

SITE INFORMATION

Closure Report Solution Federal Com 003H (05.11.24) Eddy County, New Mexico Incident ID: nAPP2415841931 Unit C Sec 05 T20S R30E 32.6089°, -103.9960°

Crude Oil Release Point of Release: Equipment Malfunction Resulting in a Flare Fire Release Date: 05.11.2024 Volume Released: 0.0812 Barrels of Crude Oil Volume Recovered: 0 Barrels of Crude Oil

Prepared for: Concho Operating, LLC 15 West London Road, Loving, New Mexico 88256

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

Received by OCD: 7/22/2024 1:50:16 PM

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 RECLAMATION ACTIVITIES

7.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	EXCAVATION

FIGURE 5 RECLAMATION

APPENDICES

PPENDIX	Α	TABLES
PPENDIX	A	TABLES

- APPENDIX B PHOTOS
- APPENDIX C N.O.R. AND FINAL C-141/NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS
- APPENDIX F RECLAMATION CRITERIA

July 17, 2024

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Solution Federal Com 003H (05.11.24) Concho Operating, LLC Incident ID: nAPP2415841931 Site Location: Unit C, S05, T20S, R30E (Lat 32.6089°, Long -103.9960°) Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site activities for Solution Federal Com 003H (05.11.24) The site is located at 32.6089°, - 103.9960° within Unit C, S05, T20S, and R30E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the Notice of Release obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on May 11, 2024, due to a flare fire caused by an equipment malfunction. This released approximately zero point zero eight one two (0.0812) barrels of crude oil with zero (0) barrels of crude oil recovered. Refer to Figure 3. The release occurred inside the flare berm and in the pasture. The Notice of Release form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The nearest identified well is located approximately 1.15 miles Southeast of the site in S04, T20S, R30E, and was drilled in 1948. The well has a reported groundwater depth of 82' feet below the ground surface (ft bgs). A copy of the associated Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

On June 17, 2024, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts from the release. A total of three (3) vertical sample points (S-1 through S-3) and six (6) horizontal sample points (H-1 through H-6) were advanced to depths ranging from the surface to 1.5' Bgs inside and surrounding the release area to assess the vertical and horizontal extent. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratory in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

See Table 1 for the analytical results.

5.0 Remediation Activities

Carmona Resources personnel were on site to oversee excavation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD web portal on July 8, 2024, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of thirteen (13) confirmation floor samples (CS-1 through CS-13) and eight (8) sidewall samples (SW-1 through SW-8) were collected every 200 square feet to ensure the proper removal of the contaminated soils. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Cardinal Laboratories in Hobbs, New Mexico. All collected samples were analyzed for TPH by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. Refer to Table 2. The excavation depths and confirmation sample locations are shown in Figure 4.

6.0 Reclamation Activities

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. The material utilized for backfill was sourced from the Twin Wells Pit. The pit sample was analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E.

On July 12, 2024, the backfilled areas in the pasture were seeded via hand broadcasting with the appropriate pounds of pure live seed per acre. The topsoil was raked onto the seed to aid the vegetation process. The seed mixture used was the BLM Seed Mixture #1. See Appendix F for the soil survey and map and Figure 5 for the reclamation area.

Approximately 80 cubic yards of material were excavated and transported offsite for proper disposal.

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

7.0 Conclusions

Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the release. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Mike Carmona Environmental Manager

Onner ocaris

Conner Moehring Sr. Project Manager

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

APPENDIX A

CARMONA RESOURCES

•

Table 1 **COG Operating** Solution Federal Com 003H (05.11.24) Eddy County, New Mexico

O-mula ID	Dete	Devide (fi)		TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	6/17/2024	0-3"	<50.0	1,500	252	1,750	<0.0996	<0.0996	<0.0996	<0.199	<0.199	1,180
S-1	"	6"	<49.8	302	<49.8	302	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	454
5-1	"	1.0'	<49.8	130	<49.8	130	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	347
	"	1.5'	<49.9	137	<49.9	137	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	302
	6/17/2024	0-3"	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	725
S-2	"	6"	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	14.0
5-2	"	1.0'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	127
	"	1.5'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	170
	6/17/2024	0-3"	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	225
S-3	"	6"	<49.8	<49.8	<49.8	<49.8	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	117
0-0	"	1.0'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	155
	"	1.5'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	226
H-1	6/17/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	41.6
H-2	6/17/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	34.0
H-3	6/17/2024	0-0.5'	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	40.7
H-4	6/17/2024	0-0.5'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	62.0
H-5	6/17/2024	0-0.5'	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	11.3
H-6	6/17/2024	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	31.1
Regula	tory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH- Total Petroleum Hydrocarbons ft-feet

(S) Sample Point

(H) Horizontal Sample

Removed

.

Table 2 COG Operating Solutions Federal Com 003H (05.11.24) Eddy County, New Mexico

Sample ID	Date	Depth (ft)			l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
-			GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-2	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-3	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-4	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-5	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-6	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-7	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-8	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-9	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-10	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-11	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-12	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-13	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-1	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
SW-2	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-3	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-4	7/11/2024	2'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-5	7/11/2024	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
SW-6	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-7	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-8	7/11/2024	0.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	64.0
Twin Wells Pit	7/12/2024	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
Regulato					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg	

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram
 TPH - Total Petroleum Hydrocarbons ft - feet
 (CS) Confirmation Sample
 (SW) Sidewall Sample

APPENDIX B

CARMONA RESOURCES

PHOTOGRAPHIC LOG

COG Operating

Photograph No. 1

Facility:	Solution Federal Com 003H
	(05.11.24)

County: Eddy County, New Mexico

Description:

View South, area of CS-1 through CS-4.

Photograph No. 2

Facility:	Solution Federal Com 003H (05.11.24)
•	

County: Eddy County, New Mexico

Description:

View West, area of CS-5 and CS-6.

Photograph No. 3

Facility:	Solution Federal Com 003H	
	(05.11.24)	

County: Eddy County, New Mexico

Description:

View Northeast, area of CS-7 through CS-13.

PHOTOGRAPHIC LOG

COG Operating

Photograph No. 4

Facility:	Solution Federal Com 003H
	(05.11.24)

County: Eddy County, New Mexico

Description:

BLM #1 Seed Mixture.

Photograph No. 5

Facility:	Solution Federal Com 003H (05.11.24)
County:	Eddy County, New Mexico

Description:

View Northwest, backfill and reseeding activities.

Photograph No. 6

Facility:	Solution Federal Com 003H (05.11.24)

County: Eddy County, New Mexico

Description:

View North, backfill and reseeding activities.

APPENDIX C

CARMONA RESOURCES

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

OLIECTIONS

	UESTIONS		
Operator: COG OPERATING LLC 600 W Illinois Ave		OGRID: 229137 Action Number:	
Midland, TX 79701		351482 Action Type: [NOTIFY] Notification Of Release (NOR)	
QUESTIONS			
Location of Release Source			
Please answer all the questions in this group.			
Site Name	Solution Federal Com 003	3H	
Date Release Discovered	05/11/2024		
Surface Owner	Federal		
Incident Details			
Please answer all the questions in this group.	Fire		
Incident Type Did this release result in a fire or is the result of a fire	Fire Yes		
Did this release result in any injuries			
Has this release reached or does it have a reasonable probability of reaching a	No		
watercourse	No		
Has this release endangered or does it have a reasonable probability of endangering public health	No		
Has this release substantially damaged or will it substantially damage property or the environment	No		
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No		
Nature and Volume of Release			
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo			
Crude Oil Released (bbls) Details	Cause: Equipment Failure Lost: 0 BBL.	e Other (Specify) Crude Oil Released: 0 BBL Recovered: 0 BBL	
Produced Water Released (bbls) Details	Not answered.		
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.		
Condensate Released (bbls) Details	Not answered.		
Natural Gas Vented (Mcf) Details	Not answered.		

Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

Not answered.

QUESTIONS

Page 19eof 142

Action 351482

Natural Gas Flared (Mcf) Details

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 351482

Page 20eof 142

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	351482
	Action Type:
	[NOTIEY] Notification Of Release (NOR)

QUESTIONS

Nature and Volume of Release (continued)		
Is this a gas only submission (i.e. only significant Mcf values reported)	More volume information must be supplied to determine if this will be treated as a "gas only" report.	
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.	

With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	Not answered.	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	Not answered.	
All free liquids and recoverable materials have been removed and managed appropriately	Not answered.	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph 4 of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator		OGRID:
	COG OPERATING LLC	229137
	600 W Illinois Ave	Action Number:
	Midland, TX 79701	351482
		Action Type:
		[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

	· · · · · · · · · · · · · · · · · · ·			
$\overline{\checkmark}$	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.			
	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.			
	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.			
	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.			
V	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.			
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			

ACKNOWLEDGMENTS

Action 351482

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	351482	
	Action Type:	
	[NOTIFY] Notification Of Release (NOR)	

CONDITIONS

Created By		Condition Date
brittanyesparza	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.	6/6/2024

Page 6

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.		
A scaled site and sampling diagram as described in 19.15.29.1	1 NMAC	
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)		
Laboratory analyses of final sampling (Note: appropriate ODC	C District office must be notified 2 days prior to final sampling)	
Description of remediation activities		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		
Printed Name:	Title:	
Signature: Jacqui Harris	Date:	
email:	Telephone:	
OCD Only		
Received by:	Date:	
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.		
Closure Approved by:	Date:	
Printed Name:	Title:	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 24cof 142 QUESTIONS

Action 361976

Operator: OGRID: COG OPERATING LLC 229137 600 W Illinois Ave Action Number: Midland, TX 79701 361976 Action Type: [NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

QUESTIONS Proroquisitos

Incident ID (n#)	nAPP2415841931	
Incident Name	NAPP2415841931 SOLUTION FEDERAL COM 003H @ 0	
Incident Type	Fire	
Incident Status	Initial C-141 Approved	
Incident Facility	[fAPP2203955700] Solution Fed 3H Battery	

Location of Release Source

Site Name	SOLUTION FEDERAL COM 003H
Date Release Discovered	05/11/2024
Surface Owner	Federal

Sampling Event General Information

Please answer all the questions in this group.		
What is the sampling surface area in square feet	1,642	
What is the estimated number of samples that will be gathered	22	
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	07/11/2024	
Time sampling will commence	08:00 AM	
Please provide any information necessary for observers to contact samplers	Conner Moehring (432) 813-6823	
Please provide any information necessary for navigation to sampling site	Coordinates on C-141	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	361976
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

CONDITIONS

Created Condition Condition By Date Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the 7/8/2024 jacquih remediation closure samples not being accepted.

Page 25cof 142

.

Action 361976

Released to Imaging: 8/8/2024 2:40:51 PM

APPENDIX D

CARMONA RESOURCES

Received by OCD: 7/22/2024 1:50:16 PM Nearest water well COG Operating

(115' - Drilled 1989)

SOLUTION FEDERAL COM 003H (05.11.2024)

24.87' - Drilled 1983

60' - Driled 1981 (82' - Driled 1948

Google Earth Released to Imaging: 8/7/2024 2:40:51 PM mage @ 2024 Alrous

Legend

Page 27 of 142

location 50 Mile Radius

- 跪 1.15 Miles
- 跪 1.16 Miles
- 🕹 1.34 Miles
- 🕹 1.55 Miles
- NMSEO Water Well
- SOLUTION FEDERAL COM 003H (05.11.2024)
- USGS Water Well

SOLUTION FEDERAL COM 003H (05.11.2024)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	been O=orp	OD has replace phaned, file is	-	•••					2=NE 3 st to lar	3=SW 4=) AD83 UTM in me	aters)	(In feet)	
	010000	POD		(900						9000)	(```		
		Sub-		Q	Q	Q								Depth	Depth	Water
POD Number	Code	basin	Count	y 64	16	4	Sec	Tws	Rng		Χ	Y	Distance	Well	Water	Column
CP 00644 POD2		СР	LE	1	4	3	04	20S	30E	5956	89	3607164* 🌍	1853	285	60	225
CP 00648 POD1	R	СР	LE	4	3	3	04	20S	30E	5954	88	3606960* 🌍	1856	337	82	255
CP 00648 POD2		СР	ED	4	3	3	04	20S	30E	5954	88	3606960* 🌍	1856	330	75	255
CP 00834 POD1		СР	LE		2	3	06	20S	30E	5925	66	3607436* 🌍	1961	120		
CP 00645 POD2		СР	LE	3	4	3	04	20S	30E	5956	89	3606964* 🌍	1989	296	62	234
CP 00742		СР	ED		3	3	31	19S	30E	5922	80	3608940 🌍	2154	223	115	108
CP 00825 POD1		СР	LE		3	4	28	19S	30E	5961	64	3610282* 🌍	2674	100		
CP 00522		СР	ED			3	30	19S	30E	5923	47	3610451* 🌍	2840	120	90	30
CP 00821 POD1		СР	LE		4	4	25	19S	29E	5917	43	3610248* 🌍	3158	120		
CP 00703 POD1		СР	ED		4	1	36	19S	29E	5910	50	3609382 🌍	3390	225	115	110
												Avera	ge Depth to	Water:	85	feet
													Minimum	Depth:	60	feet
													Maximum	Depth:	115	feet
Record Count: 10																

Record Count: 10

UTMNAD83 Radius Search (in meters):

Easting (X): 594287.58

Northing (Y): 3608376.53

Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 29 of 142

New Mexico Office of the State Engineer **Point of Diversion Summary**

			(quart	ers are	1=NV	V 2=N	E 3=SW	′ 4=SE)			
			(qua	rters are	sma	llest to	largest)		(NAD83 I	UTM in meters)	
Well Tag	POD) Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
	CP (00644 POD2	1	4	3	04	20S	30E	595689	3607164* 🧲)
Driller Lic	ense:	46	Driller	· Com	pan	y:	AB	вотт	BROTHER	S COMPANY	
Driller Nai	me:	ABBOTT, FLOYI)								
Drill Start	Date:	11/11/1981	Drill F	ìnish	Dat	e:	12	2/01/1	981 P	lug Date:	
Log File D	g File Date: 01/08/1982			PCW Rcv Date: 01/06/1983 Source:					ource:	Shallow	
Pump Type	ump Type:				Pipe Discharge Size: Estimat						1200 GPM
Casing Siz	e:	14.00	Depth	Well:			2	85 feet	t D	epth Water:	60 feet
L.	Wate	er Bearing Stratific	ations:		То	рŀ	Bottom	Des	scription		
					6	8	100) Oth	er/Unknown		
					14	3	160	0 Oth	er/Unknown		
					25	0	285	Oth	er/Unknown		
	Casing Perfor				То	рŀ	Bottom	ı			
					15	5	285	5			

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/12/24 7:29 AM

POINT OF DIVERSION SUMMARY

Drill Start Date: Drill Finish Date: 01/28/1948 **Plug Date:** Log File Date: **PCW Rcv Date:** Shallow Source: **Pump Type:** TURBIN **Pipe Discharge Size: Estimated Yield:** 1000 GPM **Casing Size: Depth Well:** 337 feet **Depth Water:** 82 feet

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

4/12/24 7:30 AM

POINT OF DIVERSION SUMMARY

New Mexico Office of the State Engineer **Point of Diversion Summary**

						=NE 3=SW t to largest)	4=SE)	(NAD8	3 UTM in me	eters)	
Well Tag	POD	Number		Q64 Q16	5 Q4 - Se	ec Tws	Rng		X	Ŷ	
	CP (00742		3	3 3	1 19S	30E	5922	08 3608	940 🌍	
x Driller Lice	ense:	421	D	riller Co	mpany:	GLI	ENN'S V	WATER	WELL SE	RVICE	
Driller Nan	ne:	GLENN,	CLARK A."C	CORKY"	(LD)						
Drill Start	Date:	08/04/19	089 D	rill Finis	h Date:	08	3/04/198	39	Plug Date	2:	
Log File Da	ate:	08/10/19	989 PO	CW Rev	Date:				Source:		Shallow
Pump Type	e:		Pi	ipe Disch	arge Siz	æ:			Estimate	d Yield:	150 GPM
Casing Size	e:	6.63	D	epth Wel	l:	22	3 feet		Depth Wa	ater:	115 feet
x											
	Wate	r Bearing	Stratification	ns:	Тор	Bottom		-			
					165	178			olomite/Ch		
x					181	213	Lime	stone/Do	olomite/Ch	aik	
A		Casi	ing Perforatio	ons:	Тор	Bottom					
					145	223					
х	Mete	r Number	r: 189	77		Meter M	Aake:		OCTAVI	3	
	Mete	r Serial N	umber: 162	038182		Meter M	Aultipl	ier:	1.0000		
	Num	ber of Dia	ds: 9			Meter 7	ype:		Diversio	n	
	Unit	of Measu	re: Gal	lons		Return	Flow P	ercent:			
	Usag	e Multipli	ier:			Reading	g Frequ	iency:	Monthly		
Meter F	X	gs (in Acr	e-Feet)								
Read	l Date	Year	Mtr Readin	ig Flag	Rdr	Comme	ent			Mtr /	Amount Online
06/13	3/2017	2017	1152328	84 A	RPT	initial re	ading				0
06/30)/2017	2017	1258680	00 A	RPT						3.264
07/31	/2017	2017	1266900	00 A	RPT						0.252
08/31	/2017	2017	1452190	00 A	RPT						5.686
09/30)/2017	2017	1555229	94 A	RPT						3.162
10/31	/2017	2017	1645124	4 A	RPT						2.759
)/2017	2017	1695381		RPT						1.542
12/31	/2017	2017	1700813	6 A	RPT						0.167
	/2018	2018	1700813		RPT						0
	8/2018	2018	1704723		RPT						0.120
	/2018	2018	1704723		RPT						0
	/2018	2018	2098628		RPT						12.088
	2018	2018	1126683		RPT PPT						0
	1/2019	2019	1143891		RPT						0.528
)/2019 1/2019	2019 2019	1243693 1397370		RPT RPT						3.063 4.716
)/2019	2019	1573995		RPT						4.716 5.420
)/2019	2019	2156262		RPT						17.869
	/2019	2019	2156262		RPT						0.375
10/31		2017	2100-00	. 1 1 1	1/1 1						0.070

.

