	Spill Volume	Spill Volume(Bbls) Calculator										
Inputs in blue, Outputs in red												
Length(Ft)	Width(Ft)	Depth(In)										
<u>150.000</u>	<u>100.000</u>	<u>5.000</u>										
Cubic Feet	Impacted	<u>6250.000</u>										
Barr	els	<u>1113.09</u>										
Soil T	уре	Clay										
Bbls Assum	ing 100%	111.31										
Satura	ition	<u>111.51</u>										
Saturation	Fluid pr	esent with shovel/backhoe										
Estimated Barr	els Released	111.40000										

Instructions

1.Input spill measurements below. Length and width need to be input in feet and depth in inches.

- 2. Select a soil type from the drop down menu. 3. Select a saturation level from the drop down menu.

(For data gathering instructions see appendix tab)

<u>Measurements</u>									
Length (ft)	150								
Width (ft)	100								
Depth (in)	5.000								

.

May 16, 2024				ierracon
NM	IOCD REPORT	DETAILS	5	
Submission	Contact, Application, Fe	e and Payment	Details	
Name: Kathy Purvis				
Email: katherine.purvis@spurene	rgy.com			
Phone: (575) 441-8619				
	Initial Release C Application Det			
Incident ID:	nAB1919234			
District:	Artesia	555	-	
County:	Eddy		-	
Legal Description:	Unit:J Section:17	Township:17S	Range:29E]
Lat/Long:	N:32.83371°	E:-104.09593°		
	Prerequisites			
Incident Operator:	Spur Energy Part		-	
Release Type:	Crude Oi			
Incident Status:	Pending Submission of			
Sito Name:	<u>Release Informa</u>			
Site Name: Date Discovered:		olk State 11 Batter 6/12/2019	у	(MM/DD/YYY)
Surface Owner:		State		
	Incident Detai			
Incident Type:		il Release		
Fire:		No		
Injuries:		No		
Watercourse:		No		
Public Health:		No		
Significant to Property or Environment:		No		_
Detrimental to Freshwater:		No		
Delan and Developte	Nature and Volume or			
Released Product: Cause:		Crude Oil Iment Failure		-
Source:		ne - Production		4
Release:	112		(bbls/Mcf)	-
Recovered:	80		(bbls/Mcf)	
Additional Details:	(Crude Oil		
	Nature and Volume of	Release		
Is this a gas submission?	No			
Was this a major release (Y/N) >25bbls?	Yes			
Justification of release volume calculation:	No		ned Release Volun	ne Calculation)
	Initial Respons	<u>se</u>		
Release has been stopped?	Yes			
Release area has been secured? Released material has been contained?	Yes Yes			
All free liquids have been recovered?	Yes			
If actions have not been completed, why?	Yes	(Attached Expli	ination)	
	Remediation Action P			
	Site Characteriza			
Depth to groundwater beneath effected area?	75ft - 100ft			
What method was used to determine depth?	Attached Document			
Did release impact GW or Surface Water?	No			
Continuously flowing watercourse?	greater than 5 (mi.)			
Lakebed, sinkhole, or playa (measured from		between	1 to 5 (mi.)	
An occupied permanent residence?	greater than 5 (mi.)			
Spring or private domestic well?	between 1 to 5 (mi.)			
Incorporated municipal boundaries? Wetland?	greater than 5 (mi.)	_		
Subsurface mine?	between 1 to 5 (mi.) greater than 5 (mi.)			
Subsurrace mille:	greater than 5 (IIII.)			
A (non-karst) unstable area?	greater than 5 (mi)			
A (non-karst) unstable area? Categorize the risk of this well / site bein	greater than 5 (mi.) g in a karst geology?	Me	edium]
A (non-karst) unstable area? Categorize the risk of this well / site bein A 100-year floodplain	g in a karst geology?		edium 1 to 5 (mi.)]

•

May 16, 2024				ierraco
Re	mediation Plan			
lave lateral and vertical extents of impacts been delineated, to				
the strictest standards?				
Nas the release entirely contained within a lined containment?	Yes			
Soil Contamination Sampling.				
(provide the highest observed value for each)(0.1)	Chloride	1,940	(mg/kg)	
	Total TPH	4,840	(mg/kg)	
	GRO+DRO	4,840	(mg/kg)	
	BTEX	1.08	(mg/kg)	
	Benzene	0.08	(mg/kg)	
Date of Remediation Commencement.	10/9/20	023		-
Date of Final Sampling or Liner Inspection.	2/23/20	024		
Date of Remediation Completion.	2/23/20)24		
Estimated Surface Area (sq. ft.) to be reclaimed.	760			
Estimated Volume (cu. yds.) to be reclaimed.	146			
Estimated Surface Area (sq. ft.) to be remediated.	2000)		
Estimated Volume (cu. yds.) to be remediated.	450			
Excavation and off-site disposal (dig & haul).	Yes		(Ex-Situ)	
Excavation and on-site remediation (land farm).	No		(Ex-Situ)	
Soil Vapor Extraction.	No		(In-Situ)	
Chemical processing (soil shreddingetc).	No		(In-Situ)	
Biological processing (microbes / fertilizeretc).	No		(In-Situ)	
Physical processing (soil washing, gypsumetc).	No		(In-Situ)	
Ground Water Abatement.	No			-
Other (Non-listed remedial process).	No			
Closure/D	Deferral Request	C-141		
Deferral Request (attachment with explanation)	Yes			
All areas reasonably needed for production or subsequent				
drilling operations have been stabilized, returned to the sites	Yes			
existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion.				
Total Surface Area (sq. ft.) to be remediated.	2000)	(Square Feet)	7
Total Volume (cu. yds.) to be remediated.	450		(Cubic Yards)	-
All areas not reasonably needed for production or subsequent			()	4
drilling operations have been reclaimed to contain a minimum				
of four feet of non-waste contain earthen material with				
concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH	, Yes			
50 mg/kg BTEX, and 10 mg/kg Benzene.	2000	,	(Squara East)	1
Estimated Surface Area (sq. ft.) to be reclaimed.			(Square Feet)	-
Estimated Volume (cu. yds.) to be reclaimed.	450		(Cubic Yards)	
Attached Summary of Additional Remediation Activities.	Yes			
Requesting Approval of Reclamation Completion.	Yes			

January 8, 2024

Spur Energy Partners LLC 920 Memorial City Way, Suite 1000 Houston, Texas 77024

- Attn: New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, NM 87505
- Re: Amended Deferral Request Folk State #011 Battery U, Section 17, T29E, R17S Eddy County, New Mexico Incident ID: NAB1919234395

To Whom It May Concern:

On April 14, 2023, Terracon Consultants, Inc (Terracon) was requested to oversee the remediation of a reportable release at the Folk State #011 Battery (nAPP2232679528) (Folk) site. Terracon personnel were informed by Spur Energy Partners LLC. (Spur) that a release of crude oil had taken place at the site. Terracon personnel were informed that a reportable release of 27 barrels (bbls) of crude oil within secondary containment had taken place at the site and Spur had recovered a total of 25 bbls. Surface ownership is held by the New Mexico State Land Office (SLO).

Spur informed Terracon personnel of a prior release at the site, incident NAB1919234395 which occurred June 12, 2019. Remediation of the June release was completed, and the closure/deferral request was submitted to the New Mexico Oil Conservation Division (NMOCD) on June 24, 2020. On September 30, 2020, The NMOCD denied the closure report submittal, citing the incomplete delineation and confirmation sampling of the release within secondary containment. This Amended Referral Request seeks to confirm the confirmation and delineation sampling for approval of the NMOCD.

Action Items

Completed Actions

- The release assessment activities for incident nAPP2232679528 were executed between October 9, 2023, through November 2, 2023. The complete deferral delineation of incident NAB1919234395 was conducted within the same timeframe due to the overlap in release areas.
- 2) Release assessment maps, laboratory data summary tables, and photographic log are attached within Appendix A.
- 3) Additional soil samples were collected in the secondary containment of the remediation to satisfy the NMCD's requirement for sufficient confirmation samples within 200 square foot (sq.ft.) sections. The additional soil sample results have been included in Appendix A.
- 4) Area to be deferred: Square Footage (2,000) / Cubic Yards (450)

Anticipated Actions

1) NMOCD's confirmation of deferral at the site.

Terracon Consultants, Inc. 4518 W Pierce St. Carlsbad, New Mexico 88220 P (806) 544 9276 terracon.com

Page 8 of 306

Remedial Activities

On October 09, 2023, through October 30, 2023, Terracon mobilized to the site to conduct additional delineation soil sampling activities at the site. Terracon performed soil sample collection activities within the secondary containment of the site. Terracon personnel collected soil samples from 1.5 to 2 feet below ground surface (bgs) to confirm the boundaries of the original release. Additionally, Terracon collected confirmation soil samples at 200 sq.ft. intervals to satisfy the NMOCD's confirmation sampling regulations. The soil samples collected, were in response to the NMOCDs denial of incident NAB1919234395 closure/deferral report. The additional soil sample results and positions can be viewed in Appendix A.

Conclusion

In accordance with NMAC 19.15.29.12, remediation of the remaining impacted material proximate to excavation is below the NMOCD RALs. Terracon recommends deferral for material directly under production equipment regarding incident number NAB1919234395, for the Folk State #011 Battery site.

Should you have any questions, please contact the undersigned at (806) 300 0140.

Sincerely, Jlerracon

Prepared by:

Reviewed by:

Travis Casey Senior Staff Scientist Carlsbad

Erin Loyd, P.G. (TX) Senior Principal Office Manager – Lubbock

Attachments

Appendix A – Exhibits

- Exhibit 1 Topographical Map
- Exhibit 2 Site Location Map
- Exhibit 3 Site Sample Map
- Exhibit 3.1 North Sample Map
- Exhibit 3.2 Exclusion Map
- Exhibit 4 Confirmation Sample Map
- Exhibit 5 Exploratory Boring Map
- Exhibit 6 Wetlands Map
- Exhibit 7 Karst Map

Amended Deferral Request

Folk State #011 Battery
Eddy County, New Mexico January 8, 2024
Terracon Project No. KH227025

Laboratory Tables Photographic Log Laboratory Summary Original Closure/Deferral Report

APPENDIX A – EXHIBITS

PH. 806-300-0140

terracon.com

JRG

Released to Imaging: 8/8/2024 8:17:27 AM

Received by OCD: 7/9/200 N NS - 24 10/25/23 Depth: 1.5' Chloride: 233 BTEX: <0.00401 TPH: 195	NS - 25 10/25/23 Depth: 1.5' Chloride: 350 BTEX: <0.00398 TPH: <50.2	NS - 22 10/25/23 Depth: 1.5' Chloride: 48.9 BTEX: <0.00403 TPH: <49.8	NS - 26 10/25/23 Depth: 1.5' Chloride: 39.9 BTEX: <0.00397 TPH: <50.3	NS - 23 10/25/23 Depth: 1.5' Chloride: 96.4 BTEX: <0.00402 TPH: 333	NS - 20 10/25/23 Depth: 1.5' Chloride: 156 BTEX: <0.00396 TPH: <49.7	NS - 18 10/25/23 Depth: 1.5' Chloride: 82.2 BTEX: <0.00403 TPH: <50.5	NS - 16 10/25/23 Depth: 1.5' Chloride: 59.7 BTEX: <0.00398 TPH: <50.2	Page 13 of 306 NS - 15 10/25/23 Depth: 1.5' Chloride: 61.8 BTEX: <0.00400 TPH: <50.5
NS - 21 10/25/23 Depth: 1.5' Chloride: 41.7 BTEX: <0.00398 TPH: <50.2 NS - 19								NS - 13 10/25/23 Depth: 1.5' Chloride: 138 BTEX: <0.00401 TPH: 141
10/25/23 Depth: 1.5' Chloride: 38.1 BTEX: <0.00398 TPH: <50.4			e					NS - 11 10/25/23 Depth: 1.5' Chloride: 104 BTEX: <0.00398 TPH: 155
10/25/23 Depth: 1.5' Chloride: 40.9 BTEX: <0.00404 TPH: <50.4 NS - 14	NS - 12							NS - 9 10/25/23 Depth: 1.5' Chloride: 102 BTEX: <0.00403 TPH: <49.6
10/25/23 Depth: 1.5' Chloride: 55.2 BTEX: <0.00399 TPH: <50.0	10/25/23 Depth: 1.5' Chloride: 62.3	NS - 10 10/25/23 Depth: 1.5' Chloride: 91.7 BTEX: <0.00397 TPH: <49.6						NS - 7 10/25/23 Depth: 1.5' Chloride: 2,940 BTEX: <0.00398 TPH: <50.5
10,000 mg/kg for Chloride 2,500 mg/kg for Total TPH 50 mg/kg for BTEX Bold and Highlighted deno concentrations that exceed NMOCD Reclamation and/ Remediation and Delineati Standards	<mark>d the</mark> o <mark>r</mark>	NS - 8 10/25/23 Depth: 1.5' Chloride: 83 BTEX: <0.00404 TPH: <49.9	NS - 5 10/25/23 Depth: 1.5' Chloride: 130 BTEX: <0.00398 TPH: <50.3	NS - 3 10/25/23 Depth: 1.5' Chloride: 44.7 BTEX: <0.00402 TPH: 57	NS - 1 10/25/23 Depth: 1.5' Chloride: 116 BTEX: <0.00399 TPH: 429	NS - 2 10/25/23 Depth: 1.5' Chloride: 60.5 BTEX: <0.00402 TPH: <49.9 DATA SOURCE	NS - 4 10/25/23 Depth: 1.5' Chloride: 85.7 BTEX: <0.00401 TPH: <49.9	NS - 6 10/25/23 Depth: 1.5' Chloride: 443 BTEX: <0.00396 TPH: <50.5 Feet 60 120
N Seed to Imaging: 8/8/	Northern Sample /2024 8:17:27 AM	KH Date:	227025 15 2023 : JWL	4526 W Pierce St Carlsbad, NM		Folk Sta Eddy Cour	Sample Map ate 11 Battery aty, New Mexico ° -104.0954615°	Exhibit 3.1

Soil Bore Report

Info	Customer:				Phone:	Date:					
Well In	ESS/Sp	ur Energ	y		575-390-6397 5/10/20						
-	Well Name:			an a	Location:						
General	Folk Sta	ate			32.8336260, -104.0965154						
	DE	PTH									
	FROM	TO	THICKNESS (feet)	COLOR	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATE BEARING CAVITIES OR FRACTURES						
	0	. 3	3		TOP SOIL	*					
	3	14	11		CHALECHE						
	14	20	6		RED SAND/CLAY						
	20	30	10		RED SAND						
	30	78	48		ANHYDRITE / RED SNAD / CLA	AY					
	and the second se	and a second									
				LEFT BORE	HOLE OPEN FOR 48 HOURS. UPON RETUR	NING THE BORE WAS					
	and			STILL DRY	AT 78'. PLUGGED BORE HOLE FROM	M THE BOTTOM UP					
		and and a second s			WITH 3/8 HOLE PLUG (BENTONITE	CHIP).					
		- Bangg									
TI	and	The second second									
NE											
F											
0	COLUMN STREET										
00		Broadway		Mallin, a a Sila da Margalan, daga ganga							
F				1979 A.							
		and the second sec		and a second school of the sec							
			na a la companya a comp								
			SN - A R CARDON RANGE	100 100 100 100 100 100 100							
		A Contraction of the second se	and	2000 A A A A A A A A A A A A A A A A A A							
			ne sos n <u>ne</u> ne	an a							
	a di anti a	The Reason is	perturbed denotes in								
			and the second								
				an a							
				and kator physical and the device in the device and a subscription of the subscription of the subscription of t							

1118 West Broadway Place

Hobbs, N.M. 88240

Office: 575-396-3790

Table 1 Soil Analytical Results Summary - Release Assessment

						NMO	CD Referenc	e No.				
Sample ID	Sample Date	Sample Start Depth	Sample Final Depth	Sample Type	Sample Status	Chloride (mg/Kg)	Benzene (mg/Kg)	Total BTEX ¹ (mg/Kg)	Total TPH ² (mg/Kg)	Diesel Range Organics (Over C10-C28) (mg/Kg)	Gasoline Range Organics (C6-C10) (mg/Kg)	Oil Range Organics (Over C28-C36) (mg/Kg)
		(ft bgs)	(ft bgs)	.,,,,,		EPA Method 300	EPA Method 8021B	EPA Method 8021B	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M
						Rele	ase Assessn	nent				
NS-1	10/25/23 11:02	1.5				116	<0.00200	< 0.00399	429	429	<50.1	<50.1
NS-2	10/25/23 11:03	1.5				60.5	<0.00201	< 0.00402	<49.9	<49.9	<49.9	<49.9
NS-3	10/25/23 11:04	1.5				44.7	<0.00201	< 0.00402	57.1	57.1	<49.6	<49.6
NS-4	10/25/23 11:05	1.5				85.7	<0.00200	< 0.00401	<49.9	<49.9	<49.9	<49.9
NS-5	10/25/23 11:06	1.5				130	< 0.00199	< 0.00398	<50.3	<50.3	<50.3	<50.3
NS-6	10/25/23 11:07	1.5				443	<0.00198	< 0.00396	<50.5	<50.5	<50.5	<50.5
NS-7	10/25/23 11:08	1.5				2940	<0.00199	< 0.00398	<50.5	<50.5	<50.5	<50.5
NS-8	10/25/23 11:09	1.5				83	< 0.00202	< 0.00404	<49.9	<49.9	<49.9	<49.9
NS-9	10/25/23 11:10	1.5				102	<0.00202	< 0.00403	<49.6	<49.6	<49.6	<49.6
NS-10	10/25/23 11:11	1.5				91.7	<0.00198	< 0.00397	<49.6	<49.6	<49.6	<49.6
NS-11	10/25/23 00:00	1.5				104	< 0.00199	< 0.00398	155	155	<50.2	<50.2
NS-12	10/25/23 00:00	1.5				62.3	<0.00198	< 0.00396	<50.3	<50.3	<50.3	<50.3
NS-13	10/25/23 00:00	1.5				138	<0.00200	< 0.00401	141	141	<49.7	<49.7
NS-14	10/25/23 00:00	1.5				55.2	<0.00200	< 0.00399	<50.0	<50.0	<50.0	<50.0
NS-15	10/25/23 00:00	1.5				61.8	< 0.00200	< 0.00400	<50.5	<50.5	<50.5	<50.5
NS-16	10/25/23 00:00	1.5				59.7	<0.00199	< 0.00398	<50.2	<50.2	<50.2	<50.2
NS-17	10/25/23 00:00	1.5				40.9	< 0.00202	< 0.00404	<50.4	<50.4	<50.4	<50.4
NS-18	10/25/23 00:00	1.5				82.2	< 0.00202	< 0.00403	<50.5	<50.5	<50.5	<50.5
NS-19	10/25/23 00:00	1.5				38.1	< 0.00199	< 0.00398	<50.4	<50.4	<50.4	<50.4
NS-20	10/25/23 00:00	1.5				156	<0.00198	< 0.00396	<49.7	<49.7	<49.7	<49.7
NS-21	10/25/23 00:00	1.5				41.7	< 0.00199	< 0.00398	<50.2	<50.2	<50.2	<50.2
NS-22	10/25/23 00:00	1.5				48.9	< 0.00202	< 0.00403	<49.8	<49.8	<49.8	<49.8
NS-23	10/25/23 00:00	1.5				96.4	< 0.00201	< 0.00402	333	333	<49.6	<49.6
NS-24	10/25/23 00:00	1.5				233	<0.00200	< 0.00401	195	195	<50.3	<50.3
NS-25	10/25/23 00:00	1.5				350	<0.00199	< 0.00398	<50.2	<50.2	<50.2	<50.2
NS-26	10/25/23 00:00	1.5				39.9	<0.00198	<0.00397	<50.3	<50.3	<50.3	<50.3
	NMOCD Reclamation Standards ³ (Surface to 4 ft bgs)					10,000	10	50	2,500	1,0	000	N/A
		Remediatio than Depth				10,000	10	50	2,500	1,000		N/A

1. BTEX = Benzene, toluene, ethylbenzene, and total xylenes

2. TPH = Total petroleum hydrocarbons 3. New Mexico Administration Code (NMAC) Restoration, Reclamation and Re-vegatation (19.15.29.13), NMAC-D (Reclamation of Areas No Longer in Use) for Soils Extending to 4 ft. bgs

4. New Mexico Oil Conservation Division (NMOCD) Remediation and Delineation Standards (19.15.29.12) NMAC-N, 8/14/2018

cancellation and being and a sentence of the s

Bold denotes concentrations above applicable laboratory SDLs. Bold and Highlighted denote concentrations that exceed the NMOCD Reclamation and/or Remediation and Delineation Standards. In-situ = Sample is representative of material which remains in-place at the site.

