

REMEDIATION WORK PLAN

Hayhurst NM Section 35 CTB Eddy County, New Mexico Incident Number nAPP2302742810

> Prepared for: Chevron USA, Inc. 6301 Deauville Blvd Midland, TX, 79706

Carlsbad • Midland • San Antonio • Lubbock • Hobbs • Lafayette

SYNOPSIS

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Chevron USA, Inc (Chevron), presents the following Remediation Work Plan (RWP) detailing completed corrective actions associated with an inadvertent release of crude oil at the Hayhurst NM section 35 CTB (Site). Chevron proposes this RWP, which summarizes current corrective response efforts and details remediation objectives to rectify remaining environmental impacts.

SITE LOCATION AND RELEASE BACKGROUND

The Site is located in Unit A, Section 35, Township 25 South, Range 27 East, in Eddy County, New Mexico (32.0916°, -104.1523°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (**Figure 1** in **Appendix A**).

On January 12, 2023, a Lease Automatic Custody Transfer (LACT) unit failure resulted in approximately 6.217 barrels (bbls) of crude oil to overflow onto the LACT unit skid and the adjacent production pad surface. Vacuum trucks were immediately dispatched and recovered approximately 4.5 bbls of free-standing fluids. Chevron immediately reported the release to the New Mexico Oil Conservation Division (NMOCD) on a Release Notification and Corrective Action Form C-141 (Form C-141), which was received by the NMOCD on January 27, 2023, and was subsequently assigned Incident Number nAPP2302742810. **Figure 2** in **Appendix A** depicts the observed release area, hereafter referred to as the Area of Concern (AOC).

SITE CHARACTERIZATION AND CLOSURE CRITERIA

Etech characterized the Site according to Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29, Section 12 (19.15.29.12) of the New Mexico Administrative Code (NMAC) considering depth to groundwater and the proximity to:

- Any continuously flowing watercourse or any other significant watercourse;
- Any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark);
- An occupied permanent residence, school, hospital, institution or church;
- A spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes;
- Any freshwater well or spring;
- Incorporated municipal boundaries or a defined municipal fresh water well field covered under a municipal ordinance;
- A wetland;
- A subsurface mine;
- An unstable area (i.e. high karst potential); and
- A 100-year floodplain.

The closest well with available groundwater data is the New Mexico Office of State Engineer (NMOSE) well C-04371, located approximately ½-mile northwest of the Site. The well has a reported groundwater depth of 69 feet below ground surface (bgs) from 2019. Based on this measurement and findings from a regional groundwater data review, depth to groundwater at the Site is estimated to be between 51 and 100 feet bgs. The referenced well record is provided in **Appendix C**.

Based on the desktop review of the current BLM Carlsbad Field Office (CFO) karst cave potential map, this Site is located in a high potential karst area. All other potential receptors are not within the established buffers in NMAC 19.15.29.12. Receptor details and sources used for the site characterization are included **in Figure 1B** and **Figure 1C** in **Appendix A**.

Page 3 of 119

Based on the results from the desktop review, specifically the BLM CFO karst designation, the following Closure Criteria was applied:

Constituents of Concern (COCs)	Laboratory Analytical Method	Closure Criteria [†]
Chloride	(Environmental Protection Agency) EPA 300.0	600 milligrams per kilogram (mg/kg)
Total Petroleum Hydrocarbon (TPH)	EPA 8015 M/D	100 mg/kg
Benzene	EPA 8021B	10 mg/kg
Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA 8021B	50 mg/kg

[†]The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC 19.15.17.13.

SITE ASSEMENT ASSESSMENT ACTIVITIES

On February 10, 2023, Etech personnel conducted site assessment to characterize the subject release by verifying the presence or absence of residual soil impacts within the AOC based on information provided on the Form C-141 and visual observation. Two discrete preliminary assessment soil samples (Sample Point 1 and Sample Point 2) were collected within the AOC at surface level. The locations of the preliminary soil samples are shown in **Figure 2** in **Appendix A**. Photographic documentation of site assessment activities is included in **Appendix D**.

The preliminary assessment soil samples were then placed into lab provided pre-cleaned glass jars, packaged with minimal void space, labeled, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Permian Basin Environmental Laboratory (PBELAB) in Midland, Texas, for analysis of COCs.

Laboratory analytical results indicated elevated TPH concentrations for both preliminary assessment soil samples. As such, further remedial action appeared warranted.

EXCAVATION AND SOIL SAMPLING ACTIVITIES

On August 11, 2023, excavation activities were performed via hand shoveling to remove residual impacts identified by laboratory analytical results, verified information provided on the Form C-141 and visual observations. Excavation activities were driven by field screening soil samples for VOCs and chloride, as previously described.

Following the removal of residual soil impacts, Etech collected 5-point composite confirmation excavation soil samples at a sampling frequency of 200 square feet from the floor (labeled as Bottom Hole) and sidewalls (labeled as North Wall, South Wall, East Wall and West Wall) of the excavation. The 5-point composite samples were comprised of five equivalent aliquots homogenized in a 1-gallon, resealable plastic bag. The soil samples were then handled and analyzed as previously described by Eurofins Environment Testing (Eurofins) in Midland, Texas. Laboratory analytical results indicated one or more elevated COC concentrations present in most excavation sidewalls and throughout the excavation floor.

On March 22, 2024, Etech resumed excavation activities to remove the residual impacts identified by laboratory analytical results. Excavation activities were driven by field screening soil samples for VOCs and chloride, as previously described by PBELAB in Midland, Texas. Following additional soil removal, composite confirmation excavation soil samples were collected from the new excavation floors and sidewalls (as denoted with a suffix of "A") handled and analyzed as previously described. The locations of the final confirmation excavation soil samples are shown in **Figure 2** in **Appendix A**.

Following remediation activities, impacted soil removed from the Site was transported to a licensed and approved New Mexico landfill under Chevron approved waste manifests.

EXCAVATION SOIL SAMPLE LABORATORY ANALYTICAL RESULTS

Laboratory analytical results indicated that concentrations of COCs for all final confirmation excavation soil samples were below the applicable Site Closure Criteria, except soil sample BH13A. Laboratory analytical results for BH13A indicated chloride concentrations exceeded the applicable Site Closure Criteria within the top 1-foot bgs. Laboratory analytical results are summarized in **Table 1** included in **Appendix D**. The executed chain-of-custody forms and laboratory analytical reports are provided in **Appendix E**.

PROPOSED REMEDIATION WORKPLAN AND SCHEDULE

Based on the excavation soil sampling results, the following conclusions regarding the release are presented:

- Laboratory analytical results indicate residual chloride impacts remain within the vicinity of soil sampling location BH13A at 0.75 feet bgs, characterized by the concentration of 4,340 mg/kg. Impacts identified at the BH13A soil sampling location appears to be horizontally delineated by the surrounding confirmation excavation sidewall soil samples and adjacent confirmation excavation floor soil samples.
- Laboratory analytical results for concentrations of COCs for the remaining final confirmation excavation soil samples are below the applicable Site Closure Criteria.

Based on the conclusions drawn above, Chevron proposes the following remedial corrective actions:

- Based on laboratory analytical results, residual impacted soil will be excavated until concentrations of COCs are in accordance with the Site Closure Criteria or the Maximum Extent Practical (MEP). Although Chevron does not anticipate complications for the continuance of excavation activities in proximity to BH13A to Site Closure Criteria, the possibility of additional subsurface and/or surface utilities within the excavation area may restrict the excavation laterally and/or vertically. As such, residual soil impacts will be excavated to the MEP, leaving residual impacted soil in place directly beneath or adjacent to utilities on the production pad.
 - Chevron and/or a third-party operator may implement additional safety precautions above encroachment guidelines at their company's discretion for the health and safety of on-site personnel and for the structural integrity of utilities.
- Following the removal of residual impacts or excavation to the MEP, 5-point confirmation excavation soil samples will be collected from the excavation, handled, and analyzed as previously described. The excavation will then be backfilled with clean, locally sourced soil and restored to "as close to its original state" as possible.
- Upon receipt and review of confirmation excavation soil sample results, Chevron will determine the appropriate measure of corrective actions that will include one of the following:
 - Documenting the removal of impacted soil at the Site with a subsequent Closure Report detailing assessment and sampling activities, including, but not limited to backfilling the excavation with clean, locally sourced soil and restored to "as close to its original state as possible."

- or -

Page 5 of 119

 Documenting and estimating the amount of residual impacted soil to be left in place at the Site with a subsequent Deferral Request Report detailing remediation efforts and soil sampling activities.

If you have any questions or comments, please do not hesitate to contact Joseph Hernandez at (432) 305-6413 or joseph@etechenv.com or Erick Herrera at (432) 305-6413 or erick@etechenv.com. **Appendix G** provides correspondence and notification receipts associated with the subject release.

Sincerely,

eTECH Environmental and Safety Solutions, Inc.

Ericl #

Erick Herrera Staff Geologist

m Ad

Joseph S. Hernandez Senior Managing Geologist

Appendices:

Appendix A: Figure 1: Site Map

Figure 1A: Site Characterization Map – Groundwater
Figure 1B: Site Characterization Map – Surficial Receptors
Figure 1C: Site Characterization Map – Subsurface Receptors
Figure 2: Preliminary Soil Sample Locations

Figure 3: Excavation Soil Sample Locations

Figure 4: Proposed Excavation Area

Appendix B: Referenced Well Records

Remediation Work Plan Incident Number nAPP2302742810 Hayhurst NM Section 35 CTB Released to Imaging: 6/17/2024 7:57:33 AM

- Appendix C: Photographic Log
- Appendix D: Tables
- Appendix E: Laboratory Analytical Reports & Chain-of-Custody Documentation
- Appendix F: Correspondence & Notifications

.

APPENDIX A

Figures

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Released to Imaging: 6/17/2024 7:57:33 AM

APPENDIX B

Referenced Well Records

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

X	1912	Y	www.ose.state	<u>.nm.us</u>						2010 1102	STATE ROSL	
NO	OSE POD NO N/A). (WELL NO	.)		WELL TAG ID NO.	<u> </u>	OSE FILE N C-4371	O(\$).		1		
OCATI	well own Tetra Tech		behalf of Chevron N	I.A. E&P Co.			PHONE (OP 432-687-8		· ··· ····	PH 4		
AND WELL LOCATION	WELL OWN 901 W. Wa						CITY Midland		state TX	f9306		
GENERAL AND	WELL LOCATIO (FROM GE	rs)	DF TITUDE NGITUDE	GREES 32 104	5 4	onds 1.91 N 1.92 W						
1. GEV	DESCRIPTIO	ON RELATE	NG WELL LOCATION TO	STREET ADDR	ESS AND COMMON LAND	MARKS – PL	SS (SECTION, 1	FOWN SHJIP, RA NGE) WH	IERE AVAIL	ABLE		
	LICENSE NO WD-1		NAME OF LICENSED		John W. White			NAME OF WELL DR White I		MPANY mpany, Inc.	· · · · · · · · · · · · · · · · · · ·	
	DRILLING S 10/17/		DRILLING ENDED 10/17/2019	DEPTH OF CO	MPLETED WELL (FT)	BORE HO	le depth (ft 100		69			
NO	COMPLETE	D WELL IS:	ARTESIAN	DRY HOL	E 🗹 SHALLOW (UNG	CONFINED)		STATIC WATER LEV	VEL IN COM 69	PLETED WE	LL (FT)	
ATIC	DRILLING F	LUID:	🖌 AIR		ADDITIVES - SP	ECIFY:						
RM	DRILLING N	ÆTHOD:	ROTARY		CABLE TOOL	П отні	ER – SPECIFY:					
CASING INFORMATION	DEPTH FROM	(feet bgl) TO	BORE HOLE DIAM (inches)	(include e	MATERIAL AND/OR GRADE such casing string, and sections of screen)	CON	ASING NECTION FYPE pling diameter)	CASING INSIDE DIAM. (inches)	THIC	G WALL KNESS ches)	SLOT SIZE (inches)	
- 4												
DRILLING												
						<u> </u>					 	
2. DH								_				
						-			-			
						1					<u> </u>	
								-		- · ·		
										·		
		(feet bgi)	BORE HOLE DIAM. (inches)		ST ANNULAR SEAL M VEL PACK SIZE-RANG			AMOUNT (cubic feet)		METHO	-	
NIA	FROM	то		UKA				(cable seet)				
ATE												
ANNULAR MATERIAL												
				1				1				
					· · · · · · · · · · · · · · · · · · ·						<u>.</u>	
3 V												
FOR	OSE INTER						WR	-20 WELL RECORD	& LOG (V	ersion 04/3	0/19)	
FILI	E NO.	<u>('-4</u> -	371		POD NO.	_/	TRI	NO. (161)	311			
	CATION				.26.433		WELL TAG	ID NO.		PAGE	1 OF 2	
Releas	ed to Imag	ging: 6/1	7/2024 7:57:33	4 <i>M</i>								

.

	DEPTH (f	eet bgl)		COLOR AN	D TYPE OF MATERIAL EN	COUNTERED -		WAT	FR	ESTIMATED YIELD FOR
	FROM	то	THICKNESS (feet)	INCLUDE WATE	R-BEARING CAVITIES OF plemental sheets to fully de	R FRACTURE Z		BEAR (YES)	ING?	WATER- BEARING ZONES (gpm)
	0	5	5		Tan clayey sand			Y	√ N	EOINES (Epita)
	5	100	95		Gypsum			√ Y	N	
								Y	N	
								Y	N	
			······					Y	N	
								Y	N	
/ELI							• •	Y	N	
JF W						· · · · · · · · · · · · · · · · · · ·		Y		
000								Y	N	
HYDROGEOLOGIC LOG OF WELL								Y	N	
00								Y	N	
EOI								Y	N	i
Sog						·····		Y	N	
IQXI								Y	N	
4. E								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
								Y	N	
	METHOD U	ISED TO ES	TIMATE YIELD	OF WATER-BEARING	G STRATA:		тот	AL ESTIN	IATED	
	PUM	P 🗖 A	IR LIFT	BAILER OT	HER – SPECIFY:		WE	LL YIELD	(gpm) :	0.00
Z	WELL TES	T TEST STAR	RESULTS - ATT T TIME, END TI	ACH A COPY OF DAT ME, AND A TABLE SE	'A COLLECTED DURING '	WELL TESTING D DRAWDOWN	, INCLUD	NG DISC E TESTIN	HARGE N IG PERIO	/IETHOD, D.
TEST; RIG SUPERVISIO	MISCELLA	NEOUS INI	FORMATION:					·		
ER							`			
INS										
RIG										
EST:	PDDIT NAL				VIDED ONSITE SUPERVI	NON OF WELL	CONSTRU	CTION O	гигр ти	AN I KENSEE
E S		• •	KILL KIU SUFEI	KVISOR(S) IIIAI I RO	VIDED ONSHE SULERVI		CONSTRU			
	Dallas Rade	л 			·····					
	BY SIGNIN	G BELOW	, I CERTIFY T	LAT TO THE BEST O	F MY KNOWLEDGE ANI	BELIEF, THE	FOREGO	NG IS A	TRUE A	ND CORRECT
URLE	WELL REC	F THE ABO	ALSO BE FILED) WITH THE PERMIT F	IFY THAT THE WELL TA FOLDER WITHIN 30 DAYS	AFTER THE CO), HAS BEI OMPLETIC	en insta n of we	LLED AF	LING.
SIGNATURE	r									
SIG		ha	⇒				1/5	281	9	
ġ		SIGNAT	URE OF DRILLI	ER / PRINT SIGNEE	NAME	_		~0 I	DATE	
	4	/		•	· · · · · · · · · · · · · · · · · · ·					
	R OSE INTER	NAL USE		- ··· ····				CORD &	LOG (Ve	rsion 04/30/2019)
<u> </u>	E NO.			<u></u>	POD NO.	TRN N				PACEACEA
l ro	CATION					WELL TAG ID	NO.			PAGE 2 OF 2

Released to Imaging: 6/17/2024 7:57:33 AM

APPENDIX C

Photographic Log

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

APPENDIX D

Tables

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

.

E	H	Table 1 SOIL SAMPLE ANALYTICAL RESULTS Chevron USA, Inc. Hayhurst NM Section 35 CTB Eddy County, New Mexico											
Sample I.D.	Sample Date	Sample Depth (inches)	Sample Depth (feet bgs)	Benzene (mg/kg)	Total BTEX (mg/kg)	TPH GRO (mg/kg)	TPH DRO (mg/kg)	TPH ORO (mg/kg)	Total TPH (mg/kg)	Chloride (mg/kg)			
NMOCD Table I Closure 19.15.29)	e Criteria for Soi	Is Impacted by a F	Release (NMAC	10	50	NE	NE	NE	100	600			
				Preliminary	Soil Samples - Incider	nt Number nAPP230274	42810	1					
Sample Point 1	02/10/2023	0-3	0-0.25	<0.00116	0.00301	<29.1	55.5	<29.1	55.5	7.37			
Sample Point 2	02/10/2023	0-3	0-0.25	<0.00114	32.8	2,380	8,470	270	11,100	5.25			
				Excavation	Soil Samples - Incider	nt Number nAPP230274	42810						
Bottom Hole 1	08/11/2023	12	1	<0.00200	<0.00400	<49.6	<49.6	<49.6	<49.6	334			
Bottom Hole 2	08/11/2023	12	1	<0.00199	<0.00398	<50.2	64.0	<50.2	64.0	707			
Bottom Hole 2A	03/22/2024	12.5	1.04	<0.00103	<0.00206	<25.8	30.6	<25.8	30.6	170			
Bottom Hole 3	08/11/2023	6	0.5	<0.00201	<0.00402	<50.4	<50.4	<50.4	<50.4	241			
Bottom Hole 4	08/11/2023	9	0.75	<0.00200	<0.00401	<50.5	1,630	<50.5	1,630	469			
Bottom Hole 4A	03/22/2024	10	0.83	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	75.4			
Bottom Hole 5	08/11/2023	6	0.5	<0.00200	<0.00399	<50.0	53.7	<50.0	53.7	551			
Bottom Hole 6	08/11/2023	6	0.5	<0.00199	<0.00398	<49.9	510	<49.9	510	583			
Bottom Hole 6A	03/22/2024	8	0.67	<0.00106	<0.00213	<26.6	<26.6	<26.6	<26.6	111			
Bottom Hole 7	08/11/2023	6	0.5	<0.00198	<0.00396	<50.2	<50.2	<50.2	<50.2	706			
Bottom Hole 7A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	131			
Bottom Hole 8	08/11/2023	9	0.75	<0.00199	<0.00398	<50.1	4,700	<50.1	4,700	399			
Bottom Hole 8A	03/22/2024	12	1	<0.00110	<0.00220	<27.5	<27.5	<27.5	<27.5	60.3			
Bottom Hole 9	08/11/2023	6	0.5	<0.00202	<0.00403	<50.5	295	<50.5	295	437			
Bottom Hole 9A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	132			
Bottom Hole 10	08/11/2023	9	0.75	<0.00201	<0.00402	<49.9	59.0	<49.9	59.0	306			
Bottom Hole 11A	03/22/2024	8	0.67	<0.00105	<0.00211	<26.3	<26.3	<26.3	<26.3	107			
Bottom Hole 12A	03/22/2024	8	0.67	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	231			
Bottom Hole 13A	03/22/2024	8	0.67	<0.00108	<0.00215	<26.9	<26.9	<26.9	<26.9	4,340			
Bottom Hole 14A	03/22/2024	8	0.67	<0.00104	<0.00208	<26.0	<26.0	<26.0	<26.0	236			

•

E TEC	CH			SOI	Table L SAMPLE ANALY Chevron US Hayhurst NM Sec Eddy County, N	TICAL RESULTS A, Inc. tion 35 CTB					
Sample I.D.	Sample Date	Sample Depth (inches)									
NMOCD Table I Closur 19.15.29)	e Criteria for Soi	Is Impacted by a	Release (NMAC	10	50	NE	NE	NE	100	600	
North Wall	08/11/2023 03/22/2024	0-6 0-6	0-0.5 0-0.5	<0.00200 <0.00103	<0.00401 <0.00206	<49.6 <25.8	167 <25.8	<49.6 <25.8	167 <25.8	803 127	
South Wall	08/11/2023	0-6 0-6	0-0.5 0-0.5	<0.00200 <0.00104	<0.00400	<49.5 <26.0	90.8	<49.5 <26.0	90.8	654 91.8	
East Wall East Side Wall A	08/11/2023 03/22/2024	0-6 0-6	0-6 0-0.5 <0.00199 <0.00398 <50.0 51.2 <50.0 51.2 1,710								
West Wall	08/11/2023	0-6	0-0.5	<0.00198	<0.00396	<50.3	69.4	<50.3	69.4	360	

Notes:

bgs: below ground surface mg/kg: milligrams per kilogram

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon

NMOCD: New Mexico Oil Conservation Division

NMAC: New Mexico Administrative Code

Text in ""grey"" represents excavated soil samples

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria and/or Reclamation Standard[†] for Soils Impacted by a Release

[†] The reclamation concentration requirements of 600 mg/kg chloride and 100 mg/kg TPH apply to the top 4 feet of areas to be immediately reclaimed following remediation pursuant to NMAC

19.15.17.13.