Regeived by OGD: 7/22/2024 1:5	state nm.us/R	eportDispatcl	her?typ	e=PODG	GHTML&name=PodGroundSummaryHTML.jrxml&basin=CP&rb
02/29/2020	2020	22530023	А	RPT	2.594
04/30/2020	2020	23188462	А	RPT	2.021
05/31/2020	2020	23188462	А	RPT	0
08/31/2020	2020	23188462	А	RPT	0
09/30/2020	2020	23188462	А	RPT	0
11/30/2020	2020	23188462	А	WEB	3 0 X
12/31/2020	2020	23188462	А	WEB	3 0 X
01/31/2021	2021	23188462	А	ca	0
02/28/2021	2021	23188462	А	RPT	0
04/30/2021	2021	32188462	А	ad	27.620
05/31/2023	2023	25858857	R	ad	Meter Rollover 3049.462
06/30/2023	2023	25870859	А	ad	0.037
08/31/2023	2023	28767160	А	ad	8.888
10/31/2023	2023	32516447	А	ad	11.506
11/30/2023	2023	33496847	А	ad	3.009
× **VTD Me	ter Amounts:	Vear		Amount	-
	ter i fillounitst	2017	1	16.832	
		2018		12.208	
		2010		31.971	
		2020		4.615	
		2020		27.620	
		2021	3	072.902	

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

4/12/24 7:26 AM

POINT OF DIVERSION SUMMARY

Date s	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
۱				Groundwate	er 🖌 New Mexico	✓ GC	,

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News 🔊

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 323540104005601

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 323540104005601 20S.30E.07.11221

Eddy County, New Mexico Latitude 32°35'40", Longitude 104°00'56" NAD27 Land-surface elevation 3,228 feet above NAVD88 The depth of the well is 42 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Rustler Formation (312RSLR) local aquifer.

Table of data									
Tab-separated data									
Graph of data									
Reselect period									

Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source o measure
1965-12-20		D	62610		3203.80	NGVD29	1	Z		
1965-12-20		D	62611		3205.31	NAVD88	1	Z		
1965-12-20		D	72019	22.69			1	Z		
1968-05-27		D	62610		3198.40	NGVD29	1	Z		
1968-05-27		D	62611		3199.91	NAVD88	1	Z		
1968-05-27		D	72019	28.09			1	Z		
1971-02-09		D	62610		3198.99	NGVD29	Р	Z		
1971-02-09		D	62611		3200.50	NAVD88	Р	Z		
1971-02-09		D	72019	27.50			Р	Z		
1977-12-15		D	62610		3199.25	NGVD29	1	Z		
1977-12-15		D	62611		3200.76	NAVD88	1	Z		
1977-12-15		D	72019	27.24			1	Z		
1978-05-23		D	62610		3197.15	NGVD29	Р	Z		
1978-05-23		D	62611		3198.66	NAVD88	Р	Z		

Regeived by OCD: 7/22/2024 1:50:16 PM

USGS Groundwater for New Mexico: Water Levels -- 1 sites

Page 35 of 142

Date	Date Time ? Water-leve date-time accuracy		? Par. cod	ameter e	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? S
1978-05-23	D	72019	29.34	2407.20		P	Z	
1978-06-08	D	62610		3197.20	NGVD29	P	Z	
1978-06-08	D	62611		3198.71	NAVD88	P	Z	
1978-06-08	D	72019	29.29			P	Z	
1978-07-18	D	62610		3197.28	NGVD29	P	Z	
1978-07-18	D	62611		3198.79	NAVD88	Р	Z	
1978-07-18	D	72019	29.21			P	Z	
1978-08-19	D	62610		3197.04	NGVD29	Р	Z	
1978-08-19	D	62611		3198.55	NAVD88	Р	Z	
1978-08-19	D	72019	29.45			Р	Z	
1978-09-27	D	62610		3197.14	NGVD29	1	Z	
1978-09-27	D	62611		3198.65	NAVD88	1	Z	
1978-09-27	D	72019	29.35			1	Z	
1978-12-14	D	62610		3197.47	NGVD29	Р	Z	
1978-12-14	D	62611		3198.98	NAVD88	Р	Z	
1978-12-14	D	72019	29.02			Р	Z	
1979-01-17	D	62610		3197.72	NGVD29	1	Z	
1979-01-17	D	62611		3199.23	NAVD88	1	Z	
1979-01-17	D	72019	28.77			1	Z	
1979-02-14	D	62610		3197.77	NGVD29	Р	Z	
1979-02-14	D	62611		3199.28	NAVD88	Р	Z	
1979-02-14	D	72019	28.72			Р	Z	
1979-03-15	D	62610		3197.80	NGVD29	Р	Z	
1979-03-15	D	62611		3199.31	NAVD88	Р	Z	
1979-03-15	D	72019	28.69			Р	Z	
1983-01-20	D	62610		3201.62	NGVD29	1	Z	
1983-01-20	D	62611		3203.13	NAVD88	1	Z	
1983-01-20	D	72019	24.87			1	Z	

Exp	lanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Status	Р	Pumping
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals Help Data Tips Explanation of terms USGS Groundwater for New Mexico: Water Levels -- 1 sites

<u>S</u> Date	Time	? Water-level	? Parameter	Water level, feet	Water level, feet	Referenced vertical datum	? S
A L 1		date-time accuracy	code	below land surface	above specific vertical datum		

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2024-04-12 09:32:44 EDT 0.3 0.27 nadww02

.
FEMA National Flood Hazard Layer (NFHL)

Bureau of Land Management, Texas Parks & Wildlife, Esri, HERE, Garmin, INCREMENT P, USGS, METI/NASA, EPA, USDA

FEMA National Flood Hazard Layer (NFHL)

NFHL Water Lines Water Areas Flood Hazard Boundaries — Limit Lines NP SFHA / Flood Zone Boundary Flowage Easement Boundary Flood Hazard Zones 1% Annual Chance Flood Hazard Regulatory Floodway Special Floodway Area of Undetermined Flood Hazard 0.2% Annual Chance Flood Hazard Future Conditions 1% Annual Chance Flood Hazard Area with Reduced Risk Due to Levee Area with Risk Due to Levee

FEMA flood layer

0.3mi

esr

Suns) Cours &

Maxar | Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, © OpenStreetMap, Microsoft, CONANP, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, USFWS

Zone A

SOLUTION FEDERAL COM 003H (05.11.2024)

Texas Parks & Wildlife, CONANP, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, USDA, USFWS, Esri, NASA, NGA, USGS, FEMA, NM OSE

APPENDIX E

CARMONA RESOURCES

Received by OCD: 7/22/2024 1:50:16 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 6/20/2024 10:08:52 AM

JOB DESCRIPTION

Solution Federal Com 003H (05.11.2024) Eddy County, New Mexico

JOB NUMBER

880-44904-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/20/2024 10:08:52 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Page 43 of 142

2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	15
QC Sample Results	16
	20
Lab Chronicle	24
Certification Summary	28
Method Summary	29
Sample Summary	30
	31
-	33

Definitions/Glossary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Page 44 of 142

12 13

Job ID: 880-44904-1
SDG: Eddy County, New Mexico

Qualifiers

GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VO	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		1
Abbroviation	These commonly used obtraviations may as may not be present in this report	

Abbreviation These commonly used abbreviations may or may not be present in this report. ¤ Listed under the "D" column to designate that the result is reported on a dry weight basis %R Percent Recovery CFL **Contains Free Liquid** CFU Colony Forming Unit CNF Contains No Free Liquid DER Duplicate Error Ratio (normalized absolute difference) Dil Fac **Dilution Factor** DL Detection Limit (DoD/DOE) DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample DLC Decision Level Concentration (Radiochemistry) EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry) MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown) NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL PRES Presumptive **Quality Control** QC RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry) RPD Relative Percent Difference, a measure of the relative difference between two points Toxicity Equivalent Factor (Dioxin) TEF TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

Eurofins Midland

Case Narrative

Client: Carmona Resources Project: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1

Eurofins Midland

4 5 7 8 9 10 11 12

Job ID: 880-44904-1

880-44904-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/18/2024 1:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C.

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-83496 and analytical batch 880-83538 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-83483 and analytical batch 880-83526 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

Method 8015MOD NM: The continuing calibration verification (CCV) associated with batch 880-83526 recovered below the lower control limit for Gasoline Range Organics (GRO)-C6-C10. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-83526/58).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D - Soluble: The following samples required confirmation (CON) due to a an interference affecting Chloride : (880-44899-A-1-E), (880-44899-A-1-F MS) and (880-44899-A-1-G MSD).

Method 300 ORGFM 28D - Soluble: The Chloride matrix spike (MS) recoveries for preparation batch 880-83484 and analytical batch 880-83501 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. S-1 (0-3") (880-44904-1), S-1 (6") (880-44904-2), S-1 (1') (880-44904-3), S-1 (1.5') (880-44904-4), (880-44899-A-1-E) and (880-44899-A-1-F MS)

Method 300 ORGFM 28D - Soluble: The Chloride matrix spike (MS) recoveries for preparation batch 880-83484 and analytical batch 880-83501 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

S-2 (0-3") (880-44904-5), S-2 (6") (880-44904-6), S-2 (1') (880-44904-7), S-2 (1.5') (880-44904-8), S-3 (0-3") (880-44904-9), S-3 (6") (880-44904-10), S-3 (1') (880-44904-11), S-3 (1.5') (880-44904-12) and (880-44904-A-5-D MS)

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: S-1 (0-3") Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Benzene	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	<0.0996	U	0.0996		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
Toluene	<0.0996	U	0.0996		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
Ethylbenzene	<0.0996	U	0.0996		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
m-Xylene & p-Xylene	<0.199	U	0.199		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
o-Xylene	<0.0996	U	0.0996		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
Xylenes, Total	<0.199	U	0.199		mg/Kg		06/18/24 16:09	06/19/24 15:51	50
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				06/18/24 16:09	06/19/24 15:51	50
1,4-Difluorobenzene (Surr)	88		70 - 130				06/18/24 16:09	06/19/24 15:51	50
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.199	U	0.199		mg/Kg			06/19/24 15:51	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	1750		50.0		mg/Kg			06/19/24 13:42	1
Method: SW846 8015B NM - Dies Analyte		nics (DRO) Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	
Gasoline Range Organics	<50.0							Analyzeu	Dil Fac
0 0	-50.0	0	50.0		mg/Kg		06/18/24 15:38	06/19/24 13:42	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	1500	U	50.0		mg/Kg mg/Kg		06/18/24 15:38 06/18/24 15:38		
(GRO)-C6-C10 Diesel Range Organics (Over		U						06/19/24 13:42	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	1500		50.0		mg/Kg		06/18/24 15:38	06/19/24 13:42 06/19/24 13:42	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over	1500 252		50.0 50.0		mg/Kg		06/18/24 15:38 06/18/24 15:38	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42	1
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	1500 252 %Recovery		50.0 50.0 Limits		mg/Kg		06/18/24 15:38 06/18/24 15:38 Prepared	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 Analyzed	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	1500 252 <u>%Recovery</u> 99 92	Qualifier	50.0 50.0 <u>Limits</u> 70 - 130 70 - 130		mg/Kg		06/18/24 15:38 06/18/24 15:38 Prepared 06/18/24 15:38	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 <u>Analyzed</u> 06/19/24 13:42	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	1500 252 <u>%Recovery</u> 99 92 Chromatograp	Qualifier	50.0 50.0 <u>Limits</u> 70 - 130 70 - 130	MDL	mg/Kg		06/18/24 15:38 06/18/24 15:38 Prepared 06/18/24 15:38	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 <u>Analyzed</u> 06/19/24 13:42	Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	1500 252 <u>%Recovery</u> 99 92 Chromatograp	Qualifier bhy - Solubl	50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg mg/Kg	D	06/18/24 15:38 06/18/24 15:38 Prepared 06/18/24 15:38 06/18/24 15:38	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42	 Dil Fac
(GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	1500 252 <u>%Recovery</u> 99 92 Chromatograp Result	Qualifier bhy - Solubl	50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 e <u>RL</u>	MDL	mg/Kg mg/Kg Unit	D	06/18/24 15:38 06/18/24 15:38 Prepared 06/18/24 15:38 06/18/24 15:38 Prepared	06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 06/19/24 13:42 Analyzed	Dil Fac

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/18/24 16:09	06/19/24 12:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				06/18/24 16:09	06/19/24 12:47	1
1,4-Difluorobenzene (Surr)	104		70 - 130				06/18/24 16:09	06/19/24 12:47	1

Eurofins Midland

Matrix: Solid

5

Job ID: 880-44904-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-1

Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample Results

Page 47 of 142

Matrix: Solid

5

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-2

Client Sample ID: S-1 (6")

Client: Carmona Resources

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/19/24 12:47	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	302		49.8		mg/Kg			06/19/24 14:02	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 14:02	
(GRO)-C6-C10									
Diesel Range Organics (Over	302		49.8		mg/Kg		06/18/24 15:38	06/19/24 14:02	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 14:02	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	90		70 - 130				06/18/24 15:38	06/19/24 14:02	
o-Terphenyl	90		70 - 130				06/18/24 15:38	06/19/24 14:02	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	454		4.97		mg/Kg			06/19/24 08:07	

Client Sample ID: S-1 (1)

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

ample ID: 880-44904-3 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
Toluene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		06/18/24 16:09	06/19/24 13:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				06/18/24 16:09	06/19/24 13:08	1
1,4-Difluorobenzene (Surr)	108		70 - 130				06/18/24 16:09	06/19/24 13:08	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			06/19/24 13:08	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	130		49.8		mg/Kg			06/19/24 14:22	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 14:22	1
(GRO)-C6-C10									
Diesel Range Organics (Over	130		49.8		mg/Kg		06/18/24 15:38	06/19/24 14:22	1
Dieser Kange Organics (Over	100								

Eurofins Midland

Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-3

Client Sample ID: S-1 (1')

Client: Carmona Resources

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				06/18/24 15:38	06/19/24 14:22	1
o-Terphenyl Method: EPA 300.0 - Anions, Ion C	• •					_	06/18/24 15:38	06/19/24 14:22	1
Method: EPA 300.0 - Anions, Ion C	Chromatograp Result	hy - Soluble Qualifier	eRL	MDL		<u>D</u>	06/18/24 15:38 Prepared	Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion C Analyte	Chromatograp		e	MDL	Unit mg/Kg	<u>D</u>			1 1
Method: EPA 300.0 - Anions, Ion C Analyte Chloride	Chromatograp Result		eRL	MDL		<u>D</u>	Prepared	Analyzed	1
	Chromatograp Result		eRL	MDL		<u>D</u>	Prepared	Analyzed 06/19/24 08:13 ple ID: 880-4	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/18/24 16:09	06/19/24 13:28	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	129		70 - 130				06/18/24 16:09	06/19/24 13:28	1
1,4-Difluorobenzene (Surr)	116		70 - 130				06/18/24 16:09	06/19/24 13:28	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		06/19/24 13:28	1

Method: SW846 8015 NM - Dies	sel Range Organics (DRO)) (GC)					
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	137	49.9	mg/Kg			06/19/24 15:03	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 15:03	1
(GRO)-C6-C10									
Diesel Range Organics (Over	137		49.9		mg/Kg		06/18/24 15:38	06/19/24 15:03	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 15:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				06/18/24 15:38	06/19/24 15:03	1
o-Terphenyl	97		70 - 130				06/18/24 15:38	06/19/24 15:03	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	302		5.01		mg/Kg			06/19/24 08:19	1

Matrix: Solid

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: S-2 (0-3")

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/18/24 16:09	06/19/24 13:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				06/18/24 16:09	06/19/24 13:49	1
1,4-Difluorobenzene (Surr)	108		70 - 130				06/18/24 16:09	06/19/24 13:49	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/19/24 13:49	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/19/24 15:24	1
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<50.0		50.0		mg/Kg mg/Kg		06/18/24 15:38	06/19/24 15:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 15:24	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/18/24 15:38		
			50.0		iiig/itg		00/10/21 10:00	06/19/24 15:24	1
Surrogate	%Recovery	Qualifier	50.0 Limits		iiig/itg		Prepared	06/19/24 15:24 Analyzed	1 Dil Fac
•	% Recovery				ing/itg				
1-Chlorooctane			Limits		ingrig		Prepared	Analyzed	Dil Fac
1-Chlorooctane o-Terphenyl	117 127	Qualifier	Limits 70 - 130 70 - 130		ingity		Prepared 06/18/24 15:38	Analyzed 06/19/24 15:24	Dil Fac
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion	117 127 Chromatograp	Qualifier	Limits 70 - 130 70 - 130	MDL		D	Prepared 06/18/24 15:38	Analyzed 06/19/24 15:24	Dil Fac
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	117 127 Chromatograp	Qualifier bhy - Soluble Qualifier	Limits 70 - 130 70 - 130	MDL		<u>D</u>	Prepared 06/18/24 15:38 06/18/24 15:38	Analyzed 06/19/24 15:24 06/19/24 15:24	Dil Fac 1 1
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	117 127 Chromatograp Result	Qualifier bhy - Soluble Qualifier	Limits 70 - 130 70 - 130 RL	MDL	Unit	<u>D</u>	Prepared 06/18/24 15:38 06/18/24 15:38 Prepared	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed	Dil Fac 1 1 Dil Fac 5
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Chloride Chloride Chloride ID: S-2 (6") ate Collected: 06/17/24 00:00	117 127 Chromatograp Result	Qualifier bhy - Soluble Qualifier	Limits 70 - 130 70 - 130 RL	MDL	Unit	<u> </u>	Prepared 06/18/24 15:38 06/18/24 15:38 Prepared	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed 06/19/24 08:25 ple ID: 880-4	Dil Fac 1 1 Dil Fac 5
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 725	Qualifier ohy - Soluble Qualifier F1	Limits 70 - 130 70 - 130 RL	MDL	Unit	<u>D</u>	Prepared 06/18/24 15:38 06/18/24 15:38 Prepared	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed 06/19/24 08:25 ple ID: 880-4	Dil Fac 1 1 Dil Fac 5 4904-6
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 725	Qualifier ohy - Soluble Qualifier F1	Limits 70 - 130 70 - 130 RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 06/18/24 15:38 06/18/24 15:38 Prepared	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed 06/19/24 08:25 ple ID: 880-4	Dil Fac 1 1 Dil Fac 5 4904-6
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 725	Qualifier ohy - Soluble Qualifier F1 ounds (GC)	<u>Limits</u> 70 - 130 70 - 130 <u>RL</u> 25.1		Unit mg/Kg		Prepared 06/18/24 15:38 06/18/24 15:38 Prepared Lab Sam	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed 06/19/24 08:25 ple ID: 880-4 Matri	Dil Fac 1 1 1 5 4904-6 x: Solid
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: S-2 (6") Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte	117 127 Chromatograp Result 725 Organic Comp Result	Qualifier Ohy - Soluble Qualifier F1 Ounds (GC) Qualifier U	Limits 70 - 130 70 - 130 RL 25.1		Unit mg/Kg Unit		Prepared 06/18/24 15:38 06/18/24 15:38 Prepared Lab Sam	Analyzed 06/19/24 15:24 06/19/24 15:24 Analyzed 06/19/24 08:25 ple ID: 880-4 Matri Analyzed	Dil Fac

