenyl	52.4			18.0-148		06/03/2020 23:34	WG1486068

SDG: L1223523

Received by QQD5	4/22/2024 12:46:08 PM
Collected date/time:	05/20/20 15:05

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.0		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	1160		47.4	103	5	06/03/2020 02:57	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	0.0572	ВJ	0.0224	0.103	1	06/03/2020 10:18	WG1486242	
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		06/03/2020 10:18	WG1486242	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000481	0.00103	1	06/03/2020 03:08	WG1486129
Toluene	U		0.00134	0.00515	1	06/03/2020 03:08	WG1486129
Ethylbenzene	U		0.000760	0.00258	1	06/03/2020 03:08	WG1486129
Total Xylenes	U		0.000907	0.00670	1	06/03/2020 03:08	WG1486129
(S) Toluene-d8	184	<u>J1</u>		75.0-131		06/03/2020 03:08	WG1486129
(S) 4-Bromofluorobenzene	99.0			67.0-138		06/03/2020 03:08	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 03:08	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.63		1.66	4.12	1	06/03/2020 23:08	<u>WG1486068</u>
C28-C40 Oil Range	16.9		0.282	4.12	1	06/03/2020 23:08	WG1486068
(S) o-Terphenyl	72.3			18.0-148		06/03/2020 23:08	WG1486068

SDG: L1223523

Received by QGD7 4/22/2024 12:46:08 PM Collected date/time: 05/20/20 15:10

SAMPLE RESULTS - 10

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.7		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	875		47.1	102	5	06/03/2020 03:14	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte		dunner			Dilation	date / time	Baten
•	mg/kg		mg/kg	mg/kg			
TPH (GC/FID) Low Fraction	0.0487	<u>B J</u>	0.0222	0.102	1	06/03/2020 10:40	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120		06/03/2020 10:40	WG1486242

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000478	0.00102	1	06/03/2020 03:29	WG1486129
Toluene	U		0.00133	0.00512	1	06/03/2020 03:29	<u>WG1486129</u>
Ethylbenzene	U		0.000754	0.00256	1	06/03/2020 03:29	WG1486129
Total Xylenes	U		0.000901	0.00665	1	06/03/2020 03:29	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 03:29	WG1486129
(S) 4-Bromofluorobenzene	97.9			67.0-138		06/03/2020 03:29	WG1486129
(S) 1,2-Dichloroethane-d4	112			70.0-130		06/03/2020 03:29	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.07	J	1.65	4.09	1	06/03/2020 22:54	WG1486068
C28-C40 Oil Range	3.00	J	0.280	4.09	1	06/03/2020 22:54	<u>WG1486068</u>
(S) o-Terphenyl	67.4			18.0-148		06/03/2020 22:54	WG1486068

SDG: L1223523

Received by QGD1 0/22/2024 12:46:08 PM Collected date/time: 05/20/20 15:20

SAMPLE RESULTS - 11

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	99.2		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	781		46.4	101	5	06/03/2020 03:31	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilation	date / time	Bateri
TPH (GC/FID) Low Fraction	0.0540	BJ	0.0219	0.101	1	06/03/2020 11:02	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	99.2	_		77.0-120		06/03/2020 11:02	WG1486242

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000471	0.00101	1	06/03/2020 03:49	WG1486129
Toluene	U		0.00131	0.00504	1	06/03/2020 03:49	WG1486129
Ethylbenzene	U		0.000743	0.00252	1	06/03/2020 03:49	WG1486129
Total Xylenes	U		0.000887	0.00655	1	06/03/2020 03:49	WG1486129
(S) Toluene-d8	136	<u>J1</u>		75.0-131		06/03/2020 03:49	WG1486129
(S) 4-Bromofluorobenzene	72.0			67.0-138		06/03/2020 03:49	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 03:49	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.62	4.03	1	06/03/2020 21:35	WG1486068
C28-C40 Oil Range	0.975	J	0.276	4.03	1	06/03/2020 21:35	<u>WG1486068</u>
(S) o-Terphenyl	75.1			18.0-148		06/03/2020 21:35	WG1486068

SDG: L1223523

Ss

Cn

ΆI

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.8		1	06/04/2020 18:01	WG1486420	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1630		48.0	104	5	06/03/2020 03:48	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	duamor	mg/kg	mg/kg	2.100.011	date / time		
TPH (GC/FID) Low Fraction	0.0646	ВJ	0.0226	0.104	1	06/03/2020 11:25	WG1486242	
(S) a,a,a-Trifluorotoluene(FID)	99.5			77.0-120		06/03/2020 11:25	WG1486242	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/03/2020 04:09	<u>WG1486129</u>
Toluene	U		0.00136	0.00522	1	06/03/2020 04:09	<u>WG1486129</u>
Ethylbenzene	U		0.000769	0.00261	1	06/03/2020 04:09	WG1486129
Total Xylenes	U		0.000918	0.00678	1	06/03/2020 04:09	<u>WG1486129</u>
(S) Toluene-d8	171	<u>J1</u>		75.0-131		06/03/2020 04:09	WG1486129
(S) 4-Bromofluorobenzene	88.2			67.0-138		06/03/2020 04:09	<u>WG1486129</u>
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 04:09	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.68	4.17	1	06/03/2020 21:49	WG1486068
C28-C40 Oil Range	0.623	J	0.286	4.17	1	06/03/2020 21:49	<u>WG1486068</u>
(S) o-Terphenyl	70.0			18.0-148		06/03/2020 21:49	WG1486068

SDG: L1223523

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		-	2
Total Solids	84.6		1	06/04/2020 18:01	WG1486420		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2600		109	236	10	06/03/2020 04:05	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0257	0.118	1	06/03/2020 16:06	WG1486589	
(S) a,a,a-Trifluorotoluene(FID)	102			77.0-120		06/03/2020 16:06	WG1486589	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000552	0.00118	1	06/03/2020 04:30	WG1486129
Toluene	U		0.00154	0.00591	1	06/03/2020 04:30	WG1486129
Ethylbenzene	U		0.000871	0.00296	1	06/03/2020 04:30	WG1486129
Total Xylenes	U		0.00104	0.00769	1	06/03/2020 04:30	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 04:30	WG1486129
(S) 4-Bromofluorobenzene	95.4			67.0-138		06/03/2020 04:30	WG1486129
(S) 1,2-Dichloroethane-d4	102			70.0-130		06/03/2020 04:30	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.90	4.73	1	06/03/2020 22:02	WG1486068
C28-C40 Oil Range	U		0.324	4.73	1	06/03/2020 22:02	<u>WG1486068</u>
(S) o-Terphenyl	68.4			18.0-148		06/03/2020 22:02	WG1486068

SDG: L1223523

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.9		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	1670		47.4	103	5	06/03/2020 05:47	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg	qualifier	mg/kg	mg/kg	Dilation	date / time	baten
TPH (GC/FID) Low Fraction	0.0537	ВJ	0.0224	0.103	1	06/03/2020 12:10	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 12:10	WG1486242

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 04:50	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 04:50	WG1486129
Ethylbenzene	U		0.000760	0.00258	1	06/03/2020 04:50	WG1486129
Total Xylenes	U		0.000908	0.00670	1	06/03/2020 04:50	WG1486129
(S) Toluene-d8	123			75.0-131		06/03/2020 04:50	WG1486129
(S) 4-Bromofluorobenzene	105			67.0-138		06/03/2020 04:50	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 04:50	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	U		1.66	4.13	1	06/03/2020 22:15	WG1486068
C28-C40 Oil Range	0.781	J	0.283	4.13	1	06/03/2020 22:15	<u>WG1486068</u>
(S) o-Terphenyl	70.4			18.0-148		06/03/2020 22:15	WG1486068

SDG: L1223523

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	94.1		1	06/04/2020 18:01	WG1486420	T	Гс

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	2420		97.8	213	10	06/03/2020 06:03	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
[PH (GC/FID) Low Fraction	0.0697	ВJ	0.0231	0.106	1	06/03/2020 12:32	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.9			77.0-120		06/03/2020 12:32	WG1486242

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000497	0.00106	1	06/03/2020 05:10	WG1486129
Toluene	U		0.00138	0.00532	1	06/03/2020 05:10	WG1486129
Ethylbenzene	U		0.000784	0.00266	1	06/03/2020 05:10	WG1486129
Total Xylenes	U		0.000936	0.00691	1	06/03/2020 05:10	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 05:10	WG1486129
(S) 4-Bromofluorobenzene	98.4			67.0-138		06/03/2020 05:10	WG1486129
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 05:10	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	1.85	J	1.71	4.25	1	06/03/2020 22:28	WG1486068
C28-C40 Oil Range	2.35	J	0.291	4.25	1	06/03/2020 22:28	<u>WG1486068</u>
(S) o-Terphenyl	68.4			18.0-148		06/03/2020 22:28	WG1486068

SDG: L1223523

SAMPLE RESULTS - 16 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		2	
Total Solids	95.8		1	06/04/2020 18:01	WG1486420	T	Гс

Wet Chemistry by Method 300.0

Wet Chemistry	v by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	400		9.60	20.9	1	06/03/2020 06:20	WG1486010	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	0.0552	ВJ	0.0227	0.104	1	06/03/2020 12:54	WG1486242
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		06/03/2020 12:54	WG1486242

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000487	0.00104	1	06/03/2020 05:31	<u>WG1486129</u>
Toluene	U		0.00136	0.00522	1	06/03/2020 05:31	<u>WG1486129</u>
Ethylbenzene	U		0.000769	0.00261	1	06/03/2020 05:31	WG1486129
Total Xylenes	U		0.000919	0.00679	1	06/03/2020 05:31	<u>WG1486129</u>
(S) Toluene-d8	138	<u>J1</u>		75.0-131		06/03/2020 05:31	<u>WG1486129</u>
(S) 4-Bromofluorobenzene	87.4			67.0-138		06/03/2020 05:31	<u>WG1486129</u>
(S) 1,2-Dichloroethane-d4	111			70.0-130		06/03/2020 05:31	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.85	J	1.68	4.18	1	06/03/2020 22:41	WG1486068
C28-C40 Oil Range	5.37		0.286	4.18	1	06/03/2020 22:41	WG1486068
(S) o-Terphenyl	68.9			18.0-148		06/03/2020 22:41	WG1486068

SDG: L1223523

Вучение в 2001 4/22/2024 12:46:08 РМ Collected date/time: 05/21/20 10:00

SAMPLE RESULTS - 17 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	94.4		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	93.0		9.75	21.2	1	06/03/2020 06:37	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
TPH (GC/FID) Low Fraction	U		0.0230	0.106	1	06/04/2020 09:57	WG1486611
(S) a,a,a-Trifluorotoluene(FID)	94.4			77.0-120		06/04/2020 09:57	WG1486611

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000495	0.00106	1	06/03/2020 05:51	WG1486129
Toluene	U		0.00138	0.00530	1	06/03/2020 05:51	WG1486129
Ethylbenzene	U		0.000781	0.00265	1	06/03/2020 05:51	WG1486129
Total Xylenes	U		0.000932	0.00689	1	06/03/2020 05:51	WG1486129
(S) Toluene-d8	113			75.0-131		06/03/2020 05:51	WG1486129
(S) 4-Bromofluorobenzene	99.2			67.0-138		06/03/2020 05:51	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 05:51	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	9.77		1.71	4.24	1	06/08/2020 02:30	<u>WG1486508</u>
C28-C40 Oil Range	19.3		0.290	4.24	1	06/08/2020 02:30	<u>WG1486508</u>
(S) o-Terphenyl	118			18.0-148		06/08/2020 02:30	WG1486508

SDG: L1223523

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	96.9		1	06/04/2020 18:01	WG1486420	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	20.7		9.50	20.6	1	06/03/2020 06:54	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	Guanner	mg/kg	mg/kg	Dilution	date / time	Batem	6
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/04/2020 10:21	WG1486611	 Ľ
(S) a,a,a-Trifluorotoluene(FID)	99.0			77.0-120		06/04/2020 10:21	WG1486611	7

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 06:11	WG1486129
Toluene	U		0.00134	0.00516	1	06/03/2020 06:11	WG1486129
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 06:11	WG1486129
Total Xylenes	U		0.000908	0.00671	1	06/03/2020 06:11	WG1486129
(S) Toluene-d8	122			75.0-131		06/03/2020 06:11	WG1486129
(S) 4-Bromofluorobenzene	123			67.0-138		06/03/2020 06:11	WG1486129
(S) 1,2-Dichloroethane-d4	108			70.0-130		06/03/2020 06:11	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	4.86		1.66	4.13	1	06/08/2020 22:24	WG1486508
C28-C40 Oil Range	10.4		0.283	4.13	1	06/08/2020 22:24	<u>WG1486508</u>
(S) o-Terphenyl	122			18.0-148		06/08/2020 22:24	WG1486508

SDG: L1223523

Received by 0 9 0 5 \$ /22/2024 12:46:08 PM Collected date/time: 05/21/20 10:10

SAMPLE RESULTS - 19 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	C	Ĵр
Analyte	%			date / time		2	_
Total Solids	96.1		1	06/04/2020 17:36	WG1486421	Τ	С