APPENDIX E

Laboratory Analytical Reports & Chain-of-Custody Documentation

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report

Prepared for:

Blake Estep E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: Hayhurst Section 35 CTB Project Number: 17586 Location: New Mexico

Lab Order Number: 3B15006

Current Certification

Report Date: 02/22/23

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Sample Point -1 @ 0"-3"	3B15006-01	Soil	02/14/23 11:15	02-15-2023 12:36
Sample Point -2 @ 0"-3"	3B15006-02	Soil	02/14/23 11:19	02-15-2023 12:36

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Sample Point -1 @ 0"-3"

3B15006-01 (Soil)

Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
	Kesuit	Limit	Units	Dilution	Datch	Flepared	Anaryzed	Wiethod	Notes
		Р	ermian Ba	asin Envi	ronmental I	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Toluene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Ethylbenzene	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Xylene (p/m)	0.00301	0.00233	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Xylene (o)	ND	0.00116	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		76.1 %	80-120		P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	S-GC
Surrogate: 1,4-Difluorobenzene		103 %	80-120		P3B1610	02/16/23 15:49	02/16/23 21:15	EPA 8021B	
Total Petroleum Hvdrocarbons C6	5-C35 by EP	A Method	8015M						
C6-C12	ND	29.1	mg/kg dry	1	P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
C6-C12 >C12-C28	ND 55.5	29.1 29.1		1	P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M	
			mg/kg dry	1					
>C12-C28	55.5 ND	29.1	mg/kg dry mg/kg dry	1	P3B1804	02/18/23 09:30	02/20/23 12:23	TPH 8015M	
>C12-C28 >C28-C35	55.5 ND	29.1 29.1	mg/kg dry mg/kg dry mg/kg dry	1	P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M	
>C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	55.5 ND	29.1 29.1 85.9 %	mg/kg dry mg/kg dry mg/kg dry 70-130	1	P3B1804 P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M TPH 8015M	
>C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl	55.5 ND	29.1 29.1 85.9 % 105 %	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130	1	P3B1804 P3B1804 P3B1804 P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30 02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23 02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	
>C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon	55.5 ND 55.5	29.1 29.1 85.9 % 105 % 29.1	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130 mg/kg dry	1	P3B1804 P3B1804 P3B1804 P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30 02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23 02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	
>C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon C6-C35	55.5 ND 55.5	29.1 29.1 85.9 % 105 % 29.1	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130 mg/kg dry	1	P3B1804 P3B1804 P3B1804 P3B1804 P3B1804	02/18/23 09:30 02/18/23 09:30 02/18/23 09:30 02/18/23 09:30	02/20/23 12:23 02/20/23 12:23 02/20/23 12:23 02/20/23 12:23	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	Number:	Hayhurst Sec 17586 Blake Estep	tion 35 CTB			
				•	t -2 @ 0''-3 -02 (Soil)	;"			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00114	mg/kg dry	1	P3B1610	02/16/23 15:49	02/16/23 21:36	EPA 8021B	
Toluene	2.99	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Ethylbenzene	2.23	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Xylene (p/m)	20.6	0.114	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Xylene (o)	7.01	0.0568	mg/kg dry	50	P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		82.3 %	80-120		P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		113 %	80-120		P3B1610	02/16/23 15:49	02/17/23 10:05	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
C6-C12	2380	142	mg/kg dry	5	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M	
>C12-C28	8470	142	mg/kg dry	5	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M	
>C28-C35	270	28.4	mg/kg dry	1	P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M	
Surrogate: 1-Chlorooctane		97.2 %	70-130		P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P3B1804	02/18/23 09:30	02/21/23 08:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	11100	142	mg/kg dry	5	[CALC]	02/18/23 09:30	02/21/23 08:51	calc	
General Chemistry Parameters by	EPA / Stand	lard Metl	hods						
Chloride	5.25	1.14	mg/kg dry	1	P3B1709	02/17/23 15:57	02/18/23 05:23	EPA 300.0	
% Moisture	12.0	0.1	%	1	P3B1603	02/16/23 10:06	02/16/23 10:10	ASTM D2216	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3B1610 - *** DEFAULT PREP ***										
Blank (P3B1610-BLK1)				Prepared &	Analyzed:	02/16/23				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100	"							
Xylene (p/m)	ND	0.00200	"							
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.127		"	0.120		106	80-120			
Surrogate: 4-Bromofluorobenzene	0.0832		"	0.120		69.3	80-120			S-GC
LCS (P3B1610-BS1)				Prepared &	Analyzed:	02/16/23				
Benzene	0.0962	0.00100	mg/kg	0.100		96.2	80-120			
Toluene	0.0895	0.00100	"	0.100		89.5	80-120			
Ethylbenzene	0.0973	0.00100	"	0.100		97.3	80-120			
Xylene (p/m)	0.161	0.00200	"	0.200		80.6	80-120			
Xylene (o)	0.0910	0.00100	"	0.100		91.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.0931		"	0.120		77.6	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.138		"	0.120		115	80-120			
LCS Dup (P3B1610-BSD1)				Prepared &	z Analyzed:	02/16/23				
Benzene	0.105	0.00100	mg/kg	0.100		105	80-120	8.36	20	
Toluene	0.0993	0.00100	"	0.100		99.3	80-120	10.5	20	
Ethylbenzene	0.109	0.00100	"	0.100		109	80-120	10.9	20	
Xylene (p/m)	0.175	0.00200	"	0.200		87.5	80-120	8.18	20	
Xylene (o)	0.102	0.00100	"	0.100		102	80-120	11.3	20	
Surrogate: 1,4-Difluorobenzene	0.142		"	0.120		119	80-120			
Surrogate: 4-Bromofluorobenzene	0.0976		"	0.120		81.3	80-120			
Calibration Blank (P3B1610-CCB1)				Prepared &	Analyzed:	02/16/23				
Benzene	0.00		ug/kg							
Toluene	0.00		"							
Ethylbenzene	0.120									
Xylene (p/m)	0.170									
Xylene (o)	0.00		"							
Surrogate: 4-Bromofluorobenzene	0.0905		"	0.120		75.4	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.133		"	0.120		111	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian	Basin	Environmenta	l Lab, L.P.
---------	-------	--------------	-------------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1610 - *** DEFAULT PREP ***										
Calibration Blank (P3B1610-CCB2)				Prepared &	Analyzed:	02/16/23				
Benzene	0.00		ug/kg	1	2					
Toluene	0.00		"							
Ethylbenzene	0.110		"							
Xylene (p/m)	0.370		"							
Xylene (o)	0.00		"							
Surrogate: 1,4-Difluorobenzene	0.125		"	0.120		104	80-120			
Surrogate: 4-Bromofluorobenzene	0.0931		"	0.120		77.6	80-120			<i>S-G</i>
Calibration Check (P3B1610-CCV1)				Prepared &	Analyzed:	02/16/23				
Benzene	0.116	0.00100	mg/kg	0.100		116	80-120			
Toluene	0.104	0.00100	"	0.100		104	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.177	0.00200	"	0.200		88.4	80-120			
Xylene (o)	0.107	0.00100	"	0.100		107	80-120			
Surrogate: 1,4-Difluorobenzene	0.140		"	0.120		116	75-125			
Surrogate: 4-Bromofluorobenzene	0.0900		"	0.120		75.0	75-125			
Calibration Check (P3B1610-CCV2)				Prepared &	Analyzed:	02/16/23				
Benzene	0.106	0.00100	mg/kg	0.100	•	106	80-120			
Toluene	0.105	0.00100	"	0.100		105	80-120			
Ethylbenzene	0.107	0.00100	"	0.100		107	80-120			
Xylene (p/m)	0.184	0.00200	"	0.200		92.0	80-120			
Xylene (o)	0.105	0.00100	"	0.100		105	80-120			
Surrogate: 1,4-Difluorobenzene	0.134		"	0.120		112	75-125			
Surrogate: 4-Bromofluorobenzene	0.0969		"	0.120		80.7	75-125			
Calibration Check (P3B1610-CCV3)				Prepared: 0)2/16/23 Ai	nalyzed: 02	/17/23			
Benzene	0.113	0.00100	mg/kg	0.100		113	80-120			
Toluene	0.110	0.00100	"	0.100		110	80-120			
Ethylbenzene	0.111	0.00100	"	0.100		111	80-120			
Xylene (p/m)	0.188	0.00200	"	0.200		94.0	80-120			
Xylene (o)	0.111	0.00100	"	0.100		111	80-120			
Surrogate: 4-Bromofluorobenzene	0.0963		"	0.120		80.2	75-125			
Surrogate: 1,4-Difluorobenzene	0.138		"	0.120		115	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P3B1610 - *** DEFAULT PREP ***

Matrix Spike (P3B1610-MS1)	Sour	ce: 3B14016	-28	Prepared: 0	2/16/23 A	nalyzed: 02	2/17/23			
Benzene	0.0885	0.00102	mg/kg dry	0.102	ND	86.8	80-120			
Toluene	0.0889	0.00102	"	0.102	ND	87.2	80-120			
Ethylbenzene	0.0979	0.00102		0.102	ND	96.0	80-120			
Xylene (p/m)	0.161	0.00204		0.204	ND	78.8	80-120			S-GC
Xylene (o)	0.0858	0.00102		0.102	ND	84.1	80-120			
Surrogate: 4-Bromofluorobenzene	0.102		"	0.122		83.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.138		"	0.122		113	80-120			
Matrix Spike Dup (P3B1610-MSD1)	Sour	·ce: 3B14016	-28	Prepared: 0	2/16/23 A	nalyzed: 02	2/17/23			
Benzene	0.0891	0.00102	mg/kg dry	0.102	ND	87.3	80-120	0.632	20	
Toluene	0.0854	0.00102	"	0.102	ND	83.7	80-120	4.03	20	
Ethylbenzene	0.0911	0.00102	"	0.102	ND	89.3	80-120	7.26	20	
Xylene (p/m)	0.147	0.00204	"	0.204	ND	72.2	80-120	8.80	20	QM-05
Xylene (o)	0.0809	0.00102		0.102	ND	79.3	80-120	5.89	20	QM-05
Surrogate: 4-Bromofluorobenzene	0.0962		"	0.122		78.6	80-120			S-GC
Surrogate: 1,4-Difluorobenzene	0.140		"	0.122		114	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

CTB

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch P3B1804 - TX 1005											
Blank (P3B1804-BLK1)	Prepared: 02/18/23 Analyzed: 02/20/23										
C6-C12	ND	25.0	mg/kg								
>C12-C28	ND	25.0									
>C28-C35	ND	25.0									
Surrogate: 1-Chlorooctane	86.1		"	100		86.1	70-130				
Surrogate: o-Terphenyl	50.4		"	50.0		101	70-130				
LCS (P3B1804-BS1)				Prepared: ()2/18/23 Ai	nalyzed: 02	/20/23				
C6-C12	854	25.0	mg/kg	1000		85.4	75-125				
>C12-C28	983	25.0		1000		98.3	75-125				
Surrogate: 1-Chlorooctane	122		"	100		122	70-130				
Surrogate: o-Terphenyl	61.8		"	50.0		124	70-130				
LCS Dup (P3B1804-BSD1)				Prepared: ()2/18/23 Ai	nalyzed: 02	/20/23				
C6-C12	846	25.0	mg/kg	1000		84.6	75-125	0.883	20		
>C12-C28	974	25.0		1000		97.4	75-125	0.951	20		
Surrogate: 1-Chlorooctane	120		"	100		120	70-130				
Surrogate: o-Terphenyl	61.0		"	50.0		122	70-130				
Calibration Check (P3B1804-CCV1)				Prepared: ()2/18/23 Ai	nalyzed: 02	/20/23				
C6-C12	465	25.0	mg/kg	500		93.1	85-115				
>C12-C28	466	25.0		500		93.3	85-115				
Surrogate: 1-Chlorooctane	101		"	100		101	70-130				
Surrogate: o-Terphenyl	49.6		"	50.0		99.3	70-130				
Calibration Check (P3B1804-CCV2)				Prepared: ()2/18/23 Ai	nalyzed: 02	/20/23				
C6-C12	445	25.0	mg/kg	500		89.0	85-115				
>C12-C28	448	25.0		500		89.7	85-115				
Surrogate: 1-Chlorooctane	96.4		"	100		96.4	70-130				
Surrogate: o-Terphenyl	47.8		"	50.0		95.5	70-130				

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P3B1804 - TX 1005										
Calibration Check (P3B1804-CCV3)				Prepared: (02/18/23 At	nalyzed: 02	/20/23			
C6-C12	444	25.0	mg/kg	500		88.8	85-115			
>C12-C28	456	25.0	"	500		91.2	85-115			
Surrogate: 1-Chlorooctane	97.3		"	100		97.3	70-130			
Surrogate: o-Terphenyl	47.8		"	50.0		95.6	70-130			
Matrix Spike (P3B1804-MS1)	Sou	rce: 3B14016	-21	Prepared: (02/18/23 Ai	nalyzed: 02	/20/23			
C6-C12	696	25.5	mg/kg dry	1020	ND	68.2	75-125			QM-05
>C12-C28	819	25.5	"	1020	ND	80.3	75-125			
Surrogate: 1-Chlorooctane	91.4		"	102		89.6	70-130			
Surrogate: o-Terphenyl	45.2		"	51.0		88.6	70-130			
Matrix Spike Dup (P3B1804-MSD1)	Sou	rce: 3B14016	-21	Prepared: (02/18/23 Ai	nalyzed: 02	/20/23			
C6-C12	696	25.5	mg/kg dry	1020	ND	68.2	75-125	0.0117	20	QM-05
>C12-C28	820	25.5		1020	ND	80.3	75-125	0.0436	20	
Surrogate: 1-Chlorooctane	90.9		"	102		89.1	70-130			
Surrogate: o-Terphenyl	46.4		"	51.0		90.9	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1603 - *** DEFAULT PREP ***										
Blank (P3B1603-BLK1)				Prepared &	Analyzed:	02/16/23				
% Moisture	ND	0.1	%	· ·						
Duplicate (P3B1603-DUP1)	Sour	ce: 3B14013-	07	Prepared &	analyzed:	02/16/23				
% Moisture	9.0	0.1	%		9.0			0.00	20	
Duplicate (P3B1603-DUP2)	Sour	ce: 3B14015-	07	Prepared & Analyzed: 02/16/23						
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P3B1603-DUP3)	Sour	ce: 3B14015-	-22	Prepared &	Analyzed:	02/16/23				
% Moisture	6.0	0.1	%		6.0			0.00	20	
Duplicate (P3B1603-DUP4)	Sour	ce: 3B14016-	.09	Prepared & Analyzed: 02/16/23						
% Moisture	10.0	0.1	%		10.0			0.00	20	
Duplicate (P3B1603-DUP5)	Sour	ce: 3B14016-	-24	Prepared & Analyzed: 02/16/23						
% Moisture	3.0	0.1	%		4.0			28.6	20	R
Duplicate (P3B1603-DUP6)	Sour	ce: 3B15004-	01	Prepared &	Analyzed:	02/16/23				
% Moisture	7.0	0.1	%		7.0			0.00	20	
Duplicate (P3B1603-DUP7)	Sour	ce: 3B15004-	07	Prepared &	Analyzed:	02/16/23				
% Moisture	7.0	0.1	%		8.0			13.3	20	
Duplicate (P3B1603-DUP8)	Source: 3B15007-02			Prepared &	Analyzed:	02/16/23				
% Moisture	8.0	0.1	%		8.0			0.00	20	
Batch P3B1709 - *** DEFAULT PREP ***										
Blank (P3B1709-BLK1)				Prepared: ()2/17/23 A	nalyzed: 02	/18/23			
Chloride	ND	1.00	mg/kg							

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Spike Source %REC RPD Level Result %REC Limits RPD Limit Notes epared: 02/17/23 Analyzed: 02/18/23						
epared: 02/17/23 Analyzed: 02/18/23 20.0 107 90-110 epared: 02/17/23 Analyzed: 02/18/23						
20.0 107 90-110 epared: 02/17/23 Analyzed: 02/18/23						
20.0 107 90-110 epared: 02/17/23 Analyzed: 02/18/23						
epared: 02/17/23 Analyzed: 02/18/23						
20.0 105 90-110 2.12 10						
Prepared & Analyzed: 02/17/23						
<u> </u>						
Prepared: 02/17/23 Analyzed: 02/18/23						
· · · ·						
epared & Analyzed: 02/17/23						
20.0 105 90-110						
Prepared: 02/17/23 Analyzed: 02/18/23						
20.0 108 90-110						
epared: 02/17/23 Analyzed: 02/20/23						
20.0 103 90-110						
epared: 02/17/23 Analyzed: 02/18/23						
258 127 97.1 80-120						
epared: 02/17/23 Analyzed: 02/18/23						
510 2570 67.7 80-120 QM						
epared: 02/17/23 Analyzed: 02/18/23						
258 127 101 80-120 2.31 20						
epa 20 epa 20 epa 20 epa 20 epa 25 51 epa						

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin	Environmental Lab, L.P.
---------------	-------------------------

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P3B1709 - *** DEFAULT PREP ***										
Matrix Spike Dup (P3B1709-MSD2)	Source: 3B15005-02		Prepared: 02/17/23 Analyzed: 02/18/23			/18/23				
Chloride	2440	10.2 n	ng/kg dry	510	2570	NR	80-120	17.8	20	QM-05

Permian Basin Environmental Lab, L.P.
E Tech Environmental & Safety Solutions, Inc. [1]	Project:	Hayhurst Section 35 CTB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Notes and Definitions

S-GC	Surrogate recovery outside of control limits. The data was accepted based on valid recovery of the remaining surrogate.
ROI	Received on Ice
R3	The RPD exceeded the acceptance limit due to sample matrix effects.
QM-05	The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
NPBEL CO	Chain of Custody was not generated at PBELAB
BULK	Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
DET	Analyte DETECTED
ND	Analyte NOT DETECTED at or above the reporting limit
NR	Not Reported
dry	Sample results reported on a dry weight basis
RPD	Relative Percent Difference
LCS	Laboratory Control Spike
MS	Matrix Spike
Dup	Duplicate

Report Approved By:

Bun Barron

Date:

2/22/2023

Brent Barron, Laboratory Director/Technical Director

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: Hayhurst Section 35 CTB	
13000 West County Road 100	Project Number: 17586	
Odessa TX, 79765	Project Manager: Blake Estep	

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Permian Basin Environmental Lab.