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-5

Matrix: Solid

5

Eurofins Midland

06/19/24 14:09

06/19/24 14:09

06/19/24 14:09

06/19/24 14:09

Analyzed

06/19/24 14:09

06/19/24 14:09

o-Xylene	<0.00200	U	0.00200	mg/Kg	06/18/24 16:09
Xylenes, Total	<0.00400	U	0.00400	mg/Kg	06/18/24 16:09
Surrogate	%Recovery	Qualifier	Limits		Prepared
4-Bromofluorobenzene (Surr)	119		70 - 130		06/18/24 16:09
1,4-Difluorobenzene (Surr)	110		70 - 130		06/18/24 16:09

<0.00200 U

<0.00400 U

Ethylbenzene

m-Xylene & p-Xylene

0.00200

0.00400

mg/Kg

mg/Kg

06/18/24 16:09

06/18/24 16:09

1

1

1

1

1

1

Dil Fac

Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample Results

Page 50 of 142

Matrix: Solid

5

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-6

Client Sample ID: S-2 (6")

Client: Carmona Resources

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/19/24 14:09	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			06/19/24 15:44	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 15:44	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 15:44	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 15:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	107		70 - 130				06/18/24 15:38	06/19/24 15:44	-
o-Terphenyl	111		70 - 130				06/18/24 15:38	06/19/24 15:44	
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	e						
Analyte	•••	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	14.0		5.02		mg/Kg			06/19/24 09:00	
lient Sample ID: S-2 (1')							Lab Sam	ple ID: 880-4	4904-7
ate Collected: 06/17/24 00:00								•	x: Soli

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
Toluene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		06/18/24 16:09	06/19/24 14:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130				06/18/24 16:09	06/19/24 14:30	1
1,4-Difluorobenzene (Surr)	119		70 - 130				06/18/24 16:09	06/19/24 14:30	1

Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/19/24 14:30	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/19/24 16:05	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 16:05	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 16:05	1
C10-C28)									

Eurofins Midland

Released to Imaging: 8/7/2024 2:40:51 PM

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: S-2 (1')

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 16:05	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	80		70 - 130				06/18/24 15:38	06/19/24 16:05	
o-Terphenyl	88		70 - 130				06/18/24 15:38	06/19/24 16:05	-
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	127		4.98		mg/Kg			06/19/24 09:06	
Client Sample ID: S-2 (1.5')							Lab Sam	ple ID: 880-4	4904-8
Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50								Matri	x: Solic
_ Method: SW846 8021B - Volatile (Organic Comp	ounds (GC))						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 14:50	
Toluene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 14:50	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 14:50	
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		06/18/24 16:09	06/19/24 14:50	
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/18/24 16:09	06/19/24 14:50	
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		06/18/24 16:09	06/19/24 14:50	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	118		70 - 130				06/18/24 16:09	06/19/24 14:50	
1,4-Difluorobenzene (Surr)	102		70 - 130				06/18/24 16:09	06/19/24 14:50	
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			06/19/24 14:50	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/19/24 16:25	,
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 16:25	
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 16:25	
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 16:25	
							D	A	Dil Fa
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	DII Fa
Surrogate 1-Chlorooctane	% Recovery 105	Qualifier	Limits 70 - 130				06/18/24 15:38	06/19/24 16:25	

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	170		5.03		mg/Kg			06/19/24 09:24	1

Page 51 of 142

5

Matrix: Solid

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-7

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: S-3 (0-3") Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 15:11	1
Foluene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 15:11	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 15:11	1
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/18/24 16:09	06/19/24 15:11	1
p-Xylene	<0.00199	U	0.00199		mg/Kg		06/18/24 16:09	06/19/24 15:11	1
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		06/18/24 16:09	06/19/24 15:11	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	120		70 - 130				06/18/24 16:09	06/19/24 15:11	
1,4-Difluorobenzene (Surr)	104		70 - 130				06/18/24 16:09	06/19/24 15:11	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			06/19/24 15:11	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Fotal TPH	<49.7	U	49.7		mg/Kg			06/19/24 16:46	1
Method: SW846 8015B NM - Dies			· · ·						
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics GRO)-C6-C10	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 16:46	
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 16:46	
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 16:46	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane	106		70 - 130				06/18/24 15:38	06/19/24 16:46	
p-Terphenyl	113		70 - 130				06/18/24 15:38	06/19/24 16:46	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	225		5.04		mg/Kg			06/19/24 09:30	
lient Sample ID: S-3 (6")							Lab Samp	le ID: 880-44	904-10
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50								Matri	x: Solie
	Organic Corre	ounde (CC)							
Method: SW846 8021B - Volatile Analyte		Ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
								•	

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-9

Matrix: Solid

Eurofins Midland

06/19/24 15:31

06/19/24 15:31

06/19/24 15:31

06/19/24 15:31

06/19/24 15:31

06/19/24 15:31

Analyzed

06/19/24 15:31

06/19/24 15:31

5

Benzene

Toluene

o-Xylene

Surrogate

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

0.00198

0.00198

0.00198

0.00397

0.00198

0.00397

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

06/18/24 16:09

06/18/24 16:09

06/18/24 16:09

06/18/24 16:09

06/18/24 16:09

06/18/24 16:09

Prepared

06/18/24 16:09

06/18/24 16:09

<0.00198 U

<0.00198 U

<0.00198 U

<0.00397 U

<0.00198 U

<0.00397 U

%Recovery Qualifier

120

112

1

1

1

1

1

1

1

1

Dil Fac

Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample Results

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-10

Client Sample ID: S-3 (6")

Client: Carmona Resources

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			06/19/24 15:31	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/19/24 17:06	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:06	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				06/18/24 15:38	06/19/24 17:06	1
o-Terphenyl	103		70 - 130				06/18/24 15:38	06/19/24 17:06	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	117		4.97		mg/Kg			06/19/24 09:36	1
lient Sample ID: S-3 (1')								le ID: 880-44	

Date Received: 06/18/24 13:50

Analyte

Benzene

Toluene

o-Xylene

Ethylbenzene

m-Xylene & p-Xylene

Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit Result Qualifier RL D Prepared Analyzed Dil Fac <0.00201 U 0.00201 06/18/24 16:09 06/19/24 17:43 mg/Kg 06/18/24 16:09 <0.00201 U 0.00201 mg/Kg 06/19/24 17:43 <0.00201 U 0.00201 06/18/24 16:09 06/19/24 17:43 mg/Kg <0.00402 U 0.00402 06/18/24 16:09 mg/Kg 06/19/24 17:43 <0.00201 U 0.00201 mg/Kg 06/18/24 16:09 06/19/24 17:43

Xylenes, Total	<0.00402 U	0.00402	mg/Kg	06/18/24 16:09	06/19/24 17:43	1
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	70 - 130		06/18/24 16:09	06/19/24 17:43	1
1,4-Difluorobenzene (Surr)	95	70 - 130		06/18/24 16:09	06/19/24 17:43	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/19/24 17:43	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/19/24 17:27	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:27	1
C10-C28)									

Eurofins Midland

Page 53 of 142

Matrix: Solid

5

1

1

1

1

Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-11

Client Sample ID: S-3 (1')

Client: Carmona Resources

Date Collected: 06/17/24 00:00

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 17:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	106		70 - 130				06/18/24 15:38	06/19/24 17:27	1
p-Terphenyl	112		70 - 130				06/18/24 15:38	06/19/24 17:27	1
Method: EPA 300.0 - Anions, lor	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	155		5.03		mg/Kg			06/19/24 09:41	1
ate Collected: 06/17/24 00:00							Lab Samp	le ID: 880-44 Matri	
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50	Organic Comp	ounds (GC)					Lab Samp		
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile		ounds (GC) Qualifier	RL	MDL	Unit	D	Lab Samp		x: Solid
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte	Result	Qualifier		MDL	Unit mg/Kg	<u>D</u>		Matri	x: Solid
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte Benzene	Result	Qualifier U	RL	MDL		<u> </u>	Prepared	Matri Analyzed	x: Solid
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Result <0.00201	Qualifier U U	RL 0.00201	MDL	mg/Kg	<u>D</u>	Prepared 06/18/24 16:09	Matri Analyzed 06/19/24 18:03	x: Solid
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Result <0.00201	Qualifier U U U	RL 0.00201 0.00201	MDL	mg/Kg mg/Kg	<u> </u>	Prepared 06/18/24 16:09 06/18/24 16:09	Matri Analyzed 06/19/24 18:03 06/19/24 18:03	x: Solid
ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00201	Qualifier U U U U U	RL 0.00201 0.00201 0.00201	MDL	mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/18/24 16:09 06/18/24 16:09 06/18/24 16:09	Matri Analyzed 06/19/24 18:03 06/19/24 18:03 06/19/24 18:03	x: Solid
Client Sample ID: S-3 (1.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Result <0.00201	Qualifier U U U U U U	RL 0.00201 0.00201 0.00201 0.00402	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 06/18/24 16:09 06/18/24 16:09 06/18/24 16:09 06/18/24 16:09	Matri 06/19/24 18:03 06/19/24 18:03 06/19/24 18:03 06/19/24 18:03	<u>Dil Fac</u> 1 1 1

Surrogate	%Recovery	Qualifier Li	imits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	119	70	0 - 130	06/18/24 16:09	06/19/24 18:03	1
1,4-Difluorobenzene (Surr)	110	70	0 - 130	06/18/24 16:09	06/19/24 18:03	1
Method: TAL SOP Total BTEX - Tot	al BTEX Calc	ulation				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/19/24 18:03	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			06/19/24 17:47	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 17:47	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 17:47	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		06/18/24 15:38	06/19/24 17:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				06/18/24 15:38	06/19/24 17:47	1
o-Terphenyl	118		70 - 130				06/18/24 15:38	06/19/24 17:47	1
 Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	226		4.98		mg/Kg			06/19/24 09:47	1

Matrix: Solid

Surrogate Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

-				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-44904-1	S-1 (0-3")	93	88		
880-44904-2	S-1 (6")	86	104		6
880-44904-2 MS	S-1 (6")	111	98		
880-44904-2 MSD	S-1 (6")	118	96		
880-44904-3	S-1 (1')	121	108		
880-44904-4	S-1 (1.5')	129	116		8
880-44904-5	S-2 (0-3")	114	108		
880-44904-6	S-2 (6")	119	110		0
880-44904-7	S-2 (1')	123	119		3
880-44904-8	S-2 (1.5')	118	102		
880-44904-9	S-3 (0-3")	120	104		
880-44904-10	S-3 (6")	120	112		
880-44904-11	S-3 (1')	93	95		
880-44904-12	S-3 (1.5')	119	110		
LCS 880-83496/1-A	Lab Control Sample	105	104		
LCSD 880-83496/2-A	Lab Control Sample Dup	110	100		
MB 880-83496/5-A	Method Blank	189 S1+	137 S1+		13
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

-			
		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-44849-A-51-F MS	Matrix Spike	95	96
880-44849-A-51-G MSD	Matrix Spike Duplicate	112	113
880-44904-1	S-1 (0-3")	99	92
880-44904-2	S-1 (6")	90	90
880-44904-3	S-1 (1')	91	93
880-44904-4	S-1 (1.5')	94	97
880-44904-5	S-2 (0-3")	117	127
880-44904-6	S-2 (6")	107	111
880-44904-7	S-2 (1')	80	88
880-44904-8	S-2 (1.5')	105	116
880-44904-9	S-3 (0-3")	106	113
880-44904-10	S-3 (6")	95	103
880-44904-11	S-3 (1')	106	112
880-44904-12	S-3 (1.5')	110	118
LCS 880-83483/2-A	Lab Control Sample	93	95
LCSD 880-83483/3-A	Lab Control Sample Dup	82	84
MB 880-83483/1-A	Method Blank	91	98
Surrogate Legend			

OTPH = o-Terphenyl

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 83538								Prep Type: 7 Prep Batch
	МВ	МВ						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Benzene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 12:18
Toluene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 12:18
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 12:18
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/18/24 16:09	06/19/24 12:18
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/18/24 16:09	06/19/24 12:18
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/18/24 16:09	06/19/24 12:18
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed
4-Bromofluorobenzene (Surr)	189	S1+	70 - 130				06/18/24 16:09	06/19/24 12:18
1,4-Difluorobenzene (Surr)	137	S1+	70 - 130				06/18/24 16:09	06/19/24 12:18

Lab Sample ID: LCS 880-83496/1-A Matrix: Solid

Analysis Batch: 83538

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1090		mg/Kg		109	70 - 130	
Toluene	0.100	0.08969		mg/Kg		90	70 - 130	
Ethylbenzene	0.100	0.1045		mg/Kg		105	70 - 130	
m-Xylene & p-Xylene	0.200	0.2018		mg/Kg		101	70 - 130	
o-Xylene	0.100	0.1048		mg/Kg		105	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Lab Sample ID: LCSD 880-83496/2-A

Matrix: Solid

Analysis Batch: 83538							Prep	Batch:	83496
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1052		mg/Kg		105	70 - 130	4	35
Toluene	0.100	0.09462		mg/Kg		95	70 - 130	5	35
Ethylbenzene	0.100	0.09930		mg/Kg		99	70 - 130	5	35
m-Xylene & p-Xylene	0.200	0.2073		mg/Kg		104	70 - 130	3	35
o-Xylene	0.100	0.1088		mg/Kg		109	70 - 130	4	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-44904-2 MS Matrix: Solid

Analysis Bataby 92529

Analysis Batch: 83538									Prep Batch: 8349	96
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0996	0.09948		mg/Kg		100	70 - 130	
Toluene	<0.00201	U	0.0996	0.08936		mg/Kg		90	70 - 130	

lland

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Client Sample ID: Method Blank Total/NA h: 83496

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 83496

1 1

Client Sample ID: S-1 (6")

Prep Type: Total/NA

Lab Sample ID: MB 880-83496/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-44904-2 MS	5							C	lient Samp	ole ID: S	-1 (6")
Matrix: Solid										Гуре: То	
Analysis Batch: 83538									Prep	Batch:	83496
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00201	U	0.0996	0.08699		mg/Kg		87	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.199	0.1705		mg/Kg		86	70 - 130		
o-Xylene	<0.00201	U	0.0996	0.09645		mg/Kg		97	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	111		70 - 130								
1,4-Difluorobenzene (Surr)	98		70 - 130								
Matrix: Solid Analysis Batch: 83538										Type: To Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00201	U	0.101	0.09714		mg/Kg		96	70 - 130	2	35
Toluene	<0.00201	U	0.101	0.08685		mg/Kg		86	70 - 130	3	35
Ethylbenzene	<0.00201	U	0.101	0.08408		mg/Kg		83	70 - 130	3	35
m-Xylene & p-Xylene	<0.00402	U	0.202	0.1642		mg/Kg		81	70 - 130	4	35
o-Xylene	<0.00201	U	0.101	0.09457		mg/Kg		94	70 - 130	2	35
	MSD	MSD									
	%Recovery	Qualifier	Limits								
Surrogate			70 - 130								
Surrogate 4-Bromofluorobenzene (Surr)	118		70 - 130								

Lab Sample ID: MB 880-83483/1-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 83526								Prep Batch	n: 83483
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 08:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 08:17	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 08:17	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				06/18/24 15:38	06/19/24 08:17	1
o-Terphenyl	98		70 - 130				06/18/24 15:38	06/19/24 08:17	1

ipiei Prep Type: Total/NA Matrix: Solid Analysis Batch: 83526 Prep Batch: 83483 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D 1000 913.9 mg/Kg 91 70 - 130 Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over 1000 940.9 mg/Kg 94 70 - 130

Eurofins Midland

5

7

C10-C28)