Excavated = Sample is representative of materials which was excavated and disposed of at a permitted disposal facility.

 Table 4

 Soil Analytical Results Summary - Deferral Zone Samples

					N	MOCD Refer	ence No.				
Sample ID	Sample Date	Sample Depth	Sample Type	Sample Status	Chloride (mg/Kg)	Benzene (mg/Kg)	Total BTEX ¹ (mg/Kg)	Total TPH ² (mg/Kg)	Gasoline Range Organics (C6-C10) (mg/Kg)	Diesel Range Organics (Over C10-C28) (mg/Kg)	Oil Range Organics (Over C28-C36) (mg/Kg)
		(ft bgs)	.,,,,	Status	EPA Method 300	EPA Method 8021B	EPA Method 8021B	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M
			<u>.</u>		<u></u>	Deferral Sa	mples	<u></u>	<u></u>	ļ	
TANK 1 - W	10/16/23 09:58	6	Grab	In-situ	216	ND	ND	55.1	ND	55.1	ND
TANK 2 - W	10/16/23 15:13	6	Grab	In-situ	189	ND	ND	61	ND	61	ND
TANK 3 - W	10/16/2023	6		Refusal					ND		ND
TANK 4 - W	10/12/23 10:49	6	Grab	In-situ	135	ND	0.00515	ND	ND	ND	ND
TANK 5 - W	10/12/23 12:28	4	Grab	In-situ	161	ND	ND	ND	ND	ND	ND
TANK 1 - E	10/22/2023	6		Refusal					ND		ND
TANK 2 - E	10/22/2023	6		Refusal					ND		ND
TANK 3 - E	10/19/23 15:50	3	Grab	Refusal	79.9	0.08	0.08	463	ND	463	ND
TANK 4 - E	10/19/23 11:16	6	Grab	Refusal	672	ND	ND	4840	ND	4840	ND
TANK 4 - E	2/23/2024	9.5	Grab	Refusal	656	ND	ND	ND	ND	ND	ND
TANK 5 - N	10/23/23 14:01	7	Grab	In-situ	181	ND	ND	65	ND	65	ND
Exc. A12	10/31/23 14:21	2	Grab	In-situ	64.8	ND	ND	ND	ND	ND	ND
	•										
	NMOCD Reclamation Standards ³ (Surface to 4 ft bgs)					10	10	2,500	1,	000	N/A
1 PTEV - Popz	NMOCD Remediation Standards ⁴ (Greater than Depths of 4 ft bgs)					10	10	2,500	1,	000	N/A

1. BTEX = Benzene, toluene, ethylbenzene, and total xylenes

2. TPH = Total petroleum hydrocarbons

3. New Mexico Administration Code (NMAC) Restoration, Reclamation and Re-vegatation (19.15.29.13), NMAC-D (Reclamation of Areas No Longer in Use) for Soils Extending to 4 ft. bgs

4. New Mexico Oil Conservation Division (NMOCD) Remediation and Delineation Standards (19.15.29.12) NMAC-N, 8/14/2018

ND = Constituent was not detected above the indicated laboratory sample detection limit (SDL).

NA = Not Analyzed

Bold denotes concentrations above applicable laboratory SDLs.

Bold and Highlighted denote concentrations that exceed the NMOCD Reclamation and/or Remediation and Delineation Standards.

In-situ = Sample is representative of material which remains in-place at the site.

Excavated = Sample is representative of materials which was excavated and disposed of at a permitted disposal facility.

Table 2 Soil Analytical Results Summary - Confirmation Evaluation (Floor Samples)

					N	MOCD Refere	ence No.							
Sample ID	Sample Date	Sample Date	Sample Date	Sample Date	Sample Depth	Sample Type	Sample Status	Chloride (mg/Kg)	Benzene (mg/Kg)	Total BTEX ¹ (mg/Kg)	Total TPH ² (mg/Kg)	Gasoline Range Organics (C6-C10) (mg/Kg)	Diesel Range Organics (Over C10-C28) (mg/Kg)	Oil Range Organics (Over C28-C36) (mg/Kg)
		(ft bgs)	.,,,,	011110	EPA Method 300	EPA Method 8021B	EPA Method 8021B	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M			
	Confirmation Floor Samples													
A1, B1 - FS	10/18/23 12:53	4	Composite	In-situ	238	< 0.00199	<0.00398	ND	ND	ND	ND			
A4 - FS	10/23/23 11:32	5	Composite	In-situ	172	<0.00200	<0.00401	ND	ND	ND	ND			
A6 - FS	10/23/23 12:34	5	Composite	In-situ	360	< 0.00199	<0.00398	72	ND	72	ND			
A7 - FS	10/31/2023	2	Composite	In-situ	268	< 0.00202	<0.00403	ND	ND	ND	ND			
B12 - FS	10/19/23 12:27	4	Composite	In-situ	47.7	< 0.0504	<0.101	120	ND	120	ND			
B12 - FS	10/25/2023	4	Composite	In-situ	109	<0.00200	<0.00399	ND	ND	ND	ND			
C13 - FS	10/23/23 13:07	4	Composite	In-situ	113	<0.00200	<0.00399	193	ND	193	ND			
C13 - FS	10/31/2023	4	Composite	In-situ	79.1	<0.00200	<0.00401	82	ND	82	ND			
	NMOCD Reclam (Surface t			10,000	10	10	2,500	1,000		N/A				
	NMOCD Remediation Standards ⁴ (Greater than Depths of 4 ft bgs)					10	10	2,500	1,	000	N/A			

1. BTEX = Benzene, toluene, ethylbenzene, and total xylenes 2. TPH = Total petroleum hydrocarbons 3. New Mexico Administration Code (NMAC) Restoration, Reclamation and Re-vegatation (19.15.29.13), NMAC-D (Reclamation of Areas No Longer in Use) for Soils Extending to 4 ft. bgs 4. New Mexico Oil Conservation Division (NMOCD) Remediation and Delineation Standards (19.15.29.12) NMAC-N, 8/14/2018

ND = Constituent was not detected above the indicated laboratory sample detection limit (SDL).

NA = Not Analyzed

Bold denotes concentrations above applicable laboratory SDLs. Bold and Highlighted denote concentrations that exceed the NMOCD Reclamation and/or Remediation and Delineation Standards. In-situ = Sample is representative of material which remains in-place at the site.

Excavated = Sample is representative of materials which was excavated and disposed of at a permited disposal facility.

Table 3 Soil Analytical Results Summary - Confirmation Evaluation (Wall Samples)

						NMOCD R	eference No					
Sample ID	Sample ID Sample Date		Sample Final Depth	Sample Type	Sample Status	Chloride (mg/Kg)	Benzene (mg/Kg)	Total BTEX ¹ (mg/Kg)	Total TPH ² (mg/Kg)	Gasoline Range Organics (C6-C10) (mg/Kg)	Diesel Range Organics (Over C10-C28) (mg/Kg)	Oil Range Organics (Over C28-C36) (mg/Kg)
		Depth (ft bgs)	(ft bgs)	.,,,,	011110	EPA Method 300	EPA Method 8021B	EPA Method 8021B	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M	EPA Method 8015M
	Confirmation Wall Samples											
A1, B1 - S - SW	10/18/23 11:03	0	4	Composite	In-situ	112	<0.00200	< 0.00401	63.6	ND	63.6	ND
A1 - W - SW	10/23/23 13:47	0	4	Composite	In-situ	147	< 0.00200	< 0.00401	ND	ND	ND	ND
A4,A6 - W - SW	10/23/23 15:05	0	5	Composite	In-situ	339	<0.00200	<0.00399	ND	ND	ND	ND
A7 - W - SW	10/18/23 10:54	0	2	Composite	In-situ	125	< 0.00202	< 0.00403	1310	ND	1310	ND
A7 - W - SW	10/31/23 12:11	0	2	Composite	In-situ	408	<0.00200	<0.00399	62	ND	62	ND
B12,B13 - W - SW	10/23/23 08:54	0	4	Composite	In-situ	156	< 0.00201	< 0.00402	543	ND	543	ND
C12,C13 - NE - SW	10/23/23 09:34	0	4	Composite	In-situ	90.8	< 0.00199	<0.00398	181	ND	181	ND
C12,C13 - NE - SW	10/31/2023	0	4	Composite	In-situ	60	<0.00200	<0.00399	85.9	ND	85.9	ND
	NMOCD Reclamation Standards ³ (Surface to 4 ft bgs)						10	50	2,500		1,000	N/A
	NMOCD Remediation Standards ⁴ (Greater than Depths of 4 ft bgs)						10	50	2,500		1,000	N/A

1. BTEX = Benzene, toluene, ethylbenzene, and total xylenes
2. TPH = Total petroleum hydrocarbons
3. New Mexico Administration Code (NMAC) Restoration, Reclamation and Re-vegatation (19.15.29.13), NMAC-D (Reclamation of Areas No Longer in Use) for Soils Extending to 4 ft. bgs
4. New Mexico Oil Conservation Division (NMOCD) Remediation and Delineation Standards (19.15.29.12) NMAC-N, 8/14/2018

ND = Constituent was not detected above the indicated laboratory sample detection limit (SDL). NA = Not Analyzed

Bold denotes concentrations above applicable laboratory SDLs. Bold and Highlighted denote concentrations that exceed the NMOCD Reclamation and/or Remediation and Delineation Standards. In-situ = Sample is representative of material which remains in-place at the site.

Excavated = Sample is representative of materials which was excavated and disposed of at a permited disposal facility.

Folk 11 Lea County, New Mexico November 14, 2023 NMOCD ID: NAB1919234395

PHOTO 1: View of the signs.

PHOTO 2: View of the signs 2.

Folk 11 Lea County, New Mexico November 14, 2023 NMOCD ID: NAB1919234395

PHOTO 3: View of the Northern area of the pad

PHOTO 4: North facing view of the tanks in the Northern area.

Folk 11 Lea County, New Mexico November 14, 2023 NMOCD ID: NAB1919234395

PHOTO 5: South facing view of the East side of tanks in the Northern area

PHOTO 6: East facing view of the Northern area.

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 2526 W Pierce Street Carlsbad, New Mexico 88220 Generated 11/6/2023 12:13:39 PM

JOB DESCRIPTION

Folk 11 SDG NUMBER KH227025

JOB NUMBER

880-35214-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

See page two for job notes and contact information

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 11/6/2023 12:13:39 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER

Laboratory Job ID: 880-35214-1 SDG: KH227025

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	8
Surrogate Summary	14
	15
	19
Lab Chronicle	22
Certification Summary	25
Method Summary	26
-	27
	28
	29

06

	Definitions/Classon/	
	Definitions/Glossary	
	n Consulting Eng & Scientists	Job ID: 880-35214-1
Project/Site: F	olk 11	SDG: KH227025
Qualifiers		
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
GC Semi VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
20	Minimum Detectable Concentration (Radiochemistry)	

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number Method Quantitation Limit MQL NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent

POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

TEQ Toxicity Equivalent Quotient (Dioxin) TNTC Too Numerous To Count

Eurofins Midland

Released to Imaging: 8/8/2024 8:17:27 AM

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 Job ID: 880-35214-1 SDG: KH227025

Job ID: 880-35214-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-35214-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/2/2023 10:20 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.5°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: NS-1 (880-35214-1), NS-11 (880-35214-2), NS-13 (880-35214-3), NS-23 (880-35214-4), NS-24 (880-35214-5), A7-FS (880-35214-6) and A7-W-SW (880-35214-7).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-66035 and 880-66069 and analytical batch 880-66027 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-66064 and analytical batch 880-66024 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-66024/31), (CCV 880-66024/47) and (CCV 880-66024/58). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: NS-1 (880-35214-1), NS-11 (880-35214-2), NS-13 (880-35214-3), NS-23 (880-35214-4), NS-24 (880-35214-5), A7-FS (880-35214-6), (880-35217-A-21-B), (880-35217-A-21-C MS) and (880-35217-A-21-D MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-66134 and analytical batch 880-66125 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: A7-W-SW (880-35214-7), (880-35214-A-7-E MS) and (880-35214-A-7-F MSD). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-66125/20) and (CCV 880-66125/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Page 32 of 306

Case Narrative

Job ID: 880-35214-1
SDG: KH227025

Job ID: 880-35214-1 (Continued)

Project/Site: Folk 11

Laboratory: Eurofins Midland (Continued)

Client: Terracon Consulting Eng & Scientists

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Terracon Consulting Eng & Scientists

Method: SW846 8021B - Volatile Organic Compounds (GC)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Result Qualifier

Qualifier

<0.00202 U

<0.00202 U

<0.00202 U

<0.00403 U

<0.00202 U

<0.00403 U

97

109

<0.00403 U

Result Qualifier

%Recovery

RL

0.00202

0.00202

0.00202

0.00403

0.00202

0.00403

Limits

70 - 130

70 - 130

RL

0.00403

MDL Unit

MDL Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

mg/Kg

D

D

Prepared

11/02/23 12:07

11/02/23 12:07

11/02/23 12:07

11/02/23 12:07

11/02/23 12:07

11/02/23 12:07

Prepared

11/02/23 12:07

11/02/23 12:07

Prepared

Job ID: 880-35214-1 SDG: KH227025

Client Sample ID: NS-1

Date Collected: 10/31/23 11:39 Date Received: 11/02/23 10:20

Sample Depth: 1.5

Analyte

Benzene

Toluene

o-Xylene

Surrogate

Analyte

Total BTEX

Ethylbenzene

Xylenes, Total

m-Xylene & p-Xylene

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Project/Site: Folk 11

Lab Sample ID: 880-35214-1

Analyzed

11/03/23 00:15

11/03/23 00:15

11/03/23 00:15

11/03/23 00:15

11/03/23 00:15

11/03/23 00:15

Analyzed

11/03/23 00:15

11/03/23 00:15

Analyzed

11/03/23 00:15

Matrix: Solid 5 Dil Fac 1 1 1 1 Dil Fac 1 Dil Fac 1

	3

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	180		49.9		mg/Kg			11/03/23 05:26	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	49.9		mg/Kg		11/02/23 11:31	11/03/23 05:26	
Diesel Range Organics (Over C10-C28)	180		49.9		mg/Kg		11/02/23 11:31	11/03/23 05:26	
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		11/02/23 11:31	11/03/23 05:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	176	S1+	70 - 130				11/02/23 11:31	11/03/23 05:26	
o-Terphenyl	166	S1+	70 - 130				11/02/23 11:31	11/03/23 05:26	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	84.7		5.03		mg/Kg			11/03/23 02:45	
lient Sample ID: NS-11							Lab Sam	ple ID: 880-3	5214-2
ate Collected: 10/31/23 11:41								-	x: Solic
Date Received: 11/02/23 10:20									

Sample Depth: 1.5

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		11/02/23 12:07	11/03/23 00:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				11/02/23 12:07	11/03/23 00:36	1

Eurofins Midland

Released to Imaging: 8/8/2024 8:17:27 AM

Client: Terracon Consulting Eng & Scientists

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-2

Client Sample ID: NS-11

Date Collected: 10/31/23 11:41 Date Received: 11/02/23 10:20

Sample Depth: 1.5

Project/Site: Folk 11

Mothod: SW846 8024R - Valatila Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	112		70 - 130				11/02/23 12:07	11/03/23 00:36	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/03/23 00:36	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			11/03/23 05:48	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		11/02/23 11:31	11/03/23 05:48	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		11/02/23 11:31	11/03/23 05:48	1
C10-C28)									

Surrogate %Recove	ery Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane 1	62 S1+	70 - 130	11/02/23 11:31	11/03/23 05:48	1
o-Terphenyl 1	55 S1+	70 - 130	11/02/23 11:31	11/03/23 05:48	1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	106		5.01		mg/Kg			11/03/23 02:51	1

Client Sample ID: NS-13

Date Collected: 10/31/23 11:43 Date Received: 11/02/23 10:20 Sample Depth: 1.5

Lab Sample ID: 880-35214-3

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
Toluene	<0.00198	U	0.00198		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		11/02/23 12:07	11/03/23 00:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				11/02/23 12:07	11/03/23 00:56	1
1,4-Difluorobenzene (Surr)	105		70 - 130				11/02/23 12:07	11/03/23 00:56	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			11/03/23 00:56	1
- Method: SW846 8015 NM - Die	esel Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDI	Unit	D	Prepared	Analyzed	Dil Fac

 mg/Kg	 11/03/23 06:10	1

Eurofins Midland

Matrix: Solid

5

Released to Imaging: 8/8/2024 8:17:27 AM

Total TPH

50.0

<50.0 U

Client: Terracon Consulting Eng & Scientists

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-4

Matrix: Solid

Client Sample ID: NS-13

Date Collected: 10/31/23 11:43 Date Received: 11/02/23 10:20

Sample Depth: 1.5

Project/Site: Folk 11

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		11/02/23 11:31	11/03/23 06:10	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		11/02/23 11:31	11/03/23 06:10	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		11/02/23 11:31	11/03/23 06:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	170	S1+	70 - 130				11/02/23 11:31	11/03/23 06:10	1
o-Terphenyl	160	S1+	70 - 130				11/02/23 11:31	11/03/23 06:10	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1080	5.04	mg/Kg			11/03/23 03:07	1

Client Sample ID: NS-23

Date Collected: 10/31/23 11:45 Date Received: 11/02/23 10:20

Sample Depth: 1.5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		11/02/23 12:07	11/03/23 01:16	1
Toluene	<0.00201	U	0.00201		mg/Kg		11/02/23 12:07	11/03/23 01:16	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		11/02/23 12:07	11/03/23 01:16	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		11/02/23 12:07	11/03/23 01:16	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		11/02/23 12:07	11/03/23 01:16	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		11/02/23 12:07	11/03/23 01:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				11/02/23 12:07	11/03/23 01:16	1
1,4-Difluorobenzene (Surr)	113		70 - 130				11/02/23 12:07	11/03/23 01:16	1
Method: TAL SOP Total BTEX - 1			51	MD	11	_	Durant	A	D!! [
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			11/03/23 01:16	
lotal BTEX Method: SW846 8015 NM - Diese					mg/Kg			11/03/23 01:16	1
	el Range Organ			MDL		D	Prepared	11/03/23 01:16 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)	MDL		<u>D</u>	Prepared		1 Dil Fac
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result 193	ics (DRO) ((Qualifier	GC) RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result 193 sel Range Orga	ics (DRO) ((Qualifier	GC) RL	MDL	Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ Result 193 sel Range Orga	ics (DRO) (Qualifier nics (DRO) Qualifier	GC) <u>RL</u> 50.3 (GC)		Unit mg/Kg			Analyzed 11/03/23 06:32	,
Method: SW846 8015 NM - Diese Analyte Fotal TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	el Range Organ Result 193 sel Range Orga Result	ics (DRO) (Qualifier nics (DRO) Qualifier	GC) 		Unit mg/Kg Unit		Prepared	Analyzed 11/03/23 06:32 Analyzed	,
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result 193 sel Range Orga Result	ics (DRO) (Qualifier nics (DRO) Qualifier	GC) 		Unit mg/Kg Unit		Prepared	Analyzed 11/03/23 06:32 Analyzed	,
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result 193 sel Range Orga Result <50.3	ics (DRO) ((Qualifier mics (DRO) Qualifier U	GC) <u>RL</u> 50.3 (GC) <u>RL</u> 50.3		Unit mg/Kg Unit mg/Kg		Prepared 11/02/23 11:31	Analyzed 11/03/23 06:32 Analyzed 11/03/23 06:32	,