Wet Chemistry by Method 300.0

Wet Chemistr	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	65.5		9.57	20.8	1	06/03/2020 07:11	WG1486010	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0226	0.104	1	06/04/2020 10:45	WG1486611	
(S) a,a,a-Trifluorotoluene(FID)	95.4			77.0-120		06/04/2020 10:45	<u>WG1486611</u>	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000486	0.00104	1	06/03/2020 06:32	WG1486129
Toluene	U		0.00135	0.00520	1	06/03/2020 06:32	<u>WG1486129</u>
Ethylbenzene	U		0.000767	0.00260	1	06/03/2020 06:32	WG1486129
Total Xylenes	U		0.000916	0.00676	1	06/03/2020 06:32	WG1486129
(S) Toluene-d8	117			75.0-131		06/03/2020 06:32	WG1486129
(S) 4-Bromofluorobenzene	69.8			67.0-138		06/03/2020 06:32	WG1486129
(S) 1,2-Dichloroethane-d4	109			70.0-130		06/03/2020 06:32	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.47	J	1.68	4.16	1	06/08/2020 00:31	WG1486508
C28-C40 Oil Range	2.47	J	0.285	4.16	1	06/08/2020 00:31	WG1486508
(S) o-Terphenyl	121			18.0-148		06/08/2020 00:31	WG1486508

SDG: L1223523

Received by QODI	/22/2024 12:46:08 PM
· · ·	
Collected date/time: (5/21/20 10:40

SAMPLE RESULTS - 20 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	98.6		1	06/04/2020 17:36	WG1486421	Tc

Wet Chemistry by Method 300.0

Wet Chemistr	y by Method 300).0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	27.8		9.33	20.3	1	06/03/2020 07:28	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	dunner	mg/kg	mg/kg	Dilation	date / time	Batem	6
TPH (GC/FID) Low Fraction	0.0913	1	0.0220	0.101	1	06/04/2020 11:09	WG1486611	
(S)		-	0.0220		,			·
a,a,a-Trifluorotoluene(FID)	96.7			77.0-120		06/04/2020 11:09	WG1486611	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000474	0.00101	1	06/03/2020 06:52	WG1486129
Toluene	U		0.00132	0.00507	1	06/03/2020 06:52	WG1486129
Ethylbenzene	U		0.000747	0.00254	1	06/03/2020 06:52	WG1486129
Total Xylenes	U		0.000892	0.00659	1	06/03/2020 06:52	WG1486129
(S) Toluene-d8	115			75.0-131		06/03/2020 06:52	WG1486129
(S) 4-Bromofluorobenzene	61.5	<u>J2</u>		67.0-138		06/03/2020 06:52	WG1486129
(S) 1,2-Dichloroethane-d4	110			70.0-130		06/03/2020 06:52	WG1486129

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	12.6		1.63	4.06	1	06/08/2020 02:56	WG1486508
C28-C40 Oil Range	25.1		0.278	4.06	1	06/08/2020 02:56	<u>WG1486508</u>
(S) o-Terphenyl	139			18.0-148		06/08/2020 02:56	WG1486508

SDG: L1223523

Received by QDD3	<i>4/22/2024</i>	12:46:08 PM
Collected date/time:		

SAMPLE RESULTS - 21 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	97.3		1	06/04/2020 17:36	WG1486421	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	19.8	J	9.45	20.5	1	06/03/2020 07:45	WG1486010	CII

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/04/2020 11:33	WG1486611	
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120		06/04/2020 11:33	WG1486611	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/03/2020 09:37	WG1486258
Toluene	U		0.00134	0.00514	1	06/03/2020 09:37	WG1486258
Ethylbenzene	U		0.000757	0.00257	1	06/03/2020 09:37	WG1486258
Total Xylenes	U		0.000904	0.00668	1	06/03/2020 09:37	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 09:37	WG1486258
(S) 4-Bromofluorobenzene	89.1			67.0-138		06/03/2020 09:37	WG1486258
(S) 1,2-Dichloroethane-d4	105			70.0-130		06/03/2020 09:37	WG1486258

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	7.70		1.65	4.11	1	06/08/2020 02:43	<u>WG1486508</u>
C28-C40 Oil Range	21.1		0.281	4.11	1	06/08/2020 02:43	<u>WG1486508</u>
(S) o-Terphenyl	130			18.0-148		06/08/2020 02:43	WG1486508

SDG: L1223523

Received by QQD5 \$/22/2024 12:46:08 PM
Collected date/time: 05/21/20 10:50

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	97.3		1	06/04/2020 17:36	WG1486421	Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Chloride	273		9.46	20.6	1	06/03/2020 08:36	WG1486010

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
	Result (ury)	Quanner	WDE (ury)	KDE (dry)	Diution	,	Baten	6
Analyte	mg/kg		mg/kg	mg/kg		date / time		Q
TPH (GC/FID) Low Fraction	U		0.0223	0.103	1	06/04/2020 11:57	WG1486611	
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120		06/04/2020 11:57	WG1486611	⁷ Gl

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000480	0.00103	1	06/03/2020 09:56	WG1486258
Toluene	U		0.00134	0.00514	1	06/03/2020 09:56	WG1486258
Ethylbenzene	U		0.000758	0.00257	1	06/03/2020 09:56	WG1486258
Total Xylenes	U		0.000905	0.00668	1	06/03/2020 09:56	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 09:56	WG1486258
(S) 4-Bromofluorobenzene	87.5			67.0-138		06/03/2020 09:56	WG1486258
(S) 1,2-Dichloroethane-d4	99.9			70.0-130		06/03/2020 09:56	WG1486258

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	2.07	J	1.66	4.11	1	06/08/2020 00:44	<u>WG1486508</u>
C28-C40 Oil Range	2.52	J	0.282	4.11	1	06/08/2020 00:44	<u>WG1486508</u>
(S) o-Terphenyl	98.1			18.0-148		06/08/2020 00:44	WG1486508

SAMPLE RESULTS - 23 L1223523

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte		%			date / time		2
Total Solids		96.3		1	06/04/2020 17:36	WG1486421	Tc

Wet Chemistry by Method 300.0

Wet Chemist	ry by Method 300	0.0						³ Ss
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		4 Cn
Chloride	20.2	J	9.56	20.8	1	06/03/2020 08:53	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

Volatile Organic C	^₅ Volatile Organic Compounds (GC) by Method 8015D/GRO										
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch				
Analyte	mg/kg		mg/kg	mg/kg		date / time		ľQ)C		
TPH (GC/FID) Low Fraction	0.0262	J	0.0225	0.104	1	06/04/2020 01:24	WG1486617				
(S) a,a,a-Trifluorotoluene(FID)	98.8			77.0-120		06/04/2020 01:24	<u>WG1486617</u>	⁷ G			

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	06/03/2020 10:15	WG1486258
Toluene	U		0.00135	0.00519	1	06/03/2020 10:15	WG1486258
Ethylbenzene	U		0.000766	0.00260	1	06/03/2020 10:15	WG1486258
Total Xylenes	U		0.000914	0.00675	1	06/03/2020 10:15	WG1486258
(S) Toluene-d8	104			75.0-131		06/03/2020 10:15	WG1486258
(S) 4-Bromofluorobenzene	88.2			67.0-138		06/03/2020 10:15	WG1486258
(S) 1,2-Dichloroethane-d4	98.9			70.0-130		06/03/2020 10:15	WG1486258

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	605		16.7	41.6	10	06/08/2020 03:36	WG1486508
C28-C40 Oil Range	977		2.85	41.6	10	06/08/2020 03:36	WG1486508
(S) o-Terphenyl	198	<u>J1</u>		18.0-148		06/08/2020 03:36	WG1486508

Sample Narrative:

L1223523-23 WG1486508: Surrogate failure due to matrix interference

SDG: L1223523

Receized by 09234/22/2024 12:46:08 PM
Collected date/time: 05/21/20 11:35

Ss

Cn

Â

Sc

Total Solids by Method 2540 G-2011

	-	Result	Qualifier	Dilution	Analysis	Batch	-	Ср
Analyte		%			date / time			2
Total Solids		96.8		1	06/04/2020 17:36	WG1486421		Tc

Wet Chemistry by Method 300.0

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.50	20.7	1	06/03/2020 09:10	WG1486010	

Volatile Organic Compounds (GC) by Method 8015D/GRO

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg	quanner	mg/kg	mg/kg	Dilution	date / time	buch	
TPH (GC/FID) Low Fraction	U		0.0224	0.103	1	06/04/2020 01:44	WG1486617	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120		06/04/2020 01:44	WG1486617	

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000482	0.00103	1	06/03/2020 10:13	<u>WG1486294</u>
Toluene	U		0.00134	0.00516	1	06/03/2020 10:13	<u>WG1486294</u>
Ethylbenzene	U		0.000761	0.00258	1	06/03/2020 10:13	WG1486294
Total Xylenes	U		0.000909	0.00671	1	06/03/2020 10:13	<u>WG1486294</u>
(S) Toluene-d8	99.6			75.0-131		06/03/2020 10:13	WG1486294
(S) 4-Bromofluorobenzene	94.9			67.0-138		06/03/2020 10:13	<u>WG1486294</u>
(S) 1,2-Dichloroethane-d4	94.1			70.0-130		06/03/2020 10:13	WG1486294

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	22.6		1.66	4.13	1	06/08/2020 03:10	WG1486508
C28-C40 Oil Range	38.6		0.283	4.13	1	06/08/2020 03:10	<u>WG1486508</u>
(S) o-Terphenyl	130			18.0-148		06/08/2020 03:10	WG1486508

SDG: L1223523

Result Qual	ific
Total Solids by Method 2540 G-2011	
Collected date/time: 05/21/20 11:40	
венічефья Одр5 4/22/2024 12:46:08 РМ	

AI

Sc

	Result	Qualifie	er Dilution	Analysis		Batch		
Analyte	%			date / time				
Total Solids	96.3		1	06/04/2020 17:36		WG1486421		
Wet Chemistry by	Method 300).0						
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg	mg/kg		date / time		
Chloride	U		9.55	20.8	1	06/03/2020 09:26	WG1486010	
Volatile Organic C	Compounds (GC) by Me	thod 8015	D/GRO				
0								
	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch	
Analyte			MDL (dry) mg/kg	RDL (dry) mg/kg	Dilution	Analysis date / time	Batch	
	Result (dry)				Dilution	•	Batch WG1486617	
Analyte	Result (dry) mg/kg		mg/kg	mg/kg	Dilution	date / time		

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
Benzene	U		0.000485	0.00104	1	06/03/2020 10:33	WG1486294
Toluene	U		0.00135	0.00519	1	06/03/2020 10:33	WG1486294
Ethylbenzene	U		0.000765	0.00260	1	06/03/2020 10:33	WG1486294
Total Xylenes	U		0.000914	0.00675	1	06/03/2020 10:33	WG1486294
(S) Toluene-d8	98.4			75.0-131		06/03/2020 10:33	WG1486294
(S) 4-Bromofluorobenzene	95.2			67.0-138		06/03/2020 10:33	WG1486294
(S) 1,2-Dichloroethane-d4	92.9			70.0-130		06/03/2020 10:33	WG1486294

Semi-Volatile Organic Compounds (GC) by Method 8015

	Result (dry)	Qualifier	MDL (dry)	RDL (dry)	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg	mg/kg		date / time	
C10-C28 Diesel Range	3.09	J	1.67	4.15	1	06/08/2020 00:57	<u>WG1486508</u>
C10-C28 Diesel Range	U	Q	1.67	4.15	1	06/09/2020 13:28	<u>WG1488541</u>
C28-C40 Oil Range	5.18		0.284	4.15	1	06/08/2020 00:57	WG1486508
C28-C40 Oil Range	1.13	JQ	0.284	4.15	1	06/09/2020 13:28	<u>WG1488541</u>
(S) o-Terphenyl	115			18.0-148		06/08/2020 00:57	<u>WG1486508</u>
(S) o-Terphenyl	63.5			18.0-148		06/09/2020 13:28	WG1488541

Sample Narrative:

L1223523-25 WG1486508, WG1488541: Duplicate Analysis performed due to contamination. Results don't confirm; both analyses reported

SDG: L1223523

Reg @ q 4 8 8 4 22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

4/20 14:19					
MB Result	MB Qualifier	MB MDL	MB RDL		2
%		%	%		T(
0.000					
					³ S
	MB Result %	MB Result <u>MB Qualifier</u> %	MB Result MB Qualifier MB MDL % %	MB Result MB Qualifier MB MDL MB RDL % % %	MB Result MB Qualifier MB MDL MB RDL % % %

L1223485-24 Original Sample (OS) • Duplicate (DUP)

(OS) L1223485-24 06/0	'04/20 14:19 • (DUF	P) R3535378-3	3 06/04/20) 14:19		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	85.9	85.4	1	0.523		10

Laboratory Control Sample (LCS)

(LCS) R3535378-2 06/	(LCS) R3535378-2 06/04/20 14:19					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	%	%	%	%		
Total Solids	50.0	50.0	100	85.0-115		