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: LCS 880-83	483/2-A						Client	Sample	ID: Lab Co		
Matrix: Solid									Prep 1	Type: Tot	al/N/
Analysis Batch: 83526									Prep	Batch:	8348
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	93		70 - 130								
o-Terphenyl	95		70 - 130								
Lab Sample ID: LCSD 880-8	33483/3-A					Clier	nt Sam	ple ID: I	Lab Contro	I Sample	e Du
Matrix: Solid								·		Type: To	
Analysis Batch: 83526										Batch:	
			Spike	LCSD	LCSD				• %Rec		RP
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	843.0		mg/Kg		84	70 - 130	8	2
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	816.6		mg/Kg		82	70 - 130	14	2
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane			70 - 130								
p-Terphenyl	84		70 - 130								
Matrix: Solid		Sample	Spike	MS	MS			Client	Prep	: Matrix Type: Tot Batch:	tal/N
Matrix: Solid Analysis Batch: 83526	Sample	Sample Qualifier	Spike Added		MS Qualifier	Unit	D	Client %Rec	Prep 1	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics	Sample	Qualifier				_ <mark>Unit</mark> mg/Kg	<u>D</u>		Prep 1 Prep %Rec	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10	Sample Result <50.0	Qualifier U F2	Added	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep 1 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result	Qualifier U F2	Added	Result	Qualifier		D	%Rec	Prep 1 Prep %Rec Limits	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <50.0 <50.0	Qualifier U F2 U F1 MS	Added	Result 968.7	Qualifier	mg/Kg	D	%Rec 95	Prep 1 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample Result <50.0 <50.0 MS %Recovery	Qualifier U F2 U F1	Added 997 997 Limits	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep 1 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	Sample Result <50.0	Qualifier U F2 U F1 MS	Added 997 997 <u>Limits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg	<u> </u>	%Rec 95	Prep 1 Prep %Rec Limits 70 - 130	Type: To	tal/N
Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	Sample Result <50.0 <50.0 MS %Recovery	Qualifier U F2 U F1 MS	Added 997 997 Limits	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep 1 Prep %Rec Limits 70 - 130	Type: To	al/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl	Sample Result <50.0	Qualifier U F2 U F1 MS	Added 997 997 <u>Limits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130	Type: Tot Batch:	tal/N 8348
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-44849-/	Sample Result <50.0	Qualifier U F2 U F1 MS	Added 997 997 <u>Limits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch:	lica
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-44849-/ Matrix: Solid	Sample Result <50.0	Qualifier U F2 U F1 MS	Added 997 997 <u>Limits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch:	lica tal/N
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-/ Matrix: Solid	Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD	Qualifier U F2 U F1 MS	Added 997 997 <u>Limits</u> 70 - 130	Result 968.7 555.4	Qualifier	mg/Kg		%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch:	licat al/N 8348
Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate A-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-J Matrix: Solid Analysis Batch: 83526	Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample	Qualifier U F2 U F1 MS Qualifier	Added 997 997 Limits 70 - 130 70 - 130	Result 968.7 555.4 MSD	Qualifier F1	mg/Kg		%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep 1	Type: To Batch:	licat tal/N 8348 8348 RF
Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-J Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics	Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample	Qualifier U F1 MS Qualifier Sample Qualifier	Added 997 997 <u>Limits</u> 70 - 130 70 - 130 Spike	Result 968.7 555.4 MSD	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg Cl	ient Sa	%Rec 95 56	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep 1 Prep 2 %Rec	Dike Dup Batch:	licat tal/N 8348 8348 tal/N 8348 RF Lin
Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-J Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample Result	Qualifier U F1 MS Qualifier Qualifier U F2	Added 997 997 <u>Limits</u> 70 - 130 70 - 130 Spike Added	Result 968.7 555.4 MSD Result	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl	ient Sa	%Rec 95 56 ample ID	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits	Dike Dup Dike Dup Dype: Tof Batch: RPD	licat al/N 8348 sal/N 8348 RF Lin
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane p-Terphenyl Lab Sample ID: 880-44849-J Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Sample Result <50.0	Qualifier U F1 MS Qualifier Qualifier U F2	Added 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 70 - 130	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	bike Dup Type: Tot Batch: Type: Tot Batch: RPD 24	licat al/N 8348 sal/N 8348 RP Lim 2
Lab Sample ID: 880-44849-/ Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-44849-/ Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	Sample Result <50.0	Qualifier U F2 U F1 MS Qualifier U F2 U F1 U F1 MSD	Added 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130 80 70 - 130	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	bike Dup Type: Tot Batch: Type: Tot Batch: RPD 24	licat
Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Lab Sample ID: 880-44849-J Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Sample Result <50.0	Qualifier U F2 U F1 MS Qualifier U F2 U F1 U F1 MSD	Added 997 997 <u>Limits</u> 70 - 130 70 - 130 70 - 130 997 997	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Unit mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep 1 Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 1 Prep %Rec Limits 70 - 130	bike Dup Type: Tot Batch: Type: Tot Batch: RPD 24	licat al/N. 8348 s348 al/N. al/N. 8348 RP Lim 2

Eurofins Midland

Client: Carmona Resources

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 300.0 - Anions, Ion Chromatography

								Olland			Diant
Lab Sample ID: MB 880-8348	4/1-A							Client S	Sample ID: I		
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 83501											
	_	MB MB					_				
Analyte		esult Qualifier		RL	MDL Unit	,	D	Prepared	Analyz		Dil Fac
Chloride	<	<5.00 U	:	5.00	mg/k	g			06/19/24 (06:38	
Lab Sample ID: LCS 880-834	84/2-A						Clien	t Sample	e ID: Lab Co	ontrol S	ample
Matrix: Solid										Type: S	
Analysis Batch: 83501											
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride			250	258.6		mg/Kg		103	90 - 110		
Lab Sample ID: LCSD 880-83	484/3-A					CI	ient Sai	nnle ID:	Lab Contro	l Samol	le Dur
Matrix: Solid										Type: S	
Analysis Batch: 83501										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	5.50
			Spike	LCSD	LCSD				%Rec		RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride	·		250	258.7		mg/Kg		103	90 - 110	0	2
Lab Comple ID: 990 44900 A	4 E MQ							Client	Sample ID:	Motrix	Cnik
Lab Sample ID: 880-44899-A- Matrix: Solid	-1-F 103							Client		Type: S	
									Flep	Type. 5	olubi
Analysis Batch: 83501	Sample	Sample	Spike	MS	мѕ				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	41.6		251	261.6		mg/Kg		88	90 - 110		
- - 							0				
Lab Sample ID: 880-44899-A	-1-G MSD						Client S	ample IL	D: Matrix Sp		
Matrix: Solid									Prep	Type: S	olubi
Analysis Batch: 83501	Samplo	Sample	Spike	MSD	MSD				%Rec		RP
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Chloride		·	251	276.9	Quaimer	mg/Kg		94	90 - 110	6	2
-								•••		-	_
Lab Sample ID: 880-44904-5	MS							Cli	ent Sample	ID: S-2	(0-3'
Matrix: Solid									Prep	Type: S	olubl
Analysis Batch: 83501											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Chloride	725	F1	1250	2301	F1	mg/Kg		126	90 - 110		
Lab Sample ID: 880-44904-5	MSD							Cli	ent Sample	ID: S-2	(0-3"
Matrix: Solid										Type: S	
Analysis Batch: 83501											
	Sample	Sample	Spike	MSD	MSD				%Rec		RP
	oumpie	• ampie									
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 83496

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Total/NA	Solid	5035	
880-44904-2	S-1 (6")	Total/NA	Solid	5035	
880-44904-3	S-1 (1')	Total/NA	Solid	5035	
880-44904-4	S-1 (1.5')	Total/NA	Solid	5035	
880-44904-5	S-2 (0-3")	Total/NA	Solid	5035	
880-44904-6	S-2 (6")	Total/NA	Solid	5035	
880-44904-7	S-2 (1')	Total/NA	Solid	5035	
880-44904-8	S-2 (1.5')	Total/NA	Solid	5035	
880-44904-9	S-3 (0-3")	Total/NA	Solid	5035	
880-44904-10	S-3 (6")	Total/NA	Solid	5035	
880-44904-11	S-3 (1')	Total/NA	Solid	5035	
880-44904-12	S-3 (1.5')	Total/NA	Solid	5035	
MB 880-83496/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-83496/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-83496/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-44904-2 MS	S-1 (6")	Total/NA	Solid	5035	
880-44904-2 MSD	S-1 (6")	Total/NA	Solid	5035	

Analysis Batch: 83538

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Total/NA	Solid	8021B	83496
880-44904-2	S-1 (6")	Total/NA	Solid	8021B	83496
880-44904-3	S-1 (1')	Total/NA	Solid	8021B	83496
880-44904-4	S-1 (1.5')	Total/NA	Solid	8021B	83496
880-44904-5	S-2 (0-3")	Total/NA	Solid	8021B	83496
880-44904-6	S-2 (6")	Total/NA	Solid	8021B	83496
880-44904-7	S-2 (1')	Total/NA	Solid	8021B	83496
880-44904-8	S-2 (1.5')	Total/NA	Solid	8021B	83496
880-44904-9	S-3 (0-3")	Total/NA	Solid	8021B	83496
880-44904-10	S-3 (6")	Total/NA	Solid	8021B	83496
880-44904-11	S-3 (1')	Total/NA	Solid	8021B	83496
880-44904-12	S-3 (1.5')	Total/NA	Solid	8021B	83496
MB 880-83496/5-A	Method Blank	Total/NA	Solid	8021B	83496
LCS 880-83496/1-A	Lab Control Sample	Total/NA	Solid	8021B	83496
LCSD 880-83496/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	83496
880-44904-2 MS	S-1 (6")	Total/NA	Solid	8021B	83496
880-44904-2 MSD	S-1 (6")	Total/NA	Solid	8021B	83496

Analysis Batch: 83692

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Total/NA	Solid	Total BTEX	
880-44904-2	S-1 (6")	Total/NA	Solid	Total BTEX	
880-44904-3	S-1 (1')	Total/NA	Solid	Total BTEX	
880-44904-4	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-44904-5	S-2 (0-3")	Total/NA	Solid	Total BTEX	
880-44904-6	S-2 (6")	Total/NA	Solid	Total BTEX	
880-44904-7	S-2 (1')	Total/NA	Solid	Total BTEX	
880-44904-8	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-44904-9	S-3 (0-3")	Total/NA	Solid	Total BTEX	
880-44904-10	S-3 (6")	Total/NA	Solid	Total BTEX	
880-44904-11	S-3 (1')	Total/NA	Solid	Total BTEX	

Eurofins Midland

5

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

GC VOA (Continued)

Analysis Batch: 83692 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-12	S-3 (1.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 83483

Lab Sample ID 880-44904-1	Client Sample ID S-1 (0-3")	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
880-44904-2	S-1 (6")	Total/NA	Solid	8015NM Prep	
880-44904-3	S-1 (1')	Total/NA	Solid	8015NM Prep	
880-44904-4	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-44904-5	S-2 (0-3")	Total/NA	Solid	8015NM Prep	
880-44904-6	S-2 (6")	Total/NA	Solid	8015NM Prep	
880-44904-7	S-2 (1')	Total/NA	Solid	8015NM Prep	
880-44904-8	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-44904-9	S-3 (0-3")	Total/NA	Solid	8015NM Prep	
880-44904-10	S-3 (6")	Total/NA	Solid	8015NM Prep	
880-44904-11	S-3 (1')	Total/NA	Solid	8015NM Prep	
880-44904-12	S-3 (1.5')	Total/NA	Solid	8015NM Prep	
MB 880-83483/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-83483/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-83483/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-44849-A-51-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-44849-A-51-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 83526

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Total/NA	Solid	8015B NM	83483
880-44904-2	S-1 (6")	Total/NA	Solid	8015B NM	83483
880-44904-3	S-1 (1')	Total/NA	Solid	8015B NM	83483
880-44904-4	S-1 (1.5')	Total/NA	Solid	8015B NM	83483
880-44904-5	S-2 (0-3")	Total/NA	Solid	8015B NM	83483
880-44904-6	S-2 (6")	Total/NA	Solid	8015B NM	83483
880-44904-7	S-2 (1')	Total/NA	Solid	8015B NM	83483
880-44904-8	S-2 (1.5')	Total/NA	Solid	8015B NM	83483
880-44904-9	S-3 (0-3")	Total/NA	Solid	8015B NM	83483
880-44904-10	S-3 (6")	Total/NA	Solid	8015B NM	83483
880-44904-11	S-3 (1')	Total/NA	Solid	8015B NM	83483
880-44904-12	S-3 (1.5')	Total/NA	Solid	8015B NM	83483
MB 880-83483/1-A	Method Blank	Total/NA	Solid	8015B NM	83483
LCS 880-83483/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	83483
LCSD 880-83483/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	83483
880-44849-A-51-F MS	Matrix Spike	Total/NA	Solid	8015B NM	83483
880-44849-A-51-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	83483

Analysis Batch: 83678

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Total/NA	Solid	8015 NM	
880-44904-2	S-1 (6")	Total/NA	Solid	8015 NM	
880-44904-3	S-1 (1')	Total/NA	Solid	8015 NM	
880-44904-4	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-44904-5	S-2 (0-3")	Total/NA	Solid	8015 NM	

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

GC Semi VOA (Continued)

Analysis Batch: 83678 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44904-6	S-2 (6")	Total/NA	Solid	8015 NM	
880-44904-7	S-2 (1')	Total/NA	Solid	8015 NM	
880-44904-8	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-44904-9	S-3 (0-3")	Total/NA	Solid	8015 NM	
880-44904-10	S-3 (6")	Total/NA	Solid	8015 NM	
880-44904-11	S-3 (1')	Total/NA	Solid	8015 NM	
880-44904-12	S-3 (1.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 83484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Soluble	Solid	DI Leach	
880-44904-2	S-1 (6")	Soluble	Solid	DI Leach	
880-44904-3	S-1 (1')	Soluble	Solid	DI Leach	
880-44904-4	S-1 (1.5')	Soluble	Solid	DI Leach	
880-44904-5	S-2 (0-3")	Soluble	Solid	DI Leach	
880-44904-6	S-2 (6")	Soluble	Solid	DI Leach	
880-44904-7	S-2 (1')	Soluble	Solid	DI Leach	
880-44904-8	S-2 (1.5')	Soluble	Solid	DI Leach	
880-44904-9	S-3 (0-3")	Soluble	Solid	DI Leach	
880-44904-10	S-3 (6")	Soluble	Solid	DI Leach	
880-44904-11	S-3 (1')	Soluble	Solid	DI Leach	
880-44904-12	S-3 (1.5')	Soluble	Solid	DI Leach	
MB 880-83484/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-83484/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-83484/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-44899-A-1-F MS	Matrix Spike	Soluble	Solid	DI Leach	
880-44899-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
880-44904-5 MS	S-2 (0-3")	Soluble	Solid	DI Leach	
880-44904-5 MSD	S-2 (0-3")	Soluble	Solid	DI Leach	

Analysis Batch: 83501

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-1	S-1 (0-3")	Soluble	Solid	300.0	83484
880-44904-2	S-1 (6")	Soluble	Solid	300.0	83484
880-44904-3	S-1 (1')	Soluble	Solid	300.0	83484
880-44904-4	S-1 (1.5')	Soluble	Solid	300.0	83484
880-44904-5	S-2 (0-3")	Soluble	Solid	300.0	83484
880-44904-6	S-2 (6")	Soluble	Solid	300.0	83484
880-44904-7	S-2 (1')	Soluble	Solid	300.0	83484
880-44904-8	S-2 (1.5')	Soluble	Solid	300.0	83484
880-44904-9	S-3 (0-3")	Soluble	Solid	300.0	83484
880-44904-10	S-3 (6")	Soluble	Solid	300.0	83484
880-44904-11	S-3 (1')	Soluble	Solid	300.0	83484
880-44904-12	S-3 (1.5')	Soluble	Solid	300.0	83484
MB 880-83484/1-A	Method Blank	Soluble	Solid	300.0	83484
LCS 880-83484/2-A	Lab Control Sample	Soluble	Solid	300.0	83484
LCSD 880-83484/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	83484
880-44899-A-1-F MS	Matrix Spike	Soluble	Solid	300.0	83484
880-44899-A-1-G MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	83484

Eurofins Midland

5

8

Job ID: 880-44904-1

SDG: Eddy County, New Mexico

Released to Imaging: 8/7/2024 2:40:51 PM

5

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1 SDG: Eddy County, New Mexico

HPLC/IC (Continued)

Analysis Batch: 83501 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44904-5 MS	S-2 (0-3")	Soluble	Solid	300.0	83484
880-44904-5 MSD	S-2 (0-3")	Soluble	Solid	300.0	83484

Eurofins Midland

Lab Chronicle

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: S-1 (0-3") Date Collected: 06/17/24 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	83538	06/19/24 15:51	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 15:51	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 13:42	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 13:42	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	83501	06/19/24 08:01	SMC	EET MID

Lab Sample ID: 880-44904-2

Lab Sample ID: 880-44904-3

Lab Sample ID: 880-44904-4

Matrix: Solid

Matrix: Solid

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Client Sample ID: S-1 (6")

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 12:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 12:47	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 14:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 14:02	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 08:07	SMC	EET MID

Client Sample ID: S-1 (1') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 13:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 13:08	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 14:22	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 14:22	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 08:13	SMC	EET MID

Client Sample ID: S-1 (1.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 13:28	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 13:28	SM	EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-1

Matrix: Solid

5 6

Project/Site: Solution Federal Com 003H (05.11.2024)

Matrix: Solid

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-4

Client Sample ID: S-1 (1.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			83678	06/19/24 15:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 15:03	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 08:19	SMC	EET MID

Client Sample ID: S-2 (0-3") Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 13:49	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 13:49	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 15:24	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 15:24	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	83501	06/19/24 08:25	SMC	EET MID

Client Sample ID: S-2 (6")

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 14:09	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 14:09	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 15:44	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 15:44	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:00	SMC	EET MID

Client Sample ID: S-2 (1') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 14:30	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 14:30	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 16:05	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 16:05	SM	EET MID

Eurofins Midland

Matrix: Solid

5

9

Lab Sample ID: 880-44904-5 Matrix: Solid

Lab Sample ID: 880-44904-6

Lab Sample ID: 880-44904-7

Matrix: Solid

Project/Site: Solution Federal Com 003H (05.11.2024)

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-7

Lab Sample ID: 880-44904-8

Lab Sample ID: 880-44904-9

Client Sample ID: S-2 (1') Date Collected: 06/17/24 00:00

Client: Carmona Resources

Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.02 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:06	SMC	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 14:50	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 14:50	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 16:25	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 16:25	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:24	SMC	EET MID

Client Sample ID: S-3 (0-3") Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 15:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 15:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 16:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 16:46	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:30	SMC	EET MID

Client Sample ID: S-3 (6") Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Lab Sample ID: 880-44904-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 15:31	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 15:31	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 17:06	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 17:06	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:36	SMC	EET MID

Eurofins Midland

Lab Chronicle

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44904-11

Matrix: Solid

5 6

9

Client Sample ID: S-3 (1') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 17:43	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 17:43	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 17:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 17:27	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:41	SMC	EET MID

Lab Sample ID: 880-44904-12

Matrix: Solid

Client Sample ID: S-3 (1.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	83496	06/18/24 16:09	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83538	06/19/24 18:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			83692	06/19/24 18:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			83678	06/19/24 17:47	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 17:47	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 09:47	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 8/7/2024 2:40:51 PM

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date
exas	NELAP	1	T104704400	06-30-24
		فللسوية فواستا واستعلمت والمار والفر	in al last data and a substantia and a sublact with a structure line.	والمتراوية والمتراوية بالمتعادية
for which the agenc	does not offer certification.	-	ied by the governing authority. This lis	t may include analytes
for which the agenc Analysis Method		Matrix	Analyte	t may include analytes
for which the agenc	does not offer certification.	-		t may include analytes

Eurofins Midland

Page 68 of 142

Method Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	-
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	E
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			8
ASTM = A	STM International			
EPA = US	Environmental Protection Agency			9
SW846 = '	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed	tion, November 1986 And Its Updates.		
TAL SOP =	 TestAmerica Laboratories, Standard Operating Procedure 			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44904-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-44904-1	S-1 (0-3")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-2	S-1 (6")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-3	S-1 (1')	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-4	S-1 (1.5')	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-5	S-2 (0-3")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-6	S-2 (6")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-7	S-2 (1')	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-8	S-2 (1.5')	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-9	S-3 (0-3")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-10	S-3 (6")	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-11	S-3 (1')	Solid	06/17/24 00:00	06/18/24 13:50
880-44904-12	S-3 (1.5')	Solid	06/17/24 00:00	06/18/24 13:50

