2023 Annual Groundwater Monitoring and Activities Summary Report

Burton Flats Booster Station Eddy County, New Mexico #2R799

Incident # nMLB1004239132

Prepared for:

REVIEWED

By Mike Buchanan at 8:53 am, Jun 20, 2024

6900 E. Layton Ave., Suite 900 Denver, CO 80237-3658

Review of the 2023
Annual Groundwater
Monitoring and
Activities Summary
Report for Burton Flats
Booster Station:
Content Satisfactory

- Continue
 groundwater
 monitoring on a
 quarterly basis for all
 constituents
- 2. Continue to monitor and evaluate the LNAPL passive skimmer.
- Continue EFR events
- 4. Submit the 2024 Annual Report by April 1, 2025.

Prepared by:

6855 W. 119th Ave. Broomfield, Colorado 80020

March 4, 2024

Table of Contents

1.	Intro	oduction1
2.	Site	Location and Background1
3.	Gro	undwater Monitoring1
3	3.1	Groundwater and LNAPL Elevation Monitoring2
3	3.2	Groundwater Quality Monitoring2
3	3.3	Data Quality Assurance / Quality Control5
4.	Rem	ediation Activities5
5.	Con	clusions6
6.	Reco	ommendations6
Tal	oles	
	1	,
	2	2023 Summary of BTEX and Chloride Concentrations in Groundwater
Fig	ures	
	1	
	2	1
	3	· · · · · · · · · · · · · · · · · · ·
	4	,
	5	
	6	,
	7	,
	8	,
	9	,
	1	O Analytical Results Map – December 13, 2023
Ар	pendi	ces
	Δ	Historical Analytical Results – BTEX and Chloride Concentrations in Groundwater
	В	Laboratory Analytical Reports
		- Pace Analytical Job #: L1596004
		- Pace Analytical Job #: L1630641
		- Pace Analytical Job #: L1661192
		- Pace Analytical Job #: L1688211
	C	NMOCD Sampling Notifications

1. Introduction

This report summarizes groundwater monitoring and remediation activities conducted during 2023 at the Burton Flats Booster Station (Site) in Eddy County, New Mexico (Figure 1). Tasman Geosciences (Tasman) performed these activities on behalf of DCP Operating Company (DCP). Field activities were conducted with the purpose of monitoring groundwater flow and quality conditions and assessing the presence of light non-aqueous phase liquid (LNAPL) hydrocarbons in the Site subsurface. Current Site conditions were evaluated from field data and laboratory analytical results collected March 16, June 28, September 28, and December 12, 2023.

2. Site Location and Background

The Site is located in the Fourth and Fifth Lots of Section 1, Township 21 South, Range 27 East (approximate coordinates 32.5195 degrees north and 104.1507 degrees west). It is approximately 3.4 miles northwest of the intersection of US Highway 62 and County Road 243. The area is sparsely populated, and land use is primarily associated with livestock grazing and oil and gas production and gathering.

Based on information included in historical Site investigation reports, a release of approximately 10 barrels (bbl) of oil and produced water occurred on October 5, 2009, of which approximately 8 bbls were recovered from within the tank secondary containment area. The C-141 report was submitted on October 12, 2009, and Site investigation and soil sampling within the release area occurred during the fourth quarter of 2009 and early fourth quarter of 2010 (BH-1 through BH-5). Elevated levels of petroleum hydrocarbons within the soil were encountered at depths of 20-feet below ground surface (bgs). Groundwater was encountered between 16-feet and 20-feet bgs during Site characterization activities. Subsequent to soil investigation efforts, four groundwater monitoring wells were installed around and down-gradient from the release area during the fourth quarter of 2011 (MW-1 through MW-4). Elevated petroleum hydrocarbon concentrations in soil were observed during well installation. Consequently, two additional soil borings were completed to a depth of 20 feet bgs in the suspected source area (SB 11-1 and SB 11-2). Monitoring well locations are shown in Figure 2.

Boring logs for the Site monitoring wells indicate that the subsurface geology contains unconsolidated fine-grained sand, silt, and clay sediments. This general characteristic has been utilized in evaluating the historical and current LNAPL behavior. Ongoing monitoring and sampling of the four (4) Site monitoring wells listed above has been conducted on a quarterly basis following installation.

3. Groundwater Monitoring

This section describes the field and laboratory activities performed throughout the 2023 calendar year. Quarterly monitoring activities were conducted on March 16, June 28, September 28, and December 12, 2023, which included Site-wide groundwater gauging, LNAPL measurements, and groundwater sampling. Figure 2 illustrates the groundwater monitoring network (MW-1 through MW-4) utilized to perform these activities at the Site.

3.1 Groundwater and LNAPL Elevation Monitoring

Groundwater and LNAPL levels are measured in order to evaluate hydraulic characteristics and provide information regarding seasonal fluctuations of groundwater and LNAPL elevations at the Site. Throughout 2023, groundwater levels were measured at four Site monitoring well locations (MW-1 through MW-4).

Groundwater levels were measured on the north side of the well casing to the nearest 0.01-foot using an oil-water interface probe (IP). Groundwater level data were subsequently converted to elevation (feet above mean sea level [AMSL]). Measured groundwater levels, LNAPL measurements, and calculated groundwater elevations are presented in Table 1.

A 2023 groundwater elevation contour maps, included as Figures 3 through 6, indicates that the groundwater gradient at the Site trends to the northeast which is consistent with the previous trends shifting from northwest to northeast. The corrected groundwater elevation ranges, average elevation change from the previous monitoring event, and the calculated hydraulic gradient at the Site are summarized in the table below.

Summary of Measured Hydraulic Parameters

Quarter	1st	2nd	3rd	4th
Maximum Elevation	3,177.08	3,176.87	3,176.47	3,176.70
(Well ID)	(MW-3)	(MW-3)	(MW-3)	(MW-3)
Minimum Elevation	3,174.58	3,175.56	3,172.83	3,173.35
(Well ID)	(MW-4)	(MW-4)	(MW-4)	(MW-4)
Potentiometric Surface Average Change (ft)	-0.28	0.02	-0.98	0.08
Hydraulic Gradient (ft/ft)	0.022	0.011	0.032	0.029

^{*} Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

Measurable LNAPL was observed at monitor well MW-4 during all four quarters of the 2023 calendar year which is consistent with historical data since 2015. LNAPL thickness at monitor well MW-4 ranged from 1.56 feet during the September monitoring event to 0.34 feet during the March monitoring event.

3.2 Groundwater Quality Monitoring

Subsequent to recording groundwater level measurements at each of the quarterly monitoring events during 2023, groundwater samples were collected from three of the four locations (MW-1 through MW-3). A minimum of three well casing volumes of groundwater were purged from each monitoring well prior to collection of groundwater samples. Due to the presence of LNAPL observed at MW-4, no groundwater sample was collected at this location.

Groundwater samples were collected using disposable polyethylene bailers, placed in clean laboratory supplied containers, packed in an ice-filled cooler and maintained at approximately four degrees Celsius (°C) for transportation to the laboratory. Groundwater samples were then shipped under chain-of-custody procedures to Pace Analytical laboratory (Pace) in Mount Juliet, Tennessee.

Water quality samples were submitted for analysis of benzene, toluene, ethylbenzene, and total xylenes (BTEX) by Environmental Protection Agency (EPA) Method 8260B and chloride by EPA Method 9056A.

Table 2 summarizes BTEX and chloride concentrations in groundwater samples collected during the 2023 reporting period. Historical laboratory analytical results up to and including the December 2023 event are provided in Appendix A, and the laboratory analytical report for the previous four quarters are included in Appendix B. The laboratory analytical results are displayed on Figure 4 and NMOCD sampling notifications are included as Appendix C.

3.2.1 1st Quarter Data Evaluation

The 1st Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected at concentrations greater than the laboratory reported detection limit (RDL) in monitor well MW-1 and its duplicate. The detected concentration of the parent sample was below the NMWQCC standard for benzene, and the duplicate sample was greater than the standard of 0.01 milligrams per liter (mg/L).
- Toluene was not detected above the laboratory method detection limit (MDL) in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL in monitoring well MW-1 and its duplicate.
 The detected concentrations of ethylbenzene were below the NMWQCC groundwater standard of 0.70 mg/L.
- Total xylenes were detected above the laboratory MDL but below the laboratory reported detection limit (RDL) in both monitor well MW-1 and its duplicate. The detected concentrations of total xylenes were below the NMWQCC groundwater standard of 0.62mg/L.
- Chlorides were detected at concentrations greater than the NMWQCC secondary maximum contaminant level (MCL) guideline of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 1,790 mg/L at monitor well MW-2 to 442 mg/L at monitor well MW-3.

3.2.2 2nd Quarter Data Evaluation

The 2nd Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected in each of the monitor well locations, but below the NMWQCC standard for Benzene. Detected concentrations ranged from 0.00918 mg/L at monitor well MW-1 to 0.000132 J mg/L.
- Toluene was not detected above the MDL in any of the sampled Site monitoring wells.

- Ethylbenzene was detected above the laboratory MDL but below the laboratory RDL in monitoring
 well MW-1 and its duplicate. The detected concentrations of ethylbenzene were below the
 NMWQCC groundwater standard of 0.70 mg/L.
- Total Xylenes was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline
 of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 469 mg/L
 at monitor well MW-3 to 1,840 mg/L at monitor well MW-2.

3.2.3 3rd Quarter Data Evaluation

The 3rd Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Toluene was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Total Xylenes was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline
 of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 414 mg/L
 at monitor well MW-3 to 2,320 mg/L at monitor well MW-2.

3.2.4 4th Quarter Data Evaluation

The 4th Quarter 2023 field observations and analytical results for samples collected from MW-1 through MW-3 indicate the following:

- Benzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Toluene was not detected above the laboratory MDL in any of the sampled Site monitoring wells.
- Ethylbenzene was detected above the laboratory MDL at monitor well MW-1. The detected concentration was below the NMWQCC standard.
- Total Xylenes was detected above the laboratory MDL at monitor well MW-3. The detected concentration was below the NMWQCC standard.
- Chlorides were detected at concentrations greater than the NMWQCC secondary MCL guideline
 of 250 mg/L at all sampled monitoring well locations with concentrations ranging from 474 mg/L
 at monitor well MW-3 to 2,220 mg/L at monitor well MW-2.

3.3 Data Quality Assurance / Quality Control

A field duplicate sample (MW-1) was collected during the sampling event. The data were reviewed for compliance with the analytical method and the associated quality assurance/quality control (QA/QC) procedures. All samples were analyzed using the correct analytical methods and within the correct holding times. Chain of custody forms were in order and properly executed indicating that samples were received with no headspace. All data were reported using the correct method number and reporting units. QA/QC items of note for 2023 include the following:

- Target analytes were not detected above laboratory detection limits in the trip blank.
- During each quarter of 2023, parent samples gathered from MW-1 and their associated duplicates exhibited concentrations of benzene except for the 3rd Quarter. In compliance with QA/QC, each quarter's Relative Percent Difference (RPD) is listed below:

Quarter	Parent Sample (mg/L)	Duplicate Sample (mg/L)	RPD
1st	0.00872	0.0125	35.6
2nd	0.00918	0.00134	149
3rd	0.000269 J	<0.00100	N/A
4th	0.00836	0.00519	46.7

 Subsequent to collection of groundwater samples during all four quarters of 2023, the sample transport coolers were properly packaged with ice and shipped to Pace laboratory in Mount Juliet,
 Tennessee with priority overnight shipping. All coolers were received within laboratory temperature specifications as well as Chain of Custody (COC) forms properly executed.

The RPD values are outside of the target 20% RPD for the 1st, 2nd, and 3rd quarters. However, based on the data review, the QA/QC assessment indicates that overall data precision and accuracy are within acceptable limits.

4. Remediation Activities

Remediation activities conducted during the 2023 reporting period include vacuum enhanced fluid recovery (EFR) activities. EFR events were initiated in December 2014 and began on a routine frequency at monitoring wells MW-1 and MW-4; However, beginning in 1st quarter 2023, EFR events have been discontinued at MW-1 to determine its effectiveness on dissolved phase hydrocarbon abatement. EFR events are scheduled to continue, pending observation of the effectiveness of the effort in addressing persistent free phase and dissolved phase petroleum hydrocarbons on-Site.

EFR events were conducted at the site on March 16, June 28, September 28, and December 13, 2023. Each event included application of high vacuum (utilizing a vacuum truck) at MW-4 through flexible hosing inserted into the well. The stingers were placed slightly below the current groundwater level to facilitate removal of groundwater, LNAPL, and vapors from the subsurface. A total of 676 barrels (bbls) have been recovered since EFR events commenced in 2014. The volumes recovered during 2023 events are below.

Date	Volume (bbls)
March 16	15
June 28	16
September 28	10
December 13	4

A passive LNAPL skimmer was installed in MW-4 in an effort to collect and dispose of free-phase liquids in between groundwater sampling and EFR events. Throughout the 2023 calendar year the passive bailer recovered approximately 1.03 gallons of LNAPL. The passive bailer is emptied and replaced prior to each EFR event.

5. Conclusions

Evaluation of the 2023 monitoring data and historical information provides the following general observations:

- Groundwater elevations at the Site indicated an overall decrease compared to the levels that were observed during the 4th Quarter 2022 with an average decrease of 0.27 ft per monitoring well across all four quarters of 2023.
- LNAPL was observed at monitoring well MW-4 during the 2023 monitoring period. The presence
 of LNAPL at this location has historically fluctuated since 2015.
- Chloride concentrations were above the NMWQCC secondary MCL guideline at all sampled Site monitoring wells.

6. Recommendations

Based on evaluation of 2023 and historical Site monitoring results, recommendations for future activities include:

- Continue quarterly groundwater monitoring and sampling at the monitoring locations illustrated on Figure 2.
- Continue monitoring and evaluation of the passive LNAPL skimmer.
- Continue quarterly EFR events at MW-4 during the 2024 monitoring period.

Tables

TABLE 1 2023 ANNUAL SUMMARY OF GROUNDWATER ELEVATION DATA BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

Location	Date	Depth to Groundwater (feet)	Depth to Product (feet)	Free Phase Hydrocarbon Thickness (LNAPL) (feet)	Total Depth (feet)	TOC Elevation (feet amsl) (2)	Groundwater Elevation (*) (feet amsl)	Change in Groundwater Elevation Since Previous Event ¹ (feet)
MW-1	3/16/2023	20.64		I	32.95	3,197.65	3,177.01	0.02
MW-1	6/28/2023	20.99			33.14	3,197.65	3,176.66	-0.35
MW-1	9/28/2023	21.42			33.14	3,197.65	3,176.23	-0.43
MW-1	12/13/2023	22.21			34.15	3,197.65	3,175.44	-0.79
MW-2	3/16/2023	23.05			32.96	3,200.00	3,176.95	0.29
MW-2	6/28/2023	23.39			32.70	3,200.00	3,176.61	-0.34
MW-2	9/28/2023	23.74			32.70	3,200.00	3,176.26	-0.35
MW-2	12/13/2023	23.38			32.67	3,200.00	3,176.62	0.36
MW-3	3/16/2023	23.76			34.41	3,200.84	3,177.08	0.26
MW-3	6/28/2023	23.97			34.39	3,200.84	3,176.87	-0.21
MW-3	9/28/2023	24.37			34.39	3,200.84	3,176.47	-0.40
MW-3	12/13/2023	24.14			34.10	3,200.84	3,176.70	0.23
11111 3		21.11			31.10	3,200.01	3,170.70	0.25
MW-4	3/16/2023	26.40	26.06	0.34	31.93	3,200.98	3,174.58	-1.67
MW-4	6/28/2023	25.42	24.40	1.02	33.04	3,200.98	3,175.56	0.98
MW-4	9/28/2023	28.15	26.59	1.56	33.04	3,200.98	3,172.83	-2.73
MW-4	12/13/2023	27.63	26.89	0.74	33.04	3,200.98	3,173.35	0.52
					Av	erage change in gro	undwater elevation	-0.29

Notes:

2- The TOC elevation for MW-1 through MW-4 have been calculated based on a relative elevation re-survey conducted on 8/7/2019.

amsl = feet above mean sea level

TOC = top of casing

LNAPL - Light non-aqueous phase liquid

Groundwater elevation = (TOC Elevation - Measured Depth to Water)

*Groundwater elevation was corrected for product thickness using the following calculation, when applicable:

Groundwater elevation = (TOC Elevation - Measured Depth to Water) + (LNAPL Thickness in Well * LNAPL Relative Density)

LNAPL relative density was calculated to be approximately 0.792 grams per cubic centimeter (g/cm³)

NM = Not measured.

NC= Not calculated.

¹⁻ Changes in groundwater elevation calculated by subtracting the measurement collected during the previous monitoring event from the measurement collected during the most recent monitoring event.