Eurofins Midland

5
Client Sample Results

		Client	Sample R	esuits	•					
Client: Terracon Consulting Eng & S Project/Site: Folk 11	scientists							Job ID: 880- SDG: KH		
Client Sample ID: NS-23							Lab Sam	ple ID: 880-3	5214-4	
Date Collected: 10/31/23 11:45								-	ix: Soli	
Date Received: 11/02/23 10:20										
Sample Depth: 1.5										
-										
Method: EPA 300.0 - Anions, Ion	• •	-				_				
Analyte		Qualifier		MDL		D	Prepared	Analyzed	Dil Fa	
Chloride	37.7		4.90		mg/Kg			11/03/23 03:12		
Client Sample ID: NS-24							Lab Sam	ple ID: 880-3	5214-	
Date Collected: 10/31/23 11:47								Matri	ix: Soli	
Date Received: 11/02/23 10:20										
Sample Depth: 1.5										
- Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Benzene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:37		
Toluene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:37		
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:37		
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		11/02/23 12:07	11/03/23 01:37		
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:37		
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		11/02/23 12:07	11/03/23 01:37		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa	
4-Bromofluorobenzene (Surr)	102		70 - 130				11/02/23 12:07	11/03/23 01:37		
1,4-Difluorobenzene (Surr)	106		70 - 130				11/02/23 12:07	11/03/23 01:37		
- Method: TAL SOP Total BTEX - To	otal BTEX Cal	sulation								
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Total BTEX	< 0.00404		0.00404		mg/Kg			11/03/23 01:37		
-										
Method: SW846 8015 NM - Diese										
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Total TPH	<50.5	U	50.5		mg/Kg			11/03/23 06:54		
_ Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO) (0	GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	
Gasoline Range Organics	<50.5	U	50.5		mg/Kg		11/02/23 11:31	11/03/23 06:54		
(GRO)-C6-C10			Fa F					44/00/00 00 51		
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5		mg/Kg		11/02/23 11:31	11/03/23 06:54		
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		11/02/23 11:31	11/03/23 06:54		
0	~ -	0	1 : :4				Duran (A	n	
Surrogate 1-Chlorooctane	- %Recovery	Qualifier S1+	Limits 70 - 130				Prepared	Analyzed 11/03/23 06:54	Dil Fa	
o-Terphenyl		S1+ S1+	70 - 130 70 - 130				11/02/23 11:31 11/02/23 11:31	11/03/23 06:54 11/03/23 06:54		
	155	51+	10 - 130				11/02/23 11.31	11/03/23 00.34		
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble								
Method: EPA 300.0 - Anions, Ion Analyte		ohy - Soluble Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa	

Eurofins Midland

Client: Terracon Consulting Eng & Scientists

Method: SW846 8021B - Volatile Organic Compounds (GC)

Job ID: 880-35214-1 SDG: KH227025

Client Sample ID: A7-FS

Date Collected: 10/31/23 12:09 Date Received: 11/02/23 10:20

Sample Depth: 2

Project/Site: Folk 11

Lab Sample ID: 880-35214-6 Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
Toluene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		11/02/23 12:07	11/03/23 01:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				11/02/23 12:07	11/03/23 01:57	1
1,4-Difluorobenzene (Surr)	113		70 - 130				11/02/23 12:07	11/03/23 01:57	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			11/03/23 01:57	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			11/03/23 07:16	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6		mg/Kg		11/02/23 11:31	11/03/23 07:16	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6		mg/Kg		11/02/23 11:31	11/03/23 07:16	1
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		11/02/23 11:31	11/03/23 07:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	185	S1+	70 - 130				11/02/23 11:31	11/03/23 07:16	1
o-Terphenyl	172	S1+	70 - 130				11/02/23 11:31	11/03/23 07:16	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	268		5.05		mg/Kg			11/03/23 03:22	1
lient Sample ID: A7-W-SW							Lab Sam	ple ID: 880-3	5214-7
ate Collected: 10/31/23 12:11								Matri	x: Solid
ate Received: 11/02/23 10:20									
ample Depth: 0-2									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Method: SW846 8021B - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			RL	MDL	Unit mg/Kg	<u>D</u>	Prepared 11/02/23 12:07	Analyzed 11/03/23 02:18	Dil Fac

0.00200 Ethylbenzene <0.00200 U mg/Kg 11/02/23 12:07 11/03/23 02:18 <0.00399 U 0.00399 11/02/23 12:07 11/03/23 02:18 m-Xylene & p-Xylene mg/Kg 1 o-Xylene <0.00200 U 0.00200 11/02/23 12:07 11/03/23 02:18 mg/Kg 1 Xylenes, Total <0.00399 U 0.00399 11/02/23 12:07 11/03/23 02:18 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 4-Bromofluorobenzene (Surr) 106 70 - 130 11/02/23 12:07 11/03/23 02:18 1

Eurofins Midland

Released to Imaging: 8/8/2024 8:17:27 AM

Client: Terracon Consulting Eng & Scientists

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-7

Client Sample ID: A7-W-SW

Date	Collected:	10/31/23	12:11
Date	Received:	11/02/23	10:20

Sample Depth: 0-2

Project/Site: Folk 11

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	118		70 - 130				11/02/23 12:07	11/03/23 02:18	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/03/23 02:18	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	62.0		50.3		mg/Kg			11/03/23 11:01	1
Method: SW846 8015B NM - Dies Analyte		Dics (DRO)	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Gasoline Range Organics				MDL	Unit mg/Kg	D	Prepared 11/03/23 09:36	Analyzed 11/03/23 11:01	Dil Fac
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	62.0		50.3		mg/Kg		11/03/23 09:36	11/03/23 11:01	1
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		11/03/23 09:36	11/03/23 11:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	176	S1+	70 - 130				11/03/23 09:36	11/03/23 11:01	1
o-Terphenyl	169	S1+	70 - 130				11/03/23 09:36	11/03/23 11:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	408		4.98		mg/Kg			11/03/23 03:27	1

Matrix: Solid

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-35214-1	NS-1	97	109		-
880-35214-2	NS-11	101	112		
880-35214-3	NS-13	97	105		
880-35214-4	NS-23	104	113		
880-35214-5	NS-24	102	106		
880-35214-6	A7-FS	104	113		
880-35214-7	A7-W-SW	106	118		
LCS 880-66069/1-A	Lab Control Sample	94	104		
LCSD 880-66069/2-A	Lab Control Sample Dup	99	111		
MB 880-66035/5-A	Method Blank	110	144 S1+		
MB 880-66069/5-A	Method Blank	103	145 S1+		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-35214-1	NS-1	176 S1+	166 S1+	
880-35214-2	NS-11	162 S1+	155 S1+	
880-35214-3	NS-13	170 S1+	160 S1+	
880-35214-4	NS-23	180 S1+	171 S1+	
880-35214-5	NS-24	159 S1+	155 S1+	
880-35214-6	A7-FS	185 S1+	172 S1+	
880-35214-7	A7-W-SW	176 S1+	169 S1+	
880-35214-7 MS	A7-W-SW	178 S1+	160 S1+	
880-35214-7 MSD	A7-W-SW	174 S1+	155 S1+	
_CS 880-66064/2-A	Lab Control Sample	110	119	
LCS 880-66134/2-A	Lab Control Sample	106	117	
LCSD 880-66064/3-A	Lab Control Sample Dup	119	128	
LCSD 880-66134/3-A	Lab Control Sample Dup	102	110	
MB 880-66064/1-A	Method Blank	196 S1+	217 S1+	
MB 880-66134/1-A	Method Blank	219 S1+	213 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Page 40 of 306

Job ID: 880-35214-1 SDG: KH227025

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-66035/5-	-A									Client Sa	mple ID: Meth	od Blank
Matrix: Solid											Prep Type:	Total/NA
Analysis Batch: 66027											Prep Bato	
	MB	МВ										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200			mg/Kg		_	11/0	2/23 08:43	11/02/23 11:29	1
Toluene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 08:43	11/02/23 11:29	1
Ethylbenzene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 08:43	11/02/23 11:29	1
m-Xylene & p-Xylene	<0.00400	U	0.00400			mg/Kg			11/0	2/23 08:43	11/02/23 11:29	1
o-Xylene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 08:43	11/02/23 11:29	1
Xylenes, Total	<0.00400		0.00400			mg/Kg			11/0	2/23 08:43	11/02/23 11:29	1
· · · · · · · · · · · · · · · · · · ·												
	MB	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130						11/0	2/23 08:43	11/02/23 11:29	1
1,4-Difluorobenzene (Surr)	144	S1+	70 - 130						11/0	2/23 08:43	11/02/23 11:29	1
_ Lab Sample ID: MB 880-66069/5-	-A									Client Sa	mple ID: Meth	od Blank
Matrix: Solid											Prep Type:	Total/NA
Analysis Batch: 66027											Prep Bate	:h: 66069
	MB	МВ										
Analyte	Result	Qualifier	RL		MDL	Unit		D	Р	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200			mg/Kg		_	11/0	2/23 12:07	11/02/23 23:05	1
Toluene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 12:07	11/02/23 23:05	1
Ethylbenzene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 12:07	11/02/23 23:05	1
m-Xylene & p-Xylene	<0.00400	U	0.00400			mg/Kg			11/0	2/23 12:07	11/02/23 23:05	1
o-Xylene	<0.00200	U	0.00200			mg/Kg			11/0	2/23 12:07	11/02/23 23:05	1
Xylenes, Total	<0.00400	U	0.00400			mg/Kg			11/0	2/23 12:07	11/02/23 23:05	1
	МВ	MB										
Surrogate	%Recovery		Limits						P	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130							2/23 12:07	11/02/23 23:05	1
1,4-Difluorobenzene (Surr)	145	S1+	70 - 130						11/0	2/23 12:07	11/02/23 23:05	1
_ Lab Sample ID: LCS 880-66069/1	1-A							С	lient	Sample	ID: Lab Contro	l Sample
Matrix: Solid											Prep Type:	
Analysis Batch: 66027											Prep Bate	
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result			Unit		D	%Rec	Limits	
Benzene			0.100	0.1000			mg/Kg			100	70 - 130	
Toluene			0.100	0.08715			mg/Kg			87	70 - 130	
Ethylbenzene			0.100	0.08222			mg/Kg			82	70 - 130	
m-Xylene & p-Xylene			0.200	0.1907			mg/Kg			95	70 - 130	
o-Xylene			0.100	0.09449			mg/Kg			94	70 - 130	
0-Xylene			0.100	0.03443			iiig/itg			34	70 - 150	
Surrogate	LCS LCS %Recovery Qua		Limits									
4-Bromofluorobenzene (Surr)	94		70 - 130									
1,4-Difluorobenzene (Surr)	94 104		70 - 130 70 - 130									
 Lab Sample ID: LCSD 880-66069	A/2_A						CI	ont	Sam		ab Control Sar	nnio Dun
Matrix: Solid	// - - R							ent	Jail	ipie iD. Li		
											Prep Type:	
Analysis Batch: 66027			Spiko	LCSD	1.06	n					Prep Bato %Rec	RPD
Analyta			Spike Addod				Unit		~	% Bee		
Analyte			Added	Result	Qua	mer	Unit		D	%Rec	Limits RF	D Limit

Job ID: 880-35214-1 SDG: KH227025

7 Eurofins Midland

Benzene

0.1074

mg/Kg

107

70 - 130

0.100

Job ID: 880-35214-1 SDG: KH227025

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-6606	59/2-A						Clie	ent	Sam	ple ID: L	ab Control		
Matrix: Solid											Prep Ty	-	
Analysis Batch: 66027			. "									Batch:	
			Spike		LCSD				_		%Rec		RPD
Analyte			Added	Result	Quain		Unit		D	%Rec	Limits	RPD	Limi
				0.08546			ng/Kg			85	70 - 130	2	3
Ethylbenzene				0.08468			mg/Kg			85	70 - 130	3	3
n-Xylene & p-Xylene			0.200	0.1912			ng/Kg			96	70 - 130	0	3
o-Xylene			0.100	0.09184		I	ng/Kg			92	70 - 130	3	3
	LCSD LC	SD											
Surrogate	%Recovery Qu	alifier	Limits										
4-Bromofluorobenzene (Surr)	99		70 - 130										
1,4-Difluorobenzene (Surr)	111		70 - 130										
											Prep Ty	pe. 10	
Matrix: Solid Analysis Batch: 66024	М	в мв									Prep I	Batch:	66064
		B MB	RL		MDL	Unit		D	Pr	epared	Prep I Analyze		
Analysis Batch: 66024	Resu		RL 50.0			Unit mg/Kg		<u>D</u>		epared 2/23 11:31	-	d	Dil Fa
Analysis Batch: 66024 Analyte Gasoline Range Organics	Resu <50.	t Qualifier			I			<u>D</u>	11/02	•	Analyze	e d 2:03	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Resu <50. <50.	Qualifier U U U U U U	50.0		i	mg/Kg		<u>D</u>	11/02 11/02	2/23 11:31	Analyze	2:03 -	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36)	Resu <50. <50. <50.	t Qualifier U U U U U U U B <i>MB</i>	50.0 50.0 50.0		i	mg/Kg mg/Kg		<u>D</u> .	11/02 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2:	ed	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	Resu <50. <50. <50. %Recover	t Qualifier U U U U U U U B <i>MB</i> Qualifier	50.0 50.0 50.0 <i>Limits</i>		i	mg/Kg mg/Kg		<u>D</u>	11/02 11/02 11/02 Pr	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 epared	Analyze 11/02/23 22 11/02/23 22 11/02/23 22 Analyze	d 2:03 2:03 2:03	Dil Fac
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Burrogate I-Chlorooctane	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130		i	mg/Kg mg/Kg		<u>D</u> .	11/02 11/02 11/02 Pr 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 epared 2/23 11:31	Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2:	d 2:03 2:03 2:03 2:03	Dil Fac
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate	Result <50.	t Qualifier U U U U U U U B <i>MB</i> Qualifier	50.0 50.0 50.0 <i>Limits</i>		i	mg/Kg mg/Kg		<u>D</u>	11/02 11/02 11/02 Pr 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 epared	Analyze 11/02/23 22 11/02/23 22 11/02/23 22 Analyze	d 2:03 2:03 2:03 2:03	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) DII Range Drganics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130		i	mg/Kg mg/Kg			11/02 11/02 11/02 Pr 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2:	d	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130		i	mg/Kg mg/Kg			11/02 11/02 11/02 Pr 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2:	d 2:03 2:03 2:03 2:03 2:03 2:03 2:03 ntrol S	Dil Fa
Analysis Batch: 66024 Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064 Matrix: Solid	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130		i	mg/Kg mg/Kg			11/02 11/02 11/02 Pr 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 22 11/02/23 22 11/02/23 22 Analyze 11/02/23 22 11/02/23 22 11/02/23 22 1D: Lab Co Prep Ty	d 2:03 2:03 2:03 d 2:03 2:03 ntrol S ype: To	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130		i	mg/Kg mg/Kg			11/02 11/02 11/02 Pr 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 22 11/02/23 22 11/02/23 22 Analyze 11/02/23 22 11/02/23 22 11/02/23 22 1D: Lab Co Prep Ty	d 2:03 2:03 2:03 2:03 2:03 2:03 2:03 ntrol S	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064 Matrix: Solid Analysis Batch: 66024	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130	LCS	LCS	mg/Kg mg/Kg mg/Kg	Unit		11/02 11/02 11/02 Pr 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31	Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: 1D: Lab Co Prep Ty Prep I	d 2:03 2:03 2:03 d 2:03 2:03 ntrol S ype: To	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064 Matrix: Solid Analysis Batch: 66024 Analyte	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 70 - 130		LCS	mg/Kg mg/Kg mg/Kg			11/02 11/02 11/02 11/02 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 Sample	Analyze 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2: 10: Lab Coo Prep Ty Prep I %Rec	d 2:03 2:03 2:03 d 2:03 2:03 ntrol S ype: To	Dil Fa
Analysis Batch: 66024 Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) DII Range Organics (Over C28-C36) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: LCS 880-66064 Matrix: Solid Analysis Batch: 66024	Result <50.	t Qualifier U U U U U U U U B <i>MB</i> <i>Qualifier</i> <i>S</i> 1+	50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 70 - 130	LCS Result	LCS	mg/Kg mg/Kg mg/Kg	Unit mg/Kg		11/02 11/02 11/02 11/02 11/02 11/02	2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 2/23 11:31 Sample %Rec	Analyze 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2: 11/02/23 2: 11/02/23 2: Analyze 11/02/23 2: 11/02/23 2: 10: Lab Coo Prep Ty Prep I %Rec Limits	d 2:03 2:03 2:03 d 2:03 2:03 ntrol S ype: To	Dil Fa

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	110		70 - 130
o-Terphenyl	119		70 - 130

Lab Sample ID: LCSD 880-66064/3-A Client Sample ID: Lab Control Sample Dup Matrix: Solid Prep Type: Total/NA Analysis Batch: 66024 Prep Batch: 66064 LCSD LCSD Spike %Rec Analyte Added Result Qualifier Unit D %Rec Limits RPD Gasoline Range Organics 1000 1015 mg/Kg 101 70 - 130 7 (GRO)-C6-C10 Diesel Range Organics (Over 1000 1131 mg/Kg 113 70 - 130 12 C10-C28)

Eurofins Midland

RPD

Limit

20

Limits

70 - 130

70 - 130

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Lab Sample ID: LCSD 880-66064/3-A

Lab Sample ID: MB 880-66134/1-A

Matrix: Solid

Surrogate

o-Terphenyl

1-Chlorooctane

Matrix: Solid

Analysis Batch: 66024

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCSD LCSD %Recovery Qualifier

119

128

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Method Blank

Prep Batch: 66064

Client Sample ID: Lab Control Sample Dup

5
7
8
9
_

Analysis Batch: 66125												Prep Bate	ch: 66134
	ME	MB											
Analyte	Resul	Qualifier	RL		MDL	Unit		D	Р	repared		Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0			mg/K	g	_	11/0	3/23 07:	36 1	11/03/23 08:26	1
(GRO)-C6-C10													
Diesel Range Organics (Over	<50.0) U	50.0)		mg/K	9		11/0	3/23 07:	36 1	1/03/23 08:26	1
C10-C28)													
Oll Range Organics (Over C28-C36)	<50.0) U	50.0)		mg/K	g		11/0	3/23 07:	36 1	11/03/23 08:26	1
	МЕ	B MB											
Surrogate	%Recovery	Qualifier	Limits						P	repared		Analyzed	Dil Fac
1-Chlorooctane	219	9 S1+	70 - 130	-					11/0	3/23 07:	36 1	11/03/23 08:26	1
o-Terphenyl	213	8 S1+	70 - 130						11/0	3/23 07:	36 1	11/03/23 08:26	1
Matrix: Solid Analysis Batch: 66125			Spike	LCS	LCS						%	Prep Type: Prep Bate Rec	
Analyte			Added	Result			Unit		D	%Rec		mits	
Gasoline Range Organics			1000	915.5			mg/Kg			92		- 130	
(GRO)-C6-C10				0.000						02		- 100	
Diesel Range Organics (Over			1000	993.8			mg/Kg			99	70	- 130	
C10-C28)													
	LCS LC	s											
Surrogate	%Recovery Qu	alifier	Limits										
1-Chlorooctane	106		70 - 130										
o-Terphenyl	117		70 - 130										
_ Lab Sample ID: LCSD 880-661 Matrix: Solid	34/3 -A						CI	ient	Sam	ple ID	: Lab	Control Sa Prep Type:	

Matrix: Solid

Analysis Batch: 66125							Prep	Batch:	66134
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	1000	892.9		mg/Kg		89	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	1000	943.7		mg/Kg		94	70 - 130	5	20

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	102		70 - 130
o-Terphenyl	110		70 - 130

Eurofins Midland

Released to Imaging: 8/8/2024 8:17:27 AM

Lab Sample ID: 880-35214-7 MS

Lab Sample ID: 880-35214-7 MSD

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Surrogate

o-Terphenyl

1-Chlorooctane o-Terphenyl

Analysis Batch: 66125

Gasoline Range Organics

Diesel Range Organics (Over

QC Sample Results

MS MS

872.8

1357

Result Qualifier

Unit

mg/Kg

mg/Kg

D

%Rec

85

130

Spike

Added

997

997

Limits

70 - 130

70 - 130

70 - 130

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample

MS MS

178 S1+

160 S1+

155 S1+

%Recovery Qualifier

<50.3 U

62.0

Result Qualifier

Job ID: 880-35214-1 SDG: KH227025

Prep Type: Total/NA

Prep Batch: 66134

Client Sample ID: A7-W-SW

%Rec

Limits

70 - 130

70 - 130

7

Client Sample ID: A7-W-SW
Prep Type: Total/NA
Prep Batch: 66134

SW	
NA	
134	
RPD	
imit	
20	
20	

Matrix: Solid Analysis Batch: 66125										Type: To Batch:	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	997	846.2		mg/Kg		82	70 - 130	3	20
Diesel Range Organics (Over C10-C28)	62.0		997	1304		mg/Kg		125	70 - 130	4	20
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	174	S1+	70 - 130								