		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmona	• S-3 (6")	S-3 (0-3")	- S-2 (1.5')	S-2 (1')	S-2 (6")	S-2 (0-3")	- S-1 (1.5')	. S-1 (1')	, S-1 (6")	S-1 (0-3")	Sample Identification	Fotal Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name:	Project Location	Project Number:	Project Name: Solutic	Phone: 432-813-6823	City, State ZIP: Midland	Address: 310 W \		Project Manager: Conner
Luns	Relinquished by: (Signature)	9 Carmona / Mcarm	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	n Date		Yes NO (N/A	Yes NO MA	Yes No	Temp Blank:		ML	Eddy County, New Mexico	2406	Solution Federal Com 003H (05.11.2024)	3-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
V	oy: (Signature)	ona@carmona											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No)		Mexico		H (05.11.2024)					
		resources.com	×	×	×	×	×	×	×	×	×	×	Soil	erature:	ading:	57		Wet Ice:			Due Date:	Routine	Tum	Email:				
		and Conner	G	G	9	9	9	9	6	9	9	9	Water Grab/ Comp	R	13		TKS	Yes No			72 HR	Rush	Turn Around	Email: mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Name	Bill to: (if different)
6/1		Moehring	1	-	3 1	3 1	3 1	3 1	3	3 1	3 1	3 1	mp Cont	1_		P	aran	nete	rs			Pres. Code	_	carmonar			ne:	n)
8/24	Date/Time	J / Cmo	×	×	×	×	×	×	×	×	×	×			в	TEX	802	18						esource		-		Carmo
24013:50	lime	ehring@	×	×	×	X	×	X	×	Х	X	X	TP	H 801	15M	(GF	*0 +	DRC	+ M	RO)			s.com				Carmona Resources
03			×	×	×	X	X	X	×	X	X	X			CH	lori	de 3(0.0	_									ources
- Ho		esources.com																		,			ANALYSIS REQUEST					
	Received by: (Signature)														· · · · · · · · · · · · · · · · · · ·								REQUEST	Deliverables: EDD	Reporting:Level II Level III		Program: UST/PST PRP	Work C
oltaine F	Date/Time												Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	U	~		_	None: NO DI Water. H ₂ O	Preservative Codes	ADaPT Other:			rownfields RC perfund	Work Order Comments

Page 71 of 142

5

13

Chain of Custody

S 800-44904 Chain of Custody

Project Manager:	Conner Moehring	g			Bill to: (if different)	arent)	Carmo	Carmona Resources	lices					Wor	Corder C	Work Order Comments		
	Carmona Resources	Irces			Company Name:	ame:						Progra	am: UST/P	Program: UST/PST PRP	rownfields	fields RC		
	310 W Wall St Ste 500	ite 500			Address:		_					State	State of Project:					
e ZIP:	Midland, TX 79701	01			City, State ZIP:	(IP:						Report	ing:Level I	Reporting:Level II Level III		JST RRP		
	432-813-6823			Email	Email: mcarmona@carmonaresources.com	@carmon:	aresource	s.com				Delive	Deliverables: EDD		ADaPT		Other:	
Project Name:	Solution Federal Com 003H (05.11.2024)	al Com 003F	1 (05.11.2024)	Tum	Turn Around	_	_			ANA	ANALYSIS REQUEST	QUEST				Prese	Preservative Codes	odes
Project Number:		2406		Routine	© Rush	Pres. Code	\$ F		_							None: NO	DI W.	DI Water: H ₂ O
Project Location	Eddy C	Eddy County, New Mexico	Mexico	Due Date:	72 HR		_						_			Cool: Cool	MeOt	MeOH: Me
Sampler's Name:		ML						(RO)						••••		HCL: HC	HNO	HNO3: HN
PO#) + N	-	_						H2S04: H2	NaOI	NaOH: Na
SAMPLE RECEIPT		Temp Blank:	Yes No	Wet lce:	Yes N	No		DRO						_	_	H ₃ PO ₄ : HP		
Received Intact:	Yes	No	Thermometer ID:			arar			19.2		_	-				NaHSO4: NABIS	ABIS	
Cooler Custody Seals:	Yes No	NO NIA	Correction Factor:	Di		P	TEX						_			Na2S2O3: NaSO3	laSO ₃	
Sample Custody Seals:	Yes	No N/A	Temperature Reading:	ading:			в		Ch	_				-		Zn Acetate+NaOH: Zn	+NaOH: Zn	
I otal Containers:			Corrected Temperature:	erature:			_	1 80	-				_			NaOH+Asc	NaUH+Ascorbic Acid: SAPC	SAPC
Sample Identification	fication	Date	Time	Soil	Water	Grab/ # of Comp Cont	of	TPH								Sam	Sample Comments	ents
· S-3 (1')		6/17/2024		×			1 X	×	×									
· S-3 (1.5)	3	6/17/2024		×		G 1	×	×	×				-					
						_												
						+		\Box					-	+				
						+	-		+				_					
						_							-					
										_								
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	to Mike Carmon	na / Mcarmo	ona@carmona	resources.con	1 and Conn	er Moehri	ng / Cmo	ehring@	carmona	'esource	i.com							
Acerc	Re		Relinquished by: (Signature)			_	Date/Time	Time			R	Received by: (Signature)	/: (Signati	Jre)			Date/Time	ime
		elinquished t				·			18/24/2013:50			P				1	11SIAH	うろう

6/20/2024

Work Order No: 44904

Page 72 of 142

13

Chain of Custody
Job Number: 880-44904-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 44904 List Number: 1

<6mm (1/4").

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 7/22/2024 1:50:16 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 6/21/2024 1:29:46 PM

JOB DESCRIPTION

Solution Federal Com 003H (05.11.2024) Eddy County, New Mexico

JOB NUMBER

880-44899-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 6/21/2024 1:29:46 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Page 76 of 142

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
	23
Receipt Checklists	24

Definitions/Glossary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Qualifiers

Quantero		<u> </u>
GC VOA		
Qualifier	Qualifier Description	4
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	5
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA	Α	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	8
U	Indicates the analyte was analyzed for but not detected.	U
HPLC/IC		9
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	10
U	Indicates the analyte was analyzed for but not detected.	
Glossary		11
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	4.5
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Page 77 of 142

Case Narrative

Client: Carmona Resources Project: Solution Federal Com 003H (05.11.2024) Job ID: 880-44899-1

Eurofins Midland

Job ID: 880-44899-1

Job Narrative 880-44899-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 6/18/2024 1:50 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.2°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-44899-1), H-2 (0-0.5') (880-44899-2), H-3 (0-0.5') (880-44899-3), H-4 (0-0.5') (880-44899-4), H-5 (0-0.5') (880-44899-5) and H-6 (0-0.5') (880-44899-6).

GC VOA

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-83482 and analytical batch 880-83414 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-83482 and analytical batch 880-83414 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-83483 and analytical batch 880-83526 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The following samples required confirmation (CON) due to a an interference affecting Chloride : H-1 (0-0.5') (880-44899-1), (880-44899-A-1-F MS) and (880-44899-A-1-G MSD).

Method 300_ORGFM_28D - Soluble: The Chloride matrix spike (MS) recoveries for preparation batch 880-83484 and analytical batch 880-83501 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits. H-1 (0-0.5') (880-44899-1), H-2 (0-0.5') (880-44899-2), H-3 (0-0.5') (880-44899-3), H-4 (0-0.5') (880-44899-4), H-5 (0-0.5') (880-44899-5), H-6 (0-0.5') (880-44899-6) and (880-44899-A-1-F MS)

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: H-1 (0-0.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U F1 F2	0.00199		mg/Kg		06/18/24 14:59	06/18/24 18:15	
oluene	<0.00199	U F1 F2	0.00199		mg/Kg		06/18/24 14:59	06/18/24 18:15	
thylbenzene	<0.00199	U F1	0.00199		mg/Kg		06/18/24 14:59	06/18/24 18:15	
n-Xylene & p-Xylene	<0.00398	U F1 F2	0.00398		mg/Kg		06/18/24 14:59	06/18/24 18:15	
-Xylene	<0.00199	U F1 F2	0.00199		mg/Kg		06/18/24 14:59	06/18/24 18:15	
Kylenes, Total	<0.00398	U F1 F2	0.00398		mg/Kg		06/18/24 14:59	06/18/24 18:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Bromofluorobenzene (Surr)	100		70 - 130				06/18/24 14:59	06/18/24 18:15	
,4-Difluorobenzene (Surr)	95		70 - 130				06/18/24 14:59	06/18/24 18:15	
Method: TAL SOP Total BTEX - To	tal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00398	U	0.00398		mg/Kg			06/18/24 18:15	
Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/19/24 11:40	
Method: SW846 8015B NM - Diese	l Range Orga	nics (DRO)	(GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 11:40	
GRO)-C6-C10					5 5				
Diesel Range Organics (Over 210-C28)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 11:40	
Dil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 11:40	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane	92		70 - 130				06/18/24 15:38	06/19/24 11:40	
p-Terphenyl	99		70 - 130				06/18/24 15:38	06/19/24 11:40	
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e						
	Desult	Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fa
	Result	Quaimer							
nalyte	41.6		5.01		mg/Kg			06/19/24 13:22	
AnalyteChloride					mg/Kg		Lab Sam	06/19/24 13:22 ple ID: 880-4	4899-2
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00					mg/Kg		Lab Sam	ple ID: 880-4	4899-2 x: Solic
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50	41.6	F1	5.01		mg/Kg		Lab Sam	ple ID: 880-4	
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile O	41.6	F1	5.01	MDL			Lab Sam	ple ID: 880-4	x: Solic
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00	41.6	F1 ounds (GC) Qualifier	5.01			<u>D</u>		ple ID: 880-4 Matri	
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile O Analyte Benzene	41.6	F1 ounds (GC) Qualifier U	5.01		Unit mg/Kg	D	Prepared 06/18/24 14:59	ple ID: 880-4 Matri <u>Analyzed</u> 06/18/24 18:42	x: Solic
Analyte Chloride lient Sample ID: H-2 (0-0.5') Ate Collected: 06/17/24 00:00 Ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile O Analyte Benzene Foluene	41.6	F1 ounds (GC) Qualifier U U	5.01 		Unit mg/Kg mg/Kg	D	Prepared 06/18/24 14:59 06/18/24 14:59	Analyzed 06/18/24 18:42 06/18/24 18:42	x: Solic
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene	41.6	F1 ounds (GC) Qualifier U U U	F.01 RL 0.00201 0.00201 0.00201		Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared 06/18/24 14:59 06/18/24 14:59 06/18/24 14:59	Analyzed 06/18/24 18:42 06/18/24 18:42	Dil Fa
Analyte Chloride lient Sample ID: H-2 (0-0.5') ate Collected: 06/17/24 00:00 ate Received: 06/18/24 13:50 Method: SW846 8021B - Volatile O Analyte	41.6	F1 ounds (GC) Qualifier U U U U	5.01 		Unit mg/Kg mg/Kg	<u>D</u>	Prepared 06/18/24 14:59 06/18/24 14:59	Analyzed 06/18/24 18:42 06/18/24 18:42	x: Solic

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-1 Matrix: Solid

5

Eurofins Midland

Surrogate

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1

1

Page 79 of 142

Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample Results

Page 80 of 142

Matrix: Solid

Matrix: Solid

5

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-2

Client Sample ID: H-2 (0-0.5')

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			06/18/24 18:42	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			06/19/24 12:00	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 12:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 12:00	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 12:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	94		70 - 130				06/18/24 15:38	06/19/24 12:00	1
o-Terphenyl	100		70 - 130				06/18/24 15:38	06/19/24 12:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	34.0		5.03		mg/Kg			06/19/24 07:20	1

Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
Toluene	<0.00202	U	0.00202		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		06/18/24 14:59	06/18/24 19:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	111		70 - 130				06/18/24 14:59	06/18/24 19:09	1
1,4-Difluorobenzene (Surr)	112		70 - 130				06/18/24 14:59	06/18/24 19:09	1

Method: TAL SOP Total BTEX -	Iotal BIEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			06/18/24 19:09	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			06/19/24 12:20	1
_ Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO) ((GC)						
Analyte	· · ·	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 12:20	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 12:20	1
C10-C28)									

Eurofins Midland

Project/Site: Solution Federal Com 003H (05.11.2024)

Matrix: Solid

5

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-3

Client Sample ID: H-3 (0-0.5')

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Client: Carmona Resources

						Prepared	Analyzed	Dil Fac
<50.0	U	50.0		mg/Kg		06/18/24 15:38	06/19/24 12:20	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
99		70 - 130				06/18/24 15:38	06/19/24 12:20	1
102		70 - 130				06/18/24 15:38	06/19/24 12:20	1
hromatograp	hy - Solubl	e						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
40.7		4.99		mg/Kg			06/19/24 07:26	1
	%Recovery 99 102 hromatograp Result	%Recovery Qualifier 99 102 hromatography - Soluble Result Qualifier	%Recovery Qualifier Limits 99 70 - 130 102 70 - 130 hromatography - Soluble Result Qualifier RL	%Recovery 99Qualifier 102Limits 70 - 13010270 - 130hromatography - Soluble ResultQualifierResultQualifierRL	%Recovery Qualifier Limits 99 70 - 130 102 70 - 130 hromatography - Soluble Result Qualifier RL MDL	%Recovery Qualifier Limits 99 70 - 130 102 70 - 130 hromatography - Soluble Result Qualifier RL MDL Unit D	%Recovery Qualifier Limits Prepared 99 70 - 130 06/18/24 15:38 102 70 - 130 06/18/24 15:38 hromatography - Soluble Result Qualifier RL MDL Unit D Prepared	%Recovery Qualifier Limits Prepared Analyzed 99 70 - 130 06/18/24 15:38 06/19/24 12:20 102 70 - 130 06/18/24 15:38 06/19/24 12:20 hromatography - Soluble Result Qualifier RL MDL Unit D Prepared Analyzed

Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
Toluene	<0.00199	U	0.00199		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		06/18/24 14:59	06/18/24 19:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130				06/18/24 14:59	06/18/24 19:36	1
1,4-Difluorobenzene (Surr)	109		70 - 130				06/18/24 14:59	06/18/24 19:36	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	mg/K	g		06/18/24 19:36	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	P	Prepared	Analyzed	Dil Fac
	Total TPH	<49.7	U	49.7		mg/Kg				06/19/24 12:41	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 12:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 12:41	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 12:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	110		70 - 130				06/18/24 15:38	06/19/24 12:41	1
o-Terphenyl	113		70 - 130				06/18/24 15:38	06/19/24 12:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62.0		4.95		mg/Kg			06/19/24 07:32	1

Client Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: H-5 (0-0.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Method: SW846 8021B - Volatile	-		•		11	-	Duenersi	Anal	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200		0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
Foluene	<0.00200		0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
Ethylbenzene	<0.00200		0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
m-Xylene & p-Xylene	<0.00401		0.00401		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		06/18/24 14:59	06/18/24 20:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				06/18/24 14:59	06/18/24 20:03	1
1,4-Difluorobenzene (Surr)	91		70 - 130				06/18/24 14:59	06/18/24 20:03	1
Method: TAL SOP Total BTEX - 1	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			06/18/24 20:03	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			06/19/24 13:01	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 13:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 13:01	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		06/18/24 15:38	06/19/24 13:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	109		70 - 130				06/18/24 15:38	06/19/24 13:01	1
o-Terphenyl	114		70 - 130				06/18/24 15:38	06/19/24 13:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.3		5.02		mg/Kg			06/19/24 07:38	1
lient Sample ID: H-6 (0-0.5)						Lab Sam	ple ID: 880-4	4899-6
ate Collected: 06/17/24 00:00								Matri	x: Solid
ate Received: 06/18/24 13:50									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:30	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:30	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:30	1
m-Xylene & p-Xylene	<0.00400		0.00400		mg/Kg		06/18/24 14:59	06/18/24 20:30	1
o-Xylene	<0.00200		0.00200		mg/Kg		06/18/24 14:59	06/18/24 20:30	1
,		-			33				

Page 82 of 142

5

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-5

Matrix: Solid

Released to Imaging: 8/7/2024 2:40:51 PM

Project/Site: Solution Federal Com 003H (05.11.2024)

Matrix: Solid

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-6

Client Sample ID: H-6 (0-0.5')

Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00400	U	0.00400		mg/Kg			06/18/24 20:30	1	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<49.8	U	49.8		mg/Kg			06/19/24 13:21	1	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 13:21	1	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 13:21	1	
C10-C28)										
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		06/18/24 15:38	06/19/24 13:21	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane	83		70 - 130				06/18/24 15:38	06/19/24 13:21	1	
o-Terphenyl	88		70 - 130				06/18/24 15:38	06/19/24 13:21	1	-
Method: EDA 200.0 Anione Jon	Chromotograp	hu Calubi								
Method: EPA 300.0 - Anions, Ion		-		MDI	11		Durant	Ameliana	D!!	
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	31.1		5.04		mg/Kg			06/19/24 07:55	1	

Eurofins Midland

Released to Imaging: 8/7/2024 2:40:51 PM

Surrogate Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-44899-1	H-1 (0-0.5')	100	95	
880-44899-1 MS	H-1 (0-0.5')	79	104	
880-44899-1 MSD	H-1 (0-0.5')	102	103	
880-44899-2	H-2 (0-0.5')	100	108	
880-44899-3	H-3 (0-0.5')	111	112	
880-44899-4	H-4 (0-0.5')	115	109	
880-44899-5	H-5 (0-0.5')	104	91	
880-44899-6	H-6 (0-0.5')	107	102	
LCS 880-83482/1-A	Lab Control Sample	103	95	
LCSD 880-83482/2-A	Lab Control Sample Dup	97	103	
MB 880-83482/5-A	Method Blank	65 S1-	103	
Surrogate Legend				
BFB = 4-Bromofluorober	nzene (Surr)			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-44849-A-51-F MS	Matrix Spike	95	96
880-44849-A-51-G MSD	Matrix Spike Duplicate	112	113
880-44899-1	H-1 (0-0.5')	92	99
880-44899-2	H-2 (0-0.5')	94	100
880-44899-3	H-3 (0-0.5')	99	102
880-44899-4	H-4 (0-0.5')	110	113
880-44899-5	H-5 (0-0.5')	109	114
880-44899-6	H-6 (0-0.5')	83	88
LCS 880-83483/2-A	Lab Control Sample	93	95
LCSD 880-83483/3-A	Lab Control Sample Dup	82	84
MB 880-83483/1-A	Method Blank	91	98