TABLE 2 2023 ANNUAL

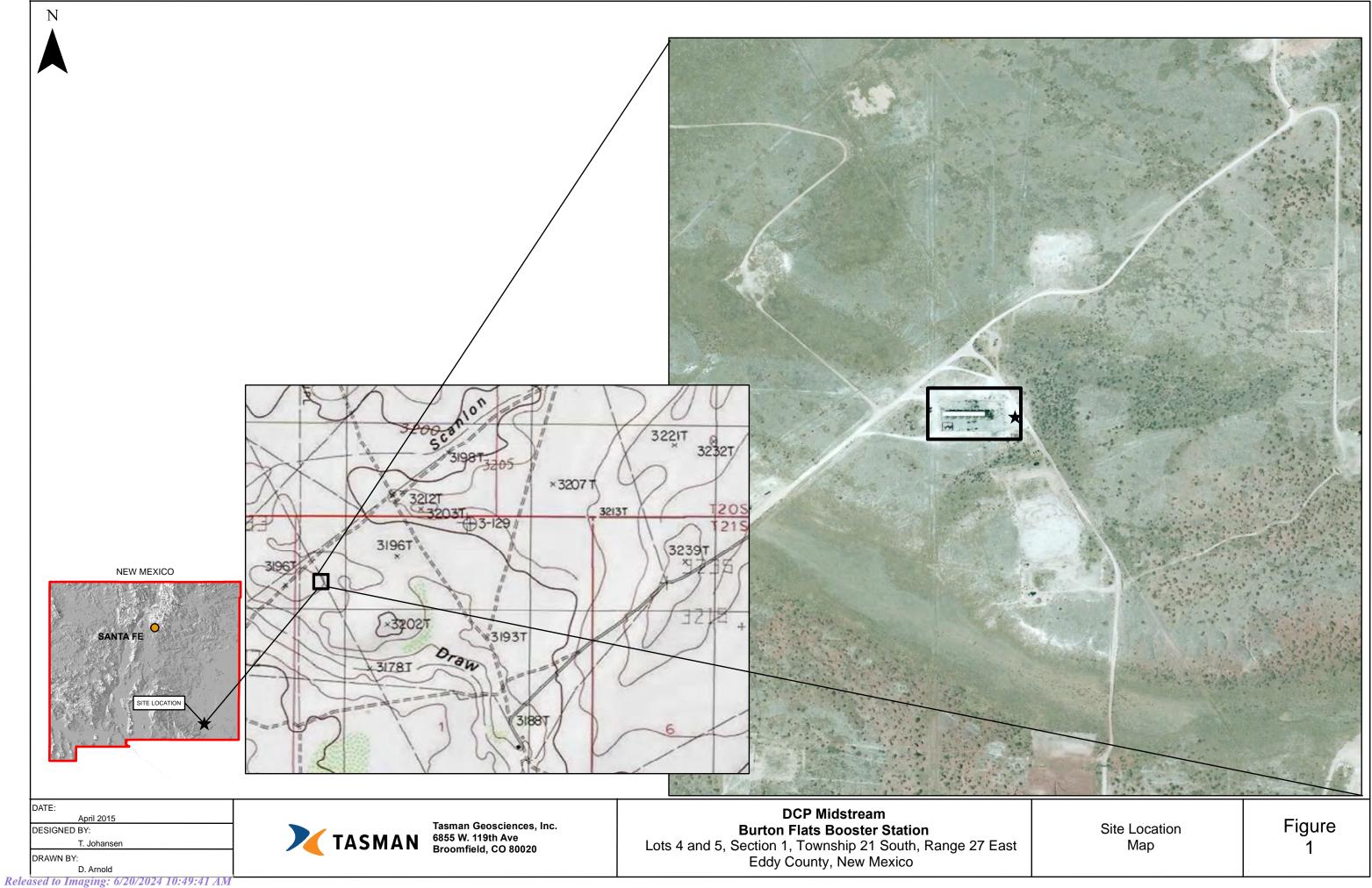
SUMMARY OF BTEX AND CHLORIDE CONCENTRATIONS IN GROUNDWATER BURTON FLATS BOOSTER STATION EDDY COUNTY, NEW MEXICO

Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Total Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.010	1.00	0.70	0.62	250	
MW-1	3/16/2023	0.00872	< 0.00100	0.00278	0.00111 J	733	Duplicate Sample Collected
MW-1 (Duplicate)	3/16/2023	0.0125	< 0.00100	0.00300	0.000790 J	711	-
MW-1	6/28/2023	0.00918	< 0.00100	0.000311 J	< 0.00300	716	Duplicate Sample Collected
MW-1 (Duplicate)	6/28/2023	0.00134	< 0.00100	0.000411 J	< 0.00300	762	
MW-1	9/28/2023	0.000269 J	< 0.00100	< 0.00100	< 0.00300	648	Duplicate Sample Collected
MW-1 (Duplicate)	9/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	788	
MW-1	12/13/2023	0.00836	< 0.00100	0.000374 J	< 0.00300	732	Duplicate Sample Collected
MW-1 (Duplicate)	12/13/2023	0.00519	< 0.00100	0.000261 J	< 0.00300	727	
MW-2	3/16/2023	<0.00100	< 0.00100	< 0.00100	< 0.00300	1,790	
MW-2	6/28/2023	0.000135 J	< 0.00100	< 0.00100	< 0.00300	1,840	
MW-2	9/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,320	
MW-2	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,220	
MW-3	3/16/2023	<0.00100	< 0.00100	< 0.00100	< 0.00300	442	
MW-3	6/28/2023	0.000132 J	< 0.00100	< 0.00100	< 0.00300	469	
MW-3	9/28/2023	< 0.00100	< 0.00100	0.000269 J	0.000948 J	414	
MW-3	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	474	
MW-4	3/16/2023		Not Sa	mpled - Historica	l LNAPL		
MW-4	6/28/2023		Not Sa	mpled - Historica	l LNAPL		
MW-4	9/28/2023		Not Sa	mpled - Historica	l LNAPL		
MW-4	12/13/2023		Not Sa	mpled - Historica	l LNAPL		
Trip Blank	3/16/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	9/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission


LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

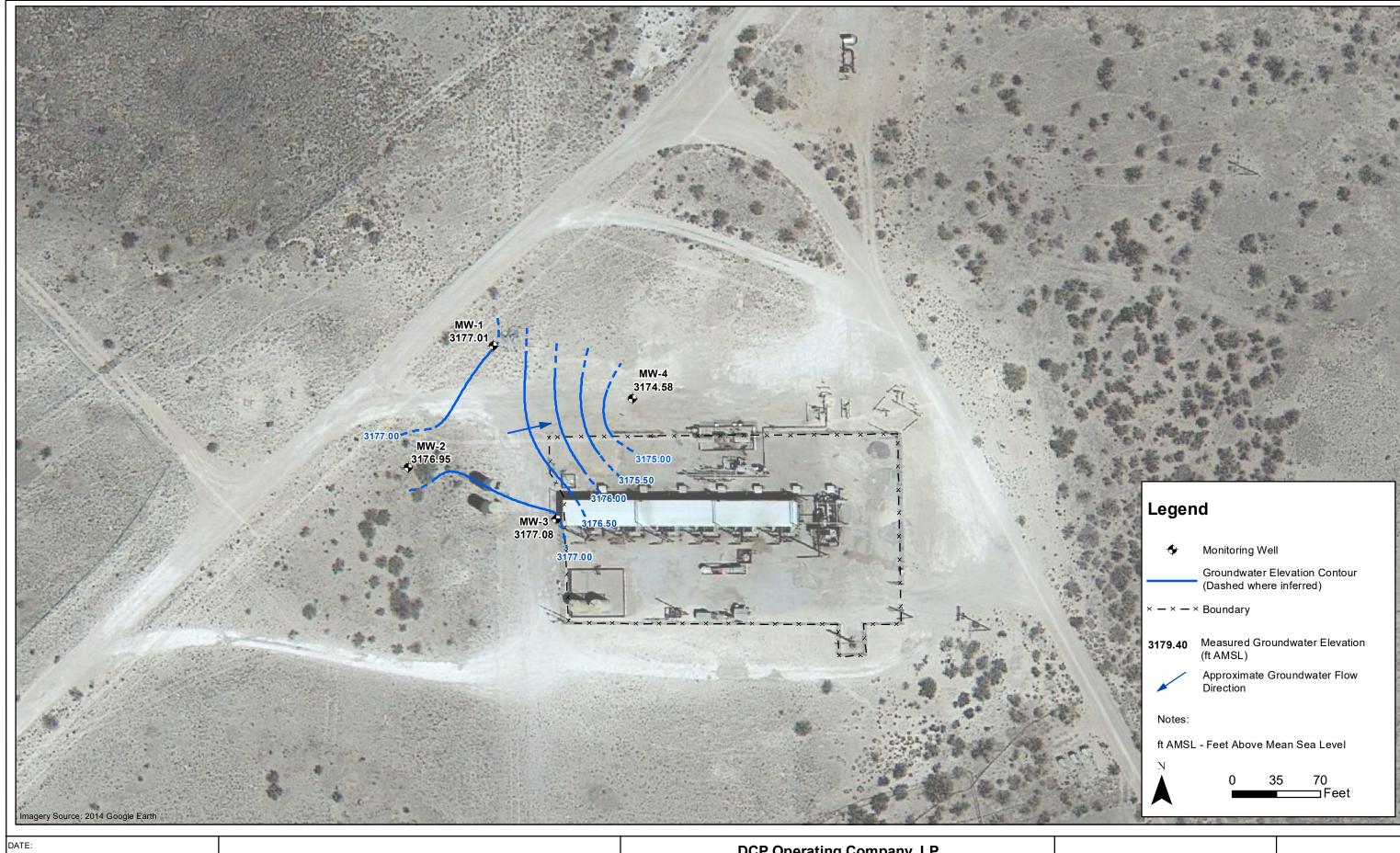
J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Received by OCD: 3/11/2024 11:01:15 AM

Received by OCD: 3/11/2024 11:01:15 AM Page 14 of 97

DESIGNED BY: DRAWN BY: L. Martin
Released to Imaging: 6/20/2024 10:49:41 AM

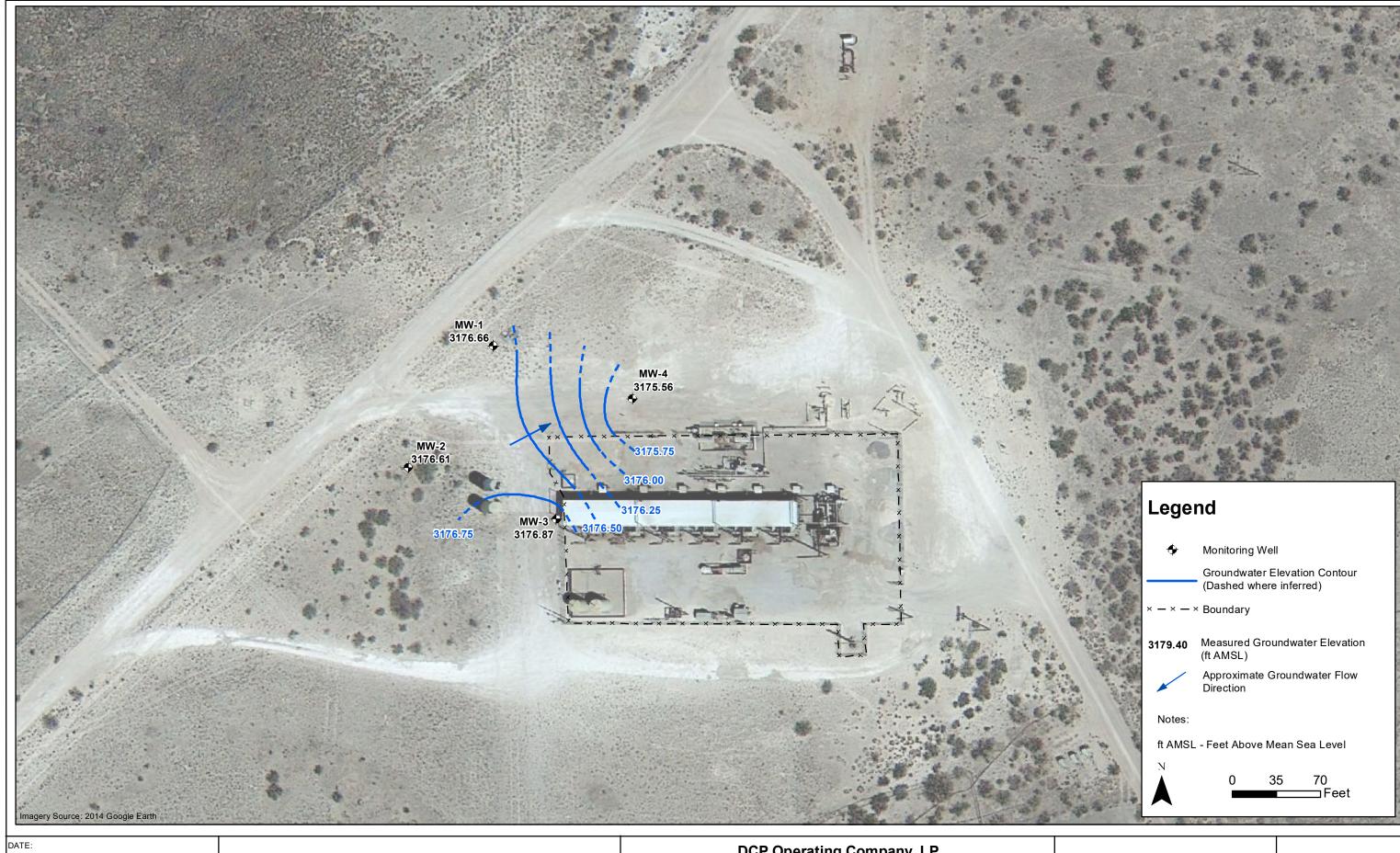

TASMAN

Tasman Geosciences, Inc. 6855 W. 119th Ave Broomfield, CO 80020

DCP Midstream Burton Flats Booster Station Groundwater Monitoring Summary Report

Site Map with Monitoring Well Locations

Page 15 of 97 Received by OCD: 3/11/2024 11:01:15 AM


DESIGNED BY: DRAWN BY: M. Kaczmarek Released to Imaging: 6/20/2024 10:49:41 AM

TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

DCP Operating Company, LP Burton Flats Booster Station 2023 Annual Groundwater Monitoring Report First Quarter

Groundwater Elevation Contour Map (March 16, 2023)

Page 16 of 97 Received by OCD: 3/11/2024 11:01:15 AM

DESIGNED BY: DRAWN BY: M. Kaczmarek Released to Imaging: 6/20/2024 10:49:41 AM

TASMAN
Tasman, Inc.
6855 W. 119th Ave
Broomfield, CO 80020

DCP Operating Company, LP Burton Flats Booster Station 2023 Annual Groundwater Monitoring Report

Second Quarter

Groundwater Elevation Contour Map (June 28, 2023)

Page 17 of 97 Received by OCD: 3/11/2024 11:01:15 AM

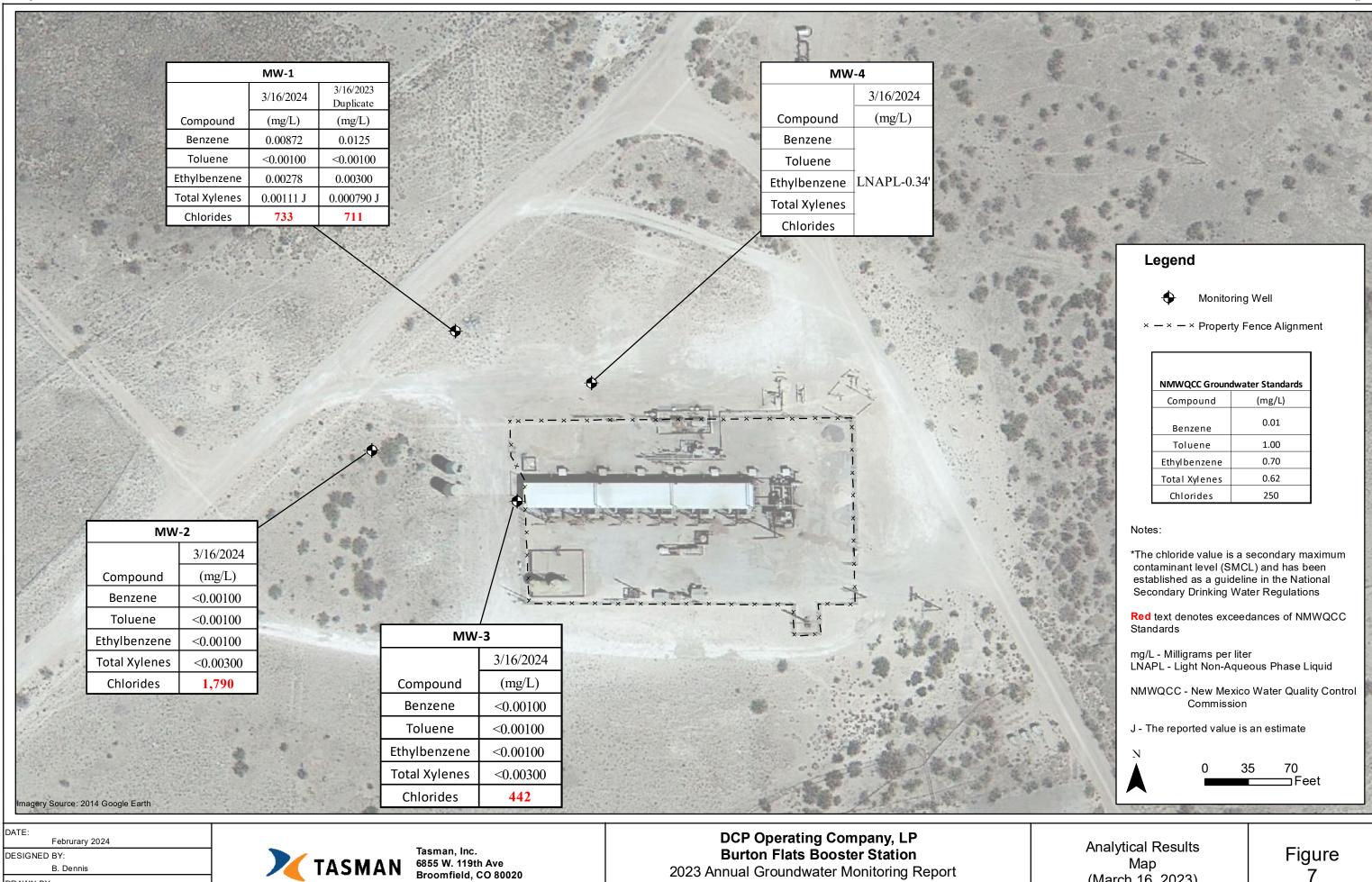
DESIGNED BY: DRAWN BY:

DCP Operating Company, LP Burton Flats Booster Station

2023 Anual Groundwater Monitoring Report 3rd Quarter

Groundwater Elevation Contour Map (September 28, 2023)

Page 18 of 97 Received by OCD: 3/11/2024 11:01:15 AM


DESIGNED BY: DRAWN BY: Released to Imaging: 6/20/2024 10:49:41 AM

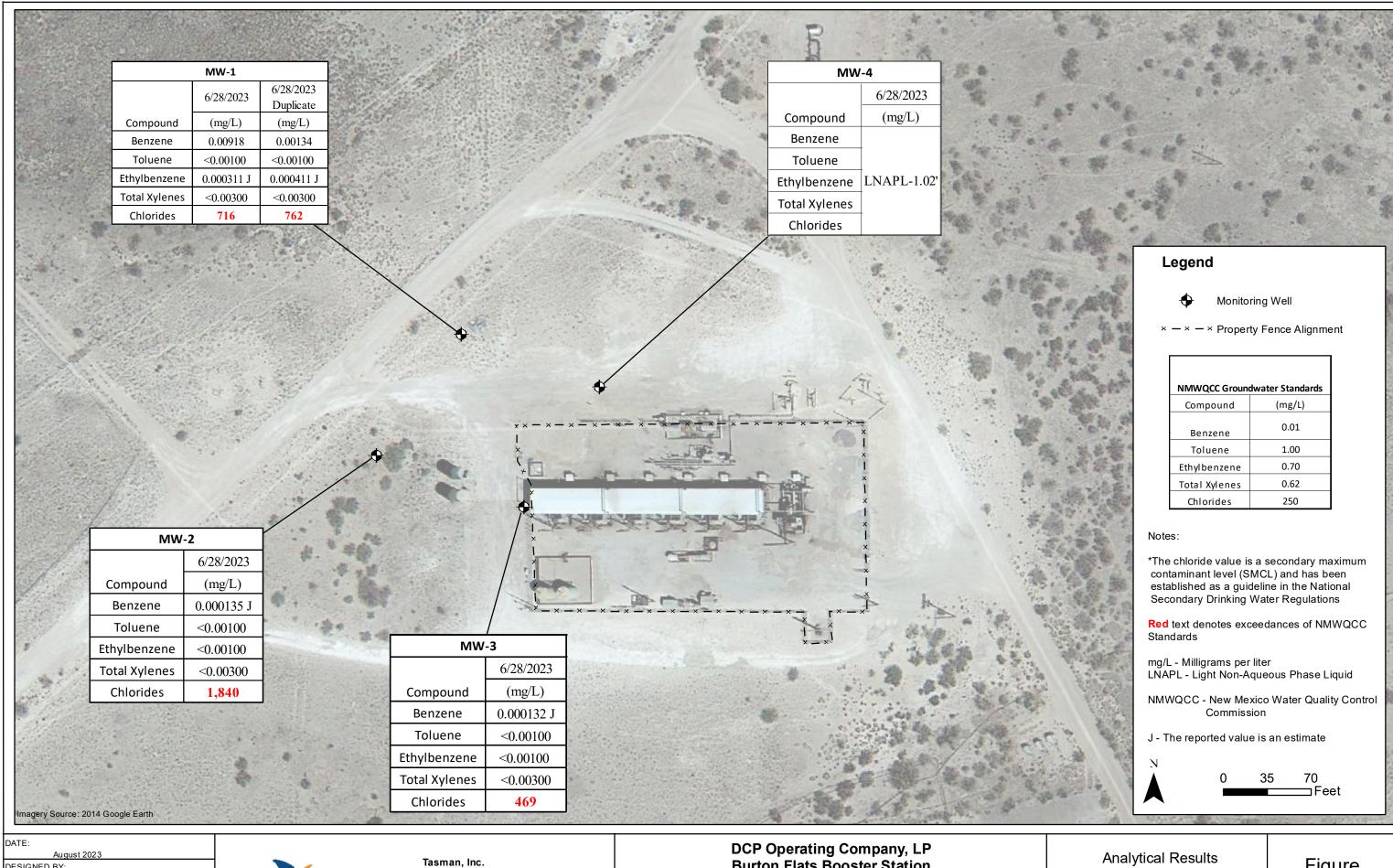
DCP Operating Company, LP Burton Flats Booster Station Anual Groundwater Monitoring Report 4th Quarter 2023