Received by OCD: 6/6/2024 7:13:09 AM

Re	ceiv	ed by	y OCI	D: 6/6	5/202	24 7	:13	:09	AM	ſ												_					Page	39 of 11	19
	Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions:												1	2	-	LAB # (lab use only)		ORDER #: 3P	(lab use only)		City/State/Zip: Sampler Signature:	Company Address:	Project Manager: Company Name:	1400 Rankin Hwy	PBB	
		1 Con Con	Shitzh	ions:														Sample Point	FIELD		910000			e: Haldely	P.U. Box b	1		IAT	
-	Date	Date	2 R 15-23 12														Point 2	7	FIELD CODE					for DP	<u>6</u> 70711	Blake Estep Etech Environmental & Safety Solutions, Inc.	Midland Texas 79701	Permian Basin Environmental Lab, LP	
	lime	Time	11me		\vdash						-	-		-		-	0	0	Start Depth	1				email:		Solut	-	E	
	Red	Rec	Rec		\vdash				_	-	-	-				-	-		End Depth	1				1		ions,			
-	Sedewed by:	Received by	Received by		\vdash					-	_		_	-	_	_	5			Prese	1			olake		Inc.		in the second seco	
	$\overline{\mathcal{O}}$	by:	by														2-10-23	2-10-23	Date Sampled	Preservation & # of Containers				blake@etechenv.com				tal Lab.	
	lane																11:19	11:15	Time Sampled	Containers				nv.com			Phones 4		
					-				_	_	_			_		_	-	-	No. of Containers								132-686-7235		
																	×	X	Ice HNO ₃	+							196		
																			HNO ₃ HCI	1							72		
																			H ₂ SO ₄	1							5		
																			NaOH										
				-															Na ₂ S ₂ O ₃									CH	
	2																		None				Re	X	1		Pr	AIN	
	SAL	Date	Date																Other (Specify)					XBill Etech	Aled.	Project #:	Project Name:	OF	
	Co																V	S	DW=Drinking Water SL=Sludge GW = Groundwater S=Soil/Solid	Matrix			FOIN			. ct	ct	5	
	2-]														10,	NP=Non-PotableSpecify Other		•		lat o	tec		.#	Nar	ISTO	
	J.SC	Time															K	\$	TPH: 418.1 015 1005 1	006				, P		7	ne	Nac	
	-	(0. (0	0.00																Cations (Ca, Mg, Na, K)							8	2	RE	
	Temperature Upon Receipt:	Sar by Sampler/Client Rep. Sar by Courrier? UPS	Custody seals on coole Custody seals on coole Sample Haind Delivered	Sample Containers Intact? VOCs Free of Headspace?	aboratory Comments:														Anions (Cl, SO4, CO3, HCO3	1		3 4		5		6	3	6	
	berat	y Co	ody ole T	s Fro																1		TCLP:				11		RD	
	ture	ourie	seal	ònta ee o															SAR / ESP / CEC Metals: As Ag Ba Cd Cr Pb Hg	So						Pro	T	AN	
	Upo	er/O	s on Deli	fHe						_										Je				5	-	Die	ay	DA	
	n Re	lient	coo	s Int adsp															Volatiles	_		-	Ana		Г U#. ·	Project Loc:	fauhurst	NA	
	ceip	UPS UPS	ler(s d	act?														12	Semi volatiles B EX 8021B/5030 or BTEX 82	60			lyze	z		- 00	3	LYS	
	4	., Д	Custody seals on contrainer(s) Custody seals on cooler(s) Sample Hand Delivered																RCI	.00	+		Analyze For:		1	3		1 SI	
1	T	Ł																	N.O.R.M.		+			2		25	S	REQ	
207	Ì	Fe															N	8	Chlorides	_	1		11		0		<i>lection</i>	CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST	
CH		FedEx	- + +	~~~	-0																1		11				t.	ST	
	2	40	1-	2																	T						3		
	°-	N Lone Star	zzz	ZZZ															RUSH TAT(Pre-Schedule) 24,	48, 7	72 hrs	5					28		
	W	tar															X	X	STANDARD TAT								1		
	1000					_	-																						

Page 15 of 15

Released to Imaging: 6/17/2024 7:57:33 AM

Received by OCD: 6/6/2024 7:13:09 AM

Environment Testing

Page 40 of 119

ANALYTICAL REPORT

PREPARED FOR

Attn: Blake Estep Etech Environmental & Safety Solutions PO BOX 62228 Midland, Texas 79711 Generated 8/24/2023 10:08:42 AM

JOB DESCRIPTION

NM Hayhurst Section 35 CTB SDG NUMBER 1786

JOB NUMBER

880-32113-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

8/24/2023 10:08:42 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Generated

SDG: 1786

Laboratory Job ID: 880-32113-1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	18
QC Sample Results	20
QC Association Summary	26
Lab Chronicle	30
Certification Summary	35
Method Summary	36
Sample Summary	37
Chain of Custody	38
Receipt Checklists	39

	Definitions/Glossary		
	Environmental & Safety Solutions Job ID: 880-32		
Project/Site: N	IM Hayhurst Section 35 CTB SDG:	: 1786	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
*+	LCS and/or LCSD is outside acceptance limits, high biased.		
S1-	Surrogate recovery exceeds control limits, low biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA	N Contraction of the second		
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			1
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		4
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOD			
LOQ	Limit of Quantitation (DoD/DOE)		
	Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level"		

MDC Minimum Detectable Concentration (Radiochemistry)

MDLMethod Detection LimitMLMinimum Level (Dioxin)MPNMost Probable NumberMQLMethod Quantitation LimitNCNot CalculatedNDNot Detected at the reporting limit (or MDL or EDL if shown)

NEG	Negative / Absent
POS	Positive / Present
PQL	Practical Quantitation Limit
PRES	Presumptive
QC	Quality Control

 RER
 Relative Error Ratio (Radiochemistry)

 RL
 Reporting Limit or Requested Limit (Radiochemistry)

 RPD
 Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Job ID: 880-32113-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-32113-1

Receipt

The samples were received on 8/15/2023 4:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.3°C

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: South Wall (880-32113-12), East Wall (880-32113-13), West Wall (880-32113-14) and (890-5106-A-1-G). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside control limits: Bottom Hole-2 (880-32113-2) and Bottom Hole-9 (880-32113-9). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-60871 and analytical batch 880-60869 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-60869 recovered above the upper control limit for Toluene, m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-60869/2).

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-60938 and analytical batch 880-60869 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-60869 recovered above the upper control limit for m-Xylene & p-Xylene and o-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-60869/51).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-60741 and analytical batch 880-60776 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (890-5126-A-1-D) and (890-5126-A-1-E MS). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: Bottom Hole-4 (880-32113-4). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: Bottom Hole-6 (880-32113-6), Bottom Hole-9 (880-32113-9) and Bottom Hole-10 (880-32113-10). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-60776/20), (CCV 880-60776/31) and (CCV 880-60776/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 44 of 119

Case Narrative

Job ID: 880-32113-1
SDG: 1786

Job ID: 880-32113-1 (Continued)

Laboratory: Eurofins Midland (Continued)

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: Bottom Hole-1 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-1

Matrix: Solid

5

Method: SW846 8021B - Volatile					Unit		Dropered	Analyzed	DH F-
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Toluene	<0.00200	U 	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
m-Xylene & p-Xylene	<0.00400		0.00400		mg/Kg		08/23/23 17:45	08/24/23 03:32	
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Xylenes, Total	<0.00400	U *+	0.00400		mg/Kg		08/23/23 17:45	08/24/23 03:32	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	85		70 - 130				08/23/23 17:45	08/24/23 03:32	
1,4-Difluorobenzene (Surr)	73		70 - 130				08/23/23 17:45	08/24/23 03:32	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			08/24/23 10:35	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.6	U	49.6		mg/Kg			08/23/23 11:00	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(60)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.6		49.6		mg/Kg	<u> </u>	08/21/23 14:10	08/22/23 14:06	
(GRO)-C6-C10	\$43.0	0	43.0		ilig/itg		00/21/23 14.10	00/22/23 14:00	
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 14:06	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 14:06	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130				08/21/23 14:10	08/22/23 14:06	
o-Terphenyl	98		70 - 130				08/21/23 14:10	08/22/23 14:06	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	334		25.1		mg/Kg			08/18/23 21:39	
lient Sample ID: Bottom Ho	ole-2						Lab Sam	ple ID: 880-3	2113-2
- ate Collected: 08/11/23 14:53								-	x: Soli
ate Received: 08/15/23 16:35									
Method: SW846 8021B - Volatile Analyte		OUNDS (GC Qualifier) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene			0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	
Toluene	< 0.00199		0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	
m-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		08/23/23 17:45	08/24/23 03:52	
o-Xylene	<0.00390		0.00199		mg/Kg		08/23/23 17:45	08/24/23 03:52	
Xylenes, Total	< 0.00199		0.00398		mg/Kg				
AVIENES, TOTAL	<0.00398	U +	0.00398		mu/na		08/23/23 17:45	08/24/23 03:52	

Released to Imaging: 6/17/2024 7:57:33 AM

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-2

Client Sample ID: Bottom Hole-2 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Project/Site: NM Hayhurst Section 35 CTB

Client: Etech Environmental & Safety Solutions

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	64.0		50.2		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over	64.0		50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 14:29	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	120		70 - 130				08/21/23 14:10	08/22/23 14:29	
o-Terphenyl	105		70 - 130				08/21/23 14:10	08/22/23 14:29	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	707		49.8		mg/Kg			08/18/23 21:59	10

Client Sample ID: Bottom Hole-3

Released to Imaging: 6/17/2024 7:57:33 AM

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
m-Xylene & p-Xylene	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
o-Xylene	<0.00201	U *+	0.00201		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Xylenes, Total	<0.00402	U *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 04:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/23/23 17:45	08/24/23 04:13	1
1,4-Difluorobenzene (Surr)	73		70 - 130				08/23/23 17:45	08/24/23 04:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/24/23 10:35	1
	sel Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			08/23/23 11:00	1
_		C C						00/20/20 11:00	•
 Method: SW846 8015B NM - D Analyte	esel Range Orga			MDL	Unit	D	Prepared	Analyzed	Dil Fac
	esel Range Orga	nics (DRO) Qualifier	(GC)	MDL		<u> </u>	Prepared 08/21/23 14:10		Dil Fac

Eurofins Midland

Page 47 of 119

Matrix: Solid

Matrix: Solid

Job ID: 880-32113-1 SDG: 1786

Matrix: Solid

5

Lab Sample ID: 880-32113-3

Client Sample ID: Bottom Hole-3 Date Collected: 08/11/23 14:53

Project/Site: NM Hayhurst Section 35 CTB

Client: Etech Environmental & Safety Solutions

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		08/21/23 14:10	08/22/23 14:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130				08/21/23 14:10	08/22/23 14:50	1
o-Terphenyl	111		70 - 130				08/21/23 14:10	08/22/23 14:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			24.9		mg/Kg			08/18/23 22:06	5
Chloride	241		20						
-							Lab Sam	ple ID: 880-3	2113-4
Chloride Client Sample ID: Bottom Ho Date Collected: 08/11/23 14:53							Lab Sam		2113-4 x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Xylenes, Total	<0.00401	U *+	0.00401		mg/Kg		08/23/23 17:45	08/24/23 04:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				08/23/23 17:45	08/24/23 04:33	1
1,4-Difluorobenzene (Surr)	92		70 - 130				08/23/23 17:45	08/24/23 04:33	1

Method: TAL SOP Total BTEX -	Total BTEX Calculation
------------------------------	-------------------------------

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/24/23 10:35	1

Method: SW846 8015 NM - Diesel F	Range Organics (DRO) (C	GC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1630	50.5	mg/Kg			08/23/23 11:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	1630		50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		08/21/23 14:10	08/22/23 15:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130				08/21/23 14:10	08/22/23 15:12	1
o-Terphenyl	112		70 - 130				08/21/23 14:10	08/22/23 15:12	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	469		50.2		mg/Kg			08/18/23 22:13	10

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: Bottom Hole-5 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-5

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
enzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
oluene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
n-Xylene & p-Xylene	<0.00399	U *+	0.00399		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
o-Xylene	<0.00200	U *+	0.00200		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Xylenes, Total	<0.00399	U *+	0.00399		mg/Kg		08/23/23 17:45	08/24/23 04:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				08/23/23 17:45	08/24/23 04:53	1
1,4-Difluorobenzene (Surr)	76		70 - 130				08/23/23 17:45	08/24/23 04:53	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal BTEX	<0.00399	U	0.00399		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal TPH	53.7		50.0		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		08/21/23 14:10	08/22/23 15:55	1
GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	53.7		50.0		mg/Kg		08/21/23 14:10	08/22/23 15:55	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/21/23 14:10	08/22/23 15:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				08/21/23 14:10	08/22/23 15:55	1
p-Terphenyl	104		70 - 130				08/21/23 14:10	08/22/23 15:55	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	551		50.2		mg/Kg			08/18/23 22:19	10
lient Sample ID: Bottom Ho	ole-6						Lab Sam	ple ID: 880-3	2113-6
ate Collected: 08/11/23 14:53								Matri	x: Solid
ate Received: 08/15/23 16:35									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Toluene	<0.00199	U	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
		11	0.00199		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
	<0.00199	0	0.00100						
Ethylbenzene	<0.00199 <0.00398		0.00398		mg/Kg		08/23/23 17:45	08/24/23 05:14	1
Ethylbenzene m-Xylene & p-Xylene o-Xylene		U *+					08/23/23 17:45 08/23/23 17:45	08/24/23 05:14 08/24/23 05:14	1

%Recovery Qualifier Limits Surrogate Prepared Analyzed 106 70 - 130 08/23/23 17:45 08/24/23 05:14 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 80 70 - 130 08/23/23 17:45 08/24/23 05:14

Eurofins Midland

Dil Fac

1

5

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-6

Client Sample ID: Bottom Hole-6 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Project/Site: NM Hayhurst Section 35 CTB

Client: Etech Environmental & Safety Solutions

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	510		49.9		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	510		49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 16:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	136	S1+	70 - 130				08/21/23 14:10	08/22/23 16:17	
o-Terphenyl	119		70 - 130				08/21/23 14:10	08/22/23 16:17	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	583		25.2		mg/Kg			08/18/23 22:39	

Client Sample ID: Bottom Hole-7

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-7 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
m-Xylene & p-Xylene	<0.00396	U *+	0.00396		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
o-Xylene	<0.00198	U *+	0.00198		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Xylenes, Total	<0.00396	U *+	0.00396		mg/Kg		08/23/23 17:45	08/24/23 05:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				08/23/23 17:45	08/24/23 05:34	1
1,4-Difluorobenzene (Surr)	75		70 - 130				08/23/23 17:45	08/24/23 05:34	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac Total BTEX <0.00396 U 0.00396 mg/Kg 08/24/23 10:35 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total TPH <50.2 U 08/23/23 11:00 50.2 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Dil Fac Analyzed <50.2 U 50.2 08/21/23 14:10 08/22/23 16:39 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10

Eurofins Midland

08/22/23 16:39

08/21/23 14:10

Page 50 of 119

Matrix: Solid

Released to Imaging: 6/17/2024 7:57:33 AM

Diesel Range Organics (Over

C10-C28)

<50.2 U

50.2

mg/Kg

Client Sample ID: Bottom Hole-7 Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Method: SW846 8015B NM - D	iesel Range Orga	nics (DRO)	(GC) (Continue	d)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/21/23 14:10	08/22/23 16:39	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	115		70 - 130				08/21/23 14:10	08/22/23 16:39	
o-Terphenyl	101		70 - 130				08/21/23 14:10	08/22/23 16:39	
Method: EPA 300.0 - Anions, I	on Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	706		49.9		mg/Kg			08/18/23 22:46	1
ate Received: 08/15/23 16:35									
	ile Organic Comp	ounds (GC)							
Method: SW846 8021B - Volat	• •	ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8021B - Volat Analyte	• •	Qualifier		MDL	Unit mg/Kg	<u>D</u>	Prepared 08/23/23 17:45	Analyzed 08/24/23 05:55	Dil Fa
Method: SW846 8021B - Volat Analyte Benzene	Result	Qualifier	RL	MDL		<u> </u>	· · · · · · · · · · · · · · · · · · ·		Dil Fa
Method: SW846 8021B - Volat Analyte Benzene Toluene	Result <0.00199	Qualifier U U	RL 0.00199	MDL	mg/Kg	<u>D</u>	08/23/23 17:45	08/24/23 05:55	
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene	Result <0.00199	Qualifier U U U	RL 0.00199 0.00199	MDL	mg/Kg mg/Kg	<u> </u>	08/23/23 17:45 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55	
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00199	Qualifier U U U U U *+	RL 0.00199 0.00199 0.00199	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55	
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00199	Qualifier U U U U *+ U *+	RL 0.00199 0.00199 0.00199 0.00199 0.00398	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55	
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00199	Qualifier U U U U *+ U *+ U *+ U *+	RL 0.00199 0.00199 0.00199 0.00398 0.00199	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55	
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00199	Qualifier U U U U *+ U *+ U *+ U *+	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 0.00398	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55	Dil Fa
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00199	Qualifier U U U U *+ U *+ U *+ U *+	RL 0.00199 0.00199 0.00199 0.00398 0.00398 0.00398 Limits	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 Prepared	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55	Dil Fa
ate Received: 08/15/23 16:35 Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX	Result <0.00199	Qualifier U U U *+ U *+ U *+ U *+ Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 0.00398 70 - 130	MDL	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 Prepared 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 Analyzed 08/24/23 05:55	Dil Fa
Method: SW846 8021B - Volat Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00199	Qualifier U U U *+ U *+ U *+ U *+ Qualifier	RL 0.00199 0.00199 0.00199 0.00398 0.00199 0.00398 0.00398 70 - 130		mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 08/23/23 17:45 Prepared 08/23/23 17:45	08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 08/24/23 05:55 Analyzed 08/24/23 05:55	Dil Fac

T		ange Organi	ics (DRO) (G	C)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	4700		50.1		mg/Kg			08/23/23 11:00	1
ſ	_									

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	4700		50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		08/21/23 14:10	08/22/23 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	126		70 - 130				08/21/23 14:10	08/22/23 17:00	1
o-Terphenyl	101		70 - 130				08/21/23 14:10	08/22/23 17:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	399		24.9		mg/Kg			08/18/23 22:53	5

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-7

Matrix: Solid

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: Bottom Hole-9 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	
Toluene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	
m-Xylene & p-Xylene	<0.00403	U *+	0.00403		mg/Kg		08/23/23 17:45	08/24/23 06:15	
o-Xylene	< 0.00202		0.00202		mg/Kg		08/23/23 17:45	08/24/23 06:15	
Xylenes, Total	<0.00403		0.00403		mg/Kg		08/23/23 17:45	08/24/23 06:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	104		70 - 130				08/23/23 17:45	08/24/23 06:15	
1,4-Difluorobenzene (Surr)	66	S1-	70 - 130				08/23/23 17:45	08/24/23 06:15	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			08/24/23 10:35	
Method: SW846 8015 NM - Diesel			· · · · · · · · · · · · · · · · · · ·			_			
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total TPH	295		50.5		mg/Kg			08/23/23 11:00	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		08/21/23 14:10	08/22/23 17:22	
(GRO)-C6-C10									
Diesel Range Organics (Over	295		50.5		mg/Kg		08/21/23 14:10	08/22/23 17:22	
C10-C28) Oll Range Organics (Over C28-C36)	<50.5		50.5		mg/Kg		08/21/23 14:10	08/22/23 17:22	
On Mange Organics (Over 020-000)	\$30.5	0	30.5		ilig/itg		00/21/20 14.10	00/22/23 11.22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	135	S1+	70 - 130				08/21/23 14:10	08/22/23 17:22	
o-Terphenyl	115		70 - 130				08/21/23 14:10	08/22/23 17:22	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	437		49.5		mg/Kg			08/18/23 22:59	1
lient Sample ID: Bottom Ho	le-10						Lab Samp	le ID: 880-32	113-1
ate Collected: 08/11/23 14:53									x: Soli
ate Received: 08/15/23 16:35									
Method: SW846 8021B - Volatile (Organia Comp	ounds (CC	\ \						
Analyte	• •	Qualifier	, RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	
Toluene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	
m Vulana 8 n Vulana	<0.00402	LI *+	0.00402		mg/Kg		08/23/23 17:45	08/24/23 06:36	
m-Aylene & p-Aylene	S0.00402	0	0.00102		ing/itg		00/20/20 11.40	00/24/20 00.00	
m-Xylene & p-Xylene o-Xylene	<0.00402		0.00201		mg/Kg		08/23/23 17:45	08/24/23 06:36	

Released to Imaging: 6/17/2024 7:57:33 AM

8/24/2023

Job ID: 880-32113-1 SDG: 1786

Matrix: Solid

5

Lab Sample ID: 880-32113-10

Client Sample ID: Bottom Hole-10 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Project/Site: NM Hayhurst Section 35 CTB

Client: Etech Environmental & Safety Solutions

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	59.0		49.9		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
(GRO)-C6-C10									
Diesel Range Organics (Over	59.0		49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/21/23 14:10	08/22/23 17:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				08/21/23 14:10	08/22/23 17:44	1
o-Terphenyl	116		70 - 130				08/21/23 14:10	08/22/23 17:44	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	306		25.1		mg/Kg			08/18/23 23:06	5