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-66073/1-A Matrix: Solid										Clie	nt Sa	ample ID: N Prep T	lethod ype: S	
Analysis Batch: 66089	мв	мв												
Analyte	Result			RL		MDL	Unit		D	Prepare	ed	Analyze	d	Dil Fac
Chloride	<5.00	U		5.00			mg/Kg					11/03/23 02	2:04	1
_ Lab Sample ID: LCS 880-66073/2-A									Clie	nt Sam	nple	ID: Lab Co	ntrol S	ample
Matrix: Solid												Prep T	ype: S	oluble
Analysis Batch: 66089														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qua	lifier	Unit	0	%Re	€C	Limits		
Chloride			250		268.0			mg/Kg		10)7	90 - 110		
 Lab Sample ID: LCSD 880-66073/3-A								CI	ient Sa	mple l	D: La	ab Control	Sampl	e Dup
Matrix: Solid												Prep T	ype: S	oluble
Analysis Batch: 66089														
			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qua	lifier	Unit	0	%Re	ec	Limits	RPD	Limit
Chloride			250		269.3			mg/Kg		10	08	90 - 110	1	20

Eurofins Midland

Released to Imaging: 8/8/2024 8:17:27 AM

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

5

Job ID: 880-35214-1 SDG: KH227025

GC VOA

Analysis Batch: 66027

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	8021B	66069
880-35214-2	NS-11	Total/NA	Solid	8021B	66069
880-35214-3	NS-13	Total/NA	Solid	8021B	66069
880-35214-4	NS-23	Total/NA	Solid	8021B	66069
880-35214-5	NS-24	Total/NA	Solid	8021B	66069
880-35214-6	A7-FS	Total/NA	Solid	8021B	66069
880-35214-7	A7-W-SW	Total/NA	Solid	8021B	66069
MB 880-66035/5-A	Method Blank	Total/NA	Solid	8021B	66035
MB 880-66069/5-A	Method Blank	Total/NA	Solid	8021B	66069
LCS 880-66069/1-A	Lab Control Sample	Total/NA	Solid	8021B	66069
LCSD 880-66069/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	66069

Prep Batch: 66035

000-35214-7	A7-W-3W	Total/INA	Solid	0021B	66069	
MB 880-66035/5-A	Method Blank	Total/NA	Solid	8021B	66035	8
MB 880-66069/5-A	Method Blank	Total/NA	Solid	8021B	66069	
LCS 880-66069/1-A	Lab Control Sample	Total/NA	Solid	8021B	66069	9
LCSD 880-66069/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	66069	
Prep Batch: 66035						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	44
MB 880-66035/5-A	Method Blank	Total/NA	Solid	5035		
Prep Batch: 66069						12
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	40
880-35214-1	NS-1	Total/NA	Solid	5035		Π3
880-35214-2	NS-11	Total/NA	Solid	5035		
880-35214-3	NS-13	Total/NA	Solid	5035		114

Prep Batch: 66069

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	5035	
880-35214-2	NS-11	Total/NA	Solid	5035	
880-35214-3	NS-13	Total/NA	Solid	5035	
880-35214-4	NS-23	Total/NA	Solid	5035	
880-35214-5	NS-24	Total/NA	Solid	5035	
880-35214-6	A7-FS	Total/NA	Solid	5035	
880-35214-7	A7-W-SW	Total/NA	Solid	5035	
MB 880-66069/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-66069/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-66069/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 66193

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	Total BTEX	
880-35214-2	NS-11	Total/NA	Solid	Total BTEX	
880-35214-3	NS-13	Total/NA	Solid	Total BTEX	
880-35214-4	NS-23	Total/NA	Solid	Total BTEX	
880-35214-5	NS-24	Total/NA	Solid	Total BTEX	
880-35214-6	A7-FS	Total/NA	Solid	Total BTEX	
880-35214-7	A7-W-SW	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 66024

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	8015B NM	66064
880-35214-2	NS-11	Total/NA	Solid	8015B NM	66064
880-35214-3	NS-13	Total/NA	Solid	8015B NM	66064
880-35214-4	NS-23	Total/NA	Solid	8015B NM	66064
880-35214-5	NS-24	Total/NA	Solid	8015B NM	66064
880-35214-6	A7-FS	Total/NA	Solid	8015B NM	66064
MB 880-66064/1-A	Method Blank	Total/NA	Solid	8015B NM	66064
LCS 880-66064/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	66064

Eurofins Midland

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

GC Semi VOA (Continued)

Analysis Batch: 66024 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
LCSD 880-66064/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	66064
Prep Batch: 66064					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	8015NM Prep	
880-35214-2	NS-11	Total/NA	Solid	8015NM Prep	
880-35214-3	NS-13	Total/NA	Solid	8015NM Prep	
880-35214-4	NS-23	Total/NA	Solid	8015NM Prep	
880-35214-5	NS-24	Total/NA	Solid	8015NM Prep	
880-35214-6	A7-FS	Total/NA	Solid	8015NM Prep	
MB 880-66064/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-66064/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-66064/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
Analysis Batch: 66125					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-7	A7-W-SW	Total/NA	Solid	8015B NM	66134

880-35214-7	A7-W-SW	Total/NA	Solid	8015B NM	66134	
MB 880-66134/1-A	Method Blank	Total/NA	Solid	8015B NM	66134	
LCS 880-66134/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	66134	
LCSD 880-66134/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	66134	
880-35214-7 MS	A7-W-SW	Total/NA	Solid	8015B NM	66134	
880-35214-7 MSD	A7-W-SW	Total/NA	Solid	8015B NM	66134	

Prep Batch: 66134

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-7	A7-W-SW	Total/NA	Solid	8015NM Prep	
MB 880-66134/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-66134/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-66134/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-35214-7 MS	A7-W-SW	Total/NA	Solid	8015NM Prep	
880-35214-7 MSD	A7-W-SW	Total/NA	Solid	8015NM Prep	

Analysis Batch: 66162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-35214-1	NS-1	Total/NA	Solid	8015 NM	
880-35214-2	NS-11	Total/NA	Solid	8015 NM	
880-35214-3	NS-13	Total/NA	Solid	8015 NM	
880-35214-4	NS-23	Total/NA	Solid	8015 NM	
880-35214-5	NS-24	Total/NA	Solid	8015 NM	
880-35214-6	A7-FS	Total/NA	Solid	8015 NM	
880-35214-7	A7-W-SW	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 66073

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-35214-1	NS-1	Soluble	Solid	DI Leach	
880-35214-2	NS-11	Soluble	Solid	DI Leach	
880-35214-3	NS-13	Soluble	Solid	DI Leach	
880-35214-4	NS-23	Soluble	Solid	DI Leach	
880-35214-5	NS-24	Soluble	Solid	DI Leach	

Eurofins Midland

Page 46 of 306

Job ID: 880-35214-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

HPLC/IC (Continued)

Leach Batch: 66073 (Continued)

Lab Sample ID 880-35214-6	Client Sample ID A7-FS	Prep Type Soluble	Matrix Solid	Method DI Leach	Prep Batch
880-35214-7	A7-W-SW	Soluble	Solid	DI Leach	
MB 880-66073/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-66073/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-66073/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 66089

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
880-35214-1	NS-1	Soluble	Solid	300.0	66073	
880-35214-2	NS-11	Soluble	Solid	300.0	66073	9
880-35214-3	NS-13	Soluble	Solid	300.0	66073	
880-35214-4	NS-23	Soluble	Solid	300.0	66073	
880-35214-5	NS-24	Soluble	Solid	300.0	66073	
880-35214-6	A7-FS	Soluble	Solid	300.0	66073	
880-35214-7	A7-W-SW	Soluble	Solid	300.0	66073	
MB 880-66073/1-A	Method Blank	Soluble	Solid	300.0	66073	
LCS 880-66073/2-A	Lab Control Sample	Soluble	Solid	300.0	66073	
LCSD 880-66073/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	66073	

Page 47 of 306

Initial

Amount

Final

Amount

Batch

Number

Dil

Factor

Run

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-1

Analyst

Prepared

or Analyzed

Matrix: Solid

Lab

5 9

Lab Sample ID: 880-35214-3

Lab Sample ID: 880-35214-4

Matrix: Solid

	3

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 00:36	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 00:36	SM	EET MID
Total/NA	Analysis	8015 NM		1			66162	11/03/23 05:48	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	66064	11/02/23 11:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66024	11/03/23 05:48	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	66073	11/02/23 12:53	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 02:51	СН	EET MID

Client Sample ID: NS-13 Date Collected: 10/31/23 11:43

Date Received: 11/02/23 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 00:56	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 00:56	SM	EET MID
Total/NA	Analysis	8015 NM		1			66162	11/03/23 06:10	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	66064	11/02/23 11:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66024	11/03/23 06:10	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	66073	11/02/23 12:53	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 03:07	СН	EET MID

Client Sample ID: NS-23 Date Collected: 10/31/23 11:45 Date Received: 11/02/23 10:20

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 01:16	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 01:16	SM	EET MID

Eurofins Midland

Matrix: Solid

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Batch

Туре

Batch

Method

Client Sample ID: NS-1 Date Collected: 10/31/23 11:39 Date Received: 11/02/23 10:20

Prep Type

Total/NA	Prep	5035			4.96 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 00:15	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 00:15	SM	EET MID
Total/NA	Analysis	8015 NM		1			66162	11/03/23 05:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	66064	11/02/23 11:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66024	11/03/23 05:26	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	66073	11/02/23 12:53	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 02:45	СН	EET MID
Client Samp	le ID: NS-11							Lab Sam	ole ID: 8	80-35214-2
Date Collected	I: 10/31/23 11:4	1								Matrix: Solid
Date Received	: 11/02/23 10:20	0								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 00:36	AJ	EET MID

Client: Terracon Consulting Eng & Scientists

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-4 Matrix: Solid

Lab Sample ID: 880-35214-5

Date Collected: 10/31/23 11:45 Date Received: 11/02/23 10:20

Client Sample ID: NS-23

Project/Site: Folk 11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			66162	11/03/23 06:32	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	66064	11/02/23 11:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66024	11/03/23 06:32	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	66073	11/02/23 12:53	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 03:12	СН	EET MID

Client Sample ID: NS-24 Date Collected: 10/31/23 11:47 Date Received: 11/02/23 10:20

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Туре Run Factor Analyst Lab Total/NA 5035 Prep 4.95 g 5 mL 66069 11/02/23 12:07 EL EET MID Total/NA Analysis 8021B 5 mL 5 mL 66027 11/03/23 01:37 AJ EET MID 1 Total/NA Total BTEX EET MID Analysis 1 66193 11/03/23 01:37 SM Total/NA Analysis 8015 NM 66162 11/03/23 06:54 SM EET MID 1 66064 Total/NA Prep 8015NM Prep 9.90 g 10 mL 11/02/23 11:31 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 66024 11/03/23 06:54 SM EET MID 1 Soluble Leach **DI Leach** 4.96 g 50 mL 66073 11/02/23 12:53 SMC EET MID Soluble Analysis 300.0 1 50 mL 50 mL 66089 11/03/23 03:17 СН EET MID

Client Sample ID: A7-FS

Date Collected: 10/31/23 12:09 Date Received: 11/02/23 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 01:57	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 01:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			66162	11/03/23 07:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	66064	11/02/23 11:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66024	11/03/23 07:16	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	66073	11/02/23 12:53	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 03:22	СН	EET MID

Client Sample ID: A7-W-SW

Date Collected: 10/31/23 12:11 Date Received: 11/02/23 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	66069	11/02/23 12:07	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66027	11/03/23 02:18	AJ	EET MID
Total/NA	Analysis	Total BTEX		1			66193	11/03/23 02:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			66162	11/03/23 11:01	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	66134	11/03/23 09:36	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66125	11/03/23 11:01	SM	EET MID

Page 23 of 29

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-35214-6

Lab Sample ID: 880-35214-7

Matrix: Solid

Matrix: Solid

Client: Terracon Consulting Eng & Scientists

Job ID: 880-35214-1 SDG: KH227025

Lab Sample ID: 880-35214-7

Client Sample ID: A7-W-SW Date Collected: 10/31/23 12:11 Date Received: 11/02/23 10:20

	Batch	Batch		Dil	Initial	Final	Batch	Prepared			
rep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab	
oluble	Leach	DI Leach			5.02 g	50 mL	66073	11/02/23 12:53	SMC	EET MID	_
luble	Analysis	300.0		1	50 mL	50 mL	66089	11/03/23 03:27	СН	EET MID	
Laboratory Refer	,	000.0		I		00 mE	00000	11,00,20 00.21			
aboratory Refer	rences:		and TY 70701	TEL (422)70		50 mL	00003	11/00/20 00.27			
aboratory Refer	,		and, TX 79701,	TEL (432)70		00 mL	00000	11/00/20 00.27			
aboratory Refer	rences:		and, TX 79701,	TEL (432)70		001112		11/0/20 00.21			
aboratory Refer	rences:		and, TX 79701,	' TEL (432)70		001112		1100/20 00.21			

Laboratory References:

Project/Site: Folk 11

Eurofins Midland

Matrix: Solid

11/6/2023

Accreditation/Certification Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	ram	Identification Number	Expiration Date
Texas	NELA	νP	T104704400-23-26	06-30-24
The following analy	es are included in this report, b	ut the laboratory is not certil	ied by the governing authority. This lis	t may include analytes
0	y does not offer certification.			
for which the agenc Analysis Method	y does not offer certification. Prep Method	Matrix	Analyte	
5		Matrix Solid	Analyte Total TPH	

10

Page 51 of 306

Eurofins Midland

Received by OCD: 7/9/2024 1:03:46 PM

Method Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 880-35214-1 SDG: KH227025

8021B Total BTEX 8015 NM 8015B NM	Volatile Organic Compounds (GC) Total BTEX Calculation Diesel Range Organics (DRO) (GC)	SW846 TAL SOP SW846	EET MID EET MID EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)			
		SW846	EET MID	
8015B NM	Discol Banga Organica (DBO) (CC)			E
	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Reference	ces:			8
ASTM = ASTM	/International			
EPA = US Envi	rironmental Protection Agency			9
SW846 = "Test	t Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, Nov	vember 1986 And Its Updates.		
TAL SOP = Tes	stAmerica Laboratories, Standard Operating Procedure			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 880-35214-1

SDG: KH227025

ab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
80-35214-1	NS-1	Solid	10/31/23 11:39	11/02/23 10:20	1.5	
80-35214-2	NS-11	Solid	10/31/23 11:41	11/02/23 10:20	1.5	
80-35214-3	NS-13	Solid	10/31/23 11:43	11/02/23 10:20	1.5	
80-35214-4	NS-23	Solid	10/31/23 11:45	11/02/23 10:20	1.5	
80-35214-5	NS-24	Solid	10/31/23 11:47	11/02/23 10:20	1.5	
80-35214-6	A7-FS	Solid	10/31/23 12:09	11/02/23 10:20	2	
80-35214-7	A7-W-SW	Solid	10/31/23 12:11	11/02/23 10:20	0-2	

5214 Chain of Cus	WWW.Actico.com rage 01 Work Order Comments			Reporting: Level II Level II DST/UST TRRP Level IV	EDD ADaPT Other	Preservative Codes	None· NO DI Water H-O						Zn Acetate+NaOH: Zh	NaOH+Ascorbic Acid: SAPC	Samula Commante						2:32.5			Ni K Se Ag SiO ₂ Na Sr Ti Sn U V Zn J Hg: 1631 / 245 1 / 7470 / 7471	k L Jobiated.	Received by (Signature) Date/Time			Revised Date: 08/25/2020 Rev. 2020.2
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carisbad, NM (575) 988-3199	Spur	Program:	State of Project:	Reportin	Email: Gus.Sanchez@Teracon.com; Travis.Casey@Terracon.com; Joseph.Guesner@Terracon.com Deliverables.	ANALYSIS REQUEST					(0		51 E	08)	TEX PPH ({	AB CC								Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr A Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Hg: 1631/2451,	ent company to Eurofins Xenco, its affilistes and subcontractors. It assigns standard terms and conditions any losses or expenses incurred by the client if such boses are due to circumstances beyond the control miple submitted to Eurofins Xenco, but not analyzed. Theso terms will be enforced unless previously negotiated.	Date/Time Relinquished by: (Signature)	1 930 2	4	9
Environment Testing Xenco	Joseph Guesnier Bill to: (if different)	Compa	4526 W Pierce St Address.	8220	(806)-300-0140 Email: Gus.Sanchez@Teracon.com	Turn Around	KH227025 Cres. Routine Trush Code	Due Date: 48 hove	Gus Sanchez TAT starts the day received by the lab, if received by 4:30pm	Temp Blank Yes No Wet Ice: Yes No	Thermometer ID: TAVA	N/A) Correction Factor - 0.2	N/A)/ Temperature Reading:	Corrected Temperature: • 6	Matrix Date Time Depth		11:11 12-11-0	10-71-23 11:43	1 10-31-23	1 1 51 2h:11 [7-16-01 1:05		C.1 10-11-77 12:04 C COMP 1		200.8 / 6020: 8RCRA 13PPM Texas 11 Al St etal(s) to be analyzed TCLP / SPLP 6010 : 8RCRA :	Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be labbe only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such bases are due to circumstances byond the control of Eurofins Xenco. A Minimum charge of \$85.00 will be applied to each project and a \$58 or each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously nego	ature)Beceived by: (Signature)	N X MAX		
္ငံ eurofins	Project Manager: Josep	Company Name: Terracon	Address: 4526 \	City, State ZIP- Carlst	Phone: (806)-	Project Name: Folk 11	er:	Project Location:	Sampler's Name: Gus : PO #.	SAMPLE RECEIPT	Samples Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers.	Sample Identification	NC-1	11-5/N	£1-5N	8V5-23	h2-2N	AD EC	17- W - CW		Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	Notice: Signature of this document an of service. Eurofins Xenco will be labi of Eurofins Xenco. A minimum charge	Relinquished by: (Signature)	- 11 11		5

Job Number: 880-35214-1 SDG Number: KH227025

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 35214 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424 Generated 10/17/2023 2:53:15 PM

JOB DESCRIPTION

Folk 11 State SDG NUMBER KH 227025

JOB NUMBER

890-5455-1

D FO Guesnie Scientis 7 50th 9 as 7942 3 2:53:15 F

Page 56 of 306

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/17/2023 2:53:15 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Eurofins Carlsbad

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER

Laboratory Job ID: 890-5455-1 SDG: KH 227025

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	7
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
Receipt Checklists	21

ceived by OCL	D: 7/9/2024 1:03:46 PM	Page 60 of	306
	Definitions/Glossary		
Client: Terrac Project/Site: I	on Consulting Eng & Scientists Folk 11 State	Job ID: 890-5455-1 SDG: KH 227025	2
Qualifiers			3
GC VOA Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VO Qualifier	A Qualifier Description		5
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		0
U	Indicates the analyte was analyzed for but not detected.		ð
Glossary			Q
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ MCL	Limit of Quantitation (DoD/DOE) EPA recommended "Maximum Contaminant Level"		
NICL	EFA recommended maximum Contaminant Level		

Minimum Detectable Activity (Radiochemistry)

Method Detection Limit

Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

MDA MDC

MDL

MPN

MQL NC

ND NEG

POS PQL

PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

ML

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State Job ID: 890-5455-1 SDG: KH 227025

Page 61 of 306

Job ID: 890-5455-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5455-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/13/2023 12:46 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.8°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: TANK 5-W (890-5455-1) and TANK 4-W (890-5455-2).

