	Est. Pore
Soil Type	Space
Clay	15%
Sandy Clay	12%
Silt	16%
Loess	25%
Fine Sand	16%
Med. Sand	25%
Coarse Sand	26%
Gravelly Sand	26%
Fine Gravel	26%
Med. Gravel	25%
Coarse Gravel	18%
Compacted Caliche Pad	16%
Loosely Compacted	
Caliche Pad	20%

Location: Rule of Thumb

42.7 = Total Estimated Barrels of Oil in Soil

To Calculate The Oil Content of Saturated Soil

Average Pore Space Between Soil Grains Ranges From A Low of 15% To A High of 26%. Pure Sand Being 26%.

20% = Estimated Pore Space

Width Times Length Times Depth = Cubic Feet

4 = Width in Feet 100 = Length in Feet

= Depth in Inches

3 = Depth in Feet

There Are 7.48 Gallons Of Oil Per Cubic Foot

1795.20 = Gallons of Oil In Soil

42.7 = Barrels of Oil In Soil

if different soil types are impacted (I.E. Caliche Pad and Sandy Clay Pasture Area), additional calculation boxes are provided below. If not, please make sure the dimensions are zeroed out before finalizing.

20% =	Estimated	Pore	Space
-------	-----------	------	-------

Width Times Length Times Depth = Cubic Feet

= Width in Feet = Length in Feet = Depth in Inches 0 = Depth in Feet

There Are 7.48 Gallons Of Oil Per Cubic Foot

0.00 = Gallons of Oil In Soil

0.0 = Barrels of Oil In Soil

20% = Estimated Pore Space

Width Times Length Times Depth = Cubic Feet

= Width in Feet = Length in Feet = Depth in Inches 0 = Depth in Feet

There Are 7.48 Gallons Of Oil Per Cubic Foot

0.00 = Gallons of Oil In Soil

0.0 = Barrels of Oil In Soil

Released to Imaging: 5/10/2024 9:55:33 AM

State of New Mexico Energy, Minerals and Natural Resources Department

Michelle Lujan Grisham Governor

Dylan M. Fuge Deputy Secretary Dylan Fuge, Division Director (Acting) Oil Conservation Division

BY ELECTRONIC MAIL

May 10, 2024

Karolanne Hudgens – HSE Remediation Specialist II Plains Marketing L.P. 333 Clay Street Suite 1900 Houston, TX 77002

RE: Conditional Approval of Soil Vapor Extraction (SVE) Remediation Method for Plains Endurance 6" Upstream Jacinto Tie In; Incident #: nAPP2129935504; Application ID: 337637)

Ms. Hudgens,

4.

The Oil Conservation Division (OCD) has reviewed and approved the subject work plan with the following conditions;

- 1. Plains Marketing's (Plains) SVE system must be designed to have a minimum of 90% operational runtime, 24/7, start to finish. Operation & maintenance (O&M) or any matter that requires a temporary downtime should be excluded within the applicable runtime.
- 2. On-site analog or digital runtime counter must be installed and viewable to OCD personnel. Any alternative method must be explained and pre-approved by OCD.
- 3. The following field data measurement parameters will be required and reported (prior to reaching vacuum pump);
 - a. Total Extracted Flow Rate via a Flow Meter
 - b. Flow Rates from each vapor extraction point/well (VEP)
 - c. Volatile Organic Compound (VOC) Concentrations for each VEP and/or VEP cluster being implemented via Handheld Gas Analyzer (e.g. Photo Ionization Detector (PID)
 - d. Record vacuum pressure at each VEP and/or VEP cluster being implemented
 - e. Oxygen (O₂) and carbon di-oxide (CO₂) levels via hand-held analyzers from each VEP and/or VEP cluster being implemented, prior to reaching vacuum pump and at discharge orifice or vent stack
 - The following minimum timeline will be required for the above data recordings;
 - a. Daily for the first week
 - b. Weekly for the next three (3) months
 - c. Monthly thereafter for the first calendar year
 - d. Then contingent upon the recorded data output
- 5. Any water condensation will be categorized as oil field waste and must be disposed of accordingly. System modifications to address increased water collection and disposal must be pre-approved by OCD.
- 6. Extracted vapor sampling (prior to reaching vacuum pump) for laboratory testing will be required as follows;
 - a. Approximately 15-30 minutes and approximately 8-10 hours after startup (or at the end of the same day if initial sample collected in early morning), one full round of sampling for constituents noted in b, c, & d below
 - b. BTEX per US EPA Method 8021B or 8260B
 - c. TPH per US EPA Method 8015M
 - d. O_2 and CO_2

- 7. The following timeline will be required for the above laboratory sampling elements;
 - a. Weekly next three (3) weeks (first month)
 - b. Bi-weekly (twice a month) next two (2) months (first quarter)
 - c. Bi-Monthly (every other month) next nine (9) months (first year)
 - d. Quarterly Year #2 until diminishing returns has been consistently documented
- 8. Plains must submit to OCD quarterly reports for the first 2 years of operation. Reports are due no later than the 15th in the months of April (first quarter), July (second quarter), October (third quarter), and January (fourth quarter), then bi-annual thereafter (1st & 3rd or 2nd & 4th quarters), detailing the following;
 - a. Summary of remediation activity
 - b. Chart of O₂ & CO₂ levels over time
 - c. SVE runtime
 - d. SVE mass removal
 - e. Product recovery, if applicable
 - f. Laboratory air sample analysis, if applicable
- 9. Plains must notify OCD of its initial system startup which is required within 90 days of this approval. If this cannot be achieved, Plains must verify the delay within its request for a time extension.
- 10. Plains must submit to OCD a closure plan prior to initiating confirmation sampling for final remediation termination.

These conditions by the OCD does not relieve Plains of responsibility for compliance with any federal, state, or local law.

If you have any questions, please contact Nelson Velez of the Environmental Incident Group at (505) 469-6146 or by email at <u>nelson.velez@emnrd.nm.gov.</u>

Respectfully,

Alile Benous

Michael Bratcher Incident Group Supervisor (575) 626-0857

Nelson Velez

Nelson Velez Environmental Specialist – Adv (505) 469-6146

Page 2

2135 S. Loop 250 W, Midland, Texas 79703 United States ghd.com

Your ref: Incident ID: nAPP2129935504 Our ref: 12632476-NMOCD-1

April 25, 2024

Nelson Velez New Mexico Oil Conservation District District I 1000 Rio Brazos Road Aztec, New Mexico 87410

SVE Pilot Test Activities and Results Endurance 6" Upstream Jacinto Tie-In Release Site Plains All American Pipeline, L.P. Incident ID: nAPP2129935504 Lea County, New Mexico

To Whom It May Concern:

1. Introduction

GHD Services, Inc. (GHD), on behalf of Plains All American Pipeline, L.P. (Plains), submits this Response Letter to the New Mexico Oil Conservation Division (NMOCD) District I Office. This Response Letter provides documentation of soil vapor extraction (SVE) and observation well installation activities, sampling, analyses, and SVE pilot test results conducted at the Plains Endurance 6" Upstream Jacinto Tie-In Release Site (Site). The Site is located in Unit Letter O Section 25 of Township 24 South and Range 34 East in Lea County, New Mexico (Figure 1). The GPS coordinates for the Site are 32.181559 N and 103.421514 W. The release occurred on October 25, 2021, on private land owned by Quail Ranch.

2. Well Installation Summary and Findings

From March 7 to March 13, 2024, GHD and Talon LPE (Talon) installed two observation wells (OW-1 and OW-2) and two soil vapor extraction wells (SVE-1 and SVE-2) at the Site. The wells were installed to conduct an SVE pilot test to evaluate if SVE would be a viable in-situ approach to remediate the soils between approximately 20 to 40 feet below ground surface (bgs). The two observation wells were set to a total depth (TD) of 45 feet bgs with 20 feet of well screen from 25 to 45 feet bgs. SVE-1 was set to a TD of 45 feet bgs with ten feet of well screen from 35 to 45 feet bgs. SVE-2 was set to a TD of 33 feet bgs with ten feet of well screen from 23 to 33 feet bgs. Soil samples were collected from each boring at approximate 5-foot intervals from approximately 5 ft bgs to TD and field screened for volatile organic compounds (VOCs) utilizing a photoionization detector (PID). Three select soil samples were submitted for analysis based on PID results.

→ The Power of Commitment

The following is a summary of soil samples collected and submitted for laboratory analysis.

- OW-1 35 to 40 feet bgs (OW135), 40 to 45 feet bgs (OW140), and 45 to 50 feet bgs (OW145).
- OW-2 25 to 30 feet bgs (OW225), 30 to 35 feet bgs (OW230), and 40 to 45 feet bgs (OW240).
- SVE-1 35 feet bgs (SVE135), 40 feet bgs (SVE140), and 45 feet bgs (SVE145).
- SVE-2 20 to 25 feet bgs (SVE220), 25 to 30 feet bgs (SVE225), and 30 to 33 feet bgs (SVE230).

Samples were placed in laboratory-provided containers, which were immediately labelled, sealed, and stored/transported in a cooler containing ice to Pace Analytical in Mount Juliet, Tennessee, a laboratory certified by the National Environmental Laboratory Program (NELAP), for analysis. Samples were analyzed for benzene, toluene, ethylbenzene, and xylenes (BTEX) by United States Environmental Protection Agency (US EPA) SW-846 Method 8021B and total petroleum hydrocarbons (TPH) by US EPA SW-846 Method 8015B Modified.

Analytical results indicated nine of the samples (OW145, OW225, OW230, SVE135, SVE140, SVE145, SVE220, SVE225, and SVE230) exhibited BTEX, and/or TPH (gasoline range organics and diesel range organics [GRO+DRO]), and/or total TPH concentrations above New Mexico Administrative Code (NMAC) Table I Closure Criteria. Well locations and other Site details are shown on Figure 2. Analytical results are presented in Table 1 and in the laboratory analytical report included as Attachment A. The boring logs are included as Attachment B.

3. SVE Pilot Test Summary and Results

On March 21, 2024, GHD and Fremont Environmental (Fremont) conducted SVE pilot testing on the four wells (OW-1, OW-2, SVE-1, and SVE-2,) at the Site. The pilot test procedure is covered in more detail in Fremont's *SVE Pilot Test Results* report included as Attachment C.

Based on results obtained from the SVE pilot test, SVE shows to be a feasible in-situ remediation approach for the remaining soil impacts in the sand unit (approximately 20 to 33 feet bgs) and the sandstone unit (approximately 35 to 45 feet bgs) at the Site; however, the sandstone unit will have a limited radius of influence (ROI) due to its tighter porosity. Based on pilot test results, applying a vacuum of approximately 50 inches of water will produce an ROI of approximately 25 feet in the sand unit and approximately 15 feet in the sandstone unit. The estimated design flow rate is approximately 15 cubic feet per minute (cfm) per SVE well. An estimated 22 shallow SVE wells (including pilot test wells OW-1, OW-2, and SVE-2) and 6 deep SVE wells (including pilot test wells SVE-1) will be needed to address the remaining subsurface soil impacts at the Site. Although OW-1 and OW-2 are screened across both the sand and sandstone units, GHD and Fremont predict the vapors will be recovered from the preferential pathway, the sand unit, due to its looser porosity. The proposed SVE well locations are shown on Figures 3, 4, and 5 in the *SVE Pilot Test Results* report included as Attachment C.

If you have any questions or comments concerning this information presented above, please do not hesitate to contact Nate Reece at (281) 386-7158 or **<u>nate.reece@ghd.com</u>**.

Regards,

Mater the

Nate Reece Scientist

+1 281 386-7158 nate.reece@ghd.com

NR/mss/1

Blair Owen Project Director

+1 561 339-3572 blair.owen@ghd.com

- Encl. Table 1 Summary of Soil Analytical Data
 Figure 1 Site Location Map
 Figure 2 Site Details Map
 Attachment 1 Laboratory Analytical Reports and Chain-of-Custody Documentation
 Attachment 2 Soil Boring Logs
 Attachment 3 Freemont's SVE Pilot Test Results Includes Proposed SVE Well Locations Maps
- Copy to: Karolanne Hudgens Plains Pipeline, L.P.

Table 1

Summary of Soil Analytical Results Plains All American Pipeline, L.P. Endurance 6" Upstream Jacinto Tie-In SRS #2021-089 nAPP2129935504 Lea County, New Mexico