Client Sample ID: North Wall

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Lab Sample ID: 880-32113-11 Matrix: Solid

Analyzed

Dil Fac

D

Prepared

Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)			
Analyte	Result	Qualifier	RL	MDL	Unit
Benzene	<0.00200	U	0.00200		ma/Ka

1,4-Difluorobenzene (Surr)	73		70 - 130		08/23/23 08:45	08/23/23 18:19	1
4-Bromofluorobenzene (Surr)	82		70 - 130		08/23/23 08:45	08/23/23 18:19	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00401	U	0.00401	mg/Kg	08/23/23 08:45	08/23/23 18:19	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	08/23/23 08:45	08/23/23 18:19	1
m-Xylene & p-Xylene	<0.00401	U *+	0.00401	mg/Kg	08/23/23 08:45	08/23/23 18:19	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	08/23/23 08:45	08/23/23 18:19	1
Toluene	<0.00200	U	0.00200	mg/Kg	08/23/23 08:45	08/23/23 18:19	1
Benzene	<0.00200	U	0.00200	mg/Kg	08/23/23 08:45	08/23/23 18:19	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			08/24/23 10:35	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	167		49.6		mg/Kg			08/23/23 11:00	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 18:05	1
(GRO)-C6-C10									
(GRO)-C6-C10 Diesel Range Organics (Over	167		49.6		mg/Kg		08/21/23 14:10	08/22/23 18:05	1

Eurofins Midland

Page 53 of 119

Client: Etech Environmental & Safety Solutions

Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-12

Matrix: Solid

Client Sample ID: North Wall Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/21/23 14:10	08/22/23 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				08/21/23 14:10	08/22/23 18:05	1
o-Terphenyl	97		70 - 130				08/21/23 14:10	08/22/23 18:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	803		49.9		mg/Kg			08/18/23 23:13	10

Client Sample ID: South Wall

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
m-Xylene & p-Xylene	<0.00400	U *+	0.00400		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/23/23 08:45	08/23/23 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				08/23/23 08:45	08/23/23 18:40	1
1,4-Difluorobenzene (Surr)	56	S1-	70 - 130				08/23/23 08:45	08/23/23 18:40	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg				08/24/23 10:35	1

Me	thod: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (G	C)						
Ana	llyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tota	al TPH	90.8		49.5		mg/Kg			08/23/23 11:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.5	U	49.5		mg/Kg		08/21/23 14:10	08/22/23 18:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	90.8		49.5		mg/Kg		08/21/23 14:10	08/22/23 18:27	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		08/21/23 14:10	08/22/23 18:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	128		70 - 130				08/21/23 14:10	08/22/23 18:27	1
o-Terphenyl	112		70 - 130				08/21/23 14:10	08/22/23 18:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	654		25.0		mg/Kg			08/18/23 23:33	5

5

Client Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: East Wall Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

<0.00199 <0.00199								
<0 00199	0	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
0.00100	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
<0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
<0.00398	U *+	0.00398		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
<0.00199	U	0.00199		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
<0.00398	U	0.00398		mg/Kg		08/23/23 08:45	08/23/23 19:00	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
102		70 - 130				08/23/23 08:45	08/23/23 19:00	1
59	S1-	70 - 130				08/23/23 08:45	08/23/23 19:00	1
tal BTEX Calo	culation							
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00398	U	0.00398		mg/Kg			08/24/23 10:35	1
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
51.2		50.0		mg/Kg			08/23/23 11:00	1
I Range Orga	nics (DRO)	(GC)						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<50.0	U	50.0		mg/Kg		08/21/23 14:10	08/22/23 18:49	1
51.2		50.0		mg/Kg		08/21/23 14:10	08/22/23 18:49	1
<50.0	U	50.0		mg/Kg		08/21/23 14:10	08/22/23 18:49	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
124		70 - 130				08/21/23 14:10	08/22/23 18:49	1
110		70 - 130				08/21/23 14:10	08/22/23 18:49	1
hromatograp	hy - Solubl	e						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
1710		49.9		mg/Kg			08/18/23 23:39	10
						Lab Samp	le ID: 880-32	113-14
							Matri	x: Solid
organic Comp	ounds (GC))						
• •	ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Result			MDL	Unit mg/Kg	<u>D</u>	Prepared 08/23/23 08:45	Analyzed	Dil Fac
Result	Qualifier	RL	MDL		<u>D</u>			
	<0.00199 <0.00398 %Recovery 102 59 otal BTEX Calc Result <0.00398 Range Organ Result 51.2 el Range Orga Result <51.2 <50.0 51.2 <50.0 %Recovery 124 110 Chromatograp Result	<0.00199	<0.00199 U 0.00199 <0.00398 U 0.00398 $\frac{\% Recovery}{102}$ $\frac{Qualifier}{70 - 130}$ $\frac{Limits}{70 - 130}$ 59 $$1 70 - 130$ 59 $$1 70 - 130$ 59 $$1 70 - 130$ 59 $$1 70 - 130$ 512 50.0 0.00398 Range Organics (DRO) (GC) Result $Qualifier$ RL <51.2 50.0 50.0 51.2 50.0 <51.2 50.0 50.0 50.0 50.0 <50.0 U 50.0 50.0 50.0 $& \sqrt{Recovery}$ $Qualifier$ $Limits$ $70 - 130$ 110 $70 - 130$ $70 - 130$ $70 - 130$ $Chromatography - Soluble$ Result $Qualifier$ RL	<0.00199	<0.00199	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	< 0.00199 U 0.00199 mg/Kg $08/23/23 \ 08.45$ < 0.00398 U 0.00398 mg/Kg $08/23/23 \ 08.45$ < 0.00398 U 0.00398 mg/Kg $08/23/23 \ 08.45$ < 0.00398 U 0.00398 mg/Kg $08/23/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.0023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.0023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 $< 0.0023/23 \ 08.45$ < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 < 0.00398 $ 0.00398$ $ 0.00398$ $ 0.00398$ $ 0.00398$	<0.00199

1,4-Difluorobenzene (Surr)	58	S1-	70 - 130		08/23/23 08:45	08/23/23 19:21	1
4-Bromofluorobenzene (Surr)	99		70 - 130		08/23/23 08:45	08/23/23 19:21	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00396	U	0.00396	mg/Kg	08/23/23 08:45	08/23/23 19:21	1
o-Xylene	<0.00198	U	0.00198	mg/Kg	08/23/23 08:45	08/23/23 19:21	1
m-Xylene & p-Xylene	<0.00396	U *+	0.00396	mg/Kg	08/23/23 08:45	08/23/23 19:21	1

Eurofins Midland

Page 55 of 119

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-13

Matrix: Solid

Client: Etech Environmental & Safety Solutions

Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Matrix: Solid

Lab Sample ID: 880-32113-14

Client Sample ID: West Wall Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00396	U	0.00396		mg/Kg			08/24/23 10:35	1	ī
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Fotal TPH	69.4		50.3		mg/Kg			08/23/23 11:00	1	2
Method: SW846 8015B NM - Dies	el Range Orga	inics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	1	
GRO)-C6-C10										1
Diesel Range Organics (Over	69.4		50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	1	
C10-C28)										
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		08/21/23 14:10	08/22/23 19:11	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	114		70 - 130				08/21/23 14:10	08/22/23 19:11	1	
p-Terphenyl	98		70 - 130				08/21/23 14:10	08/22/23 19:11	1	4
Method: EDA 200.0 Anione Jon	Chromotogray	ahu Calubi								
Method: EPA 300.0 - Anions, Ion				MD	11		Durant	A	D!!	ł
Analyte		Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac	
Chloride	360		50.1		mg/Kg			08/18/23 23:59	10	

Eurofins Midland

Released to Imaging: 6/17/2024 7:57:33 AM

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31986-A-1-E MS	Matrix Spike	122	113	
880-31986-A-1-G MSD	Matrix Spike Duplicate	127	120	
880-32113-1	Bottom Hole-1	85	73	
880-32113-2	Bottom Hole-2	112	65 S1-	
880-32113-3	Bottom Hole-3	92	73	
880-32113-4	Bottom Hole-4	103	92	
880-32113-5	Bottom Hole-5	102	76	
880-32113-6	Bottom Hole-6	106	80	
880-32113-7	Bottom Hole-7	105	75	
880-32113-8	Bottom Hole-8	122	112	
880-32113-9	Bottom Hole-9	104	66 S1-	
880-32113-10	Bottom Hole-10	98	75	
880-32113-11	North Wall	82	73	
880-32113-12	South Wall	101	56 S1-	
880-32113-13	East Wall	102	59 S1-	
880-32113-14	West Wall	99	58 S1-	
890-5106-A-1-E MS	Matrix Spike	127	109	
890-5106-A-1-F MSD	Matrix Spike Duplicate	127	110	
LCS 880-60871/1-A	Lab Control Sample	119	110	
LCS 880-60938/1-A	Lab Control Sample	121	109	
LCSD 880-60871/2-A	Lab Control Sample Dup	118	114	
LCSD 880-60938/2-A	Lab Control Sample Dup	122	106	
MB 880-60871/5-A	Method Blank	73	96	
MB 880-60938/5-A	Method Blank	73	80	
Surrogate Legend				

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) (70-130) Lab Sample ID **Client Sample ID** 880-32113-1 Bottom Hole-1 112 98 880-32113-2 Bottom Hole-2 120 105 880-32113-3 Bottom Hole-3 125 111 880-32113-4 Bottom Hole-4 139 S1+ 112 880-32113-5 Bottom Hole-5 120 104 880-32113-6 Bottom Hole-6 136 S1+ 119 880-32113-7 Bottom Hole-7 115 101 880-32113-8 Bottom Hole-8 126 101 880-32113-9 Bottom Hole-9 135 S1+ 115 880-32113-10 Bottom Hole-10 131 S1+ 116 880-32113-11 North Wall 114 97 880-32113-12 South Wall 128 112 880-32113-13 East Wall 124 110 880-32113-14 West Wall 114 98 890-5126-A-1-E MS Matrix Spike 133 S1+ 104

Prep Type: Total/NA

Job ID: 880-32113-1 SDG: 1786

Prep Type: Total/NA

Page 57 of 119

SDG: 1786

Job ID: 880-32113-1

Prep Type: Total/NA

Surrogate Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
890-5126-A-1-F MSD	Matrix Spike Duplicate	129	101		J
LCS 880-60741/2-A	Lab Control Sample	107	91		6
LCSD 880-60741/3-A	Lab Control Sample Dup	123	106		U
MB 880-60741/1-A	Method Blank	187 S1+	168 S1+		
Surrogate Legend					

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-60871/5-A Matrix: Solid Analysis Batch: 60869							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
	MB					_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/23/23 08:45	08/23/23 12:07	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	73		70 - 130				08/23/23 08:45	08/23/23 12:07	1
1,4-Difluorobenzene (Surr)	96		70 - 130				08/23/23 08:45	08/23/23 12:07	1
Lab Sample ID: LCS 880-60871/1-A						c	lient Sample I	D: Lab Control	Sample

Lab Sample ID: LCS 880-60871/1-A Matrix: Solid

Analysis Batch: 60869

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1017		mg/Kg		102	70 - 130	
Toluene	0.100	0.1196		mg/Kg		120	70 - 130	
Ethylbenzene	0.100	0.1179		mg/Kg		118	70 - 130	
m-Xylene & p-Xylene	0.200	0.2633	*+	mg/Kg		132	70 - 130	
o-Xylene	0.100	0.1279		mg/Kg		128	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	110		70 - 130

Lab Sample ID: LCSD 880-60871/2-A

Matrix: Solid

Analysis Batch: 60869							Prep	Batch:	60871
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09507		mg/Kg		95	70 - 130	7	35
Toluene	0.100	0.1040		mg/Kg		104	70 - 130	14	35
Ethylbenzene	0.100	0.09942		mg/Kg		99	70 - 130	17	35
m-Xylene & p-Xylene	0.200	0.2191		mg/Kg		110	70 - 130	18	35
o-Xylene	0.100	0.1079		mg/Kg		108	70 - 130	17	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

L

Μ

Analysis Batch: 60869									Prep	p Batch: 608	371
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00199	U	0.0996	0.08878		mg/Kg		89	70 - 130		
Toluene	<0.00199	U	0.0996	0.1046		mg/Kg		105	70 - 130		

Prep Type: Total/NA

Prep Batch: 60871

			Spike	LCSD	LCSD	
Analyte			Added	Result	Qualifier	Unit
Benzene			0.100	0.09507		mg/Kg
Toluene			0.100	0.1040		mg/Kg
Ethylbenzene			0.100	0.09942		mg/Kg
m-Xylene & p-Xylene			0.200	0.2191		mg/Kg
o-Xylene			0.100	0.1079		mg/K
	LCSD	LCSD				
Surrogate	%Recovery	Qualifier	Limits			
4-Bromofluorobenzene (Surr)	118		70 - 130			
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-3198 Matrix: Solid	114		70 - 130 70 - 130			
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-3198	114 16-A-1-E MS	Sample	70 - 130	MS	MS	
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-3198 Matrix: Solid Analysis Batch: 60869	114 16-A-1-E MS Sample	Sample Qualifier	70 <u>-</u> 130 Spike		MS Qualifier	Unit
1,4-Difluorobenzene (Surr) Lab Sample ID: 880-3198 Matrix: Solid	114 16-A-1-E MS Sample	Qualifier	70 - 130		MS Qualifier	_ <u>Unit</u> mg/K

Client Sample ID: Lab Control Sample Dup

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Eurofins Midland

Prep Type: Total/NA

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid Analysis Batch: 60869	-E MS										Client S	Sample ID:	Matrix	Spik
Analysis Batch: 60869												Prep Ty	pe: To	tal/N
												Prep	Batch:	<mark>60</mark> 87
	Sample	Sam	ple	Spike	MS	MS						%Rec		
nalyte	Result	Qual	ifier	Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
thylbenzene	<0.00199	U		0.0996	0.1053			mg/Kg			106	70 - 130		
n-Xylene & p-Xylene	<0.00398	U *+		0.199	0.2310			mg/Kg			116	70 - 130		
-Xylene	<0.00199	U		0.0996	0.1126			mg/Kg			113	70 - 130		
	MS	MS												
Surrogate	%Recovery	Qua	lifier	Limits										
-Bromofluorobenzene (Surr)	122			70 - 130										
,4-Difluorobenzene (Surr)	113			70 - 130										
ab Sample ID: 880-31986-A-1	-G MSD								Clie	nt Sa	mple ID:	Matrix Spi		
latrix: Solid												Prep Ty		
nalysis Batch: 60869													Batch:	
	Sample		•	Spike	MSD	MSD)					%Rec		RF
nalyte	Result		ifier	Added	Result	Qua	lifier	Unit		<u>D</u>	%Rec	Limits	RPD	Lin
enzene	<0.00199	U		0.100	0.09959			mg/Kg			99	70 - 130	11	:
bluene	<0.00199	U		0.100	0.1090			mg/Kg			109	70 - 130	4	
thylbenzene	<0.00199	U		0.100	0.1104			mg/Kg			110	70 - 130	5	
-Xylene & p-Xylene	<0.00398	U *+		0.200	0.2439			mg/Kg			122	70 - 130	5	
Xylene	<0.00199	U		0.100	0.1189			mg/Kg			119	70 - 130	5	
	MSD	MSD	1											
urrogate	%Recovery	Qua	lifier	Limits										
-Bromofluorobenzene (Surr)	127			70 - 130										
4-Difluorobenzene (Surr)	120			70 - 130										
ab Sample ID: MB 880-60938/	'5-A										Client Sa	mple ID: N	lethod	Blar
latrix: Solid												Prep Ty	pe: To	tal/N
Analysis Batch: 60869												Prep	Batch:	6093
		MB	MB											
			Qualifier	RL		MDL			D		epared	Analyze		Dil F
	<0.00		U	0.00200			mg/Kg				8/23 17:45	08/23/23 2		
enzene							mg/Kg	1		08/23	8/23 17:45	08/23/23 2		
enzene	<0.00		U	0.00200										
enzene Dluene	<0.00	200	U	0.00200 0.00200			mg/Kg			08/23	8/23 17:45	08/23/23 2	2:44	
enzene bluene thylbenzene -Xylene & p-Xylene		200	U	0.00200 0.00400			mg/Kg	1			3/23 17:45 3/23 17:45	08/23/23 2	2:44	
enzene bluene thylbenzene -Xylene & p-Xylene Xylene	<0.00 <0.00 <0.00)200)400)200	U U U	0.00200 0.00400 0.00200			mg/Kg mg/Kg			08/23 08/23	8/23 17:45 8/23 17:45	08/23/23 2 08/23/23 2	2:44 2:44	
enzene Iuene hylbenzene -Xylene & p-Xylene Xylene	<0.00 <0.00)200)400)200	U U U	0.00200 0.00400			mg/Kg			08/23 08/23	8/23 17:45	08/23/23 2	2:44 2:44	
enzene bluene :hylbenzene -Xylene & p-Xylene Xylene ylenes, Total	<0.00 <0.00 <0.00 <0.00)200)400)200)400) MB	U U U U MB	0.00200 0.00400 0.00200 0.00400			mg/Kg mg/Kg			08/23 08/23 08/23	8/23 17:45 8/23 17:45 8/23 17:45	08/23/23 2 08/23/23 2 08/23/23 2	2:44 2:44 2:44	
enzene oluene thylbenzene Xylene & p-Xylene -Xylene ylenes, Total urrogate	<0.00 <0.00 <0.00 <0.00	2200 0400 0200 0400 MB very	U U U U	0.00200 0.00400 0.00200 0.00400 <i>Limits</i>			mg/Kg mg/Kg			08/23 08/23 08/23 Pr	8/23 17:45 8/23 17:45 8/23 17:45 9/23 17:45	08/23/23 2 08/23/23 2 08/23/23 2 Analyze	2:44 2:44 2:44	Dil Fa
Inalyte Innersene In-Xylene & p-Xylene In-Xylene & p-Xylene -Xylene Ingenes, Total Ingenes, Total Ingenes, Total Ingenes, Total Ingenes, Total Ingenes, Total	<0.00 <0.00 <0.00 <0.00	2200 0400 0200 0400 MB very 73	U U U U MB	0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg			08/23 08/23 08/23 Pr 08/23	3/23 17:45 3/23 17:45 3/23 17:45 epared 3/23 17:45	08/23/23 2 08/23/23 2 08/23/23 2 Analyze 08/23/23 2	2:44 2:44 2:44 2:44	Dil F
enzene oluene hylbenzene -Xylene & p-Xylene Xylene /lenes, Total urrogate Bromofluorobenzene (Surr)	<0.00 <0.00 <0.00 <0.00	2200 0400 0200 0400 MB very	U U U U MB	0.00200 0.00400 0.00200 0.00400 <i>Limits</i>			mg/Kg mg/Kg			08/23 08/23 08/23 Pr 08/23 08/23	3/23 17:45 3/23 17:45 3/23 17:45 epared 3/23 17:45 3/23 17:45	08/23/23 2 08/23/23 2 08/23/23 2 08/23/23 2 08/23/23 2 08/23/23 2	2:44 2:44 2:44 2:44 2:44 2:44	
enzene bluene thylbenzene -Xylene & p-Xylene Xylene ylenes, Total urrogate	<0.00 <0.00 <0.00 <0.00 <0.00	2200 0400 0200 0400 MB very 73	U U U U MB	0.00200 0.00400 0.00200 0.00400 <u>Limits</u> 70 - 130			mg/Kg mg/Kg		C	08/23 08/23 08/23 Pr 08/23 08/23	3/23 17:45 3/23 17:45 3/23 17:45 epared 3/23 17:45 3/23 17:45	08/23/23 2 08/23/23 2 08/23/23 2 Analyze 08/23/23 2	2:44 2:44 2:44 2:44 2:44 2:44	

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Benzene 0.100 0.1023 102 70 - 130 mg/Kg Toluene 0.100 0.1241 mg/Kg 124 70 - 130 Ethylbenzene 0.100 0.1257 mg/Kg 126 70 - 130 m-Xylene & p-Xylene 0.200 0.2796 *+ 70 - 130 mg/Kg 140