Groundwater Elevation Contour Map (December 13, 2023)

Page 19 of 97 Received by OCD: 3/11/2024 11:01:15 AM

2023 Annual Groundwater Monitoring Report

First Quarter


(March 16, 2023)

B. Dennis Released to Imaging: 6/20/2024 10:49:41 AM

DRAWN BY:

Received by OCD: 3/11/2024 11:01:15 AM

Page 20 of 97

DATE:

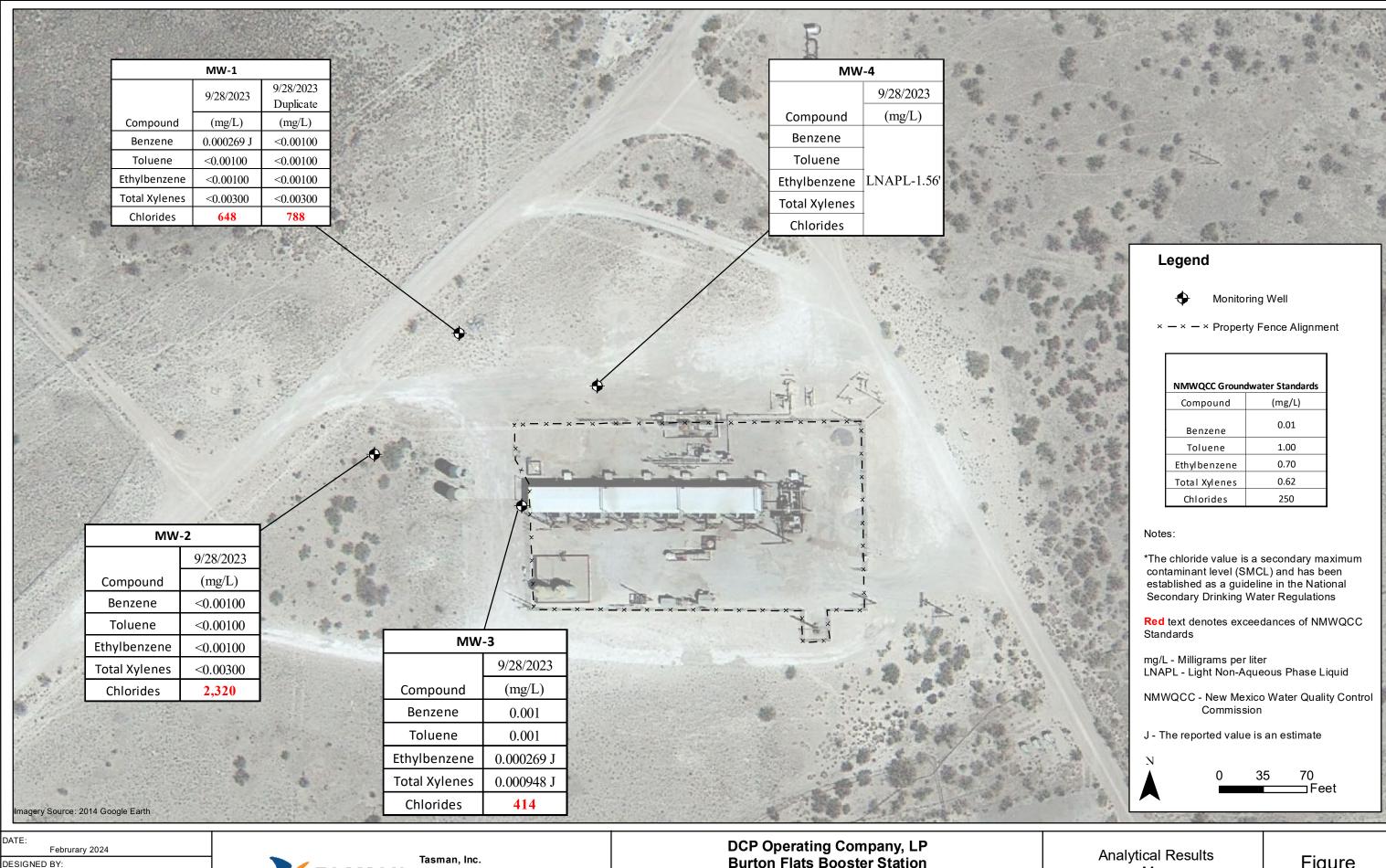
August 2023

DESIGNED BY:

J. Watts

DRAWN BY:

M. Kaczmarek



Tasman, Inc. 6855 W. 119th Ave Broomfield, CO 80020 Burton Flats Booster Station
2023 Annual Groundwater Monitoring Report

Second Quarter

Analytical Results
Map
(June 28, 2023)

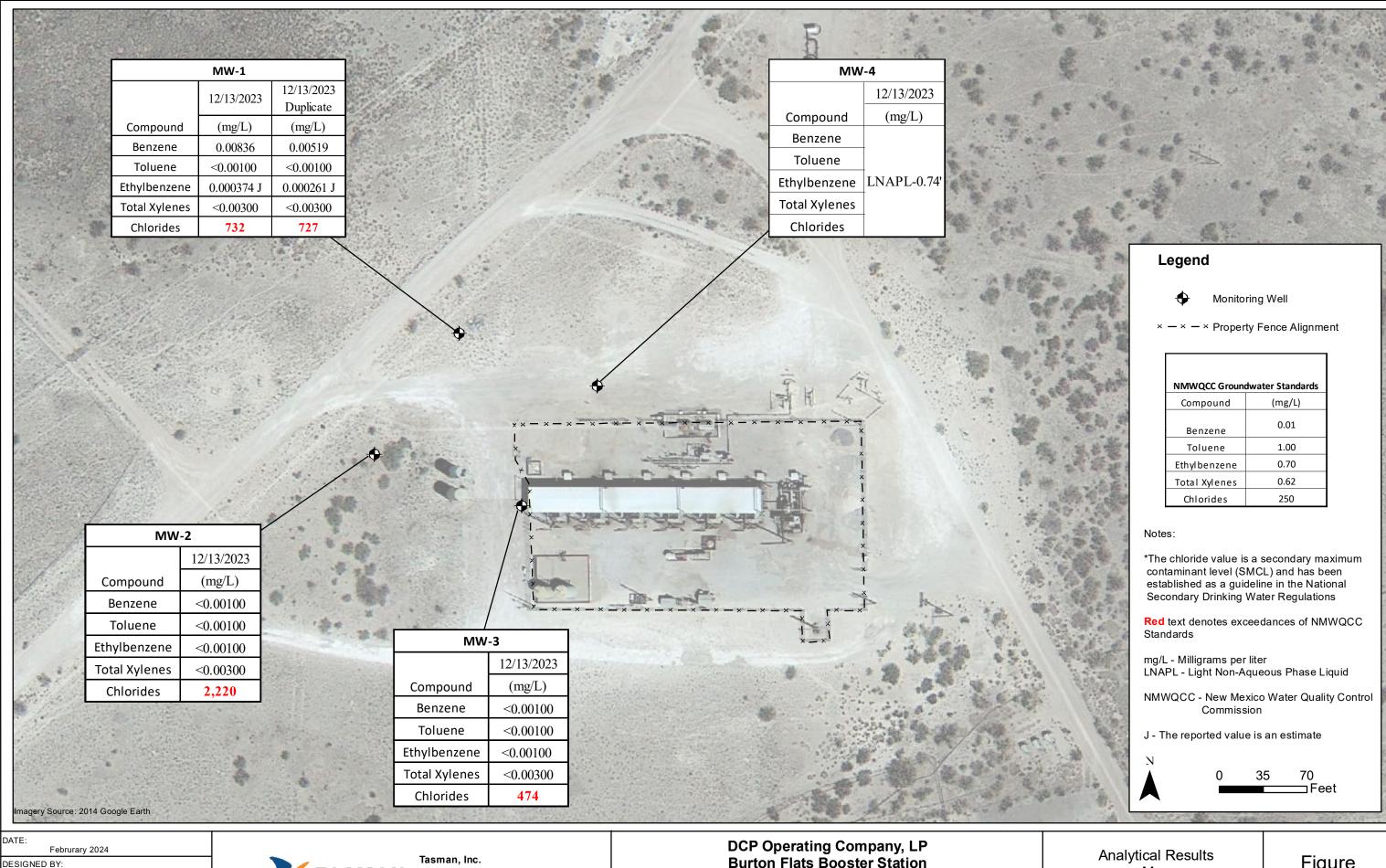
Page 21 of 97 Received by OCD: 3/11/2024 11:01:15 AM

Released to Imaging: 6/20/2024 10:49:41 AM

B. Dennis

B. Dennis

DRAWN BY:



Tasman, Inc. 6855 W. 119th Ave Broomfield, CO 80020

Burton Flats Booster Station 2023 Annual Groundwater Monitoring Report Third Quarter

Мар (September 28, 2023)

Received by OCD: 3/11/2024 11:01:15 AM

40-41-434

Tasman, Inc. 6855 W. 119th Ave Broomfield, CO 80020 Burton Flats Booster Station

2023 Annual Groundwater Monitoring Report
Fourth Quarter

Map (December 13, 2023)

Figure 10

B. Dennis

DRAWN BY:

Appendix A

Historical Analytical Results

				1	Total		
Location Identification	Sample Date	Benzene (mg/l)	Toluene (mg/l)	Ethylbenzene (mg/l)	Xylenes (mg/l)	Chlorides (mg/l)	Comments
NMWOCC Groundwater	Sample Date	(IIIg/I)	(mg/i)	(IIIg/I)	(Hig/I)	(IIIg/I)	Comments
Standards (mg/L)		0.01	1.00	0.70	0.62	250	
MW-1	12/14/2011	0.140	0.0034	0.200	0.111	665	Duplicate sample collected
MW-1	4/26/2012	0.153	<0.001	0.229	0.0073	584	Duplicate sample conceted
MW-1	 	0.133	<0.001	0.284	0.0073	651	Duni:
	6/20/2012						Duplicate sample collected
MW-1	9/26/2012	0.0615	< 0.001	0.0803	0.0015	590	
MW-1	12/5/2012	0.020	< 0.001	0.17	0.037	599	
MW-1	2/21/2013	0.0021	< 0.001	0.0058	< 0.003	668	Duplicate sample collected
MW-1	6/3/2013	0.0049	< 0.001	0.0048	< 0.001	703	Duplicate sample collected
MW-1	9/11/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	12/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	2/26/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	6/2/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	9/24/2014	Thir	d Quarter 2014	Sampling Suspend	led - Regional Flo	ooding	
MW-1	12/3/2014	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	2/27/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	6/2/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	8/31/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	12/15/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-1	3/21/2016	0.0450	< 0.0010	0.080	0.010	685	
MW-1	6/20/2016	0.082	< 0.0010	0.10	0.0072	700	
MW-1	9/26/2016	0.035	< 0.0050	0.033	< 0.015	705	
MW-1	12/19/2016	0.051	< 0.0010	0.040	0.0035	769	
MW-1	3/6/2017	0.044	< 0.0010	0.025	0.0012	733	Duplicate sample collected
MW-1 (Duplicate)	3/6/2017	0.054	< 0.0010	0.035	0.0014	740	
MW-1	6/19/2017	0.043	< 0.0010	0.020	< 0.0010	671	
MW-1	9/27/2017	0.00867	< 0.0010	0.00359	< 0.0030	649	Duplicate Sample Collected
MW-1 (Duplicate)	9/27/2017	0.00958	<0.0010	0.00389	<0.0030	608	Darling Completed
MW-1 MW-1 (Duplicate)	12/18/2017 12/18/2017	0.0204 0.0179	<0.0010 <0.0010	0.00522 0.00502	<0.0030 <0.0030	679 778	Duplicate Sample Collected
MW-1 (Dupilcate)	3/12/2018	0.0179	<0.0010	0.00302	0.0030 0.00114 J	764	Duplicate Sample Collected
MW-1 (Duplicate)	3/12/2018	0.0399	< 0.0010	0.0230	<0.0030	770	Duplicate Sample Conceted
MW-1	6/25/2018	0.0255	< 0.0010	0.0255	< 0.0030	623	Duplicate Sample Collected
MW-1 (Duplicate)	6/25/2018	0.0281	< 0.0010	0.0277	< 0.0030	632	•
MW-1	9/17/2018	0.0115	< 0.0010	0.0063	< 0.0030	668	Duplicate Sample Collected
MW-1 (Duplicate)	9/17/2018	0.0105	< 0.0010	0.0060	< 0.0030	641	
MW-1	12/10/2018	0.000641 J	< 0.0010	0.00115	< 0.0030	1,180	Duplicate Sample Collected
MW-1 (Duplicate)	12/10/2018	0.000712 J	< 0.0010	0.00126	<0.0030	1,230	D 1
MW-1	3/21/2019	0.0018	<0.0010	0.00159	<0.0030	667	Duplicate Sample Collected
MW-1 (Duplicate)	3/21/2019	0.0026	<0.0010	0.00144	<0.0030	680	D 1' + C 1 C 1 + 1
MW-1	6/13/2019	0.0316	<0.0010	0.0232	<0.0030	774	Duplicate Sample Collected
MW-1 (Duplicate) MW-1	6/13/2019 9/17/2019	0.0294 0.00456	<0.0010 <0.0010	0.0216 0.00219	<0.0030 <0.0030	768 654	Duplicate Sample Collected
MW-1 (Duplicate)	9/17/2019	0.00436	<0.0010	0.00219	< 0.0030	768	Duplicate Sample Collected
MW-1 (Duplicate) MW-1	12/9/2019	0.0039	<0.0010	0.00272	0.0030 0.00161 J	681	Duplicate Sample Collected
MW-1 (Duplicate)	12/9/2019	0.00713	<0.0010	0.00789	0.00161 J 0.00166 J	684	Duplicate Sample Collected
MW-1 (Duplicate)	6/19/2020	0.00772	<0.0010	0.00827	0.00160 J	908	Duplicate Sample Collected
MW-1 (Duplicate)	6/19/2020	0.0278	<0.0010	0.01900	0.00100 J 0.00139 J	927	Duplicate Sample Conceted
MW-1 (Duplicate)	12/11/2020	0.0277	<0.0010	0.01870	0.001393	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/11/2020	0.0435	<0.00100	0.0248	0.00770	734	Suprioute Sumple Conceted
MW-1	3/24/2021	0.0386	< 0.00100	0.0224	0.00599	786	Duplicate Sample Collected
MW-1 (Duplicate)	3/24/2021	0.0323	< 0.00100	0.0188	0.00355	781	Dapheate Sample Conceted
MW-1	6/18/2021	0.0356	< 0.00100	0.0137	0.00263 J	848	Duplicate Sample Collected
MW-1 (Duplicate)	6/18/2021	0.0375	< 0.00100	0.0136	0.00203 J 0.00279 J	844	2 aparente Sumpre Conceiou
MW-1	9/24/2021	0.0403	< 0.00100	0.0138	0.00277 J	814	Duplicate Sample Collected
MW-1 (Duplicate)	9/24/2021	0.0448	<0.00100	0.0170	0.00203 J 0.00289 J	868	Suprious Sumple Concessor
MW-1	12/21/2021	0.0326	< 0.00100	0.0108	0.00182 J	743	Duplicate Sample Collected
MW-1 (Duplicate)	12/21/2021	0.0323	< 0.00100	0.0108	0.00182 J	741	Dapheace Sample Concered
111.1 (Duplicate)	12/21/2021	0.0020	-0.00100	0.0100	0.001703	/ T.E.	