Location Num Paper Banzan Totum Ethythanzan Totul 17tk Code 19TX ORO DRO Ethythanzan Totul 17tk Code 19TX ORO Extends ORO + NEO	Sample	Commis ID	Samuela Data	Sample		Volatile Organic Compounds					Tota	al Petroleum Hydro	carbons (TPH)		Chloride
Start Start <th< th=""><th>Location</th><th>Sample ID</th><th>Sample Date</th><th>Depth</th><th>Benzene</th><th>Toluene</th><th>Ethylbenzene</th><th></th><th>Total BTEX</th><th></th><th>-</th><th></th><th>GRO + DRO</th><th></th><th>Chloride</th></th<>	Location	Sample ID	Sample Date	Depth	Benzene	Toluene	Ethylbenzene		Total BTEX		-		GRO + DRO		Chloride
B8-1 B8-1 <th< th=""><th></th><th>NMAC 19.15</th><th>5.29.12 Table 1 (</th><th>Closure Criteria</th><th>10</th><th>ne</th><th>ne</th><th>ne</th><th>50</th><th>ne</th><th>ne</th><th>ne</th><th>1,000</th><th>2,500</th><th>20,000</th></th<>		NMAC 19.15	5.29.12 Table 1 (Closure Criteria	10	ne	ne	ne	50	ne	ne	ne	1,000	2,500	20,000
Bsh Bsh <td></td> <td colspan="12">Soil Boring Samples</td>		Soil Boring Samples													
Bsh Sb1 Sb1 O Obs O	SB-1	SB-1 (35)		35 ft BGS	0.0402	2.34	2.87	16.82	22.0702	955	2,810	383	3,765	4,148	30.4
Sb.1 Sb.2 Sb.2 Sb.2 Sb.2 Sb.2 Sb.2 Sb.2 Sb.2 Sb.2 Sb.3 Sb.3 <th< td=""><td>SB-1</td><td>SB-1 (40)</td><td>06/13/2022</td><td>40 ft BGS</td><td>0.149</td><td>6.27</td><td>4.06</td><td>22.29</td><td>32.769</td><td>1480</td><td>8,330</td><td>886</td><td>9,810</td><td>10,696</td><td>27.5</td></th<>	SB-1	SB-1 (40)	06/13/2022	40 ft BGS	0.149	6.27	4.06	22.29	32.769	1480	8,330	886	9,810	10,696	27.5
Bs1 Bs1-(80) 091132022 01.863 -0.0011 0.00524 0.04533 28.1 54.0 70 568 633.1 2 SB-1 SB-1(70) 091132022 80.1865 -0.0014 <0.0014	SB-1	SB-1 (45)			0.0065	0.118	0.0854	0.531	0.7409	102	1,140	128	1,242	1,370	28.3
BB-1 SB-1(70) 04/13/2022 70 ft BGS 0.0044 0.142 0.0083 0.412 0.0233 44.5 44.9 67.5 49.4 551 85 SB-1 SB-1(80) 06/13/2022 80 ft BGS <0.00104	SB-1	SB-1 (50)		50 ft BGS	<0.00103	0.0449	0.0618	0.424	0.5307	92.1	788	93.9	880	974	33.5
SB-1 SB-1 (80) 06/13/2022 80 ft BGS <0.00104 <0.00104 <0.00208 <0.00208 <0.28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0 <28.0	SB-1	SB-1 (60)	06/13/2022	60 ft BGS	<0.00101	0.00524	0.00504	0.03505	0.04533	28.1	540	70	568	638.1	21.1
SB-2 SB-2(30.52) 04/24/2023 30.58 ft BGS 1.05 6.53 15.3 37.2 89.88 508 1340 636 1,848 2454 SB-2 SB-2(45.00) 04/24/2023 45.50 ft BGS 0.00057 0.00058 0.00077 0.00038 0.00077 0.00034 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00073 0.00074 0.00074 0.00074 0.000164 0.107 15.2 9.05 5.312 14.382 11 SB-4 SB-4(55.00) 04/222023 55.01 ft BGS 0.00073 - 0.000196 0.00154 0.002266 0.102 20.1 23.4 20.30 352.21 43.802 22.820 25 55.51 11 1.868 1.868 0.864/500 0.4/25/2023 24.50 ft BGS 0.000270 0.0014 0.002266 0.102 20.1 23.4 40.200 43.802 1.368 58.852 449 140 80.4 <td< td=""><td>SB-1</td><td>SB-1 (70)</td><td>06/13/2022</td><td>70 ft BGS</td><td>0.00648</td><td>0.142</td><td>0.0693</td><td>0.412</td><td>0.6233</td><td>44.5</td><td>449</td><td>67.5</td><td>494</td><td>561</td><td>8.72</td></td<>	SB-1	SB-1 (70)	06/13/2022	70 ft BGS	0.00648	0.142	0.0693	0.412	0.6233	44.5	449	67.5	494	561	8.72
BB-2 BB-2(45-90) O4/24/2023 45-60 HBGS 0.0047 0.768 1.45 4.62 6.9027 73.4 324 151 397.4 54.44 2 SB-3 SB-4(45-00) O4/24/2023 45-60 HBGS 0.000332 0.000338 0.00155 0.0002735 0.103 2.277 3.38 2.373 5.753 2 SB-4 SB-4(45-00) O4/24/2023 45-00 HSGS 0.000286 0.000161 0.003146 0.107 15.2 3.4 16.307 49.707 3 SB-4 SB-4(45-00) O4/22/023 45-00 HSG 0.000730 - 0.000190 0.00154 0.00226 0.102 2.01 2.34 2.0202 43.802 2.2 SB-5 SB-3(45-60) O4/25/2023 45-80 HSGS 0.00024 0.000144 0.00226 0.102 2.01 2.34 2.020 43.802 2.2 14.6 2.35.16 38.95.16 3.3 SB-6 SB-4(45-50) O4/25/2023 45-80 HSGS 0.00024 0.000241<	SB-1	SB-1 (80)	06/13/2022	80 ft BGS	<0.00104	< 0.00104	<0.00104	<0.00208	<0.00312	<26.0	<26.0	<26.0	<26.0	<26.0	8.97
SB-3 SB-3(45-50) 04/24/2023 45-50 h BGS 0.000320 0.000326 0.000155 0.002735 0.103 2.27 3.38 2.373 5.753 2 SB-4 SB-4(45-0) 04/24/2023 45-50 h BGS 0.000226 0.000161 0.003145 0.107 16.2 3.3.4 16.307 44.707 3.3 SB-4 SB-4(45-0) 04/22/2023 45-50 h BGS 0.000738 - 0.001964 0.001964 0.102 5.21 9.05 5.312 14.362 11 SB-5 SB-5(45-50) 04/22/2023 45-60 h BGS 0.00027 0.00118 0.00041 0.00156 0.002286 0.102 2.01 2.34 2.0202 4.3602 22 4.3602 12 0.477.00 2.77.00 2.74.00 4700 17.720 2.24.80 5.5 1.238 5652 1401 0.472.5023 4.50 h BGS 0.00024 0.00044 0.00156 0.002719 0.516 2.23 146 22.516 3.98.516 3.98 5.532	SB-2	SB-2(30-35)	04/24/2023	30-35 ft BGS	1.05	6.33	15.3	37.2	59.88	508	1340	636	1,848	2484	25.4
SB4 SB-4(18-20) 04/24/2023 18-20 ft BGS 0.000622 0.000285 0.000181 0.001345 0.107 16.2 33.4 16.307 49.707 33 SB-4 SB-4(18-50) 04/24/2023 45-50 ft BGS 0.000286 0.00196 0.00133 0.001944 0.002 5.11 9.05 5.512 14.302 13 SB-5 SB-4(55-50) 04/25/2023 354-0ft BGS 0.00027 0.00118 0.000144 0.002266 0.102 2.0.1 23.4 20.202 43.802 22 SB-6 SB-4(45-50) 04/25/2023 45-50 ft BGS 0.00024 0.000444 0.002266 0.1022 2.0.1 23.4 20.202 43.802 22 43.802 22 43.802 22 43.802 22 43.802 22 43.802 22 43.802 44.804 44.804 44.824 40.804 2.851 63.80 10.7 37.8 55.82 44.90 164.0 80.455.00 10.223.455.01 BGS 0.000278 <	SB-2	SB-2(45-50)	04/24/2023	45-50 ft BGS	0.0647	0.768	1.45	4.62	6.9027	73.4	324	151	397.4	548.4	21.1
SB-4 SB-4(45-50) 04/24/2023 45-50 R BGS 0.00028 0.000196 0.00153 0.001964 0.102 5.21 9.05 5.312 14.362 15 SB-5 SB-5(55-50) 04/25/2023 33-40 R BGS 0.000273 0.00497 0.021 0.0335 9.21 343 203 352.21 555.21 12 SB-6 SB-5(45-50) 04/25/2023 20-28 R BGS 114 108 491 55 12.28 5620 12100 4700 17.720 22.420 55 SB-6 SB-6(45-50) 04/25/2023 28-30 R BGS 0.000240 0.000244 0.00156 0.00278 0.103 127 98.8 127.103 225.903 45 SB-7 SB-7(28-30) 04/25/2023 45-50 R BGS 0.000778 0.000140 0.000140 0.000278 0.103 127 98.8 127.103 225.903 45 SB-8 SB-8(45-50) 04/26/2023 45-50 R BGS 0.000140 0.000244 0.0	SB-3	SB-3(45-50)	04/24/2023	45-50 ft BGS	0.000332	0.000517	0.000336	0.00155	0.002735	0.103	2.27	3.38	2.373	5.753	27.9
SB-5 SB-5(35-40) 04/25/2023 35-0 ft BGS 0.0073 0.00497 0.291 0.3035 9.21 343 203 352.21 555.21 112 SB-5 SB-6(45-50) 04/25/2023 45-50 ft BGS 0.000217 0.00118 0.000401 0.001226 0.102 20.1 23.4 20.202 43.602 22 SB-6 SB-6(20.29) 04/25/2023 45-50 ft BGS 0.000240 0.000446 0.00156 0.002219 0.516 223 146 223.518 369.516 33 SB-7 SB-7(28-30) 04/25/2023 28-30 ft BGS 0.000129 0.0001241 0.00154 0.00278 0.103 127 98.8 127.103 225.903 44 SB-8 SB-8(20-21) 04/25/2023 20-21 ft BGS 0.216 13 18.2 78.4 109.816 1030 22100 9360 23,130 32,490 44 SB-8 SB-8(45.50) 04/26/2023 45.50 ft BGS 0.000514 0.000243 0.00145 <td>SB-4</td> <td>SB-4(18-20)</td> <td>04/24/2023</td> <td>18-20 ft BGS</td> <td>0.000622</td> <td>0.000285</td> <td>0.000628</td> <td>0.00161</td> <td>0.003145</td> <td>0.107</td> <td>16.2</td> <td>33.4</td> <td>16.307</td> <td>49.707</td> <td>34.3</td>	SB-4	SB-4(18-20)	04/24/2023	18-20 ft BGS	0.000622	0.000285	0.000628	0.00161	0.003145	0.107	16.2	33.4	16.307	49.707	34.3
SB-5 SB-5(45-50) 04/25/2023 45-50 hBGS 0.000277 0.000118 0.000401 0.00154 0.002286 0.102 20.1 23.4 20.202 43.602 22 SB-6 SB-6(4550) 04/25/2023 20-28 hBGS 114 108 491 525 11,238 5620 112100 4700 17,720 22,420 55 SB-6 SB-6(4550) 04/25/2023 28-30 hBGS 0.0024 0.000246 0.00154 0.00278 0.516 223 146 223.516 399.516 33 SB-7 SB-7(45-50) 04/25/2023 28-30 hBGS 0.072 6.36 10.7 37.8 55.532 4.49 1640 804 2,089 2,893 54 SB-8 SB-4(25-0) 04/25/2023 45-50 hBGS 0.000741 0.000241 0.00273 0.00154 0.002768 0.103 13.2 14.6 13.303 27.903 33 SB-9 SB-10(45-50) 04/26/2023 45-50 hBGS 0.000247 0.000247 <td>SB-4</td> <td>SB-4(45-50)</td> <td>04/24/2023</td> <td>45-50 ft BGS</td> <td>0.000238</td> <td></td> <td>0.000196</td> <td>0.00153</td> <td>0.001964</td> <td>0.102</td> <td>5.21</td> <td>9.05</td> <td>5.312</td> <td>14.362</td> <td>13.6 J</td>	SB-4	SB-4(45-50)	04/24/2023	45-50 ft BGS	0.000238		0.000196	0.00153	0.001964	0.102	5.21	9.05	5.312	14.362	13.6 J
SB-6 SB-8(2) 04/25/2023 20-28 ft BGS 114 108 491 525 1,238 5620 12100 4700 17,720 22,420 55 SB-6 SB-8(45-50) 04/25/2023 45-50 ft BGS 0.000249 0.000244 0.000264 0.000269 0.516 223 146 23.516 309.516 35 SB-7 SB-7(3-50) 04/25/2023 45-50 ft BGS 0.000178 0.000129 0.000481 0.00154 0.002728 0.103 127 98.8 127.103 225.903 4 SB-8 SB-8(45-50) 04/25/2023 45-50 ft BGS 0.216 13 18.2 78.4 109.816 1030 22100 9360 23.130 324.940 4 SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS 0.00014 0.000233 0.0154 0.00234 0.103 13.2 14.6 13.303 27.903 3 SB-10 SB-10(45-50) 04/26/2023 33.51 ft BGS 0.722 5.94 13.7 <td>SB-5</td> <td>SB-5(35-40)</td> <td>04/25/2023</td> <td>35-40 ft BGS</td> <td>0.00753</td> <td></td> <td>0.00497</td> <td>0.291</td> <td>0.3035</td> <td>9.21</td> <td>343</td> <td>203</td> <td>352.21</td> <td>555.21</td> <td>13.9 J</td>	SB-5	SB-5(35-40)	04/25/2023	35-40 ft BGS	0.00753		0.00497	0.291	0.3035	9.21	343	203	352.21	555.21	13.9 J
SB-6 SB-8(45-50) 04/25/2023 45-50 ft BGS 0.000204 0.000244 0.00156 0.002619 0.516 223 146 223.516 389.516 33 SB-7 SB-7(28-30) 04/25/2023 28-30 ft BGS 0.0072 0.36 10.7 37.8 55.52 449 1640 804 2.089 2.893 54 SB-7 SB-7(45-50) 04/25/2023 28-30 ft BGS 0.000129 0.000481 0.00154 0.002728 0.103 127 98.8 127.103 225.903 44 SB-8 SB-8(45-50) 04/26/2023 20-21 ft BGS 0.216 13 18.2 78.4 199.816 1330 22100 9360 23.130 32.490 44 SB-9 SB-9(45-50) 04/26/2023 45-50 ft BGS 0.00014 0.00233 0.00154 0.002546 0.103 13.2 1.4.6 13.303 27.903 33 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39	SB-5	SB-5(45-50)	04/25/2023	45-50 ft BGS	0.000227	0.000118	0.000401	0.00154	0.002286	0.102	20.1	23.4	20.202	43.602	29.0
SB-7 SB-7(28-30) 04/25/2023 28-30 ft BGS 0.672 6.36 10.7 37.8 55.522 449 1640 804 2.089 2.893 55 SB-7 SB-7(45-50) 04/25/2023 45-50 ft BGS 0.000129 0.000481 0.00154 0.002728 0.103 127 98.8 127.103 225.903 4 SB-8 SB-8(45-00) 04/25/2023 45-50 ft BGS 0.216 13 18.2 78.4 109.816 1030 22100 9360 23,130 32,490 4 SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS 0.0011 0.529 0.924 3.21 4.604 61.6 421 241 482.6 723.6 5 SB-10 SB-10(33-35) 04/26/2023 45-50 ft BGS 0.00054 0.000233 0.00154 0.002546 0.103 13.2 14.6 13.303 27.903 3 SB-10 SB-10(4550) 04/26/2023 33-56 ft BGS 0.0167 1.52 1.39	SB-6	SB-6(20-28)	04/25/2023	20-28 ft BGS	114	108	491	525	1,238	5620	12100	4700	17,720	22,420	51.1
SB-7 SB-7(45-50) 04/25/2023 45-50 ft BGS 0.000129 0.000481 0.00154 0.002728 0.103 127 98.8 127.103 225.903 44 SB-8 SB-8(20-21) 04/26/2023 20-21 ft BGS 0.216 13 18.2 78.4 1098.816 1030 22100 9360 23,130 32,490 44 SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS 0.00259 0.0002514 0.002233 0.0154 0.002246 0.103 13.2 14.6 13.303 27.903 33 SB-10 SB-10(33-35) 04/26/2023 45-50 ft BGS 0.00259 0.000514 0.002239 0.0014 0.002247 10.70 17.7 1020 490 1,217 1,707 7 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.000149 0.000148 0.1013 58.6 41.0 58.03 99.703 58 SB-11 SB-11(23-25) 04/26/2023 45-50 ft BGS 0.000249 0.000148 <td< td=""><td>SB-6</td><td>SB-6(45-50)</td><td>04/25/2023</td><td>45-50 ft BGS</td><td>0.000409</td><td>0.000204</td><td>0.000446</td><td>0.00156</td><td>0.002619</td><td>0.516</td><td>223</td><td>146</td><td>223.516</td><td>369.516</td><td>33.0</td></td<>	SB-6	SB-6(45-50)	04/25/2023	45-50 ft BGS	0.000409	0.000204	0.000446	0.00156	0.002619	0.516	223	146	223.516	369.516	33.0
SB-8 SB-8(20-21) 04/26/2023 20-21 ft BGS 0.216 13 18.2 78.4 109.816 1030 22100 9360 23,130 32,490 44 SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS 0.031 0.529 0.924 3.21 4.694 61.6 421 241 482.6 723.6 55 SB-9 SB-9(45-50) 04/26/2023 45-50 ft BGS 0.000259 0.000233 0.00154 0.002546 0.103 13.2 14.6 13.303 27.903 33 SB-10 SB-10(45-50) 04/26/2023 33-55 ft BGS 0.722 5.94 13.7 34.7 55.062 692 1,140 525 1,832 2,357 2 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39 10 12.9267 197 1020 490 1,217 1,707 7 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000247 0.000478 0.	SB-7	SB-7(28-30)	04/25/2023	28-30 ft BGS	0.672	6.36	10.7	37.8	55.532	449	1640	804	2,089	2,893	54.9
SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS 0.031 0.529 0.924 3.21 4.694 61.6 421 241 482.6 73.8 55 SB-9 SB-9(45-50) 04/26/2023 45-50 ft BGS 0.000259 0.000214 0.000233 0.00154 0.002246 0.103 13.2 14.6 13.303 27.903 33 SB-10 SB-10(33-35) 04/26/2023 45-50 ft BGS 0.0021 1.52 1.39 10 12.9267 197 1020 490 1.217 1.707 7 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0014 0.000247 0.000478 0.00148 0.103 58.6 41.0 58.703 99.703 55 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.00249 0.000247 0.000478 0.00148 0.103 58.6 41.0 58.703 99.703 55 OW-1 OW135 31/3/2024 40-51 ft BGS 0.273 9.95 5.2	SB-7	SB-7(45-50)	04/25/2023	45-50 ft BGS	0.000578	0.000129	0.000481	0.00154	0.002728	0.103	127	98.8	127.103	225.903	47.6
SB-9 SB-9(45-50) 04/26/2023 45-50 ft BGS 0.000259 0.000514 0.000233 0.00154 0.002566 0.103 13.2 14.6 13.303 27.903 33 SB-10 SB-10(33-35) 04/26/2023 33-35 ft BGS 0.722 5.94 13.7 34.7 55.062 692 1,140 525 1,832 2,357 52 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39 10 12.9267 197 1020 490 1,217 1,707 77 SB-11 SB-11(25-25) 04/26/2023 45-50 ft BGS 0.00947 0.000478 0.00148 0.103 58.6 41.0 58.703 99.703 55 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.00924 0.000478 0.0148 0.103 58.6 41.0 58.703 99.703 55 OW-1 OW145 3/13/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073	SB-8	SB-8(20-21)	04/26/2023	20-21 ft BGS	0.216	13	18.2	78.4	109.816	1030	22100	9360	23,130	32,490	402
SB-10 SB-10(33-35) 04/26/2023 33-35 ft BGS 0.722 5.94 13.7 34.7 55.062 692 1.140 525 1.832 2.357 22 SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39 10 12.9267 197 1020 490 1.217 1,707 7 SB-11 SB-11(23-25) 04/26/2023 23-25 ft BGS 19.9 18.1 72.9 89.5 200.4 1,740 1060 468 2,800 3,268 4 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000249 0.000247 0.000478 0.01488 0.103 58.6 41.0 58.703 99.703 55 OW-1 OW135 31/3/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1.219 10 OW-1 OW140 3/13/2024 45-50 ft BGS 0.245 4.75 3.13 19.5 <td>SB-8</td> <td>SB-8(45-50)</td> <td>04/26/2023</td> <td>45-50 ft BGS</td> <td>0.031</td> <td>0.529</td> <td>0.924</td> <td>3.21</td> <td>4.694</td> <td>61.6</td> <td>421</td> <td>241</td> <td>482.6</td> <td>723.6</td> <td>59.1</td>	SB-8	SB-8(45-50)	04/26/2023	45-50 ft BGS	0.031	0.529	0.924	3.21	4.694	61.6	421	241	482.6	723.6	59.1
SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39 10 12.9267 197 1020 490 1,217 1,707 7 SB-11 SB-11(23-25) 04/26/2023 23-25 ft BGS 19.9 18.1 72.9 89.5 200.4 1,740 1060 468 2,800 3,268 4 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000249 0.000514 0.000247 0.000478 0.001488 0.103 58.6 41.0 58.703 99.703 55 0 0 3/13/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073 432 54.4 243 976 1,219 11 1014 11 104 10 10.91 3/13/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073 432 54.4 243 976 1,219 11 10.14 11 10.91 10.91 1.421 0.91 1,410	SB-9	SB-9(45-50)	04/26/2023	45-50 ft BGS	0.000259	0.000514	0.000233	0.00154	0.002546	0.103	13.2	14.6	13.303	27.903	33.0
SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS 0.0167 1.52 1.39 10 12.9267 197 1020 490 1,217 1,707 7 SB-11 SB-11(23-25) 04/26/2023 23-25 ft BGS 19.9 18.1 72.9 89.5 200.4 1,740 1060 468 2,800 3,268 4 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000249 0.000247 0.000478 0.001488 0.103 58.6 41.0 58.703 99.703 55 0W-1 OW135 3/13/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1,219 1 OW-1 OW140 3/13/2024 45-50 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1,219 1 104 1 104 1 104 1 0.00247 0.00047 0.001488 0.103	SB-10	SB-10(33-35)	04/26/2023	33-35 ft BGS	0.722	5.94	13.7	34.7	55.062	692	1,140	525	1.832	2.357	215
SB-11 SB-11(23-25) 04/26/2023 23-25 ft BGS 19.9 18.1 72.9 89.5 200.4 1,740 1060 468 2,800 3,268 44 SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000249 0.000247 0.000478 0.001488 0.103 58.6 41.0 58.703 99.703 55 Observation and Soil Vapor Extraction Well Samples OW-1 OW135 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1.014 1 OW-1 OW140 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1.014 1 OW-1 OW145 3/13/2024 45-50 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2,280 1,430 2,574 4,004 1 OW-2 OW220 3/12/2024 40-45 ft BGS		· · ·	04/26/2023	45-50 ft BGS	0.0167			10		197					74.4
SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS 0.000249 0.000514 0.000247 0.000478 0.001488 0.103 58.6 41.0 58.703 99.703 55.703 OW-1 OW135 3/13/2024 35-40 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1,219 11 OW-1 OW140 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 11 OW-1 OW145 3/13/2024 45-50 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 11 OW-1 OW145 3/13/2024 45-50 ft BGS 0.159 1.42 0.696 4.25 6.525 87.5 1,400 913 1,487.5 2,400.5 11 OW-2 OW225 3/12/2024 23-05 ft BGS 0.587 5.99 2.7 15.1	SB-11	, ,			19.9	18.1		89.5	200.4		1060	468			496
Observation and Soil Vapor Extraction Well Samples OW-1 OW135 3/13/2024 35-40 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1,219 1 OW-1 OW140 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 1 OW-1 OW145 3/13/2024 45-50 ft BGS 0.159 1.42 0.696 4.25 6.525 87.5 1,400 913 1,487.5 2,400.5 1 OW-2 OW225 3/12/2024 25.30 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2,280 1,430 2,574 4,004 1 OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218 312 3,460 2,010 3,772 5,782 1 OW-2 OW240 3/12/2024 36-35 ft BGS 0.2		()													59.8
OW-1 OW135 3/13/2024 35-40 ft BGS 0.723 9.95 5.2 30.2 46.073 432 544 243 976 1,219 1 OW-1 OW140 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 1 OW-1 OW145 3/13/2024 45-50 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 1 OW-1 OW145 3/13/2024 45-50 ft BGS 0.159 1.42 0.696 4.25 6.525 87.5 1,400 913 1,487.5 2,400.5 1 OW-2 OW225 3/12/2024 25-30 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2,280 1,430 2,574 4,004 1 OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218						1									
OW-1 OW140 3/13/2024 40-45 ft BGS 0.245 4.75 3.13 19.5 27.625 307 474 233 781 1,014 1 OW-1 OW145 3/13/2024 45-50 ft BGS 0.159 1.42 0.696 4.25 6.525 87.5 1,400 913 1,487.5 2,400.5 1 OW-2 OW225 3/12/2024 25-30 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2,280 1,430 2,574 4,004 1 OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218 312 3,460 2,010 3,772 5,782 1 OW-2 OW240 3/12/2024 40-45 ft BGS 0.262 5.76 3.69 22.1 31.812 308 417 206 725 931 1 SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63	OW-1	OW135	3/13/2024	35-40 ft BGS	0.723	9.95			-		544	243	976	1,219	NS
OW-2 OW225 3/12/2024 25-30 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2.280 1,430 2,574 4,004 1 OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218 312 3,460 2,010 3,772 5,782 1 OW-2 OW240 3/12/2024 40-45 ft BGS 0.262 5.76 3.69 22.1 31.812 308 417 206 725 931 1 SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63 1,020 2,610 1,210 3,630 4,840 1 SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2,210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 <td>OW-1</td> <td>OW140</td> <td>3/13/2024</td> <td>40-45 ft BGS</td> <td>0.245</td> <td>4.75</td> <td>3.13</td> <td>19.5</td> <td>27.625</td> <td>307</td> <td>474</td> <td>233</td> <td>781</td> <td>1,014</td> <td>NS</td>	OW-1	OW140	3/13/2024	40-45 ft BGS	0.245	4.75	3.13	19.5	27.625	307	474	233	781	1,014	NS
OW-2 OW225 3/12/2024 25-30 ft BGS 0.587 5.99 2.7 15.1 24.377 294 2.280 1,430 2,574 4,004 1 OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218 312 3,460 2,010 3,772 5,782 1 OW-2 OW240 3/12/2024 40-45 ft BGS 0.262 5.76 3.69 22.1 31.812 308 417 206 725 931 1 SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63 1,020 2,610 1,210 3,630 4,840 1 SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2,210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 <td>OW-1</td> <td>OW145</td> <td>3/13/2024</td> <td>45-50 ft BGS</td> <td>0.159</td> <td>1.42</td> <td>0.696</td> <td>4.25</td> <td>6.525</td> <td>87.5</td> <td>1,400</td> <td>913</td> <td>1,487.5</td> <td>2,400.5</td> <td>NS</td>	OW-1	OW145	3/13/2024	45-50 ft BGS	0.159	1.42	0.696	4.25	6.525	87.5	1,400	913	1,487.5	2,400.5	NS
OW-2 OW230 3/12/2024 30-35 ft BGS 0.808 7.44 3.07 17.9 29.218 312 3.460 2.010 3.772 5.782 1 OW-2 OW240 3/12/2024 40-45 ft BGS 0.262 5.76 3.69 22.1 31.812 308 417 206 725 931 1 SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63 1,020 2.610 1,210 3,630 4,840 1 SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2,210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 440 2,320 1,020 2,760 3,780 1 SVE-2 SVE200 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 <td>-</td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>÷</td> <td></td> <td></td> <td></td> <td>NS</td>	-										÷				NS
OW-2 OW240 3/12/2024 40-45 ft BGS 0.262 5.76 3.69 22.1 31.812 308 417 206 725 931 1 SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63 1,020 2,610 1,210 3,630 4,840 1 SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2,210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 440 2,320 1,020 2,760 3,780 1 SVE-2 SVE20 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 606 7,170 4,050 7,776 11,826	-												-		NS
SVE-1 SVE135 3/7/2024 35-35 ft BGS 1.53 34.2 13.1 65.8 114.63 1,020 2,610 1,210 3,630 4,840 1 SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2,210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 440 2,320 1,020 2,760 3,780 1 SVE-2 SVE200 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 606 7,170 4,050 7,776 11,826 1	-				0.262	5.76		22.1		-		1.5			NS
SVE-1 SVE140 3/7/2024 40-40 ft BGS 0.13 4.82 3.48 19.7 28.13 289 2.210 1,040 2,499 3,539 1 SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 440 2,320 1,020 2,760 3,780 1 SVE-2 SVE20 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 606 7,170 4,050 7,776 11,826 1	-												-		NS
SVE-1 SVE145 3/7/2024 45-45 ft BGS 0.221 9.27 5.34 30.2 45.031 440 2,320 1,020 2,760 3,780 1 SVE-2 SVE20 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 606 7,170 4,050 7,776 11,826 1															NS
SVE-2 SVE220 3/13/2024 20-25 ft BGS 2.26 19.2 6.73 36 64.19 606 7,170 4,050 7,776 11,826 1		-				-		-				1.5			NS
						-				-	-				NS
	SVE-2	SVE225	3/13/2024	25-30 ft BGS	1.01	10.2	4.1	23.4	38.51	368	5.110	2,890	5,478	8,368	NS
		-			-	-		-							NS