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-64789 and analytical batch 880-64805 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Job ID: 890-5455-1

Matrix: Solid

5

SDG: KH 227025

Lab Sample ID: 890-5455-1

Client Sample ID: TANK 5-W Date Collected: 10/12/23 12:28 Date Received: 10/13/23 12:46 Sample Depth: 4'

Analyte	tile Organic Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201		0.00201		mg/Kg		10/16/23 08:37	10/16/23 13:24	
Toluene	<0.00201		0.00201		mg/Kg			10/16/23 13:24	
Ethylbenzene	< 0.00201		0.00201		mg/Kg			10/16/23 13:24	
m-Xylene & p-Xylene	<0.00201		0.00402		mg/Kg			10/16/23 13:24	
p-Xylene	<0.00402		0.00402					10/16/23 13:24	
•					mg/Kg			10/16/23 13:24	
Kylenes, Total	<0.00402	0	0.00402		mg/Kg		10/10/23 08:37	10/10/23 13:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
1-Bromofluorobenzene (Surr)	98		70 - 130				10/16/23 08:37	10/16/23 13:24	
1,4-Difluorobenzene (Surr)	79		70 - 130				10/16/23 08:37	10/16/23 13:24	
Method: TAL SOP Total BTEX	- Total BTE	X Calculat	tion						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00402	U	0.00402		mg/Kg			10/16/23 13:24	
Nothodi CW046 0045 NM D	ool Dongo (Organies (
Method: SW846 8015 NM - Die Analyte		Qualifier	DRO) (GC) RL	мы	Unit	D	Prepared	Analyzed	Dil F
fotal TPH	<pre></pre>	-	50.5	WIDL			Prepareu	10/16/23 15:03	
	<50.5	0	50.5		mg/Kg			10/10/23 15:03	
Method: SW846 8015B NM - D	Diesel Range	• Organics	6 (DRO) (GC)						
nalyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Gasoline Range Organics GRO)-C6-C10	<50.5	U	50.5		mg/Kg		10/16/23 10:59	10/16/23 15:03	
Diesel Range Organics (Over C10-C28)	<50.5	U	50.5		mg/Kg		10/16/23 10:59	10/16/23 15:03	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		10/16/23 10:59	10/16/23 15:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
-Chlorooctane	80		70 - 130				10/16/23 10:59	10/16/23 15:03	
-Terphenyl	85		70 - 130				10/16/23 10:59	10/16/23 15:03	
Method: EPA 300.0 - Anions,	Ion Chromat	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Chloride	161		4.97		mg/Kg			10/16/23 15:21	
lient Sample ID: TANK 4	_\\/						Lah Samn	le ID: 890-5	155
ate Collected: 10/12/23 10:49							Lab Gamp	Matrix	
ate Received: 10/13/23 12:46								Matrix	. 501
ample Depth: 6'									
Method: SW846 8021B - Volat Analyte	-	Compoun Qualifier	ds (GC) RL	мы	Unit	D	Prepared	Analyzed	Dil F
Benzene	<0.00199		0.00199		mg/Kg		10/16/23 08:37	10/16/23 12:02	
oluene	<0.00199		0.00199		mg/Kg			10/16/23 12:02	
		0							
thylbenzene	0.00214		0.00199		mg/Kg			10/16/23 12:02	
n-Xylene & p-Xylene	< 0.00398	U	0.00398		mg/Kg			10/16/23 12:02	
o-Xylene	0.00301		0.00199		mg/Kg			10/16/23 12:02	
Vionoo lotol	<0.00398	U	0.00398		mg/Kg		10/16/23 08:37	10/16/23 12:02	
vienes, iotai	0.00000								
Xylenes, Total Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F

Project/Site: Folk 11 State

1,4-Difluorobenzene (Surr)

Surrogate

Client Sample Results

Limits

70 - 130

Page 63 of 306

Dil Fac

1

Job ID: 890-5455-1 SDG: KH 227025

Client Sample ID: TANK 4-W Date Collected: 10/12/23 10:49 Date Received: 10/13/23 12:46 Sample Depth: 6'

Client: Terracon Consulting Eng & Scientists

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

%Recovery Qualifier

87

Lab Sample ID: 890-5455-2

Analyzed

10/16/23 08:37 10/16/23 12:02

Prepared

Matrix: Solid

5
8
9
13

Method: TAL SOP Total BTEX	- Total BTE	X Calculat	ion						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	0.00515		0.00398		mg/Kg			10/16/23 12:02	1
	esel Range (Organics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg		,	10/16/23 15:26	1
	iesel Range	organics	(DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		10/16/23 10:59	10/16/23 15:26	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		10/16/23 10:59	10/16/23 15:26	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/16/23 10:59	10/16/23 15:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130				10/16/23 10:59	10/16/23 15:26	1
o-Terphenyl	82		70 - 130				10/16/23 10:59	10/16/23 15:26	1
Method: EPA 300.0 - Anions, I	on Chromat	tography -	Soluble						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
		-							

	Analyte	Result	Quanner		Unit	0	Fiepaieu	Analyzeu	Dirrac
l	Chloride	135		4.97	 mg/Kg			10/16/23 15:26	1

Surrogate Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

SDG: KH 227025

Prep Type: Total/NA

Prep Type: Total/NA

Method: 8021B - Volatile Organic Compounds (GC) **Matrix: Solid**

			Per	ent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	BFB1 (70-130)	DFBZ1 (70-130)	
890-5455-1	TANK 5-W	98	79	
890-5455-1 MS	TANK 5-W	119	94	
890-5455-1 MSD	TANK 5-W	113	113	
890-5455-2	TANK 4-W	115	87	
LCS 880-64769/1-A	Lab Control Sample	119	112	
LCSD 880-64769/2-A	Lab Control Sample Dup	112	114	
MB 880-64769/5-A	Method Blank	78	90	
MB 880-64769/5-A Surrogate Legend	Method Blank	78	90	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

			Perce	ent Surrogate Recovery (Acceptance Limits)
Sample ID	Client Sample ID	1CO1 (70-130)	OTPH1 (70-130)	
1	TANK 5-W	80	85	
5-2	TANK 4-W	80	82	
57-A-1-F MS	Matrix Spike	82	72	
7-A-1-G MSD	Matrix Spike Duplicate	82	71	
D-64788/2-A	Lab Control Sample	97	99	
880-64788/3-A	Lab Control Sample Dup	99	93	
30-64788/1-A	Method Blank	93	98	

Surrogate Legend

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Job ID: 890-5455-1

Page 64 of 306

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Lab Sample ID: MB 880-64769/5-A

Matrix: Solid

Method: 8021B - Volatile Organic Compounds (GC)

Analysis Batch: 64759 Prep Batch: 64769 MB MB Analyte **Result Qualifier** RL MDL Unit Prepared Analyzed Dil Fac D Benzene <0.00200 U 0.00200 mg/Kg 10/16/23 08:37 10/16/23 11:20 1 Toluene <0.00200 U 0.00200 mg/Kg 10/16/23 08:37 10/16/23 11:20 1 Ethylbenzene mg/Kg 10/16/23 08:37 10/16/23 11:20 <0.00200 U 0.00200 1 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 10/16/23 08:37 10/16/23 11:20 1 o-Xylene <0.00200 U 0.00200 mg/Kg 10/16/23 08:37 10/16/23 11:20 1 Xylenes, Total <0.00400 U 0.00400 mg/Kg 10/16/23 08:37 10/16/23 11:20 1 MB MB Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 70 - 130 4-Bromofluorobenzene (Surr) 78 10/16/23 08:37 10/16/23 11:20 1 1,4-Difluorobenzene (Surr) 90 70 - 130 10/16/23 08:37 10/16/23 11:20 1

Lab Sample ID: LCS 880-64769/1-A **Matrix: Solid** Analysis Batch: 64759

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09322		mg/Kg		93	70 - 130	
Toluene	0.100	0.09263		mg/Kg		93	70 - 130	
Ethylbenzene	0.100	0.1010		mg/Kg		101	70 - 130	
m-Xylene & p-Xylene	0.200	0.2221		mg/Kg		111	70 - 130	
o-Xylene	0.100	0.1104		mg/Kg		110	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	119		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

Lab Sample ID: LCSD 880-64769/2-A Matrix: Solid

Analysis Batch: 64759

Analysis Batch: 64759							Prep E	Batch: 6	64769
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09816		mg/Kg		98	70 - 130	5	35
Toluene	0.100	0.09206		mg/Kg		92	70 - 130	1	35
Ethylbenzene	0.100	0.09430		mg/Kg		94	70 - 130	7	35
m-Xylene & p-Xylene	0.200	0.2044		mg/Kg		102	70 - 130	8	35
o-Xylene	0.100	0.1021		mg/Kg		102	70 - 130	8	35

	LCSD LCSD	
Surrogate	%Recovery Qualifie	r Limits
4-Bromofluorobenzene (Surr)	112	70 - 130
1,4-Difluorobenzene (Surr)	114	70 - 130

Lab Sample ID: 890-5455-1 MS Matrix: Solid

Analysis Batch: 64759

Analysis Batch: 64759									Prep Bat	ch: 64769
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00201	U	0.0998	0.1041		mg/Kg		104	70 - 130	
Toluene	<0.00201	U	0.0998	0.1002		mg/Kg		100	70 - 130	

Eurofins Carlsbad

Client Sample ID: TANK 5-W

Prep Type: Total/NA

Client Sample ID: Method Blank Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 64769

Released to In	maging: 8	8/8/2024	8:17:27 AM
----------------	-----------	----------	------------

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

5

7

Job ID: 890-5455-1 SDG: KH 227025

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 890-5455 Matrix: Solid Analysis Batch: 64759	-1 MS							Client	Sample ID Prep Ty Prep B		al/NA
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	< 0.00201	U	0.0998	0.1051		mg/Kg		105	70 - 130		
m-Xylene & p-Xylene	<0.00402	U	0.200	0.2264		mg/Kg		113	70 - 130		
o-Xylene	<0.00201	U	0.0998	0.1122		mg/Kg		112	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	119		70 - 130								
1,4-Difluorobenzene (Surr)	94		70 - 130								
Analysis Batch: 64759	Sample	Sample	Spike	MSD	MSD				Prep Ty Prep E %Rec	atch: 6	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	< 0.00201	U	0.100	0.08916		mg/Kg		89	70 - 130	15	35
Toluene	<0.00201	U	0.100	0.08403		mg/Kg		84	70 - 130	18	35
Ethylbenzene	<0.00201	U	0.100	0.08680		mg/Kg		87	70 - 130	19	35
m-Xylene & p-Xylene			0.200	0.1859		mg/Kg		93	70 - 130	20	35
III-Aylette & p-Aylette	< 0.00402	U	0.200	0.1000							
o-Xylene	<0.00402 <0.00201		0.200	0.09348		mg/Kg		93	70 - 130	18	35
	<0.00201	U								18	35
	<0.00201	U MSD								18	35
o-Xylene	<0.00201 MSD	U MSD	0.100							18	35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-64788/1-A Matrix: Solid Analysis Batch: 64753

	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		10/16/23 08:00	10/16/23 08:49	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		10/16/23 08:00	10/16/23 08:49	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/16/23 08:00	10/16/23 08:49	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	93		70 - 130
o-Terphenyl	98		70 - 130

Lab Sample ID: LCS 880-64788/2-A Matrix: Solid Analysia Potaby 64752

Analysis Batch: 64753							Prep B	atch: 64788
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	881.8		mg/Kg		88	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	915.4		mg/Kg		92	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

10/16/23 08:00 10/16/23 08:49

10/16/23 08:00 10/16/23 08:49

Client Sample ID: Lab Control Sample

Released to Imaging: 8/8/2024 8:17:27 AM

1

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Lab Sample ID: LCS 880-64788/2-A

Matrix: Solid

Analyte

Analyte

Analysis Batch: 64753

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Job ID: 890-5455-1 SDG: KH 227025

Prep Type: Total/NA

Prep Batch: 64788

Client Sample ID: Lab Control Sample

LCS LCS %Recovery Qualifier Limits Surrogate 1-Chlorooctane 97 70 - 130 o-Terphenyl 99 70 - 130 **Client Sample ID: Lab Control Sample Dup** Lab Sample ID: LCSD 880-64788/3-A Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 64753 Prep Batch: 64788 LCSD LCSD %Rec RPD Spike Added **Result Qualifier** Unit D %Rec Limits RPD Limit **Gasoline Range Organics** 1000 866.4 mg/Kg 87 70 - 130 2 20 (GRO)-C6-C10 **Diesel Range Organics (Over** 1000 877.5 mg/Kg 88 70 - 130 4 20 C10-C28) LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 99 70 - 130 70 - 130 o-Terphenyl 93 Lab Sample ID: 890-5457-A-1-F MS **Client Sample ID: Matrix Spike** Matrix: Solid **Prep Type: Total/NA** Analysis Batch: 64753 Prep Batch: 64788 Sample Sample Spike MS MS %Rec **Result Qualifier** Added **Result Qualifier** Limits Unit D %Rec <49.9 U 70 - 130 **Gasoline Range Organics** 991 734.8 mg/Kg 72 (GRO)-C6-C10 991 **Diesel Range Organics (Over** <49.9 U 703.9 mg/Kg 71 70 - 130 C10-C28) MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 70 - 130 82 o-Terphenyl 72 70 - 130 Lab Sample ID: 890-5457-A-1-G MSD Client Sample ID: Matrix Spike Duplicate Matrix: Solid Prep Type: Total/NA Analysis Batch: 64753 Prep Batch: 64788 Sample Sample Spike MSD MSD %Rec RPD RPD Limit

Result Qualifier Added **Result Qualifier** Limits Analyte Unit D %Rec Gasoline Range Organics <49.9 U 991 733.4 71 70 - 130 mg/Kg (GRO)-C6-C10 **Diesel Range Organics (Over** <49.9 U 991 712.2 mg/Kg 72 70 - 130 C10-C28)

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	82		70 - 130
o-Terphenyl	71		70 - 130

Eurofins Carlsbad

20

20

0

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-64 Matrix: Solid	789/1-A									CI	ient S	Sam	ple ID: M Prep Ty		
Analysis Batch: 64805															
A		MB I			-			114		-	_		A		
Analyte			Qualifier		RL		MDL L			D	Prepa	rea	Analyz		Dil Fac
Chloride	<;	5.00	0		5.00		n	ng/Kg					10/16/23	13:42	1
Lab Sample ID: LCS 880-64	4789/2-A								Clie	ent Sa	ampl	e ID:	: Lab Cor	ntrol Sa	ample
Matrix: Solid													Prep T		
Analysis Batch: 64805														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · · · · · · · · · · · · · · ·				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qualif	fier	Unit	D	%R	ec	Limits		
Chloride				250		246.6			mg/Kg			99	90 - 110		
Lab Sample ID: LCSD 880-	64789/3-4							CI	liont S	ample	יחו	l ah	Control	Sample	
Matrix: Solid	04103/0-A									ampi		Lab	Prep T		
Analysis Batch: 64805													Tiep 1	ype. oc	Juble
Analysis Baton. 04000				Spike		LCSD	LCSD)					%Rec		RPD
Analyte				Added		Result	Qualif	fier	Unit	D	%R	ec	Limits	RPD	Limit
Chloride				250		244.7			mg/Kg			98	90 - 110	1	20
 Lab Sample ID: 880-34454-	Δ.1. B MS									6	lient	Sa	mple ID: I	Matrix	Snike
Matrix: Solid													Prep T		
Analysis Batch: 64805														,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Samp	ole	Spike		MS	MS						%Rec		
Analyte	Result	•		Added		Result	Qualif	fier	Unit	D	%R	ec	Limits		
Chloride	10200	F1		5020		17030	F1		mg/Kg		1	36	90 - 110		
 Lab Sample ID: 880-34454-									Client	Sam		א ∙ר	atrix Spil	ko Dun	licato
	-A-1-0 110D								onem	Jam	pie ii	J. 14	Prep T		
-													I IOP I	, pe. ot	
Matrix: Solid															
-	Sample	Samr	ole	Spike		MSD	MSD						%Rec		RPD
Matrix: Solid	Sample Result	-		Spike Added		MSD Result		fier	Unit	D) %R	ec	%Rec Limits	RPD	RPD Limit

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

GC VOA

Analysis Batch: 64759

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Total/NA	Solid	8021B	64769
890-5455-2	TANK 4-W	Total/NA	Solid	8021B	64769
MB 880-64769/5-A	Method Blank	Total/NA	Solid	8021B	64769
LCS 880-64769/1-A	Lab Control Sample	Total/NA	Solid	8021B	64769
LCSD 880-64769/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	64769
890-5455-1 MS	TANK 5-W	Total/NA	Solid	8021B	64769
890-5455-1 MSD	TANK 5-W	Total/NA	Solid	8021B	64769

Prep Batch: 64769

		Total/TV/	Cond	00210	04100	2
Prep Batch: 64769						0
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	9
890-5455-1	TANK 5-W	Total/NA	Solid	5035		
890-5455-2	TANK 4-W	Total/NA	Solid	5035		
MB 880-64769/5-A	Method Blank	Total/NA	Solid	5035		
LCS 880-64769/1-A	Lab Control Sample	Total/NA	Solid	5035		
LCSD 880-64769/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
890-5455-1 MS	TANK 5-W	Total/NA	Solid	5035		
890-5455-1 MSD	TANK 5-W	Total/NA	Solid	5035		
Analysis Batch: 6482	29					13
Г						

Analysis Batch: 64829

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Total/NA	Solid	Total BTEX	
890-5455-2	TANK 4-W	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 64753

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Total/NA	Solid	8015B NM	64788
890-5455-2	TANK 4-W	Total/NA	Solid	8015B NM	64788
MB 880-64788/1-A	Method Blank	Total/NA	Solid	8015B NM	64788
LCS 880-64788/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	64788
LCSD 880-64788/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	64788
890-5457-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	64788
890-5457-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	64788

Prep Batch: 64788

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Total/NA	Solid	8015NM Prep	
890-5455-2	TANK 4-W	Total/NA	Solid	8015NM Prep	
MB 880-64788/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-64788/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-64788/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5457-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5457-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 64871

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Total/NA	Solid	8015 NM	
890-5455-2	TANK 4-W	Total/NA	Solid	8015 NM	

5

Job ID: 890-5455-1

SDG: KH 227025

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

HPLC/IC

Leach Batch: 64789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5455-1	TANK 5-W	Soluble	Solid	DI Leach	
890-5455-2	TANK 4-W	Soluble	Solid	DI Leach	5
MB 880-64789/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-64789/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-64789/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-34454-A-1-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-34454-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	
- Analysis Batch: 6480	5				8

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-5455-1	TANK 5-W	Soluble	Solid	300.0	64789	
890-5455-2	TANK 4-W	Soluble	Solid	300.0	64789	
MB 880-64789/1-A	Method Blank	Soluble	Solid	300.0	64789	
LCS 880-64789/2-A	Lab Control Sample	Soluble	Solid	300.0	64789	
LCSD 880-64789/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	64789	
880-34454-A-1-B MS	Matrix Spike	Soluble	Solid	300.0	64789	
880-34454-A-1-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	64789	

Page 70 of 306

Job ID: 890-5455-1 SDG: KH 227025

Initial

Amount

4.98 g

5 mL

9.90 g

1 uL

5.03 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

64769

64759

64829

64871

64788

64753

64789

64805

Number

Dil

1

1

1

1

1

Factor

Run

Batch

5035

8021B

Total BTEX

8015NM Prep

8015 NM

8015B NM

DI Leach

300.0

Method

Client Sample ID: TANK 5-W Date Collected: 10/12/23 12:28 Date Received: 10/13/23 12:46

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Job ID: 890-5455-1 SDG: KH 227025

Lab Sample ID: 890-5455-1

Analyst

MNR

Prepared

or Analyzed

10/16/23 08:37

10/16/23 13:24 MNR

10/16/23 13:24 SM

10/16/23 15:03 SM

10/16/23 10:59 TKC

10/16/23 15:03 SM

10/16/23 11:34 SMC

10/16/23 15:21 CH

Matrix: Solid

Lab

EET MID

Lab Sample ID: 890-5455-2 Matrix: Solid

Client Sample ID: TANK 4-W Date Collected: 10/12/23 10:49 Date Received: 10/13/23 12:46

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	64769	10/16/23 08:37	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64759	10/16/23 12:02	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			64829	10/16/23 12:02	SM	EET MID
Total/NA	Analysis	8015 NM		1			64871	10/16/23 15:26	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	64788	10/16/23 10:59	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	64753	10/16/23 15:26	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	64789	10/16/23 11:34	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	64805	10/16/23 15:26	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Job ID: 890-5455-1 SDG: KH 227025

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Ithority	Program	Identification Number	Expiration Date	
xas	NELAP	T104704400-23-26	06-30-24	
The following enduted	are included in this report, but the laboratory is	not cortified by the governing outbor	ty. This list may include analyte	
0,	are included in this report, but the laboratory is does not offer certification.	not certilled by the governing aution	ty. This list may include analytes	
0,		Analyte		
for which the agency of	loes not offer certification.			