		1			Total		
I and an Iland'Carthan	Comple Date	Benzene	Toluene	Ethylbenzene	Xylenes	Chlorides	Comments
Location Identification	Sample Date	(mg/l)	(mg/l)	(mg/l)	(mg/l)	(mg/l)	Comments
NMWQCC Groundwater Standards (mg/L)		0.01	1.00	0.70	0.62	250	
MW-1	3/23/2022	0.0167	< 0.00100	0.00872	0.00280 J	818	Duplicate Sample Collected
MW-1 (Duplicate)	3/23/2022	0.00284	< 0.00100	0.00114	0.000235 J	826	
MW-1	6/24/2022	0.0426	< 0.00100	0.0126	0.000423 J	704	Duplicate Sample Collected
MW-1 (Duplicate)	6/24/2022	0.0401	< 0.00100	0.0123	0.000413 J	709	1 1
MW-1	9/19/2022	0.00469	< 0.00100	0.000982 J	< 0.00300	748	Duplicate Sample Collected
MW-1 (Duplicate)	9/19/2022	0.0175	< 0.00100	0.00247	< 0.00300	732	1 1
MW-1	12/7/2022	0.00483	< 0.00100	0.000567 J	< 0.00300	695	Duplicate Sample Collected
MW-1 (Duplicate)	12/7/2022	0.00416	< 0.00100	0.000411 J	< 0.00300	795	•
MW-1	3/16/2023	0.00872	< 0.00100	0.00278	0.00111 J	733	Duplicate Sample Collected
MW-1 (Duplicate)	3/16/2023	0.0125	< 0.00100	0.00300	0.000790 J	711	
MW-1	6/28/2023	0.00918	< 0.00100	0.000311 J	< 0.00300	716	Duplicate Sample Collected
MW-1 (Duplicate)	6/28/2023	0.00134	< 0.00100	0.000411 J	< 0.00300	762	
MW-1	9/28/2023	0.000269 J	< 0.00100	< 0.00100	< 0.00300	648	Duplicate Sample Collected
MW-1 (Duplicate)	9/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	788	
MW-1	12/13/2023	0.00836	< 0.00100	0.000374 J	< 0.00300	732	Duplicate Sample Collected
MW-1 (Duplicate)	12/13/2023	0.00519	< 0.00100	0.000261 J	< 0.00300	727	
MW-2	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	1,170	
MW-2	4/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,040	
MW-2	6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,150	
MW-2	9/26/2012	< 0.001	< 0.001	< 0.001	< 0.003	1,130	
MW-2	12/5/2012	<0.001	< 0.001	< 0.001	< 0.003	1,120	Duplicate sample collected
							Duplicate sample collected
MW-2	2/21/2013	< 0.001	< 0.001	<0.001	<0.003	1,250	
MW-2	6/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,150	
MW-2	9/11/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,410	Duplicate sample collected
MW-2	12/3/2013	< 0.001	< 0.001	< 0.001	< 0.001	1,120	Duplicate sample collected
MW-2	2/26/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,220	Duplicate sample collected
MW-2 (Duplicate)	2/26/2014	<0.001	< 0.001	< 0.001	< 0.001	1,270	
MW-2	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	1,270	Duplicate sample collected
MW-2 (Duplicate)	6/2/2014	<0.001	<0.001	<0.001	<0.001	1,290	
MW-2	9/24/2014			Sampling Suspend			D 11 11 11 11
MW-2	12/3/2014	<0.001	< 0.001	< 0.001	<0.001	1,300	Duplicate sample collected
MW-2 (Duplicate)	12/3/2014	<0.001	< 0.001	<0.001	<0.001	1,410	D 11 11 11 11
MW-2	2/27/2015	< 0.001	<0.001	<0.001	<0.003	1,440	Duplicate sample collected
MW-2 (Duplicate)	2/27/2015	<0.001	<0.001	<0.001	<0.003	1,440	D 1' / 1 11 / 1
MW-2	6/2/2015	<0.001	<0.001	<0.001	<0.003	1,650	Duplicate sample collected
MW-2 (Duplicate) MW-2	6/2/2015	<0.001	<0.001	<0.001 <0.001	<0.003 <0.003	1,810	Dunlicate com111t1
MW-2 MW-2 (Duplicate)	8/31/2015 8/31/2015	<0.001 <0.001	<0.001 <0.001	<0.001	<0.003	1,420 1,440	Duplicate sample collected
MW-2 (Duphcate)	12/15/2015	<0.001	<0.001	<0.001	<0.003	1,440	Duplicate sample collected
MW-2 (Duplicate)	12/15/2015	<0.001	<0.001	<0.001	<0.003	1,350	Dupitcate sample confected
MW-2 (Duplicate)	3/21/2016	<0.001	<0.001	<0.001	<0.003	1,300	
MW-2	6/20/2016	<0.0010	<0.0010	<0.0010	<0.0030	1,280	
MW-2	9/26/2016	<0.0010	<0.0010	<0.0010	<0.0030	1,310	
MW-2	12/19/2016	<0.0010	<0.0010	<0.0010	<0.0030	1,560	Duplicate sample collected
MW-2 (Duplicate)	12/19/2016	<0.0010	< 0.0010	<0.0010	< 0.0030	1,350	2 aparent sample concered
MW-2	3/6/2017	< 0.0010	< 0.0010	<0.0010	< 0.0010	1,210	
MW-2	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	1,480	
MW-2	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,530	
MW-2	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,300	
MW-2	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,290	
MW-2	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,490	
MW-2	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	2,130	
MW-2	12/10/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	3,780	
MW-2	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	1,380	
					,	7	

Name		ı			·	Total		
December Comments Comments Comput Comput Comput Comments Comm			Benzene	Toluene	Ethylbenzene		Chlorides	
Mw-2	Location Identification	Sample Date		(mg/l)			(mg/l)	Comments
MW-2	NMWQCC Groundwater		0.01		0.70	0.62		
MW-2			0.01	1.00	0.70	0.62	250	
MW-2							1,860	
MW-2 6/19/2020 <0.0010 <0.0010 <0.0010 <0.0010 <0.0030 2,220 MW-2 12/11/2020 >0.00100 <0.00100								
MW-2								
MW-2								
MW-2								
MW-2								
MW-2								
MW-2 3/23/2022 <0.00100 <0.00100 <0.00110 <0.00101 1,870								
MW-2								
MW-2								
MW-2								
MW-2								
MW-2								
MW-2 1928/2023 <0.00100 <0.00100 <0.00100 <0.00300 2,320 MW-2 12/13/2023 <0.00100								
MW-2 12/13/2023 <0.00100 <0.00100 <0.00300 2,220 MW-3 12/14/2011 <0.001		0.20.2020		0.0000	0.00-00			
MW-3							_	
MW-3 4/26/2012 <0.001 <0.001 <0.003 406 Duplicate sample collected MW-3 6/20/2012 <0.001	MW-2	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	2,220	
MW-3 4/26/2012 <0.001 <0.001 <0.003 406 Duplicate sample collected MW-3 6/20/2012 <0.001	MW-3	12/14/2011	< 0.001	< 0.001	< 0.001	< 0.003	426	
MW-3 6/20/2012 <0.001 <0.001 <0.003 435 MW-3 9/26/2012 <0.001			< 0.001	< 0.001	< 0.001	< 0.003	406	Duplicate sample collected
MW-3 9/26/2012 <0.001 <0.001 0.00057 <0.003 447 Duplicate sample collected MW-3 12/5/2012 <0.001		6/20/2012	< 0.001	< 0.001	< 0.001	< 0.003		1 1
MW-3			< 0.001	< 0.001	0.00057	< 0.003		Dunlicate sample collected
MW-3 2/21/2013 <0.001 <0.001 <0.001 <0.003 503 MW-3 6/12/2013 <0.001								2 up noute sumpre concerce
MW-3 6/12/2013 <0.001 <0.001 <0.001 <0.001 474 MW-3 9/11/2013 <0.001								
MW-3 9/11/2013 <0.001 <0.001 <0.001 <0.001 589 MW-3 12/3/2013 <0.001								
MW-3 12/3/2013 <0.001 <0.001 <0.001 <0.001 432 MW-3 2/26/2014 <0.001								
MW-3 2/26/2014 <0.001 <0.001 <0.001 <0.001 484 MW-3 6/2/2014 <0.001								
MW-3 6/2/2014 <0.001 <0.001 <0.001 <0.001 519 MW-3 9/24/2014 Third Quarter 2014 Sampling Suspended - Regional Flooding MW-3 12/3/2014 <0.001								
MW-3 9/24/2014 Third Quarter 2014 Sampling Suspended - Regional Flooding MW-3 12/3/2014 <0.001								
MW-3 12/3/2014 <0.001 <0.001 <0.001 294 MW-3 2/27/2015 <0.001								
MW-3 2/27/2015 <0.001 <0.001 <0.003 301 MW-3 6/2/2015 <0.001								
MW-3 6/2/2015 <0.001 <0.001 <0.003 384 MW-3 8/31/2015 <0.001	_							
MW-3 8/31/2015 <0.001 <0.001 <0.003 386 MW-3 12/15/2015 <0.001								
MW-3 12/15/2015 <0.001 <0.001 <0.003 568 MW-3 3/21/2016 <0.0010								
MW-3 3/21/2016 <0.0010 <0.0010 <0.0030 484 Duplicate sample collected MW-3(Duplicate) 3/21/2016 <0.0010								
MW-3(Duplicate) 3/21/2016 <0.0010 <0.0010 <0.0030 526 MW-3 6/20/2016 <0.0010								Dumlicate commle collected
MW-3 6/20/2016 <0.0010 <0.0010 <0.0030 414 Duplicate sample collected MW-3 (Duplicate) 6/20/2016 <0.0010								Duplicate sample conected
MW-3 (Duplicate) 6/20/2016 <0.0010 <0.0010 <0.0030 383 MW-3 9/26/2016 <0.0010								Dunlicate sample collected
MW-3 9/26/2016 <0.0010 <0.0010 <0.0030 320 Duplicate sample collected MW-3 (Duplicate) 9/26/2016 <0.0010								Duplicate sample conceted
MW-3 (Duplicate) 9/26/2016 <0.0010 <0.0010 <0.0030 324 MW-3 12/19/2016 <0.0010								Dunlicate sample collected
MW-3 12/19/2016 <0.0010 <0.0010 <0.0030 285 MW-3 3/6/2017 <0.0010								Duplicate sample conceted
MW-3 3/6/2017 <0.0010 <0.0010 <0.0010 <0.0010 466 MW-3 6/19/2017 <0.0010								
MW-3 6/19/2017 <0.0010 <0.0010 <0.0010 247 MW-3 (Duplicate) 6/19/2017 <0.0010								
MW-3 (Duplicate) 6/19/2017 <0.0010 <0.0010 <0.0010 <0.0010 251 MW-3 9/27/2017 <0.0010								
MW-3 9/27/2017 <0.0010 <0.0010 <0.0030 269 MW-3 12/18/2017 <0.0010								
MW-3 12/18/2017 <0.0010 <0.0010 <0.0030 310 MW-3 3/12/2018 <0.0010								
MW-3 3/12/2018 <0.0010 <0.0010 <0.0030 253 MW-3 6/25/2018 <0.0010								
MW-3 6/25/2018 <0.0010 <0.0010 <0.0030 258 MW-3 9/17/2018 <0.0010								
MW-3 9/17/2018 <0.0010 <0.0010 <0.0030 277 MW-3 12/10/2018 <0.0010								
MW-3 12/10/2018 <0.0010 <0.0010 <0.0030 429 MW-3 3/21/2019 <0.0010								
MW-3 3/21/2019 <0.0010 <0.0010 <0.0030 309								
1111 0 0/13/2017 *0/0010 *0/0010 *0/0030 307	MW-3	6/13/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	369	
MW-3 9/17/2019 0.00426 <0.0010 <0.0030 333								
MW-3 12/9/2019 0.00216 <0.0010 <0.0030 339								

Location Identification	Sample Date	Benzene (mg/l)	Toluene	Ethylbenzene (mg/l)	Total Xylenes	Chlorides	Comments
NMWQCC Groundwater	Sample Date	(mg/l)	(mg/l)	(mg/1)	(mg/l)	(mg/l)	Comments
Standards (mg/L)		0.01	1.00	0.70	0.62	250	
MW-3	6/19/2020	0.000240 J	< 0.0010	< 0.0010	< 0.0030	372	
MW-3	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	420	
MW-3	3/24/2021	0.000352 J	0.000345 J	< 0.00100	< 0.00300	410	
MW-3	6/18/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	436	
MW-3	9/24/2021	0.000125 J	< 0.00100	< 0.00100	< 0.00300	443	
MW-3	12/21/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	1990	
MW-3	3/23/2022	0.00110	0.00119	< 0.00100	0.000290 J	434	
MW-3	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	436	
MW-3	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	431	
MW-3	12/7/2022	0.000191 J	< 0.00100	< 0.00100	< 0.00300	436	
MW-3	3/16/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	442	
MW-3	6/28/2023	0.000132 J	< 0.00100	< 0.00100	< 0.00300	469	
MW-3	9/28/2023	0.001	0.001	0.000269 J	0.000948 J	414	
MW-3	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	474	
MW-4	4/26/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/20/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	9/26/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/5/2012	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	2/21/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	9/11/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/3/2013	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	2/26/2014	LNAPL	LNAPL LNAPL	LNAPL	LNAPL	LNAPL	
MW-4 MW-4	6/2/2014 9/24/2014	LNAPL		LNAPL	LNAPL	LNAPL	
MW-4	12/3/2014	LNAPL	LNAPL	Sampling Suspend LNAPL	LNAPL	LNAPL	
MW-4	2/27/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	6/2/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	8/31/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	12/15/2015	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	
MW-4	3/21/2016	0.58	0.17	0.48	0.90	10,700	
MW-4	6/20/2016	0.46	0.16	0.64	1.2	9,700	
MW-4	9/26/2016	0.51	0.14	0.54	1.0	7,780	
MW-4	12/19/2016	0.37	0.12	0.56	0.99	7,530	
MW-4	3/6/2017	0.37	0.086	0.49	0.8	6,370	
MW-4	6/19/2017	0.14	0.035	0.46	0.50	6,420	LNAPL (0.30 feet)
MW-4	9/27/2017	0.104	0.0718	0.706	1.12	7,520	LNAPL (0.24 feet)
MW-4	12/18/2017	0.433	0.0979	0.570	1.12	6,450	LNAPL (0.10 feet)
MW-4	3/12/2018	0.293	0.0641	0.319	0.627	6,160	
MW-4	6/25/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.18 feet)
MW-4	9/17/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.5 feet)
MW-4	12/10/2018	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.59 feet)
MW-4	3/21/2019	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.65 feet)
MW-4	6/13/2019	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL	LNAPL (0.55 feet)
MW-4	9/17/2019			LNAPL			LNAPL (0.23 feet)
MW-4	12/9/2019			LNAPL			LNAPL (0.39 feet)
MW-4	6/19/2020			LNAPL			LNAPL
MW-4	12/11/2020			LNAPL			LNAPL
MW-4	3/24/2021			LNAPL			LNAPL
MW-4	6/18/2021			LNAPL			LNAPL
MW-4	9/24/2021			LNAPL			LNAPL
MW-4	12/21/2021			LNAPL			LNAPL
MW-4	3/23/2022			LNAPL			LNAPL
MW-4	6/24/2022			LNAPL			LNAPL (1.07 feet)

		1			Total	1	
		Benzene	Toluene	Ethylbenzene	Xylenes	Chlorides	
Location Identification	Sample Date	(mg/l)	(mg/l)	Comments			
NMWQCC Groundwater		0.01	1.00	0.70	0.62	250	
Standards (mg/L)		0.01	1.00	0.70	0.62	250	
MW-4	9/19/2022		N	ot Sampled - LNA	APL		LNAPL (0.16')
MW-4	12/7/2022		Not Sa	mpled - Historica	l LNAPL		
MW-4	3/16/2023		Not Sa	mpled - Historica	l LNAPL		LNAPL (0.34')
MW-4	6/28/2023		Not Sa	mpled - Historica	l LNAPL		LNAPL (1.02')
MW-4	9/28/2023		Not Sa	mpled - Historica	l LNAPL		LNAPL (1.56')
MW-4	12/13/2023		Not Sa	mpled - Historica	l LNAPL		LNAPL (0.74')
Trip Blank	6/2/2014	< 0.001	< 0.001	< 0.001	< 0.001	l NA l	
Trip Blank	12/3/2014	< 0.001	< 0.001	< 0.001	< 0.001	NA	
Trip Blank	2/27/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA NA	
Trip Blank	6/2/2015	<0.001	< 0.001	< 0.001	< 0.003	NA NA	
Trip Blank	8/31/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	12/15/2015	< 0.001	< 0.001	< 0.001	< 0.003	NA	
Trip Blank	3/21/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/20/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/26/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/19/2016	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	3/6/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	6/19/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0010	NA	
Trip Blank	9/27/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/18/2017	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	3/12/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/25/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	9/17/2018	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/9/2019	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	6/19/2020	< 0.0010	< 0.0010	< 0.0010	< 0.0030	NA	
Trip Blank	12/11/2020	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/24/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/18/2021	NA	NA	NA	NA	NA	
Trip Blank	9/24/2021	0.000372 J	< 0.00100	< 0.00100	< 0.00100	NA	
Trip Blank	12/21/2021	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/23/2022	NA	NA	NA	NA	NA	No Trip Blank
Trip Blank	6/24/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	-
Trip Blank	9/19/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	12/7/2022	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	3/16/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	6/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	9/28/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	
Trip Blank	12/13/2023	< 0.00100	< 0.00100	< 0.00100	< 0.00300	NA	

Notes:

Bold red values indicate an exceedance of the associated NMWQCC standard (Effective 7/1/2020) or, for chlorides, the secondary maximum contaminant level (SMCL) which has been established as a guideline in the National Secondary Drinking Water Regulations.

NMWQCC = New Mexico Water Quality Control Commission

LNAPL = Light Non-Aqueous Phase Liquid

NA = Not Analyzed

J = The identification of the analyte is acceptable, the reported value is an estimate.

mg/L = milligrams per liter

Appendix B

Laboratory Analytical Report

- Pace Analytical Job #: L1596004- Pace Analytical Job #: L1630641- Pace Analytical Job #: L1661192

- Pace Analytical Job #: L1688211

Pace Analytical® ANALYTICAL REPORT

March 23, 2023

DCP Midstream - Tasman

L1596004 Sample Delivery Group: Samples Received: 03/17/2023 Project Number: 311090017

Description: **Burton Flats Booster Station**

Kyle Norman Report To:

2620 W. Marland Blvd

Hobbs, NM 88240

Chris Word Entire Report Reviewed By:

> Chris Ward Project Manager

Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Sc: Sample Chain of Custody

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1596004-01	5
MW-2 L1596004-02	6
MW-3 L1596004-03	7
DUPLICATE L1596004-04	8
TRIP BLANK L1596004-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14

15

SAMPLE SUMMARY

MW-1 L1596004-01 GW			Collected by Chris Flores	Collected date/time 03/16/23 10:04	Received dat 03/17/23 09:1	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2027550	20	03/22/23 11:25	03/22/23 11:25	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2028242	1	03/22/23 21:44	03/22/23 21:44	JHH	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
MW-2 L1596004-02 GW			Chris Flores	03/16/23 09:31	03/17/23 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2027550	100	03/22/23 12:04	03/22/23 12:04	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2028242	1	03/22/23 22:03	03/22/23 22:03	JHH	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
MW-3 L1596004-03 GW			Chris Flores	03/16/23 10:20	03/17/23 09:1	
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2027550	10	03/22/23 12:17	03/22/23 12:17	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2026970	1	03/21/23 10:45	03/21/23 10:45	KSD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
DUPLICATE L1596004-04 GW			Chris Flores	03/16/23 10:04	03/17/23 09:1	5
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2027550	20	03/22/23 12:29	03/22/23 12:29	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2026970	1	03/21/23 11:07	03/21/23 11:07	KSD	Mt. Juliet, TN
			Collected by	Collected date/time	Received dat	e/time
TRIP BLANK L1596004-05 GW			Chris Flores	03/16/23 00:00	03/17/23 09:1	5
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG2026970

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

1

03/21/23 10:04

date/time

03/21/23 10:04

KSD

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Тс

Chris Ward Project Manager

his Word

Page 34 of 97

SAMPLE RESULTS - 01

Collected date/time: 03/16/23 10:04 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	733		7.58	20.0	20	03/22/2023 11:25	WG2027550

	J)
_		

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00872		0.0000941	0.00100	1	03/22/2023 21:44	WG2028242
Toluene	U		0.000278	0.00100	1	03/22/2023 21:44	WG2028242
Ethylbenzene	0.00278		0.000137	0.00100	1	03/22/2023 21:44	WG2028242
Total Xylenes	0.00111	<u>J</u>	0.000174	0.00300	1	03/22/2023 21:44	WG2028242
(S) Toluene-d8	93.8			80.0-120		03/22/2023 21:44	WG2028242
(S) 4-Bromofluorobenzene	90.1			77.0-126		03/22/2023 21:44	WG2028242
(S) 1,2-Dichloroethane-d4	109			70.0-130		03/22/2023 21:44	WG2028242

Page 35 of 97

SAMPLE RESULTS - 02

Wet Chemistry by Method 9056A

Collected date/time: 03/16/23 09:31

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	1790		37.9	100	100	03/22/2023 12:04	WG2027550

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	03/22/2023 22:03	WG2028242
Toluene	U		0.000278	0.00100	1	03/22/2023 22:03	WG2028242
Ethylbenzene	U		0.000137	0.00100	1	03/22/2023 22:03	WG2028242
Total Xylenes	U		0.000174	0.00300	1	03/22/2023 22:03	WG2028242
(S) Toluene-d8	99.3			80.0-120		03/22/2023 22:03	WG2028242
(S) 4-Bromofluorobenzene	83.9			77.0-126		03/22/2023 22:03	WG2028242
(S) 1,2-Dichloroethane-d4	113			70.0-130		03/22/2023 22:03	WG2028242