Notes:

1. Concentrations reported in milligrams per kilogram (mg/kg).

2. NMAC = New Mexico Administrative Code

3. ne = closure criteria not established by NMAC

4. Benzene, toluene, ethylbenzene, total xylenes (BTEX) analyses by EPA Method SW-846 8021B.

5. TPH analyses by EPA Method SW-846 8015 Mod.

6. GRO/DRO/MRO = Gasoline Range Organics/Diesel Range Organics/Motor Oil Range Organics

7. Highlighted/bolded values indicate concentration exceeds the NMAC 19.15.29.12 Table 1 Closure Criteria for the site.

8. NS = Not Sampled

9. BGS = below ground surface

GHD 12632476-NMOCD-1

Q:IGISIPROJECTSI12632000si12632476/IGISiMapsiDeliverables/RPT00112632476_GIS001_Topo.mxd Print date: 25 Mar 2024-17.05 Released to Imaging: 5/10/2024 9:55:33 AM Data source: ESRI Topographic Basemap, Accessed 2024; ESRI Data & Maps 2008 Data Distribution Application (DDA); GHD. USGS 7.5-minute Quadrangle "Woodley Flat, New Mexico" Latl.ong, 32.1815° North, -103.4213° West

76\GIS\Maps\Deliverables\RPT001\12632476_GIS002_ExcavSamp.mxd

PLAINS ALL AMERICAN PIPELINE, L.P. ENDURANCE 6" UPSTREAM JACINTO TIE IN SRS #2021-089 nAPP2129935504 LEA COUNTY, NEW MEXICO

SITE DETAILS MAP

Project No. 12632476 Revision No. Date Apr 16, 2024

FIGURE 2

Released to Imaging: 5/10/2024 9:55:33 AM

Q: \GIS\PROJECTS\12632000s\12632 Print d ate: 16 Apr 2024 - 15:10

Data source: Aerial Image - Google 2024@ Airbus, CNES/Airbus, Maxar Technologies, NMRGIS, USDA/FPAC/GEO Lat/Long: 32.1815° North, -103.4213° West

Attachments

Attachment 1

Laboratory Analytical Reports and Chain-of-Custody Documentation

Received by OCD: 4/25/2024 4:33:03 PM

alytical [®] ANALY I	oril 03, 2024	
Plains All American	n, LP - GHD	
Sample Delivery Group:	L1716147	
Samples Received:	03/16/2024	
Project Number:	12632476	
Description:	Plains Endurance 6" Upstream Jacinto Tie In	
Site:	ENDURANCE 6"	
Report To:	Blair Owen	
	2135 S Loop 250 W	
	Midland, TX 79703	

Entire Report Reviewed By:

Drittine Boyd

Brittnie L Boyd Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Released to Imaging: 5/10/2024 9:55:33 AM Plains All American, LP - GHD PROJECT: 12632476

SDG: L1716147

DATE/TIME: 04/03/24 16:12

PAGE: 1 of 29

Page 1	13 o	f 76
0	0	

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	5
Sr: Sample Results	6
12632476-030724-CG-SVE135 L1716147-01	6
12632476-030724-CG-SVE140 L1716147-02	7
12632476-030724-CG-SVE145 L1716147-03	8
12632476-031224-CG-OW225 L1716147-04	9
12632476-031224-CG-OW230 L1716147-05	10
12632476-031224-CG-OW240 L1716147-06	11
12632476-031324-CG-OW135 L1716147-07	12
12632476-031324-CG-OW140 L1716147-08	13
12632476-031324-CG-OW145 L1716147-09	14
12632476-031324-CG-SVE220 L1716147-10	15
12632476-031324-CG-SVE225 L1716147-11	16
12632476-031324-CG-SVE230 L1716147-12	17
Qc: Quality Control Summary	18
Total Solids by Method 2540 G-2011	18
Volatile Organic Compounds (GC) by Method 8015/8021	20
Semi-Volatile Organic Compounds (GC) by Method 8015M	21
GI: Glossary of Terms	26
Al: Accreditations & Locations	27
Sc: Sample Chain of Custody	28

Ср

SDG: L1716147

DATE/TIME: 04/03/24 16:12

PAGE: 2 of 29 Received by OCD: 4/25/2024 4:33:03 PM

SAMPLE SUMMARY

Page 14 of 76

Ср

Тс

Ss

Cn

Sr

Qc

GI

Â

Sc

SA	WPLE :					1 4
12632476-030724-CG-SVE135 L1716147-01 Solid			Collected by Liam Giersdorf	Collected date/time 03/07/24 11:50	Received dat 03/16/24 09:	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/19/24 20:29	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249186	50	03/20/24 08:45	03/20/24 18:34	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
12632476-030724-CG-SVE140 L1716147-02 Solid			Liam Giersdorf	03/07/24 12:05	03/16/24 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	100	03/18/24 14:29	03/19/24 20:52	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249186	25	03/20/24 08:45	03/20/24 18:22	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
12632476-030724-CG-SVE145 L1716147-03 Solid			Liam Giersdorf	03/07/24 13:00	03/16/24 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/19/24 21:15	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249186	50	03/20/24 08:45	03/20/24 18:34	JAS	Mt. Juliet, TN
12632476-031224-CG-OW225 L1716147-04 Solid			Collected by Liam Giersdorf	Collected date/time 03/12/24 09:52	Received da: 03/16/24 09:	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/19/24 22:00	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249970	25	03/20/24 06:28	03/20/24 17:53	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	te/time
12632476-031224-CG-OW230 L1716147-05 Solid			Liam Giersdorf	03/12/24 10:00	03/16/24 09:	30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/19/24 22:23	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249970	20	03/20/24 06:28	03/20/24 17:40	JAS	Mt. Juliet, TN
			Collected by Liam Giersdorf	Collected date/time 03/12/24 10:23	Received dat 03/16/24 09:	
12632476-031224-CG-OW240 L1716147-06 Solid	Datch	Dilution				
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	100	03/18/24 14:29	03/19/24 23:09	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2249970	10	03/20/24 06:28	03/21/24 09:08	JAS	Mt. Juliet, TN

PROJECT: 12632476

SDG: L1716147 DATE/TIME: 04/03/24 16:12

PAGE: 3 of 29 Received by OCD: 4/25/2024 4:33:03 PM

SAMPLE SUMMARY

Page 15 of 76

Ср

Tc

Ss

Cn

Sr

Qc

GI

Â

Sc

12632476-031324-CG-OW135 L1716147-07 Solid			Collected by Liam Giersdorf	Collected date/time 03/13/24 09:52	Received da 03/16/24 09:	
	D + 1	Dil vi		A 1 -		
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	СМВ	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2248709 WG2249627	200	03/18/24 13:52	03/19/24 23:32	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8013/8021	WG2249027 WG2252153	5	03/22/24 16:25	03/23/24 04:03	JAS	Mt. Juliet, Th Mt. Juliet, Th
con-volutic organic compounds (oc) by method obism	W02232133	5	03/22/24 10.23	03/23/24 04.03	343	Wit. Juliet, H
			Collected by	Collected date/time	Received da	te/time
12632476-031324-CG-OW140 L1716147-08 Solid			Liam Giersdorf	03/13/24 10:00	03/16/24 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/19/24 23:55	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2250872	5	03/21/24 09:48	03/21/24 17:05	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
12632476-031324-CG-OW145 L1716147-09 Solid			Liam Giersdorf	03/13/24 10:19	03/16/24 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	100	03/18/24 14:29	03/20/24 00:18	DWR	Mt. Juliet, TN
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2250872	20	03/21/24 09:48	03/21/24 17:18	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
12632476-031324-CG-SVE220 L1716147-10 Solid			Liam Giersdorf	03/13/24 16:50	03/16/24 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	11/000 40700		date/time	date/time	CHIP	N41 1 11 1 T
Total Solids by Method 2540 G-2011	WG2248769	1	03/18/24 13:52	03/18/24 13:58	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	500	03/18/24 14:29	03/20/24 00:41	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2250872	50	03/21/24 09:48	03/21/24 17:43	JAS	Mt. Juliet, TI
			Collected by	Collected date/time	Received da	te/time
12632476-031324-CG-SVE225 L1716147-11 Solid			Liam Giersdorf	03/13/24 16:58	03/16/24 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
	W0000 10775		date/time	date/time	0.15	
Total Solids by Method 2540 G-2011	WG2248772	1	03/18/24 12:59	03/18/24 13:06	CMB	Mt. Juliet, Th
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/20/24 01:04	DWR	Mt. Juliet, T
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2250872	50	03/21/24 09:48	03/21/24 17:31	JAS	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
12632476-031324-CG-SVE230 L1716147-12 Solid			Liam Giersdorf	03/13/24 17:05	03/16/24 09:	30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Total Solids by Method 2540 G-2011	WG2248772	1	03/18/24 12:59	03/18/24 13:06	CMB	Mt. Juliet, TN
Volatile Organic Compounds (GC) by Method 8015/8021	WG2249627	200	03/18/24 14:29	03/20/24 01:28	DWR	Mt. Juliet, TI
Semi-Volatile Organic Compounds (GC) by Method 8015M	WG2251689	50	03/22/24 08:15	03/22/24 18:18	KKS	Mt. Juliet, TN