SDG: L1223523 DATE/TIME: 06/10/20 18:30

PAGE: 34 of 58

Reg @ q 4 8 8 4 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Ss

Cn

Sr

[°]Qc

GI

Â

Sc

Method Blank (MB)

(MB) R3535553-1 (06/04/20 18:21				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%		%	%	
Total Solids	0.00100				

Original Sample (OS) • Duplicate (DUP)

(OS) • (DUP) R3535553-3 06/04/20 18:21

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte		%		%		%
Total Solids		93.6	1	0.111		10

Laboratory Control Sample (LCS)

(LCS) R3535553-2 06/0	4/20 18:21				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.0	100	85.0-115	

DATE/TIME: 06/10/20 18:30

PAGE: 35 of 58

Reg @ q d by O GD 0/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1223523-09,10,11,12,13,14,15,16,17,18

[°]Qc

Gl

Â

Sc

Method Blank (MB)

/04/20 18:01				
MB Result	MB Qualifier	MB MDL	MB RDL	
%		%	%	
0.00100				
/	%	MB Result <u>MB Qualifier</u> %	MB Result MB Qualifier MB MDL % %	MB Result MB Qualifier MB MDL MB RDL % % %

L1223523-10 Original Sample (OS) • Duplicate (DUP)

L1223523-10 O	riginal Sample	(OS) • Du	plicate ((DUP)			4
(OS) L1223523-10 06	6/04/20 18:01 • (DUF	P) R3535512-3	3 06/04/20	0 18:01			
	Original Result	t DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD .imits	⁵ C
Analyte	%	%		%		б	
Total Solids	97.7	97.9	1	0.148		0	6

Laboratory Control Sample (LCS)

(LCS) R3535512-2 06/	04/20 18:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	50.1	100	85.0-115	

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 36 of 58

Reg @ q 4 8 8 4/22/2024 12:46:08 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY

Cn

Sr

ິQc

Gl

Â

Sc

Method Blank (MB)

Method Dialik					1 CD
(MB) R3535509-1 (06/04/20 17:36			-	Cp
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	%		%	%	Tc
Total Solids	0.000				
					³Ss

L1223523-20 Original Sample (OS) • Duplicate (DUP)

(OS) L1223523-20 06/	/04/20 17:36 • (DU!	P) R3535509-	3 06/04/2	0 17:36		
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	%	%		%		%
Total Solids	98.6	98.7	1	0.118		10

Laboratory Control Sample (LCS)

(LCS) R3535509-2 06/	/04/20 17:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.7	99.4	85.0-115	

SDG: L1223523 DATE/TIME: 06/10/20 18:30 PAGE: 37 of 58

Reg @ q 4 8 8 6 D. \$ 22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1223523-01,02,03,04,05,06,07

Τс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3534872-1 06	6/03/20 14:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Chloride	U		9.20	20.0

L1223384-22 Original Sample (OS) • Duplicate (DUP)

(OS) L1223384-22 06/0)3/20 15:30 • (DUP) R3534872-3	3 06/03/2	0 15:39		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	83.5	86.3	1	3.27		20

L1223523-06 Original Sample (OS) • Duplicate (DUP)

L1223523-06	Original Sample	e (OS) • Du	uplicate	(DUP)		
(OS) L1223523-06	06/03/20 18:59 • (DU	P) R3534872-	-6 06/03/2	20 19:09		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	124	119	1	3.69		20

Laboratory Control Sample (LCS)

(LCS) R3534872-2 06/03	3/20 14:42				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Chloride	200	187	93.7	90.0-110	

L1223384-25 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223384-25 06/03/20 16:08 • (MS) R3534872-4 06/03/20 16:37 • (MSD) R3534872-5 06/03/20 16:46												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	544	27.1	548	559	95.6	97.8	1	80.0-120			2.13	20

Released to	Imaging? 4/22/2024 2:36:08 PM
	ConocoPhillips - Tetra Tech

PROJECT: 212C-MD-01576

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 38 of 58

Req @ qdlg @ D: d/22/2024 12:46:08 PM

Wet Chemistry by Method 300.0

QUALITY CONTROL SUMMARY L1223523-08,09,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25

Ср

Тс

Ss

Cn

Sr

Qc

Method Blank (MB)

(MB) R3534486-1 06/03/20 01:30							
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/kg		mg/kg	mg/kg			
Chloride	U		9.20	20.0			

L1223523-08 Original Sample (OS) • Duplicate (DUP)

(OS) L1223523-08 06/03	3/20 02:24 • (DU	P) R3534486-	3 06/03/2	20 02:40		
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/kg	mg/kg		%		%
Chloride	1320	1350	5	2.47		20

L1223768-02 Original Sample (OS) • Duplicate (DUP)

L1223768-02 (23768-02 Original Sample (OS) • Duplicate (DUP) 1223768-02 06/03/20 10:00 • (DUP) R3534486-6 06/03/20 10:17							
OS) L1223768-02 (
	Original Result (dry)	DUP Result (dry)	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits		
Analyte	mg/kg	mg/kg		%		%		
Chloride	57.3	54.7	1	4.48		20		

Laboratory Control Sample (LCS)

(LCS) R3534486-2 06/03/20 01:47							
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
Chloride	200	205	103	90.0-110			

L1223523-14 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-14 06/03/20 04:22 • (MS) R3534486-4 06/03/20 05:13 • (MSD) R3534486-5 06/03/20 05:30												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Chloride	516	1850	2410	2300	110	88.1	1	80.0-120	E	E	4.81	20

Released to	Imaging? 4/22/2024	2:36:08	PM
	ConocoPhillips - Tetra Te	ch	

PROJECT: 212C-MD-01576

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 39 of 58

Reg @ q 4 18 8612 8/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

°Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				1 Cn
(MB) R3534484-2 06/02	2/20 23:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	⁻Tc
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	95.9			77.0-120	³ Ss

Laboratory Control Sample (LCS)

(LCS) R3534484-1 06/02	.CS) R3534484-1 06/02/20 22:36								
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier				
Analyte	mg/kg	mg/kg	%	%					
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127					
(S) a.a.a-Trifluorotoluene(FID)			105	77.0-120					

DATE/TIME: 06/10/20 18:30 PAGE: 40 of 58

Res cy q 4 8 8 2 1 2/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY 11223523-08,09,10,11,12,14,15,16

¹Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)							
(MB) R3534476-2 06/03/	R3534476-2 06/03/20 08:03							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
TPH (GC/FID) Low Fraction	0.0483	J	0.0217	0.100				
(S) a,a,a-Trifluorotoluene(FID)	100			77.0-120				

Laboratory Control Sample (LCS)

(LCS) R3534476-1 06/03/2	20 07:18				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.59	102	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534476-3	06/03/20 17:31	• (MSD) R3534	1476-4 06/03	/20 17:53								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	129		80.6	82.7	76.0	78.0	25	10.0-151			2.57	28
(S) a,a,a-Trifluorotoluene(FID)					105	105		77.0-120				

SDG: L1223523 DATE/TIME: 06/10/20 18:30 PAGE: 41 of 58

Reg @ q 4 8 8 5 6/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NAPagev213 of 306

°Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

)				
(MB) R3534732-2 06/03/	/20 15:13				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	97.8			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534732-1 06/03	/20 14:25				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.42	98.5	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534732-3	06/04/20 00:00 • (MSD) R3	534732-4 06/	04/20 00:24								
	Spike Amount Original Resu	It MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	2.58	1.78	1.84	82.8	85.6	1	10.0-151			3.31	28
(S) a,a,a-Trifluorotoluene(FID)				107	107		77.0-120				

DATE/TIME: 06/10/20 18:30

PAGE: 42 of 58

Reg @ q 4 8 6 5 8 9/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY L1223523-13

Method Blank (MB)

IVIELITOU DIALIK (IVID)				
(MB) R3534704-3 06/03/	/20 12:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	104			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534704-2 06/03	3/20 11:43				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.84	106	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			101	77.0-120	

 ⁶ Qc
⁷ Gl
⁸ Al
°Sc

⁺Cn

ືSr

SDG: L1223523

DATE/TIME: 06/10/20 18:30

PAGE: 43 of 58

Reg @ q 4 8 6 6 1: 4/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

ONE LAB. NARage 215 of 306

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	')				
(MB) R3534893-2 06/04	/20 02:24				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	99.1			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534893-1 06/04	/20 01:36				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	4.24	77.1	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			107	77.0-120	

Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) • (MS) R3534893-3	06/04/20 12:2	1 • (MSD) R353	4893-4 06/0	4/20 12:45								
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg		mg/kg	mg/kg	%	%		%			%	%
TPH (GC/FID) Low Fraction	129		92.9	64.5	96.5	67.0	25	10.0-151		<u>J3</u>	36.1	28
(S) a,a,a-Trifluorotoluene(FID)					108	109		77.0-120				

DATE/TIME: 06/10/20 18:30

PAGE: 44 of 58

Reg @ q 4 8 8 6 D: 74/22/2024 12:46:08 PM

Volatile Organic Compounds (GC) by Method 8015D/GRO

QUALITY CONTROL SUMMARY

⁺Cn

Sr

Qc

GI

Â

Sc

Method Blank (MB)

	·)				P
(MB) R3534993-2 06/04	/20 00:42				
	MB Result	MB Qualifier	MB MDL	MB RDL	Ī
Analyte	mg/kg		mg/kg	mg/kg	
TPH (GC/FID) Low Fraction	U		0.0217	0.100	
(S) a,a,a-Trifluorotoluene(FID)	108			77.0-120	

Laboratory Control Sample (LCS)

(LCS) R3534993-1 06/04	/20 00:01				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
TPH (GC/FID) Low Fraction	5.50	5.81	106	72.0-127	
(S) a.a.a-Trifluorotoluene(FID)			99.9	77.0-120	

DATE/TIME: 06/10/20 18:30 PAGE: 45 of 58
Volatile Organic Compounds (GC/MS) by Method $\tt 8260B$

QUALITY CONTROL SUMMARY L1223523-01,02,03,04,06,07,08,09,10,11,12,13,14,15,16,17,18,19,20

Method Blank (MB)

(MB) R3534611-2 06/03/2	0 00:05				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Tc
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	³ Ss
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	119			75.0-131	Cr
(S) 4-Bromofluorobenzene	81.1			67.0-138	
(S) 1,2-Dichloroethane-d4	111			70.0-130	⁵Sr

Laboratory Control Sample (LCS)

(LCS) R3534611-1 06/02	/20 22:55					r
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		L
Benzene	0.125	0.105	84.0	70.0-123		ſ
Ethylbenzene	0.125	0.111	88.8	74.0-126		
Toluene	0.125	0.107	85.6	75.0-121		ſ
Xylenes, Total	0.375	0.321	85.6	72.0-127		
(S) Toluene-d8			109	75.0-131		L
(S) 4-Bromofluorobenzene			98.3	67.0-138		
(S) 1,2-Dichloroethane-d4			117	70.0-130		

L1223523-20 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-20 06/03/20 06:52	2 • (MS) R3534611-3 06/03/20 07:12	• (MSD) R3534611-4 06/03/20 07:49

	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.127	U	0.111	0.161	87.2	127	1	10.0-149		<u>13</u>	37.3	37
Ethylbenzene	0.127	U	0.123	0.120	96.8	94.4	1	10.0-160			2.51	38
Toluene	0.127	U	0.166	0.0960	131	75.8	1	10.0-156		<u>13</u>	53.6	38
Xylenes, Total	0.380	U	0.302	0.349	79.5	91.7	1	10.0-160			14.3	38
(S) Toluene-d8					161	91.8		75.0-131	<u>J1</u>			
(S) 4-Bromofluorobenzene					85.1	101		67.0-138				
(S) 1,2-Dichloroethane-d4					113	161		70.0-130		<u>J1</u>		

SDG: L1223523 DATE/TIME: 06/10/20 18:30 [°]Qc

GI

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

Qc

Method Blank (MB)

	/				C
(MB) R3534502-2 06/03/	/20 08:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	ſ
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	3
Toluene	U		0.00130	0.00500	Ľ
Xylenes, Total	U		0.000880	0.00650	4
(S) Toluene-d8	106			75.0-131	
(S) 4-Bromofluorobenzene	84.7			67.0-138	
(S) 1,2-Dichloroethane-d4	96.2			70.0-130	5

Laboratory Control Sample (LCS)

(LCS) R3534502-1 06/0	3/20 07:50					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	Í GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.109	87.2	70.0-123		8
Ethylbenzene	0.125	0.101	80.8	74.0-126		A
Toluene	0.125	0.102	81.6	75.0-121		9
Xylenes, Total	0.375	0.283	75.5	72.0-127		Sc
(S) Toluene-d8			98.6	75.0-131		
(S) 4-Bromofluorobenzene	ć		93.7	67.0-138		
(S) 1,2-Dichloroethane-d4			109	70.0-130		

DATE/TIME: 06/10/20 18:30 PAGE: 47 of 58 Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

[°]Qc

GI

A

Sc

Method Blank (MB)