Page 36 of 97

SAMPLE RESULTS - 03

L1596004

Wet Chemistry by Method 9056A

Collected date/time: 03/16/23 10:20

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	442		3.79	10.0	10	03/22/2023 12:17	WG2027550

[']Cp

Ss

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U	<u>J3</u>	0.0000941	0.00100	1	03/21/2023 10:45	WG2026970
Toluene	U		0.000278	0.00100	1	03/21/2023 10:45	WG2026970
Ethylbenzene	U		0.000137	0.00100	1	03/21/2023 10:45	WG2026970
Total Xylenes	U	<u>J3</u>	0.000174	0.00300	1	03/21/2023 10:45	WG2026970
(S) Toluene-d8	104			80.0-120		03/21/2023 10:45	WG2026970
(S) 4-Bromofluorobenzene	99.0			77.0-126		03/21/2023 10:45	WG2026970
(S) 1,2-Dichloroethane-d4	91.7			70.0-130		03/21/2023 10:45	WG2026970

Page 37 of 97

SAMPLE RESULTS - 04

L1596004

Collected date/time: 03/16/23 10:04 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	711		7.58	20.0	20	03/22/2023 12:29	WG2027550	

Ss

⁴ Cn	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.0125	<u>J3</u>	0.0000941	0.00100	1	03/21/2023 11:07	WG2026970
Toluene	U		0.000278	0.00100	1	03/21/2023 11:07	WG2026970
Ethylbenzene	0.00300		0.000137	0.00100	1	03/21/2023 11:07	WG2026970
Total Xylenes	0.000790	<u>J J3</u>	0.000174	0.00300	1	03/21/2023 11:07	WG2026970
(S) Toluene-d8	102			80.0-120		03/21/2023 11:07	WG2026970
(S) 4-Bromofluorobenzene	109			77.0-126		03/21/2023 11:07	WG2026970
(S) 1,2-Dichloroethane-d4	91.4			70.0-130		03/21/2023 11:07	WG2026970

Page 38 of 97

SAMPLE RESULTS - 05

L159600

Collected date/time: 03/16/23 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U	<u>J3</u>	0.0000941	0.00100	1	03/21/2023 10:04	WG2026970
Toluene	U		0.000278	0.00100	1	03/21/2023 10:04	WG2026970
Ethylbenzene	U		0.000137	0.00100	1	03/21/2023 10:04	WG2026970
Total Xylenes	U	<u>J3</u>	0.000174	0.00300	1	03/21/2023 10:04	WG2026970
(S) Toluene-d8	103			80.0-120		03/21/2023 10:04	WG2026970
(S) 4-Bromofluorobenzene	98.9			77.0-126		03/21/2023 10:04	WG2026970
(S) 1,2-Dichloroethane-d4	91.3			70.0-130		03/21/2023 10:04	WG2026970

Page 39 of 97

QUALITY CONTROL SUMMARY

Wet Chemistry by Method 9056A

L1596004-01,02,03,04

Method Blank (MB)

(MB) R3904223-1 03/22/23 06:46												
	MB Result	MB Qualifier	MB MDL	MB RDL								
Analyte	ma/l		ma/l	mg/l								
Analyte	IIIg/I		mg/i	my/i								

Ср

L1595838-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1595838-02 03/22/23 08:20 • (DUP) R3904223-3 03/22/23 08:34

		Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte		mg/l	mg/l		%		%
Chloride	<u>,</u>	1.72	1.72	1	0.163		15

L1595838-07 Original Sample (OS) • Duplicate (DUP)

(OS) L1595838-07 03/22/23 10:33 • (DUP) R3904223-6 03/22/23 10:46

(03) [1393030-07 03/22/2	Original Result	•			DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	1.70	1.65	1	3.30		15

Laboratory Control Sample (LCS)

(LCS) R3904223-2 03/22/23 06:59

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	38.9	97.1	80.0-120	

L1595838-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1595838-02 03/22/23 08:20 • (MS) R3904223-4 03/22/23 08:47 • (MSD) R3904223-5 03/22/23 09:26

(00) 11000000 02	00/22/20 00.20 (1110	3) 11000 1220 1	00/22/20 00). I) (IIIOD) NO.	00 1220 0 001	22/20 00.20						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	1.72	50.8	52.0	98.1	101	1	80.0-120			2.44	15

L1595838-07 Original Sample (OS) • Matrix Spike (MS)

(OS) L1595838-07 03/22/23 10:33 • (MS) R3904223-7 03/22/23 10:59

(US) L1393636-U7 US/22/23 1U.S3 • (MS) K39U4223-7 US/22/23 1U.S9									
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits			
Analyte	mg/l	mg/l	mg/l	%		%			
Chloride	50.0	1.70	49.9	96.4	1	80.0-120			

Page 40 of 97

Volatile Organic Compounds (GC/MS) by Method 8260B

L1596004-03,04,05

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3904497-3 03/21/2	23 08:01				
	MB Result	MB Qualifier	MB MDL	MB RDL	1
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	l .
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Xylenes, Total	U		0.000174	0.00300	
(S) Toluene-d8	104			80.0-120	
(S) 4-Bromofluorobenzene	99.7			77.0-126	L.
(S) 1,2-Dichloroethane-d4	91.7			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

93.3

91.6

(LCS) R3904497-1 03/21/23 06:57 • (LCSD) R3904497-2 03/21/23 07:19

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	- '
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	L
Benzene	0.00500	0.00540	0.00432	108	86.4	70.0-123		<u>J3</u>	22.2	20	8
Toluene	0.00500	0.00527	0.00431	105	86.2	79.0-120			20.0	20	
Ethylbenzene	0.00500	0.00541	0.00445	108	89.0	79.0-123			19.5	20	9
Xylenes, Total	0.0150	0.0159	0.0128	106	85.3	79.0-123		<u>J3</u>	21.6	20	
(S) Toluene-d8				101	101	80.0-120					L
(S) 4-Bromofluorobenzene				101	98.8	77.0-126					

70.0-130

Page 41 of 97

Volatile Organic Compounds (GC/MS) by Method 8260B

L1596004-01,02

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3904502-3 03/22/	23 18:22				ľ
	MB Result	MB Qualifier	MB MDL	MB RDL	2_
Analyte	mg/l		mg/l	mg/l	-
Benzene	U		0.0000941	0.00100	느
Toluene	U		0.000278	0.00100	3
Ethylbenzene	U		0.000137	0.00100	L
Xylenes, Total	U		0.000174	0.00300	4
(S) Toluene-d8	99.0			80.0-120	(
(S) 4-Bromofluorobenzene	86.4			77.0-126	느
(S) 1,2-Dichloroethane-d4	111			70.0-130	5

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

113

113

(LCS) R3904502-1 03/22/23 17:04 • (LCSD) R3904502-2 03/22/23 17:2

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00536	0.00537	107	107	70.0-123			0.186	20	
Toluene	0.00500	0.00519	0.00501	104	100	79.0-120			3.53	20	
Ethylbenzene	0.00500	0.00498	0.00465	99.6	93.0	79.0-123			6.85	20	
Xylenes, Total	0.0150	0.0145	0.0142	96.7	94.7	79.0-123			2.09	20	
(S) Toluene-d8				101	98.3	80.0-120					
(S) 4-Bromofluorobenzene				89.0	87.4	77.0-126					

70.0-130

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Abbreviations and	d Definitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

	· · · · · · · · · · · · · · · · · · ·
J	The identification of the analyte is acceptable; the reported value is an estimate.
J3	The associated batch QC was outside the established quality control range for precision.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina ¹	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
lowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Condition:

NCF / OK

/ - Groundwater B - Bioassay V - WasteWater / - Drinking Water	Samples returned via:		Bottles arrive intact: Correct bottles used: Sufficient volume sent: If Applicable		
- Other	UPSFedExCourier		Tracking # 6094	5470 9972	VOA Zero Headspace:
inquished by: (Signature)	Date: 3/16/23	Time:	Received by: (Signature)	Trip Blank Received: Yes / No HCt / MeoH TBR	Preservation Correct/Checked: Y RAD Screen <0.5 mR/hr:
linquished by : (Signature)	Date:	Time:	Received by: (Signature)	Temp: NSA6 °C Bottles Received:	If preservation required by Login: Date/Time

Received for lab by: (Signature)

Date:

Time:

Released to Imaging: 6/20/2024 10:49:41 AM

Relinquished by: (Signature)

Date:

Pace Analytical® ANALYTICAL REPORT

DCP Midstream - Tasman

Sample Delivery Group:

L1630641

Samples Received:

06/29/2023

Project Number:

311090017

Description:

Burton Flats Booster Station

Report To:

Kyle Norman

2620 W. Marland Blvd

Hobbs, NM 88240

Entire Report Reviewed By:

Chris Word

Chris Ward

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Sc: Sample Chain of Custody

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1630641-01	5
MW-2 L1630641-02	6
MW-3 L1630641-03	7
DUPLICATE L1630641-05	8
TRIP BLANK L1630641-07	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14

15

SAMPLE SUMMARY

			Collected by	Collected date/time		
MW-1 L1630641-01 GW				06/28/23 08:02	06/29/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2093269	5	07/12/23 20:47	07/12/23 20:47	KMC	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2089887	1	07/06/23 05:44	07/06/23 05:44	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1630641-02 GW				06/28/23 08:23	06/29/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2093529	100	07/12/23 23:12	07/12/23 23:12	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2089887	1	07/06/23 06:06	07/06/23 06:06	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1630641-03 GW				06/28/23 08:42	06/29/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2093529	5	07/12/23 23:25	07/12/23 23:25	GEB	Mt. Juliet, TN
/olatile Organic Compounds (GC/MS) by Method 8260B	WG2089887	1	07/06/23 06:27	07/06/23 06:27	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1630641-05 GW				06/28/23 00:00	06/29/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
W - 61 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	Wassassas		date/time	date/time	050	
Wet Chemistry by Method 9056A	WG2093529	5	07/12/23 23:39	07/12/23 23:39	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2089887	1	07/06/23 06:49	07/06/23 06:49	ACG	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1630641-07 GW				06/28/23 00:00	06/29/23 09	:00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG2089887

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

1

07/06/23 01:45

date/time

07/06/23 01:45

ACG

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris Ward Project Manager

his Word

Page 49 of 97

SAMPLE RESULTS - 01

Wet Chemistry by Method 9056A

Collected date/time: 06/28/23 08:02

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	716		1.90	5.00	5	07/12/2023 20:47	WG2093269

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00918		0.0000941	0.00100	1	07/06/2023 05:44	WG2089887
Toluene	U		0.000278	0.00100	1	07/06/2023 05:44	WG2089887
Ethylbenzene	0.000311	<u>J</u>	0.000137	0.00100	1	07/06/2023 05:44	WG2089887
Total Xylenes	U		0.000174	0.00300	1	07/06/2023 05:44	WG2089887
(S) Toluene-d8	98.0			80.0-120		07/06/2023 05:44	WG2089887
(S) 4-Bromofluorobenzene	88.9			77.0-126		07/06/2023 05:44	WG2089887
(S) 1,2-Dichloroethane-d4	106			70.0-130		07/06/2023 05:44	WG2089887

Page 50 of 97

SAMPLE RESULTS - 02

Wet Chemistry by Method 9056A

Collected date/time: 06/28/23 08:23

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	1840		37.9	100	100	07/12/2023 23:12	WG2093529	

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.000135	J	0.0000941	0.00100	1	07/06/2023 06:06	WG2089887
Toluene	U		0.000278	0.00100	1	07/06/2023 06:06	WG2089887
Ethylbenzene	U		0.000137	0.00100	1	07/06/2023 06:06	WG2089887
Total Xylenes	U		0.000174	0.00300	1	07/06/2023 06:06	WG2089887
(S) Toluene-d8	99.3			80.0-120		07/06/2023 06:06	WG2089887
(S) 4-Bromofluorobenzene	87.3			77.0-126		07/06/2023 06:06	WG2089887
(S) 1,2-Dichloroethane-d4	107			70.0-130		07/06/2023 06:06	WG2089887

Page 51 of 97

SAMPLE RESULTS - 03

Wet Chemistry by Method 9056A

Collected date/time: 06/28/23 08:42

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>	
Analyte	mg/l		mg/l	mg/l		date / time		
Chloride	469		1.90	5.00	5	07/12/2023 23:25	WG2093529	

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.000132	<u>J</u>	0.0000941	0.00100	1	07/06/2023 06:27	WG2089887
Toluene	U		0.000278	0.00100	1	07/06/2023 06:27	WG2089887
Ethylbenzene	U		0.000137	0.00100	1	07/06/2023 06:27	WG2089887
Total Xylenes	U		0.000174	0.00300	1	07/06/2023 06:27	WG2089887
(S) Toluene-d8	99.8			80.0-120		07/06/2023 06:27	WG2089887
(S) 4-Bromofluorobenzene	84.4			77.0-126		07/06/2023 06:27	WG2089887
(S) 1,2-Dichloroethane-d4	105			70.0-130		07/06/2023 06:27	WG2089887

Page 52 of 97

SAMPLE RESULTS - 05

Collected date/time: 06/28/23 00:00 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	762		1.90	5.00	5	07/12/2023 23:39	WG2093529

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00134		0.0000941	0.00100	1	07/06/2023 06:49	WG2089887
Toluene	U		0.000278	0.00100	1	07/06/2023 06:49	WG2089887
Ethylbenzene	U		0.000137	0.00100	1	07/06/2023 06:49	WG2089887
Total Xylenes	U		0.000174	0.00300	1	07/06/2023 06:49	WG2089887
(S) Toluene-d8	98.1			80.0-120		07/06/2023 06:49	WG2089887
(S) 4-Bromofluorobenzene	91.4			77.0-126		07/06/2023 06:49	WG2089887
(S) 1,2-Dichloroethane-d4	108			70.0-130		07/06/2023 06:49	WG2089887

Ss

Collected date/time: 06/28/23 00:00

Page 53 of 97

SAMPLE RESULTS - 07

L1630641

- Claime Grigatine Gr											
	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>				
Analyte	mg/l		mg/l	mg/l		date / time					
Benzene	U		0.0000941	0.00100	1	07/06/2023 01:45	WG2089887				
Toluene	U		0.000278	0.00100	1	07/06/2023 01:45	WG2089887				
Ethylbenzene	U		0.000137	0.00100	1	07/06/2023 01:45	WG2089887				
Total Xylenes	U		0.000174	0.00300	1	07/06/2023 01:45	WG2089887				
(S) Toluene-d8	101			80.0-120		07/06/2023 01:45	WG2089887				
(S) 4-Bromofluorobenzene	81.4			77.0-126		07/06/2023 01:45	WG2089887				
(S) 1,2-Dichloroethane-d4	106			70.0-130		07/06/2023 01:45	WG2089887				

Page 54 of 97

Wet Chemistry by Method 9056A

L1630641-01

Method Blank (MB)

(MB) R3948339-1 07/12/23	3 09:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

²Tc

L1630515-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1630515-02 07/12/23 15:42 • (DUP) R3948339-5 07/12/23 16:33

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	14.7	14.5	5	1.56		15

L1630537-05 Original Sample (OS) • Duplicate (DUP)

(OS) L1630537-05 07/12/23 19:56 • (DUP) R3948339-6 07/12/23 20:13

(03) 11030337-03 07/12/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	61.9	62.3	1	0.782		15

Laboratory Control Sample (LCS)

(LCS) R3948339-2 07/12/23 09:31

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.4	98.5	80.0-120	

L1630515-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1630515-02 07/12/23 15:42 • (MS) R3948339-3 07/12/23 15:59 • (MSD) R3948339-4 07/12/23 16:16

, ,	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	250	14.7	269	263	102	99.4	5	80.0-120			2.13	15

L1630537-05 Original Sample (OS) • Matrix Spike (MS)

(OS) L1630537-05 07/12/23 19:56 • (MS) R3948339-7 07/12/23 20:30

(OS) L1630537-05 07/12/2	Spike Amount			MS Rec.	Dilution	Rec. Limits
Analyte	mg/l	mg/l	mg/l	%		%
Chloride	50.0	61.9	111	98.0	1	80.0-120

Page 55 of 97

Wet Chemistry by Method 9056A

L1630641-02,03,05

Method Blank (MB)

(MB) R3948112-1 07/12/23 22:46						
		MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte		mg/l		mg/l	mg/l	
Chloride		0.431	<u>J</u>	0.379	1.00	

³Ss

L1630688-01 Original Sample (OS) • Duplicate (DUP)

(,	Original Result	•		DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	102	95.9	1	6.33		15

⁶Qc

L1630883-32 Original Sample (OS) • Duplicate (DUP)

(OS) L1630883-32 07/13/23 04:48 • (DUP) R3948112-6 07/13/23 05:01

(00)) L103U003-32 U//13/2.	Original Result	,			DUP Qualifier	DUP RPD Limits
Anal	yte	mg/l	mg/l		%		%
Chlo	ride	6.84	7.09	1	3.68		15

⁹Sc

Laboratory Control Sample (LCS)

(LCS) R3948112-2 07/12/23 22:58

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.4	98.5	80.0-120	

L1630688-01 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1630688-01 07/12/23 23:52 •	• (MS) R3948112-3 07/13/23 00:06 •	• (MSD) R3948112-4 07/13/23 00:19
-----------------------------------	------------------------------------	-----------------------------------

(03) 11030000 01 07/12/23	3 23.32 - (1413) 1	(3340112 3 07	/15/25 00.00	(IVISB) 1(55-1611	2 + 0//15/25 0	00.15						
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	50.0	102	149	148	93.6	92.5	1	80.0-120			0.361	15

L1630883-32 Original Sample (OS) • Matrix Spike (MS)

(US) LIBSU003-32 U7/13/2	23 04.40 • (1013)	K394011Z-7 U7	//13/23 05.15				
	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	50.0	6.84	57.6	102	1	80.0-120	

Page 56 of 97

Volatile Organic Compounds (GC/MS) by Method 8260B

L1630641-01,02,03,05,07

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R3945567-3 07/05/	23 22:01						
	MB Result	MB Qualifier	MB MDL	MB RDL			
Analyte	mg/l		mg/l	mg/l			
Benzene	U		0.0000941	0.00100			
Toluene	U		0.000278	0.00100			
Ethylbenzene	U		0.000137	0.00100			
Total Xylenes	U		0.000174	0.00300			
(S) Toluene-d8	102			80.0-120			
(S) 4-Bromofluorobenzene	85.6			77.0-126			
(S) 1,2-Dichloroethane-d4	108			70.0-130			

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

105

107

(LCS) R3945567-1 07/05/23 20:12 • (LCSD) R3945567-2 07/05/23 20:34

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00500	0.00451	100	90.2	70.0-123			10.3	20	
Toluene	0.00500	0.00482	0.00452	96.4	90.4	79.0-120			6.42	20	
Ethylbenzene	0.00500	0.00446	0.00414	89.2	82.8	79.0-123			7.44	20	
Total Xylenes	0.0150	0.0132	0.0122	88.0	81.3	79.0-123			7.87	20	
(S) Toluene-d8				96.3	99.1	80.0-120					
(S) 4-Bromofluorobenzene				86.4	88.6	77.0-126					

70.0-130

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

Appleviations and	a Delinitions
MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the result reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
O 1: C	B contract to the contract to

Qualifier Description

The identification of the analyte is acceptable; the reported value is an estimate.