PROJECT: 12632476

SDG: L1716147 DATE/TIME: 04/03/24 16:12

PAGE: 4 of 29

CASE NARRATIVE

Drittine Boyd

Brittnie L Boyd Project Manager

Page 16 of 76

SDG: L1716147 DATE/TIME:

PAGE: 5 of 29

SAMPLE RESULTS - 01 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		r	2
Total Solids	92.2		1	03/18/2024 13:58	WG2248769		Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Compounds (GC) by Method 8015/8021								
	Result	Qualifier	RDL	Dilution	Analysis	Batch		
Analyte	mg/kg		mg/kg		date / time		4	
Benzene	1.53		0.100	200	03/19/2024 20:29	WG2249627		
Toluene	34.2		1.00	200	03/19/2024 20:29	WG2249627	5	
Ethylbenzene	13.1		0.100	200	03/19/2024 20:29	WG2249627	5	
Total Xylene	65.8		0.300	200	03/19/2024 20:29	WG2249627		
TPH (GC/FID) Low Fraction	1020		20.0	200	03/19/2024 20:29	WG2249627	6	
(S) a,a,a-Trifluorotoluene(FID)	82.0		77.0-120		03/19/2024 20:29	WG2249627		
(S) a,a,a-Trifluorotoluene(PID)	94.9		72.0-128		03/19/2024 20:29	WG2249627	7	

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	2610		200	50	03/20/2024 18:34	WG2249186	
C28-C36 Motor Oil Range	1210		200	50	03/20/2024 18:34	WG2249186	
(S) o-Terphenyl	150	<u>J7</u>	18.0-148		03/20/2024 18:34	WG2249186	

SAMPLE RESULTS - 02

°C c

0

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	- Ср	1
Analyte	%			date / time		2	5
Total Solids	94.2		1	03/18/2024 13:58	WG2248769	Tc	

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	l
nalyte	mg/kg		mg/kg		date / time		
enzene	0.130		0.0500	100	03/19/2024 20:52	WG2249627	
oluene	4.82		0.500	100	03/19/2024 20:52	WG2249627	
thylbenzene	3.48		0.0500	100	03/19/2024 20:52	WG2249627	
otal Xylene	19.7		0.150	100	03/19/2024 20:52	WG2249627	
PH (GC/FID) Low Fraction	289		10.0	100	03/19/2024 20:52	WG2249627	
(S) a,a,a-Trifluorotoluene(FID)	79.7		77.0-120		03/19/2024 20:52	WG2249627	
(S) a,a,a-Trifluorotoluene(PID)	95.7		72.0-128		03/19/2024 20:52	WG2249627	

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	ĬAĬ
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	2210		100	25	03/20/2024 18:22	WG2249186	⁹ Sc
C28-C36 Motor Oil Range	1040		100	25	03/20/2024 18:22	WG2249186	50
(S) o-Terphenyl	148	<u>J7</u>	18.0-148		03/20/2024 18:22	WG2249186	

SDG: L1716147

SAMPLE RESULTS - 03

Total Solids by Method 2540 G-2011 Result Qualifier Dilution Analysis Batch Analyte % date / time Тс **Total Solids** 95.2 1 03/18/2024 13:58 WG2248769 Volatile Organic Compounds (GC) by Method 8015/8021 Ss Result Qualifier RDL Dilution Analysis Batch mg/kg Analyte mg/kg date / time Cn Benzene 0.221 0.100 200 03/19/2024 21:15 WG2249627 WG2249627 Toluene 9.27 1.00 200 03/19/2024 21:15 Ethylbenzene 5.34 0.100 200 03/19/2024 21:15 WG2249627 Total Xylene 30.2 0.300 03/19/2024 21:15 WG2249627 200 TPH (GC/FID) Low Fraction 440 03/19/2024 21:15 WG2249627 20.0 200 Qc WG2249627 (S) a,a,a-Trifluorotoluene(FID) 81.8 77.0-120 03/19/2024 21:15 (S) a,a,a-Trifluorotoluene(PID) 96.9 72.0-128 WG2249627 03/19/2024 21:15 Gl Semi-Volatile Organic Compounds (GC) by Method 8015M RDL AI Result Qualifier Dilution Analysis Batch Analyte mg/kg date / time mg/kg 2320 50 03/20/2024 18:34 WG2249186 C10-C28 Diesel Range 200 Sc WG2249186 C28-C36 Motor Oil Range 1020 200 50 03/20/2024 18:34 WG2249186 (S) o-Terphenyl 0.000 <u>J7</u> 18.0-148 03/20/2024 18:34

PROJECT: 12632476

SDG: L1716147 DATE/TIME: 04/03/24 16:12

PAGE: 8 of 29

SAMPLE RESULTS - 04 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	93.2		1	03/18/2024 13:58	WG2248769	Тс

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.587		0.100	200	03/19/2024 22:00	WG2249627
oluene	5.99		1.00	200	03/19/2024 22:00	WG2249627
Ethylbenzene	2.70		0.100	200	03/19/2024 22:00	WG2249627
otal Xylene	15.1		0.300	200	03/19/2024 22:00	WG2249627
PH (GC/FID) Low Fraction	294		20.0	200	03/19/2024 22:00	WG2249627
(S) a,a,a-Trifluorotoluene(FID)	81.7		77.0-120		03/19/2024 22:00	WG2249627
(S) a,a,a-Trifluorotoluene(PID)	96.4		72.0-128		03/19/2024 22:00	WG2249627

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Ĩ ĂI
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	2280		100	25	03/20/2024 17:53	WG2249970	9 50
C28-C36 Motor Oil Range	1430		100	25	03/20/2024 17:53	WG2249970	50
(S) o-Terphenyl	208	<u>J7</u>	18.0-148		03/20/2024 17:53	WG2249970	

SDG: L1716147

SAMPLE RESULTS - 05

، م

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср
Analyte	%			date / time		2
Total Solids	95.0		1	03/18/2024 13:58	WG2248769	Тс

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg		date / time		4
Benzene	0.808		0.100	200	03/19/2024 22:23	WG2249627	
Toluene	7.44		1.00	200	03/19/2024 22:23	WG2249627	
Ethylbenzene	3.07		0.100	200	03/19/2024 22:23	WG2249627	
Total Xylene	17.9		0.300	200	03/19/2024 22:23	WG2249627	
TPH (GC/FID) Low Fraction	312		20.0	200	03/19/2024 22:23	WG2249627	
(S) a,a,a-Trifluorotoluene(FID)	81.8		77.0-120		03/19/2024 22:23	WG2249627	
(S) a,a,a-Trifluorotoluene(PID)	96.9		72.0-128		03/19/2024 22:23	WG2249627	7

Semi-Volatile Organic Compounds $\,$ (GC) by Method 8015M $\,$

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	3460		80.0	20	03/20/2024 17:40	WG2249970	
C28-C36 Motor Oil Range	2010		80.0	20	03/20/2024 17:40	WG2249970	
(S) o-Terphenyl	291	<u>J7</u>	18.0-148		03/20/2024 17:40	WG2249970	

SAMPLE RESULTS - 06

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср	
Analyte	%			date / time		2	ī
Total Solids	96.3		1	03/18/2024 13:58	WG2248769	Tc	

Volatile Organic Compounds (GC) by Method 8015/8021

nzene 0.262 0.0500 100 03/19/2024 23:09 WG2249627 uene 5.76 0.500 100 03/19/2024 23:09 WG2249627 ylbenzene 3.69 0.0500 100 03/19/2024 23:09 WG2249627 al Xylene 22.1 0.150 100 03/19/2024 23:09 WG2249627 H (GC/FID) Low Fraction 308 10.0 100 03/19/2024 23:09 WG2249627 S) a, a, a-Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627		Result	Qualifier	RDL	Dilution	Analysis	Batch
uene 5.76 0.500 100 03/19/2024 23:09 WG2249627 ylbenzene 3.69 0.0500 100 03/19/2024 23:09 WG2249627 xal Xylene 22.1 0.150 100 03/19/2024 23:09 WG2249627 H (GC/FID) Low Fraction 308 10.0 100 03/19/2024 23:09 WG2249627 S) a, a, a-Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627	alyte	mg/kg		mg/kg		date / time	
ylbenzene 3.69 0.0500 100 03/19/2024 23:09 WG2249627 val Xylene 22.1 0.150 100 03/19/2024 23:09 WG2249627 H (GC/FID) Low Fraction 308 10.0 100 03/19/2024 23:09 WG2249627 S) a, a, a-Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627	enzene	0.262		0.0500	100	03/19/2024 23:09	WG2249627
Jal Xylene 22.1 0.150 100 03/19/2024 23:09 WG2249627 H (GC/FID) Low Fraction 308 10.0 100 03/19/2024 23:09 WG2249627 S) a,a,a-Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627	luene	5.76		0.500	100	03/19/2024 23:09	WG2249627
H (GC/FID) Low Fraction 308 10.0 100 03/19/2024 23:09 WG2249627 S) a,a,a-Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627	hylbenzene	3.69		0.0500	100	03/19/2024 23:09	WG2249627
S) a, a, a - Trifluorotoluene(FID) 81.0 77.0-120 03/19/2024 23:09 WG2249627	tal Xylene	22.1		0.150	100	03/19/2024 23:09	WG2249627
	PH (GC/FID) Low Fraction	308		10.0	100	03/19/2024 23:09	WG2249627
S) a a a Trifluorataluena/PID) 96.4 72.0.128 03/19/2024.23:09 WG2249627	(S) a,a,a-Trifluorotoluene(FID)	81.0		77.0-120		03/19/2024 23:09	WG2249627
Ju,u,u-millorotototototototototototototototototot	(S) a,a,a-Trifluorotoluene(PID)	96.4		72.0-128		03/19/2024 23:09	WG2249627
	emi-Volatile Organic	Compound	ds (GC) by	Method	8015M		

ΆI Analysis Batch Result Qualifier RDL Dilution Analyte mg/kg date / time mg/kg C10-C28 Diesel Range 417 40.0 10 03/21/2024 09:08 WG2249970 Sc WG2249970 40.0 C28-C36 Motor Oil Range 206 10 03/21/2024 09:08 20.5 18.0-148 03/21/2024 09:08 WG2249970 (S) o-Terphenyl

SDG: L1716147

SAMPLE RESULTS - 07 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	74.8		1	03/18/2024 13:58	WG2248769	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.723		0.100	200	03/19/2024 23:32	WG2249627
Toluene	9.95		1.00	200	03/19/2024 23:32	WG2249627
Ethylbenzene	5.20		0.100	200	03/19/2024 23:32	WG2249627
Total Xylene	30.2		0.300	200	03/19/2024 23:32	WG2249627
TPH (GC/FID) Low Fraction	432		20.0	200	03/19/2024 23:32	WG2249627
(S) a,a,a-Trifluorotoluene(FID)	80.7		77.0-120		03/19/2024 23:32	WG2249627
(S) a,a,a-Trifluorotoluene(PID)	96.0		72.0-128		03/19/2024 23:32	WG2249627

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
C10-C28 Diesel Range	544		20.0	5	03/23/2024 04:03	WG2252153	g
C28-C36 Motor Oil Range	243		20.0	5	03/23/2024 04:03	WG2252153	
(S) o-Terphenyl	20.6		18.0-148		03/23/2024 04:03	WG2252153	

SDG: L1716147

Regized 47 8 CP3 1/32/4024 (3:33 M3 RM Collected date/time: 03/13/24 10:00

SAMPLE RESULTS - 08

Page 24 of 76

Тс

Ss

Cn

Qc

GI

	Result	Qualifier	Dilution	Analysis	Batch	
Analyte	%			date / time		
Total Solids	71.6		1	03/18/2024 13:5	8 WG224876	9
Volatile Organic Comp	ounds (GC	C) by Metho	od 8015,	/8021		
	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.245		0.100	200	03/19/2024 23:55	WG2249627
	4.75		1.00	200	03/19/2024 23:55	WG2249627
loluene			0.100	200	03/19/2024 23:55	WG2249627
	3.13					
Ethylbenzene	3.13 19.5		0.300	200	03/19/2024 23:55	WG2249627
Ethylbenzene Total Xylene				200 200	03/19/2024 23:55 03/19/2024 23:55	WG2249627 WG2249627
Toluene Ethylbenzene Total Xylene TPH (GC/FID) Low Fraction (S) a,a,a-Trifluorotoluene(FID)	19.5		0.300			

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	- °A
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	474		20.0	5	03/21/2024 17:05	WG2250872	9
C28-C36 Motor Oil Range	233		20.0	5	03/21/2024 17:05	WG2250872	
(S) o-Terphenyl	92.4		18.0-148		03/21/2024 17:05	WG2250872	

SDG: L1716147

SAMPLE RESULTS - 09 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch		Ср
Analyte	%			date / time		[2
Total Solids	95.8		1	03/18/2024 13:58	WG2248769		Tc

Volatile Organic Compounds (GC) by Method 8015/8021

	Result	Qualifier	RDL	Dilution	Analysis	Batch
Analyte	mg/kg		mg/kg		date / time	
Benzene	0.159		0.0500	100	03/20/2024 00:18	WG2249627
Toluene	1.42		0.500	100	03/20/2024 00:18	WG2249627
Ethylbenzene	0.696		0.0500	100	03/20/2024 00:18	WG2249627
Total Xylene	4.25		0.150	100	03/20/2024 00:18	WG2249627
TPH (GC/FID) Low Fraction	87.5		10.0	100	03/20/2024 00:18	WG2249627
(S) a,a,a-Trifluorotoluene(FID)	84.6		77.0-120		03/20/2024 00:18	WG2249627
(S) a,a,a-Trifluorotoluene(PID)	96.3		72.0-128		03/20/2024 00:18	WG2249627

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	Å
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	1400		80.0	20	03/21/2024 17:18	WG2250872	9 S C
C28-C36 Motor Oil Range	913		80.0	20	03/21/2024 17:18	WG2250872	
(S) o-Terphenyl	169	<u>J7</u>	18.0-148		03/21/2024 17:18	WG2250872	

SDG: L1716147

SAMPLE RESULTS - 10 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср
Analyte	%			date / time		2
Total Solids	91.6		1	03/18/2024 13:58	WG2248769	Tc

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Comp	pounds (GC	C) by Meth	od 8015/8	3021			³ Ss
	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		4 C
Benzene	2.26		0.250	500	03/20/2024 00:41	WG2249627	
Toluene	19.2		2.50	500	03/20/2024 00:41	WG2249627	5
Ethylbenzene	6.73		0.250	500	03/20/2024 00:41	WG2249627	⁵ Sr
Total Xylene	36.0		0.750	500	03/20/2024 00:41	WG2249627	
TPH (GC/FID) Low Fraction	606		50.0	500	03/20/2024 00:41	WG2249627	⁶ Q
(S) a,a,a-Trifluorotoluene(FID)	86.5		77.0-120		03/20/2024 00:41	WG2249627	Q
(S) a,a,a-Trifluorotoluene(PID)	96.8		72.0-128		03/20/2024 00:41	WG2249627	⁷ G

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
C10-C28 Diesel Range	7170		200	50	03/21/2024 17:43	WG2250872	9
C28-C36 Motor Oil Range	4050		200	50	03/21/2024 17:43	WG2250872	
(S) o-Terphenyl	541	<u>J7</u>	18.0-148		03/21/2024 17:43	WG2250872	

SDG: L1716147

SAMPLE RESULTS - 11 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	Ср	
Analyte	%			date / time		2	i
Total Solids	91.3		1	03/18/2024 13:06	<u>WG2248772</u>	Tc	l

Volatile Organic Compounds (GC) by Method 8015/8021

Toluene 10.0 1.00 200 03/20/2024 01:04 WG22496	te mg/
Toluene 10.0 1.00 200 03/20/2024 01:04 WG22496	
	ene 1.01
Ethylbenzene 4.10 0.100 200 03/20/2024 01:04 WG22496	ne 10.0
	enzene 4.10
Total Xylene 23.4 0.300 200 03/20/2024 01:04 WG22496	Xylene 23.4
TPH (GC/FID) Low Fraction 368 20.0 200 03/20/2024 01:04 WG22496	GC/FID) Low Fraction 368
(S) a,a,a-Trifluorotoluene(FID) 81.3 77.0-120 03/20/2024 01:04 WG22496	a,a,a-Trifluorotoluene(FID) 81.3
(S) a,a,a-Trifluorotoluene(PID) 97.9 72.0-128 03/20/2024 01:04 WG22496	a,a,a-Trifluorotoluene(PID) 97.9