Eurofins Midland

Page 60 of 119

Lab Sample ID: LCS 880-60938/1-A

Matrix: Solid

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid											0000
Analysis Batch: 60869									Prep	Batch:	00930
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.1363	*+	mg/Kg		136	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	121		70 - 130								
1,4-Difluorobenzene (Surr)	109		70 - 130								
Lab Sample ID: LCSD 880-6	0938/2-A					Clie	nt Sam	nole ID: I	Lab Contro		e Dur
Matrix: Solid										Type: Tot	
Analysis Batch: 60869										Batch:	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.08296		mg/Kg		83	70 - 130	21	35
Toluene			0.100	0.09693		mg/Kg		97	70 - 130	25	35
Ethylbenzene			0.100	0.09971		mg/Kg		100	70 - 130	23	35
m-Xylene & p-Xylene			0.200	0.2231		mg/Kg		112	70 - 130	23	35
o-Xylene			0.100	0.1102		mg/Kg		110	70 - 130	21	35
			0.100	0.1102							
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
-											
4-Bromofluorobenzene (Surr)	122		70 - 130								
1,4-Difluorobenzene (Surr)	106		70 - 130 70 - 130					Client	Sample ID: Prep T	: Matrix : Type: Tot	
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid	106							Client	Prep T		al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A	106 -1-E MS	Sample		MS	MS			Client	Prep T	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid	106 -1-E MS Sample Result	Qualifier	70 - 130	Result	MS Qualifier	Unit	<u>D</u>	Client %Rec	Prep T Prep	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869	106 -1-E MS Sample	Qualifier	70 ₋ 130 Spike			- <mark>Unit</mark> mg/Kg	<u>D</u>		Prep T Prep %Rec	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte	106 -1-E MS Sample Result	Qualifier	70 - 130 Spike Added	Result			<u>D</u>	%Rec	Prep T Prep %Rec Limits	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A- Matrix: Solid Analysis Batch: 60869 Analyte Benzene	106 -1-E MS 	Qualifier U U	70 - 130 Spike Added 0.0996	Result 0.08986		mg/Kg	D	%Rec 90	Prep T Prep %Rec Limits 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A- Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene	106 -1-E MS 	Qualifier U U U	70 - 130 Spike Added 0.0996 0.0996	Result 0.08986 0.1062		mg/Kg mg/Kg	D	%Rec 90 107	Prep T Prep %Rec Limits 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199	Qualifier U U U U U *+	Spike Added 0.0996 0.0996 0.0996	Result 0.08986 0.1062 0.1113		mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 90 107 112	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398	Qualifier U U U U *+ U *+	Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 90 107 112 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199	Qualifier U U U *+ U *+ MS	Spike Added 0.0996 0.0996 0.0996 0.199	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 90 107 112 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS	Qualifier U U U *+ U *+ MS	Spike Added 0.0996 0.0996 0.199 0.199	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 90 107 112 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery	Qualifier U U U *+ U *+ MS	70 - 130 Spike Added 0.0996 0.0996 0.0996 0.199 0.0996 Limits	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 90 107 112 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot	al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 127 109	Qualifier U U U *+ U *+ MS	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: (al/NA 60938
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 127 109	Qualifier U U U *+ U *+ MS	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: (licate
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 127 109	Qualifier U U U *+ U *+ MS	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup	licate
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 127 109 -1-F MSD	Qualifier U U U *+ U *+ MS	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996	Result 0.08986 0.1062 0.1113 0.2432		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: (licate al/NA
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 127 109 -1-F MSD Sample	Qualifier U U U *+ U *+ MS Qualifier	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 D.199 0.0996 0.199 0.0996 0.199 0.0996 1.100 70 - 130 70 - 130	Result 0.08986 0.1062 0.1113 0.2432 0.1213	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep T Prep T	Dike Dup	licate al/NA 60938
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 127 109 -1-F MSD Sample	Qualifier U U U *+ U *+ MS Qualifier Sample Qualifier	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 Dimits 70 - 130 70 - 130 Spike	Result 0.08986 0.1062 0.1113 0.2432 0.1213	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 90 107 112 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 190 %Rec	Dike Dup Dike Tot Batch: (licate al/NA al/NA 60938 RPD Limit
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A- Matrix: Solid Analysis Batch: 60869 Analyte	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 127 109 -1-F MSD Sample Result	Qualifier U U U *+ U *+ MS Qualifier U	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 Limits 70 - 130 70 - 130 Spike Added	Result 0.08986 0.1062 0.1113 0.2432 0.1213	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	%Rec 90 107 112 122 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 190 %Rec Limits	Dike Dup Dike Dup Dype: Tot Batch: (licate al/NA 60938 licate al/NA 60938 RPD Limit
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 <i>MS</i> <i>%Recovery</i> 127 109 -1-F MSD Sample Result <0.00199 	Qualifier U U U *+ U *+ MS Qualifier U U U	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 0.199 0.0996 0.199 0.0996 0.193 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Result 0.08986 0.1062 0.1113 0.2432 0.1213 MSD Result 0.09515 0.1089	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	%Rec 90 107 112 122 122 122	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep T Prep %Rec Limits 70 - 130 70 - 130	Dike Dup Type: Tot Batch: (Public Dup Type: Tot Batch: (RPD 6	licate cal/NA 60938 licate cal/NA 60938 RPD Limit 35 35
1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 890-5106-A Matrix: Solid Analysis Batch: 60869 Analyte Benzene Toluene	106 -1-E MS Sample Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199 MS %Recovery 127 109 -1-F MSD Sample Result <0.00199 <0.00199 <0.00199 <0.00199 <0.00199 	Qualifier U U U U *+ U *+ MS Qualifier Qualifier U U U	70 - 130 Spike Added 0.0996 0.0996 0.199 0.0996 D.199 0.0996 D.199 0.0996 D.199 0.0996 D.199 0.0996 Spike Added 0.101 0.101	Result 0.08986 0.1062 0.1113 0.2432 0.1213	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	%Rec 90 107 112 122 122 122 122 90 %Rec 94 108	Prep T Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9	Dike Dup Fype: Tot Batch: (Spectrum) Batch: (RPD 6 2	licate al/NA 60938 licate al/NA 60938 RPD Limit 35

Page 61 of 119

5

Eurofins Midland

Released to Imaging: 6/17/2024 7:57:33 AM

QC Sample Results

Limits

70 - 130

70 - 130

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Lab Sample ID: 890-5106-A-1-F MSD

Lab Sample ID: MB 880-60741/1-A

Matrix: Solid

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Surrogate

o-Terphenyl

C10-C28)

1-Chlorooctane

Surrogate

Analysis Batch: 60869

4-Bromofluorobenzene (Surr)

Analysis Batch: 60776

Gasoline Range Organics

Diesel Range Organics (Over

Oll Range Organics (Over C28-C36)

1,4-Difluorobenzene (Surr)

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MSD MSD

MB MB

<50.0 U

<50.0 U

<50.0 U

MB MB

187 S1+

168 S1+

%Recovery Qualifier

Result Qualifier

%Recovery Qualifier

127

110

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Job ID: 880-32113-1 SDG: 1786
Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA Prep Batch: 60938

Page 62 of 119

	5
	7
	8
	9

08/21/23 14:10	08/22/23 08:13	1

Client Sample ID: Method Blank

Analyzed

08/22/23 08:13

08/22/23 08:13

Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 60741

Prep Batch: 60741

Dil Fac

1

1

Prepared	Analyzed	Dil Fac
08/21/23 14:10	08/22/23 08:13	1
08/21/23 14:10	08/22/23 08:13	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-60741/2-A

Matrix: Solid

Analy	/sis	Batch:	60776	
-------	-------------	--------	-------	--

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	1000	938.0		mg/Kg		94	70 - 130
Diesel Range Organics (Over C10-C28)	1000	881.7		mg/Kg		88	70 - 130

RL

50.0

50.0

50.0

Limits

70 - 130

70 - 130

MDL Unit

mg/Kg

mg/Kg

mg/Kg

D

Prepared

08/21/23 14:10

08/21/23 14:10

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	107		70 - 130
o-Terphenyl	91		70 - 130

Lab Sample ID: LCSD 880-60741/3-A Matrix: Solid Analysis Batch: 60776

-	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1012		mg/Kg		101	70 - 130	8	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	995.8		mg/Kg		100	70 - 130	12	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	123		70 - 130
o-Terphenyl	106		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 60741

Eurofins Midland

QC Sample Results

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB Job ID: 880-32113-1 SDG: 1786

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	I-E MS							Client	Sample ID		Spike
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 60776									Prep	Batch:	60741
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added	Result	Qualifier	Unit	<u>D</u>	%Rec	Limits		
Gasoline Range Organics	<49.6	U	995	1258		mg/Kg		124	70 - 130		
(GRO)-C6-C10	-10.0		005	1150		···· ·· // ···		44.4	70 400		
Diesel Range Organics (Over C10-C28)	<49.6	U	995	1150		mg/Kg		114	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	133	<u>S1+</u>	70 - 130	-							
o-Terphenyl	104		70 - 130								
Lab Sample ID: 890-5126-A-1	I-F MSD					c	lient S	ample IF	D: Matrix S	nike Dur	olicate
Matrix: Solid										Гуре: То	
Analysis Batch: 60776										Batch:	
Analysis Buton. 00770	Sample	Sample	Spike	MSD	MSD				%Rec	Baton.	RPD
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.6		995	1241	quamor	mg/Kg		123	70 - 130	1	20
(GRO)-C6-C10	10.0	0	000	1211		iiig/itg		120	10-100	·	2.
Diesel Range Organics (Over	<49.6	U	995	1117		mg/Kg		111	70 - 130	3	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	129		70 - 130	-							
	129 101		70 ₋ 130 70 ₋ 130	-							
1-Chlorooctane	101	ography		-							
1-Chlorooctane o-Terphenyl Nethod: 300.0 - Anions, I o	101 on Chromat	ography						Client S	Sample ID:	Method	Blank
1-Chlorooctane o-Terphenyl	101 on Chromat	ography		- 				Client S	Sample ID: Prep		
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, I Lab Sample ID: MB 880-6036 Matrix: Solid	101 on Chromat	ography		-				Client S	-	Method Type: S	
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, I Lab Sample ID: MB 880-6036	101 on Chromat	ography MB MB		-				Client S	-		
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, I Lab Sample ID: MB 880-6036 Matrix: Solid	101 on Chromat 50/1-A			RL	MDL Unit		D F	Client S Prepared	-	Type: S	oluble
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte	101 on Chromat 50/1-A	MB MB		RL	MDL Unit		D _ F		Prep	Type: Se	oluble Dil Fac
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride	101 on Chromat 50/1-A 	MB MB						Prepared	Prep	Type: S zed 21:19	Dil Fac
1-Chlorooctane o-Terphenyl Aethod: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603	101 on Chromat 50/1-A 	MB MB						Prepared	Prep 	Type: So zed 21:19 -	Dil Fac
1-Chlorooctane o-Terphenyl Aethod: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid	101 on Chromat 50/1-A 	MB MB						Prepared	Prep 	Type: S zed 21:19	Dil Fac
1-Chlorooctane o-Terphenyl Aethod: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00	mg/l			Prepared	Prep Analyz 08/18/23 e ID: Lab Co Prep	Type: So zed 21:19 -	Dil Fac
1-Chlorooctane o-Terphenyl Aethod: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS	LCS	ζg	Clien	Prepared	Prep Analyz 08/18/23 Prep %Rec	Type: So zed 21:19 -	Dil Fac 1 ample
1-Chlorooctane o-Terphenyl Aethod: 300.0 - Anions, lo Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS	mg/l			Prepared	Prep Analyz 08/18/23 e ID: Lab Co Prep	Type: So zed 21:19 -	Dil Fac
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617 Analyte Chloride	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS Result	LCS	<g Unit mg/Kg</g 	Clien	Prepared t Sample <u>%Rec</u> 103	Prep Analyz 08/18/23 e ID: Lab Co Prep %Rec Limits 90 - 110	Type: So 21:19 ontrol So Type: So	oluble Dil Fac ample oluble
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCSD 880-60	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS Result	LCS	<g Unit mg/Kg</g 	Clien	Prepared t Sample <u>%Rec</u> 103	Prep Analyz 08/18/23 Prep %Rec Limits 90 - 110	Type: So 21:19 ontrol So Type: So ol Sampl	Dil Fac
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCSD 880-60 Matrix: Solid	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS Result	LCS	<g Unit mg/Kg</g 	Clien	Prepared t Sample <u>%Rec</u> 103	Prep Analyz 08/18/23 Prep %Rec Limits 90 - 110	Type: So 21:19 ontrol So Type: So	Dil Fac
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCSD 880-60	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS Result 258.3	LCS Qualifier	<g Unit mg/Kg</g 	Clien	Prepared t Sample <u>%Rec</u> 103	Prep Analyz 08/18/23 Prep %Rec Limits 90 - 110 Lab Controc Prep	Type: So 21:19 ontrol So Type: So ol Sampl	Dil Fac 1 ample oluble
1-Chlorooctane o-Terphenyl Method: 300.0 - Anions, la Lab Sample ID: MB 880-6036 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCS 880-603 Matrix: Solid Analysis Batch: 60617 Analyte Chloride Lab Sample ID: LCSD 880-60 Matrix: Solid	101 on Chromat 50/1-A 	MB MB	70 - 130	5.00 LCS Result 258.3	LCS	<g Unit mg/Kg</g 	Clien	Prepared t Sample <u>%Rec</u> 103	Prep Analyz 08/18/23 Prep %Rec Limits 90 - 110	Type: So 21:19 ontrol So Type: So ol Sampl	Dil Fac 1 ample oluble

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-32113-1 MS Matrix: Solid								Client S	ample ID: I Pren	Bottom H Type: So	
Analysis Batch: 60617										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	- abie
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	334		1250	1625		mg/Kg		103	90 - 110		
Lab Sample ID: 880-32113-1 MSD								Client S	ample ID: I	Bottom I	Hole-1
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 60617											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	334		1250	1634		mg/Kg		104	90 - 110	1	20
Lab Sample ID: 880-32113-11 MS								Clie	nt Sample	ID: Nort	h Wall
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 60617											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	803		2500	3355		mg/Kg		102	90 - 110		
- Lab Sample ID: 880-32113-11 MSD)							Clie	nt Sample	ID: Nort	h Wall
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 60617											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	803		2500	3362		mg/Kg		103	90 _ 110	0	20

SDG: 1786

Job ID: 880-32113-1

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Bottom Hole-8

Bottom Hole-9

Bottom Hole-10

North Wall

South Wall

East Wall

West Wall

Method Blank

Method Blank

Matrix Spike

Matrix Spike

Lab Control Sample

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike Duplicate

Lab Sample ID

880-32113-1

880-32113-2

880-32113-3 880-32113-4

880-32113-5

880-32113-6

880-32113-7

880-32113-8

880-32113-9

880-32113-10

880-32113-11

880-32113-12

880-32113-13

880-32113-14 MB 880-60871/5-A

MB 880-60938/5-A

LCS 880-60871/1-A

Analysis Batch: 608

869)				
	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
	Bottom Hole-1	Total/NA	Solid	8021B	60938
	Bottom Hole-2	Total/NA	Solid	8021B	60938
	Bottom Hole-3	Total/NA	Solid	8021B	60938
	Bottom Hole-4	Total/NA	Solid	8021B	60938
	Bottom Hole-5	Total/NA	Solid	8021B	60938
	Bottom Hole-6	Total/NA	Solid	8021B	60938
	Bottom Hole-7	Total/NA	Solid	8021B	60938

Total/NA

Solid

8021B

LCS 880-60938/1-A
LCSD 880-60871/2-A
LCSD 880-60938/2-A
880-31986-A-1-E MS
880-31986-A-1-G MSD
890-5106-A-1-E MS

890-5106-A-1-F MSD Prep Batch: 60871

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-11	North Wall	Total/NA	Solid	5035	
880-32113-12	South Wall	Total/NA	Solid	5035	
880-32113-13	East Wall	Total/NA	Solid	5035	
880-32113-14	West Wall	Total/NA	Solid	5035	
MB 880-60871/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-60871/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-60871/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31986-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-31986-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 60938

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	5035	
880-32113-2	Bottom Hole-2	Total/NA	Solid	5035	
880-32113-3	Bottom Hole-3	Total/NA	Solid	5035	
880-32113-4	Bottom Hole-4	Total/NA	Solid	5035	
880-32113-5	Bottom Hole-5	Total/NA	Solid	5035	
880-32113-6	Bottom Hole-6	Total/NA	Solid	5035	
880-32113-7	Bottom Hole-7	Total/NA	Solid	5035	
880-32113-8	Bottom Hole-8	Total/NA	Solid	5035	
880-32113-9	Bottom Hole-9	Total/NA	Solid	5035	
880-32113-10	Bottom Hole-10	Total/NA	Solid	5035	
MB 880-60938/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-60938/1-A	Lab Control Sample	Total/NA	Solid	5035	

Eurofins Midland

Page 65 of 119

60938

60938

60938

60871

60871

60871

60871

60871

60938

60871

60938

60871

60938

60871

60871

60938

60938

8

Page 26 of 39

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

GC VOA (Continued)

Prep Batch: 60938 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-60938/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5106-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
890-5106-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 60979

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-32113-1	Bottom Hole-1	Total/NA	Solid	Total BTEX	
380-32113-2	Bottom Hole-2	Total/NA	Solid	Total BTEX	
380-32113-3	Bottom Hole-3	Total/NA	Solid	Total BTEX	
880-32113-4	Bottom Hole-4	Total/NA	Solid	Total BTEX	
80-32113-5	Bottom Hole-5	Total/NA	Solid	Total BTEX	
380-32113-6	Bottom Hole-6	Total/NA	Solid	Total BTEX	
80-32113-7	Bottom Hole-7	Total/NA	Solid	Total BTEX	
80-32113-8	Bottom Hole-8	Total/NA	Solid	Total BTEX	
80-32113-9	Bottom Hole-9	Total/NA	Solid	Total BTEX	
80-32113-10	Bottom Hole-10	Total/NA	Solid	Total BTEX	
80-32113-11	North Wall	Total/NA	Solid	Total BTEX	
380-32113-12	South Wall	Total/NA	Solid	Total BTEX	
880-32113-13	East Wall	Total/NA	Solid	Total BTEX	
380-32113-14	West Wall	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 60741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8015NM Prep	
880-32113-2	Bottom Hole-2	Total/NA	Solid	8015NM Prep	
880-32113-3	Bottom Hole-3	Total/NA	Solid	8015NM Prep	
880-32113-4	Bottom Hole-4	Total/NA	Solid	8015NM Prep	
880-32113-5	Bottom Hole-5	Total/NA	Solid	8015NM Prep	
880-32113-6	Bottom Hole-6	Total/NA	Solid	8015NM Prep	
880-32113-7	Bottom Hole-7	Total/NA	Solid	8015NM Prep	
880-32113-8	Bottom Hole-8	Total/NA	Solid	8015NM Prep	
880-32113-9	Bottom Hole-9	Total/NA	Solid	8015NM Prep	
880-32113-10	Bottom Hole-10	Total/NA	Solid	8015NM Prep	
880-32113-11	North Wall	Total/NA	Solid	8015NM Prep	
880-32113-12	South Wall	Total/NA	Solid	8015NM Prep	
880-32113-13	East Wall	Total/NA	Solid	8015NM Prep	
880-32113-14	West Wall	Total/NA	Solid	8015NM Prep	
MB 880-60741/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-60741/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-60741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5126-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5126-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 60776

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8015B NM	60741
880-32113-2	Bottom Hole-2	Total/NA	Solid	8015B NM	60741
880-32113-3	Bottom Hole-3	Total/NA	Solid	8015B NM	60741
880-32113-4	Bottom Hole-4	Total/NA	Solid	8015B NM	60741

Eurofins Midland

SDG: 1786

Job ID: 880-32113-1

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

GC Semi VOA (Continued)