DATE/TIME:

07/14/23 10:26

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Members OP Devin Piedimonte (responsible)	T. T	R2/R3/R4/RX/EX
Piedimonte (responsible) arification needed custody is incomplete secify Metals requested secify TCLP requested additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: C: Date/Time: C: Tracking #: Cormed by Coll Sormed by Coll Sormed by Woicemail se: Intact: Intact: Intact: Tracking #: Tr	Time estimate: oh Time spent: oh	Grouping date: 5 July 2023
Piedimonte (responsible) arification needed custody is incomplete ecify Metals requested aecify TCLP requested additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: : Tacking #: : Tracking #: : Tracking #: : Tracking #: : arification or mether or the containers of the conta	Members	
arification needed custody is incomplete secify Metals requested additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: C: Date/Time: C: Tracking #: ormed by Email ormed by Woicemail ne: Is: Intact: Intact: Intact: Intact: Interced by Woicemail Interced		
ecify Metals requested secify TCLP requested additional samples not listed on COC Ds on containers do not match IDs on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: C: Date/Time: C: Tracking #: Cormed by call ormed by Email ormed by Voicemail ne: Is: Intact: Intact: Intact: Interce came in with melted ice. Temp was at 10.0 c Done Interce came in with mached ice. Temp was at 10.0 c Intercent came in with melted ice. Temp was at 10.0 c Intercent came in with melted ice. Temp was at 10.0 c Intercent came in with melted ice. Temp was at 10.0 c	V Login Clarification needed	
becify Metals requested additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: : Date/Time: : Tracking #: : Ormed by Cont. Rec./pH: : Carrier: : Tracking #: iormed by Voicemail ormed by Voicemail le: limonte er came in with melted ice. Temp was at 10.0 c seed with running samples.	Chain of custody is incomplete	
eecify TCLP requested additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: C: Date/Time: C: Tracking #: Ormed by call Ormed by Email Ormed by Voicemail is: It: Intact: Inta	Please specify Metals requested	
additional samples not listed on COC Ds on containers do not match IDs on COC d not "X" analysis Custody is missing C: Received by: C: Date/Time: C: Temp./Cont.Rec./pH: C: Tracking #: Cormed by Email Cormed by Email Cormed by Voicemail He: Himonte er came in with melted ice. Temp was at 10.0 c non ceed with running samples.	Please specify TCLP requested	
d not "X" analysis Custody is missing C: Received by: C: Received by: C: Temp,/Cont.Rec./pH: C: Carrier: C: Tracking #: Cormed by Voicemail iormed by Voicemail intact: Is: Intact: Intact:	Received additional samples not listed on COC	
Custody is missing Custody is missing C: Received by: C: Date/Time: C: Carrier: C: Carrier	Client did not "X" analysis	
C: Received by: C: Date/Time: C: Temp./Cont.Rec./pH: C: Carrier: C: Tracking #: Cormed by Email Cormed by Usicemail Re: Is: Intact: I	Chain of Custody is missing	
C: Date/Time: C: Temp./Cont.Rec./pH: C: Carrier: C: Tracking #: Cormed by call Cormed by Woicemail in: Intact: Intact: are came in with melted ice: Temp was at 10.0 c on on on on on on on on on o	If no COC: Received by:	
C: Temp./Cont.Rec./pH: C: Carrier: C: Tracking #: Ormed by call Ormed by Voicemail Ormed by Voicemail Ie: Is: Intact:	if no COC: Date/Time:	
C: Carrier: C: Tracking #: Cormed by call Cormed by Woicemail intact: Is: Intact: In	If no COC: Temp./Cont.Rec./pH:	
ormed by call ormed by Email ormed by Voicemail ie: ls: limonte er came in with melted ice: Temp was at 10.0 c oeed with running samples.	If no COC: Carrier:	
ormed by call ormed by Email ormed by Voicemail ue: ls: limonte er came in with melted ice. Temp was at 10.0 c ored with running samples. Indonte	If no COC: Tracking #:	
ormed by Email ormed by Voicemail ne: ls: limonte er came in with melted ice. Temp was at 10.0 c oeed with running samples. limonte limonte	Client informed by call	
ormed by Voicemail ls: ls: limonte er came in with melted ice. Temp was at 10.0 c or cad with running samples. limonte	Client informed by Email	
ls: Is: Intact: Ilmonte er came in with melted ice. Temp was at 10.0 c oeed with running samples. Intonte	Client informed by Voicemail	
ntact: limonte er came in with melted ice. Temp was at 10.0 c seed with running samples. limonte	Uate/11me:	
imonte ceed with running samples.	PM initials:	
er came in with melted ice. Temp was at 10.0 c on seed with running samples. imonte	Client Contact:	
in with melted ice. Temp was at 10.0 c h running samples.	Comments	
in with melted ice. Temp was at 10.0 c	Devin Piedimonte	29 June 2023 10:52 AM
h running samples.	OOT. Cooler came in with melted ice. Temp was at 10.0 c	
h running samples.	Tony Gibson	29 June 2023 10:59 AM
	Please proceed with running samples.	
	Don'th Diodimonto	
The state of the s	Thank von! Done!	5 July 2023 6:38 Alm

Pace Analytical® ANALYTICAL REPORT

October 06, 2023

DCP Midstream - Tasman

L1661192 Sample Delivery Group:

Samples Received: 09/29/2023

Project Number: 311090017

Description: **Burton Flats Booster Station**

Report To: **Brett Dennis**

2620 W. Marland Blvd

Hobbs, NM 88240

Chris Word Entire Report Reviewed By:

Chris Ward

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received. Pace Analytical National 12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com Sc: Sample Chain of Custody

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1661192-01	5
MW-2 L1661192-02	6
MW-3 L1661192-03	7
DUPLICATE L1661192-04	8
TRIP BLANK L1661192-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	11
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

SAMPLE SUMMARY

MW-1 L1661192-01 GW			Collected by Kendon Stark	Collected date/time 09/28/23 08:26	Received da 09/29/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2143082	10	10/04/23 18:45	10/04/23 18:45	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2143705	1	10/03/23 12:08	10/03/23 12:08	JCP	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1661192-02 GW			Kendon Stark	09/28/23 08:40	09/29/23 09	:30
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2143082	100	10/04/23 19:26	10/04/23 19:26	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2143886	1	10/04/23 07:40	10/04/23 07:40	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1661192-03 GW			Kendon Stark	09/28/23 08:54	09/29/23 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2143082	10	10/04/23 19:40	10/04/23 19:40	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2143886	1	10/04/23 07:59	10/04/23 07:59	JBE	Mt. Juliet, TN
DUPLICATE L1661192-04 GW			Collected by Kendon Stark	Collected date/time 09/28/23 00:00	Received da 09/29/23 09	
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2143082	10	10/04/23 20:07	10/04/23 20:07	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2143886	1	10/04/23 08:19	10/04/23 08:19	JBE	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1661192-05 GW			Kendon Stark	09/28/23 00:00	09/29/23 09	:30
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG2143886

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

1

10/04/23 05:45

date/time

10/04/23 05:45

JBE

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

³Ss

Chris Ward Project Manager

his Word

Page 65 of 97

SAMPLE RESULTS - 01

Wet Chemistry by Method 9056A

Collected date/time: 09/28/23 08:26

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	648		3.79	10.0	10	10/04/2023 18:45	WG2143082

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.000269	<u>J</u>	0.0000941	0.00100	1	10/03/2023 12:08	WG2143705
Toluene	U		0.000278	0.00100	1	10/03/2023 12:08	WG2143705
Ethylbenzene	U		0.000137	0.00100	1	10/03/2023 12:08	WG2143705
Total Xylenes	U		0.000174	0.00300	1	10/03/2023 12:08	WG2143705
(S) Toluene-d8	93.8			80.0-120		10/03/2023 12:08	WG2143705
(S) 4-Bromofluorobenzene	93.1			77.0-126		10/03/2023 12:08	WG2143705
(S) 1,2-Dichloroethane-d4	110			70.0-130		10/03/2023 12:08	WG2143705

Page 66 of 97

SAMPLE RESULTS - 02

Wet Chemistry by Method 9056A

Collected date/time: 09/28/23 08:40

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	2320		37.9	100	100	10/04/2023 19:26	WG2143082

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	10/04/2023 07:40	WG2143886
Toluene	U		0.000278	0.00100	1	10/04/2023 07:40	WG2143886
Ethylbenzene	U		0.000137	0.00100	1	10/04/2023 07:40	WG2143886
Total Xylenes	U		0.000174	0.00300	1	10/04/2023 07:40	WG2143886
(S) Toluene-d8	94.6			80.0-120		10/04/2023 07:40	WG2143886
(S) 4-Bromofluorobenzene	95.0			77.0-126		10/04/2023 07:40	WG2143886
(S) 1 2-Dichloroethane-d4	116			70 0-130		10/04/2023 07:40	WG2143886

Page 67 of 97

SAMPLE RESULTS - 03

Collected date/time: 09/28/23 08:54 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	414		3.79	10.0	10	10/04/2023 19:40	WG2143082

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00115		0.0000941	0.00100	1	10/04/2023 07:59	WG2143886
Toluene	0.00111		0.000278	0.00100	1	10/04/2023 07:59	WG2143886
Ethylbenzene	0.000269	J	0.000137	0.00100	1	10/04/2023 07:59	WG2143886
Total Xylenes	0.000948	J	0.000174	0.00300	1	10/04/2023 07:59	WG2143886
(S) Toluene-d8	96.4			80.0-120		10/04/2023 07:59	WG2143886
(S) 4-Bromofluorobenzene	98.7			77.0-126		10/04/2023 07:59	WG2143886
(S) 1,2-Dichloroethane-d4	119			70.0-130		10/04/2023 07:59	WG2143886

Page 68 of 97

SAMPLE RESULTS - 04

Wet Chemistry by Method 9056A

Collected date/time: 09/28/23 00:00

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	788		3.79	10.0	10	10/04/2023 20:07	WG2143082

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	10/04/2023 08:19	WG2143886
Toluene	U		0.000278	0.00100	1	10/04/2023 08:19	WG2143886
Ethylbenzene	U		0.000137	0.00100	1	10/04/2023 08:19	WG2143886
Total Xylenes	U		0.000174	0.00300	1	10/04/2023 08:19	WG2143886
(S) Toluene-d8	97.1			80.0-120		10/04/2023 08:19	WG2143886
(S) 4-Bromofluorobenzene	95.1			77.0-126		10/04/2023 08:19	WG2143886
(S) 1,2-Dichloroethane-d4	123			70.0-130		10/04/2023 08:19	WG2143886

Collected date/time: 09/28/23 00:00

Page 69 of 97

SAMPLE RESULTS - 05

L166119

- Volatile Organic O	ompound	35 (50/11/10)	by meanor	u 0200B			
	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	10/04/2023 05:45	WG2143886
Toluene	U		0.000278	0.00100	1	10/04/2023 05:45	WG2143886
Ethylbenzene	U		0.000137	0.00100	1	10/04/2023 05:45	WG2143886
Total Xylenes	U		0.000174	0.00300	1	10/04/2023 05:45	WG2143886
(S) Toluene-d8	96.1			80.0-120		10/04/2023 05:45	WG2143886
(S) 4-Bromofluorobenzene	94.4			77.0-126		10/04/2023 05:45	WG2143886
(S) 1,2-Dichloroethane-d4	124			70.0-130		10/04/2023 05:45	WG2143886

Page 70 of 97

Wet Chemistry by Method 9056A

L1661192-01,02,03,04

Method Blank (MB)

(MB) R3982209-1 10/04/2	3 09:14			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l

L1661163-02 Original Sample (OS) • Duplicate (DUP)

(OS) L1661163-02 10/04/23 14:11 • (DUP) R3982209-3 10/04/23 14:24

(,						
	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	12.7	12.9	1	1.66		15

L1661328-01 Original Sample (OS) • Duplicate (DUP)

(OS) L1661328-01 10/04/23 21:16 • (DLIP) R3982209-6 10/04/23 21:30

(03) [1001320-01 10/04/2	Original Result			DUP RPD	DUP Qualifier	DUP RPD Limits
Analyte	mg/l	mg/l		%		%
Chloride	18.8	18.9	1	0.284		15

Laboratory Control Sample (LCS)

(LCS) R3982209-2 10/04/23 09:28

	Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
Analyte	mg/l	mg/l	%	%	
Chloride	40.0	39.3	98.2	80.0-120	

L1661163-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1661163-02 10/04/23 14:11 • (MS) R3982209-4 10/04/23 14:38 • (MSD) R3982209-5 10/04/23 15:19

(03) 11001103-02 10/1	34/23 14.11 ° (IVIS) INS	302203-4 10/	07/23 17.30 •	(IVISD) 1(33022	03-3 10/0-/2	5 15.15							
	Spike Amount	Original Result	MS Result	MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%	
Chloride	40.0	12.7	49.7	50.4	92.5	94.2	1	80.0-120			1.36	15	

L1661328-01 Original Sample (OS) • Matrix Spike (MS)

(OS) L1661328-01 10/04/23 21:10	• (MS) R3982209-7	10/04/23 21:43
---------------------------------	-------------------	----------------

	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	18.8	53.1	85.6	1	80.0-120	

Volatile Organic Compounds (GC/MS) by Method 8260B

91.6

115

QUALITY CONTROL SUMMARY

Page 71 of 97

L1661192-01

Method Blank (MB)

Toluene

Ethylbenzene

Total Xylenes

(S) Toluene-d8

(S) 4-Bromofluorobenzene

(S) 1,2-Dichloroethane-d4

	,			
(MB) R3982592-3 10/0	03/23 07:32			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100

0.000278 0.00100 U 0.000137 0.00100 U 0.000174 0.00300 93.4 80.0-120

[†]Cn

Ss

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

77.0-126

70.0-130

(LCS) R3982592-1 10/03/23 06:30 • (LCSD) R3982592-2 10/03/23 06:51

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%
Benzene	0.00500	0.00562	0.00562	112	112	70.0-123			0.000	20
Toluene	0.00500	0.00507	0.00507	101	101	79.0-120			0.000	20
Ethylbenzene	0.00500	0.00421	0.00422	84.2	84.4	79.0-123			0.237	20
Total Xylenes	0.0150	0.0125	0.0124	83.3	82.7	79.0-123			0.803	20

GI

Sc

Page 72 of 97

Volatile Organic Compounds (GC/MS) by Method 8260B

L1661192-02,03,04,05

Method Blank (MB)

(MB) R3982334-3 10/04/2	23 05:26				
	MB Result	MB Qualifier	MB MDL	MB RDL	
Analyte	mg/l		mg/l	mg/l	
Benzene	U		0.0000941	0.00100	
Toluene	U		0.000278	0.00100	
Ethylbenzene	U		0.000137	0.00100	
Total Xylenes	U		0.000174	0.00300	
(S) Toluene-d8	94.4			80.0-120	
(S) 4-Bromofluorobenzene	97.6			77.0-126	
(S) 1,2-Dichloroethane-d4	126			70.0-130	

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

(LCS) R3982334-1 10/04/23 04:28 • (LCSD) R3982334	-2	10/04/23 04:4/
---	----	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00498	0.00482	99.6	96.4	70.0-123			3.27	20	
Toluene	0.00500	0.00467	0.00439	93.4	87.8	79.0-120			6.18	20	
Ethylbenzene	0.00500	0.00461	0.00421	92.2	84.2	79.0-123			9.07	20	
Total Xylenes	0.0150	0.0143	0.0133	95.3	88.7	79.0-123			7.25	20	
(S) Toluene-d8				96.1	95.4	80.0-120					
(S) 4-Bromofluorobenzene				102	101	77.0-126					
(S) 1,2-Dichloroethane-d4				121	121	70.0-130					

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resure ported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.

Qualifier Description

J

The identification of the analyte is acceptable; the reported value is an estimate.

Pace Analytical National	12065 Lebanon Rd Mount Juliet,	TN 37122
race Analytical National	12005 Lebanon Ru Mount Junet,	111 3/122

Alabama 40660	Nebraska	NE-OS-15-05
Alaska 17-026	Nevada	TN000032021-1
Arizona AZ0612	New Hampshire	2975
Arkansas 88-0469	New Jersey-NELAP	TN002
California 2932	New Mexico ¹	TN00003
Colorado TN00003	New York	11742
Connecticut PH-0197	North Carolina	Env375
Florida E87487	North Carolina ¹	DW21704
Georgia NELAP	North Carolina ³	41
Georgia ¹ 923	North Dakota	R-140
ldaho TN00003	Ohio-VAP	CL0069
Illinois 200008	Oklahoma	9915
Indiana C-TN-01	Oregon	TN200002
lowa 364	Pennsylvania	68-02979
Kansas E-10277	Rhode Island	LAO00356
Kentucky ^{1 6} KY90010	South Carolina	84004002
Kentucky ² 16	South Dakota	n/a
ouisiana Al30792	Tennessee 1 4	2006
ouisiana LA018	Texas	T104704245-20-18
Maine TN00003	Texas ⁵	LAB0152
Maryland 324	Utah	TN000032021-11
Massachusetts M-TN003	Vermont	VT2006
Michigan 9958	Virginia	110033
Minnesota 047-999-395	Washington	C847
Mississippi TN00003	West Virginia	233
Missouri 340	Wisconsin	998093910
Montana CERT0086	Wyoming	A2LA
A2LA – ISO 17025 1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA – ISO 17025 ⁵ 1461.02	DOD	1461.01
Canada 1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Company Name/Address:		Billing Information: Analysis / Container / Preservative							Chain of Custody	y Page of						
DCP Midstream - Tasn	nan		Steve W			Pres Chk									1	,
2620 W. Marland Blvd				St, Ste 2500	l	Clik									- /Pa	ace.
Hobbs, NM 88240			Denver,	CO 80202											PEOPLE	ADVANCING SCIENCE
Report to:			Email To: knorman@tasman- geo.com;swweathers@dcpmidstream.com;jwat												MT JU	JLIET, TN
Brett Dennis				wweathers@dcp											Submitting a sample vi	
Project Description: Burton Flats Booster Station		City/State Collected:			Please Circ										Pace Terms and Condit https://info.pacelabs.c terms.pdf	clons found at: om/hubfs/pas-standard-
Phone: 720-218-4003	Client Project	#		Lab Project # DCPTASMA	N-BURTONFI	LAT	oPres	D C	40mlAmb-HCI-BIk						cnc# 16	059
Collected by (print): Kendon Stark	Site/Facility ID)#		P.O. # 0000661900)		250mIHDPE-NoPres	V8260BTEX 40mlAmb-HCl	Amb-H						Acctnum: DCF	PTASMAN
Collected by (signature):		(Lab MUST Be Notified) e Day Five Day		Quote #			OmlHi	40ml	40ml						Template: T12 Prelogin: P10	
Immediately Packed on Ice N Y	Next Da Two Day Three Day		(Rad Only) ay (Rad Only)	Date Resu	lts Needed	No. of		ЭВТЕХ	V8260BTEX						PM: 824 - Chri	7-7-23
Sample ID	Comp/Grab	Matrix *	Depth	Date	Time	Cntrs	Chloride	/826(/826(Shipped Via: F	Sample # (lab only)
MW-1	6,00	GW	NA	9.28,23	08:26	4	X	X								50
MW-2	(seal)	GW	MA	9.28.2	308:40	4	X	X								-07
MW-3	6,000	GW	NA	NES ESCURIORISMONISMONISMONISMONISMONISMONISMONISMON	3 08:54	4	X	X								-03
MW-4		GW				4	X	X								
DUPLICATE	Gras	GW	NA	9.28.23	3 -	4	х	Х								-04
		GW				4	X	X								
TRIP BLANK		GW				3			X							-05
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater	Remarks:									pH	Tem		C	OC Seal I OC Signed ottles as	ple Receipt Cheresent/Intact d/Accurate: crive intact: ottles used:	necklist NP Y N N N N N N N N
DW - Drinking Water OT - Other	Samples returned UPS FedEx			Track	ting# 67	33	7 2	225	00	9031	0		V	DA Zero I	volume sent: If Applicab Headspace:	YN
Relinquished by : (Signature)		te:	Time	Rece	ived by: (Signatu	ure)				Trip Blank R	eceived: \	es / No HCL / Meol TBR	R		ion Correct/Chan <0.5 mR/hr:	ecked: X _N
Relinquished by : (Signature)	Da	ite:	Time	: Rece	ived by: (Signatu	ure)				Temp:CCA	-8°C Bot	tles Received	i: If	preservati	on required by Lo	gin: Date/Time
Relinquished by : (Signature)	Da	ite:	Time	: Rece	ived for lab by: ((Signat	ture)	,11	00	Date:	Tin 123	ne:		old:		Condition: NCF / OK

Pace Analytical® ANALYTICAL REPORT

December 26, 2023

DCP Midstream - Tasman

Sample Delivery Group:

L1688211

Samples Received:

12/14/2023

Project Number:

311090017

Description:

Burton Flats Booster Station

Report To:

Brett Dennis

2620 W. Marland Blvd

Hobbs, NM 88240

Ss

Entire Report Reviewed By:

Chris Word

Chris Ward

Project Manager Results relate only to the items tested or calibrated and are reported as rounded values. This test report shall not be reproduced, except in full, without written approval of the laboratory. Where applicable, sampling conducted by Pace Analytical National is performed per guidance provided in laboratory standard operating procedures ENV-SOP-MTJL-0067 and ENV-SOP-MTJL-0068. Where sampling conducted by the customer, results relate to the accuracy of the information provided, and as the samples are received.