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		L
C10-C28 Diesel Range	5110		200	50	03/21/2024 17:31	WG2250872	
C28-C36 Motor Oil Range	2890		200	50	03/21/2024 17:31	WG2250872	
(S) o-Terphenyl	417	<u>J7</u>	18.0-148		03/21/2024 17:31	WG2250872	

SDG: L1716147

SAMPLE RESULTS - 12 L1716147

Total Solids by Method 2540 G-2011

	Result	Qualifier	Dilution	Analysis	Batch	 Ср	
Analyte	%			date / time		2	i
Total Solids	92.9		1	03/18/2024 13:06	WG2248772	Tc	

Volatile Organic Compounds (GC) by Method 8015/8021

Volatile Organic Comp	pounds (GC	C) by Meth	od 8015/8	021			3
	Result	Qualifier	RDL	Dilution	Analysis	Batch	L
Analyte	mg/kg		mg/kg		date / time		4
Benzene	2.19		0.100	200	03/20/2024 01:28	WG2249627	
Toluene	11.7		1.00	200	03/20/2024 01:28	WG2249627	5
Ethylbenzene	3.95		0.100	200	03/20/2024 01:28	WG2249627	5
Total Xylene	22.1		0.300	200	03/20/2024 01:28	WG2249627	
TPH (GC/FID) Low Fraction	448		20.0	200	03/20/2024 01:28	WG2249627	6
(S) a,a,a-Trifluorotoluene(FID)	85.5		77.0-120		03/20/2024 01:28	WG2249627	
(S) a,a,a-Trifluorotoluene(PID)	95.2		72.0-128		03/20/2024 01:28	WG2249627	7

Semi-Volatile Organic Compounds (GC) by Method 8015M

	Result	Qualifier	RDL	Dilution	Analysis	Batch	
Analyte	mg/kg		mg/kg		date / time		
C10-C28 Diesel Range	3680		200	50	03/22/2024 18:18	WG2251689	
C28-C36 Motor Oil Range	1810		200	50	03/22/2024 18:18	WG2251689	
(S) o-Terphenyl	0.000	<u>J7</u>	18.0-148		03/22/2024 18:18	WG2251689	

SDG: L1716147

Res 0 21 2 1 2 25/2024 4:33:03 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1716147-01,02,03,04,05,06,07,08,09,10

Page 29 of 76

Qc

GI

Â

Sc

Method Blank (MB)

(MB) R4047160-1 ()2/10/24 12·E0				 - C
(IVIB) R4047160-1 (MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	%	ind qualifier	%	%	² T
Total Solids	0.00400				- L
					3

L1716147-03 Original Sample (OS) • Duplicate (DUP)

L1/1614/-03 Origi	inal Sample	(OS) • Dup	licate (L	OUP)		4
(OS) L1716147-03 03/18	/24 13:58 • (DUP)	R4047160-3	03/18/24 13	3:58		
	Original Resul	t DUP Result	Dilution	DUP RPD <u>DUP Qua</u>	fier DUP RPD Limits	⁵ Sr
Analyte	%	%		%	%	51
Total Solids	95.2	95.2	1	0.0374	10	6

Laboratory Control Sample (LCS)

(LCS) R4047160-2 03/18	8/24 13:58				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.8	90.0-110	

Res civel 21/2027 25/2024 4:33:03 PM

Total Solids by Method 2540 G-2011

QUALITY CONTROL SUMMARY L1716147-11,12

Page 30 of 76

GI

Â

Sc

Method Blank (MB)

					1	lc
(MB) R4047148-1 03/	3/18/24 13:06					
	MB Result	MB Qualifier	MB MDL	MB RDL	Γ	2
Analyte	%		%	%		T
Total Solids	0.00400					-
						3
						,

L1716092-02 Original Sample (OS) • Duplicate (DUP)

Original Result DUP Result Dilution DUP RPD <u>DUP Qualifier</u> DUP RPD Limits
nalyte % % % % %

Laboratory Control Sample (LCS)

(LCS) R4047148-2 03/1	18/24 13:06				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	%	%	%	%	
Total Solids	50.0	49.9	99.9	90.0-110	

DATE/TIME: 04/03/24 16:12

PAGE: 19 of 29

QUALITY CONTROL SUMMARY 1716147-01.02.03.04.05.06.07.08.09.10.11.12

Method Blank (MB)

(MB) R4047817-4 03/19/2	24 17:38			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/kg		mg/kg	mg/kg
Benzene	U		0.00300	0.0125
Toluene	0.00386	J	0.00375	0.125
Ethylbenzene	U		0.00275	0.0125
Total Xylene	U		0.0115	0.0375
TPH (GC/FID) Low Fraction	1.78	J	0.543	2.50
(S) a,a,a-Trifluorotoluene(FID)	87.1			77.0-120
(S) a,a,a-Trifluorotoluene(PID)	97.2			72.0-128

Laboratory Control Sample (LCS)

(LCS) R4047817-1 03/19/2	4 15:03				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
Benzene	0.0500	0.0453	90.6	76.0-121	
Toluene	0.0500	0.0433	86.6	80.0-120	
Ethylbenzene	0.0500	0.0448	89.6	80.0-124	
Total Xylene	0.150	0.133	88.7	37.0-160	
(S) a,a,a-Trifluorotoluene(FID)			88.6	77.0-120	
(S) a,a,a-Trifluorotoluene(PID)			97.8	72.0-128	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R4047817-2 03/19/	'24 16:06 • (LCSI	D) R4047817-3	3 03/19/24 16:2	9							
	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/kg	mg/kg	mg/kg	%	%	%			%	%	
TPH (GC/FID) Low Fraction	5.00	4.74	5.04	94.8	101	72.0-127			6.13	20	
(S) a,a,a-Trifluorotoluene(FID)				93.2	96.5	77.0-120					
(S) a,a,a-Trifluorotoluene(PID)				105	106	72.0-128					

SDG: L1716147 DATE/TIME: 04/03/24 16:12 Τс

Ss

Cn

Sr

Qc

GI

Â

Sc

QUALITY CONTROL SUMMARY

Method Blank (MB)

(MB) R4048157-1 03/20/2	24 16:06				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	77.3			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R4048157-2 03/2	0/24 16:19					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier	
Analyte	mg/kg	mg/kg	%	%		
C10-C28 Diesel Range	50.0	34.3	68.6	50.0-150		
(S) o-Terphenyl			76.1	18.0-148		

L1716092-07 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1716092-07 03/20/	/24 17:20 • (MS)	R4048157-3 03	3/20/24 17:33	• (MSD) R4048	157-4 03/20/	24 17:45							L	
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	Г	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%		S
C10-C28 Diesel Range	47.1	ND	31.7	28.9	67.3	61.0	1	50.0-150			9.24	20	L	_
(S) o-Terphenyl					48.6	47.3		18.0-148						

DATE/TIME: 04/03/24 16:12

PAGE: 21 of 29 ²Tc ³Ss ⁴Cn ⁵Sr ⁶Qc ⁷Gl ⁸Al ⁹Sc

QUALITY CONTROL SUMMARY L1716147-04,05,06

Method Blank (MB)

Method Blank (MB	(د				1
(MB) R4047949-1 03/20/	/24 12:47				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	T
C10-C28 Diesel Range	U		1.61	4.00	_
C28-C36 Motor Oil Range	U		0.274	4.00	³ S
(S) o-Terphenyl	50.0			18.0-148	Ľ

Laboratory Control Sample (LCS)

(LCS) R4047949-2 03/2	20/24 12:59				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	33.6	67.2	50.0-150	
(S) o-Terphenyl			61.0	18.0-148	

L1716631-10 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

L1/16631-10 Origi	nai Sample (OS) • Matrix	spike (ivi	S) • Matrix	Spike Dup	plicate (IVISI	D)						⁸ AI
(OS) L1716631-10 03/20)/24 14:16 • (MS) R	4047949-3 03	/20/24 14:29	• (MSD) R40479	949-4 03/20/2	24 14:42							<i>,</i>
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
C10-C28 Diesel Range	49.0	28.7	52.4	53.5	48.4	49.9	1	50.0-150	<u>J6</u>	<u>J6</u>	2.08	20	

Sample Narrative:

OS: Sample resembles laboratory standard for Diesel.

SDG: L1716147

DATE/TIME: 04/03/24 16:12 Cn

QUALITY CONTROL SUMMARY L1716147-08,09,10,11

Method Blank (MB)

Method Blank (ME	3)					1	
(MB) R4048504-1 03/21/24 15:07							
	MB Result	MB Qualifier	MB MDL	MB RDL		2	
Analyte	mg/kg		mg/kg	mg/kg			
C10-C28 Diesel Range	U		1.61	4.00			
C28-C36 Motor Oil Range	U		0.274	4.00		3	
(S) o-Terphenyl	58.7			18.0-148			

Laboratory Control Sample (LCS)

(LCS) R4048504-2 03/2	21/24 15:19						
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier		
Analyte	mg/kg	mg/kg	%	%			
C10-C28 Diesel Range	50.0	44.1	88.2	50.0-150			
(S) o-Terphenyl			70.0	18.0-148			

L1717155-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1717155-01 03/21/2	24 15:36 • (MS) R4	4048504-3 03	/21/24 15:49 •	(MSD) R40485	04-4 03/21/2	4 16:01							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	9
Analyte	mg/kg	mg/kg	mg/kg	mg/kg	%	%		%			%	%	Sc
C10-C28 Diesel Range	48.0	ND	38.9	41.5	76.1	81.2	1	50.0-150			6.47	20	
(S) o-Terphenyl					54.8	56.7		18.0-148					

DATE/TIME: 04/03/24 16:12

PAGE: 23 of 29

īc Ss Cn Sr GI A

QUALITY CONTROL SUMMARY

Page 35 of 76

Method Blank (MB)

(MB) R4049027-1 03/22	/24 16:28				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/kg		mg/kg	mg/kg	
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	
(S) o-Terphenyl	91.9			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R4049027-2 03/2	2/24 16:40				
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	40.8	81.6	50.0-150	
(S) o-Terphenyl			89.9	18.0-148	

DATE/TIME: 04/03/24 16:12

PAGE: 24 of 29

QUALITY CONTROL SUMMARY L1716147-07

Page 36 of 76

⁺Cn

۶r

GI

Â

Sc

Method Blank (MB)

Method Blank (MB	(ک				
(MB) R4049098-1 03/22/2	./24 23:55				
	MB Result	MB Qualifier	MB MDL	MB RDL	2
Analyte	mg/kg		mg/kg	mg/kg	Тс
C10-C28 Diesel Range	U		1.61	4.00	
C28-C36 Motor Oil Range	U		0.274	4.00	³ Ss
(S) o-Terphenyl	43.4			18.0-148	

Laboratory Control Sample (LCS)

(LCS) R4049098-2 03/23/24 00:08					
	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/kg	mg/kg	%	%	
C10-C28 Diesel Range	50.0	26.3	52.6	50.0-150	
(S) o-Terphenyl			43.7	18.0-148	
GLOSSARY OF TERMS

Τс

Ss

Cn

Sr

Qc

GI

AI

Sc

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
ND	Not detected at the Reporting Limit (or MDL where applicable).
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier	Description
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.
J7	Surrogate recovery cannot be used for control limit evaluation due to dilution.

PROJECT: 12632476

SDG: L1716147

Received by OCD: 4/25/2024 4:33:03 PM CCREDITATIONS & LOCATIONS

	Page	38	of	76
--	------	----	----	----

Τс

Ss

Cn

Sr

Qc

Gl

AI

Sc

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
lorida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
daho	TN00003	Ohio-VAP	CL0069
llinois	200008	Oklahoma	9915
ndiana	C-TN-01	Oregon	TN200002
owa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky ¹⁶	KY90010	South Carolina	84004002
Centucky ²	16	South Dakota	n/a
ouisiana	Al30792	Tennessee ¹⁴	2006
ouisiana	LA018	Texas	T104704245-20-18
laine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
/lichigan	9958	Virginia	110033
linnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Aissouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234
PA–Crypto	TN00003		

¹ Drinking Water ² Underground Storage Tanks ³ Aquatic Toxicity ⁴ Chemical/Microbiological ⁵ Mold ⁶ Wastewater n/a Accreditation not applicable

* Not all certifications held by the laboratory are applicable to the results reported in the attached report.

* Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.

SDG: L1716147 DATE/TIME: 04/03/24 16:12

Received by OCD: 4/25/2024	7.0.		•	Billing Ir	nform	ation:				T				Analysis	/ Conta	ainer / Pre	servative			Chai	in of Custody	Page of						
Plain All American, LP - (2135 S Loop 250 W Midland, TX 79703	GHD)		1106	Griff	e Hudge fith Driv TX 7970	/e		Pre	100 80										-/-	Pace. National C	Analytical *						
Report to: Blair Owen				Email To blair.o		n@ghd.d	com	1		-																Mou	55 Lebanon Rd Int Juliet, TN 37	
Project Description: Plains Endurance 6 "	Ups	ream J	acinto	Tie In		City/State Collected:	Lea	County, NM												Pho	ne: 615-758-58 ne: 800-767-58 615-758-5859							
Phone: 432-686-0086 Fax:		t Project 32476	#			ab Project		-ENDURANG	CE											L #	17	A221						
Collected by (print): Liam Giersdorf		Facility ID urance				P.O. # W19007	285	53			4	02								Acc	tnum: PL/	INSGHD						
Collected by (signature): Immediately Packed on Ice N YX			Ay X F y 5 y 1	Be Notified) ive Day Day (Rad Only) 0 Day (Rad Onl	, L	Quote # Date	e Res	ults Needed	No. of		8021B	8015B																
Sample ID	Com	np/Grab	Matrix	* Dept	1	Date		Time	Cntr	rs	BTEX	TPH								Shi	pped Via:	Sample # (lab only						
2632476-030724-66-506135	Gr	46	55	351		03072	24	1150	2		×	×										-01						
2632476-030724-65-5089 40		1		40'		1		1205	1		1	1										-62						
2632476-030724-66-506245	(d	V	45'				1300														-03						
2632476-031224-66-02225	Gra	6	55	25:	30'	0312	24	10952														- 4						
632476-031224-66-0230			1	30-		1		1000														-07						
2632476-031224.66-082200				40-4	es'	V		1023														-06						
2632476-031324-L6-Q1135						V	24	0952														-07						
2632476-031324-66-04240				40-4		1		1000														-08						
2632476-031324-66-0414				45-51	0'			1019														-09						
2632476-031324-66-50624	1	+	4	20-2	5'			1650	V	T	V	V										VIA						
Matrix: S - Soil AIR - Air F - Filter SW - Groundwater B - Bioassay WW - WasteWater	Rema	arks:												pH		Tem		- 0	COC Seal	Prese ned/Acc	Receipt C nt/Intact urate: intact:							
		oles retur PS Fe	ned via: dEx(Courier			Т	racking #	, bu	12	3		4	Flow	v	Oth	39		Correct Sufficie	bottle ent vol <u>If</u>	s used: ume sent: Applicat							
Relinquished by : (Signature)			Date:	15/24	Tim	ne: 245	R	eceived by: (Sign					1	Trip Bla	nk Rec	eived: Y	es No HCL / Meo TBR]	VOA Zero Preserva		pace: orrect/Ch	ecked:						
Relinquished by : (Signature)			Date:		Tim	ie:	R	eceived by: (Sign	ature)					Temp:	A9	L	tles Received		f preserva	ation rec	uired by Lo	gin: Date/Time						
Relinquished by : (Signature) Released to Imaging: 5/10/20			Date:		Tim	ie:	R	eceived for Jab by	y: (Sign	iatu	ure)	un		Date:		Tim	and an	1	Hold:			Condition: NCF / OK						