Analysis Batch: 60776 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-5	Bottom Hole-5	Total/NA	Solid	8015B NM	60741
880-32113-6	Bottom Hole-6	Total/NA	Solid	8015B NM	60741
880-32113-7	Bottom Hole-7	Total/NA	Solid	8015B NM	60741
880-32113-8	Bottom Hole-8	Total/NA	Solid	8015B NM	60741
880-32113-9	Bottom Hole-9	Total/NA	Solid	8015B NM	60741
880-32113-10	Bottom Hole-10	Total/NA	Solid	8015B NM	60741
880-32113-11	North Wall	Total/NA	Solid	8015B NM	60741
880-32113-12	South Wall	Total/NA	Solid	8015B NM	60741
880-32113-13	East Wall	Total/NA	Solid	8015B NM	60741
880-32113-14	West Wall	Total/NA	Solid	8015B NM	60741
MB 880-60741/1-A	Method Blank	Total/NA	Solid	8015B NM	60741
LCS 880-60741/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	60741
LCSD 880-60741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	60741
890-5126-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	60741
890-5126-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	60741

Analysis Batch: 60897

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Total/NA	Solid	8015 NM	
880-32113-2	Bottom Hole-2	Total/NA	Solid	8015 NM	
880-32113-3	Bottom Hole-3	Total/NA	Solid	8015 NM	
880-32113-4	Bottom Hole-4	Total/NA	Solid	8015 NM	
880-32113-5	Bottom Hole-5	Total/NA	Solid	8015 NM	
880-32113-6	Bottom Hole-6	Total/NA	Solid	8015 NM	
880-32113-7	Bottom Hole-7	Total/NA	Solid	8015 NM	
880-32113-8	Bottom Hole-8	Total/NA	Solid	8015 NM	
880-32113-9	Bottom Hole-9	Total/NA	Solid	8015 NM	
880-32113-10	Bottom Hole-10	Total/NA	Solid	8015 NM	
880-32113-11	North Wall	Total/NA	Solid	8015 NM	
880-32113-12	South Wall	Total/NA	Solid	8015 NM	
880-32113-13	East Wall	Total/NA	Solid	8015 NM	
880-32113-14	West Wall	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 60360

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-2	Bottom Hole-2	Soluble	Solid	DI Leach	
880-32113-3	Bottom Hole-3	Soluble	Solid	DI Leach	
880-32113-4	Bottom Hole-4	Soluble	Solid	DI Leach	
880-32113-5	Bottom Hole-5	Soluble	Solid	DI Leach	
880-32113-6	Bottom Hole-6	Soluble	Solid	DI Leach	
880-32113-7	Bottom Hole-7	Soluble	Solid	DI Leach	
880-32113-8	Bottom Hole-8	Soluble	Solid	DI Leach	
880-32113-9	Bottom Hole-9	Soluble	Solid	DI Leach	
880-32113-10	Bottom Hole-10	Soluble	Solid	DI Leach	
880-32113-11	North Wall	Soluble	Solid	DI Leach	
880-32113-12	South Wall	Soluble	Solid	DI Leach	
880-32113-13	East Wall	Soluble	Solid	DI Leach	
880-32113-14	West Wall	Soluble	Solid	DI Leach	

Eurofins Midland

Page 67 of 119

Job ID: 880-32113-1 SDG: 1786

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

HPLC/IC (Continued)

Leach Batch: 60360 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-60360/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-60360/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-60360/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-32113-1 MS	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-1 MSD	Bottom Hole-1	Soluble	Solid	DI Leach	
880-32113-11 MS	North Wall	Soluble	Solid	DI Leach	
880-32113-11 MSD	North Wall	Soluble	Solid	DI Leach	
nalysis Batch: 60617					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-32113-1	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-2	Bottom Hole-2	Soluble	Solid	300.0	60360
880-32113-3	Bottom Hole-3	Soluble	Solid	300.0	60360
880-32113-4	Bottom Hole-4	Soluble	Solid	300.0	60360
880-32113-5	Bottom Hole-5	Soluble	Solid	300.0	60360
880-32113-6	Bottom Hole-6	Soluble	Solid	300.0	60360
880-32113-7	Bottom Hole-7	Soluble	Solid	300.0	60360
880-32113-8	Bottom Hole-8	Soluble	Solid	300.0	60360
880-32113-9	Bottom Hole-9	Soluble	Solid	300.0	60360
880-32113-10	Bottom Hole-10	Soluble	Solid	300.0	60360
880-32113-11	North Wall	Soluble	Solid	300.0	60360
880-32113-12	South Wall	Soluble	Solid	300.0	60360
880-32113-13	East Wall	Soluble	Solid	300.0	60360
880-32113-14	West Wall	Soluble	Solid	300.0	60360
MB 880-60360/1-A	Method Blank	Soluble	Solid	300.0	60360
LCS 880-60360/2-A	Lab Control Sample	Soluble	Solid	300.0	60360
LCSD 880-60360/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	60360
880-32113-1 MS	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-1 MSD	Bottom Hole-1	Soluble	Solid	300.0	60360
880-32113-11 MS	North Wall	Soluble	Solid	300.0	60360
880-32113-11 MSD	North Wall	Soluble	Solid	300.0	60360

Page 68 of 119

Job ID: 880-32113-1 SDG: 1786

Initial

Amount

5.00 g

5 mL

10.08 g

1 uL

4.99 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

60938

60869

60979

60897

60741

60776

60360

60617

Number

Dil

1

1

1

1

5

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: Bottom Hole-1 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-1

Analyst

EL

SM

SM

SM

ткс

SM

SMC

СН

Lab Sample ID: 880-32113-3

Lab Sample ID: 880-32113-4

Matrix: Solid

Prepared

or Analyzed

08/23/23 17:45

08/24/23 03:32

08/24/23 10:35

08/23/23 11:00

08/21/23 14:10

08/22/23 14:06

08/16/23 09:31

08/18/23 21:39

Matrix: Solid

Lab

EET MID

Lab Sample ID: 880-32113-2 Matrix: Solid

	3

Client Sample ID: Bottom Hole-2

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 03:52	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 14:29	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 21:59	СН	EET MID

Client Sample ID: Bottom Hole-3

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:13	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	60741	08/21/23 14:10	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 14:50	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:06	СН	EET MID

Client Sample ID: Bottom Hole-4 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:33	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: Bottom Hole-4 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	60741	08/21/23 14:10	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 15:12	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:13	СН	EET MID

Client Sample ID: Bottom Hole-5 Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 04:53	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 15:55	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:19	СН	EET MID

Client Sample ID: Bottom Hole-6

Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:14	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 16:17	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:39	СН	EET MID

Client Sample ID: Bottom Hole-7 Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:34	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 16:39	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 70 of 119

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-4

Lab Sample ID: 880-32113-5

Lab Sample ID: 880-32113-6

Lab Sample ID: 880-32113-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Etech Environmental & Safety Solutions

Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: Bottom Hole-7

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-7

Lab Sample ID: 880-32113-8

Lab Sample ID: 880-32113-9

Lab Sample ID: 880-32113-10

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.01 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:46	СН	EET MID

Client Sample ID: Bottom Hole-8 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 05:55	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:00	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 22:53	СН	EET MID

Client Sample ID: Bottom Hole-9 Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 06:15	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:22	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 22:59	СН	EET MID

Client Sample ID: Bottom Hole-10 Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	60938	08/23/23 17:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/24/23 06:36	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 17:44	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 23:06	СН	EET MID

Eurofins Midland

Page 71 of 119

Lab Chronicle

Initial

Amount

4.99 g

5 mL

10.08 g

1 uL

5.01 g

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

Batch

60871

60869

60979

60897

60741

60776

60360

60617

Number

Dil

1

1

1

1

10

Factor

Run

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: North Wall Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-11

Analyst

EL

SM

SM

SM

ткс

SM

SMC

СН

Prepared

or Analyzed

08/23/23 08:45

08/23/23 18:19

08/24/23 10:35

08/23/23 11:00

08/21/23 14:10

08/22/23 18:05

08/16/23 09:31

08/18/23 23:13

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 880-32113-12 Matrix: Solid

Lab Sample ID: 880-32113-13

Lab Sample ID: 880-32113-14

rix: Solia

Date	Collected:	08/11/23	14:53
Date	Received:	08/15/23	16:35

Client Sample ID: South Wall

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 18:40	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 18:27	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		5			60617	08/18/23 23:33	СН	EET MID

Client Sample ID: East Wall Date Collected: 08/11/23 14:53

Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 19:00	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	60741	08/21/23 14:10	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 18:49	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 23:39	CH	EET MID

Client Sample ID: West Wall Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	60871	08/23/23 08:45	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	60869	08/23/23 19:21	SM	EET MID
Total/NA	Analysis	Total BTEX		1			60979	08/24/23 10:35	SM	EET MID

Eurofins Midland

Matrix: Solid
Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Client Sample ID: West Wall Date Collected: 08/11/23 14:53 Date Received: 08/15/23 16:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			60897	08/23/23 11:00	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	60741	08/21/23 14:10	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	60776	08/22/23 19:11	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	60360	08/16/23 09:31	SMC	EET MID
Soluble	Analysis	300.0		10			60617	08/18/23 23:59	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 880-32113-1 SDG: 1786

Lab Sample ID: 880-32113-14

Matrix: Solid

Page 73 of 119

Eurofins Midland

Released to Imaging: 6/17/2024 7:57:33 AM

Page 74 of 119

Client: Etech Environm Project/Site: NM Hayhu	-	ns		Job ID: 880-32113-1 SDG: 1786	2
Laboratory: Eurofi Unless otherwise noted, all a		vere covered under each acc	reditation/certification below.		
Authority	F	Program	Identification Number	Expiration Date	
Texas		NELAP	T104704400-23-26	06-30-24	5
The following analytes the agency does not of		out the laboratory is not certif	fied by the governing authority. This list ma	ay include analytes for which	6
Analysis Method	Prep Method	Matrix	Analyte		
8015 NM		Solid	Total TPH		
Total BTEX		Solid	Total BTEX		
					8
					9
					10
					13

Eurofins Midland

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Job ID: 880-32113-1 SDG: 1786

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency		
SW846 = '	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	Edition, November 1986 And Its Updates.	
TAL SOP :	 TestAmerica Laboratories, Standard Operating Procedure 		
Laboratory R	eferences:		
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-544	0	

Laboratory References:

Sample Summary

Client: Etech Environmental & Safety Solutions Project/Site: NM Hayhurst Section 35 CTB

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	
880-32113-1	Bottom Hole-1	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-2	Bottom Hole-2	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-3	Bottom Hole-3	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-4	Bottom Hole-4	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-5	Bottom Hole-5	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-6	Bottom Hole-6	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-7	Bottom Hole-7	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-8	Bottom Hole-8	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-9	Bottom Hole-9	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-10	Bottom Hole-10	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-11	North Wall	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-12	South Wall	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-13	East Wall	Solid	08/11/23 14:53	08/15/23 16:35	
880-32113-14	West Wall	Solid	08/11/23 14:53	08/15/23 16:35	

Received by OCD: 6/6/2024 7:13:09 AM

CHARGE CONTROL OF CONTROL	Relinquished by:	Relinquished by:	Relinquished by:	Special Instructions															LAB # (lab use only)	ORDER #:	liab ino pair	Sampler Signature:	Company Address: City/State/Zin:	Company Name:	Project Manager:	1 100 Bankin Hwy		1 2 3
CHAIN OF CUSTOOP RECORD AND ANALYSS REQUEST Safety Solutions, Inc. Project Name: M. Judy & Selin 32 (J) email: Muke exchange. Bold 2018 Data of Custopy Bold 2018 Data of Custopy <th></th> <th></th> <th>7</th> <th>ons:</th> <th>4</th> <th></th> <th>F</th> <th>F</th> <th>Hole-1</th> <th>Hol-</th> <th>Hole-</th> <th>[</th> <th></th> <th></th> <th></th> <th></th> <th>Hu-</th> <th>Batton Hole- 1</th> <th></th> <th>2113</th> <th></th> <th>Cover Principal</th> <th>Midland Texas</th> <th></th> <th>BLAKE E</th> <th></th> <th>KALB R</th> <th>4 5 6 7</th>			7	ons:	4		F	F	Hole-1	Hol-	Hole-	[Hu-	Batton Hole- 1		2113		Cover Principal	Midland Texas		BLAKE E		KALB R	4 5 6 7
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST International participation Internatextende	Date	Date	27																УE				9711	ntal & Safe		nd Texas 79	rmian Ba	8
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Man Zhakak Seation 35 L TB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Anore format: Reasonable for other Po#: //SB Project #: //SB P			Time 1		0	0	D	0											Start Depth			email:		ty Solutio		1020	sin Envir	9 1(
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Man Zhakak Seation 35 L TB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Anore format: Reasonable for other Po#: //SB Project #: //SB P	Receiv	Receiv	Aec	5	6	6	6	2	91	6	116	61	6:		911	6	12	12.	End Depth	88				ns, l				11
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Man Zhakak Seation 35 L TB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Area: PO#: //SB Project #: //SB Project Loc: Anore format: Reasonable for other Po#: //SB Project #: //SB P	red by:	red by:	readay:	0														11-8	Date Sampled	-32113 Chain		blake		nc.			cotal Lab.	12 13
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST			L		1520	8151	1516	1014	1812	1510	1508	1506	1504	1502	1459	1457	1455	1457	Time Sampled			detechen				Phones	E.	14
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST			()			-	-	-	-	-	-	-	1	-	-	~		-				N.CC				112-		
CHAIN OF CUSTODY RECORD AND AMALYSIS REQUEST Project Name: Mn Project Mame: Mn Area: Project II: Area: Project II: Mean Na250; Mean Project II: Area: Project II: Na250; Mean Mean<			t										-			1						Ă				58145-		
CHAIN OF CUSTODY RECORD AND AMALYSIS REQUEST Project Name: Mn Project Mame: Mn Area: Project II: Area: Project II: Mean Na250; Mean Project II: Area: Project II: Na250; Mean Mean<				5							_	-	-					-								- 72		
CHAIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Name: Mn Project Name: Mn Area: Project Name: Mn												-	-					-								5		
AIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Mame: //n 7/4/4/4/ Sechin 32 C.7/8 Project Mame: //n 7/6/4/4/4 Sechin 32 C.7/8 Project Mame: //n 7/6/4/4 Sechin 32 C.7/8 Project Mame: //n 7/6/4/4											_					-		-										
AIN OF CUSTODY RECORD AND ANALYSIS REQUEST Project Mame: //n 7/4/4/4/ Sechin 32 C.7/8 Project Mame: //n 7/6/4/4/4 Sechin 32 C.7/8 Project Mame: //n 7/6/4/4 Sechin 32 C.7/8 Project Mame: //n 7/6/4/4																			Na ₂ S ₂ O ₃								9	
⁶			3																None		R		Þ	P	P		IAIN	
⁶	Date	Date	11 Date																		sport	Bi	rea	OF	CO C		V O	
⁶			82																DW=Drinking Water SL=Sludge	A	Form		l	ict	ect		FC	
⁶																		5	NP=Non-PotableSpecify Other	Itrix	nat: {	tec		#	Na		IST	
⁶	Time	lime	62			п	Π			8	D	8	þ	a	0	0	a			06	TË	h		17	me		OD	
⁶			2																		1			5	:A		YR	
⁶	Tem	Sart	Cust	Sam				-						-	-	-	-				Ĩ			6	3,		ECC	
⁶	pera	by C	lody ple	ple (H			-				-		-	-	-		-							5		JRD	
⁶	ture	ampl	seal	ont ont	H		-	-			-	-	-	-	-		-							Pr	and	•	A	
⁶	L Do	er/C	Del	ainei f He	님											-					1 F			oje	k4		D,	
⁶	n R	lient	i cor	nm.	님	-	-				-				-	-							Õ.	ct	L		AN	
⁶	ceir	28	Hain Her(hact	H				H									-						0	el		YTX.	
⁶	H C	~	er(s) s)									-	-					-	In the second		50		1		tio		SIS	
⁶	NI	Ŧ.	-					-						П	-	-	-	-					5		٢		REC	
⁶	2	Ţ													-	-	-	-			1		6		3		DU	
⁶	12	edEv ≺	~~~	~~		П		-		Н				-		-			CHICHUES	-					L		EST	
n 2 Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z Z								-	-						-			-							P		•	
	l °	N	zzz	zz				-						-			-		RUSH TAT(Pre-Schedule) 24, 48,	72 hrs				1	18			
STANDARD TAT	1	Star										-					-	-	STANDARD TAT									

Page 77 of 119

14

Job Number: 880-32113-1 SDG Number: 1786

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Etech Environmental & Safety Solutions

Login Number: 32113 List Number: 1 Creator: Teel, Brianna

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	True	

PERMIAN BASIN ENVIRONMENTAL LAB, LP 1400 Rankin Hwy Midland, TX 79701

Analytical Report Rev. 1

Prepared for:

Blake Estep E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa, TX 79765

> Project: NM Hayhurst Sect. 35 C TB Project Number: 17586 Location: New Mexico

> > Lab Order Number: 4C25010

Current Certification

Report Date: 05/10/24

E Tech Environmental & Safety Solutions, Inc. [1] 13000 West County Road 100 Odessa TX, 79765 Project: NM Hayhurst Sect. 35 C TB Project Number: 17586 Project Manager: Blake Estep

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
Bottom Hole - 2A @ 12.5"	4C25010-01	Soil	03/22/24 12:00	03-25-2024 15:52
Bottom Hole - 4A @ 10"	4C25010-02	Soil	03/22/24 12:02	03-25-2024 15:52
Bottom Hole - 6A @ 8"	4C25010-03	Soil	03/22/24 12:04	03-25-2024 15:52
Bottom Hole - 7A @ 8"	4C25010-04	Soil	03/22/24 12:06	03-25-2024 15:52
Bottom Hole - 8A @ 12"	4C25010-05	Soil	03/22/24 12:08	03-25-2024 15:52
Bottom Hole - 9A @ 8"	4C25010-06	Soil	03/22/24 12:10	03-25-2024 15:52
Bottom Hole - 11A @ 8"	4C25010-07	Soil	03/22/24 12:12	03-25-2024 15:52
Bottom Hole 12A @ 8"	4C25010-08	Soil	03/22/24 12:14	03-25-2024 15:52
Bottom Hole - 13A @ 8"	4C25010-09	Soil	03/22/24 12:16	03-25-2024 15:52
Bottom Hole - 14A @ 8"	4C25010-10	Soil	03/22/24 12:18	03-25-2024 15:52
North Side Wall A @ 0-6"	4C25010-11	Soil	03/22/24 12:20	03-25-2024 15:52
South Side Wall A @ 0-6"	4C25010-12	Soil	03/22/24 12:22	03-25-2024 15:52
East Side Wall A @ 0-6"	4C25010-13	Soil	03/22/24 12:24	03-25-2024 15:52

E Tech Environmental & Safety Solutions, Inc. [1]	Project: NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number: 17586
Odessa TX, 79765	Project Manager: Blake Estep

Bottom Hole - 2A @ 12.5"

4C25010-01 (Soil)

Analyte	Limi Result	it Repor	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
	Kesuit		Units	Dilution	Daten	Flepared	7 mary 200	Wiethod	11010
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		101 %	80-120		P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Surrogate: 1,4-Difluorobenzene	ł	89.0 %	80-120		P4C2610	03/26/24 13:05	03/26/24 15:54	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EPA	Method	8015M						
Total Petroleum Hydrocarbons C6- C6-C12	C35 by EPA ND	<u>Method</u> 25.8	8015M mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
*				1	P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M	
C6-C12	ND	25.8	mg/kg dry	-					
C6-C12 >C12-C28	ND 30.6 ND	25.8 25.8	mg/kg dry mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 03:49	TPH 8015M	
C6-C12 >C12-C28 >C28-C35	ND 30.6 ND	25.8 25.8 25.8	mg/kg dry mg/kg dry mg/kg dry	1	P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane	ND 30.6 ND	25.8 25.8 25.8 91.2 %	mg/kg dry mg/kg dry mg/kg dry 70-130	1	P4C2615 P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl	ND 30.6 ND	25.8 25.8 25.8 91.2 % 106 %	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130	1	P4C2615 P4C2615 P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41 03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49 03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon C6-C35	ND 30.6 ND 30.6	25.8 25.8 25.8 25.8 21.2 % 106 % 25.8	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130 mg/kg dry	1	P4C2615 P4C2615 P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41 03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49 03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	
C6-C12 >C12-C28 >C28-C35 Surrogate: 1-Chlorooctane Surrogate: o-Terphenyl Total Petroleum Hydrocarbon	ND 30.6 ND 30.6	25.8 25.8 25.8 25.8 21.2 % 106 % 25.8	mg/kg dry mg/kg dry mg/kg dry 70-130 70-130 mg/kg dry	1	P4C2615 P4C2615 P4C2615 P4C2615	03/26/24 15:41 03/26/24 15:41 03/26/24 15:41 03/26/24 15:41	03/27/24 03:49 03/27/24 03:49 03/27/24 03:49 03/27/24 03:49	TPH 8015M TPH 8015M TPH 8015M TPH 8015M	