Eurofins Carlsbad

Page 72 of 306
Method Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State

Job ID: 890-5455-1 SDG: KH 227025

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 State Job ID: 890-5455-1 SDG: KH 227025

Page 74 of 306

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5455-1	TANK 5-W	Solid	10/12/23 12:28	10/13/23 12:46	4'
890-5455-2	TANK 4-W	Solid	10/12/23 10:49	10/13/23 12:46	6'

D.co	Fr Comments RRC Superfund Brownfields RRC Superfund ADaPT TRRP Level IV ADaPT Other: Image: State of the state of th	H ₃ PO 4: HP NaHSO 4: NABIS Na 25 2/03: NaSO 3 Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC Sample Comments	TI Sn U V Zn /7470 /7471 () Date/Time
Work Order No:	Work Order Co rogram: UST/PST PRP Brow tate of Project: eporting: Level III P eliverables: EDD ADaP	890-5455 Chain of Custody	Se Ag SiO ₂ Na Sr Hg: 1631/245.1 ceived by: (Signature
Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334 Et raso, TX (315) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	ANALYSIS REQUEST	(5108) HOLL ELEX (8031B)	Total 2007 / 6010 200.8 / 6020: BRCRA 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni K Circle Method(s) and Metal(s) to be analyzed TCLP/SPLP6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 55.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At minimum charge of 585.00 will be applied to each project and a charge of 55 for each sample submitted to Eurofins Xenco. At the end of the end of the control of Eurofins Xenco. At the end of
Houston, TX (281) Midland, TX (432) 7/ (CTV) (1000) (1000) (575) (1000)	Bill to: (if different) Company Name: Address: Crity, State ZIP: Crity, State ZIP: L Mound n Around Crity, Address creved by 4:30pm	Ves No TUMO Parameter Parameter Parameter Parameter Parameter Parameter Parameter	A 13PPM Texas 11 Al Sb As TCLP/SPLP 6010 : 8RCRA Sb / TCLP/SPLP 6010 : 8RCRA Sb / wurchase order from clitent company to Eurofins X e any responsibility for any losses or appearse in harge of 35 for each sample submitted to Eurofin barge of 35 for each sample submitted to Eurofin b
Environment Testing	Toceph Guesnien * Terracon 4518 W. Pierce St USB W. Pierce St Ensi Ensi Ensi Ensi KH22 7025 Due Date: Sus Sauches TAT starts the the lab. fire	Temp Blank: Yes. No Wet Lee: Yes. No NA Thermometer ID: Yes. No NA Correction Factor: Yes. No NA Temperature Reading: Corrected Temperature Sampled Sampled Sorif [0]12-23 [12:28]	Total 200.7 / 6010 200.8 / 6020: BRCRA 13PPN Circle Method(s) and Metal(s) to be analyzed TCLP / SPI Voitce: Signature of this document and relinquishment of samples constitutes a valid purchase order Voitce: Signature of this document and relinquishment of samples constitutes a valid purchase order Voitce: Signature of this document and relinquishment of samples constitutes a valid purchase order Voitce: Signature of this document and relinquishment of samples constitutes a valid purchase order Service. Eurofins Xenco. Aminimum diarge of 535.00 will be applied to each project and a charge of 535 to the applied to each applied to each applied to
		SAMPLE RECEIPT Samples Received Intact: Cooler Custody Seals: Total Containers: Tank 5 - W Tank 4 - W	Total 200.7 / 6010 200 Circle Method(s) and Metal(Notice: Signature of this document and reling of service. Eurofins Xenco. Aminimum charge of 585. Relinquished by: (Signature) Relinquished by: (Signature) 3

10/17/2023

Page 75 of 306

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5455 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

List Source: Eurofins Carlsbad

14

Job Number: 890-5455-1 SDG Number: KH 227025

List Source: Eurofins Midland

List Creation: 10/16/23 08:35 AM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5455 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

February 29, 2024

JOSEPH GUESNIER TERRACON CONSULTANTS 5827 50TH ST. SUITE 1 LUBBOCK, TX 79424

RE: FOLK 11 BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 02/23/24 15:26.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-23-16. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

PHONE (575) 393-2326 ° 101 E. MARLAND ° HOBBS, NM 88240

Analytical Results For:

TERRACON CONSULTANTS JOSEPH GUESNIER 5827 50TH ST. SUITE 1 LUBBOCK TX, 79424 Fax To:

Received:	02/23/2024	Sampling Date:	02/23/2024
Reported:	02/29/2024	Sampling Type:	Soil
Project Name:	FOLK 11 BATTERY	Sampling Condition:	Cool & Intact
Project Number:	KH227025	Sample Received By:	Shalyn Rodriguez
Project Location:	SPUR - EDDY CO		

Sample ID: TANK - 5 - E 9.5' (H240918-01)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/28/2024	ND	2.27	114	2.00	1.11	
Toluene*	<0.050	0.050	02/28/2024	ND	2.25	112	2.00	1.07	
Ethylbenzene*	<0.050	0.050	02/28/2024	ND	2.21	110	2.00	1.72	
Total Xylenes*	<0.150	0.150	02/28/2024	ND	6.45	108	6.00	1.76	
Total BTEX	<0.300	0.300	02/28/2024	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	656	16.0	02/28/2024	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/27/2024	ND	211	105	200	1.01	
DRO >C10-C28*	<10.0	10.0	02/27/2024	ND	213	106	200	6.15	
EXT DRO >C28-C36	<10.0	10.0	02/27/2024	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.8	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claims based upon any of the above stated reasons or otherwise. Results relate only to the sample identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and clent's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatscever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including whother is subsidiaries, affiliates or successor arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 7/9/2024 1:03:46 PM

Cool Intact Observed Temp. °C	Rush H40	-0.5°C	Thermometer ID #1 Correction Factor -C	Diago and	accept vert	Corrocted Temp. °C	PORM-006 R 3.2 10/07/21	FORM-006
Bacteria (only) Sample Condition	Standard		Turnaround Time:	CHECKED BY:		Observed Temp. C.U.	0	Delivered B
7010-7410	Cost Center Number : 7010-7410	ost Cen	REMARKS:	С				
Travis.Casey@Terracon.com; Joseph.Guesnier@Terracon.com; BeckySue.Miller@Terracon;	racon.com; Joseph.G	s.Casey@Te	Travis	4	O VOOLUU (MA	Date: R	hed By:	Relinquished By:
Yes No Add'I Phone #: nailed. Please provide Email address:	I No Ad	□ Yes mailed. F	Verbal Result: All Results are en	-	Received By:	3:24	1 X	P 10
		ible	s after completion of the applics d by client, its subsidiaries, led reasons or otherwise.	de in writing and received by Cardinal within 30 days after completion of the visit interruptions, loss of use, or loss of profits incurred by client, its subsidiaries ther such claim is based upon any of the above stated reasons or otherwise.	Jental damages, including without limitation, business interruptions, loss f services hereunder by Cardinal, regardless of whether such claim is ba	ental or consequental damages, including without limit a performance of services hereunder by Cardinal, reg	ant shall Cardinal be liable for incid ssors arising out of or related to the ned By:////////////////////////////////////	service. In no event shall Carr affiliates or successors arising Relinguished By:
			nt paid by the client for the	ort, shall be limited to the amou	and whether based in contract or to	PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or tort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whistoower shall be deemed whether based in contract or tort, shall be limited to the amount paid by the client for the	PLEASE NOTE: Liability and Damages. Cardinal's analyses. All claims including those for negligence a	PLEASE NOTE: analyses. All claim
	<	K	A CIVE LP					
	ľ	+	21.12	500	~	9.5	1 Ian (-S-E	
	BTEX (E	TPH Ext	DATE TIME Chloride	OTHER : ACID/BAS ICE / COC OTHER :	(G)RAB (# CONTA GROUNE WASTEW SOIL OIL SLUDGE		-	
	PA Meti		(EPA N		INERS WATER	Sample I.D.		Lab I.D.
	hod 8		SAMPLING	PRESERV.			1918	17 UNPIR
	021		d45(Fax #:		97		FOR LAB USE ONLY
	B)			Phone #: 575-441-8619		nty	Sampler Name: Gus Sanchez	Sampler
			Zip: 88210	State: NM Zip:		and racinty to [1]	Name: Construction	Froject Name:
				City: Artesia		25 Proj		Project #:
			cos Ave	Address: 2407 Pecos Ave		Fax #:	806-507-705/	Phone #
			lis	Attn: Kathy Purvis	Zip: 88220	State: NM	arlsbad	City: Carlsbad
			ergy Partners LLC	Company:Spur Energy Partners LLC		reet	: 4518 W. Pierce Street	Address:
		\neg		P.O. #: 810		uesnier	Joseph Guesnier	
ANALYSIS RECUEST	Þ		10	BILL TO		•	Manager: Leffacon	Project
					40 76	101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476	101 East A (575) 39:	Compar
F-CUSTODY AND ANALYSIS REQUEST	ISTODY /		CHAIN-O		UI	oratories		•
						ARDINAL	0	2

Page 81 of 306

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424 Generated 10/20/2023 9:29:04 AM

JOB DESCRIPTION

Folk 11 SDG NUMBER KH227025

JOB NUMBER

890-5469-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/20/2023 9:29:04 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Eurofins Carlsbad

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	8
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	15
Lab Chronicle	17
Certification Summary	18
Method Summary	19
Sample Summary	20
Chain of Custody	21
Receipt Checklists	23

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Qualifiers	3	3
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VC	A	
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
F2	MS/MSD RPD exceeds control limits	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	8
HPLC/IC		
Qualifier	Qualifier Description	9
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		

Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA	Minimum Detectable Activity (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiochemistry)	
MDL	Method Detection Limit	
ML	Minimum Level (Dioxin)	
MPN	Most Probable Number	
MQL	Method Quantitation Limit	
NC	Not Calculated	
ND	Not Detected at the reporting limit (or MDL or EDL if shown)	
NEG	Negative / Absent	
POS	Positive / Present	
PQL	Practical Quantitation Limit	
PRES	Presumptive	
QC	Quality Control	
RER	Relative Error Ratio (Radiochemistry)	
RL	Reporting Limit or Requested Limit (Radiochemistry)	
RPD	Relative Percent Difference, a measure of the relative difference between two points	
TEF	Toxicity Equivalent Factor (Dioxin)	
TEQ	Toxicity Equivalent Quotient (Dioxin)	
TNTC	Too Numerous To Count	

Job ID: 890-5469-1

SDG: KH227025

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 Job ID: 890-5469-1 SDG: KH227025

Page 87 of 306

Job ID: 890-5469-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5469-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/17/2023 8:27 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.0°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: TANK 1 -W (890-5469-1) and TANK 2 -W (890-5469-2).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-64913 and analytical batch 880-64935 was outside the upper control limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65041 and analytical batch 880-65018 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-65018/31), (CCV 880-65018/47) and (CCV 880-65018/58). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (890-5474-A-1-D). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: TANK 1 -W (890-5469-1) and TANK 2 -W (890-5469-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: The method blank for preparation batch 880-65041 and analytical batch 880-65018 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: Spike compounds were inadvertently omitted during the extraction process for the matrix spike duplicate (MSD); therefore, matrix spike recoveries are unavailable for preparation batch 880-65041 and analytical batch 880-65018. The associated laboratory control sample (LCS) met acceptance criteria.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-65038 and 880-65038

4

5

Job ID: 890-5469-1 SDG: KH227025

Job ID: 890-5469-1 (Continued)

Project/Site: Folk 11

Laboratory: Eurofins Carlsbad (Continued)

Client: Terracon Consulting Eng & Scientists

and analytical batch 880-65042 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

The associated samples are: TANK 2 -W (890-5469-2), (890-5474-A-10-A), (890-5474-A-10-B MS) and (890-5474-A-10-C MSD).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-5469-1 SDG: KH227025

Client Sample ID: TANK 1 -W

Date Collected: 10/16/23 09:58 Date Received: 10/17/23 08:27

Sample Depth: 6

Lab Sample ID: 890-5469-1 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		10/18/23 11:00	10/18/23 13:48	
Toluene	<0.00199	U	0.00199		mg/Kg		10/18/23 11:00	10/18/23 13:48	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		10/18/23 11:00	10/18/23 13:48	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		10/18/23 11:00	10/18/23 13:48	
o-Xylene	<0.00199	U	0.00199		mg/Kg		10/18/23 11:00	10/18/23 13:48	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		10/18/23 11:00	10/18/23 13:48	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil F
4-Bromofluorobenzene (Surr)	92		70 - 130				10/18/23 11:00	10/18/23 13:48	
1,4-Difluorobenzene (Surr)	106		70 - 130				10/18/23 11:00	10/18/23 13:48	
Method: TAL SOP Total BTEX -	Total BTEX Calc	ulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/18/23 13:48	
Method: SW846 8015 NM - Dies									
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F
Total TPH	55.1		50.2	_	mg/Kg	-		10/20/23 03:14	_
Method: SW846 8015B NM - Die									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil F
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2		mg/Kg		10/19/23 12:14	10/20/23 03:14	
Diesel Range Organics (Over C10-C28)	55.1		50.2		mg/Kg		10/19/23 12:14	10/20/23 03:14	
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		10/19/23 12:14	10/20/23 03:14	
Surrogate	%Recovery		Limits				Prepared	Analyzed	Dil F
1-Chlorooctane	135	S1+	70 - 130				10/19/23 12:14	10/20/23 03:14	
p-Terphenyl	115		70 - 130				10/19/23 12:14	10/20/23 03:14	
Method: EPA 300.0 - Anions, lo		-							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	216		4.99		mg/Kg			10/19/23 19:02	
lient Sample ID: TANK 2 -	W						Lab San	nple ID: 890-	
ate Collected: 10/16/23 15:13								Matri	x: Sol
ate Received: 10/17/23 08:27 ample Depth: 6									
Method: SW846 8021B - Volatile	a Organic Comp	ounde (CC)						
Analyte	-	Qualifier	r) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00199	U	0.00199		mg/Kg		10/18/23 11:00	10/18/23 14:08	
	<0.00199 <0.00199		0.00199 0.00199		mg/Kg mg/Kg		10/18/23 11:00 10/18/23 11:00	10/18/23 14:08 10/18/23 14:08	
Benzene Foluene Ethylbenzene		U							

m-Xylene & p-Xylene 0.00398 10/18/23 11:00 10/18/23 14:08 <0.00398 U mg/Kg o-Xylene 0.00199 10/18/23 14:08 <0.00199 U mg/Kg 10/18/23 11:00 1 Xylenes, Total <0.00398 U 0.00398 mg/Kg 10/18/23 11:00 10/18/23 14:08 1 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene (Surr) 96 70 - 130 10/18/23 11:00 10/18/23 14:08 1

Eurofins Carlsbad

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Released to Imaging: 8/8/2024 8:17:27 AM

Job ID: 890-5469-1 SDG: KH227025

Client Sample ID: TANK 2 -W

Client: Terracon Consulting Eng & Scientists

Date Collected:	10/16/23 15:13
Date Received:	10/17/23 08:27

Sample Depth: 6

Project/Site: Folk 11

Mc	ethod: SW846 8021B - Volatile Organic Compounds (GC) (Continued)
	the offering the second of the

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	101		70 - 130				10/18/23 11:00	10/18/23 14:08	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			10/18/23 14:08	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	61.0		49.6		mg/Kg			10/20/23 03:36	1
Method: SW846 8015B NM - Dies		nics (DRO) Qualifier	· · ·	MDL	Unit		Ducucand	Analyzed	Dil Fac
Analyte				MDL		D	Prepared	Analyzed	
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6		mg/Kg		10/19/23 12:14	10/20/23 03:36	1
Diesel Range Organics (Over C10-C28)	61.0		49.6		mg/Kg		10/19/23 12:14	10/20/23 03:36	
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		10/19/23 12:14	10/20/23 03:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	138	S1+	70 - 130				10/19/23 12:14	10/20/23 03:36	1
o-Terphenyl	119		70 - 130				10/19/23 12:14	10/20/23 03:36	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Lab Sample ID: 890-5469-2 Matrix: Solid 5

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-34579-A-1-B MS	Matrix Spike	99	110	
880-34579-A-1-C MSD	Matrix Spike Duplicate	105	118	
890-5469-1	TANK 1 -W	92	106	
890-5469-2	TANK 2 -W	96	101	
LCS 880-64913/1-A	Lab Control Sample	97	108	
LCSD 880-64913/2-A	Lab Control Sample Dup	97	112	
MB 880-64913/5-B	Method Blank	113	141 S1+	
Surrogate Legend				
BFB = 4-Bromofluorober	izene (Surr)			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Sample ID	Client Sample ID	(70-130)	(70-130)	
69-1	TANK 1 -W	135 S1+	115	
69-2	TANK 2 -W	138 S1+	119	
74-A-1-E MS	Matrix Spike	129	90	
4-A-1-F MSD	Matrix Spike Duplicate	120	94	
-65041/2-A	Lab Control Sample	92	87	
880-65041/3-A	Lab Control Sample Dup	83	74	
0-65041/1-A	Method Blank	198 S1+	168 S1+	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Job ID: 890-5469-1

Prep Type: Total/NA

SDG: KH227025

Page 91 of 306

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8021B - Volatile Organic Compounds (GC)

SDG: KH227025	
ple ID: Method Blank	

Page 92 of 306

Lab Sample ID: MB 880-6491	3/5-B										Client Sa	ample ID:		
Matrix: Solid													Type: To	
Analysis Batch: 64935												Prep	Batch:	: 6491
	_	MB	MB	_		MDL			_	_	_			
Analyte		esult			RL		Unit		<u>D</u>		repared	Analy		Dil Fa
Benzene		0200	U	0.0020			mg/Kg				8/23 09:25	10/18/23		
Toluene		0200		0.0020			mg/Kg				8/23 09:25	10/18/23		
Ethylbenzene		0200		0.0020			mg/Kg				8/23 09:25	10/18/23		
m-Xylene & p-Xylene		0400		0.0040			mg/Kg				8/23 09:25	10/18/23		
o-Xylene		0200		0.0020			mg/Kg				8/23 09:25	10/18/23		
Xylenes, Total	<0.0	0400	U	0.0040	00		mg/Kg			10/1	8/23 09:25	10/18/23	12:15	
		ΜВ	МВ											
Surrogate	%Reco	overy	Qualifier	Limits						P	repared	Analy	zed	Dil Fa
4-Bromofluorobenzene (Surr)		113		70 - 130					-	10/1	8/23 09:25	10/18/23	12:15	
1,4-Difluorobenzene (Surr)		141	S1+	70 - 130						10/1	8/23 09:25	10/18/23	12:15	
Lab Sample ID: LCS 880-649	13/1-A								CI	ient	Sample	ID: Lab C	ontrol S	Sampl
Matrix: Solid												Prep	Type: To	otal/N
Analysis Batch: 64935												Prep	Batch:	: <mark>649</mark> 1
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene				0.100	0.1083			mg/Kg			108	70 - 130		
Toluene				0.100	0.09634			mg/Kg			96	70 - 130		
Ethylbenzene				0.100	0.09209			mg/Kg			92	70 - 130		
m-Xylene & p-Xylene				0.200	0.2067			mg/Kg			103	70 - 130		
o-Xylene				0.100	0.09873			mg/Kg			99	70 - 130		
Surrogata	LCS %Recovery			Limits										
Surrogate 4-Bromofluorobenzene (Surr)		Qua		70 - 130										
1,4-Difluorobenzene (Surr)	108			70 - 130 70 - 130										
Lab Sample ID: LCSD 880-64	1913/2-A							Cli	ient s	Sam	ple ID: L	ab Contro		
Matrix: Solid													Туре: То	
Analysis Batch: 64935													p Batch:	
				Spike	LCSD							%Rec		RP
Analyte				Added	Result	Qua		Unit		D	%Rec	Limits	RPD	Lim
Benzene				0.100	0.1135			mg/Kg			114	70 - 130	5	3
Toluene				0.100	0.09325			mg/Kg			93	70 - 130	3	3
Ethylbenzene				0.100	0.08243			mg/Kg			82	70 - 130	11	3
m-Xylene & p-Xylene				0.200	0.2035			mg/Kg			102	70 - 130	2	3
o-Xylene				0.100	0.1007			mg/Kg			101	70 - 130	2	3
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
4-Bromofluorobenzene (Surr)	- <u></u>			70 - 130										
1,4-Difluorobenzene (Surr)	112			70 - 130										
Lab Sample ID: 880-34579-A	-1-B MS										Client S	Sample ID): Matrix	k Spik
	-1-B MS										Client S	Sample ID Prep): Matrix Type: To	

Analysis Dalch. 04955									FIE	p Batch. 04915
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00198	U	0.0998	0.1074		mg/Kg		108	70 - 130	
Toluene	<0.00198	U	0.0998	0.08975		mg/Kg		90	70 - 130	

Eurofins Carlsbad

Released to Imaging: 8/8/2024 8:17:27 AM

QC Sample Results

MS MS

0.09101

0.2047

0.09593

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0998

0.200

0.0998

Limits

70 - 130

70 - 130

70 - 130

70 - 130

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Lab Sample ID: 880-34579-A-1-B MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 64935

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

MS MS

%Recovery Qualifier

99

110

105

118

<0.00198

<0.00396 U

<0.00198 U

Result Qualifier

U

		3DG. RI 1227 023	
			3
	Client	Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 64913	4
D	%Rec	%Rec Limits	5
	91	70 - 130	6
	103	70 - 130	
	96	70 - 130	7
			8
			9
Client Sa	ample ID	: Matrix Spike Duplicate Prep Type: Total/NA	10
		Prep Batch: 64913	44