Received by OCD: 4/25/2024	4:33:03 PM	1	Billing Info	emotion.			1			-1 -1-		(Chain of Court	Page 40 Page 2 of 2
Plain All American, LP - (2135 S Loop 250 W Midland, TX 79703	35 S Loop 250 W			arolanne Hudgens 106 Griffith Drive idland, TX 79706							Contai	ner / Pres			Chain of Cust	nov Page <u>cor</u> Ce Analytical [®] I Center for Testing & Innovetio
Report to: Blair Owen			Email To: blair.ow	en@ghd.coi	m										12065 Lebanon Mount Juliet, TI	37122
^{ject} scription: Plains Endurance 6" Upsream Jac		acinto Tie	e In	City/State Collected: Le	a County, NM									Phone: 615-758 Phone: 800-767 Fax: 615-758-58	5859	
Phone: 432-686-0086 Fax:	Client Project 12632476			Lab Project #	D-ENDURANC	:E									L #	716147
Collected by (print): Liam Giersdorf	Site/Facility ID			P.O. # W1900728	353										Acctnum: P	LAINSGHD
Collected by (signature):	Same Da	ab MUST Be ay X Five I y 5 Day	Day / (Rad Only)	Quote #	esults Needed		8021B	158							Template: Prelogin: P TSR:	
Immediately Packed on Ice N Y Sample ID	Comp/Grab	/ 10 Da ay Matrix *	Depth	Date	Time	No. of Cntrs	×	TPH 8015B							PB: Shipped Via	
12632476-031324.66.50E225	Grab	55		031324	1658	12	× B.	F ×							Remarks	Sample # (lab only)
12632476 - 031374-66- 5062 30	Gmb	55		031324	CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR CONTRACTOR	2	×	×				1				-12
										/						
									/							
		1	-	-												
* Matrix: 55 - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay	Remarks:									рН		Temp		COC Sea COC Sign	Sample Receipt l Present/Inta ned/Accurate: arrive intact	ct: _NP _Y
WW - WasteWater DW - Drinking Water DT - Other	Samples retur UPSFe	ned via: dExCou	ırier		Tracking #	6	64	3	43	Flov	V	_ Other		Correct Suffici	bottles used ent volume ser <u>If Appli</u>	t: \mathcal{I}_{I}^{N}
Relinquished by : (Signature)		Date:			Received by: (Sign						nk Rece	eived: Ye			o Headspace: ation Correct,	Checked:MN
Relinquished by: (Signature)		Date:	1	Гіте:	Received by: (Sign	ature)				Temp:	Ag	°C Bottl	es Received:	If preserv	ation required by	Login: Date/Time
Relinquished by : (Signature)	24.0.55.22	Date:	٦	lime:	Received for lab b	y: (Signa	ature)	rep	1	Date:	16-	Time		Hold:		Condition: NCF / OK

Attachment 2

Soil Boring Logs

PROJECT NAME: Plains Endurance 6" Release HOLE DESIGN/ PROJECT NUMBER: 12632476 DATE COMPLE CLIENT: Plains All American DRILLING METI LOCATION: Rural Jal, NM FIELD PERSON DRILLING CONTRACTOR: Talon LPE DRILLER: Jess DEPTH STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH -2 OVERBURDEN			(C	VERB	URDE	IN)						Page	1 of 2
CLIENT: Plains All American DRILLING METI LOCATION: Rural Jal, NM FIELD PERSON DRILLER: Jess DEPTH tr BGS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH COVERBURDEN CO	CTN	NAME: Plains Endurand	e 6" Release		HOLE	DESIGN	ATION:	OW1					
LOCATION: Rural Jal, MM FIELD PERSON DRILLENG CONTRACTOR: Talon LPE DRILLER: Jess DEPTH 18GS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH COVERBURDEN 2 4 4 6 8 10 10 12 14 16 18 20 20.00 20	CTN	NUMBER: 12632476			DATE	COMPLE	TED: 1	13 March 2024					
DRILLENG CONTRACTOR: Talon LPE DRILLER: Jess DEPTH 16G 0 CVERBURDEN 0	: PI	lains All American			DRILL	ING MET	HOD: I	Hollow Stem Au	lger				
DEPTH H BGS STRATIGRAPHIC DESCRIPTION & REMARKS DEPTH BGS 2 OVERBURDEN I 2 OVERBURDEN I 4 I I 6 I I 8 I I 10 I 12 I 14 I 16 I 18 I 20 SC/SW, Well graded sands with caliche gravel, I 12 I 24 I 25 SC/SW, Well graded sands with caliche gravel, I 26 I 28 I	ION:	: Rural Jal, NM							Rebec	cca F	ons		
It BGS STRATIGRAPHIC DESCRIPTION & REMARKS BGS 0 OVERBURDEN 0 0 2 0 0 0 0 4 0 0 0 0 0 6 0 <	NG C	CONTRACTOR: Talon L	_PE		DRILL	ER: Jess	e Taus	ch					
2 4 6 8 10 12 14 16 18 20 SC/SW, Well graded sands with caliche gravel, loose, reddish brown, silghtly moist 22 24 26 28		STRATIGRAPHIC E	DESCRIPTION & REMARKS	8			flushr	nount	R.		SAMF		Ê
2 4 4 6 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7									NUMBER	INTERVAL	REC (I	'N' Value	PID (ppm)
- 30 - 32		SC/SW. Well graded s	sands with caliche gravel, slightly moist		20.00			 Grout 2" PVC Pipe Bentonite # 10 screen 					930.

	T NAME: Plains Endurance 6" Release			DESIGNATION: OW1					
	CT NUMBER: 12632476			COMPLETED: 13 March 2024					
	Plains All American			NG METHOD: Hollow Stem A	-	T)		
	ON: Rural Jal, NM G CONTRACTOR: Talon LPE			PERSONNEL: Liam Giersdor R: Jesse Tausch	I/Rebec	cca F	ons		
			DEPTH				SAMF	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		BGS	flushmount	ц	AL			Ê
					NUMBER	INTERVAL	REC (ft)	'N' Value	PID (ppm)
-36 -38					OW135				434
40	very loose, brown, dry		40.00	# 10 screen					
42					OW140				639.9
46									
48				#2 Sand	OW145				422.3
50 -	END OF BOREHOLE @ 50.00ft BGS	<u> </u>	50.00	WELL DETAILS Screened interval: 25.00 to 45.00ft BGS					
54				Length: 20ft Diameter: 2in Slot Size: 10 Material: PVC					
56				Seal: 21.00 to 23.00ft BGS Material: Bentonite					
58				Sand Pack: 23.00 to 45.00ft BGS Material: 10/20 sand 					
60				Seal: 1.00 to 21.00ft BGS Material: Grout					
62									
64									
66									
68									

		VERB			OW2					
	CT NAME: Plains Endurance 6" Release			ESIGNATION:	OW2					
	CT NUMBER: 12632476 : Plains All American			SOMPLETED: 12 NG METHOD: H		Ider				
	ON: Rural Jal, NM			PERSONNEL: L				one		
	IG CONTRACTOR: Talon LPE			R: Jesse Tausc		Nebec	icca r	0115		
EPTH			DEPTH					SAMF	PLE	
tBGS	STRATIGRAPHIC DESCRIPTION & REMARKS		BGS	flushm	ount	Ř	AL	t)	Ð	Ê
						NUMBER	INTERVAL	REC (ft)	'N' Value	PID (ppm)
2	OVERBURDEN									
4										
6										
8										
10					— 2" PVC Pipe — Grout					
12										
14										
16										
18										
20	SC, Well graded clayey sands with caliche gravel, very loose, reddish brown, slightly moist		20.00							
22					 bentonite 					95
24	pinkish brown		25.00							
26						OW225				105
28			30.00		- # 10 serees					
30	dark reddish brown		30.00		— # 10 screen					
32					— #2 Sand	OW230				93
34										

NAME: Plains Endurance 6" Release NUMBER: 12632476 Plains All American N: Rural Jal, NM CONTRACTOR: Talon LPE		DATE C	DESIGNATION: OW2					
Plains All American N: Rural Jal, NM CONTRACTOR: Talon LPE			OMPLETED: 12 March 2024					
N: Rural Jal, NM CONTRACTOR: Talon LPE		DRILLIN		F .				
CONTRACTOR: Talon LPE		2	NG METHOD: Hollow Stem A	uger				
		FIELD F	PERSONNEL: Liam Giersdor	f/Rebec	cca F	ons		
		DRILLE	R: Jesse Tausch					
STRATIGRAPHIC DESCRIPTION & REMARKS		DEPTH BGS	flushmount			SAMF	PLE	
		000		BER	SVAL	(ft)	alue	(mdc
				NUMBER	INTERVAL	REC (ft)	'N' Value	PID (ppm)
SP, poorly graded sands, very loose, reddish				+	=			
brown, slightly moist								
								569
			# 10 screen					
brown, dry		40.00	#2 Sand					
				OW240				321
		45.00						
END OF BOREHOLE @ 45.00ft BGS		45.00	WELL DETAILS					
			Screened interval: 25.00 to 45.00ft BGS					
			Length: 20ft					
			Slot Size: 10					
			Material: PVC Seal:					
			21.00 to 23.00ft BGS Material: Bentonite					
			Sand Pack: 23 00 to 45 00ft BGS					
			Material: 10/20 sand					
			Seal:					
			1.00 to 21.00ft BGS Material: Grout					
TES: MEASURING POINT FLEVATIONS MAY CHAN		FER TO C	URRENT ELEVATION TABLE					L
	END OF BOREHOLE @ 45.00ft BGS	END OF BOREHOLE @ 45.00ft BGS	END OF BOREHOLE @ 45.00ft BGS 45.00 45.00 TES: MEASURING POINT ELEVATIONS MAY CHANGE; REFER TO C	brown, dry 45.00 END OF BOREHOLE @ 45.00ft BGS 45.00 WELL DETAILS Screened Interval: 25.00 to 45.00ft BGS Length: 20ft Diameter: 2in Stort 20.00 to 45.00ft BGS Material: PPrC Seal: 21.00 to 23.00ft BGS Material: 1020 sand Seal: 1.00 to 21.00ft BGS Material: 1020 sand Seal: 1.00 to 21.00ft BGS Material: 1020 sand Seal: 1.00 to 21.00ft BGS Material: 1020 sand Seal: 1.00 to 21.00ft BGS Material: Decomposition Seal: 1.00 to 21.00ft BGS Material: Crout Seal: 1.00 to 21.00ft BGS Material: Grout Seal: 1.00 to 21.00ft BGS Material: Crout Seal: 1.00 to 21.00ft BGS Material: Crout Seal: 1.00 to 21.00ft BGS Material: Crout	END OF BOREHOLE @ 45.00ft BGS 45.00 WELL DETAILS Screened interval: 25.00 45.00ft BGS Length: 20ft Diameter: 2in Slot 5ize: 10 Material: 10/20 sand Sail 21.00 to 23.00ft BGS Material: 10/20 sand Seal: 1.00 to 21.00ft BGS Material: Grout Seal: 1.00 to 21.00ft BGS Seal: 1.00 to 21.00ft BGS WELL DETAILS Screened interval: 25.00 45.00ft BGS Material: 10/20 sand Seal: 1.00 to 21.00ft BGS Material: Grout	brown, dry 45.00 WELLDETAILS Screened Interval: 25.00 645.00t BGS Undergit: 20 00 645.00t BGS Seal: 21 00 10 23.00t BGS Material: 100 10 23.00t BGS Material: 100 10 20 sand Seal: 100 10 21.00t BGS Material: Grout Seal: 100 10 21.00t BGS Material: Grout Seal: 100 10 21.00t BGS Material: Grout	brown, dry 45.00 END OF BOREHOLE @ 45.00ft BGS 45.00 WELL DETAILS Screened interval: Soreened interval: 20.000 BGS Length: 201 Dameter: 21.000 23.000 BGS Material: 10.000 45.000 BGS Saal: 23.000 45.000 BGS Material: 10.00 23.000 BGS Material: 10.00 24.000 BGS Material: 10.00 24.000 BGS Material: Grout	45.00 END OF BOREHOLE @ 45.00f BGS 45.00 WELL DETAILS Screend interval: 25.00 to 45.00 BGS Length: 201 Distancer: 2in Stot Size: 10 Material: Bentonite Sand Pack: 23.00 to 45.00f BGS Material: Bentonite Seal: 1.00 to 21.00f BGS Material: Grout

GHD	STRATIGRAPHIC AN (OVE		ISTRU URDEI		ΙΤΑΤ	ION LOG				Page	1 of 2
PROJE	CT NAME: Plains Endurance 6" Release		HOLE D	ESIGN		N: SVE01					
PROJE	CT NUMBER: 12632476		DATE C	OMPLE	ETED:	7 March 2024					
CLIENT	: Plains All American		DRILLIN	IG MET	HOD:	Hollow Stem A	uger				
LOCATI	ION: Rural Jal, NM		FIELD F	PERSO	NNEL:	Liam Giersdorf	Rebec	cca F	ons		
DRILLIN	NG CONTRACTOR: Talon LPE		DRILLE	R: Jess	se Tau	isch					
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS		DEPTH BGS		flus	hmount	2		SAMF		Ê
							NUMBER	INTERVAL	REC (ft)	'N' Value	PID (ppm)
-2 -4 -6 -10 -12 -14 -16 -12 -14 -16 -20 -22 -24 -24 -26 -28 -30 -32 -34	OVERBURDEN SC, Well-graded clayey sands with fine caliche gravel, moist and firm with slight plasticity, reddish brown in coloration		33.00			 — 2" PVC Pipe — Grout — bentonite 	SVE135				1780
_	NOTES: MEASURING POINT ELEVATIONS MAY CHANG	BE; RE	FER TO C	URREN	TELE	ATION TABLE		•	- 1		•
	CHEMICAL ANALYSIS CO GRAIN S	IZE AI	VALYSIS								

GHD	STRATIGRAPHIC AND II (OVERB				Page 2 of 2
PROJE	CT NAME: Plains Endurance 6" Release	HOLE [DESIGNATION: SVE01		
PROJE	CT NUMBER: 12632476	DATE C	COMPLETED: 7 March 2024		
CLIENT	: Plains All American	DRILLII	NG METHOD: Hollow Stem Auger		
LOCATI	ION: Rural Jal, NM	FIELD I	PERSONNEL: Liam Giersdorf/Rebecco	ca Pons	
DRILLIN	NG CONTRACTOR: Talon LPE	DRILLE	R: Jesse Tausch		
DEPTH ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	DEPTH BGS	flushmount	SAMP	
			NUMBER	INTERVAL REC (ft)	'N' Value PID (ppm)
- 36 	SP, Poorly-graded fine sands, dry, soft, no plasticity, reddish brown in coloration				
- 	- Very fine sandstone, poorly sorted/well graded, poss. Lithic Arkose with calcareous matrix, ranges from gray to light pink in coloration with minor presence of dark lithics		#2 Sand		3598
	coloration with minor presence of dark lithics, friable from 38.00 to 38.50ft BGS SP, Medium-graded fine sands with fine caliche gravel, dry, little plasticity, pinkish brown	40.00	# 10 screen		
- - - 44		> > > > >	SVE145		4210
- - 	END OF BOREHOLE @ 45.00ft BGS	45.00	WELL DETAILS Screened interval:		
- - 48 -			35.00 to 45.00ft BGS Length: 10ft Diameter: 2in Slot Size: 10		
- 50 			Material: PVC Seal: 31.00 to 33.00ft BGS Material: Bentonite		
- 			Sand Pack: 33.00 to 45.00ft BGS Material: 10/20 sand		
			Seal: 1.00 to 33.00ft BGS Material: Grout		
— 56 - - - — 58					
- 58 - - - - 60					
- - 62					
- - 64					
- - 66 -					
- - 68 -					
_					
	NOTES: MEASURING POINT ELEVATIONS MAY CHANGE; RE	EFER TO C	UKKENT ELEVATION TABLE		
	CHEMICAL ANALYSIS 🛛 GRAIN SIZE A	NALYSIS			

	CT NAME: Plains Endurance 6" Release		DESIGNATION: SVE02							
	CT NUMBER: 12632476		COMPLETED: 13 March 202	И						
	: Plains All American		NG METHOD: Hollow Stem							
	ON: Rural Jal, NM		PERSONNEL: Liam Giersdo		ccca F	ons				
	IG CONTRACTOR: Talon LPE	DRILLER: Jesse Tausch								
DEPTH		DEPTH					SAMPLE			
t BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	BGS	flushmount	ĸ	AL	(ft)	Ð	Ê		
				NUMBER	INTERVAL	REC (1	'N' Value	PID (ppm)		
2 4 6 10 12 14 16 18	OVERBURDEN		Grout							
20 22 24	SC/SW, Well graded sands with caliche gravel, loose, reddish brown, slightly moist	 20.00	bentonite	SVE220				847.		
26 28			#2 Sand	SVE225				573.		
30										
32		33.00		SVE230				548.		
34	END OF BOREHOLE @ 33.00ft BGS	00.00	WELL DETAILS Screened interval: 23.00 to 33.00ft BGS							

	(OVER	RBURDE	N)				Page	2 of 2
PROJEC	T NAME: Plains Endurance 6" Release	HOLE [DESIGNATION: SVE02	2				
PROJEC	T NUMBER: 12632476	DATE C	COMPLETED: 13 March 20	24				
CLIENT:	Plains All American		NG METHOD: Hollow Stem					
	DN: Rural Jal, NM		PERSONNEL: Liam Gierso		cca P	ons		
	G CONTRACTOR: Talon LPE		R: Jesse Tausch		00001	0110		
DEPTH		DEPTH				SAMF	PLE	
ft BGS	STRATIGRAPHIC DESCRIPTION & REMARKS	BGS	flushmount	œ	F		0	(r
				NUMBER	INTERVAL	REC (ft)	'N' Value	PID (ppm)
- 36 - 38			Length: 10ft Diameter: 2in Slot Size: 10 Material: PVC Seal: 19.00 to 21.00ft BGS Material: Bentonite					
- 40 - 42			Sand Pack: 21.00 to 33.00ft BGS Material: 10/20 sand Seal: 1.00 to 19.00ft BGS Material: Grout					
- 44 - 46								
- 48								
- 50								
- 52								
- 54								
- 56 - 58								
- 60								
- 62								
- 64								
- 66								
- 68								

Attachment 3

Freemont's SVE Pilot Test Results

Released to Imaging: 5/10/2024 9:55:33 AM

PLAINS PIPELINE, L.P. ENDURANCE 6-INCH UPSTREAM JACINTO TIE-IN LEA COUNTY, NEW MEXICO NMOCD INCIDENT NO. nAPP2129935504 SVE PILOT TEST RESULTS

1.0 Introduction

On October 25, 2021, a release of crude oil occurred on the Plains Pipeline, L.P. (Plains) Endurance 6" Upstream Jacinto Tie-In (site). The site is located in Unit Letter O, Section 25 of Township 24 South and Range 34 East in Lea County, New Mexico. The GPS coordinates associated with the release are 31.181559, -103.421514. The release was reported at 42.7 barrels (bbls) with no recovery during initial response actions. The New Mexico Oil Conservation Division (NMOCD) District I office in Hobbs, New Mexico assigned the release with the Incident Number nAPP2129935504.