E Tech Environmental & Safety Soluti 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]			t Number:	2	Sect. 35 C TB			
			Bott	tom Hole	e - 4A @ 10	,,			
[4C25010-	-02 (Soil)				
	Lim	it Repo	orting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		105 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.6 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Surrogate: 1-Chlorooctane		95.5 %	70-130		P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Surrogate: o-Terphenyl		110 %	70-130		P4C2615	03/26/24 15:41	03/27/24 04:12	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 04:12	calc	
General Chemistry Parameters by	EPA / Stand	ard Met	hods						
Chloride	75.4	5.26	mg/kg dry	5	P4C2611	03/26/24 14:29	03/26/24 20:56	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution: 13000 West County Road 100 Odessa TX, 79765	s, Inc. [1]		•	t Number:	2	Sect. 35 C TB			
,			5	0	e - 6A @ 8'	,			
				4C25010	-03 (Soil)				
	Lim	it Repo	orting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Toluene	ND	0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Ethylbenzene	ND	0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Xylene (p/m)	ND	0.00213	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Xylene (o)	ND	0.00106	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.0 %	80-120		P4C2610	03/26/24 13:05	03/26/24 16:39	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EPA	A Method	8015M						
C6-C12	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
>C12-C28	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
>C28-C35	ND	26.6	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Surrogate: 1-Chlorooctane		97.2 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:22	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.6	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 05:22	calc	
General Chemistry Parameters by E	PA / Stand	lard Met	hods						
Chloride	111	1.06	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 10:32	EPA 300.0	
% Moisture	6.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ns, Inc. [1]		•	t Number:	2	Sect. 35 C TB			
					e - 7A @ 8'	,			
					-04 (Soil)				
	Lin	nit Repo	orting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.5 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:01	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Surrogate: 1-Chlorooctane		93.6%	70-130		P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Surrogate: o-Terphenyl		109 %	70-130		P4C2615	03/26/24 15:41	03/27/24 05:45	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 05:45	calc	
General Chemistry Parameters by I	EPA / Stand	lard Met	hods						
Chloride	131	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 10:49	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ns, Inc. [1]		•	t Number:	2	t Sect. 35 C TB			
				tom Hole 4C25010	e - 8A @ 12	••			
	T .			4025010	-03 (3011)				
Analyte	Lim Result	it Repo	rting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Toluene	ND	0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Ethylbenzene	ND	0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Xylene (p/m)	ND	0.00220	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Xylene (o)	ND	0.00110	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		107 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.4 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:24	EPA 8021B	
Total Petroleum Hydrocarbons C6-0	C35 by EPA	Method	8015M						
C6-C12	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
>C12-C28	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
>C28-C35	ND	27.5	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Surrogate: 1-Chlorooctane		95.6 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Surrogate: o-Terphenyl		111 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:09	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	27.5	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:09	calc	
General Chemistry Parameters by E	PA / Stand	ard Met	hods						
Chloride	60.3	5.49	mg/kg dry	5	P4C2611	03/26/24 14:29	03/26/24 21:42	EPA 300.0	
% Moisture	9.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:		t Sect. 35 C TB			
1					e - 9A @ 8' -06 (Soil)	,			
	Lin	ait Dono		4023010	-00 (3011)				
Analyte	Result	пп керс	orting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	.ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.1 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		109 %	80-120		P4C2610	03/26/24 13:05	03/26/24 17:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	l 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Surrogate: 1-Chlorooctane		89.1 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Surrogate: o-Terphenyl		102 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:32	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:32	calc	
General Chemistry Parameters by	EPA / Stand	<u>lard Met</u>	hods						
Chloride	132	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:06	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solutions 13000 West County Road 100 Odessa TX, 79765	, Inc. [1]		•	t Number:	2	t Sect. 35 C TB			
					e - 11A @ 8' -07 (Soil)	,,			
	т:	wit D		7023010	or (501)				
Analyte	Lin Result	пи керс	orting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Toluene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Ethylbenzene	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Xylene (p/m)	ND	0.00211	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Xylene (o)	ND	0.00105	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.3 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:08	EPA 8021B	
Total Petroleum Hydrocarbons C6-C	35 by EP.	A Method	I 8015M						
C6-C12	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
>C12-C28	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
>C28-C35	ND	26.3	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Surrogate: 1-Chlorooctane		99.3 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Surrogate: o-Terphenyl		116 %	70-130		P4C2615	03/26/24 15:41	03/27/24 06:55	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.3	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 06:55	calc	
General Chemistry Parameters by El	PA / Stan	dard Met	hods						
Chloride	107	1.05	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:22	EPA 300.0	
% Moisture	5.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	2	Sect. 35 C TB			
L					e 12A @ 8' -08 (Soil)	,			
				4025010	-00 (3011)				
Analyte	Lin Result	nit Repo	orting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.8 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		112 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:30	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Surrogate: 1-Chlorooctane		97.4 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Surrogate: o-Terphenyl		113 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:19	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 07:19	calc	
General Chemistry Parameters by	EPA / Stand	<u>lard Met</u>	hods						
Chloride	231	1.04	mg/kg dry	1	P4C2611	03/26/24 14:29	03/28/24 11:39	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100 Odessa TX, 79765	ons, Inc. [1]		5	t Number:	2	Sect. 35 C TB			
					e - 13A @ 8 -09 (Soil)	••			
	Lin	nit Repo							
Analyte	Result	ши керс	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Toluene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Ethylbenzene	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Xylene (p/m)	ND	0.00215	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Xylene (o)	ND	0.00108	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		82.9 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		120 %	80-120		P4C2610	03/26/24 13:05	03/26/24 18:53	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
>C12-C28	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
>C28-C35	ND	26.9	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Surrogate: 1-Chlorooctane		96.4 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P4C2615	03/26/24 15:41	03/27/24 07:42	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.9	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 07:42	calc	
General Chemistry Parameters by	EPA / Stand	dard Met	hods						
Chloride	4340	10.8	mg/kg dry	10	P4C2613	03/26/24 15:25	03/27/24 00:01	EPA 300.0	
% Moisture	7.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]Project: NM Hayhurst Sect. 35 C TB13000 West County Road 100Project Number: 17586Odessa TX, 79765Project Manager: Blake Estep									
					e - 14A @ 8 -10 (Soil)	••			
	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		86.8 %	80-120		P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 19:16	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EP	A Method	8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Surrogate: 1-Chlorooctane		96.7 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Surrogate: o-Terphenyl		112 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:05	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:05	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	236	10.4	mg/kg dry	10	P4C2613	03/26/24 15:25	03/27/24 00:47	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Odessa TX, 79765			Project	Manager:	Blake Estep				
					/all A @ 0-0	5''			
				4C25010	-11 (Soil)				
Analyte	Lin Result	nit Repo	orting Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		Р	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Toluene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Ethylbenzene	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Xylene (p/m)	ND	0.00206	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Xylene (o)	ND	0.00103	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		87.5 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		110 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:24	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	l 8015M						
C6-C12	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
>C12-C28	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
>C28-C35	ND	25.8	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Surrogate: 1-Chlorooctane		102 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Surrogate: o-Terphenyl		118 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:28	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	25.8	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:28	calc	
General Chemistry Parameters by	EPA / Stand	lard <u>Met</u>	hods						
Chloride	127	1.03	mg/kg dry	1	P4C2613	03/26/24 15:25	03/28/24 11:56	EPA 300.0	
% Moisture	3.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

Odessa TX, 79765			Project	Manager:	Blake Estep				
			Sout	h Side W	/all A @ 0-6	5''			
				4C25010	0				
	Lim	it Repo	orting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
		P	ermian B	asin Envi	ronmental L	ab, L.P.			
BTEX by 8021B									
Benzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Toluene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Ethylbenzene	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Xylene (p/m)	ND	0.00208	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Xylene (o)	ND	0.00104	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		88.1 %	80-120		P4C2610	03/26/24 13:05	03/26/24 20:46	EPA 8021B	
Total Petroleum Hydrocarbons C6	-C35 by EPA	A Method	l 8015M						
C6-C12	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
>C12-C28	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
>C28-C35	ND	26.0	mg/kg dry	1	P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Surrogate: 1-Chlorooctane		98.5 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Surrogate: o-Terphenyl		115 %	70-130		P4C2615	03/26/24 15:41	03/27/24 08:51	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	ND	26.0	mg/kg dry	1	[CALC]	03/26/24 15:41	03/27/24 08:51	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	91.8	5.21	mg/kg dry	5	P4C2613	03/26/24 15:25	03/27/24 01:17	EPA 300.0	
% Moisture	4.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solution 13000 West County Road 100				Number:	17586	Sect. 35 C TB			
Odessa TX, 79765			Project	Manager:	Blake Estep				
			East	t Side W	all A @ 0-6	••			
				4C25010	-13 (Soil)				
	Lin	nit Repo	rting						
Analyte	Result		Units	Dilution	Batch	Prepared	Analyzed	Method	Note
		Р	ermian Ba	asin Envi	ronmental L	ab, L.P.			
STEX by 8021B									
Benzene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Toluene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Ethylbenzene	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Xylene (p/m)	ND	0.00204	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Xylene (o)	ND	0.00102	mg/kg dry	1	P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Surrogate: 1,4-Difluorobenzene		85.9 %	80-120		P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Surrogate: 4-Bromofluorobenzene		108 %	80-120		P4C2610	03/26/24 13:05	03/26/24 21:09	EPA 8021B	
Total Petroleum Hydrocarbons C6-	C35 by EP	A Method	8015M						
C6-C12	26.5	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
>C12-C28	ND	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
>C28-C35	ND	25.5	mg/kg dry	1	P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Surrogate: 1-Chlorooctane		113 %	70-130		P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Surrogate: o-Terphenyl		105 %	70-130		P4C2616	03/26/24 15:43	03/26/24 23:21	TPH 8015M	
Total Petroleum Hydrocarbon C6-C35	26.5	25.5	mg/kg dry	1	[CALC]	03/26/24 15:43	03/26/24 23:21	calc	
General Chemistry Parameters by	EPA / Stand	lard Met	hods						
Chloride	282	5.10	mg/kg dry	5	P4C2613	03/26/24 15:25	03/27/24 01:32	EPA 300.0	
% Moisture	2.0	0.1	%	1	P4C2709	03/27/24 10:08	03/27/24 10:12	ASTM D2216	

E Tech Environmental & Safety Solutions, Inc. [1]	Project: NM	Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number: 1758	36
Odessa TX, 79765	Project Manager: Blak	te Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2610 - *** DEFAULT PREP ***	*									
Blank (P4C2610-BLK1)				Prepared &	Analyzed:	03/26/24				
Benzene	ND	0.00100	mg/kg							
Toluene	ND	0.00100	"							
Ethylbenzene	ND	0.00100								
Xylene (p/m)	ND	0.00200								
Xylene (o)	ND	0.00100	"							
Surrogate: 1,4-Difluorobenzene	0.105		"	0.120		87.8	80-120			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.5	80-120			
LCS (P4C2610-BS1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0911	0.00100	mg/kg	0.100		91.1	80-120			
Toluene	0.0816	0.00100		0.100		81.6	80-120			
Ethylbenzene	0.0924	0.00100		0.100		92.4	80-120			
Xylene (p/m)	0.196	0.00200		0.200		98.0	80-120			
Xylene (o)	0.0844	0.00100		0.100		84.4	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.3	80-120			
Surrogate: 4-Bromofluorobenzene	0.122		"	0.120		102	80-120			
LCS Dup (P4C2610-BSD1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0939	0.00100	mg/kg	0.100		93.9	80-120	2.98	20	
Toluene	0.0864	0.00100	"	0.100		86.4	80-120	5.63	20	
Ethylbenzene	0.0982	0.00100		0.100		98.2	80-120	6.09	20	
Xylene (p/m)	0.208	0.00200		0.200		104	80-120	5.91	20	
Xylene (o)	0.0913	0.00100	"	0.100		91.3	80-120	7.88	20	
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.6	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			
Calibration Blank (P4C2610-CCB1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.180		ug/kg							
Toluene	0.240									
Ethylbenzene	0.110									
Xylene (p/m)	0.140									
Xylene (o)	0.100									
Surrogate: 1,4-Difluorobenzene	0.107		"	0.120		89.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.126		"	0.120		105	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

		Reporting		Spike	Source	0/852	%REC	D.C.S.	RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2610 - *** DEFAULT PREP ***										
Calibration Blank (P4C2610-CCB2)				Prepared &	Analyzed:	03/26/24				
Benzene	0.270		ug/kg							
Toluene	0.370		"							
Ethylbenzene	0.240		"							
Xylene (p/m)	0.210		"							
Xylene (o)	0.210		"							
Surrogate: 1,4-Difluorobenzene	0.101		"	0.120		84.0	80-120			
Surrogate: 4-Bromofluorobenzene	0.130		"	0.120		108	80-120			
Calibration Check (P4C2610-CCV1)				Prepared &	Analyzed:	03/26/24				
Benzene	0.0952	0.00100	mg/kg	0.100		95.2	80-120			
Toluene	0.0840	0.00100	"	0.100		84.0	80-120			
Ethylbenzene	0.0889	0.00100	"	0.100		88.9	80-120			
Xylene (p/m)	0.201	0.00200	"	0.200		101	80-120			
Xylene (o)	0.0876	0.00100	"	0.100		87.6	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.120		96.6	75-125			
Surrogate: 4-Bromofluorobenzene	0.121		"	0.120		101	75-125			
Calibration Check (P4C2610-CCV2)				Prepared &	Analyzed:	03/26/24				
Benzene	0.105	0.00100	mg/kg	0.100	•	105	80-120			
Toluene	0.0935	0.00100	"	0.100		93.5	80-120			
Ethylbenzene	0.100	0.00100	"	0.100		100	80-120			
Xylene (p/m)	0.227	0.00200	"	0.200		114	80-120			
Xylene (o)	0.100	0.00100	"	0.100		100	80-120			
Surrogate: 1,4-Difluorobenzene	0.110		"	0.120		91.5	75-125			
Surrogate: 4-Bromofluorobenzene	0.123		"	0.120		103	75-125			
Calibration Check (P4C2610-CCV3)				Prepared: ()3/26/24 Aı	nalyzed: 03	/27/24			
Benzene	0.113	0.00100	mg/kg	0.100		113	80-120			
Toluene	0.0980	0.00100	"	0.100		98.0	80-120			
Ethylbenzene	0.103	0.00100	"	0.100		103	80-120			
Xylene (p/m)	0.232	0.00200	"	0.200		116	80-120			
Xylene (o)	0.102	0.00100	"	0.100		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.120		94.9	75-125			
Surrogate: 4-Bromofluorobenzene	0.119		"	0.120		99.6	75-125			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

BTEX by 8021B - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch P4C2610 - *** DEFAULT PREP ***

Matrix Spike (P4C2610-MS1)	Sour	ce: 4C25010	-01	Prepared: 0	3/26/24 A	nalyzed: 03	3/27/24			
Benzene	0.0837	0.00103	mg/kg dry	0.103	ND	81.2	80-120			
Toluene	0.0726	0.00103	"	0.103	ND	70.4	80-120			QM-05
Ethylbenzene	0.0789	0.00103	"	0.103	ND	76.5	80-120			QM-05
Xylene (p/m)	0.170	0.00206	"	0.206	ND	82.4	80-120			
Xylene (o)	0.0712	0.00103	"	0.103	ND	69.0	80-120			QM-05
Surrogate: 4-Bromofluorobenzene	0.126		"	0.124		102	80-120			
Surrogate: 1,4-Difluorobenzene	0.116		"	0.124		93.6	80-120			
Matrix Spike Dup (P4C2610-MSD1)	Sour	ce: 4C25010	-01	Prepared: 0	3/26/24 A	nalyzed: 03	3/27/24			
Benzene	0.0927	0.00103	mg/kg dry	0.103	ND	89.9	80-120	10.2	20	
Toluene	0.0824	0.00103		0.103	ND	79.9	80-120	12.7	20	QM-05
Ethylbenzene	0.0905	0.00103	"	0.103	ND	87.8	80-120	13.8	20	
Xylene (p/m)	0.199	0.00206	"	0.206	ND	96.7	80-120	16.0	20	
Xylene (o)	0.0849	0.00103		0.103	ND	82.3	80-120	17.6	20	
Surrogate: 4-Bromofluorobenzene	0.129		"	0.124		104	80-120			
Surrogate: 1,4-Difluorobenzene	0.114		"	0.124		92.0	80-120			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project: NM Hayhurst Sect. 3:	5 C TB
13000 West County Road 100	Project Number: 17586	
Odessa TX, 79765	Project Manager: Blake Estep	

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2615 - TX 1005										
Blank (P4C2615-BLK1)				Prepared &	Analyzed:	03/26/24				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	93.2		"	100		93.2	70-130			
Surrogate: o-Terphenyl	53.9		"	50.0		108	70-130			
LCS (P4C2615-BS1)				Prepared &	Analyzed:	03/26/24				
C6-C12	822	25.0	mg/kg	1000		82.2	75-125			
>C12-C28	858	25.0		1000		85.8	75-125			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	49.3		"	50.0		98.7	70-130			
LCS Dup (P4C2615-BSD1)				Prepared &	Analyzed:	03/26/24				
C6-C12	830	25.0	mg/kg	1000		83.0	75-125	0.931	20	
>C12-C28	853	25.0		1000		85.3	75-125	0.623	20	
Surrogate: 1-Chlorooctane	106		"	100		106	70-130			
Surrogate: o-Terphenyl	50.5		"	50.0		101	70-130			
Calibration Check (P4C2615-CCV1)				Prepared &	Analyzed:	03/26/24				
C6-C12	536	25.0	mg/kg	500		107	85-115			
>C12-C28	570	25.0		500		114	85-115			
Surrogate: 1-Chlorooctane	107		"	100		107	70-130			
Surrogate: o-Terphenyl	56.2		"	50.0		112	70-130			
Calibration Check (P4C2615-CCV2)				Prepared: ()3/26/24 At	nalyzed: 03	/27/24			
C6-C12	525	25.0	mg/kg	500		105	85-115			
>C12-C28	572	25.0		500		114	85-115			
Surrogate: 1-Chlorooctane	105		"	100		105	70-130			
Surrogate: o-Terphenyl	55.0		"	50.0		110	70-130			

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4C2615 - TX 1005										
Calibration Check (P4C2615-CCV3)				Prepared: ()3/26/24 A1	nalyzed: 03	/27/24			
C6-C12	562	25.0	mg/kg	500		112	85-115			
>C12-C28	566	25.0	"	500		113	85-115			
Surrogate: 1-Chlorooctane	113		"	100		113	70-130			
Surrogate: o-Terphenyl	58.7		"	50.0		117	70-130			
Batch P4C2616 - TX 1005										
Blank (P4C2616-BLK1)				Prepared &	Analyzed:	03/26/24				
C6-C12	ND	25.0	mg/kg							
>C12-C28	ND	25.0	"							
>C28-C35	ND	25.0	"							
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	54.5		"	50.0		109	70-130			
LCS (P4C2616-BS1)				Prepared &	Analyzed:	03/26/24				
C6-C12	854	25.0	mg/kg	1000		85.4	75-125			
>C12-C28	785	25.0	"	1000		78.5	75-125			
Surrogate: 1-Chlorooctane	122		"	100		122	70-130			
Surrogate: o-Terphenyl	52.8		"	50.0		106	70-130			
LCS Dup (P4C2616-BSD1)				Prepared &	Analyzed:	03/26/24				
C6-C12	818	25.0	mg/kg	1000		81.8	75-125	4.33	20	
>C12-C28	788	25.0	"	1000		78.8	75-125	0.351	20	
Surrogate: 1-Chlorooctane	115		"	100		115	70-130			
Surrogate: o-Terphenyl	50.8		"	50.0		102	70-130			
Calibration Check (P4C2616-CCV1)				Prepared &	Analyzed:	03/26/24				
C6-C12	533	25.0	mg/kg	500		107	85-115			
>C12-C28	513	25.0	"	500		103	85-115			
Surrogate: 1-Chlorooctane	126		"	100		126	70-130			
Surrogate: o-Terphenyl	56.7		"	50.0		113	70-130			

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Total Petroleum Hydrocarbons C6-C35 by EPA Method 8015M - Quality Control

ΤB

Permian Basin Environmental Lab, L.P.