(MB) R3534949-1 06/03	/20 08:40				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	101			75.0-131	
(S) 4-Bromofluorobenzene	94.7			67.0-138	
(S) 1,2-Dichloroethane-d4	92.0			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3534949-2 06/03	3/20 08:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.125	0.113	90.4	70.0-123	
Ethylbenzene	0.125	0.122	97.6	74.0-126	
Toluene	0.125	0.106	84.8	75.0-121	
Xylenes, Total	0.375	0.354	94.4	72.0-127	
(S) Toluene-d8			94.3	75.0-131	
(S) 4-Bromofluorobenzene			96.8	67.0-138	
(S) 1,2-Dichloroethane-d4			102	70.0-130	

L1223420-05 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223420-05 06/03/	20 15:55 • (MS)) R3534949-3	06/03/20 16:34	1 • (MSD) R353	4949-4 06/03	/20 16:53						
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
Benzene	0.132	U	0.0933	0.111	70.9	84.0	1	10.0-149			16.9	37
Ethylbenzene	0.132	U	0.0995	0.123	75.6	93.6	1	10.0-160			21.3	38
Toluene	0.132	U	0.0957	0.112	72.7	84.8	1	10.0-156			15.3	38
Xylenes, Total	0.395	U	0.262	0.315	66.4	79.7	1	10.0-160			18.2	38
(S) Toluene-d8					97.8	98.1		75.0-131				
(S) 4-Bromofluorobenzene					92.4	92.3		67.0-138				
(S) 1,2-Dichloroethane-d4					81.6	76.7		70.0-130				

SDG: L1223523 DATE/TIME: 06/10/20 18:30

Volatile Organic Compounds (GC/MS) by Method 8260B

QUALITY CONTROL SUMMARY

ONE LAB. NAPage 220 of 306

Qc

Method Blank (MB)

)				
(MB) R3534692-2 06/03/	/20 09:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	Ī
Analyte	mg/kg		mg/kg	mg/kg	
Benzene	U		0.000467	0.00100	
Ethylbenzene	U		0.000737	0.00250	
Toluene	U		0.00130	0.00500	
Xylenes, Total	U		0.000880	0.00650	
(S) Toluene-d8	107			75.0-131	
(S) 4-Bromofluorobenzene	73.0			67.0-138	
(S) 1,2-Dichloroethane-d4	80.3			70.0-130	

Laboratory Control Sample (LCS)

(LCS) R3534692-1 06/0	3/20 07:45					7
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	GI
Analyte	mg/kg	mg/kg	%	%		
Benzene	0.125	0.111	88.8	70.0-123		8
Ethylbenzene	0.125	0.111	88.8	74.0-126		
Toluene	0.125	0.105	84.0	75.0-121		9
Xylenes, Total	0.375	0.286	76.3	72.0-127		Sc
(S) Toluene-d8			93.1	75.0-131		
(S) 4-Bromofluorobenzene			108	67.0-138		
(S) 1,2-Dichloroethane-d4			94.0	70.0-130		

SDG: L1223523 DATE/TIME: 06/10/20 18:30 PAGE: 49 of 58 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY L1223523-01,02,03,04,05,06,07,08,09,10,11,12,13,14,15,16

Â

Sc

Method Blank (MB)

Method Bidlik (IV								
(MB) R3534745-1 06/0	3/20 16:17							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	65.9			18.0-148				

Laboratory Control Sample (LCS)

(LCS) R3534745-2 06/0	03/20 16:30				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	39.6	79.2	50.0-150	
(S) o-Terphenyl			90.8	18.0-148	

L1223523-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-01 06/03/	(OS) L1223523-01 06/03/20 23:47 • (MS) R3534745-3 06/04/20 00:00 • (MSD) R3534745-4 06/04/20 00:13											
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	53.4	25.4	70.9	65.8	85.2	75.6	1	50.0-150			7.50	20
(S) o-Terphenyl					67.6	77.2		18.0-148				

DATE/TIME: 06/10/20 18:30 Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

Â

Sc

Method Blank (MB)

Method Blank (M	ы)							
(MB) R3535684-1 06/0	5/20 13:06							
	MB Result	MB Qualifier	MB MDL	MB RDL				
Analyte	mg/kg		mg/kg	mg/kg				
C10-C28 Diesel Range	U		1.61	4.00				
C28-C40 Oil Range	U		0.274	4.00				
(S) o-Terphenyl	94.4			18.0-148				

Laboratory Control Sample (LCS)

(LCS) R3535684-2 06/0	05/20 13:20				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	42.6	85.2	50.0-150	
(S) o-Terphenyl			76.9	18.0-148	

L1223523-18 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1223523-18 06/08/20 22:24 • (MS) R3536391-1 06/08/20 22:37 • (MSD) R3536391-2 06/08/20 22:51												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	51.3	4.86	58.7	60.3	105	109	1	50.0-150			2.60	20
(S) o-Terphenyl					112	105		18.0-148				

SDG: L1223523 DATE/TIME: 06/10/20 18:30 PAGE: 51 of 58

Semi-Volatile Organic Compounds (GC) by Method 8015

QUALITY CONTROL SUMMARY

ONE LAB. NARage 223 of 306

Cn

Â

Sc

Method Blank (MB)

	D)				l'cn'
(MB) R3536639-1 06/09	9/20 11:39				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	⁻Tc
C10-C28 Diesel Range	U		1.61	4.00	
C28-C40 Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	65.5			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R3536639-2 06/0)9/20 11:52				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	36.8	73.6	50.0-150	
(S) o-Terphenyl			61.1	18.0-148	

L1224474-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1224474-07 06/09/20 19:00 • (MS) R3536639-3 06/09/20 19:14 • (MSD) R3536639-4 06/09/20 19:27												
	Spike Amount (dry)	Original Result (dry)	MS Result (dry)	MSD Result (dry)	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%
C10-C28 Diesel Range	55.7	U	35.1	39.8	63.0	71.0	1	50.0-150			12.6	20
(S) o-Terphenyl					46.1	58.7		18.0-148				

Τс

ŚS

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL Method Detection Limit. MDL (dry) Method Detection Limit. RDL Reported Detection Limit. RDL (dry) Reported Detection Limit. REc. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the the sample matrix contains of analytes of the sample matrix contains of analytes of the sample matrix contains of analytes of the sample may result reported has already been corrected for the theorem corrected for the theorem corrected for the theorem correct of the theorem correc	s performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the
MDL (dry)Method Detection Limit.RDLReported Detection Limit.RDL (dry)Reported Detection Limit.Rec.Recovery.RPDRelative Percent Difference.SDGSample Delivery Group.(S)Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media.UNot detected at the Reporting Limit (or MDL when reported.AnalyteThe name of the particular compound or analysis reported.DilutionIf the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample matrix reported has already been corrected for th These are the target % recovery ranges or % diffic for the method and analyte being reported. Succe	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RDL Reported Detection Limit. RDL (dry) Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the sample may result reported has already been corrected for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RDL (dry) Reported Detection Limit. Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the for the method and analyte being reported. Succent for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Rec. Recovery. RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the for the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
RPD Relative Percent Difference. SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the the sample matry provides or % difference of the method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
SDG Sample Delivery Group. (S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when the analyte of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matry reported has already been corrected for the sample method and analyte being reported.	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
(S) Surrogate (Surrogate Standard) - Analytes added Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample matrix cantales of the sample matrix contains of analytes in the sa	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
(S) Matrix Spike/Duplicate; used to evaluate analytic detected in all environmental media. U Not detected at the Reporting Limit (or MDL when Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample may result reported has already been corrected for the for the method and analyte being reported. Succe	cal efficiency by measuring recovery. Surrogates are not expected to be ere applicable). Is performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Analyte The name of the particular compound or analysis reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the sample may result reported has already been corrected for the These are the target % recovery ranges or % difficient for the method and analyte being reported. Succe	s performed. Some Analyses and Methods will have multiple analytes rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Analyte reported. Dilution If the sample matrix contains an interfering mater standard, or if concentrations of analytes in the s laboratory can accurately report, the sample may result reported has already been corrected for the These are the target % recovery ranges or % diffi- for the method and analyte being reported. Succe	rial, the sample preparation volume or weight values differ from the sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Dilutionstandard, or if concentrations of analytes in the standard, or if concentrations of analytes in the stalaboratory can accurately report, the sample may result reported has already been corrected for the These are the target % recovery ranges or % different for the method and analyte being reported. Succe	sample are higher than the highest limit of concentration that the y be diluted for analysis. If a value different than 1 is used in this field, the his factor.
Limits for the method and analyte being reported. Succ	ference value that the laboratory has historically determined as normal
	cessful QC Sample analysis will target all analytes recovered or
Original Sample The non-spiked sample in the prep batch used to sample. The Original Sample may not be include	to determine the Relative Percent Difference (RPD) from a quality control ad within the reported SDG.
Qualifier reported. If a Qualifier is present, a definition per	signation that corresponds to additional information concerning the result r Qualifier is provided within the Glossary and Definitions page and of the Qualifier in the Case Narrative if applicable.
Result (Below Detectable Levels). The information in the	ay sample specific characteristics) reported for your sample. If there was lyte, the result in this column may state "ND" (Not Detected) or "BDL" e results column should always be accompanied by either an MDL ection Limit) that defines the lowest value that the laboratory could detect
Uncertainty (Radiochemistry) Confidence level of 2 sigma.	
Case Narrative (Cn) observed either at sample receipt by the laborate	sults, including a discussion of any non-conformances to protocol tory from the field or during the analytical process. If present, there will meaning of any data qualifiers used in the report.
	the laboratory quality control analyses required by procedure or idity of the results reported for your samples. These analyses are not on laboratory generated material.
Sample Chain of date of collection, the person collecting the same	our samples were initially collected. This is used to verify the time and ples, and the analyses that the laboratory is requested to perform. This cluding commercial shippers) that have had control or possession of the v to the laboratory for analysis.
	ts of all testing performed on your samples. These results are provided s performed on each sample. The header line of each analysis section for number for the analysis reported.
Sample Summary (Ss) This section of the Analytical Report defines the stimes of preparation and/or analysis.	specific analyses performed for each sample ID, including the dates and

Qualifier	Description
В	The same analyte is found in the associated blank.
E	The analyte concentration exceeds the upper limit of the calibration range of the instrument established by the initial calibration (ICAL).
J	The identification of the analyte is acceptable; the reported value is an estimate.
J1	Surrogate recovery limits have been exceeded; values are outside upper control limits.
J2	Surrogate recovery limits have been exceeded; values are outside lower control limits.
J3	The associated batch QC was outside the established quality control range for precision.
Q	Sample was prepared and/or analyzed past holding time as defined in the method. Concentrations should be considered minimum values.

PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30 PAGE: 53 of 58

Received by OCD: 4/22/2024 12:46:08 PACCREDITATIONS & LOCATIONS

Page 225 of 306 ONE LAB. NATIONWIDE.

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Pace National is the only environmental laboratory accredited/certified to support your work nationwide from one location. One phone call, one point of contact, one laboratory. No other lab is as accessible or prepared to handle your needs throughout the country. Our capacity and capability from our single location laboratory is comparable to the collective totals of the network laboratories in our industry. The most significant benefit to our one location design is the design of our laboratory campus. The model is conducive to accelerated productivity, decreasing turn-around time, and preventing cross contamination, thus protecting sample integrity. Our focus on premium quality and prompt service allows us to be YOUR LAB OF CHOICE.
* Not all certifications held by the laboratory are applicable to the results reported in the attached report.
* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace National.

State Accreditations

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN-03-2002-34
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	n/a
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	90010	South Carolina	84004
Kentucky ²	16	South Dakota	n/a
Louisiana	AI30792	Tennessee ¹⁴	2006
Louisiana 1	LA180010	Texas	T104704245-18-15
Maine	TN0002	Texas⁵	LAB0152
Maryland	324	Utah	TN00003
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	460132
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	9980939910
Montana	CERT0086	Wyoming	A2LA

Third Party Federal Accreditations

A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
EPA-Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

Our Locations

Pace National has sixty-four client support centers that provide sample pickup and/or the delivery of sampling supplies. If you would like assistance from one of our support offices, please contact our main office. Pace National performs all testing at our central laboratory.