From October 25 to November 19, 2021, excavation activities were conducted at the site to remove contaminated soil from the affected area. An excavation to a depth of approximately 19 feet below ground surface (bgs) was completed, but soil sampling indicated that additional soil impacts were present at a greater depth. From June 2022 to April 2023, eleven soil borings (SB-1 to SB-11) were advanced at the site to further evaluate the vertical and horizontal extent of impact. The maximum depth of the soil borings was 106 feet bgs (SB-2); groundwater was not encountered in any boring.

Based on laboratory data, soil impacts greater than the applicable NMAC Closure Criteria are present to a depth of approximately 40 feet bgs. Since the contaminated soil shallower than 20 feet bgs was removed via excavation, an in-situ approach to the remediation of soil between depths of approximately 20 and 40 feet bgs is proposed. Plains has conducted a pilot test using soil vapor extraction (SVE) to evaluate whether this is a feasible technique for remediation. The results of the pilot test are described below.

2.0 Installation of Pilot Test Wells

Plains installed two SVE wells (SVE1 and SVE2) and two observation wells (OW1 and OW2) to determine if SVE is an effective remedial approach for this site. These four wells were constructed in March 2024 with the following characteristics:

- Borings were advanced using a hollow stem auger (HSA) rig and an air rotary rig due to difficult drilling conditions;
- Soil samples were collected on 5 ft intervals from 20 feet to total depth (TD) via either split spoons (hollow stem) or via cuttings (air rotary);
- Samples were logged using the Unified Soil Classification System (USCS);
- Field observations, including photoionization detector (PID) readings, were documented;
- Three soil samples per boring were collected and submitted for laboratory analysis of benzene, toluene, ethylbenzene and xylenes (BTEX) and total petroleum hydrocarbons (TPH); these samples were collected at a depth greater than 20 feet bgs;

- Borings were completed as 2-inch diameter PVC wells;
- One SVE well (SVE2) was screened with 10 feet of well screen from 23 to 33 feet (TD=33Ft);
- One SVE well (SVE1) was screened with 10 feet of well screen from 35 to 45 feet (TD=45 feet);
- Both observation wells (OW1 and OW2) were screened with 20 feet of well screen from 25 to 45 feet (see attached GHD boring logs);
- All four wells were completed at the surface with flush-mount vaults.

3.0 SVE Pilot Test Procedure

A self-contained SVE pilot test trailer was mobilized to the site to conduct a step-wise SVE test. This trailer has a gasoline engine powered SVE vacuum blower (see attached photos). SVE pilot tests were conducted on SVE1, SVE2 and OW1. Tables showing the pilot test data are included.

The SVE pilot test included the following steps:

- Attach a 2-inch vacuum hose to the SVE pilot test well;
- Connect magnehelic gauges to the two observation wells and the other SVE well;
- Initiate the test by activating the SVE blower and applying a vacuum to the SVE test well;
- Adjust the applied vacuum to approximately 50 inches of water ("H2O);
- Record the time, applied vacuum at the well ("H2O), flowrate (cfm) and exhaust vapor PID reading;
- Increase the applied vacuum to approximately 70" H2O and record data for 20 to 30 minutes;
- Increase the applied vacuum to approximately 100" H2O and record data for 20 to 30 minutes;
- Confirm adequacy of pilot test data and stop test;
- Repeat these steps as appropriate for the second SVE well;
- Repeat these steps as appropriate for the observation well OW1;

4.0 SVE Pilot Test Results/Discussion

The pilot test data indicate that SVE is a feasible remediation approach for impacted soil at this site, particularly in the sand unit (depth of 20 feet to ~ 33 feet). SVE is also feasible in the sandstone unit (depth of ~35 feet to ~45 feet) but the radius of influence will be limited. The site investigation data indicate that the mass of contamination is primarily in the shallower sand unit.

Specific comments about the pilot test and proposed full scale SVE system include:

- Landowner permission will be required to install a full scale SVE system.
- An applied vacuum of approximately 50" H2O will be adequate for SVE remediation. Pipe and fitting friction losses will be considered during SVE blower sizing.
- A vacuum of 50" H2O will likely yield an ROI of approximately 25 feet in the sand unit and approximately 15 feet in the sandstone unit.
- Design flow rate should be approximately 15 cfm per SVE well.
- Based on the site investigation data, a proposed SVE layout that includes 22 shallow SVE wells (including one pilot test well SVE2 and two observation wells OW-1 and OW-2) and six deep SVE wells (including one pilot test well SVE1) is shown on Figure 3. The effective ROI from each shallow SVE well will overlap with the other shallow SVE wells to ensure coverage of the affected

area. The deep SVE wells are located where previously impacted soil had been observed, not across the entire site. Further, the shallow SVE only are shown on Figure 4 and the deep SVE wells only are shown on Figure 5.

- Each individual SVE well will be piped to a remediation building and will have a control valve and flow meter on it to allow for centralized control of the entire SVE system.
- Three phase overhead power is available immediately south of the site. A power service drop will be required from the local power company (Xcel).
- The anticipated time to closure is unknown; however, it will likely be from two to five years of SVE operation.
- Confirmation soil borings may be advanced at several times during the SVE operation to determine the effectiveness of the SVE system and to facilitate targeting of air flows from specific affected areas. When the soil concentrations achieve the appropriate regulatory cleanup levels, the SVE system will be deactivated and a request for site closure will be submitted.

TABLE 1 SVE PILOT TEST DATA PLAINS PIPELINE - ENDURANCE 6-INCH PIPELINE JAL, NEW MEXICO FREMONT PROJECT NUMBER C024-065 March 21, 2024

SVE Test on SVE-1 (Northwestern Well, Screened from 35' to 45' in Sandstone unit)

	Vacuum	Flow		SVE-2	OBS-SW	OBS-NE	
Time	" H2O	CFM	PID	24 ft ("H2O)	11 ft ("H2O)	17 ft ("H2O)	Comments
10:28	50	14	75	0.85	0.6	0.10	Bleed 50+ cfm (100% open)
10:35	50	14	75				
11:43	50	14	100	0.45	0.32	0.10	
11:54	49	14	98	0.15	0.2	0.10	flow needle is jumpy
11:56	72	15	150	0.15	0.2	0.15	flow needle is jumpy
12:10	72	15	160	0.1	0.15	0.10	flow needle is jumpy
12:20	74	16	160	0.1	0.1	0.05	flow needle is jumpy
12:25	74	16	160	0.1	0.15	0.05	flow needle is jumpy
12:26	102	20	198	0.05	0.15	0.05	Bleed 37 cfm
12:39	106	20	195	0.05	0.2	0.05	flow needle is jumpy
12:45	106	20	195				flow needle is jumpy
12:55	106	20	196	0.05	0.2	0.05	flow needle is jumpy
Stop Test							

* may have been some initial residual vacuum in subsurface due to prior test at SVE-2

* no apparent residual vacuum in subsurface after SVE test was complete

DTW is >100 Ft

Anticipate ROI of ~15 ft

SVE Test on SVE-2 (Southeastern Well, Screened from 23' to 33' in Sand unit)

	Vacuum	Flow	PID	SVE-1	OBS-SW	OBS-NE	
Time	" H2O	CFM	PPM	24 ft ("H2O)	19 ft ("H2O)	14 ft ("H2O)	Comments
10:19	46	20	441	1.1	1.7	3.4	Bleed 50+ cfm
10:24	46	19	330	1.75	2.2	4.0	
10:32	48	20	310	1.75	2.5	4.4	
10:38	46	20	310	2.4	2.8	4.6	
10:40	46	20	310				
10:41	68	30	276				Bleed 50+ cfm still
10:54	71	29	259	3.6	4.2	7.0	
11:02	70	28	262	3.8	4.2	7.2	
11:03	100	37	239	3.9	4.6	8.2	Bleed 37 cfm
11:09	95	37	237				flow needle is jumpy
11:15	95	36	227	4.7	5.1	9.1	flow needle is jumpy
Stop Test							

After SVE system deactivated, vacuum still present in subsurface for >15 minutes. (4.5" H2O at SVE-2 manifold) Anticipate ROI of 25 ft, use ~50 "H2O vacuum for full scale system

Time	Vacuum " H2O	Flow CFM	PID PPM	SVE-1 11 ft ("H2O)	SVE-2 19 ft ("H2O)	OBS-NE 19 ft ("H2O)	Comments
1:01	44	17	353	1.85	0.55	0.4	
1:10	45	16	350	2.5	1.3	1.3	
1:15	45	16	349	3.3	1.5	1.5	
Stop Test							

SVE Test on OBS-1 (Southwestern Observation Well, Screened from 25' to 45' in Sand and Sandstone unit)

Since this well is screened across sand and sandstone units, preferential pathway is through sand (<35 ft bgs)

Released to Imaging: 5/10/2024 9:55:33 AM

Photo Log

Description:

#1- Looking South at SVE pilot test being performed on SVE2

Description:

#2 - Magnehilic gauges are used to monitor vacuum in observation wells

	Unit Cost		No. of	
Item	(\$)	Units	Units	Total
Power Drop	20000	each	1	20000
Well Installation	3000	each	24	72000
SVE Building Placement	3000	each	1	3000
SVE pipe and fittings	4000	lot	1	4000
PM, Design, Permits,etc.	12000	lot	1	12000
SVE System Rental	2000	mo	12	24000
Monthly system check (GHD)	1500	mo	12	18000
Electrical Cost	350	mo	12	4200
Emissions samples/lab	87	each	18	1566
Total				\$ 158,766

COST ESTIMATE - SVE INSTALLATION/FIRST YEAR OPERATION

Table 1 Summary of Soil Analytical Results Plains Pipeline, L.P. Endurance 6" Upstream Jacinto Tie-In SRS #2021-089 nAPP2129935504 Lea County, New Mexico

	Location ID: Sample Name: Sample Date: Depth:	SB-2 SB-2(30-35) 04/24/2023 30-35 ft BGS	SB-2 SB-2(45-50) 04/24/2023 45-50 ft BGS	SB-3 SB-3(45-50) 04/24/2023 45-50 ft BGS	SB-4 SB-4(18-20) 04/24/2023 18-20 ft BGS	SB-4 SB-4(45-50) 04/24/2023 45-50 ft BGS	SB-5 SB-5(35-40) 04/25/2023 35-40 ft BGS	SB-5 SB-5(45-50) 04/25/2023 45-50 ft BGS	SB-6 SB-6(20-28) 04/25/2023 20-28 ft BGS	SB-6 SB-6(45-50) 04/25/2023 45-50 ft BGS	SB-7 SB-7(28-30) 04/25/2023 28-30 ft BGS	SB-7 SB-7(45-50) 04/25/2023 45-50 ft BGS	SB-8 SB-8(20-21) 04/26/2023 20-21 ft BGS
Parameters	Closure Criteria: DTW >100 feet bgs												
Volatile Organic Compounds													
Benzene	10	1.05	0.0647	0.000332	0.000622	0.000238	0.00753	0.000227	114	0.000409	0.672	0.000578	0.216
Toluene		15.3	1.45	0.000336	0.000628	0.000196	0.00497	0.000401	491	0.000446	10.7	0.000481	18.2
Ethylbenzene		6.33	0.768	<0.000114	0.000285	<0.000113	<0.000130	0.000118	108	0.000204	6.36	0.000129	13.0
Xylenes (total)		37.2	4.62	<0.000476	<0.000492	<0.000470	0.291	<0.000471	525	0.00156	37.8	<0.000472	78.4
BTEX	50	59.88	6.9027	0.00148	0.002027	0.001017	0.30363	0.001217	1238	0.002619	55.532	0.00166	109.816
Total Datualour Hudro orthono													
Total Petroleum Hydrocarbons TPH - GRO		508	73.4	0.0308	0.0243	0.0254	9.21	0.0279	5620	0.516	449	0.0334	1030
TPH - DRO		1340	324	2.27	16.2	5.21	343	20.1	12100	223	1640	127	22100
TPH - MRO		636	151	3.38	33.4	9.05	203	23.4	4700	146	804	98.8	9360
TPH - DRO+GRO	1000	1848	397.4	2.3008	16.2243	5.2354	352.21	20.1279	17720	223.516	2089	127.0334	23130
Total TPH	2500	2484	548.4	5.6808	49.6243	14.2854	555.21	43.5279	22420	369.516	2893	225.8334	32490
General Chemistry													
Chloride	20000	25.4	21.1	27.9	34.3	13.6	13.9	29.0	51.1	33.0	54.9	47.6	402

Notes:

Values reported in mg/kg
 < = Value Less than Method Detection Limit

Seld Indicates Analyte Detected
 BTEX analyses by EPA Method SW 8021B.

5. TPH analyses by EPA Method SW 8015 Mod.

6. GRO/DRO/MRO = Gasoline/Diesel/Motor Oil

7. Yellow shaded cells indicate analytical samples that exceed the NMOC 19.15.29.12 Table 1 Closure Criteria for the site.

Table 1 Summary of Soil Analytical Results Plains Pipeline, L.P. Endurance 6" Upstream Jacinto Tie-In SRS #2021-089 nAPP2129935504 Lea County, New Mexico

Sa	Location ID: mple Name: ample Date: Depth:	SB-8 SB-8(45-50) 04/26/2023 45-50 ft BGS	SB-9 SB-9(45-50) 04/26/2023 45-50 ft BGS	SB-10 SB-10(33-35) 04/26/2023 33-35 ft BGS	SB-10 SB-10(45-50) 04/26/2023 45-50 ft BGS	SB-11 SB-11(23-25) 04/26/2023 23-25 ft BGS	SB-11 SB-11(45-50) 04/26/2023 45-50 ft BGS
Parameters	Closure Criteria: DTW >100 feet bgs						
Volatile Organic Compounds Benzene Toluene Ethylbenzene Xylenes (total) BTEX	10 50	0.0310 0.924 0.529 3.21 4.694	0.000259 0.000233 <0.000113 <0.000472 0.001077	0.722 13.7 5.94 34.7 55.062	0.0167 1.39 1.52 10.0 12.9267	19.9 72.9 18.1 89.5 200.4	0.000249 0.000247 <0.000113 0.000478 0.001087
Total Petroleum Hydrocarbons TPH - GRO TPH - DRO TPH - MRO TPH - DRO+GRO Total TPH	 1000 2500	61.6 421 241 482.6 723.6	0.0531 13.2 14.6 13.2531 27.8531	692 1140 525 <u>1832</u> 2357	197 1020 490 <u>1217</u> 1707	1740 1060 468 2800 3268	0.101 58.6 41.0 58.701 99.701
General Chemistry Chloride	20000	59.1	33.0	215	74.4	496	59.8

Notes:

Values reported in mg/kg
 < = Value Less than Method Detection Limit

Seld Indicates Analyte Detected
 BTEX analyses by EPA Method SW 8021B.

5. TPH analyses by EPA Method SW 8015 Mod.

6. GRO/DRO/MRO = Gasoline/Diesel/Motor Oil

7. Yellow shaded cells indicate analytical samples that exceed the NMOC 19.15.29.12 Table 1 Closure Criteria for the site.