12065 Lebanon Rd Mount Juliet, TN 37122 615-758-5858 800-767-5859 www.pacenational.com

Cp: Cover Page	1
Tc: Table of Contents	2
Ss: Sample Summary	3
Cn: Case Narrative	4
Sr: Sample Results	5
MW-1 L1688211-01	5
MW-2 L1688211-02	6
MW-3 L1688211-03	7
DUPLICATE L1688211-04	8
TRIP BLANK L1688211-05	9
Qc: Quality Control Summary	10
Wet Chemistry by Method 9056A	10
Volatile Organic Compounds (GC/MS) by Method 8260B	12
GI: Glossary of Terms	13
Al: Accreditations & Locations	14
Sc: Sample Chain of Custody	15

Ss

SAMPLE SUMMARY

			Collected by	Collected date/time	Received da	te/time
MW-1 L1688211-01 GW			Kendon Stark	12/13/23 08:56	12/14/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2193742	10	12/21/23 15:49	12/21/23 15:49	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2191754	1	12/19/23 10:31	12/19/23 10:31	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-2 L1688211-02 GW			Kendon Stark	12/13/23 09:14	12/14/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2193742	20	12/21/23 16:17	12/21/23 16:17	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2191754	1	12/19/23 10:52	12/19/23 10:52	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
MW-3 L1688211-03 GW			Kendon Stark	12/13/23 09:23	12/14/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location
			date/time	date/time		
Wet Chemistry by Method 9056A	WG2193742	5	12/21/23 16:27	12/21/23 16:27	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2191754	1	12/19/23 11:12	12/19/23 11:12	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
DUPLICATE L1688211-04 GW			Kendon Stark	12/13/23 00:00	12/14/23 09:	00
Method	Batch	Dilution	Preparation date/time	Analysis date/time	Analyst	Location
Wet Chemistry by Method 9056A	WG2193742	10	12/21/23 16:37	12/21/23 16:37	GEB	Mt. Juliet, TN
Volatile Organic Compounds (GC/MS) by Method 8260B	WG2191754	1	12/19/23 11:33	12/19/23 11:33	DYW	Mt. Juliet, TN
			Collected by	Collected date/time	Received da	te/time
TRIP BLANK L1688211-05 GW			Kendon Stark	12/13/23 13:11	12/14/23 09:	00
Method	Batch	Dilution	Preparation	Analysis	Analyst	Location

WG2191754

Volatile Organic Compounds (GC/MS) by Method 8260B

date/time

12/19/23 05:11

date/time

12/19/23 05:11

DYW

Mt. Juliet, TN

All sample aliquots were received at the correct temperature, in the proper containers, with the appropriate preservatives, and within method specified holding times, unless qualified or notated within the report. Where applicable, all MDL (LOD) and RDL (LOQ) values reported for environmental samples have been corrected for the dilution factor used in the analysis. All Method and Batch Quality Control are within established criteria except where addressed in this case narrative, a non-conformance form or properly qualified within the sample results. By my digital signature below, I affirm to the best of my knowledge, all problems/anomalies observed by the laboratory as having the potential to affect the quality of the data have been identified by the laboratory, and no information or data have been knowingly withheld that would affect the quality of the data.

Chris Ward Project Manager

his Word

Page 80 of 97

SAMPLE RESULTS - 01

Collected date/time: 12/13/23 08:56 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	732		3.79	10.0	10	12/21/2023 15:49	WG2193742

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00836		0.0000941	0.00100	1	12/19/2023 10:31	WG2191754
Toluene	U		0.000278	0.00100	1	12/19/2023 10:31	WG2191754
Ethylbenzene	0.000374	<u>J</u>	0.000137	0.00100	1	12/19/2023 10:31	WG2191754
Total Xylenes	U		0.000174	0.00300	1	12/19/2023 10:31	WG2191754
(S) Toluene-d8	108			80.0-120		12/19/2023 10:31	WG2191754
(S) 4-Bromofluorobenzene	90.0			77.0-126		12/19/2023 10:31	WG2191754
(S) 1,2-Dichloroethane-d4	111			70.0-130		12/19/2023 10:31	WG2191754

Page 81 of 97

SAMPLE RESULTS - 02

Collected date/time: 12/13/23 09:14 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	2220		7.58	20.0	20	12/21/2023 16:17	WG2193742

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	12/19/2023 10:52	WG2191754
Toluene	U		0.000278	0.00100	1	12/19/2023 10:52	WG2191754
Ethylbenzene	U		0.000137	0.00100	1	12/19/2023 10:52	WG2191754
Total Xylenes	U		0.000174	0.00300	1	12/19/2023 10:52	WG2191754
(S) Toluene-d8	111			80.0-120		12/19/2023 10:52	WG2191754
(S) 4-Bromofluorobenzene	85.6			77.0-126		12/19/2023 10:52	WG2191754
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/19/2023 10:52	WG2191754

Page 82 of 97

SAMPLE RESULTS - 03

Wet Chemistry by Method 9056A

Collected date/time: 12/13/23 09:23

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	474		1.90	5.00	5	12/21/2023 16:27	WG2193742

Ss

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	12/19/2023 11:12	WG2191754
Toluene	U		0.000278	0.00100	1	12/19/2023 11:12	WG2191754
Ethylbenzene	U		0.000137	0.00100	1	12/19/2023 11:12	WG2191754
Total Xylenes	U		0.000174	0.00300	1	12/19/2023 11:12	WG2191754
(S) Toluene-d8	108			80.0-120		12/19/2023 11:12	WG2191754
(S) 4-Bromofluorobenzene	85.8			77.0-126		12/19/2023 11:12	WG2191754
(S) 1,2-Dichloroethane-d4	113			70.0-130		12/19/2023 11:12	WG2191754

Page 83 of 97

SAMPLE RESULTS - 04

Collected date/time: 12/13/23 00:00 Wet Chemistry by Method 9056A

	Result	Qualifier	MDL	RDL	Dilution	Analysis	Batch
Analyte	mg/l		mg/l	mg/l		date / time	
Chloride	727		3.79	10.0	10	12/21/2023 16:37	WG2193742

Volatile Organic Compounds (GC/MS) by Method 8260B

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	0.00519		0.0000941	0.00100	1	12/19/2023 11:33	WG2191754
Toluene	U		0.000278	0.00100	1	12/19/2023 11:33	WG2191754
Ethylbenzene	0.000261	J	0.000137	0.00100	1	12/19/2023 11:33	WG2191754
Total Xylenes	U		0.000174	0.00300	1	12/19/2023 11:33	WG2191754
(S) Toluene-d8	108			80.0-120		12/19/2023 11:33	WG2191754
(S) 4-Bromofluorobenzene	91.4			77.0-126		12/19/2023 11:33	WG2191754
(S) 1,2-Dichloroethane-d4	110			70.0-130		12/19/2023 11:33	WG2191754

Ss

Page 84 of 97

SAMPLE RESULTS - 05

Collected date/time: 12/13/23 13:11

L1688211

	Result	Qualifier	MDL	RDL	Dilution	Analysis	<u>Batch</u>
Analyte	mg/l		mg/l	mg/l		date / time	
Benzene	U		0.0000941	0.00100	1	12/19/2023 05:11	WG2191754
Toluene	U		0.000278	0.00100	1	12/19/2023 05:11	WG2191754
Ethylbenzene	U		0.000137	0.00100	1	12/19/2023 05:11	WG2191754
Total Xylenes	U		0.000174	0.00300	1	12/19/2023 05:11	WG2191754
(S) Toluene-d8	111			80.0-120		12/19/2023 05:11	WG2191754
(S) 4-Bromofluorobenzene	89.7			77.0-126		12/19/2023 05:11	WG2191754
(S) 1,2-Dichloroethane-d4	108			70.0-130		12/19/2023 05:11	WG2191754

QUALITY CONTROL SUMMARY

Page 85 of 97

Wet Chemistry by Method 9056A

L1688211-01,02,03,04

Method Blank (MB)

(MB) R4016105-1 12/21/23 11:13

,	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Chloride	U		0.379	1.00

L1687505-02 Original Sample (OS) • Duplicate (DUP)

	Original Result	DUP Result	Dilution	DUP RPD	DUP Qualifier	DUP RPD Limits	
Analyte	mg/l	mg/l		%		%	
Chloride	11.5	11.4	1	0.333		15	

[†]Cn

L1688320-03 Original Sample (OS) • Duplicate (DUP)

(OS) | 1600220 02 12/21/22 16:56 . (DLID) DA016105 6 12/21/22 17:05

(JS) L108832U-U3 12/21/23	Original Result				DUP Qualifier	DUP RPD Limits
Α	nalyte	mg/l	mg/l		%		%
С	nloride	49.3	49.2	1	0.138		15

Laboratory Control Sample (LCS)

(LCS) R4016105-2 12/21/23 11:22

,	/					
		Spike Amount	LCS Result	LCS Rec.	Rec. Limits	LCS Qualifier
ļ	Analyte	mg/l	mg/l	%	%	
(Chloride	40.0	40.6	102	80.0-120	

L1687505-02 Original Sample (OS) • Matrix Spike (MS) • Matrix Spike Duplicate (MSD)

(OS) L1687505-02 12/21/23 12:58 • (MS) R4016105-4 12/21/23 13:17 • (MSD) R4016105-5 12/21/23 13:26

(11)		Original Result		MSD Result	MS Rec.	MSD Rec.	Dilution	Rec. Limits	MS Qualifier	MSD Qualifier	RPD	RPD Limits
Analyte	mg/l	mg/l	mg/l	mg/l	%	%		%			%	%
Chloride	40.0	11.5	49.8	49.1	95.9	94.1	1	80.0-120			1.44	15

L1688320-03 Original Sample (OS) • Matrix Spike (MS)

, ,	Spike Amount	Original Result	MS Result	MS Rec.	Dilution	Rec. Limits	MS Qualifier
Analyte	mg/l	mg/l	mg/l	%		%	
Chloride	40.0	49.3	79.4	75.2	1	80.0-120	<u>J6</u>

QUALITY CONTROL SUMMARY

Page 86 of 97

Wet Chemistry by Method 9056A

L1688211-01,02,03,04

L1688320-03 Original Sample (OS) • Matrix Spike (MS)

(OS) L1688320-03 12/21/23 16:56 • (MS) R4016105-7 12/21/23 17:15

Spike Amount Original Result MS Result MS Rec. Dilution Rec. Limits MS Qualifier mg/l mg/l % %

²Tc

Sample Narrative:

Analyte

MS: [spike failed due to sample matrix]

QUALITY CONTROL SUMMARY

Page 87 of 97

Volatile Organic Compounds (GC/MS) by Method 8260B

L1688211-01,02,03,04,05

Method Blank (MB)

(S) 1,2-Dichloroethane-d4

(MB) R4015024-3 12/19/23	3 04:30			
	MB Result	MB Qualifier	MB MDL	MB RDL
Analyte	mg/l		mg/l	mg/l
Benzene	U		0.0000941	0.00100
Toluene	U		0.000278	0.00100
Ethylbenzene	U		0.000137	0.00100
Total Xylenes	U		0.000174	0.00300
(S) Toluene-d8	110			80.0-120
(S) 4-Bromofluorobenzene	88.1			77.0-126
(S) 1,2-Dichloroethane-d4	108			70.0-130

Laboratory Control Sample (LCS) • Laboratory Control Sample Duplicate (LCSD)

106

103

(LCS) R4015024-1 12/19/23 03:28	• (LCSD) R4015024-2	12/19/23 03:48
---------------------------------	---------------------	----------------

	Spike Amount	LCS Result	LCSD Result	LCS Rec.	LCSD Rec.	Rec. Limits	LCS Qualifier	LCSD Qualifier	RPD	RPD Limits	
Analyte	mg/l	mg/l	mg/l	%	%	%			%	%	
Benzene	0.00500	0.00531	0.00538	106	108	70.0-123			1.31	20	
Toluene	0.00500	0.00503	0.00519	101	104	79.0-120			3.13	20	
Ethylbenzene	0.00500	0.00503	0.00533	101	107	79.0-123			5.79	20	
Total Xylenes	0.0150	0.0143	0.0153	95.3	102	79.0-123			6.76	20	
(S) Toluene-d8				109	109	80.0-120					
(S) 4-Bromofluorobenzene				95.1	95.3	77.0-126					

70.0-130

Guide to Reading and Understanding Your Laboratory Report

The information below is designed to better explain the various terms used in your report of analytical results from the Laboratory. This is not intended as a comprehensive explanation, and if you have additional questions please contact your project representative.

Results Disclaimer - Information that may be provided by the customer, and contained within this report, include Permit Limits, Project Name, Sample ID, Sample Matrix, Sample Preservation, Field Blanks, Field Spikes, Field Duplicates, On-Site Data, Sampling Collection Dates/Times, and Sampling Location. Results relate to the accuracy of this information provided, and as the samples are received.

Abbreviations and Definitions

MDL	Method Detection Limit.
RDL	Reported Detection Limit.
Rec.	Recovery.
RPD	Relative Percent Difference.
SDG	Sample Delivery Group.
(S)	Surrogate (Surrogate Standard) - Analytes added to every blank, sample, Laboratory Control Sample/Duplicate and Matrix Spike/Duplicate; used to evaluate analytical efficiency by measuring recovery. Surrogates are not expected to be detected in all environmental media.
U	Not detected at the Reporting Limit (or MDL where applicable).
Analyte	The name of the particular compound or analysis performed. Some Analyses and Methods will have multiple analytes reported.
Dilution	If the sample matrix contains an interfering material, the sample preparation volume or weight values differ from the standard, or if concentrations of analytes in the sample are higher than the highest limit of concentration that the laboratory can accurately report, the sample may be diluted for analysis. If a value different than 1 is used in this field, the result reported has already been corrected for this factor.
Limits	These are the target % recovery ranges or % difference value that the laboratory has historically determined as normal for the method and analyte being reported. Successful QC Sample analysis will target all analytes recovered or duplicated within these ranges.
Original Sample	The non-spiked sample in the prep batch used to determine the Relative Percent Difference (RPD) from a quality control sample. The Original Sample may not be included within the reported SDG.
Qualifier	This column provides a letter and/or number designation that corresponds to additional information concerning the resu reported. If a Qualifier is present, a definition per Qualifier is provided within the Glossary and Definitions page and potentially a discussion of possible implications of the Qualifier in the Case Narrative if applicable.
Result	The actual analytical final result (corrected for any sample specific characteristics) reported for your sample. If there was no measurable result returned for a specific analyte, the result in this column may state "ND" (Not Detected) or "BDL" (Below Detectable Levels). The information in the results column should always be accompanied by either an MDL (Method Detection Limit) or RDL (Reporting Detection Limit) that defines the lowest value that the laboratory could detect or report for this analyte.
Uncertainty (Radiochemistry)	Confidence level of 2 sigma.
Case Narrative (Cn)	A brief discussion about the included sample results, including a discussion of any non-conformances to protocol observed either at sample receipt by the laboratory from the field or during the analytical process. If present, there will be a section in the Case Narrative to discuss the meaning of any data qualifiers used in the report.
Quality Control Summary (Qc)	This section of the report includes the results of the laboratory quality control analyses required by procedure or analytical methods to assist in evaluating the validity of the results reported for your samples. These analyses are not being performed on your samples typically, but on laboratory generated material.
Sample Chain of Custody (Sc)	This is the document created in the field when your samples were initially collected. This is used to verify the time and date of collection, the person collecting the samples, and the analyses that the laboratory is requested to perform. This chain of custody also documents all persons (excluding commercial shippers) that have had control or possession of the samples from the time of collection until delivery to the laboratory for analysis.
Sample Results (Sr)	This section of your report will provide the results of all testing performed on your samples. These results are provided by sample ID and are separated by the analyses performed on each sample. The header line of each analysis section for each sample will provide the name and method number for the analysis reported.
Sample Summary (Ss)	This section of the Analytical Report defines the specific analyses performed for each sample ID, including the dates and times of preparation and/or analysis.
Qualifier	Description

	·
J	The identification of the analyte is acceptable; the reported value is an estimate.
J6	The sample matrix interfered with the ability to make any accurate determination; spike value is low.

Pace Analy	utical National	12065 Lebanon	Rd Mount Julia	t TN 37122
race Allai	yticai Nationai		i Ku Mourit Julie	l, IIN 3/122

Alabama	40660	Nebraska	NE-OS-15-05
Alaska	17-026	Nevada	TN000032021-1
Arizona	AZ0612	New Hampshire	2975
Arkansas	88-0469	New Jersey-NELAP	TN002
California	2932	New Mexico ¹	TN00003
Colorado	TN00003	New York	11742
Connecticut	PH-0197	North Carolina	Env375
Florida	E87487	North Carolina 1	DW21704
Georgia	NELAP	North Carolina ³	41
Georgia ¹	923	North Dakota	R-140
Idaho	TN00003	Ohio-VAP	CL0069
Illinois	200008	Oklahoma	9915
Indiana	C-TN-01	Oregon	TN200002
Iowa	364	Pennsylvania	68-02979
Kansas	E-10277	Rhode Island	LAO00356
Kentucky 16	KY90010	South Carolina	84004002
Kentucky ²	16	South Dakota	n/a
Louisiana	Al30792	Tennessee 1 4	2006
Louisiana	LA018	Texas	T104704245-20-18
Maine	TN00003	Texas ⁵	LAB0152
Maryland	324	Utah	TN000032021-11
Massachusetts	M-TN003	Vermont	VT2006
Michigan	9958	Virginia	110033
Minnesota	047-999-395	Washington	C847
Mississippi	TN00003	West Virginia	233
Missouri	340	Wisconsin	998093910
Montana	CERT0086	Wyoming	A2LA
A2LA – ISO 17025	1461.01	AIHA-LAP,LLC EMLAP	100789
A2LA - ISO 17025 ⁵	1461.02	DOD	1461.01
Canada	1461.01	USDA	P330-15-00234

^{*} Not all certifications held by the laboratory are applicable to the results reported in the attached report.