Released to Imaging: 4/22/2024 2:36:08 PM ConocoPhillips - Tetra Tech PROJECT: 212C-MD-01576

SDG: L1223523 DATE/TIME: 06/10/20 18:30 ŝ

Page 226 of 306 Page : 1 of 3

T	Tetra Tech, Inc.			9		Vest W Midland Tel (4 Fax (4	d, Texa 32) 68	as 79 32-455	701 59	00					1	084	4					1614 ¹¹		
Client Name:	Conoco Phillips	Site Manage	er:	Christ	ian L	Juli	1	fie 3	BC.	f in	Γ	37	1997							UES			r- with	
Project Name:	EVGSAU 3366-029	Contact Info	e	Email: Phone					ch.cor	n		100	(Cir	cle	or	Spe	ecif	y M	letho	1 bc	10.]		11
Project Location: county, state)	Lea County, New Mexico	Project #:			1	01576		10	Í	gir.				1	4	1	19						1	
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	01			ŕ					a de la compañía de la												list)		
Receiving Laboratory	: Pace Analytical	Sampler Sig	nature:	Jo	e Ty	ler	-	in an			1	MRO		6He	Se Hg							ched li		
Comments: COPTI	ETRA Acctnum					IDDES	SERVA	TIVE	1		X 8260B	C35) DRO - ORO - MRO		Cd Cr Pb	Ba Cd Cr PD		604	8270C/625			TDS	istry (see attached	0	
		SAMP	LING	MAT	RIX	Fig. 2 Constraints	ETHO			(N/A)	BTE	GRO -		Ast	Ag As t	latiles	AOR /	Vol. 8	608		ate	Chemistry	alance	
LAB # (LAB USE ONLY)	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER		HCL HNO.	CE	NONE	# CONTAINERS	FILTERED ()	1.00	PH TX1005 (PH 8015M (- I	Metals A	CLP Metals A	CLP Semi Vol	RCI SPEND / 624	C/MS Semi. V	PCB's 8082 / 6	PLM (Asbestos)	Chloride 300.0 Chloride Sulfa	Seneral Water	Anion/Cation Balance PH 8015R	
100 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	BH-20-1 (0'-1')	05/20/20	1400	X	_	+ +	X	-	1	N	X	X	1			F	E C				X	0	A F	-
	BH-20-1 (2'-3')	05/20/20	1405	X			x		1	N	X	×							\top	+	x	3	1.463	
and and the first	BH-20-1 (4'-5') 🕷 🗸	05/20/20	1410	x	1		X	1	1	N	x	X					10				x	\square		T
	BH-20-1 (6'-7') *	05/20/20	1415	X			x	4-1-2	1	N	X	X						100			x			1-
	BH-20-1 (9'-10') 🕴	05/20/20	1420	X		1	X	1	1	N	X	×								\square	x	\square		-
	BH-20-1 (14'-15')	05/20/20	1430	X			X		1	N	X	×		1.1			- C	-	ine -		x	\square		14
	BH-20-2 (0'-1') r	05/20/20	1450	X			х	1	1	N	X	X									x			T
	BH-20-2 (2'-3')	05/20/20	1500	X	1		x		1	N	X	×	10		1	(Phage					x			-
	BH-20-2 (4'-5')	05/20/20	1505	X		1	X	1	1	N	х	X	19								x	12		1
Provide hard h	BH-20-2 (6'-7')	05/20/20	1510	X			X		1	N	x	X					Contraction of the second				x			-
Set D	Date: Time: Animal 52020 12:33	Received by:	Fil		5	Date 28-	ZJ		130	2			US		R	X	RKS: Stand	dard						
elipquished by:	Date: Time: 578-23 (G.W	Received by:			S	Date		Time:	j.	S		ple Te		rature		_				y 24 h		i hr.	72 hr.	
elinquished by:	Date: Time:	Received by:	1_		1	Date		Time:		1		l.C	?							norized		Report	l	

Page 227 of 306 Page : 2 of 3

TE	Tetra Tech, Inc.				N	Midland Tel (4	Vall Stre id, Texas 432) 682 432) 682	as 797 32-455	9701 59	O		-9,9												1.1
Client Name:	Conoco Phillips	Site Manage	ər:	Chri	ristian L	Juli	ar ait	24	4.1	2.2	. 10		-							JEST		a alto	and a second	
Project Name:	EVGSAU 3366-029	Contact Info):		ail: chri one: (51		llull@tet 8-1667		ch.com	r est	1	4	F [Circ	le c	or S	spec	cify	Me 	tho	d No) 	Ê Î	
roject Location: county, state)	Lea County, New Mexico	Project #:	-	alere.	C-MD-	1	- Aller		13	ni si				1		F				ALC: NOT	AS			
voice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 797	701			T	nan a Kaliki		_							H			PT-	-			list)	1	
eceiving Laboratory	the second of the second second	Sampler Sig	gnature:		Joe Tyl	ler		191	المدين . المحرر يكا			ORO - MRO)		Se Hg Se Hg			- Maria	P.	22		1	attached lis		1
omments: COPT	TETRA Acctnum										8260B	1.1263		Cd Cr Pb Se Cd Cr Pb Se		1 Alexandre	t	8270C/625			1000	(see		
	e de la compañsión de la c	SAMPI	LING	MA	ATRIX	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	SERVAT	0.9123		Î		kt to C35) RO - DRO		Ba	5	lles	0B / 624			The second	e TDS	ance		
LAB #	SAMPLE IDENTIFICATION	YEAR: 2020		T	T	T	T	Ť	INER	(N/A) D	1B E	TX1005 (Ext to 8015M (GRO -	0	Ag	tiles	Volati	0	mi. Vol.	2/00	bestos) 300.0	Sulfate	ater Ch		
LAB USE ONLY		DATE	TIME	WATER	SOIL	HCL HNO ₃	ICE NONE	ONE	CONTAINERS	FILTERED		TPH TX100	PAH 8270C	otal Metals / CLP Metals	CLP Volatiles	TCLP Semi Volatiles ACI	ICI BC/MS Vol.	GC/MS Semi.	PCB's 8082/608 NORM	0 D	Chloride 30 Chloride	General Water Chemistry Anion/Cation Balance	PH 8015R	
	BH-20-2 (9'-10')	05/20/20	1520		X	1	X	T	# 1	N	X	X	<u> </u>	<u>F</u> F	Ħ	F III	: 0	0 0	- Z	E D		A C	Ē	
1	BH-20-2 (14'-15') #	05/20/20	1530	T	x	1. 1. A.	x	T	1	N	x	x	+ +	17	T	1	t	ĊŢ	+	x		++	T.	
	BH-20-2 (19'-20') 1	05/20/20	1540		x	65	x	T	1	N	x	x		-	Ħ	T	1	T	+7	x		+	1	R.
	BH-20-2 (24'-25')	05/20/20	1550	17	x	T	x	T	1	N	X	x	H	E H	T	í†	++	rt	+	x	++	++	đ	Â
All All	BH-20-2 (29'-30') *	05/20/20	1610		x	T	x	12	1	N	x	x	H		P	Merry.	+		T'	x		++	T	
	BH-20-2 (39'-40') 🕴	05/20/20	1630	31	x	T	x	T	1	N	x	x	T		\vdash			T	+	X	XTT	+	rt.	đ
11212	BH-20-3 (0'-1')	05/21/20	1000		x	T	x	17	1	N	x	x	148		\vdash	T		T	T	x	++	++	rt	đ
	BH-20-3 (2'-3') v	05/21/20	1005	12	x	A	×	17	1	N	x	x	T	3	H	1	t	T	T	x		++	rt	đ
	BH-20-3 (4'-5') Y	05/21/20	1010	T	x		x	T	1	N	x	x	T	27	T	T	1	T	t	>	t.	1	T	E.
	BH-20-4 (0'-1') L	05/21/20	1040		X		x	T	1	N	x	x	П	+	H	t	tt	T	T	x	tt.	++	T -	-
elinquished by:	Date: Time: <u>Annol</u> 5-28-20 (2:30 Date: Time:	Received by: Received by:	RI	l):	Date: S-25- Date:	224	Time: 12 Time:	2.32				ILY	E	E		Standar		∿≏ Day	24 hr	481	72	-	
	Date: Time:	Received by:			5	-ZS- Date:	- Za : Ti	((Time:	Cin	5		ple Terr		RUSH: Same Day 24 hr. 48 hr. 72 hr.										
		ORIGINAL	1	1	L	11	1		ne a	21	C	Neg P		18	Special Report Limits or TRRP Report				is or TP	(RP Re	port			

Received by OCD:	4/22/2024	12:46:08	PM	
Analysis Request	of Chain o	of Custody	Record	

L1223523

Page 228 of 306 Page : <u>3 of 3</u>

E TE	Tetra Tech, Inc.	atter ander	Sealle 1	and the second second		Midlar Tel (nd, Te 432)	Street. exas 7 682-4 682-3	9701 559						<u></u>										
Client Name:	Conoco Phillips	Site Manage	er:	Chri	istian	Llull	2	15	-			1.2.	JE QU								UES		81-	N.	
Project Name:	EVGSAU 3366-029	Contact Info			ail: chi ne: (5			etetrat 67	ech.d	com	2	1	11	(C	irc		or a	spe		y ivi 	eth	od	NO.	,	11
Project Location: county, state)	Lea County, New Mexico	Project #:		212	C-MD	-0157	6	n re Litt																1P	1. Ser
nvoice to:	Accounts Payable 901 West Wall Street, Suite 100 Midland, Texas 7970	1	al and a second se				a anna Saonn Die						6		100								l list)		
eceiving Laborato	ry: Pace Analytical	Sampler Sig	nature:		Joe T	yler	ter la	Ale.					ORO - MRO)	CO HO	Se Hg		1		4				attached		100
Comments: COP	TETRA Acctnum			e (14				1	anna Eilean	-	K 8260B	1.1	HO NO PO	I Cr Pt			4	8270C/625		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1		istry (see at		
subs.		SAMP	LING	MA	TRIX	1.1	SER	VATIV		RS	(N/A)	BTEX (Ext to C3		AC Do	As ba		atiles	8260B / 624	Vol. 8270	608			E	Balance	e - 1
LAB # LAB USE ONLY	SAMPLE IDENTIFICATION	YEAR: 2020 DATE	TIME	WATER	SOIL	HCL	HNU ₃ ICE	NONE		# CONTAINERS	ERED	BTEX 8021B TPH TX1005.0	8015M (PAH 8270C	TCLP Metals Ag		TCLP Semi Vol	RCI GC/MS Vol. 82	GC/MS Semi. V	PCB's 8082 / 6	PLM (Asbestos)	Chloride 300.0	General Water	Anion/Cation B TPH 8015R	
Antes	BH-20-4 (2'-3')	05/21/20	1045	T	x		×	2 67.5		1	N	X	X					-				x			
Section of the	BH-20-4 (4'-5') /	05/21/20	1050		x		X			1	N	х	x					1	1			х			-
in such and	BH-20-5 (0'-1')	05/21/20	1130		х		×	(1	N	X	x				-	1				x			
	BH-20-5 (2'-3')	05/21/20	1135		х		×	(1	N	x	X							1	100	x		1.0	-
	BH-20-5 (4'-5') I	05/21/20	1140	1	x		×	(1	N	X	Х						1		-	x	1		-
Contraction of the second		a free and			10				4	-	- 1	1		+			+	-	1		+	$\left \right $	+	++	+
		a standard	all an				1												0 130			E 4		100	\square
14 - 11				1							-2		1									834			
	A CARACTER AND A P	General		j.			P.	1		14	1			3	100							N. CA			
elinquished by: <i>Ball D. G</i> elinquished by:	Date: Time: S-28-20 (2:35 Date: Time:	Received by: Received by:	Ku	.[14	Da Da	223	Tim > Tim	12	:32	1.1		AB ON	LY	-		X	RKS: Stand		me Da	iv 24	hr.	48 hr.	72 hr.	
elinquished by:	5-18-20 (6:00 Date: Time:	Red Ed		T	11	-28 Da	-2) te:	Tim	6	io	197	Samp	le Ten	opera		 		Rush	Charg	jes Au	thorize	ed			
		ORIGINA	ha	l	2	GA	29/	20	09	60	i's							Specia	al Hep	oort Lir	nits or	THRP	Неро	π	

A MARKEN LAT

Pace Analytical National Center for Testing & Innov	vation	
Cooler Receipt Form		
Client: COPTETRA	L12275	523
Cooler Received/Opened On: 5 /29/20 Temperature:	10	
Received By: Paul Minnich		
Signature: And Much		
A REAL PROPERTY AND		國際時代以上
Receipt Check List NP	Yes	No
COC Seal Present / Intact?		
COC Signed / Accurate?		and a strange
Bottles arrive intact?	V	
Correct bottles used?		19 1 Y . 19
Sufficient volume sent?		建立1000000000000000000000000000000000000
If Applicable	n heising dass heising in die Keider	東京に急速かった。
VOA Zero headspace?	an annahan da tarih manah	。 ····································
Preservation Correct / Checked?		ana si si si

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 5 – MAVERICK REMEDIATION LABORATORY DATA