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-83482/5-A

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 83414								Prep Type: 1 Prep Batch	
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
Toluene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		06/18/24 14:59	06/18/24 17:48	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	65	S1-	70 - 130				06/18/24 14:59	06/18/24 17:48	1
1,4-Difluorobenzene (Surr)	103		70 - 130				06/18/24 14:59	06/18/24 17:48	1

Lab Sample ID: LCS 880-83482/1-A Matrix: Solid

Analysis Batch: 83414

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1035		mg/Kg		103	70 - 130	
Toluene	0.100	0.09487		mg/Kg		95	70 - 130	
Ethylbenzene	0.100	0.09470		mg/Kg		95	70 - 130	
m-Xylene & p-Xylene	0.200	0.1940		mg/Kg		97	70 - 130	
o-Xylene	0.100	0.09848		mg/Kg		98	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	95		70 - 130

Lab Sample ID: LCSD 880-83482/2-A

Matrix: Solid

Analysis Batch: 83414							Prep	Batch:	83482
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09568		mg/Kg		96	70 - 130	8	35
Toluene	0.100	0.08722		mg/Kg		87	70 - 130	8	35
Ethylbenzene	0.100	0.08783		mg/Kg		88	70 - 130	8	35
m-Xylene & p-Xylene	0.200	0.1794		mg/Kg		90	70 - 130	8	35
o-Xylene	0.100	0.08851		mg/Kg		89	70 - 130	11	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-44899-1 MS Matrix: Solid

Analysis Potoby 92444

Analysis Batch: 83414									Pre	Batch: 83482
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00199	U F1 F2	0.0996	0.06402	F1	mg/Kg		64	70 - 130	
Toluene	<0.00199	U F1 F2	0.0996	0.05764	F1	mg/Kg		58	70 - 130	

Eurofins Midland

Client Sample ID: H-1 (0-0.5')

Prep Type: Total/NA

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 83482

Released to Imaging: 8/7/2024 2:40:51 PM

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

MS							Cilei	nt Sample I		
Sample	Samplo	Spiko	Ме	MS					Batch:	03404
•	•	•			Unit	п	% Pac			
<0.00199	U F1 F2	0.0996	0.05744	F1	mg/Kg		58	70 - 130		
MS	MS									
%Recovery	Qualifier	Limits								
79		70 - 130								
104		70 - 130								
Sample	Sample	Spike	MSD	MSD				%Rec		RP
Sample	Sample	Spike	MSD	MSD				%Rec		RPD
						D				Limi
										3
				F2						3
										3
					mg/Kg		8			3
<0.00199	U F1 F2	0.101	0.08928	F2	mg/Kg		89	70 - 130	43	3
MSD	MSD									
%Recovery	Qualifier	Limits								
		70 - 130								
102		10 - 150								
	Result <0.00199	104 MSD Sample Sample Result Qualifier Qualifier <0.00199	Result Qualifier Added <0.00199	Result Qualifier Added Result <0.00199	Result Qualifier Added Result Qualifier <0.00199	Result Qualifier Added Result Qualifier Unit <0.00199	Result Qualifier Added Result Qualifier Unit D <0.00199	Result Qualifier Added Result Qualifier Unit D %Rec <0.00199	Sample Sample Spike MS MS MS %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00199	Result Qualifier Added Result Qualifier Unit D %Rec Limits <0.00199

Lab Sample ID: MB 880-83483/1-A Client Sample ID: Method Blank Matrix: Solid Prep Type: Total/NA Prep Batch: 83483 Analysis Batch: 83526 MB MB Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 50.0 06/18/24 15:38 06/19/24 08:17 Gasoline Range Organics <50.0 U mg/Kg 1 (GRO)-C6-C10 Diesel Range Organics (Over 50.0 06/18/24 15:38 06/19/24 08:17 <50.0 U mg/Kg 1 C10-C28) Oil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 06/18/24 15:38 06/19/24 08:17 1 MB MB %Recovery Limits Surrogate Qualifier Prepared Analyzed Dil Fac 70 - 130 06/18/24 15:38 1-Chlorooctane 91 06/19/24 08:17 1 70 - 130 06/18/24 15:38 o-Terphenyl 98 06/19/24 08:17 1

Lab Sample ID: LCS 880-83483/2-A **Client Sample ID: Lab Control Sample** Matrix: Solid Prep Type: Total/NA Analysis Batch: 83526 Prep Batch: 83483 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits 1000 913.9 91 70 - 130 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 940.9 mg/Kg 94 70 - 130

Eurofins Midland

7

C10-C28)

QC Sample Results

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: LCS 880-834	483/2-A						Client	Sample	ID: Lab C		
Matrix: Solid										Гуре: То	
Analysis Batch: 83526									Prep	Batch:	83483
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	93		70 - 130								
o-Terphenyl	95		70 - 130								
Lab Sample ID: LCSD 880-8	3/83/3-0					Clier	nt Sam		Lab Contro	Sampl	o Du
Matrix: Solid	5-05/5-A					Oller	it Gan			Type: To	
Analysis Batch: 83526										Batch:	
Analysis Datch. 03320			Spike		LCSD				%Rec	Daten.	RP
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	843.0	Quaimer	mg/Kg			70 - 130	8	2
GRO)-C6-C10			1000	040.0		ilig/itg		04	70 - 150	0	2
Diesel Range Organics (Over			1000	816.6		mg/Kg		82	70 - 130	14	2
C10-C28)						0 0					
	1.050	LCSD									
			Limits								
Surrogate -Chlorooctane	% <i>Recovery</i> 82	Quaimer	70 - 130								
	02		70 - 130 70 - 130								
Ternhenvl	84										
-Terphenyl	84		70 - 130								
			70 - 130					Client	Sample ID	: Matrix	Spik
_ab Sample ID: 880-44849-A			70 - 730					Client	Sample ID Prep 1		
Lab Sample ID: 880-44849-A Matrix: Solid			10 - 130					Client	Prep 1	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid	A-51-F MS	Sample	Spike	MS	MS			Client	Prep 1		tal/N/
∟ab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526	A-51-F MS Sample	Sample Qualifier			MS Qualifier	Unit	D	Client %Rec	Prep 7 Prep	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte	A-51-F MS Sample	Qualifier	Spike			_ <mark>Unit</mark> 	<u>D</u>		Prep 1 Prep %Rec	Type: To	tal/N
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics	A-51-F MS Sample Result	Qualifier	Spike Added	Result			<u>D</u>	%Rec	Prep Prep %Rec Limits	Type: To	tal/N
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10	A-51-F MS Sample Result	Qualifier U F2	Spike Added	Result	Qualifier		D	%Rec	Prep Prep %Rec Limits	Type: To	tal/N
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	A-51-F MS Sample Result <50.0	Qualifier U F2	Spike Added 997	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep Prep %Rec Limits 70 - 130	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	A-51-F MS Sample Result <50.0 <50.0	Qualifier U F2	Spike Added 997	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep Prep %Rec Limits 70 - 130	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	A-51-F MS Sample Result <50.0 <50.0	Qualifier U F2 U F1 MS	Spike Added 997	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep Prep %Rec Limits 70 - 130	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	A-51-F MS Sample Result <50.0 <50.0 MS	Qualifier U F2 U F1 MS	Spike Added 997 997	Result 968.7	Qualifier	mg/Kg	D	%Rec 95	Prep Prep %Rec Limits 70 - 130	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane	A-51-F MS Sample Result <50.0 <50.0 %Recovery	Qualifier U F2 U F1 MS	Spike Added 997 997 Limits	Result 968.7	Qualifier	mg/Kg	<u>D</u>	%Rec 95	Prep Prep %Rec Limits 70 - 130	Type: To	tal/N/
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96	Qualifier U F2 U F1 MS	Spike Added 997 997 <u>Uimits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch:	tal/N/ 8348
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: 880-44849-A	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96	Qualifier U F2 U F1 MS	Spike Added 997 997 <u>Uimits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep 7 Prep %Rec Limits 70 - 130 70 - 130	Type: Tot Batch:	blicate
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96	Qualifier U F2 U F1 MS	Spike Added 997 997 <u>Uimits</u> 70 - 130	Result 968.7	Qualifier	mg/Kg		%Rec 95 56	Prep %Rec Limits 70 - 130 70 - 130 20: Matrix Sp Prep	Type: Tot Batch:	blicate
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD	Qualifier U F2 U F1 MS Qualifier	Spike Added 997 997 997 2007 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	Result 968.7 555.4	Qualifier F1	mg/Kg		%Rec 95 56	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep Prep	Type: Tot Batch:	blicati 8348
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate Analysis Batch: 83526	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample	Qualifier U F2 U F1 MS Qualifier Sample	Spike Added 997 997 997 2007 100 70 - 130 70 - 130 70 - 130 Spike	Result 968.7 555.4 MSD	Qualifier F1	mg/Kg mg/Kg CI		%Rec 95 56	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec	Dike Dup Batch: Dike Dup Dype: Tot Batch:	blicati tal/N/ 8348
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample Result	Qualifier U F2 U F1 MS Qualifier Sample Qualifier	Spike Added 997 997 997 2007 0 0 0 0 0 0 0 0 0 0 0 0 1 0 1 0 1 0	Result 968.7 555.4 MSD Result	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg Cl	ient Sa	%Rec 95 56 ample ID	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits	pike Dup Batch: ype: Tot Batch: RPD	blicati 8348 blicati tal/NJ 8348 RPI Lim
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate (-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample	Qualifier U F2 U F1 MS Qualifier Sample Qualifier	Spike Added 997 997 997 130 70 - 130 70 - 130 Spike Added	Result 968.7 555.4 MSD	Qualifier F1 MSD Qualifier	mg/Kg mg/Kg CI	ient Sa	%Rec 95 56	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec	Dike Dup Batch: Dike Dup Dype: Tot Batch:	blicat tal/N, 8348 tal/N, 8348 RP Lim
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate Analyte De Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10	A-51-F MS Sample Result <50.0 <50.0 MS %Recovery 95 96 A-51-G MSD Sample Result	Qualifier U F2 U F1 MS Qualifier Qualifier U F2	Spike Added 997 997 997 130 70 - 130 70 - 130 Spike Added	Result 968.7 555.4 MSD Result	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl	ient Sa	%Rec 95 56 ample ID	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits	pike Dup Batch: ype: Tot Batch: RPD	blicat kal/N, 8348 blicat tal/N, 8348 RP Lim 2
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate Analyte D-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	A-51-F MS Sample Result <pre><50.0</pre> <pre><50.0</pre> <pre>///> <pre>////////////////////////////////////</pre></pre>	Qualifier U F2 U F1 MS Qualifier Qualifier U F2	Spike Added 997 997	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits 70 - 130	Dike Dup Type: Tot Batch: Dike Dup Type: Tot Batch: RPD 24	blicat kal/N, 8348 blicat tal/N, 8348 RP Lim 2
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate An-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	A-51-F MS Sample Result <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Qualifier U F2 U F1 MS Qualifier Qualifier U F2	Spike Added 997 997	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits 70 - 130	Dike Dup Type: Tot Batch: Dike Dup Type: Tot Batch: RPD 24	blicati tal/NJ 8348 tal/NJ 8348 RPI Lim 2
Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	A-51-F MS Sample Result <pre><pre><pre><pre><pre><pre><pre><pre></pre></pre></pre></pre></pre></pre></pre></pre>	Qualifier U F2 U F1 MS Qualifier U F2 U F2 U F1 MSD	Spike Added 997 997	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits 70 - 130	Dike Dup Type: Tot Batch: Dike Dup Type: Tot Batch: RPD 24	blicate
2-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: 880-44849-A Matrix: Solid Analysis Batch: 83526 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane	A-51-F MS Sample Result <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre></pre> <pre>A-51-G MSD</pre> A-51-G MSD <pre></pre> <pre><td>Qualifier U F2 U F1 MS Qualifier U F2 U F2 U F1 MSD</td><td>Spike Added 997 997 997 100 70 - 130 70 - 130 70 - 130 997 997 997 997 997 997 997 997 997</td><td>Result 968.7 555.4 MSD Result 1231</td><td>Qualifier F1 MSD Qualifier F2</td><td>mg/Kg mg/Kg Cl Mg/Kg</td><td>ient Sa</td><td>%Rec 95 56 ample ID %Rec 122</td><td>Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits 70 - 130</td><td>Dike Dup Type: Tot Batch: Dike Dup Type: Tot Batch: RPD 24</td><td>blicati 83483 blicati tal/NJ 83483 RPI Lim 2</td></pre>	Qualifier U F2 U F1 MS Qualifier U F2 U F2 U F1 MSD	Spike Added 997 997 997 100 70 - 130 70 - 130 70 - 130 997 997 997 997 997 997 997 997 997	Result 968.7 555.4 MSD Result 1231	Qualifier F1 MSD Qualifier F2	mg/Kg mg/Kg Cl Mg/Kg	ient Sa	%Rec 95 56 ample ID %Rec 122	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep %Rec Limits 70 - 130	Dike Dup Type: Tot Batch: Dike Dup Type: Tot Batch: RPD 24	blicati 83483 blicati tal/NJ 83483 RPI Lim 2

Client: Carmona Resources

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Project/Site: Solution Federal Com 003H (05.11.2024) Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-83484/1-A												Client S	Sample ID:		
Matrix: Solid													Prep	o Type: S	oluble
Analysis Batch: 83501		мв	MD												
Analysis	D		Qualifier		RL		MDL	11		D		u a m a m a d	Anah	une el	Dil Fac
Analyte Chloride		5.00			5.00		MDL	mg/Kg		<u> </u>	P	repared	Analy 06/19/24		DIIFac
		5.00	0		5.00			mg/rtg					00/19/2-	+ 00.30	
Lab Sample ID: LCS 880-83484/2-A										C	lient	Sample	D: Lab C	Control S	ample
Matrix: Solid														Type: S	
Analysis Batch: 83501															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride				250		258.6			mg/Kg		_	103	90 - 110		
Lab Sample ID: LCSD 880-83484/3-/	4								Cli	ient	Sam	ple ID:	Lab Contr		
Matrix: Solid													Prep	o Type: S	olubl
Analysis Batch: 83501															
				Spike		LCSD	LCSI	D					%Rec		RPI
				Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	
				Added 250		Result 258.7	Qual	ifier	Unit mg/Kg		<u>D</u>	%Rec 103	Limits 90 ₋ 110	RPD 0	
Analyte Chloride Lab Sample ID: 880-44899-1 MS							Qual	ifier			D	103	90 - 110	0	Limi 20
Chloride Lab Sample ID: 880-44899-1 MS							Qual	ifier			<u>D</u>	103	90 - 110	0 ID: H-1 (20 (0-0.5'
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid							Qual	ifier			<u>D</u>	103	90 - 110	0	20 (0-0.5'
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid	Sample	Samp				258.7	Qual	ifier			<u>D</u>	103	90 - 110	0 ID: H-1 (20 (0-0.5'
Chloride	Sample Result			250		258.7	MS				D D	103	90 - 110 nt Sample Prer	0 ID: H-1 (20 (0-0.5')
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501		Quali		250 Spike		258.7 MS	MS Qual		mg/Kg		_	103 Clien	90 - 110 nt Sample Prep %Rec	0 ID: H-1 (20 (0-0.5'
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501 Analyte Chloride	Result	Quali		250 Spike Added		258.7 MS Result	MS Qual		mg/Kg Unit		_	103 Clief %Rec 88	90 - 110 nt Sample Prep %Rec Limits 90 - 110	ID: H-1 (o Type: S	20 (0-0.5' oluble
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501 Analyte Chloride Lab Sample ID: 880-44899-1 MSD	Result	Quali		250 Spike Added		258.7 MS Result	MS Qual		mg/Kg Unit		_	103 Clief %Rec 88	90 - 110 nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: H-1 (o Type: S	(0-0.5' oluble
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501 Analyte Chloride Lab Sample ID: 880-44899-1 MSD Matrix: Solid	Result	Quali		250 Spike Added		258.7 MS Result	MS Qual		mg/Kg Unit		_	103 Clief %Rec 88	90 - 110 nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: H-1 (o Type: S	(0-0.5' oluble
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501 Analyte Chloride Lab Sample ID: 880-44899-1 MSD Matrix: Solid	Result 41.6	Qualif F1	fier	250 Spike Added 251		258.7 MS Result 261.6	MS Qual F1	ifier	mg/Kg Unit		_	103 Clief %Rec 88	90 - 110 nt Sample Prep %Rec Limits 90 - 110 nt Sample Prep	ID: H-1 (o Type: S	(0-0.5' oluble
Chloride Lab Sample ID: 880-44899-1 MS Matrix: Solid Analysis Batch: 83501 Analyte	Result	Qualif F1	fier	250 Spike Added		258.7 MS Result	MS Qual F1 MSD	ifier	mg/Kg Unit		_	103 Clief %Rec 88	90 - 110 nt Sample Prep %Rec Limits 90 - 110 nt Sample	ID: H-1 (o Type: S	20 (0-0.5') soluble

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

GC VOA

Analysis Batch: 83414

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-5	H-5 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-6	H-6 (0-0.5')	Total/NA	Solid	8021B	83482
MB 880-83482/5-A	Method Blank	Total/NA	Solid	8021B	83482
LCS 880-83482/1-A	Lab Control Sample	Total/NA	Solid	8021B	83482
LCSD 880-83482/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	83482
880-44899-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	83482
880-44899-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	83482

Prep Batch: 83482

IVID 000-03402/3-A	Method Blank	Total/INA	Solid	0021B	03402	
LCS 880-83482/1-A	Lab Control Sample	Total/NA	Solid	8021B	83482	8
LCSD 880-83482/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	83482	
880-44899-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	83482	9
880-44899-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	83482	
Prep Batch: 83482						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	11
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	5035		
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	5035		12
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	5035		
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	5035		4.2
880-44899-5	H-5 (0-0.5')	Total/NA	Solid	5035		13
880-44899-6	H-6 (0-0.5')	Total/NA	Solid	5035		
MB 880-83482/5-A	Method Blank	Total/NA	Solid	5035		14
LCS 880-83482/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-83482/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-44899-1 MS	H-1 (0-0.5')	Total/NA	Solid	5035		
880-44899-1 MSD	H-1 (0-0.5')	Total/NA	Solid	5035		