TN00003

EPA-Crypto

 $^{^* \, \}text{Accreditation is only applicable to the test methods specified on each scope of accreditation held by Pace Analytical.} \\$

Project Description: Collected by prints: Collected	Company Name/Address:			Billing Inf	ormation:		T			1	Analysis / Co	ntainer / P	reservative			Chain of Custod	y Page of
Section Martand Blvd Hobbs, NM 88240 Demver, Co 80202 Front Title Titl	DCP Midstream - Tas	man		C			Dress										
PRODUCTION OF STATE O																1)
PROPORTION REPORT LOS SERVICES FROM TO CONTROL STATE	2620 W. Marland Blvd					000							200000			- /P	ace.
Report to: Brett Denis Brett Denis Brett Denis Brown From Collected: CITY/State Collected: CITY/State Please Circle Progret Description: Burdon Fills Booster Station City/State Collected: CITY/State Progret Description: Burdon Fills Booster Station City/State Progret Description: Burdon Fills Booster Station City/State Progret Description: Burdon Fills Booster Station City/State Progret Berefill To City/State Progret Berefill To City/State Progret Berefill To City/State DCPTASMAN-BURTONFLAT DCPTASMAN-BURTONFLAT Burdon Fills Must's Exhibition Report 10: 10 pp. 10				Denver	, CO 80202		1									PEOPL	E ADVANCING SCIENCE
Brett Dennis Commission Co	110000) 1111 000 10																
Project Description: Surrow Flat Station City/Sate Surrow Flat Station City/Sate Surrow Flat Station Collected by Ignotted According John Station Collected by Ignotted According John Station Collected by Ignotted According John Station Size/Facility ID 8 Collected by Ignotted According John Station Collected by Ignotted According John Station Collected by Ignotted According John Matrix Collected by Ignotted Accord	Report to:			Email To:	knorman@ta	sman-				1000						MTJ	ULIET, TN
Project Description: Collected by (print):	Brett Dennis			geo.com;	Stephen.Wea	thers@p66.com;	dennis										
Button Fields Booter's Station Collected by (print): Statification (Dent Project # DOPTASMAN-BURTONFIAT Collected by (print): Sample 1D Complorab Matrix * Depth Date Time Units GW DOPTASMAN Depth Date	Project Description:		City/State	10		Please	Circle	-		1						constitutes acknowled	igment and acceptance of the
Phone: 720-218-4003 Client Project 8 Date Project 9 Date Results Needed No. 10 Date Results Needed No. 20 Date Results Nee	Burton Flats Booster Station																com/hubfs/pas-standard-
Next Day	720 219 4002	Client Pro	oject #		Lab Projec	t #		10		×							11(110)
Next Day	Phone: 720-218-4003				DCPTAS	MAN-BURTON	FLAT	Pre	G	ICI-B							225
Next Day	Collected by (print):	Site/Facil	lity ID #		P.O. #			Ž	1 7	1 7							
Next Day	Kendon Stark					.900		DPE	Amk	Am							
Next Day	Collected by (signature):	Rush	? (Lab MUST I	Be Notified)	Quote #			三	E	E						Template: T1 2	27771
Sample ID Comp/Grab Matrix* Depth Date Time Critis Grow MA 17/13 25 076156 4 X X X MW-2 GW OQ1/14 4 X X X GW OQ1/14 5 X X X GW OQ1/14 5 X X X GW OQ1/14 5 X X X GW OQ1/14 6 X X X GW OQ1/14 7 X X	Weds Host	ACTION AND SOME AND SOME OF THE PARTY OF THE						On	40	40						Prelogin: P10	38879
Sample ID Comp/Grab Matrix* Depth Date Time Critis Grow MA 17/13 25 076156 4 X X X MW-2 GW OQ1/14 4 X X X GW OQ1/14 5 X X X GW OQ1/14 5 X X X GW OQ1/14 5 X X X GW OQ1/14 6 X X X GW OQ1/14 7 X X						Results Needed		25	X	X			1999				
MW-2 GW OQ:194 4 X X MW-3 GW OQ:25 4 X X OUPLICATE GW GW GW GW GW GW GW GW GW G				Day (Nad Office			The state of the s		BT	BT						PB()	1-22-23
MW-3 MW-2 GW OQ114 A X X MW-4 GW OQ215 GW OQ215 A X X OQ316 A X X OQ316 GW OQ416 A X X OQ417 A X X OQ5 GW OQ416 A X X OQ5 GW OQ417 OQ6 OQ6 OQ6 OQ7 OQ7 OQ7 OQ7 OQ	Samuela ID	610						ori.	09	09						Shipped Via: F	edEX Ground
MW-3 MW-2 GW OQ114 A X X MW-4 GW OQ215 GW OQ215 A X X OQ316 A X X OQ316 GW OQ416 A X X OQ417 A X X OQ5 GW OQ416 A X X OQ5 GW OQ417 OQ6 OQ6 OQ6 OQ7 OQ7 OQ7 OQ7 OQ	Sample ID	Comp/G	rab Matrix	Depth	Date	Time		五	/82	/82						Remarks	Sample # (lab only)
MW-3 GW OQ.123 4 X X OUPLICATE GW GW OQ.123 4 X X OUPLICATE GW GW GW GW GW GW GW GW GW G	MW-1	Gal	GW GW	INA	12/13	23 08150	4			>							1-01
MW-3 MW-4 GW GW GW GW GW GW GW GW GW G	MW-2	1		1	171101			V	V								1-03
MW-4 OUPLCATE GW GW GW GW GW GW GW GW GW G	MW 2		GW			09:10	4	^	^				752,000				103
OUPLICATE GW GW GW GW GW GW GW GW GW G	IVIV-3		GW			00: Z	3 4	X	X								1-05
*Matrix: SS-Soil AiR-Air GW GW GW GW GW GW GW GW	MW-4		GW				4	X	X								
TRIP BLANK GW GW GW GW GW GW GW GW GW G	DUPLICATE																AL
* Matrix: SS-Soil AIR-Air F-Filter GW- Groundwater B- Bloassay WW- WasteWater DW- Drinking Water OT-Other UPS FedEx Courier Tracking # TOW 975 3558 Relinquished by : (Signature) Date: Time: Received by: (Signature) Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) PARCHING WATER AX			GW.				4	X	X	罗德岛							-07
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other UPS _ FedEx _ Courier Relinquished by : (Signature) Date: Time: Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Hold: Conditions NCF / OK)			GW	11/		/	4	X	X								
* Matrix: SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other UPS _ FedEx _ Courier Relinquished by : (Signature) Date: Time: Received by: (Signature) Received by: (Signature) Received by: (Signature) Date: Time: Hold: Conditions NCF / OK)	TRIP BLANK	10/	CW	10		17.11	1	22.50		V			150000				RC
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other			GW		4	13.11	3			^							-03
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other																	
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other																	
SS - Soil AIR - Air F - Filter GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other	* * * * * * * * * * * * * * * * * * * *	h .															
GW - Groundwater B - Bioassay WW - WasteWater DW - Drinking Water OT - Other		Remarks:									На	Ten	q	C			necklist Y N
WW - WasteWater DW - Drinking Water OT - Other UPS _ FedEx _ Courier Relinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) Relinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Hold: Condition: NCF / (OK)																	- t/_N
Samples returned via:UPSFedExCourier	ww - WasteWater										Flow	Oth	ier				Z N
Relinquished by : (Signature) Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) Date: Time: Received by: (Signature) Temp: D rag °C Bottles Received: Temp: D rag °C Bottles Received: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature)	DW - Drinking Water	Samples retur	ned via:				011	0								t volume sent:	X N
Relinquished by : (Signature) Date: Time: Received by: (Signature) Trip Blank Received: Yes/No RAD Screen <0.5 mR/hr: Ty N Relinquished by : (Signature) Date: Time: Received by: (Signature) Temp: D rAS °C Bottles Received: If preservation Correct/Checked: Ty N RAD Screen <0.5 mR/hr: Ty N RAD Screen <0.5 mR/hr: Ty N RAD Screen <0.5 mR/hr: Ty N N Received by: (Signature) Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received by: (Signature)	OT - Other			er		racking #	14	8	7010	7	358			V	OA Zero		
Relinquished by: (Signature) Date: Time: Received by: (Signature) Received by: (Signature) Temp: D rag ° C Bottles Received: 1.3 + 0 = 1.3 Received by: (Signature) Date: Time: Received for lab by: (Signature)	Relinquished by : (Signature)		Date:	Tim	e: F	Received by: (Signa	ature)				Trip Blank R	eceived:	Yes / No	P	reservat	ion Correct/Ch	ecked: Y N
Relinquished by : (Signature) Date: Time: Received by: (Signature) Temp:DrA8 °C Bottles Received: 1-3 10-1-3 Received by Login: Date/Time Received by: (Signature) Date: Time: Received for lab by: (Signature) NCF / OK)	10/1 2/1											01		4 R	AD Scree	n <0.5 mR/hr:	YN
Relinquished by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Received for lab by: (Signature) Date: Time: Date: Date: Time: NCF / OK	1				-												
alexa mitchell [2] 14123 0900 NCF / (OK)	Relinquished by : (Signature)		Date:	Tim	e: F	Received by: (Signa	ature)				Temp:DYA	8°C Bo	tties Receive	a: If	preservati	ion required by Lo	gin: Date/Time
alexa mitchell [2] 14123 0900 NCF / (OK)											1.3 to	=1.3	11	0			
1 With a Mitchell 16/14/23 0900	Relinquished by : (Signature)		Date:	Tim	e: F	Received for lab by	: (Signat	ture)		0	Date:	Tir	ne:	н	old:		
The state of the s						111140		011	. 11	, w	12/11/11	72	nan	1			NCF / (OK)
eleased to Imaging: 6/20/2024 10:49:41 AM	Released to Imaging 6/20/20	124 10-49-4	IAM			Carrol .	100	ww	WI		1717	05	0010	VI			

Appendix C

Sampling Notifications

Weathers, Stephen W
"Velez, Nelson, EMNRD"; mike.bratcher@state.nm.us
Notification of DCP 1st Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 1st Quarter 2023 groundwater sampling event during March at several DCP Midstream remediation sites.

Below is the estimated sampling schedule

1st Quarter 2023										
Date	Time (Approximate)	Location	County	Unit Letter	Section	Township	Range	Comments/NMOCD Case Number		
Tuesday, March 14-15, 2023	8:00 AM	Hobbs Booster Station	Lea	C and D	4	198	38E	AP-114/Sampling		
Thursday, March 16, 2023	8:00 AM	Burton Flats	Eddy	D	1	21S	27E	2RP-799/Sampling		
Thursday, March 16, 2023	12:00 PM	PCA Junction	Eddy	E and L	11	20S	30E	2RP-43/Sampling		
Friday, March 17, 2023	8:00 AM	Hobbs Gas Plant	Lea	G	36	185	36E	AP-122/Sampling		
Monday, March 20 - 21, 2023	8:00 AM	RR Extension	Lea	C and F	19	20S	37E	AP-55/Sampling		
Wednesday, March 22, 2023	8:00 AM	Linam Ranch	Lea	В	6	198	37E	GW-015/Sampling		

Let me know if you have any questions or concerns with the schedule. Thanks
Steve Weathers, P.G.
Environmental Specialist
DCP Midstream, LP 6900 E. Layton Avenue - Suite 900 Denver, CO 80237 Cell 303.619.3042

From: To: Subject: Attachments:

Weathers, Stephen
"Velez, Nelson, EMNRD"; mike.bratcher@state.nm.us
Notification of DCP 2nd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 2nd Quarter 2023 groundwater sampling event during June at several DCP Midstream remediation sites.

Below is the estimated sampling schedule

-		2nd Q	uarter 20	023				
Date	Time (Approximate)	Location	County	Unit Letter	Section	Township	Range	Field Activities
Monday, June 19-20, 2023	8:00 AM	Hobbs Booster Station	Lea	C and D	4	19S	38E	Sampling/O&M
Wednesday, June 21-22, 2023	8:00 AM	Lee Gas Plant	Lea	0	30	17S	35E	Sampling/O&M
Friday, June 23, 2023	8:00 AM	Hobbs Gas Plant	Lea	G	36	185	36E	Sampling
Monday, June 26, 2023	8:00 AM	RR Extension	Lea	C and F	19	20S	37E	Sampling
Tuesday, June 27, 2023	8:00 AM	Monument Booster	Lea	В	33	198	37E	Sampling
Wednesday, June 28, 2023	8:00 AM	Burton Flats	Eddy	D	1	21S	27E	Sampling/EFR
Wednesday, June 28, 2023	12:00 PM	PCA Junction	Eddy	E and L	11	20S	30E	Sampling

Let me know if you have any questions or concerns with the schedule.

Thanks

PLEASE NOTE: My email has changed to Stephen.Weathers@P66.com effective April 29, 2023. Please update my email in your contacts and address list.

Steve Weathers, P.G. Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, C0 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

 From:
 Weathers, Stephen

 To:
 Kyle Norman; Brett Dennis

Subject: FW: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

Date: Wednesday, September 6, 2023 3:21:51 PM

Attachments:

image002.png image005.png image001.jng Outlook-Imfg0ggu.png image003.jpg image004.jpg

See Nelson's comments below. We just need to let them know of any changes to the schedule. I would strictly adhere to your schedule if at all possible.

Steve Weathers, P.G.

Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, CO 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

From: Velez, Nelson, EMNRD < Nelson. Velez@emnrd.nm.gov>

Sent: Wednesday, September 6, 2023 2:19 PM
To: Weathers, Stephen < Stephen.Weathers@p66.com>
Cc: Bratcher, Michael, EMNRD < mike.bratcher@emnrd.nm.gov>

Subject: Re: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

This Message Is From an External Sender

Report Suspicious

This message came from outside your organization.

Stephen,

Thank you for the notice. If an OCD representative is not on-site on the date &/or time given, please proceed with your sampling. For whatever reason, the sample collection timeframe is altered, please notify the OCD as soon as possible so we may adjust our schedule(s). Failure to notify the OCD of the rescheduling may result in the sample(s) not being accepted.

Please keep a copy of this communication for inclusion within the appropriate reporting documentation.

Thanks again

Regards,

Nelson Velez • Environmental Specialist - Adv

Environmental Bureau | EMNRD - Oil Conservation Division

1000 Rio Brazos Road | Aztec, NM 87410

(505) 469-6146 | nelson.velez@emnrd.nm.gov

http://www.emnrd.state.nm.us/OCD/

From: Weathers, Stephen < Stephen.Weathers@p66.com>

Sent: Wednesday, September 6, 2023 1:50 PM

To: Velez, Nelson, EMNRD < Nelson. Velez@emnrd.nm.gov >; Bratcher, Michael, EMNRD < mike.bratcher@emnrd.nm.gov > Subject: [EXTERNAL] Notification of DCP 3rd Quarter 2023 Groundwater Monitoring for SENM Remediation Projects

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 3rd Quarter 2023 groundwater sampling event during September at several DCP remediation sites.

Below is the estimated sampling schedule.

3nd Quarter 2023									
Date	Time (Approximate)	Location	County	Unit Letter	Section	Township	Range	Comments/NMOCD Case Number	
Monday, September 18-19, 2023	8:00 AM	Hobbs Booster Station	Lea	C and D	4	19S	38E	AP-114/Sampling	

Wednesday, September 20, 2023	8:00 AM	Hobbs Gas Plant	Lea	G	36	18S	36E	AP-122/Sampling
Thursday, September 21, 2023	8:00 AM	RR Extension	Lea	C and F	19	20S	37E	AP-55/Sampling
Friday, September 22, 2023	8:00 AM	Linam Ranch	Lea	В	6	198	37E	GW-015/Sampling
Monday, September 25-27 2023	8:00 AM	Eldridge Ranch	Lea	Р	21	198	37E	AP-33/Sampling
Thursday, September 28, 2023	8:00 AM	Burton Flats	Eddy	D	1	21S	27E	2RP-799/Sampling

Let me know if you have any questions or concerns with the schedule.

Thanks

Steve

Steve Weathers, P.G. Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave.| Suite 900 Denver, CO 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

From: To: Cc: Subject: Date:

Weathers, Stephen
Velez, Nelson, EMNRD; Bratcher, Michael, EMNRD
Kyle Norman; Brett Dennis
Notification of DCP 4th Quarter 2023 Groundwater Monitoring for SENM Remediation Projects
Monday, November 27, 2023 8:21:23 AM

Nelson/Mike

This email is to serve as notification that Tasman will be conducting the 4th Quarter 2023 groundwater sampling event during December at several DCP remediation sites.

Below is the estimated sampling schedule.

	4th Quarter 2023										
Date	Time (Approximate)	Location	County	Unit Letter	Section	Township	Range	Comments/NMOCD Case Number			
Monday, December 4 – 5, 2023	8:00 AM	Hobbs Booster Station	Lea	C and D	4	19S	38E	AP-114/Sampling			
Wednesday, December 6-7, 2023	8:00 AM	Lee Gas Plant	Lea	0	30	17S	35E	GW-002/Sampling			
Friday, December 8, 2023	8:00 AM	Hobbs Gas Plant	Lea	G	36	185	36E	AP-122/Sampling			
Monday, December 11, 2023	8:00 AM	RR Extension	Lea	C and F	19	20S	37E	AP-55/Sampling			
Tuesday, December 12, 2023	8:00 AM	Monument Booster	Lea	В	33	198	37E	1RP-156-0/Sampling			
Wednesday, December 13, 2023	8:00 AM	Burton Flats	Eddy	D	1	21S	27E	2RP-799/Sampling			
Wednesday, December 13, 2023	12:00 PM	PCA Junction	Eddy	E and L	11	20S	30E	2RP-43/Sampling			

Let me know if you have any questions.

Thanks

Steve

Steve Weathers, P.G.
Program Manager, Remediation Management

Phillips 66 | 6900 E. Layton Ave. | Suite 900 Denver, CO 80237-3658 | M: 303-619-3042 stephen.weathers@p66.com

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone: (575) 748-1283 Fax: (575) 748-9720 District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 322076

CONDITIONS

Operator:	OGRID:
DCP OPERATING COMPANY, LP	36785
2331 Citywest Blvd	Action Number:
Houston, TX 77042	322076
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	Review of the 2023 Annual Groundwater Monitoring and Activities Summary Report for Burton Flats Booster Station: Content Satisfactory 1. Continue groundwater monitoring on a quarterly basis for all constituents 2. Continue to monitor and evaluate the LNAPL passive skimmer. 3. Continue EFR events 4. Submit the 2024 Annual Report by April 1, 2025.	6/20/2024