January 09, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/05/24 9:36.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 1 (4.0') (H240044-01)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 71.5-13	24						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1020	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	176	87.9	200	8.79	
DRO >C10-C28*	16.7	10.0	01/08/2024	ND	180	89.9	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	114	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	18						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 2 (4.0') (H240044-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	176	87.9	200	8.79	
DRO >C10-C28*	11.8	10.0	01/05/2024	ND	180	89.9	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	130	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	145	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 3 (4.0') (H240044-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.2	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	QM-07
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	124	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	144	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 4 (4.0') (H240044-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.3	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	736	16.0	01/05/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	116	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 5 (4.0') (H240044-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2320	16.0	01/05/2024	ND	416	104	400	3.77	QM-07
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	114	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	130	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 6 (4.0') (H240044-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1790	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	15.3	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 7 (4.0') (H240044-07)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.4	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3480	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	114	48.2-13	4						
Surrogate: 1-Chlorooctadecane	132	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 8 (4.0') (H240044-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1940	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	120	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	140	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 9 (4.0') (H240044-09)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4520	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	111 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	128	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 10 (4.0') (H240044-10)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.19	110	2.00	0.222	
Toluene*	<0.050	0.050	01/05/2024	ND	2.15	108	2.00	0.186	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.14	107	2.00	0.131	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.27	105	6.00	0.0257	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3520	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	120 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	138 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 11 (4.0') (H240044-11)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2560	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/08/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	123 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	138 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 12 (4.0') (H240044-12)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2400	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	128 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	147 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 13 (4.0') (H240044-13)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2280	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	119 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	137	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 14 (4.0') (H240044-14)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2360	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	121 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	140 \$	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 1 (H240044-15)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	352	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/08/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/08/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/08/2024	ND					
Surrogate: 1-Chlorooctane	124 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	137 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/05/2024	Sampling Date:	01/04/2024
Reported:	01/09/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Dionica Hinojos
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 2 (H240044-16)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/05/2024	ND	2.23	112	2.00	0.923	
Toluene*	<0.050	0.050	01/05/2024	ND	2.25	112	2.00	1.33	
Ethylbenzene*	<0.050	0.050	01/05/2024	ND	2.24	112	2.00	1.39	
Total Xylenes*	<0.150	0.150	01/05/2024	ND	6.74	112	6.00	0.816	
Total BTEX	<0.300	0.300	01/05/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	320	16.0	01/05/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/05/2024	ND	181	90.7	200	1.32	
DRO >C10-C28*	<10.0	10.0	01/05/2024	ND	191	95.4	200	0.846	
EXT DRO >C28-C36	<10.0	10.0	01/05/2024	ND					
Surrogate: 1-Chlorooctane	112 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	127 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Image: Internal Resources Im	Receive	ed by	CI by	: 4 day	2/202		:46:	100	M	16	5	1-1	3	00	-	JSE)		FE		j Labor		state)	ame:	Pa	ge 249 of 3
Markey: lower Strete Stero PLING MATRIX PRESERVATIVE SOUCK.terhune@itetratech.com 212C-MD-03313 212C-MD-03313 212C-MD-03314 212C-MD-03314 212C-MD-03313 212C-MD-03314 212C-MD-03313 212C-MD-03314 212C-MD-03314 212C-MD-03314 212C-MD-03314 212C-MD-0314 212C-MD-0314 212C-MD-0314 212C-MD-0314 212C-MD-0314 212C-MD			Date:	Date:	Lala. 1-5-24 93	Date:	FS-10 (4 0)	FS-9 (4.0')	FS-7 (4.0')	FS-6 (4.0')	FS-5 (4.0')	FS-4 (4.0')	FS-3 (4.0')	FS-2 (4.0')	FS-1 (4.0')			DI THI MA					EVGSAU 3366-29 Flowline	Maverick Natural Resources	1.
Of WWW Steet, Ste to Midad, Teach Top Refined, Top		incontrol of	Received hy:	Received by:		1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024	1/4/2024		YEAR: 2023	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
Time: Image: Sample Temperature Image: Sample Temperature<			(×	×	× ×	×	×	×	×	×	×	×			MATRIX		Jorge		2120	281-755 terhune@te	Chuck T	901 V Miu T
Image: Contrainer of the second se			24 U			×	×	×	×	×	×	×	×	×	×	HNO ₃				Fernad		C-MD-03313	5-8965 stratech.com	Ferhune	V Wa'' Street, Ste 100 diand, Texas 79701 el (432) 682-4559 ax (432) 682-3946
HAND DELIVERED X			3			F									-		-	RS							
TCLP Metais Ag As Ba Cd Cr Pb Se Hg		(N	Sample Tem	LAB	XXX									×	TPH TX100 TPH 8015M	05 (I A (C	Ext to C35	5)	RO - MF	RO)				
TCLP Semi Volatiles	D DELIVER		7900	perature	-	E						_	-	_		Total Metals	s Ag		_						
DEX UPS Tracking # Same Day 24 hr A A A A A A A Chloride Suffate TDS No. Bracking # Images Images<		spa	Ru	×RU	LEWIARN		-				-					TCLP Semi	1.0.11	atiles					ors		
S Tracking # VALUE And A Chloride Sulfate TDS	DEX UP	ecial Rep	sh Charg												(GC/MS Sem	ni. V	ol. 82700					ecify		
King Yelm (Asbestos) Ind X X X	S Trac	oort Lim	jes Auth	ime Day	Standa		-	-				-	_		1	NORM							Met	EQUE	
Anion/Cation Balance Page 19 of 20	king #:	its or TRRP	norized	24 hr (Ird TAT	×	×	×	×	×	×	×	×	×	×	Chloride Chloride	Sul	fate TI		attach	ed list)	<u>a</u>		
		Repor		48 hr)	E						-	-	+					1,000		a not				9 of 20

eceived	by OCI	D: 4	/22 2 2		bed by	:46:0	8 PM	10	11	1	II.	R	M		JSE Y	#	Han	5	J Laboratory:		state)	ame:		ge 250 of
	: Date: Time:		2 Malter V 1-5-0		Date: Time:			011-2	GM 3	SM14	ES-14 (4 0')	FS-13 (4.0')	FS-12 (4.0')	FS-11 (4.0')		SAMPLE IDENTIFICATION	004H		atory: Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	EVGSAU 3366-29 Flowline Release	Maverick Natural Resources	Tetra Tech, Inc.
	Received by:	Received by:						1/4/2024	1/4/2024	1/4/2024		1/4/2024	1/4/2024	1/4/2024	DATE	YEAR: 2023	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
	7							×	×	×	,	×	×	×	WATER		MATRIX		or		21	281-755-8965 <u>chuck.terhune@tetratech.c</u>	Chuc	
	-17				F						1						RIX	14	Jorge		212C-MD-033	281-755-8965 une@tetratec	Chuck Terhune	01 W W Midlan Tel (4 Fax (4
	b/24	Date:			F	1		-	+	+	+	+	+	_	HCL HNO3	-	PRE		Fernadez		ND-0	965 atech	hune	all Stree d, Texas 32) 682 132) 682
	Time:	Time:						×	×	×	>	× :	×	_	ICE	_	PRESERVATIVE METHOD		adez		3313	.com	U.	901 W Wall Street, Ste 100 Midland,Texas 79701 Tel (432) 882-4559 Fax (432) 882-3946
	1:36														# CONTAI	NEF	-							
															FILTERED) (Y/	N)							
	1	Sample Temperature		-	\vdash		-	×	×	×	>	< >	×	_	BTEX 8021	_	BTEX							
H	3.300	Tem	UNLY	LAB USE	F			×	×	×	×	< >	< 1	×	TPH 8015M	M (C			RO - MF	(0)		Ξ.		
#IND	oc	peratu	3	SE	\vdash		-	+	+	+	+	+	+	_	PAH 82700 Total Metals	_	As Ba	Cd Cr Ph	Se Ha		_	<u> </u>	•	
0		ITe	_	-					-			1		·	CLP Metal	ls Ag						TCIE		
		×		REMARKS:	-	$\left \right $		+	-	-	+	+	+	_	CLP Volati	_	atilos	-	1.000			- 9	ANALYSIS	
Spe	Rus	X RUSH:		ARK							1	+	+	_	RCI	VUI	ames	-				- 0	5	
Rush Charges Authorized Special Report Limits or TRRP Report to Imagina		HS		ŝ			-				L			_	GC/MS Vol.	_						peci	SIS	
Rep	harge	Sar		S		+	-	+	-	-	+	+	+	_	GC/MS Sen PCB's 8082			0C/625	_	_		_		
ortL	me D es Aı ort Li			tand						T	1		+	_	ORM	- / 00		_	-		90	-Me	2	
imits	Ithor	ay		laro		\square		×	-	-				_	LM (Asbes	stos)						Method	REQUEST	
orT	ized	24 1		TA	-			1	×	×	×	×	()	-	hloride	Sul	fate	TDS	_	-	_		100	
RRF	2.27	11 (.	1	H									+	_	General Wa				attach	ed list))	No		
Rep		18 h	1		-										nion/Catio								<	0
		-					1.1	1			1											- T P	ade 2	20 of 20

January 15, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/11/24 11:45.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/11/2024	Sampling Date:	01/10/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 19 (4.0') (H240122-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050	0.050	01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150	0.150	01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: CT					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3920	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	20.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	85.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/11/2024	Sampling Date:	01/10/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 7 (H240122-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050	0.050	01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150	0.150	01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	<10.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	93.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/11/2024	Sampling Date:	01/10/2024
Reported:	01/15/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 8 (H240122-03)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/11/2024	ND	2.00	99.8	2.00	4.12	
Toluene*	<0.050	0.050	01/11/2024	ND	2.10	105	2.00	3.21	
Ethylbenzene*	<0.050	0.050	01/11/2024	ND	2.11	106	2.00	3.46	
Total Xylenes*	<0.150	0.150	01/11/2024	ND	6.35	106	6.00	2.98	
Total BTEX	<0.300	0.300	01/11/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	116 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	01/11/2024	ND	432	108	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/11/2024	ND	199	99.7	200	0.331	
DRO >C10-C28*	<10.0	10.0	01/11/2024	ND	200	100	200	4.24	
EXT DRO >C28-C36	<10.0	10.0	01/11/2024	ND					
Surrogate: 1-Chlorooctane	86.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	eived by	<i>CD:</i> 4	12024	12:4	6:08	I IVI				CU	2	-	ISE Y	#	the h		S: Labo	laho .	state)	ame:		ge 256 of 3
			20				-			SW-8	SM-7	FS-19 (4.0')			0122	1	s:	rationari		2		
			andre 5									3		SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Terhune	Lea County, NM	EVGSAU 3366-2	Maverick Natural Resources	Tetra
	Date: Time:	uare: lime:	1-11	Date: Time:			-							NTIFICATION				Ine		EVGSAU 3366-29 Flowline Release	Resources	Fetra Tech, Inc.
	Received by:	Received by:	h							1/10/2024	1/10/2024	1/10/2024	DATE	YEAR: 2023	SAMPLING		Sampler Signature:		Project #:		Site Manager:	
			MAN.										TIME		ING		ture:		х.	chuck.te		
										×	×	×	WATER SOIL		MATRIX		Jorge		212	281-755-8965 chuck.terhune@tetratech.co	Chuck Terhune	901
	Date:	Date	e !	\square		+	+			+	-		HCL	-					212C-MD-03313	5-89	Terh	901 W Wall Street, Ste 1 Midland,Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
	œ.	Æ.	X/	\square						×	_	~	HNO ₃		PRES		Fernadez		0-03;	65 ech.c	une	Street, : exas 7/) 682-4) 682-3
	Time:	Time:	1-			-	+		-	-	×	×	ICE		PRESERVATIVE METHOD		lez		313	ŏm		Ste 100 9701 946
			11-24				-					-	# CONTA	-	-							
<u>î</u>	10	S		\square	-	-	-	+		< 1	×		FILTERED		-	8260B		_	-		_	
(Circle) HAND DELIVERED	14	Sample Temperature	05				-						TPH TX10	005 (Ext to C	35)			_			1
AND	6	Cempe	ONLY ONLY		-	-			- '	× :	×		TPH 8015 PAH 8270		GRO - [DRO - 0	RO - MI	RO)		- 7		
DELI		erature	- SE	\square		-				-			Total Meta	ls Ag								
VERE		æ	R		-	+	+	+	+	+	-	_	TCLP Meta	_	g As Ba	Cd Cr I	Pb Se H	g				
			REMARKS:										TCLP Sem		atiles					- 9	A	
FEDEX	Speci	X RUSH:	RKS	\vdash	-	+	+	+	-	+	-	_	RCI GC/MS Vol	82	80P / 6	24		_	_	peci	ANALYSIS	
	al Re	Chall S											GC/MS Sel							— <u>9</u>		
UPS	Special Report Limits or TRRP Report	RUSH: Same Day 24 I	Star	\vdash	-	-	-		-	-	-	_	PCB's 808 NORM	2/6	08					-	REQUEST	
Tracking #	Limit	Day	Standard				1			+		_	NORM PLM (Asbe	stos))	_					UES	
ing #	SOF	24 hr	d TAT	\square	-		-		>	< >	×	×	Chloride			70.0						
	TRRF	11	T				+			+	+	_	Chloride General W	_		TDS istry (se	e attac	hed lis	t)	- 0		
	R	48 hr				-							Anion/Cati	_							·	
	e																					6 of 6