Analysis Batch: 83847

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-44899-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-44899-6	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 83483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-44899-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-44899-6	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-83483/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-83483/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-83483/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-44849-A-51-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-44849-A-51-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

GC Semi VOA

Analysis Batch: 83526

nalysis Batch: 83526					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	83483
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	83483
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	83483
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	83483
380-44899-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	83483
380-44899-6	H-6 (0-0.5')	Total/NA	Solid	8015B NM	83483
MB 880-83483/1-A	Method Blank	Total/NA	Solid	8015B NM	83483
LCS 880-83483/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	83483
LCSD 880-83483/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	83483
880-44849-A-51-F MS	Matrix Spike	Total/NA	Solid	8015B NM	83483
880-44849-A-51-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	83483

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
880-44899-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM		
880-44899-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM		
880-44899-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM		
880-44899-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM		
880-44899-5	H-5 (0-0.5')	Total/NA	Solid	8015 NM		
880-44899-6	H-6 (0-0.5')	Total/NA	Solid	8015 NM		
<u> </u>						

HPLC/IC

Leach Batch: 83484

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-6	H-6 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-83484/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-83484/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-83484/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-44899-1 MS	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-44899-1 MSD	H-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 83501

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-44899-1	H-1 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-2	H-2 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-3	H-3 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-4	H-4 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-5	H-5 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-6	H-6 (0-0.5')	Soluble	Solid	300.0	83484
MB 880-83484/1-A	Method Blank	Soluble	Solid	300.0	83484
LCS 880-83484/2-A	Lab Control Sample	Soluble	Solid	300.0	83484
LCSD 880-83484/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	83484
880-44899-1 MS	H-1 (0-0.5')	Soluble	Solid	300.0	83484
880-44899-1 MSD	H-1 (0-0.5')	Soluble	Solid	300.0	83484

Lab Chronicle

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024)

Client Sample ID: H-1 (0-0.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

_	Batch	Batch		Dil	Initial	Final
Prep Type	Туре	Method	Run	Factor	Amount	Amount
Total/NA	Prep	5035			5.02 g	5 mL
Total/NA	Analysis	8021B		1	5 mL	5 mL

Total/NA Analysis Total BTEX 1 83847 06/18/24 18:15 AJ EET MID Total/NA Analysis 8015 NM 1 83677 06/19/24 11:40 SM EET MID Total/NA Prep 8015NM Prep 10.04 g 10 mL 83483 06/18/24 15:38 EL EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 83526 06/19/24 11:40 SM EET MID Soluble Leach DI Leach 4.99 g 50 mL 83484 06/18/24 15:41 SA EET MID Soluble Analysis 300.0 1 50 mL 83501 06/19/24 13:22 SMC EET MID	Total/NA	Analysis	8021B	1	5 mL	5 mL	83414	06/18/24 18:15	AJ	EET MID
Total/NA Prep 8015NM Prep 10.04 g 10 mL 83483 06/18/24 15:38 EL EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 83526 06/19/24 11:40 SM EET MID Soluble Leach DI Leach 4.99 g 50 mL 83484 06/18/24 15:41 SA EET MID	Total/NA	Analysis	Total BTEX	1			83847	06/18/24 18:15	AJ	EET MID
Total/NA Analysis 8015B NM 1 1 uL 1 uL 83526 06/19/24 11:40 SM EET MID Soluble Leach DI Leach 4.99 g 50 mL 83484 06/18/24 15:41 SA EET MID	Total/NA	Analysis	8015 NM	1			83677	06/19/24 11:40	SM	EET MID
Soluble Leach DI Leach 4.99 g 50 mL 83484 06/18/24 15:41 SA EET MID	Total/NA	Prep	8015NM Prep		10.04 g	10 mL	83483	06/18/24 15:38	EL	EET MID
	Total/NA	Analysis	8015B NM	1	1 uL	1 uL	83526	06/19/24 11:40	SM	EET MID
Soluble Analysis 300.0 1 50 mL 50 mL 83501 06/19/24 13:22 SMC EET MID	Soluble	Leach	DI Leach		4.99 g	50 mL	83484	06/18/24 15:41	SA	EET MID
	Soluble	Analysis	300.0	1	50 mL	50 mL	83501	06/19/24 13:22	SMC	EET MID

Client Sample ID: H-2 (0-0.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	83482	06/18/24 14:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83414	06/18/24 18:42	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			83847	06/18/24 18:42	AJ	EET MID
Total/NA	Analysis	8015 NM		1			83677	06/19/24 12:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 12:00	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 07:20	SMC	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	83482	06/18/24 14:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83414	06/18/24 19:09	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			83847	06/18/24 19:09	AJ	EET MID
Total/NA	Analysis	8015 NM		1			83677	06/19/24 12:20	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 12:20	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 07:26	SMC	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	83482	06/18/24 14:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83414	06/18/24 19:36	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			83847	06/18/24 19:36	AJ	EET MID

Eurofins Midland

Matrix: Solid

Page 91 of 142

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-44899-1 Matrix: Solid

Analyst

Lab Sample ID: 880-44899-2

Lab Sample ID: 880-44899-3

Lab Sample ID: 880-44899-4

MNR

Lab

EET MID

Matrix: Solid

Matrix: Solid

Prepared

or Analyzed

06/18/24 14:59

Batch

83482

Number

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Client Sample ID: H-4 (0-0.5') Date Collected: 06/17/24 00:00

Project/Site: Solution Federal Com 003H (05.11.2024)

Date Received: 06/18/24 13:50

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			83677	06/19/24 12:41	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 12:41	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 07:32	SMC	EET MID

Client Sample ID: H-5 (0-0.5') Date Collected: 06/17/24 00:00 Date Received: 06/18/24 13:50

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	83482	06/18/24 14:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	83414	06/18/24 20:03	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			83847	06/18/24 20:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			83677	06/19/24 13:01	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	83483	06/18/24 15:38	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	83526	06/19/24 13:01	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	83484	06/18/24 15:41	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	83501	06/19/24 07:38	SMC	EET MID

Client Sample ID: H-6 (0-0.5') Date Collected: 06/17/24 00:00

Date Received: 06/18/24 13:50

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Total/NA Prep 5035 5.00 g 5 mL 83482 06/18/24 14:59 MNR EET MID Total/NA 8021B 5 mL 5 mL 83414 06/18/24 20:30 EET MID Analysis AJ 1 Total/NA Total BTEX Analysis 1 83847 06/18/24 20:30 AJ EET MID Total/NA Analysis 8015 NM 83677 06/19/24 13:21 SM EET MID 1 Total/NA Prep 8015NM Prep 10.05 g 10 mL 83483 06/18/24 15:38 EL EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 83526 06/19/24 13:21 SM EET MID 1 Soluble Leach DI Leach 4.96 g 50 mL 83484 06/18/24 15:41 SA EET MID Soluble Analysis 300.0 50 mL 50 mL 83501 06/19/24 07:55 SMC EET MID 1

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-44899-4 Matrix: Solid

Lab Sample ID: 880-44899-6

Lab Sample ID: 880-44899-5

Matrix: Solid

Matrix: Solid

Eurofins Midland

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date			
exas	NELAP		T104704400	06-30-24			
.		فللسبي فيعار والمستحل والمستحل والمستع	the state of the s	والمتراجية المراجعة والمتراجعة والمتحاجية			
for which the agency	does not offer certification.		ied by the governing authority. This lis	t may include analytes			
• •		MatrixSolid	Analyte	t may include analytes			

Eurofins Midland

Page 93 of 142

Method Summary

Client: Carmona Resources Project/Site: Solution Federal Com 003H (05.11.2024) Job ID: 880-44899-1 SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: Solution Federal Com 003H (05.11.2024)

Job ID: 880-44899-1 SDG: Eddy County, New Mexico

ab Sample ID.	Client Sample ID	Matrix	Collected	Received	
80-44899-1	H-1 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	
80-44899-2	H-2 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	
80-44899-3	H-3 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	
80-44899-4	H-4 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	
80-44899-5	H-5 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	
80-44899-6	H-6 (0-0.5')	Solid	06/17/24 00:00	06/18/24 13:50	

wan		Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonare			H-0 (U-U.3)	H-5 (0-0.5')	H-4 (0-0.5')	H-3 (0-0.5')	H-2 (0-0.5')	H-1 (0-0.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	ň	Project Name:	Phone: 4:	City, State ZIP: M	Address: 3	Company Name: C	Project Manager: C	
Ram	Relin	o Mike Carmona									fication		Yes No	Yes No	(Yes	T Jerop Blank:			Eddy Com		Solution Federal Com 003H (05.11.2024)	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	
S	nquished by	/ Mcarmon			6/1 //2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	6/17/2024	Date	((NIA)	ANA		lank:		JM	Eddy County New Mexico	2406	Com 003H (500	es		
	Relinquished by: (Signature)	a@carmona									Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes Mo			avino		05.11.2024)						
		resources.c			~	×	×	×	×	×	Soll	verature:	ading:	2		Wet Ice:			Dile Date:	Routine	Tu	Email:					
		om and Cor									Water	2.0		1	17	Ye			72 HR	Rush	Turn Around	ail: mcarmor	City, State ZIP:	Address:	Company Name:	Bill to: (if different)	
6		nner Moeh			G	6	۵	G	G	G	Grab/	X	ľ		P	No			_			mcarmona@carmonaresources.com	ZIP:		Name:	fierant)	
18/24	Date	ring / Cm	-		>	+-	-1 ×	-1 ×	1 ×	1 ×	# of Cont		8	_	arar (802	nete 1B	rs	_	_	Pres.		naresourc			┝	Сап	
24@13	Date/Time	oehring			>	< ×	×	×	-	×	TP	H 80	15M	(G	1 0+	DRC) + M	RO)				æs.com				Carmona Resources	
.50	$\left \right $	(@carmor	_		->	×	×	×	×	×		_	CI	nlori	de 3	00.0										ources	
		laresourc			+																A						
		sources.com	-	$\left \right $	+					-							_	-			ALYSIS						
R	Received by: (Signature)																	_		_	ANALYSIS REQUEST		Rep	Stat	Prog]
	by: (Signa											_			_		_	_				Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP		
	ature)				+														_					H I	IPST PF	W	8
					+																	ADai				ork Order	44899 Ch
					+	t	T		T		Sa	NaOH+,	Zn Aceta	Na2S20	NaHSO	H ₃ PO ₄ : HP	H2S04: H2	HCL: HC	Cool: Cool	None: NO	Pr				rownfields	Work Order Comments	880-44899 Chain of Custody
ALES I											Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	HP					Preservative Codes	Other:				T	tody
413	Date/Time										mments	cid: SAP(: Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	e Codes		Level IV	1	perfund		

5

Job Number: 880-44899-1

List Source: Eurofins Midland

SDG Number: Eddy County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 44899 List Number: 1

Creator: Vasquez, Julisa

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

July 15, 2024

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: SOLUTION FEDERAL COM 003H (05.11.2024)

Enclosed are the results of analyses for samples received by the laboratory on 07/12/24 15:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 1 (2') (H244177-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Chloride	32.0	16.0	07/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	86.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.7	% 49.1-14	0						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 2 (2') (H244177-02)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	<i>98.3</i>	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	93.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 3 (2') (H244177-03)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	98.1	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	93.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	87.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 4 (2') (H244177-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	90.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	83.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, whother bits ubsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 5 (2') (H244177-05)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: CT						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	96.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 6 (2') (H244177-06)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	1.98	98.9	2.00	0.0164	
Toluene*	<0.050	0.050	07/12/2024	ND	1.97	98.6	2.00	0.806	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.09	104	2.00	1.68	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	6.15	103	6.00	1.82	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	91.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.1	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:		
Received: Reported: Project Name: Project Number: Project Location:	07/12/2024 07/15/2024 SOLUTION FEDERAL 2406 EDDY CO NM	. COM 003H (05.11.2	Sampling Date: Sampling Type: Sampling Condition: Sample Received By:	07/11/2024 Soil Cool & Intact Shalyn Rodriguez

Sample ID: CS - 7 (0.5') (H244177-07)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	QR-03
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	′kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	85.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	78.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 8 (0.5') (H244177-08)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	93.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

EDDY CO NM

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To: Received: 07/12/2024 Sampling Date: 07/11/2024 Reported: 07/15/2024 Sampling Type: Soil Project Name: SOLUTION FEDERAL COM 003H (05.11.2 Sampling Condition: Cool & Intact Sample Received By: Project Number: 2406 Shalyn Rodriguez

Sample ID: CS - 9 (0.5') (H244177-09)

Project Location:

BTEX 8021B	mg/	/kg	Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	118 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	100 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whetsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based in the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celecz D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 10 (0.5') (H244177-10)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	122	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	97.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	89.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 11 (0.5') (H244177-11)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	121	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	81.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	75.0	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 12 (0.5') (H244177-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	126	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/12/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/12/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/12/2024	ND					
Surrogate: 1-Chlorooctane	95.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: CS - 13 (0.5') (H244177-13)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	124	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	91.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 1 (2') (H244177-14)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	124	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 2 (2') (H244177-15)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	127	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	95.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 3 (2') (H244177-16)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	127	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	97.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	90.7	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 4 (2') (H244177-17)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	111 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	88.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	81.6	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 5 (1.5') (H244177-18)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	123	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/15/2024	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	96.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.4	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 6 (0.5') (H244177-19)

BTEX 8021B	mg,	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	125	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	448	112	400	3.64	
TPH 8015M	mg,	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	97.5	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 7 (0.5') (H244177-20)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	124	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	07/15/2024	ND	448	112	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	194	97.0	200	1.24	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	188	93.8	200	1.25	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	113 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/11/2024
Reported:	07/15/2024	Sampling Type:	Soil
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: SW - 8 (0.5') (H244177-21)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/12/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/12/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/12/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/12/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/12/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	128 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	64.0	16.0	07/15/2024	ND	448	112	400	3.64	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	223	111	200	2.88	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	219	110	200	7.75	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	129 9	48.2-13	4						
Surrogate: 1-Chlorooctadecane	132 9	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
QM-03	Multiple analyses indicate the percent recovery exceeds the Quality Control acceptance criteria due to a matrix effect.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

				Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Mochring / Conchring / Conc	CS-10 (0.5')	CS-9 (0.5')	CS-8 (0.5')	CS-7 (0.5')	CS-6 (2')	CS-5 (2')	CS-4 (2')	CS-3 (2')	CS-2 (2')	US-1 (2')	00 4 /00	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name: Si	TUC TUC		City, State ZIP: Min	Address: 31(Compar.y Name: Ca	Project Manager: Co
		Relinquished by: (Signature		ike Carmona / Mcarmo	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024		tion Date		Yes No N/A	Yes No N/A	(Yes No	Temp Blank:		FV	Eddy County, New Mexico	2406	Solution Federal Com 003H (05.11.2024)	497-019-0053	1010, 1A 10101	Midland TX 70701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
		v: (Signature)		na@carmonare											- IIIIe	Timo	Corrected Temperature	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No	>		v Mexico		3H (05.11.2024)						
				Sources.com	< >	× >	×	×	×	×	×	×	×	×	SOIL	2	erature:	ading:	ň		Wet Ice:			Due Date:	Routine	Turn	Email:					
				nd Conner Mo	Comp	Comp	Com	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Water Comp	Grab/	15	-12:	14		Yes No)(24 HR	✓ Rush	Turn Around	Email: mcarmona@carmonaresources.com	City, State ZIP		Address:	Company Name	Bill to: (if different)
	2			Debring 1	T	T	T			_		p 1	p 1	p 1	p Cont				Par	ame	eters	1		00	Pres.		carmona			IC.	le.	E)
	12-24	Date/Time		X	×	< >	< >	× ;	×	×	×	×	×	×				вт	EX 8	0218	3						resourd					Car
	55	ime	enring	×	×	×	: >	× >	× ;	×	×	×	×	×	٢	PH	80151	м (с	GRO	+ D	RO +	MR	0)				ces.con					mona R
	2		(@carm		×	×	>	× >	× ;	×	×	×	×	×			(Chlo	ride	450	0						в					Carmona Resources
	Ø)	ionares				-	+	\downarrow	+	+	4	_																		ſ	n
	R	S	ources		\vdash	-	+	+	+	+	+	+	+	+										+		AN						
	P	T	L.COM							\dagger	+	+	+	+																		
	2	Received by:																														
							\vdash	+	+	+	+	+	+	+										-	EOI	ECT	Delivera	Reportir	State 0	Progra		
	d\$	(Signature)						+	+	+	+	+		+					-			Ĩ		+	-		Deliverables: EDD	Reporting:Level II Level III	state of Project:	n: UST/		
		e)																						+					п	PCT D		
ĺ											_	-	-														Þ			RP	Ork Or	
				H	-		1	-			-		-			Na	Zn	Na	Na	H3	H ₂	HC	Co	NC			ADaPT	ST/UST		Program: UST/PCT PRP rownfields	Work Order Comments	
H				0	9	8	1	6	0	f	U.	Qu	3-	-	Sam	UH+Ast	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Pres						mmen	Page
		Date													ple Cor	Corbic A	+NaOH	VaSO ₃	VABIS	5					ervativ		Other:	RRP		RC	S	
		Date/Time													Sample Comments	NaUH+Ascorbic Acid: SAPC	Zn				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes			Level IV		perfund		of
															0)	Ó					a	Z	Ne	r: H ₂ O	Sa			2		Ind		μω