Lab Sample ID: 880-34579-A-1-C MSD Matrix: Solid

Analysis Batch: 64935

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)

Analysis Datch. 04555									гіер	Datch.	04313	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00198	U	0.100	0.1053		mg/Kg		105	70 - 130	2	35	
Toluene	<0.00198	U	0.100	0.08351		mg/Kg		83	70 - 130	7	35	i
Ethylbenzene	<0.00198	U	0.100	0.08399		mg/Kg		84	70 - 130	8	35	
m-Xylene & p-Xylene	<0.00396	U	0.201	0.1931		mg/Kg		96	70 - 130	6	35	i
o-Xylene	<0.00198	U	0.100	0.09111		mg/Kg		90	70 - 130	5	35	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-65041/1-A Matrix: Solid Analysis Batch: 65018							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch	otal/NA
	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		10/19/23 12:14	10/19/23 19:30	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		10/19/23 12:14	10/19/23 19:30	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/19/23 12:14	10/19/23 19:30	1
	MB	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	198	S1+	70 - 130				10/19/23 12:14	10/19/23 19:30	1
o-Terphenyl	168	S1+	70 - 130				10/19/23 12:14	10/19/23 19:30	1
Lab Sample ID: LCS 880-65041/2-4	λ					c	lient Sample I	D: Lab Control	Sample

Lab Sample ID: LCS 880-65041/2-A Matrix: Solid alvaia Datak 05040

Analysis Batch: 65018							Prep	Batch: 65041
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	977.6		mg/Kg		98	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1002		mg/Kg		100	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-650 Matrix: Solid	41/2-A						Client	Sample	ID: Lab Co Prep T	o <mark>ntrol Sa</mark> Type: Tot	
Analysis Batch: 65018										Batch:	
		LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	92		70 - 130								
o-Terphenyl	87		70 - 130								
Lab Sample ID: LCSD 880-65	041/3-A					Clier	nt Sam	ple ID: I	Lab Contro	I Sample	e Dun
Matrix: Solid										ype: To	
Analysis Batch: 65018										Batch:	
· · · · · , · · · · · · · · · · · · · · · · · · ·			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	927.1		mg/Kg		93	70 - 130	5	20
(GRO)-C6-C10						5 5				-	
Diesel Range Organics (Over			1000	987.6		mg/Kg		99	70 - 130	1	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	83		70 - 130								
o-Terphenyl	74		70 - 130								
Lab Sample ID: 890-5474-A-1	-F MS							Client	Sample ID	: Matrix	Snike
Matrix: Solid										Type: Tot	
Analysis Batch: 65018										Batch:	
· ·····	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	-	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<81.0	U F1 F2	1300	1174		mg/Kg		87	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<81.0	U F1 F2	1300	1559		mg/Kg		118	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	129		70 - 130								
1-Chlorooctane			70 ₋ 130 70 ₋ 130								
1-Chlorooctane o-Terphenyl	90										
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1	90					Cli	ent Sa	ample IC): Matrix Sp		
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid	90					Cli	ent Sa	ample IC	Prep T	Type: Tot	al/NA
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid	90 I- F MSD		70 - 130			Cli	ent Sa	ample IC	Prep T Prep		al/NA 65041
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018	90 I-F MSD Sample	Sample	70 <u>-</u> 130 Spike		MSD			-	Prep T Prep %Rec	Type: Tot Batch:	al/NA 65041 RPD
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte	90 I-F MSD Sample Result	Qualifier	70 - 130 Spike Added	Result	Qualifier	Unit	ent Sa	%Rec	Prep T Prep %Rec Limits	Batch:	al/NA 65041 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte Gasoline Range Organics	90 I-F MSD Sample Result	-	70 <u>-</u> 130 Spike	Result				-	Prep T Prep %Rec	Type: Tot Batch:	al/NA 65041 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte Gasoline Range Organics (GRO)-C6-C10	90 I-F MSD Sample Result <81.0	Qualifier U F1 F2	70 - 130 Spike Added 1300	Result 116.4	Qualifier F1 F2	- <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 164	al/NA 65041 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	90 I-F MSD Sample Result <81.0	Qualifier	70 - 130 Spike Added	Result 116.4	Qualifier	Unit		%Rec	Prep T Prep %Rec Limits	Batch:	al/N/ 65041 RPI Limi 20
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	90 I-F MSD Sample Result <81.0 <81.0	Qualifier U F1 F2	70 - 130 Spike Added 1300	Result 116.4	Qualifier F1 F2	- <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 164	al/NA 65041 RPD Limit
1-Chlorooctane o-Terphenyl Lab Sample ID: 890-5474-A-1 Matrix: Solid Analysis Batch: 65018 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	90 I-F MSD - <u>Result</u> <81.0 <81.0 <i>MSD</i>	Qualifier U F1 F2 U F1 F2 MSD	70 - 130 Spike Added 1300	Result 116.4	Qualifier F1 F2	- <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 164	al/NA 65041 RPD
	90 I-F MSD Sample Result <81.0 <81.0	Qualifier U F1 F2 U F1 F2 MSD	70 - 130 Spike Added 1300	Result 116.4	Qualifier F1 F2	- <mark>Unit</mark> mg/Kg		%Rec	Prep T Prep %Rec Limits 70 - 130	RPD 164	al/NA 65041 RPD Limit

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 Job ID: 890-5469-1 SDG: KH227025

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-65038/1-A Matrix: Solid											Client S	Sample ID: Prep	Method Type: S	
Analysis Batch: 65042														
		МВ МЕ	3											
Analyte	R	esult Qu	alifier	RL		MDL	Unit		D	Ρ	repared	Analy	/zed	Dil Fac
Chloride	<	<5.00 U		5.00			mg/Kg]				10/19/23	3 12:49	1
Lab Sample ID: LCS 880-65038/2-/	A								Cli	ent	Sample	e ID: Lab C	Control S	ample
Matrix: Solid												Prep	o Type: S	oluble
Analysis Batch: 65042														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride			250		246.4			mg/Kg		_	99	90 _ 110	·	
Lab Sample ID: LCSD 880-65038/3	8-A							Cl	ient S	am	ple ID:	Lab Contr	ol Samp	le Dup
Matrix: Solid													Type: S	
Analysis Batch: 65042														
			Spike		LCSD	LCS	D					%Rec		RPD
Analyte			Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride			250		246.9			mg/Kg		_	99	90 _ 110	0	20
Lab Sample ID: 890-5474-A-10-B	NS										Client	Sample II	D: Matrix	Spike
Matrix: Solid												Prep	o Type: S	oluble
Analysis Batch: 65042														
	Sample	Sample	Spike		MS	MS						%Rec		
Analyte	Result	Qualifier	r Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride	188	F1	250		404.9	F1		mg/Kg			87	90 _ 110		
Lab Sample ID: 890-5474-A-10-C	NSD								Client	t Sa	ample II	D: Matrix S	pike Du	plicate
Matrix: Solid													Type: S	
Analysis Batch: 65042													1000	
	Sample	Sample	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qualifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	188	F1	250		403.8	F1		mg/Kg		_	86	90 - 110	0	20

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

GC VOA

Prep Batch: 64913

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	5035	
890-5469-2	TANK 2 -W	Total/NA	Solid	5035	
MB 880-64913/5-B	Method Blank	Total/NA	Solid	5035	
LCS 880-64913/1-A	Lab Control Sample	Total/NA	Solid	5035	
_CSD 880-64913/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
380-34579-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
380-34579-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	8021B	64913
890-5469-2	TANK 2 -W	Total/NA	Solid	8021B	64913
MB 880-64913/5-B	Method Blank	Total/NA	Solid	8021B	64913
LCS 880-64913/1-A	Lab Control Sample	Total/NA	Solid	8021B	64913
LCSD 880-64913/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	64913
880-34579-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	64913
880-34579-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	64913

Analysis Batch: 65091

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	Total BTEX	
890-5469-2	TANK 2 -W	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 65018

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	8015B NM	65041
890-5469-2	TANK 2 -W	Total/NA	Solid	8015B NM	65041
MB 880-65041/1-A	Method Blank	Total/NA	Solid	8015B NM	65041
LCS 880-65041/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65041
LCSD 880-65041/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65041
890-5474-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	65041
890-5474-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	65041

Prep Batch: 65041

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	8015NM Prep	
890-5469-2	TANK 2 -W	Total/NA	Solid	8015NM Prep	
MB 880-65041/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65041/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65041/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-5474-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-5474-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 65141

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Total/NA	Solid	8015 NM	
890-5469-2	TANK 2 -W	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

HPLC/IC

Г

Leach Batch: 65038

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Soluble	Solid	DI Leach	
890-5469-2	TANK 2 -W	Soluble	Solid	DI Leach	
MB 880-65038/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65038/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65038/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5474-A-10-B MS	Matrix Spike	Soluble	Solid	DI Leach	
890-5474-A-10-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5469-1	TANK 1 -W	Soluble	Solid	300.0	65038
890-5469-2	TANK 2 -W	Soluble	Solid	300.0	65038
MB 880-65038/1-A	Method Blank	Soluble	Solid	300.0	65038
LCS 880-65038/2-A	Lab Control Sample	Soluble	Solid	300.0	65038
LCSD 880-65038/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65038
890-5474-A-10-B MS	Matrix Spike	Soluble	Solid	300.0	65038
890-5474-A-10-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	65038

5

Job ID: 890-5469-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists

Job ID: 890-5469-1 SDG: KH227025

Lab Sample ID: 890-5469-1 Matrix: Solid

Lab Sample ID: 890-5469-2

Matrix: Solid

Date Collected: 10/16/23 09:58 Date Received: 10/17/23 08:27

Client Sample ID: TANK 1 -W

Project/Site: Folk 11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	64913	10/18/23 11:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64935	10/18/23 13:48	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65091	10/18/23 13:48	SM	EET MID
Total/NA	Analysis	8015 NM		1			65141	10/20/23 03:14	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	65041	10/19/23 12:14	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65018	10/20/23 03:14	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	65038	10/19/23 17:00	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	65042	10/19/23 19:02	СН	EET MID

Client Sample ID: TANK 2 -W Date Collected: 10/16/23 15:13

Date Received: 10/17/23 08:27

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	64913	10/18/23 11:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	64935	10/18/23 14:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65091	10/18/23 14:08	SM	EET MID
Total/NA	Analysis	8015 NM		1			65141	10/20/23 03:36	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	65041	10/19/23 12:14	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65018	10/20/23 03:36	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65038	10/19/23 17:00	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	65042	10/19/23 19:07	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date				
exas	NELAP)	T104704400-23-26	06-30-24				
for which the agency do			tified by the governing authority. This list may include analytes					
for which the agency of	oes not offer certification.		, , , , ,	t may include analytes				
0,	1 /	t the laboratory is not certif	Analyte	t may include analytes				
for which the agency of	oes not offer certification.		, , , , ,					

ob ID: 890-5469-1

Page 99 of 306

10

Job ID: 890-5469-1 SDG: KH227025

Received by OCD: 7/9/2024 1:03:46 PM

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 890-5469-1 SDG: KH227025

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
	STM International		
	Environmental Protection Agency "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E-	dition November 1986 And Its Undates	
	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440)	

Laboratory References:

Sample Summary

Job ID: 890-5469-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists	
Project/Site: Folk 11	

SDG: KH227025

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
890-5469-1	TANK 1 -W	Solid	10/16/23 09:58	10/17/23 08:27	6	
890-5469-2	TANK 2 -W	Solid	10/16/23 15:13	10/17/23 08:27	6	
						5
						8
						9
						12
						13

Alt be	1 1 10	Relinquished by: (Signature)	Notce: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, Its affiliates and subcontractors. It assigns standard terms and conditions of service. Eurofins Xenco will be lable only for the cost of samples and shall not assume any responsibility for any losses or expenses incurred by the client if such losses are due to circumstances beyond the control of Eurofins Xenco. A minimum charge of \$55.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously <u>rego</u>	Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed					Tank 2 - W			Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Samples Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name	Project Location:	Project Number:	Project Name:		e ZIP:			Project Manager:			CHIOTHIS
		(Signature)	iment and relinquishr I be liable only for the In charge of \$85.00 wf	0 200.8 / 6020: Ind Metal(s) to be a								fication	-	Yes No	Yes No		Temp Blank:		Gus Sanchez		KH227025	Folk 11	(806)-300-0140	Carlsbad NM, 88220	4526 W. Pierce St	Terracon	Joseph Guesnier		X	+
00/10/05			ent of samp cost of samp l be applied	5020: be ana								Matrix		NIA	NIA	No	Blank:						0	88220	e St		ier		Xenco	wiron
infus-		Received	les constitutes a volume shall not to each project a	lyzed 81					10-16-23	10-10-23	vampled	Date	Corrected T	Temperature Reading:	Correction Factor:	Thermometer ID:	(Per No													Environment Testing
		Received by: (Signature)	valid purchase orc assume any respo nd a charge of \$5	8RCRA 13PPM TCLP/SPLF					15:13	1		Time	Corrected Temperature:	e Reading:	actor:	er ID:	Wet Ice:	the lab, if rec	TAT starts the	Due Date:	Routine	Turn	Email:							sting
		- 11	der from client co onsibility for any for each sample	A 13PPM Texas 11 Al Sb As Ba Be B Cd Ca Cr Co Cu Fe Pt TCLP/SPLP 6010 : 8RCRA Sb As Ba Be Cd Cr Co Cu Pb Mn Mo					6			Depth	1~4.0	•	-010	TONO	(Yes) No	the lab, if received by 4:30pm	dav received	48 hour	Rush	Turn Around	Gus.Sanchez@Terracon.com; Travis.Casey@Terracon.com; Joseph.Guesnier@Terracon	City, State ZIP:	Address:	Company Name:	Bill to: (if different)			z
	-	_	company to Eurofins Xenco, its affiliates and subcontractors. It assigns standa y losses or expenses incurred by the client if such losses are due to circumstaa le submitted to Eurofins Xenco, but not analyzed. These terms will be enforce	11 AI Sb BRCRA St			+		Grab	Grab	10			1		E		L	Þ		Pres.		Terracon.c	ZIP		lame:	fferent)	Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296	Midland: TX (432) 704-5440. San Antonio. TX (210) 509-3334
1)/(\$	n din	Date	urofins Xen penses Incu to Eurofins)	Sb As Ba Sb As Ba				+-	-	< >	1	다. hlori	ide	(EP	-		neter				6 8		om; Travis.(-	-	Spur	A (575) 392	((915) 585	idland: TX (432) 704-5440. San Antonio. TX (210) 509-333
0-0	0	Date/Time	co, ils affiliat rred by the c (enco, but n	3a Be B Ba Be C					>	<>	< в	TEX	(8)	021	B)								asey@Tem					-7550, Car	-3443, Lub	5440. San /
-	2		es and subc Jient if such ot analyzed	Cd Ca Cd Cr C			$\left \right $		>	< >	< т	PH ((80	15)	_		-			_			acon.com;					Isbad, NM	bock, TX (Antonio, T.
		Relinqui	ontractors. losses are d These term	Cr Co Co Cu P					+	+	+				-	Im					-		loseph.Gue					(575) 988-3	806) 794-1;	x (210) 509
		Relinquished by: (Signature)	It assigns sta ue to circum s will be enfo	Cr Co Cu Fe o Cu Pb Mn N												890-5469 C						ANALYSIS	snier@Terra					3199	296	-3334
		(Signatu	ndard term stances bey orced unless	Pb Mg Mo Ni S			+		+	+	+	-	-	-		Chain o				-		IS REQUEST	con.com							
		re)	nd terms and conditions nces beyond the control nd unless previously negotiated	o Mg Min Mo Ni Ni Se Ag TI U							1					hain of Custody						ISI .	Deliverables:	Report	State o	Program:]		
		Re	lons trol tegotiated.	U Ni K Se			+	_		+	+-	_	-			tγ				_			ables:	Reporting: Level III Level III PST/UST TRRP	State of Project:					
		ceived b		Se Ag Se Ag						+	+	-	-	t					E	-			EDD				×	WWV		Work (
		Received by: (Signature)		Ag SiO ₂ Na Sr TI Sn U V Z Hg: 1631/245.1/7470/7471															_					evel III [1	UST/PST PRP Brownfields	Work Order Comments	www.xenco.com		Work Order No:
		iture)		Sr Tl Sn 15.1 / 7470					_	+	+		Nac	Zn	Na	Nal	I ^f H	H	H	Co	No		ADaPT	PST/	,	Brownfi	er Comn			<u>.</u>
				50 U V								Samp	UH+ASCO	Acetate+	Na 2S 2O3: NaSO 3	NaHSO .: NABIS	H PO + HP	H2S0 4: H2	HCL: HC	Cool: Cool	None: NO	Preser]		nents	Page_		
		Date/Time		V Zn 7471								Sample Comments	NAUH+ASCORDIC ACID: SAPC	Zn Acetate+NaOH: Zn	* OSe	ABIS		N	H	M	D	Preservative Codes	Other:)					
		ime										hents	SAPC					NaOH: Na	HNO 3: HN	MeOH: Me	DI Water: H ₂ O	odes		Level N		Superfund		Q.		

Page 102 of 306

Received by OCD: 7/9/2024 1:03:46 PM

Custody Seals Intact. Custody Seal No ∆ Yes ∆ No	1	Dating liebod but	Relinquished by:	reminiquished by	Empty Kit Relinquished by		Unconfirmed	Possible Hazard Identification	Invoir on a uniquity accumutions are subject to change, curronnent Testing South Central LLC places the ownership of method analyte & accreditation compliance upon our subcontract laboratories. This sample shipment is forwarded under chain-of-custody if the laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/tests/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central LLC.	Note Since laboratory accreditations are subject to change Guessian						TANK 2 -W (890-5469-2)	TANK 1 -W (890-5469-1)		Sample Identification - Client ID (Lab ID)		Site	Project Name: folk 11	Email	432-704-5440(Tel)	State Zip: TX, 79701	ury Midland	1211 W Florida Ave,	Eurofins Environment Testing South Centr	Shipping/Receiving Company	Client Information (Sub Contract Lab)	Eurofins Carlsbad 1089 N Canal St Carlsbad NM 88220 Phone 575-988-3199 Fax 575-988-3199
	Date/Time		Date/Time	Date/Time:		Filinary Deliverable Rank	Dimo		iment Testing South Centra ad above for analysis/tests/r h Central LLC attention imr							10/16/23	10/16/23	N	Sample Date	,	SSOW#:	Project # 89000113	WO #	PO #		TAT Requested (days)	10/19/2023	7		Sampler	
					Date				natrix being nediately If							15 13 Mountain	09 58 Mountain	X	Time	Sample						iys)	ă				Shain
						N			s the ownersh analyzed, the all requested		_							Presen	G=grab)	Sample Type (C=comp,											of Cu
	Company		Company	Company					samples must accreditations							Solid	Solid	Preservation Code:		Matrix (W=water S=solid, O=waste/oli,									57	175	Chain of Custody Record
					Time	- tr	, ,	S	analyte & a be shippe are currer	F							-	: XX	Fie	eld Filtered Sa erform MS/MS				ŋ				NEL	Jessica Kramer@et.eurofinsu	Lab PM Kramer, Jessica	Rec
Cooler	Received by:		Repeived	Received		Special Instructions/QC Requirements	, []. " ₈	Sample Disposal (A	ccreditat d back to t to date							×	×		150970	21B/5035FP_Ca	9//60/2555							Accreditations Required (See note) NELAP - Texas	amer@	essica	ord
Cooler Temperature(s)	ed by			ed by		nstruc	Return To Clien	Dispo	ion corr the Eu return	-						×	×			tal_BTEX_GCV		e n			TOU			Kequire Xas)et.eu		
rature(t		0	tions/	o Clie	sal	npliance rofins E the sign	\vdash				+		××	××			15MOD_NM/801 15MOD_Calc	ONN.	_3_Pn	ep (MO	D) Fui	IPH			id (See	rofins		
~					2		'n,	A fee	e upon Environ ned Ch	-					 	×	×			0_ORGFM_28D/	/DI_L	EACH	Chlori	ie			Analy	note)	us com		
nd Oth			I	ġ		equire		mav	our sut ment T ain of (nalysis				
°C and Other Remarks				3		emen		be as	bcontra esting Justod																		Req		L		22,720.7
narks			ß	0	z	ទី	Disposal By Lab	Sess	ict labo South					ļ										<u> </u>			Requested		New Mexico	Carrier Tracking No(s)	
			ĺ	Y	Method of Shipment:		i By I	ed ii	ratorie: Central ing to s	-		+						4						<u></u>			ed		Mexico	Tracki	KXCH.5
╞	Dat	ļ	ц ц	Dat	of Ship		ab		. This LLC I					<u> </u>															ľ	1g No(s	
	Date/Time		Date/Time	Date/Time	ment:			les al	sampl aborato mplian	-	+																			Ű	
								Prof	e shipn bry or o ce to E																						
							Archive For	ined	tent is ther ins			<u> 1947</u>		i		<u>, 4</u>	43	X	Tol	tal Number of	0.9750	tainer	S.M.M.C.S.	L G T	mod	<u> </u>	P	ور 18	n d	a c	* ***
							For	fee may be assessed if samples are retained longer than 1 month	forwarded under ch tructions will be pru Environment Testir										Special In		Other [.]	EDTA EDA	Ice DI Water				6	Job #: 890-5469-1	Page: Page 1 of 1	COC No [.] 890-1650 1	🔅 eurofins
	Company	Company	Company	Company			Months	monthi	hain-of-custody If the ovided. Any changes to ng South Central LLC.										Special Instructions/Note:			Y Pri +-3 Y Trizma Z other (specify)	U Acetone V MCAA		P Na2O4S Q Na2SO3 P Na2SO3		Ves M Hexane				Environment Testing