January 16, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/15/24 11:24.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 15 (4.0') (H240158-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	896	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	90.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 16 (4.0') (H240158-02)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	864	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	89.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 17 (4.0') (H240158-03)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2720	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	22.4	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	89.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: FS - 18 (4.0') (H240158-04)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1880	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	93.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 3 (H240158-05)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	mg/kg Analyzed By: HM							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	272	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	87.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	79.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 4 (H240158-06)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	688	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	81.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 5 (H240158-07)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	mg/kg Analyzed By: HM							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	256	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/16/2024	ND	178	88.9	200	3.49	
DRO >C10-C28*	<10.0	10.0	01/16/2024	ND	163	81.7	200	4.28	
EXT DRO >C28-C36	<10.0	10.0	01/16/2024	ND					
Surrogate: 1-Chlorooctane	86.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 6 (H240158-08)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	13.6	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	78.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/15/2024	Sampling Date:	01/12/2024
Reported:	01/16/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 9 (H240158-09)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	3.29	
Toluene*	<0.050	0.050	01/15/2024	ND	2.05	102	2.00	2.00	
Ethylbenzene*	<0.050	0.050	01/15/2024	ND	2.06	103	2.00	2.45	
Total Xylenes*	<0.150	0.150	01/15/2024	ND	6.09	102	6.00	2.58	
Total BTEX	<0.300	0.300	01/15/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	114 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	96.0	16.0	01/15/2024	ND	416	104	400	0.00	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/15/2024	ND	176	88.0	200	4.03	
DRO >C10-C28*	<10.0	10.0	01/15/2024	ND	166	82.9	200	1.78	
EXT DRO >C28-C36	<10.0	10.0	01/15/2024	ND					
Surrogate: 1-Chlorooctane	82.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.2	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		Relinquished by	J.	Relinquished by	1	Relinquished by			~	-		5	4	u	م		-	LABUSE	4240IS8	Indan	Comments:		Receiving Laboratory:	nvoice to:	Project Location: (county, state)	Project Name:	Client Name:	(The second secon
		d by: Date: Time:	1 1 4 5 1-15-24 1123	Date: Time:	12. 1 - 1-14-	by: Date: Time: 18	-		SW-6	SW-5	0 SW-4	SW-3	FS-18 (4.0')	FS-17 (4.0')	FS-16 (4.0')	FS-15 (4.0')			SAMPLE IDENTIFICATION			Cardinal Labs	Attn: Chuck Ternune		n: Lea County, NM	EVGSAU 3366-29 Flowline Release	Maverick Natural Resources		Tetra Tech, Inc.
		Received by:	- An	Received by: /	24 Cupl-A	11 1 TH		1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/2024	1/12/12/14	A COOLONIA	DATE	YEAR: 2023	SAMPLING			Sampler Signature:		Project #:			Site Manager:	
		(Mara da		1 sto	1		×	×	×	×	×	×	×	×	()	×	TIME WATE SOIL	2	MATRIX			Jorge		212C-1	chuck.terhune@tetratech.	Chuck Terhune 281-755-8965		901 W Wa Midland Tel (4 Fax (4
		Date: Jime:	1	Pate: Time:	1-14-24	2		×	×	×	×	×	×	×	,	<	×	HCL HNO3 ICE		METHOD			Fernadez		212C-MD-03313	atech.com	hune 965		901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
			2 1-15-24	1124		1850	E	×	×	×	~					×	×	# CON FILTER	RED	(Y/N)	EX 826	0B							
(Circle) HAND DELIVERED	#140		-0,1e	Sample Temperature	ONLY	LAB USE		×		1	1		1	1	1		×	TPH T TPH 8 PAH 8 Total M TCLP	X100 015M 270C letals Vetals	5 (Ext (GRC Ag As		- OR	Se H	g			(Circle o	A	
ERED FEDEX UPS		Special Rep	Rush Charg	2	x RUSH: Sar	NEMPINIO. O	E											GC/M PCB's	Semi S Vol. S Sen 8082	Volatil 8260 ni. Vol.	B / 624 8270C	625						ANALYSIS REQUEST	
S Tracking #:		Special Report Limits or TRRP Report	Rush Charges Authorized		Same Day 24 hr 48		tandard TAT	,	×	×	×	×	×	×	×	×	×	Chlor Gene	Asbes de de ral W	Sulfa	hemistr		e atta	acheo	d list)		ethod No.)	IEST	
		Report			48 hr 72 hr					-	-			_				Hold	_								- - -	ag	e 12 of

January 19, 2024

CHUCK TERHUNE TETRA TECH 901 WEST WALL STREET , STE 100 MIDLAND, TX 79701

RE: EVGSAU 3366-029 FLOWLINE RELEASE

Enclosed are the results of analyses for samples received by the laboratory on 01/18/24 13:04.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/18/2024	Sampling Date:	01/18/2024
Reported:	01/19/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 4 (H240215-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.14	107	2.00	11.0	
Toluene*	<0.050	0.050	01/18/2024	ND	2.16	108	2.00	6.37	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.22	111	2.00	8.56	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	6.60	110	6.00	8.99	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	144	16.0	01/18/2024	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/18/2024	ND	190	95.0	200	2.91	
DRO >C10-C28*	<10.0	10.0	01/18/2024	ND	179	89.5	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	01/18/2024	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received:	01/18/2024	Sampling Date:	01/18/2024
Reported:	01/19/2024	Sampling Type:	Soil
Project Name:	EVGSAU 3366-029 FLOWLINE RELEASE	Sampling Condition:	Cool & Intact
Project Number:	212C - MD - 03313	Sample Received By:	Tamara Oldaker
Project Location:	MAVERICK - LEA CO NM		

Sample ID: SW - 6 (H240215-02)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	01/18/2024	ND	2.14	107	2.00	11.0	
Toluene*	<0.050	0.050	01/18/2024	ND	2.16	108	2.00	6.37	
Ethylbenzene*	<0.050	0.050	01/18/2024	ND	2.22	111	2.00	8.56	
Total Xylenes*	<0.150	0.150	01/18/2024	ND	6.60	110	6.00	8.99	
Total BTEX	<0.300	0.300	01/18/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	128	16.0	01/19/2024	ND	432	108	400	0.00	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	01/18/2024	ND	190	95.0	200	2.91	
DRO >C10-C28*	<10.0	10.0	01/18/2024	ND	179	89.5	200	2.15	
EXT DRO >C28-C36	<10.0	10.0	01/18/2024	ND					
Surrogate: 1-Chlorooctane	109 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 4/22/2024	12:46:08 PM	9-MS 2	/ SW-4	#	y Laboratory: :s:	state)	aine:	Page 273 of 30
29	Date: Time: / 70.4			SAMPLE IDENTIFICATION	Attn: Chuck Terhune Cardinal Labs	Lea County, NM	EVGSAU 3366-29 Flowline Release	Tetra Tech, Inc. Maverick Natural Resources
Received by:		1/18/2024	DATE TIME	SAMPLING YEAR: 2023	Sampler Signature:	Project #:	chuck	Site Manager:
Date: Time:		× ×	HCL HNO ₃	MATRIX PRESERVATIVE METHOD JERS	Jorge Fernadez	212C-MD-03313	281-755-8965 281-755-8965 chuck.terhune@tetratech.com	901 W Wall Street, Ste 100 Midland, Texas 79701 Tel (432) 682-4559 Fax (432) 682-3946
LAB USE ONLY Sample Temperature 3.82 H144 (Circle) HAND DELIVERED FEDEX UPS Tracking #			TPH 8015M PAH 8270C Total Metals TCLP Metals TCLP Volatile TCLP Semi V RCI GC/MS Vol. GC/MS Semi PCB's 8082 / NORM PLM (Asbesto Chloride	B BTEX 82 5 (Ext to C35) (GRO - DRC Ag As Ba Cd Ag As Ba Cd Ag As Ba Cd ss /olatiles 8260B / 624 Vol. 8270C/ 608 os) ulfate TDS er Chemistry) D - ORO - MRO) Cr Pb Se Hg I Cr Pb Se Hg 625		(Circle or Specify Method No.)	raye
Released to Imaging: 4/22/2	024 2 2 C 00 PM						Pa	ge 5 of 5

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 6 – ARMS REVIEW LETTER

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505.254.1115 Fax 505.254.1116 www.swca.com

2/36

October 4, 2023

TO: Ethan Ortega, Division Director & Archaeologist, New Mexico State Land Office, Santa Fe, New Mexico

FROM: SWCA Environmental Consultants

SUBJECT: Completion of an Archaeological Records Management Section (ARMS) Review for the EVGSAU 3366-029 Flowline Inadvertent Release Project on New Mexico State Land Office (NMSLO) lands in Lea County, NM

Company Ref No: None-Provided

PROJECT DESCRIPTION:

Tetra Tech, Inc. has requested that SWCA Environmental Consultants (SWCA) conduct an Archaeological Resources Management Section (ARMS) review for an inadvertent release in Lea County, New Mexico. The proposed project is located on lands managed by the New Mexico State Land Office (NMSLO) approximately 20.1 kilometers (12.5 miles) southwest of Lovington, NM in T17S R35E, Section 33.

A literature and file search were conducted on September 22, 2023, using the New Mexico Cultural Resources Information System online database which included a review of known cultural resources, such as the built environment, archaeological sites, and State/National Register listed properties. Other sources reviewed include the BLM GLO Records web site, http://www.glorecords.blm.gov, which include land patent and general land office survey data. As this area was not settled by Spain, land grant records were not reviewed. The review was conducted for the Area of Potential Effects (APE) and 1 km surrounding the APE. The land the proposed project is located on is part of the June 21, 1898: New Mexico Territorial Grant (30 Stat. 484) patented on May 26, 1909.

Recommendation:

The project area and surrounding 1 km have been subject to four (4) cultural resource surveys, two (2) of which are qualifying. One previously recorded site (LA 179703) is located outside of the project area but within the 1k search buffer. The project area is entirely located on NMSLO-managed lands and is completely covered by one (1) qualifying survey conducted within the last ten years (NMCRIS 131135). All remediation work will remain within the previously qualifying survey area. SWCA recommends the completion of an ARMS letter to satisfy the requirements for release remediation. If cultural materials are identified during ground disturbing activities, work must stop and the NMSLO must be contacted.

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese Attached: (1) Review Results, (1) ARMS Map

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505.254.1115 Fax 505.254.1116 www.swca.com

Archaeological Resources Management Section (ARMS) Review Results

Table 1. Cultural surveys within 1 km (0.62 miles) of the proposed project area.

2168

NMCRIS No.	Performing Organization	Date of Investigation	Acres Surveyed	Sites Visited
23638	Agency for Conservation Archaeology Eastern New Mexico University	8/9/1988	222.82	4
78253	San Juan County Museum Association Division of Conservation Archaeology	6/5/2001	0.83	0
131135	Lone Mountain Archaeological Services	7/11/2014	890.58	3
151899	Lone Mountain Archaeological Services	11/29/2022	15.80	0

Table 2. Cultural resources within 1 km (0.62 miles) of the proposed project area.

LA No.	Discovering NMCRIS No.	Site Type/Cultural Affiliation and Age	Eligibility	Relationship to APE
179703	131135	Artifact scatter with features/ Unknown Historic (A.D. 1550–1970)	Not Evaluated by SHPO	Outside

Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese Attached: (1) Review Results, (1) ARMS Map Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese Attached: (1) Review Results, (1) ARMS Map Information regarding the findings can be found in Tables 1-2 and Figure 1.

Archaeologist Paisley DeFreese Attached: (1) Review Results, (1) ARMS Map

7770 Jefferson Street NE, Suite 410 Albuquerque, New Mexico 87109 Tel 505.254.1115 Fax 505.254.1116 www.swcb.com

2168

2/36

*Redacted

Figure 2. NMCRIS screenshot showing the location of the EVGSAI 3366-029 Flowline inadvertent release location (blue square) with a 1-km (0.62-mile) buffer area (blue circle). Previously conducted investigations are brown and yellow polygons, and previously recorded sites are tan polygons.