Received by OCD: 7/22/2024 1:50:16 PM

<u>Released to Imaging: 8/7/2024 2:40:51 PM</u>

Chain of Custody

Page 121 of 142

Work Order No: H244177

Page 24 of 26

			SW-7 (0.5) 7/1	SW-6 (0.5')	SW-5 (1.5')	SW-4 (2')	SW-3 (2')	SW-2 (2')	SW-1 (2')	CS-13 (0.5')	CS-12 (0.5')	CS-11 (0.5')	Sample Identification	Total Containers:	Tatel Octa	Sample Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO 井	Sampler's Name:	Project Location	Project Number:		Phone: 4	ate ZIP:		/ Name:	
Ŕ	Relinq	Calliona) 7/1 Mike Camona /												Yes No		C.	Temp Blank:			Eddy Cou		Solution Federal Com 003H (05.11.2024)	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
A A A	uished by:	mcarmon	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	7/11/2024	Date		NIA			lank:		FV	Eddy County, New Mexico	2406	Com 003H			500	ies	
	Relinquished by: (Signature)	a@carmonare											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			Nexico		(05.11.2024)					
		mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	×	×	×	×	×	×	×	×	×	×	Soil	erature:	ading:	УГ.		Wet Ice:			Due Date:	Routine	Turi	Email:				
		and Conr		-	-								Water)	-1.8:	1	140	(Yes)			24 HR	√ Rush	Turn Around		City, State ZIP.	Address:	Company Name	Bill to: (if different)
2		ier Moeh	Comp	Comp	Comp	Comp	Comp .	Comp .	Comp	Comp	Comp	-	Grab/ Comp		.			No	1				4	mcarmona@carmonaresources.com	e ZIP:		/ Name:	different)
	Date	ring / Crr	1 X	1 ×	+	+	+	+	+	1 ×	-	-	# of Cont					neter	S		Code	Pres.		ionareso				0
E E	Date/Time	hoehrin	×	+	+	+	+	+	+	+	+	×	TPF	801		GR			+ MR	10)	+	-		JICES.CO				armona
8		9@carm	×	×	×	× ;	× ;	× ;	×	×	× ;	×			Ch	lorid	e 45	00						m				Carmona Resources
		onareso	$\left \right $	+	+	+	+	+	+	+	+	+							X									0
		urces.co		+	1			+													+	- CANAL	ANAI					
100	Ren	om	\vdash	+	-	+	+	+	+	+	+	+																
Inder and a	pived hv				1										_						+	WUE O I	DIECT	Deliv	Repo	State	Pron	
	· /Cinnat		\vdash	+	+	-	-	+	-	+		-												Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: IST/PST bob	
				+	+	+	+	+	+	+	+	+							*		+	-			el II 🗌 Le		TIPST	_
					-																							Nork Or
			22	0			0	14	U	12		-		NaO	7- 4	Na	нан	H ₂ S	HCL	Coo	Nor			ADaPT	TST/ÚST	Nowineda		der Com
			9	T	4-	2	S		h	X			Sample	An Acetate+NaUH: Zh NaOH+Ascorbic Acid: SAPC	14a20203. 14003	Na-S-D- NaSD	H ₃ PU ₄ : HP	H ₂ SO ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	Preser			RRP			Page
Date/Time													Sample Comments	bic Acid:	2	BIS	5	NaC	HNC	MeC	DIV	Preservative Codes		а ,				2
me													ents	SAPC				NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	odes			i evel IV	pertund		of 3

Received by OCD: 7/22/2024 1:50:16 PM

Released to Imaging: 8/7/2024 2:40:51 PM

Chain of Custody

Page 25 of 26

Work Order No: HA441-

Chain of Custody

. Released to Imagin	ng: 8/7/2024	2:40:51	PM

			Comments: Email to M					SW-8 (0.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	ä	Project Name: S	Phone: 432	ate ZIP:		Company Nar.ie: Ca	Project Manager: Co			
	Relinquished by: (Signature)		Mike Carmona / Mcarmon				+2071111	7/11/20024	ition Date		Yes No N/A		Yes No	Temp Blank:		FV FV	Eddy County New Mexico	2406	Solution Federal Com 003H (05 11 2024)	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring			
	: (Signature)		na@carmonarca						Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			7 -		H (05 11 2024)								
		irces.com and					×		Soil W	ure:	Q			Wet Ice:	6	Due Dale:	2	N USH	-	Email: m	C	A	0				
		i Conner Moel					Comp	-	Water Grab/	1	-1.82	1	DĽ	Yes No		24 HR	IV NUSN	ound		Email: mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Namo:	Bill to: (if different)	×		
La-2	Date/Time	hring / Cmo		+	-		1 ×	Cont	# of		вт	Par		eters			Code	Pres.		monaresour				Ca			
1 53	Împ	ehring@c			_		×		ТРН		_	GRO	-		MRC)				Ces.com				Carmona Resources			
		armonare																			-		ai ooo	NIFC PC			
		sources.c																ANAI									
Rece	0	m				_												ANALYSIS REQUEST			x.						
A OM JAN										2								QUEST		Delivers	Reportin	Program State of	?	•			
(gnature)											_											Program: UST/PST				:	×
																							Work O			CIN CIU	ork Orde
					+		2	10	NaCH	Zn Ac	Na ₂ S ₂	NaHS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO				OT/LICT	State of Project:	Work Order Comments	T	1	of NO.	Work Order No: H344
Da		•						Sample Comments	NaUH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	HP	4: H ₂	HC	Cool	NO	Preservative Codes	Other:	תאד	2	s RC	ments	Page 3			1-181
Date/Time								mments	Acid: SAPC	+: Zn				NaOH: Na	HNO3: HN	MeOH. Me	DI Water: H ₂ O	ve Codes				Iperfund		of_3			177

Page 26 of 26

July 15, 2024

CONNER MOEHRING CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: SOLUTION FEDERAL COM 003H (05.11.2024)

Enclosed are the results of analyses for samples received by the laboratory on 07/12/24 15:27.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	07/12/2024	Sampling Date:	07/12/2024
Reported:	07/15/2024	Sampling Type:	Solid
Project Name:	SOLUTION FEDERAL COM 003H (05.11.2	Sampling Condition:	Cool & Intact
Project Number:	2406	Sample Received By:	Shalyn Rodriguez
Project Location:	EDDY CO NM		

Sample ID: TWIN WELLS PIT (H244178-01)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	07/13/2024	ND	2.24	112	2.00	0.879	
Toluene*	<0.050	0.050	07/13/2024	ND	2.34	117	2.00	1.00	
Ethylbenzene*	<0.050	0.050	07/13/2024	ND	2.52	126	2.00	2.28	
Total Xylenes*	<0.150	0.150	07/13/2024	ND	7.75	129	6.00	2.78	
Total BTEX	<0.300	0.300	07/13/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	127 %	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	07/15/2024	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	07/13/2024	ND	219	110	200	0.441	
DRO >C10-C28*	<10.0	10.0	07/13/2024	ND	195	97.3	200	1.60	
EXT DRO >C28-C36	<10.0	10.0	07/13/2024	ND					
Surrogate: 1-Chlorooctane	112 %	48.2-13	4						
Surrogate: 1-Chlorooctadecane	134 %	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
BS-3	Blank spike recovery outside of lab established statistical limits, but still within method limits. Data is not adversely affected.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

			Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com					Twin Wells Pit	Sample Identification		Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Ä	Project Name:	Phone: 4	AIC 217.				Project Manager: C
			to Mike Carmo					ls Pit	Incation			Yes	Yes	-				Eddy C		Solution Federal Com 003H (05.11.2024)	432-813-0023		Midland TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring
	Relinauished		ona / Mcarmo					7/12/2024	Date			NIA	NIA	No	Temp Blank:		FV	Eddy County, New Mexico	2406	al Com 003H			01	te 500	rces	g
	Relinguished by: (Signature)	•	ona@carmon							Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No)	×	lexico		(05.11.2024)						
			aresources.cc					>	<	Soil	perature:	eading:	OF.	Ö	Wet Ice:			Due Date:	Routine	Tur		Emai				
			om and Conner						-	Water Grab/)	-1.82	1	140	Yes No	X	ſ	24 HR	✓ Rush	Ture Around		Email: mcarmona@carmonaresources.com	City, State ZIP:	Address:	Company Name	Bill to: (if different)
2.5			Moehrin	++			+	-		b/ #of			P	ara	met	ers		P	Code	Pres	-	armonare			8	
1-Bay	Date/Time		g / Cmo					,	×			B	BTE)	(80	21B							sources				Carmon
53	Time		ehring@					++	×	TPH	1 80		-	-	+ DR	-	MR	D)	+	-		.com				Carmona Resources
			carmoi	++	+														+							ces
AK A			haresou															_		AN						
B			rces.co				$\left \right $		+		-					_			+	VALTON	INI VOI					
1 D	Reco		з	++		+	$\left \right $		+		_									ALTOIS REQUEST						
2	Received by: (Signature)																		+	EOT	ECT	Deliverables: EDD	Reporting:Level II Level III	State of Floject	Program: USI/PSI _Prof _Provinces	
Įξ	(Signa)			++	+	-	$\left \right $		+		,	-							+	-		les: EDI	:Level II	Tuject.	Droient:	
9	ture)]		WO
							$\left \right $		_										+	-		AUa				K Order
					-		+		_			NaOH	Zn Ac	Na-S	NaHS		H,S04: H,	HCL: HC		None: NO		AUAP1 L		THICT	WIII CIUS	BBB Crownfield : PE
										Sample		H+Ascort	Zn Acetate+NaOH: Zn	Na.S.O.: NaSO.	NaHSO4: NABIS	HD	H,	HC	Cool	CIN	Preserv	Outer.		000		IRIUS
	Date/Time									Sample Comments		NaOH+Ascorbic Acid: SAPC	aOH: Zn	0	SIL		NaOH: Na	HNO3: HN	MOOH	DI Wa	Preservative Codes		1	N lave I		Deerfund
	Time									ents		APC					Na	HN	Me	DI Water: H ₂ O	des		i			und

Received by OCD: 7/22/2024 1:50:16 PM

- ago

Chain of Custody

Page 4 of 4

Work Order No:

Released to Imaging: 8/7/2024 2:40:51 PM

Page 127 of 142

APPENDIX F

CARMONA RESOURCES

Received by OCD: 7/22/2024 1:50:16 PM

Released to Imaging: 8/7/2024 2:40:51 PM

Web Soil Survey National Cooperative Soil Survey 7/17/2024 Page 1 of 3

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
RG	Reeves-Gypsum land complex, 0 to 3 percent slopes	0.2	100.0%
Totals for Area of Interest		0.2	100.0%

Eddy Area, New Mexico

RG—Reeves-Gypsum land complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5f Elevation: 1,250 to 5,000 feet Mean annual precipitation: 10 to 25 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 190 to 235 days Farmland classification: Not prime farmland

Map Unit Composition

Reeves and similar soils: 55 percent Gypsum land: 30 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Reeves

Setting

Landform: Ridges, plains, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Typical profile

H1 - 0 to 8 inches: loam
H2 - 8 to 32 inches: clay loam
H3 - 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 0 to 1 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: High
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 25 percent
Gypsum, maximum content: 80 percent
Maximum salinity: Very slightly saline to moderately saline (2.0 to 8.0 mmhos/cm)
Sodium adsorption ratio, maximum: 4.0
Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7s Hydrologic Soil Group: B Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Description of Gypsum Land

Setting

Landform: Ridges, plains, hills Landform position (two-dimensional): Shoulder, backslope, footslope, toeslope Landform position (three-dimensional): Side slope, head slope, nose slope, crest Down-slope shape: Convex Across-slope shape: Linear Parent material: Residuum weathered from gypsum

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 8s Hydric soil rating: No

Minor Components

Reagan

Percent of map unit: 5 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Largo

Percent of map unit: 5 percent Ecological site: R070BC007NM - Loamy Hydric soil rating: No

Cottonwood

Percent of map unit: 5 percent Ecological site: R070BC033NM - Salty Bottomland Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023

(26)

BLM SERIAL #:

COMPANY REFERENCE:

3.1 Seed Mixture 1, for Loamy Sites

The holder shall seed all disturbed areas with the seed mixture listed below. The seed mixture shall be planted in the amounts specified in pounds of pure live seed (PLS)* per acre. There shall be no primary or secondary noxious weeds in the seed mixture. Seed will be tested and the viability testing of seed will be done in accordance with State law(s) and within nine (9) months prior to purchase. Commercial seed will be either certified or registered seed. The seed container will be tagged in accordance with State law(s) and available for inspection by the authorized officer.

Seed will be planted using a drill equipped with a depth regulator to ensure proper depth regulator to ensure proper depth of planting where drilling is possible. The seed mixture will be evenly and uniformly planted over the disturbed area (small/heavier seeds have a tendency to drop the bottom of the drill and are planted first). The holder shall take appropriate measures to ensure this does not occur. Where drilling is not possible, seed will be broadcast and the area shall be raked or chained to cover the seed. When broadcasting the seed, the pounds per acre are to be doubled. The seeding will be repeated until a satisfactory stand is established as determined by the authorized officer. Evaluation of growth will not be made before completion of at least one full growing season after seeding.

Species to be planted in pounds of pure live seed* per acre:

<u>Species</u>	lb/acre
Plains lovegrass (Eragrostis intermedia)	0.5
Sand dropseed (Sporobolus cryptandrus)	1.0
Sideoats grama (Bouteloua curtipendula)	5.0
Plains bristlegrass (Setaria macrostachya)	2.0

*Pounds of pure live seed:

Pounds of seed x percent purity x percent germination = pounds pure live seed

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 366052

QUESTIONS								
Operator:	OGRID:							
COG OPERATING LLC	229137							
600 W Illinois Ave	Action Number:							
Midland, TX 79701	366052							
	Action Type:							
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)							

QUESTIONS

Prerequisites									
Incident ID (n#)	nAPP2415841931								
Incident Name	NAPP2415841931 SOLUTION FEDERAL COM 003H @ 0								
Incident Type	Fire								
Incident Status	Remediation Closure Report Received								
Incident Facility	[fAPP2203955700] Solution Fed 3H Battery								

Location of Release Source

Please answer all the questions in this group.	
Site Name	SOLUTION FEDERAL COM 003H
Date Release Discovered	05/11/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.	
Incident Type	Fire
Did this release result in a fire or is the result of a fire	Yes
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage property or the environment	Νο
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Equipment Failure Other (Specify) Crude Oil Released: 0 BBL Recovered: 0 BBL Lost: 0 BBL.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	No	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 366052

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	366052
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for release the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com

Date: 06/06/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 137 of 142

Action 366052

QUESTIONS	(continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	366052
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between ½ and 1 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Zero feet, overlying, or within area	
Categorize the risk of this well / site being in a karst geology	High	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan

Please answer all the questions the	at apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation p	plan approval with this submission	Yes
Attach a comprehensive report den	nonstrating the lateral and vertical extents of soil contaminatio	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical	l extents of contamination been fully delineated	Yes
Was this release entirely co	ontained within a lined containment area	No
Soil Contamination Sampling:	: (Provide the highest observable value for each, in m	nilligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	1180
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	1750
GRO+DRO	(EPA SW-846 Method 8015M)	1500
BTEX	(EPA SW-846 Method 8021B or 8260B)	0.1
BIER	· · · · · · · · · · · · · · · · · · ·	0.1
Benzene	(EPA SW-846 Method 8021B or 8260B)	0.1
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time	MAC unless the site characterization report includes complete elines for beginning and completing the remediation.	0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time On what estimated date will	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence	0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 07/11/2024
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time On what estimated date will	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence le final sampling or liner inspection occur	0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Benzene Per Subsection B of 19.15.29.11 N which includes the anticipated time On what estimated date will On what date will (or did) th On what date will (or was) th	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence le final sampling or liner inspection occur	0.1 0.1 0.1 0.1 07/11/2024 07/11/2024 07/11/2024
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time On what estimated date will On what date will (or did) th On what date will (or was) th What is the estimated surface	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence le final sampling or liner inspection occur he remediation complete(d)	0.1 0.1 0.1 0.1 0.1 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7 0.7
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time On what estimated date will On what date will (or did) th On what date will (or was) th What is the estimated surfa- What is the estimated volum	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence le final sampling or liner inspection occur he remediation complete(d) ce area (in square feet) that will be reclaimed	0.1 0.1 0.1 0.1 0.1 0.1 0.7/11/2024 07/11/2024 07/12/2024 1642
Benzene Per Subsection B of 19.15.29.11 N. which includes the anticipated time On what estimated date will On what date will (or did) th On what date will (or was) th What is the estimated surface What is the estimated volum What is the estimated surface	MAC unless the site characterization report includes complete elines for beginning and completing the remediation. I the remediation commence the final sampling or liner inspection occur he remediation complete(d) ce area (in square feet) that will be reclaimed ne (in cubic yards) that will be reclaimed	0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 07/11/2024 07/11/2024 07/12/2024 1642 80

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 366052

QUESTI	ONS (continued)
Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	366052
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	Solution Fed 3H Battery [fAPP2203955700]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed eff which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by dequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 07/22/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 139 of 142

Action 366052

QUESTIONS (continued)	
Operator: COG OPERATING LLC	OGRID: 229137
600 W Illinois Ave Midland, TX 79701	Action Number: 366052
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	

Deferral Requests Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 140 of 142

Action 366052

QUESTIONS (continued)		
Operator:	OGRID:	
COG OPERATING LLC	229137	
600 W Illinois Ave	Action Number:	
Midland, TX 79701	366052	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	361976
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	07/11/2024
What was the (estimated) number of samples that were to be gathered	22
What was the sampling surface area in square feet	1642

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	1642	
What was the total volume (cubic yards) remediated	80	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	1642	
What was the total volume (in cubic yards) reclaimed	80	
Summarize any additional remediation activities not included by answers (above)	N/A	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
to report and/or file certain release notifications and perform corrective actions for relea	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface	

water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete

I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com
	Date: 07/22/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 141 of 142

Action 366052

QUESTIONS (continued)		
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137 Action Number: 366052	
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Reclamation Report		

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 366052

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	366052
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	A reclamation report will not be accepted until reclamation of the release area, including areas reasonably needed for production or drilling activities, is complete and meet the requirements of 19.15.29.13 NMAC. Areas not reasonably needed for production or drilling activities will still need to be reclaimed and revegetated as early as practicable.	8/7/2024
scott.rodgers	The reclamation report will need to include: Executive Summary of the reclamation activities; Scaled Site Map including sampling locations; Analytical results including, but not limited to, results showing that any remaining impacts meet the reclamation standards and results to prove the backfill is non-waste containing; At least one (1) representative 5-point composite sample will need to be collected from the backfill material that will be used for the reclamation of the top four feet of the excavation. OCD reserves the right to request additional sampling if needed; pictures of the backfilled areas showing that erea is back, as nearly as practical, to the original condition or the final land use and maintain those areas to control dust and minimize erosion to the extent practical; pictures of the top layer, which is either the background thickness of topsoil or one foot of suitable material to establish vegetation at the site, whichever is greater; and a revegetation plan.	8/7/202