Table 1

Received by OCD: 4/25/2024 4:33:03 PM

Summary of Soil Analytical Results Plains All American Pipeline, L.P. Endurance 6" Upstream Jacinto Tie-In SRS #2021-089 nAPP2129935504 Lea County, New Mexico

Sample	Sample Date	Sample	Volatile Organic Compounds					Total Petroleum Hydrocarbons (TPH)						
Location	Sample Date	Depth	Benzene	Toluene	thylbenzei	Total Xylenes	Total BTEX	GRO (C6-C10)	DRO (C10-C28)	DRO Extended (MRO, C28-C36)	GRO + DRO	Total TPH (GRO + DRO + MRO)		
NMAC 19.15	.29.12 Table 1 C	Closure Criteria	10	ne	ne	ne	50	ne	ne	ne	1,000	2,500		
OW135	3/13/2024	35-40 ft BGS	0.723	9.95	5.2	30.2	46.073	432	544	243	976	1,219		
OW140	3/13/2024	40-45 ft BGS	0.245	4.75	3.13	19.5	27.625	307	474	233	781	1,014		
OW145	3/13/2024	45-50 ft BGS	0.159	1.42	0.696	4.25	6.525	87.5	1,400	913	1,487.5	2,400.5		
OW225	3/12/2024	25-30 ft BGS	0.587	5.99	2.7	15.1	24.377	294	2,280	1,430	2,574	4,004		
OW230	3/12/2024	30-35 ft BGS	0.808	7.44	3.07	17.9	29.218	312	3,460	2,010	3,772	5,782		
OW240	3/12/2024	40-45 ft BGS	0.262	5.76	3.69	22.1	31.812	308	417	206	725	931		
SVE135	3/7/2024	35-35 ft BGS	1.53	34.2	13.1	65.8	114.63	1,020	2,610	1,210	3,630	4,840		
SVE140	3/7/2024	40-40 ft BGS	0.13	4.82	3.48	19.7	28.13	289	2,210	1,040	2,499	3,539		
SVE145	3/7/2024	45-45 ft BGS	0.221	9.27	5.34	30.2	45.031	440	2,320	1,020	2,760	3,780		
SVE220	3/13/2024	20-25 ft BGS	2.26	19.2	6.73	36	64.19	606	7,170	4,050	7,776	11,826		
SVE225	3/13/2024	25-30 ft BGS	1.01	10	4.1	23.4	38.51	368	5,110	2,890	5,478	8,368		
SVE230	3/13/2024	30-35 ft BGS	2.19	11.7	3.95	22.1	39.94	448	3,680	1,810	4,128	5,938		

Notes:

1. Concentrations reported in milligrams per kilogram (mg/kg).

2. NMAC = New Mexico Administrative Code

3. ne = closure criteria not established by NMAC

4. Benzene, toluene, ethylbenzene, total xylenes (BTEX) analyses by EPA Method SW-846 8021B.

5. TPH analyses by EPA Method SW-846 8015 Mod.

6. GRO/DRO/MRO = Gasoline Range Organics/Diesel Range Organics/Motor Oil Range Organics

7. Shaded/bolded values indicate concentration exceeds the NMAC 19.15.29.12 Table 1 Closure Criteria for the site.

GH

•

Stratigraphy Log (Overburden)

Project name:	Plains Endurance 6" Release	Drilling contractor:	Talon LPE	Hole designation:	SVE01
Project number:	12632476	Driller:	Jesse Tausch	Date/Time started:	0930 03-07-2024
Client:	Plains All American	Surface elevation:	3363'	Date/Time completed:	1345 03-07-2024
Location:	Rural Jal, NM	Weather (A.M.):	Partly Cloudy, Low 46°	Drilling method:	Hollow Stem Auger
		(P.M.):	High Winds, Partly Cloudy, High 74°	GHD supervisor:	Liam Giersdorf/Rebeccca Pons

			Sample Description				S	ample	Details	5					
			Order of descriptors:						tration					-	
Str	atigrap		Soil type symbol(s) - primary component(s), (nature of deposit),						ord						
	nterval		secondary components, relative density/consistency, grain size/plasticity,				Sn	lit Spo		ws					
		•	gradation/structure, colour, moisture content, supplementary descriptors.					•							
(Depth:	s in ft/r					(Re	cord N	V-Value	es & R	ecover	ies)				
			Note: Plasticity determination requires the addition of moisture if the	Sample	Sampling							Sample	PID/FID	Chemical	Grain Size/
From	At		sample is too dry to roll (indicate if moisture was added or not).	Number	Method	6"	6"	6"	6"	Ν	R	Interval	(ppm)	Analysis	Other Analysis
			SC, Well-graded clayey sands with fine caliche gravel, moist and firm with												
33'		35'	slight plasticity, reddish brown in coloration, minor effervescence	SVE0135	Split Spoon							33-35'	1780	8015B/8021B	
			SC, Poorly-graded fine sands, dry, soft, no plasticity, reddish brown in												
35'		40'	coloration, minor effervescence	SVE0140	Auger							35-40'	3598	8015B/8021B	Cuttings
			Very fine sandstone, poorly sorted/well graded, poss. Lithic Arkose with												
			calcareous matrix, ranges from gray to light pink in coloration with minor												
38'		38.5'	presence of dark lithics, friable	-	Split Spoon							38-38.5'	-	-	
401		451	SP, Medium-graded fine sands with fine caliche gravel, dry, little	01/50/45								40.451			e #3
40'		45'	plasticity, pinkish brown	SVE0145	Auger							40-45'	4210	8015B/8021B	Cuttings
							-								
						1	1	1							
							1	1							
							1	1							
							1	1							
			Depth of borehole caving Depth of first groundwater	encounter			Tops	oil thicl	kness		L				
1	Notes		Water level in open borehole on completion After		Hours	;									
	and		Notes: 2" PVC Pipe installed with screen from 35'-45' in depth, packed with san					of Ben	tonite.	aroute	d for re	maining dept	h to surface		
C	ommen	its				55.4			,	0		5			

GHD

.

Project name:	Plains Endurance 6" Release	Drilling contractor:	Talon LPE	Hole designation:	SVE2
Project number:	12632476	Driller:	Jesse Tausch	Date/Time started:	1630 03-13-2024
Client:	Plains All American	Surface elevation:	3363'	Date/Time completed:	1715 03-13-2024
Location:	Rural Jal, NM	Weather (A.M.):	Clear, Low 47°	Drilling method:	Direct Push Geoprobe
		(P.M.):	Windy, High 84°	GHD supervisor:	Liam Giersdorf/Rebeccca Pons

			Sample Description				S	ample	Details	s					
	Order of descriptors:		Penetration											l	
St	atigrap	hic	Soil type symbol(s) - primary component(s), (nature of deposit),					Rec	ord						l
	nterval	s	secondary components, relative density/consistency, grain size/plasticity,				Sp	lit Spo	on Blo	ows					l
(Denth	s in ft/r	n BGS)	gradation/structure, colour, moisture content, supplementary descriptors.			(Re	cord N	J-Valua	as & R	ecover	ries)				l
(Depti	5 11 101		Note: Plasticity determination requires the addition of moisture if the	Sample	Sampling	(111		Value				Sample	PID/FID	Chemical	Grain Size/
From	At	То	sample is too dry to roll (indicate if moisture was added or not).	Number	Method	6"	6"	6"	6"	Ν	R	Interval	(ppm)	Analysis	Other Analysis
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,			-	-	-	-				(PP)		,
20'		25'	slightly moist, effervescent	SVE220	Air Rotary							20-25'	847.8	8015B/8021B	l
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,												
25'		30'	slightly moist, effervescent	SVE225	Air Rotary							25-30'	573.9	8015B/8021B	l
															l
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,										_		l
30'		33'	slightly moist, effervescent	SVE230	Air Rotary							30-33'	548.9	8015B/8021B	
															i
															ļ
														-	4
															
															l
									L						
															l
			Death af head and an					- 11 41-1 - 1							
	Notoo		Depth of borehole caving Depth of first groundwater Water level in open borehole on completion After	encounter	Hours		rops		kness _						
			Notes: 2" PVC Pipe installed with screen from 23'-33' in depth, packed with san					of Ren	tonite	aroute	d for re	maining dept	h to surface		
C	commen	ts	10003. 2 1 VO Tipe installed with screen nom 20-00 in depth, packed with sall		p or screen, pr	uggeu	with Z	or Dell	tornie,	groute		ananing dept			

.

Project name:	Plains Endurance 6" Release	Drilling contractor:	Talon LPE	Hole designation:	OW1
Project number:	12632476	Driller:	Jesse Tausch	Date/Time started:	0930 03-13-2024
Client:	Plains All American	Surface elevation:	3363'	Date/Time completed:	1100 03-13-2024
Location:	Rural Jal, NM	Weather (A.M.):	Clear, Low 47°	Drilling method:	Hollow Stem Auger
		(P.M.):	Windy, High 84°	GHD supervisor:	Liam Giersdorf/Rebeccca Pons

			Sample Description				Sa	ample	Details	5					
			Order of descriptors:					Penet	tration						
Str	ratigrap	hic	Soil type symbol(s) - primary component(s), (nature of deposit),					Rec	ord						
	Interval		secondary components, relative density/consistency, grain size/plasticity,				Sn		on Blo	ws					
		•	gradation/structure, colour, moisture content, supplementary descriptors.					•							
(Depth	ns in ft/n	n BGS)				(Re	cord N	N-Value	es & R	ecover	ies)				
			Note: Plasticity determination requires the addition of moisture if the	Sample	Sampling							Sample	PID/FID	Chemical	Grain Size/
From	At	То	sample is too dry to roll (indicate if moisture was added or not).	Number	Method	6"	6"	6"	6"	N	R	Interval	(ppm)	Analysis	Other Analysi
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,												
20'		25'	slightly moist, effervescent	-	Air Rotary							20-25'	794.5	-	
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,												
25'		30'	slightly moist, effervescent	-	Air Rotary							25-30'	-	-	
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,												
30'		35'	slightly moist, effervescent	-	Air Rotary							30-35'	930.3	-	
			SC/SW, Well graded sands with caliche gravel, loose, reddish brown,												
35'		40'	slightly moist, effervescent	OW135	Air Rotary							35-40'	434	8015B/8021B	
40'		45'	V, Well graded sands with caliche gravel, very loose, brown, dry, effervesce	OW140	Air Rotary							40-45'	639.9	8015B/8021B	
45'		50'	V, Well graded sands with caliche gravel, very loose, brown, dry, effervesce	OW145	Air Rotary							45-50'	422.3	8015B/8021B	
45		50	v, wen graded sands with canche gravel, very loose, brown, dry, enervesce	01145	All Rolary							45-50	422.3	00136/00216	
					1										
					1									1	
	1	1	Depth of borehole caving Depth of first groundwater e	encounter	1	I	Tops	u oil thicl	kness	1				1	
	Notes		Water level in open borehole on completion After		Hours		. 505								
	and		Notes: 2" PVC Pipe installed with screen from 25'-45' in depth, packed with san					of Ren	tonite	aroute	d for re	maining dept	to surface		
С	Commen				p or soreen, pr	aggeu			cornico,	grouter		manning depti			
0															

GHD

.

Project name:	Plains Endurance 6" Release	Drilling contractor:	Talon LPE	Hole designation:	OW2
Project number:	12632476	Driller:	Jesse Tausch	Date/Time started:	0930 03-12-2024
Client:	Plains All American	Surface elevation:	3363'	Date/Time completed:	1430 03-12-2024
Location:	Rural Jal, NM	Weather (A.M.):	Clear, Low 44°	Drilling method:	Hollow Stem Auger
		(P.M.):	Windy, High 83°	GHD supervisor:	Liam Giersdorf/Rebeccca Pons

			Sample Description				S	ample	Details	s					
Str	atigrap	hic	Order of descriptors: Soil type symbol(s) - primary component(s), (nature of deposit),					Penet	tration cord					-	
I	nterval	s	secondary components, relative density/consistency, grain size/plasticity,				Sp	lit Spo	on Blo	ows					
(Denth	s in ft/r	n BGS)	gradation/structure, colour, moisture content, supplementary descriptors.			(Re	cord N	J-Value	es & R	ecover	ries)				
From			Note: Plasticity determination requires the addition of moisture if the sample is too dry to roll (indicate if moisture was added or not).	Sample Number	Sampling Method	6"	6"	6"	6"	N	R	Sample Interval	PID/FID (ppm)	Chemical Analysis	Grain Size/ Other Analysis
20'		25'	SC, Well graded clayey sands with caliche gravel, very loose, reddish brown, slightly moist	-	Air Rotary							20-25'	951	-	<u> </u>
25'		30'	SC, medium graded clayey sands with caliche gravel, very loose, pinkish brown, slightly most	OW225	Air Rotary							25-30'	1051	8015B/8021B	
			SC, poorly graded clayey sands, very loose, dark reddish brown, slightly	011/000								00 0 5 1	005	00150/00010	
30'		35'	moist	OW230	Air Rotary							30-35'	935	8015B/8021B	
35'		40'	SP, poorly graded sands, very loose, reddish brown, slightly moist	-	Air Rotary							35-40'	569	-	
40'		45'	SP, poorly graded sands, very loose, brown, dry	OW240	Air Rotary							40-45'	321	8015B/8021B	
		1	Depth of borehole caving Depth of first groundwater e	encounter		·	Tops	oil thicl	kness _	1				1	
	Notes and		Water level in open borehole on completion After After Notes: 2" PVC Pipe installed with screen from 25'-45' in depth, packed with san					of Ben	tonite,	groute	d for re	maining dept	n to surface		
С	ommen	its				00.0			,	J		2 · · · F ··			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 337637

QUESTIONS				
Operator:	OGRID:			
PLAINS MARKETING L.P.	34053			
333 Clay Street Suite 1900	Action Number:			
Houston, TX 77002	337637			
	Action Type:			
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)			

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2129935504
Incident Name	NAPP2129935504 PLAINS ENDURANCE 6" UPSTREAM JACINTO TIE IN @ 0
Incident Type	Oil Release
Incident Status	Remediation Plan Approved

Location of Release Source

Please answer all the questions in this group.				
Site Name	PLAINS ENDURANCE 6" UPSTREAM JACINTO TIE IN			
Date Release Discovered	10/25/2021			
Surface Owner	Private			

Incident Details

Please answer all the questions in this group.							
Incident Type	Oil Release						
Did this release result in a fire or is the result of a fire	No						
Did this release result in any injuries	No						
Has this release reached or does it have a reasonable probability of reaching a watercourse	No						
Has this release endangered or does it have a reasonable probability of endangering public health	No						
Has this release substantially damaged or will it substantially damage property or the environment	No						
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No						

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.					
Crude Oil Released (bbls) Details	Cause: Corrosion Pipeline (Any) Crude Oil Released: 43 BBL Recovered: 0 BBL Lost: 43 BBL.				
Produced Water Released (bbls) Details	Not answered.				
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.				
Condensate Released (bbls) Details	Not answered.				
Natural Gas Vented (Mcf) Details	Not answered.				
Natural Gas Flared (Mcf) Details	Not answered.				
Other Released Details	Not answered.				
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.				

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 337637

QUESTIONS (continued)

Operator:	OGRID:
PLAINS MARKETING L.P.	34053
333 Clay Street Suite 1900	Action Number:
Houston, TX 77002	337637
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Initial Response

	Nature and Volume of Release (continued)								
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.							
I	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes							
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.							
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	. gas only) are to be submitted on the C-129 form.							

The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

I hereby agree and sign off to the above statement	Name: Karolanne Hudgens Title: HSE Remediation Specialist II Email: karolanne.hudgens@plains.com
	Date: 04/25/2024

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 337637

Page 72 of 76

 QUESTIONS (continued)

 Operator:
 OGRID:

 PLAINS MARKETING L.P.
 34053

 333 Clay Street Suite 1900
 Action Number:

 Houston, TX 77002
 337637

 Action Type:
 [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	Estimate or Other
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release an	d the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	Νο

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 496 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 32490 GRO+DRO (EPA SW-846 Method 8015M) 23130 BTEX (EPA SW-846 Method 8021B or 8260B) 1238 (EPA SW-846 Method 8021B or 8260B) Benzene 114 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 10/26/2021 On what date will (or did) the final sampling or liner inspection occur 04/25/2025 On what date will (or was) the remediation complete(d) 04/25/2025 What is the estimated surface area (in square feet) that will be reclaimed 0 What is the estimated volume (in cubic yards) that will be reclaimed 0 What is the estimated surface area (in square feet) that will be remediated 13858 What is the estimated volume (in cubic yards) that will be remediated 13858 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 337637

QUESTIONS (continued)	
Operator: PLAINS MARKETING L.P. 333 Clay Street Suite 1900 Houston, TX 77002	OGRID: 34053 Action Number: 337637
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Yes
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efi which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Karolanne Hudgens Title: HSE Remediation Specialist II Email: karolanne.hudgens@plains.com

Date: 04/25/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS,	Page	5
QUEUNUNU,	rage	5

Action 337637

Page 74 of 76

QUESTIONS (continued)	
Operator: PLAINS MARKETING L.P. 333 Clay Street Suite 1900 Houston, TX 77002	OGRID: 34053 Action Number: 337637
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	
Deferral Requests Only	

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	No	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

•

QUESTIONS, Page 6

Action 337637

Page 75 of 76

QUESTIONS (continued)		
Operator: PLAINS MARKETING L.P.	OGRID: 34053	
333 Clay Street Suite 1900 Houston, TX 77002	Action Number: 337637	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Sampling Event Information		
Last sampling notification (C-141N) recorded	{Unavailable.}	

No

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.

Requesting a remediation closure approval with this submission

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
PLAINS MARKETING L.P.	34053
333 Clay Street Suite 1900	Action Number:
Houston, TX 77002	337637
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
nvelez	SVE Remediation plan is approved with the following conditions listed at the beginning of the attached file.	5/10/2024

Page 76 of 76

Action 337637