LA 179703

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 7 – PHOTOGRAPHIC DOCUMENTATION

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View southeast. Initial spill assessment	1
	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View east. Initial spill assessment	2
	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View north. Initial spill assessment	3
	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016

TETRA TECH, INC. PROJECT NO.	DESCRIPTION	View west. Initial spill assessment	4	
212C-MD-02426	SITE NAME	EVGSAU 3366-029 Flowline Release	04/08/2016	

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Area of western portion of excavation.	5
	SITE NAME	EVGSAU 3366-029 Flowline Release	1/28/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View west. Area of central portion of excavation.	6
	SITE NAME	EVGSAU 3366-029 Flowline Release	1/25/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View east. Area of central portion of excavation.	7
	SITE NAME	EVGSAU 3366-029 Flowline Release	1/29/2019

	TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View southeast. Area of eastern portion of excavation.	8
		SITE NAME	EVGSAU 3366-029 Flowline Release	1/29/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Input of liner into excavation.	9
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View north. Placement of liner into excavation.	10
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Backfill of western portion of excavation.	11
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View southeast. Backfill of central portion of excavation.	12
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

TETRA TECH, INC. PROJECT NO. 212C-MD-02426	DESCRIPTION	View northwest. Backfill of eastern portion of excavation.	13
	SITE NAME	EVGSAU 3366-029 Flowline Release	2/21/2019

Site Remediation Tetra Tech

SE 120 150

© 166°S (T) LAT: 32.793121 LON: -103.470205 ±4m ▲ 1199m

Site Remediation Tetra Tech

SW 210 240 • I • I • I • I • I • I)5 ±4m ▲ 1199m

Fis Maverick-EVCSAU 3366 Jan 12 2024, 15:13:10 MST-

© 74°E (T) LAT: 32.792932 LON: -103.470346 ±4m ▲ 1199m

Site Remediation Tetra Tech

SE 120 150 • I • I • I • I • I 6 ± 4m ▲ 1199m

Maverick EVCSAU 3366 an 12 2024, 15:13:51 MST

© 74°E (T) LAT: 32.791405 LON: -103.454312 ±4m ▲ 1195m

60

NE

30

Site Remediation Tetra Tech

d by OCD: 4/22/2024 12:46:

DEERE

90

SE 120 150

DER

Maverick- EVGSAU Satellite #6 Jan 12 2024, 15:38:40 MST

② 203°SW (T) LAT: 32.793154 LON: -103.470211 ±3m ▲ 1205m

Site Remediation Tetra Tech

© 156°SE (T) LAT: 32.793142 LON: -103.470335 ±4m ▲ 1204m

Site Remediation Tetra Tech Maverick- EVGSAU 3366 Jan 24 2024, 09:10:43 MST

© 109°E (T) LAT: 32.793030 LON: -103.470509 ±4m ▲ 1205m

Site Remediation Tetra Tech Maverick- EVGSAU 3366 Jan 24 2024, 09:11:05 MST

© 83°E (T) LAT: 32.792952 LON: -103.470526 ±4m ▲ 1205m

Site Remediation Tetra Tech Maverick- EVGSAU 3366 Jan 24 2024, 09:11:20 MST

March 25, 2024

Remediation Report and Closure Report Maverick Permian, LLC EVGSAU 3366-029 Flowline Release Incident IDs: nJXK1609752883 and nPRS0420835421

ATTACHMENT 8 – NMSLO SEED MIXTURE

NMSLO Seed Mix

Sandy (S)

SANDY (S) SITES SEED MIXTURE:

COMMON NAME	VARIETY	APPLICATION RATE (PLS/Acre)	DRILL BOX
Grasses:			
Sand bluestem	Elida, VNS, So.	2.0	\mathbf{F}
Little bluestem	Cimarron, Pastura	3.0	\mathbf{F}
Black grama	VNS, Southern	1.0	D
Sand dropseed	VNS, Southern	4.0	S
Plains bristlegrass	VNS, Southern	2.0	D
Forbs:			2
Firewheel (Gaillardia)	VNS, Southern	1.0	D
Annual Sunflower	VNS, Southern	1.0	D
Shrubs:		6	B
Fourwing Saltbush	VNS, Southern	1.0	F
	Total PLS/ac	re 16.0	8

S = Small seed drill box, D = Standard seed drill box, F = Fluffy seed drill boxVNS = Variety Not Stated, PLS = Pure Live Seed

- Seed mixes should be provided in bags separating seed types into the three categories: small (S), standard (D) and fluffy (F).
- VNS, Southern Seed should be from a southern latitude collection of this species.
- Double seed application rate for broadcast or hydroseeding.
- If one species is not available, contact the SLO for an approved substitute; alternatively the SLO may require other species proportionately increased.
- Additional information on these seed species can be found on the USDA Plants Database website at http://plants.usda.gov.

SLO Seed Mix

3 REVEGETATION PLANS & SEEDING

The following Revegetation Plans were developed for revegetation of sites in southeastern New Mexico. To determine which revegetation plan is appropriate follow procedures in the section titled Determining the Revegetation Plan.

Revegetation Plans contain seed mixtures, as well as seed bed preparation and planting requirements. The detailed instructions for seedbed preparation and planting can be found in the section Revegetation Techniques.

Table 3 - Revegetation Plans,	Codes, and Soil Types for	Southeastern New Mexico
-------------------------------	---------------------------	-------------------------

REVEGTATION PLANS	CODE	SOIL TEXTURES
Clay	С	Clay, Silty Clay, Stony Silty Clay, Clay Loam, Silty Clay Loam (including saline and sodic Clay soils)
Loam	L	Silty Loam, Cobbly Silt Loam, Stony Silt Loam, Silt, Loam, Sandy, Clay Loam
Sandy Loam	SL	Very Fine Sandy Loam, Fine Sandy Loam, Cobbly Fine Sandy Loam, Sandy Loam, Cobbly Sandy Loam, Gravelly Fine Sandy Loam, Very Gravelly Fine Sand Loam, Stony Fine Sandy Loam, Stony Sandy Loam
Gypsum	LG	
Shallow	SH	Rocky Loam, Cobbly Loam
Course	CS	Gravelly Loam, very Gravelly Loam, Gravelly Sandy Loam, Very Gravelly Sandy Loam, Stony Loam, Stony Sandy Loam
Sandy	S	Loamy Fine Sand, Loam Sand, Very Gravelly Loamy Fine Sand
Blow Sand	BS	Fine Sand, Sand, Coarse Sand
Mountain Meadow	MM	Clay, Loam
Mountain Upland	MU	Clay Loam, Loam

Version 1.1 – 2018

New Mexico State Land Office Southeastern New Mexico Revegetation Handbook District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 336050

QUESTIONS		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	336050	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Prerequisites	
Incident ID (n#)	nPRS0420835421
Incident Name	NPRS0420835421 EVGSAU 3366-029 @ 30-025-02987
Incident Type	Oil Release
Incident Status	Reclamation Report Received
Incident Well	[30-025-02987] EAST VACUUM (GSA) UNIT #029

Location of Release Source

Please answer all the questions in this group.		
Site Name	EVGSAU 3366-029	
Date Release Discovered	03/29/2004	
Surface Owner	State	

Incident Details

Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Crude Oil Released (bbls) Details Not answered. Cause: Corrosion | Flow Line - Production | Produced Water | Released: 62 BBL | Recovered: Produced Water Released (bbls) Details 61 BBL | Lost: 1 BBL Is the concentration of chloride in the produced water >10,000 mg/l Yes Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Cause: Corrosion | Flow Line - Production | Produced Water | Released: 62 BBL | Recovered: Other Released Details 61 BBL | Lost: 1 BBL Are there additional details for the questions above (i.e. any answer containing Same site and remediated in conjunction with closed incident nJXK1609752883. Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Operator:

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action Type:

[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS, Page 2

Action 336050

Page 299 of 306

QUESTIONS (continued) OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 336050

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

I hereby agree and sign off to the above statement	Name: Chuck Terhune Email: chuck.terhune@tetratech.com
	Date: 04/22/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 336050

Page 300 of 306

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	336050	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 300 and 500 (ft.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1000 (ft.) and ½ (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 300 and 500 (ft.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	Yes	

Remediation Plan

Please answer all the questions th	hat apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report de	monstrating the lateral and vertical extents of soil contamination	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	al extents of contamination been fully delineated	Yes
Was this release entirely co	ontained within a lined containment area	No
Soil Contamination Sampling	: (Provide the highest observable value for each, in m	nilligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 Cl B)	8480
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	745
GRO+DRO	(EPA SW-846 Method 8015M)	432
BTEX	(EPA SW-846 Method 8021B or 8260B)	0.1
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 N		0 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 N which includes the anticipated tim	VMAC unless the site characterization report includes complete	
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi	VMAC unless the site characterization report includes complete elines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi On what date will (or did) th	MAAC unless the site characterization report includes complete lefines for beginning and completing the remediation. II the remediation commence	ad efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi On what date will (or did) th On what date will (or was)	VMAC unless the site characterization report includes complete belines for beginning and completing the remediation. Il the remediation commence he final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/18/2023 01/18/2024
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi On what date will (or did) th On what date will (or was) What is the estimated surfa	WMAC unless the site characterization report includes complete telines for beginning and completing the remediation. Il the remediation commence the final sampling or liner inspection occur the remediation complete(d)	ad efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/18/2023 01/18/2024 01/19/2024
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi On what date will (or did) th On what date will (or was) What is the estimated surfa What is the estimated volu	VMAC unless the site characterization report includes complete relines for beginning and completing the remediation. Il the remediation commence the final sampling or liner inspection occur the remediation complete(d) ace area (in square feet) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/18/2023 01/18/2024 01/19/2024 4700
Per Subsection B of 19.15.29.11 N which includes the anticipated tim On what estimated date wi On what date will (or did) th On what date will (or was) i What is the estimated surfa What is the estimated volu What is the estimated surfa	MAC unless the site characterization report includes complete relines for beginning and completing the remediation. Il the remediation commence he final sampling or liner inspection occur the remediation complete(d) ace area (in square feet) that will be reclaimed me (in cubic yards) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 12/18/2023 01/18/2024 01/19/2024 4700 1004

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 336050

 QUESTIONS (continued)

 Operator:
 OGRID:

 Maverick Permian LLC
 331199

 1000 Main Street, Suite 2900
 Action Number:

 Houston, TX 77002
 336050

 Action Type:
 [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply.) (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.) Yes Which OCD approved facility will be used for off-site disposal HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510] OR which OCD approved well (API) will be used for off-site disposal Not answered. OR is the off-site disposal site, to be used, out-of-state Not answered. OR is the off-site disposal site, to be used, an NMED facility Not answered. (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms) Not answered (In Situ) Soil Vapor Extraction Not answered. (In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.) Not answered. (In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.) Not answered. (In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.) Not answered. Ground Water Abatement pursuant to 19.15.30 NMAC Not answered. OTHER (Non-listed remedial process) Not answered. Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Name: Chuck Terhune I hereby agree and sign off to the above statement Email: chuck.terhune@tetratech.com

Date: 04/22/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 302 of 306

Action 336050

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	336050
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 336050

QUESTIONS (continued)		
Operator:	OGRID:	
Maverick Permian LLC	331199	
1000 Main Street, Suite 2900	Action Number:	
Houston, TX 77002	336050	
	Action Type:	
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	330626
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	01/18/2024
What was the (estimated) number of samples that were to be gathered	2
What was the sampling surface area in square feet	400

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Yes		
Yes		
No		
Yes		
4700		
1004		
Yes		
4700		
1004		
This is a historical release with a history of multiple rounds of assessments and remediaition. Additional details are provided in the Remediation Report and Closure Request attached to this C-141 Submission.		
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents o final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
nowledge and understand that pursuant to OCD rules and regulations all operators are required		
ses which may endanger public health or the environment. The acceptance of a C-141 report by dequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ig notification to the OCD when reclamation and re-vegetation are complete.		

	Name: Chuck Terhune
I hereby agree and sign off to the above statement	Email: chuck.terhune@tetratech.com
	Date: 04/22/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 304 of 306

Action 336050

QUESTIONS (continued)

Operator: Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	336050
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission	Yes
What was the total reclamation surface area (in square feet) for this site	4700
What was the total volume of replacement material (in cubic yards) for this site	1004
	four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 over must include a top layer, which is either the background thickness of topsoil or one foot of suitable material
Is the soil top layer complete and is it suitable material to establish vegetation	Yes
On what (estimated) date will (or was) the reseeding commence(d)	01/22/2024
Summarize any additional reclamation activities not included by answers (above)	Graded and contoured the area back to match the surrounding area after backfilling with clean soil sourced from nearby pits. The area was subsequently seeded with NMSLO seed mix for the appropriate soil type. The Area will be monitored for revegetation and the revegetation report will be submitted once complete.

The responsible party must attach information demonstrating they have complied with all applicable reclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form of attachments (in .pdf format) including a scaled site map, any proposed reseeding plans or relevant field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

I hereby agree and sign off to the above statement	Name: Chuck Terhune Email: chuck.terhune@tetratech.com Date: 04/22/2024
--	---

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 8

Action 336050

Page 305 of 306

QUESTIONS (continued)	
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	336050
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report

Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied

Requesting a restoration complete approval with this submission

No Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 306 of 306 CONDITIONS

Action 336050

CONDITIONS Operator: OGRID: Maverick Permian LLC 331199 1000 Main Street, Suite 2900 Action Number Houston, TX 77002 336050 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

CONDITI		
Created By	Condition	Condition Date
bhall	Remediation closure and reclamation approved. A revegetation report will need to be submitted but will not be accepted until revegetation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities, and revegetated as early as practicable.	4/22/2024
bhall	All revegetation activities will need to be documented and included in the revegetation report. The revegetation report will need to include: An executive summary of the revegetation activities including: Seed mix, Method of seeding, dates of when the release area was reseeded, information pertinent to inspections, information about any amendments added to the soil, information on how the vegetative cover established meets the life-form ratio of plus or minus fifty percent of pre-disturbance levels and a total percent plant cover of at least seventy percent of pre-disturbance levels, excluding noxious weeds per 19.15.29.13 D.(3) NMAC, and any additional information; a scaled Site Map including area that was revegetated in square feet; and pictures of the revegetated areas during reseeding activities, inspections, and final pictures when revegetation is achieved.	4/22/2024
bhall	Per 19.15.29.13 E. NMAC, if a reclamation and revegetation report has been submitted to the surface owner, it may be used if the requirements of the surface owner provide equal or better protection of freshwater, human health, and the environment. A copy of the approval of the reclamation and revegetation report from the surface owner and a copy of the approved reclamation and revegetation report will need to be submitted to the OCD via the Permitting website.	4/22/2024