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2616 - TX 1005										
Calibration Check (P4C2616-CCV2)				Prepared: ()3/26/24 Ai	nalyzed: 03	/27/24			
C6-C12	521	25.0	mg/kg	500		104	85-115			
>C12-C28	504	25.0	"	500		101	85-115			
Surrogate: 1-Chlorooctane	119		"	100		119	70-130			
Surrogate: o-Terphenyl	54.4		"	50.0		109	70-130			
Calibration Check (P4C2616-CCV3)				Prepared: ()3/26/24 A1	nalyzed: 03	/27/24			
C6-C12	506	25.0	mg/kg	500		101	85-115			
>C12-C28	485	25.0	"	500		97.0	85-115			
Surrogate: 1-Chlorooctane	111		"	100		111	70-130			
Surrogate: o-Terphenyl	52.5		"	50.0		105	70-130			

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4C2611 - *** DEFAULT PREP ***										
Blank (P4C2611-BLK1)				Prepared &	Analyzed:	03/26/24				
Chloride	ND	1.00	mg/kg							
LCS (P4C2611-BS1)				Prepared &	Analyzed:	03/26/24				
Chloride	16.5		mg/kg	18.0		91.5	90-110			
Calibration Check (P4C2611-CCV1)				Prepared &	analyzed:	03/26/24				
Chloride	17.1		mg/kg	18.0		94.8	90-110			
Calibration Check (P4C2611-CCV2)				Prepared &	Analyzed:	03/26/24				
Chloride	17.3		mg/kg	18.0		96.0	90-110			
Matrix Spike (P4C2611-MS1)	Sou	rce: 4C20018-	-07	Prepared &	Analyzed:	03/26/24				
Chloride	102		mg/kg	100	-0.100	102	80-120			
Matrix Spike (P4C2611-MS2)	Sou	rce: 4C25008-	-02	Prepared &	Analyzed:	03/26/24				
Chloride	105		mg/kg	100	5.62	99.2	80-120			
Matrix Spike Dup (P4C2611-MSD1)	Sou	rce: 4C20018-	-07	Prepared &	Analyzed:	03/26/24				
Chloride	101		mg/kg	100	-0.100	101	80-120	0.953	20	
Matrix Spike Dup (P4C2611-MSD2)	Sou	rce: 4C25008-	-02	Prepared &	analyzed:	03/26/24				
Chloride	104		mg/kg	100	5.62	98.9	80-120	0.326	20	
Batch P4C2613 - *** DEFAULT PREP ***										
Blank (P4C2613-BLK1)				Prepared &	z Analyzed:	03/26/24				
Chloride	ND	1.00	mg/kg		•					

E Tech Environmental & Safety Solutions, Inc. [1]	Project: NM Hayhurst Sect	. 35 C TB
13000 West County Road 100	Project Number: 17586	
Odessa TX, 79765	Project Manager: Blake Estep	

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, L.P.

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch P4C2613 - *** DEFAULT PREP ***										
LCS (P4C2613-BS1)				Prepared &	Analyzed:	03/26/24				
Chloride	16.9		mg/kg	18.0		93.8	90-110			
LCS Dup (P4C2613-BSD1)				Prepared &	Analyzed:	03/26/24				
Chloride	17.3		mg/kg	18.0		95.9	90-110	2.17	10	
Calibration Check (P4C2613-CCV1)				Prepared &	z Analyzed:	03/26/24				
Chloride	17.6		mg/kg	18.0		97.9	90-110			
Calibration Check (P4C2613-CCV2)				Prepared: (03/26/24 Ai	nalyzed: 03	/27/24			
Chloride	17.7		mg/kg	18.0		98.4	90-110			
Matrix Spike (P4C2613-MS1)	Sou	rce: 4C25010-	-09	Prepared: (03/26/24 At	nalyzed: 03	/27/24			
Chloride	121		mg/kg	100	40.4	80.6	80-120			
Matrix Spike (P4C2613-MS2)	Sou	rce: 4C26016-	-06	Prepared: (03/26/24 At	nalyzed: 03	/27/24			
Chloride	93.8		mg/kg	100	-0.103	93.8	80-120			
Matrix Spike Dup (P4C2613-MSD1)	Sou	rce: 4C25010-	-09	Prepared: ()3/26/24 Ai	nalyzed: 03	/27/24			
Chloride	125		mg/kg	100	40.4	84.2	80-120	2.95	20	
Matrix Spike Dup (P4C2613-MSD2)	Sou	rce: 4C26016-	-06	Prepared: (03/26/24 At	nalyzed: 03	/27/24			
Chloride	96.1		mg/kg	100	-0.103	96.1	80-120	2.43	20	
Batch P4C2709 - *** DEFAULT PREP ***										
Blank (P4C2709-BLK1)				Prepared &	Analyzed:	03/27/24				
% Moisture	ND	0.1	%		•					

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

General Chemistry Parameters by EPA / Standard Methods - Quality Control

Permian Basin Environmental Lab, I	. P .
------------------------------------	--------------

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch P4C2709 - *** DEFAULT PREP ***										
Blank (P4C2709-BLK2)				Prepared &	Analyzed:	03/27/24				
% Moisture	ND	0.1	%							
Duplicate (P4C2709-DUP1)	Source	e: 4C25010-0	2	Prepared &	Analyzed:	03/27/24				
% Moisture	6.0	0.1	%		5.0			18.2	20	
Duplicate (P4C2709-DUP2)	Source	e: 4C25010-1	2	Prepared &	Analyzed:	03/27/24				
% Moisture	4.0	0.1	%		4.0			0.00	20	
Duplicate (P4C2709-DUP3)	Source	e: 4C26016-1	4	Prepared &	Analyzed:	03/27/24				
% Moisture	3.0	0.1	%		3.0			0.00	20	

Permian Basin Environmental Lab, L.P.

E Tech Environmental & Safety Solutions, Inc. [1]	Project:	NM Hayhurst Sect. 35 C TB
13000 West County Road 100	Project Number:	17586
Odessa TX, 79765	Project Manager:	Blake Estep

Notes and Definitions

ROI Received on Ice

- QM-05 The spike recovery was outside acceptance limits for the MS and/or MSD due to matrix interference. The LCS and/or LCSD were within acceptance limits showing that the laboratory is in control and the data is acceptable.
- NPBEL CO Chain of Custody was not generated at PBELAB
- BULK Samples received in Bulk soil containers may be biased low in the nC6-C12 TPH Range
- DET Analyte DETECTED
- Analyte NOT DETECTED at or above the reporting limit ND
- NR Not Reported
- Sample results reported on a dry weight basis dry
- Relative Percent Difference RPD
- LCS Laboratory Control Spike
- MS Matrix Spike
- Duplicate Dup

new Barron

Report Approved By:

Date: 5/10/2024

Brent Barron, Laboratory Director/Technical Director

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-686-7235.

Permian Basin Environmental Lab, L.P.

Project: NM Hayhurst Sect. 35 C TB Project Number: 17586 Project Manager: Blake Estep

Permian Basin Environmental Lab, L.P.

Notice: Signature of this document and relinquishment to of service. Xenco will be liable only for the cost of sam of Xenco. A minimum charge of \$75.00 will be applied to Relinquished by: (Signature)	Rotton Hole-11 A Botton Hole-11 A Botton Hole-12 A Rotton Hole-13 A Sotton Hole-13 A Sotton Hole-13 A Sotton Hole-14 A Sotton Hole-14 A Circle Method(s) and Metal(s) to be analyzed	Sampler's Name: Drove SAMPLE RECEIPT Temp Blank: Temperature (°C): D.A. Temperature (°C): D.A. Received Intact: Respective Integers Cooler Custody Seals: Yes No Cooler Custody Seals: Yes No Sample Identification Matrix Battor Yes Yes Sample A Yes Yes Battor Yes Yes Rothor Yes Yes Rothor Yes Yes	PBELA MILLIN	
gnature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subc Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if suc A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These ter Iquished by: (Signature) Received by: (Signature) Date/Time Relinquishe Iquished by: (Signature) WNX Distance 15:53/2 Image: State of the same of	12/0 8" 12/2 8" 13/2 8" 13/2 8" 13/2 8" 13/2 8" 13/2 8" 13/2 8"	Yes (N) Wet Ice: Image: Month Contraction Factor: No Total Containers: 13 Date Time Depth J-22-24/ J_2 00 $J_4^{1/1}$ J2-6 2/1 2/1	Hobbs,NM step onmental t CR 100 X 79711 X 79711	
Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to clicumstances beyond the contro of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated. Relinquished by: Received by: Signature) Date/Time Relinquished by: Signature) Received by: Signature) Signature) Received by: Signature) Received by: Signature) Received by: Signature) Signature) Received by: Signature) Received by: Signature) Signature	I I		Chain of Custody Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296 Hobbs, NM (575-392-7550) Phoenix, AZ (480-355-0900) Atlanta, GA (770-449-8800) Tampa, FL (813-620-2000) p Bill to: (if different) Impany Name: Program 9711 City, State ZIP: Program State 3 100 Address: Impany Name: Program 9711 City, State ZIP: Program State 9711 City, State ZIP: Program State Quitine Value Control AndLYSIS REQUEST Peloritin Routine Value Coto: Number Coto: Number Coto:	
ontractors. It assigns standard terms and conditions ch losses are due to circumstances beyond the control ms will be enforced unless previously negotiated. bd by: (Signature) Received by: (Signature) Date/Time	Image: Current Pb Mg Mn Mo Ni K se Ag SiO2 Na Sr Ti Sn U V Zn Pb Mn Mo Ni Se Ag Ti U	Sample Comments	-620-2000) www Program: UST/PST UF State of Project: Reporting:Level II UE Deliverables: EDD	1100010

Released to Imaging: 6/17/2024 7:57:33 AM

Received by OCD: 6/6/2024 7:13:09 AM

Page 105 of 119

Revised Date 051418 Rev. 2018.1	σ			σ
	005124 15:522 4	Land		
(Signature) Received by: (Signature) Date/Time	Date/Time Relinquished by: (Signature)	Received by: (Signature)	(Signature) Receiv	Relinquished by: (Signature)
ors. It assigns standard terms and conditions es are due to circumstances beyond the control be enforced unless previously negotlated.	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Xenco will be liable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Xenco. A minimum charge of \$75.00 will be applied to each project and a charge of \$5 for each sample submitted to Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	nstitutes a valid purchase order not assume any responsibility fc t and a charge of \$5 for each sam	cument and relinquishment of samples c able only for the cost of samples and shal ge of \$75.00 will be applied to each projec	Notice: Signature of this de of service. Xenco will be li of Xenco. A minimum char
Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO2 Na Sr TI Sn U V Zn Pb Mn Mo Ni Se Ag TI U 1631/245.1/7470/7471:Hg	11 Al Sb As Ba Be B Cd Ca Cr Co Cu 8RCRA Sb As Ba Be Cd Cr Co Cu Pb I	8RCRA 13PPM Texas 11 TCLP / SPLP 6010: 8F	otal 200.7 / 6010 200.8 / 6020: 8 Circle Method(s) and Metal(s) to be analyzed	Total 200.7 / 6010 Circle Method(s)
		9-0 12-61	WAR S 11	East Side 1
		"9-0 rec/	A S 11	
		1.9-0 0-6"	KE-CEC S Allm	North Side wa
Sample Comments	Chlori TPH <i>(</i> :	1 Sampled Depth	ication Matrix Date Sampled	Sample Identification
	ide (E I X10 0	Total Containers: (り	T No NIA	Sample Custody Seals:
			Yes .No MA CO	Received Infact: Cooler Custody Seals:
	·0/s	Thermometer ID	03.2	Temperature (°C):
	• •) Wet Ice: See No	Temp Blank:	SAMPLE RECEIPT
		Due Date:	Arturo Delgado	Sampler's Name:
		Rush:	17586	P.O. Number:
Aul Frech		R	17586	¥.
REQUEST Work Order Notes	ANALYSIS	TR Turn Around	Mm Hundrit (21.75C	Name:
Deliverables: EDD ADaPT Dother:	blake@etechenv.com	Email:	(432)563-2200	Phone:
Reporting:Level III Level III PST/UST TRRP Level IV		City, State ZIP	Midland, TX 79711	City, State ZIP:
State of Project:			13000 West CR 100	Address:
Program: UST/PST □PRP □Brownfields □RRC □Superfund □	dame.	Company Name	Etech Environmenta	Company Name:
Work Order Comments	erent)	Bill to: (if different)	Blake Estep	Project Manager:
www.xenco.com Page 2 of 2	Hobbs,NM (575-392-7550) Phoenix,AZ (480-355-0900) Attanta GA (770-449-8800) Tampa,FL (813-620-2000)	,NM (575-392-7550) Phoenix,	Hobbs	
	Houston, TX (281) 240-4200 Dallas, TX (214) 902-0300 San Antonio, TX (210) 509-3334 Midland, TX (432-704-5440) EL Paso, TX (915)585-3443 Lubbock, TX (806)794-1296	Houston,TX (281) 240-42 Midland,TX (432-704-54		ズが
Work Order No: PAT	Chain of Custody			

Released to Imaging: 6/17/2024 7:57:33 AM

Page 106 of 119

PAELAB

4025010

DOC #: PBEL_REV_SUBMISSION REVISION #: PBEL_2021_1 REVISION Date: 10/29/2021 EFFECTIVE DATE: 10/29/2021

REVISION/SUBMISSION FORM

Please fill in the required fields below with any requested revisions. In the event that there are multiple workorders or projects to be amended each workorder or project MUST have a separate form filled out entirely. An amended COC must be submitted in addition to the Revision/Submission Form in order for the amendments to be processed. Amended COC's do not replace the requirement of this form. If a revision is required due to errors or omissions on our part this form is still required for the necessary Non-Conformance documentation. Rerun requests will incur additional charges.

Client: eTech Environmental

Project: 4C25010

Revision Request:

Please revise the depth of Sample 2A from 12" to 12.5".

Submitted by (Name and Date): Blake Estep 05/10/2024

PBEL_REV_SUBMISSION_2021_1.DOC

Page 1 of 1

APPENDIX F

Correspondence & Notifications

P.O. Box 62228 Midland • TX • 79711 • Tel: 432-563-2200 • Fax: 432-563-2213

Abe Valladares

From:	Wells, Shelly, EMNRD <shelly.wells@emnrd.nm.gov></shelly.wells@emnrd.nm.gov>
Sent:	Monday, August 7, 2023 10:45 AM
То:	Blake Estep
Cc:	Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD
Subject:	RE: [EXTERNAL] Soil Sampling Activities

You don't often get email from shelly.wells@emnrd.nm.gov. <u>Learn why this is important</u> Hi Blake,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Administrative Permitting Program EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520<u>|Shelly.Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Blake Estep <blake@etechenv.com>
Sent: Monday, August 7, 2023 9:12 AM
To: Enviro, OCD, EMNRD <OCD.Enviro@emnrd.nm.gov>
Subject: [EXTERNAL] Soil Sampling Activities

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

Chevron anticipates conducting soil sampling activities at the following sites between August 10 & 11, 2023:

Site Name: Hayhurst NM Section 26 Dignitas SWD Incident Number: nAPP2301837404

Site Name: Hayhurst NM Section 35 CTB Incident Number: nAPP2302742810

Thank you,

Blake Estep

.

Etech Environmental & Safety Solutions, Inc. P.O. Box 62228 Midland, Texas 79711 Phone: 432-563-2200 Mobile: 432-894-6038 Fax: 432-563-2213

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

PageHddeof 119 QUESTIONS

Action 324933

QUESTIONS Operator: OGRID: CHEVRON US A INC 4323 6301 Deauville Blvd Action Number: Midland, TX 79706 324933 Action Type: [NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2302742810
Incident Name	NAPP2302742810 HAYHURST NM SECTION 35 CTB @ 0
Incident Type	Oil Release
Incident Status	Initial C-141 Approved
Incident Facility	[fAPP2131342791] Hayhurst NM Section 35 CTB

Location of Release Source

Site Name	HAYHURST NM SECTION 35 CTB
Date Release Discovered	01/12/2023
Surface Owner	Federal

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	1,863	
What is the estimated number of samples that will be gathered	13	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/22/2024	
Time sampling will commence	08:30 AM	
Please provide any information necessary for observers to contact samplers	Blake Estep at 432-894-6038	
Please provide any information necessary for navigation to sampling site	From the intersection of Whites City Road & CR 775, travel E for 0.03 miles. Turn N, travel 0.76 miles. Turn E, travel 1.86 miles. Turn NW, travel 0.09 miles to the GPS coordinates (32.091991, -104.152622)	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	324933
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Created By Condition Condition Date Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the 3/20/2024 abarnhill remediation closure samples not being accepted.

Action 324933

Page1112eof 119
CONDITIONS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 351250

QUESTIONS	
Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	351250
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS Proroquisitos

rierquisites	
Incident ID (n#)	nAPP2302742810
Incident Name	NAPP2302742810 HAYHURST NM SECTION 35 CTB @ 0
Incident Type	Oil Release
Incident Status	Remediation Plan Received
Incident Facility	[fAPP2131342791] Hayhurst NM Section 35 CTB

Location of Release Source

Please answer all the questions in this group.	
Site Name	HAYHURST NM SECTION 35 CTB
Date Release Discovered	01/12/2023
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	r the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Cause: Equipment Failure Tank (Any) Crude Oil Released: 6 BBL Recovered: 5 BBL Lost: 1 BBL.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

Operator:

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

CHEVRON US A INC

6301 Deauville Blvd

Midland, TX 79706

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 114 of 119

QUESTIONS, Page 2

Action 351250

QUESTIONS (continued) OGRID: 4323 Action Number:

351250

[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

Action Type:

QUESTIONS

Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
	Reasons why this would be considered a submission for a notification of a major release	Unavailable.
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	. gas only) are to be submitted on the C-129 form.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or

I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 06/06/2024	
--	---	--

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 351250

Page 115 of 119

QUESTIONS (continued)	
	OGRID:

Operator.	UGRID.
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	351250
	Action Type:
	[C-141] Site Char /Remediation Plan C-141 (C-141-y-Plan)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 51 and 75 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
Vhat is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between ½ and 1 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Zero feet, overlying, or within area	
Categorize the risk of this well / site being in a karst geology	High	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	Νο	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 4340 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 11100 GRO+DRO (EPA SW-846 Method 8015M) 10850 BTEX (EPA SW-846 Method 8021B or 8260B) 33 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 08/11/2023 On what date will (or did) the final sampling or liner inspection occur 03/22/2024 On what date will (or was) the remediation complete(d) 12/31/2024 What is the estimated surface area (in square feet) that will be reclaimed 1861 What is the estimated volume (in cubic yards) that will be reclaimed 69 What is the estimated surface area (in square feet) that will be remediated 200 What is the estimated volume (in cubic yards) that will be remediated 11 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 351250

QUESTIONS (continued) Operator OGRID: CHEVRON U S A INC 4323 6301 Deauville Blvd Action Number Midland, TX 79706 351250 Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan) QUESTIONS Remediation Plan (continued) Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants: (Select all answers below that apply)

(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	CENTRALIZED SURFACE WASTE MANAGEMENT FACILITY [fEEM0421141609]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

Date: 06/06/2024

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 6/17/2024 7:57:33 AM

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 351250

QUESTIONS (continued)		
Operator: CHEVRON U S A INC 6301 Deauville Blvd	OGRID: 4323	
Midland, TX 79706	Action Number: 351250	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Deferral Requests Only		

Deleral Requests only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 351250

Page 118 of 119

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	351250
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	324933
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	03/22/2024
What was the (estimated) number of samples that were to be gathered	13
What was the sampling surface area in square feet	1863

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. Requesting a remediation closure approval with this submission No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	119	of 119
		· J ·

CONDITIONS

Action 351250

CONDITIONS Operator: OGRID: CHEVRON U S A INC 4323 6301 Deauville Blvd Action Number: Midland, TX 79706 351250 Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

_		
Created By	Condition	Condition
		Date
scwells	None	6/17/2024