5 6

12 13 14

Ver 06/08/2021

Job Number: 890-5469-1 SDG Number: KH227025

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5469 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5469-1 SDG Number: KH227025

List Source: Eurofins Midland

List Creation: 10/18/23 12:44 PM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5469 List Number: 2 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	True	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424 Generated 10/23/2023 10:29:01 PM

JOB DESCRIPTION

Folk 11 SDG NUMBER KH227025

JOB NUMBER

890-5489-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

5 6 7

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/23/2023 10:29:01 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Eurofins Carlsbad

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER
Laboratory Job ID: 890-5489-1 SDG: KH227025

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	7
Surrogate Summary	10
QC Sample Results	11
QC Association Summary	14
Lab Chronicle	16
Certification Summary	17
Method Summary	18
Sample Summary	19
Chain of Custody	20
	21

	Definitions/Glossary		
Client: Terracor Project/Site: Fo	n Consulting Eng & Scientists Ik 11	Job ID: 890-5489-1 SDG: KH227025	2
Qualifiers			
GC VOA			
Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
J	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA			
Qualifier	Qualifier Description		
51+	Surrogate recovery exceeds control limits, high biased.		
J	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
U	Indicates the analyte was analyzed for but not detected.		
Glossary			2
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
a	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

- MDL Method Detection Limit Minimum Level (Dioxin) ML MPN Most Probable Number
- Method Quantitation Limit MQL NC Not Calculated ND Not Detected at the reporting limit (or MDL or EDL if shown)
- NEG Negative / Absent
- POS Positive / Present
- Practical Quantitation Limit PQL
- PRES Presumptive
- QC Quality Control RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Job ID: 890-5489-1 SDG: KH227025

Job ID: 890-5489-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5489-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/19/2023 10:04 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -4.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: A1, B1-S-SW (890-5489-1), A8 - W-SW (890-5489-2) and A1, B1-FS (890-5489-3).

GC VOA

Method 8021B: Surrogate recovery for the following samples were outside control limits: (MB 880-65335/5-A) and (880-34727-A-11-G). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-65276 and analytical batch 880-65282 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: A1, B1-S-SW (890-5489-1) and A8 - W-SW (890-5489-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-65282/20), (CCV 880-65282/31) and (CCV 880-65282/5). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 890-5489-1 SDG: KH227025

Client Sample ID: A1, B1-S-SW Date Collected: 10/18/23 11:03

Client: Terracon Consulting Eng & Scientists

Lab	Sample	ID:	890-5489-1
			Matrix: Solid

Matrix: Solid

5

Date Received: 10/19/23 10:04 Sample Depth: 0-4'

Project/Site: Folk 11

Analyto	rganic Comp	Qualifier	RL	MDL	Unit	D	Droparad	Analyzed	Dil Fac
Analyte	<0.00200			MDL			Prepared	Analyzed	
Benzene			0.00200		mg/Kg		10/23/23 09:14	10/23/23 12:24	
Toluene	< 0.00200	U	0.00200		mg/Kg		10/23/23 09:14	10/23/23 12:24	
Ethylbenzene	< 0.00200	U	0.00200		mg/Kg		10/23/23 09:14	10/23/23 12:24	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		10/23/23 09:14	10/23/23 12:24	~
o-Xylene	<0.00200	U	0.00200		mg/Kg		10/23/23 09:14	10/23/23 12:24	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		10/23/23 09:14	10/23/23 12:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	88		70 - 130				10/23/23 09:14	10/23/23 12:24	
1,4-Difluorobenzene (Surr)	79		70 - 130				10/23/23 09:14	10/23/23 12:24	
Method: TAL SOP Total BTEX - Tot	al BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			10/23/23 12:24	
Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	63.6		50.5		mg/Kg			10/22/23 16:44	
	00.0		0010					10/22/20 10:11	
Method: SW846 8015B NM - Diese	Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.5	U	50.5		mg/Kg		10/21/23 16:11	10/22/23 16:44	
Diesel Range Organics (Over C10-C28)	63.6		50.5		mg/Kg		10/21/23 16:11	10/22/23 16:44	
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		10/21/23 16:11	10/22/23 16:44	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	140	S1+	70 - 130				10/21/23 16:11	10/22/23 16:44	
o-Terphenyl	119		70 - 130				10/21/23 16:11	10/22/23 16:44	
Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	112		5.03		mg/Kg			10/20/23 13:36	
lient Sample ID: A8 - W-SW							Lab San	nple ID: 890-	5489-2
Date Collected: 10/18/23 10:54									x: Solic
Date Received: 10/19/23 10:04									
Sample Depth: 0-2'									
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		10/23/23 09:14	10/23/23 12:45	
Toluene	<0.00202	U	0.00202		mg/Kg		10/23/23 09:14	10/23/23 12:45	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		10/23/23 09:14	10/23/23 12:45	
m-Xylene & p-Xylene	<0.00403		0.00403		mg/Kg		10/23/23 09:14	10/23/23 12:45	
o-Xylene	< 0.00202		0.00202		mg/Kg		10/23/23 09:14	10/23/23 12:45	
Xylenes, Total	< 0.00403		0.00403		mg/Kg		10/23/23 09:14	10/23/23 12:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa

Eurofins Carlsbad

Client Sample Results

Job ID: 890-5489-1 SDG: KH227025

Client Sample ID: A8 - W-SW

Client: Terracon Consulting Eng & Scientists

Date Collected: 10/18/23 10:54 Date Received: 10/19/23 10:04

Sample Depth: 0-2'

Project/Site: Folk 11

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	83		70 - 130				10/23/23 09:14	10/23/23 12:45	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			10/23/23 12:45	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	1310		50.0		mg/Kg			10/22/23 16:22	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		10/21/23 16:11	10/22/23 16:22	
Diesel Range Organics (Over C10-C28)	1310		50.0		mg/Kg		10/21/23 16:11	10/22/23 16:22	
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		10/21/23 16:11	10/22/23 16:22	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	132	S1+	70 - 130				10/21/23 16:11	10/22/23 16:22	
o-Terphenyl	109		70 - 130				10/21/23 16:11	10/22/23 16:22	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	125		4.99		mg/Kg			10/20/23 13:41	

Client Sample ID: A1, B1-FS

Date Collected: 10/18/23 12:53 Date Received: 10/19/23 10:04 Sample Depth: 4'

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 mg/Kg 10/23/23 09:14 10/23/23 13:05 1 Toluene <0.00199 U 0.00199 10/23/23 09:14 10/23/23 13:05 mg/Kg 1 Ethylbenzene <0.00199 U 0.00199 mg/Kg 10/23/23 09:14 10/23/23 13:05 1 0.00398 10/23/23 13:05 m-Xylene & p-Xylene <0.00398 U mg/Kg 10/23/23 09:14 1 o-Xylene <0.00199 U 0.00199 mg/Kg 10/23/23 09:14 10/23/23 13:05 1 Xylenes, Total <0.00398 U 0.00398 mg/Kg 10/23/23 09:14 10/23/23 13:05 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 85 70 - 130 10/23/23 09:14 10/23/23 13:05 4-Bromofluorobenzene (Surr) 1 1,4-Difluorobenzene (Surr) 82 70 - 130 10/23/23 09:14 10/23/23 13:05 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00398 Ū 0.00398 10/23/23 13:05 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

10/22/23 17:06

Lab Sample ID: 890-5489-2 Matrix: Solid 5

Lab Sample ID: 890-5489-3

Matrix: Solid

Released to Imaging: 8/8/2024 8:17:27 AM

Total TPH

49.9

mg/Kg

<49.9 U

5

Client Sample Results

Job ID: 890-5489-1 SDG: KH227025

Client Sample ID: A1, B1-FS

Date Collected: 10/18/23 12:53

Project/Site: Folk 11

Lab Sample ID: 890-5489-3 Matrix: Solid

Date Received: 10/19/23 10:04 Sample Depth: 4'

Client: Terracon Consulting Eng & Scientists

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		10/21/23 16:11	10/22/23 17:06	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		10/21/23 16:11	10/22/23 17:06	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		10/21/23 16:11	10/22/23 17:06	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				10/21/23 16:11	10/22/23 17:06	1
o-Terphenyl	109		70 - 130				10/21/23 16:11	10/22/23 17:06	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analuta	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	nooun								

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
390-5489-1	A1, B1-S-SW	88	79	
890-5489-2	A8 - W-SW	89	83	
890-5489-3	A1, B1-FS	85	82	
LCS 880-65335/1-A	Lab Control Sample	107	111	
LCSD 880-65335/2-A	Lab Control Sample Dup	105	114	
MB 880-65335/5-A	Method Blank	66 S1-	101	
Surrogate Legend				
BFB = 4-Bromofluorobe	nzene (Surr)			

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid				Prep Type: Total/NA	
		1CO1	OTPH1	Percent Surrogate Recovery (Acceptance Limits)	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
890-5489-1	A1, B1-S-SW	140 S1+	119	·	
890-5489-2	A8 - W-SW	132 S1+	109		
890-5489-3	A1, B1-FS	122	109		
LCS 880-65276/2-A	Lab Control Sample	110	128		
LCSD 880-65276/3-A	Lab Control Sample Dup	108	120		
MB 880-65276/1-A	Method Blank	194 S1+	188 S1+		

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-5489-1

Prep Type: Total/NA

SDG: KH227025

Page 115 of 306

5 6 7

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-65335/5-A Matrix: Solid Analysis Batch: 65321								Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batol	Fotal/NA
-	MB	МВ								
Analyte	Result	Qualifier	RL	Ν	IDL Unit	ſ	D Pr	repared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/k	(g	10/23	3/23 09:14	10/23/23 11:42	1
Toluene	<0.00200	U	0.00200		mg/k	ζg	10/23	3/23 09:14	10/23/23 11:42	1
Ethylbenzene	<0.00200	U	0.00200		mg/k	ζg	10/23	3/23 09:14	10/23/23 11:42	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/k	ξg	10/23	3/23 09:14	10/23/23 11:42	1
o-Xylene	<0.00200	U	0.00200		mg/k	ξg	10/23	3/23 09:14	10/23/23 11:42	1
Xylenes, Total	<0.00400	U	0.00400		mg/k	ίg	10/23	3/23 09:14	10/23/23 11:42	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				Pi	repared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130				10/2	3/23 09:14	10/23/23 11:42	1
1,4-Difluorobenzene (Surr)	101		70 - 130				10/2	3/23 09:14	10/23/23 11:42	1
 Lab Sample ID: LCS 880-65335/1-A							Client	Sample	D: Lab Control	Sample
Matrix: Solid									Prep Type: [•]	
Analysis Batch: 65321									Prep Batcl	n: 65335
-			Spike	LCS	LCS				• %Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
			0.400	0.4000				101	70 100	

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1038		mg/Kg		104	70 - 130	
Toluene	0.100	0.1094		mg/Kg		109	70 - 130	
Ethylbenzene	0.100	0.1078		mg/Kg		108	70 - 130	
m-Xylene & p-Xylene	0.200	0.2334		mg/Kg		117	70 - 130	
o-Xylene	0.100	0.1112		mg/Kg		111	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	107		70 - 130
1,4-Difluorobenzene (Surr)	111		70 - 130

Lab Sample ID: LCSD 880-65335/2-A

Matrix: Solid

Analysis Batch: 65321							Prep	Batch:	65335
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1087		mg/Kg		109	70 - 130	5	35
Toluene	0.100	0.1097		mg/Kg		110	70 - 130	0	35
Ethylbenzene	0.100	0.1077		mg/Kg		108	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.2300		mg/Kg		115	70 - 130	1	35
o-Xylene	0.100	0.1100		mg/Kg		110	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	105		70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Eurofins Carlsbad

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Analysis Batch: 65282		ΜВ	МВ											
Analyte	Re	esult	Qualifier		RL		MDL	Unit		D P	repared	Analyz	zed	Dil Fac
Gasoline Range Organics	<	50.0	U		50.0			mg/Kg			21/23 16:11	10/22/23	08:17	1
GRO)-C6-C10														
Diesel Range Organics (Over	<	50.0	U	:	50.0			mg/Kg		10/2	21/23 16:11	10/22/23	08:17	1
C10-C28)		50.0								40/	4/00 40.44	40/00/00	00.47	4
Oll Range Organics (Over C28-C36)	<	50.0	U	:	50.0			mg/Kg		10/2	21/23 16:11	10/22/23	08:17	1
		MВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits	s					F	repared	Analy	zed	Dil Fac
1-Chlorooctane		194	S1+	70 - 1	30					10/2	21/23 16:11	10/22/23	08:17	1
o-Terphenyl		188	S1+	70 - 1	30					10/2	21/23 16:11	10/22/23	08:17	1
Lab Sample ID: LCS 880-65276/2-	A									Client	Sample	ID: Lab C		
Matrix: Solid													Туре: То	
Analysis Batch: 65282													Batch:	65276
				Spike		LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit	D	%Rec	Limits		
Gasoline Range Organics				1000		981.7			mg/Kg		98	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over				1000		956.4			mg/Kg		96	70 - 130		
C10-C28)				1000		500.4			iiig/itg		50	10-100		
,														
	LCS			,										
Surrogate	%Recovery 110	Quai	inter	Limits 70 - 130										
	128			70 - 130 70 - 130										
o-Terphenyl	120			10 - 130										
Lab Sample ID: LCSD 880-65276/	3-A								Cli	ent San	nole ID: L	_ab Contro	ol Samp	le Dup
Matrix: Solid													Type: To	
Analysis Batch: 65282													Batch:	
				Spike		LCSD	LCS	5				%Rec		RPD
Analyte				Added		Result	Qual	ifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000		975.5			mg/Kg		98	70 - 130	1	20
(GRO)-C6-C10														
Diesel Range Organics (Over				1000		910.9			mg/Kg		91	70 - 130	5	20
C10-C28)														
	LCSD	LCS	D											
	%Recovery	Qual	lifier	Limits										
Surrogate				70 - 130										
	108			70 - 130										
1-Chlorooctane	108 120			70 - 130										
Surrogate 1-Chlorooctane o-Terphenyl 1ethod: 300.0 - Anions, Ion (120			70 - 130										

Prep Type: Soluble

-	МВ	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			10/20/23 12:06	1

Analysis Batch: 65226

Job ID: 890-5489-1 SDG: KH227025

Lab Sample ID: LCS 880-65175/2 Matrix: Solid	- A						Client	Sample	e ID: Lab C Prep	ontrol Sa Type: So	
Analysis Batch: 65226			Spike	201	LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
Chloride			250	244.5	quantor	mg/Kg		98	90 - 110		
						5.5					
Lab Sample ID: LCSD 880-65175	/ 3-A					Clie	nt Sam	ple ID: I	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 65226											
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	244.9		mg/Kg		98	90 _ 110	0	20
Lab Sample ID: 890-5489-2 MS								Clie	et Comple		
Matrix: Solid								Cilei	nt Sample		
									Frep	Type: So	oluble
Analysis Batch: 65226	Sample	Sample	Spike	MS	MS				%Rec		
Analyte		Qualifier	Added			Unit	D	%Rec	Limits		
Chloride	125		250	387.5	duamor	mg/Kg		105	90 - 110		
Lab Sample ID: 890-5489-2 MSD								Clie	nt Sample	ID: A8 - 1	w-sw
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 65226											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	125		250	386.3		mg/Kg		105	90 _ 110	0	20

5

QC Association Summary

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Prep Type

Total/NA

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Client Sample ID

A1, B1-S-SW

A8 - W-SW

A1, B1-FS

Method Blank

Lab Control Sample

Client Sample ID

A1, B1-S-SW

A8 - W-SW

A1, B1-FS

Method Blank

Lab Control Sample

Lab Control Sample Dup

Lab Control Sample Dup

Lab Sample ID

890-5489-1

890-5489-2

890-5489-3

MB 880-65335/5-A

LCS 880-65335/1-A

LCSD 880-65335/2-A

Prep Batch: 65335

Lab Sample ID

890-5489-1

890-5489-2

890-5489-3

MB 880-65335/5-A

LCS 880-65335/1-A

LCSD 880-65335/2-A

Analysis Batch: 65321

Job ID: 890-5489-1 SDG: KH22

90-5489-1 (H227025	
Prep Batch	
65335 65335	5
65335	

65335

65335

65335

Prep Batch

Pron Type	Matrix	Method
Total/NA	Solid	5035

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Method

8021B

8021B

8021B

8021B

8021B

8021B

Method

5035

Analysis Batch: 65410

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-5489-1	A1, B1-S-SW	Total/NA	Solid	Total BTEX		
890-5489-2	A8 - W-SW	Total/NA	Solid	Total BTEX		
890-5489-3	A1, B1-FS	Total/NA	Solid	Total BTEX		

GC Semi VOA

Prep Batch: 65276

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5489-1	A1, B1-S-SW	Total/NA	Solid	8015NM Prep	
890-5489-2	A8 - W-SW	Total/NA	Solid	8015NM Prep	
890-5489-3	A1, B1-FS	Total/NA	Solid	8015NM Prep	
MB 880-65276/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65276/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65276/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 65282

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5489-1	A1, B1-S-SW	Total/NA	Solid	8015B NM	65276
890-5489-2	A8 - W-SW	Total/NA	Solid	8015B NM	65276
890-5489-3	A1, B1-FS	Total/NA	Solid	8015B NM	65276
MB 880-65276/1-A	Method Blank	Total/NA	Solid	8015B NM	65276
LCS 880-65276/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65276
LCSD 880-65276/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65276

Analysis Batch: 65375

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5489-1	A1, B1-S-SW	Total/NA	Solid	8015 NM	
890-5489-2	A8 - W-SW	Total/NA	Solid	8015 NM	
890-5489-3	A1, B1-FS	Total/NA	Solid	8015 NM	

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

HPLC/IC

Leach Batch: 65175

each Batch: 65175					
-					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5489-1	A1, B1-S-SW	Soluble	Solid	DI Leach	
890-5489-2	A8 - W-SW	Soluble	Solid	DI Leach	
890-5489-3	A1, B1-FS	Soluble	Solid	DI Leach	
MB 880-65175/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65175/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65175/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
890-5489-2 MS	A8 - W-SW	Soluble	Solid	DI Leach	
890-5489-2 MSD	A8 - W-SW	Soluble	Solid	DI Leach	l

Analysis Batch: 65226

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5489-1	A1, B1-S-SW	Soluble	Solid	300.0	65175
890-5489-2	A8 - W-SW	Soluble	Solid	300.0	65175
890-5489-3	A1, B1-FS	Soluble	Solid	300.0	65175
MB 880-65175/1-A	Method Blank	Soluble	Solid	300.0	65175
LCS 880-65175/2-A	Lab Control Sample	Soluble	Solid	300.0	65175
LCSD 880-65175/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65175
890-5489-2 MS	A8 - W-SW	Soluble	Solid	300.0	65175
890-5489-2 MSD	A8 - W-SW	Soluble	Solid	300.0	65175

Job ID: 890-5489-1 SDG: KH227025 Client Sample ID: A1, B1-S-SW

Client: Terracon Consulting Eng & Scientists

5 6

9

Job ID: 890-5489-1 SDG: KH227025

Lab Sample ID: 890-5489-1 Matrix: Solid

Lab Sample ID: 890-5489-2

Lab Sample ID: 890-5489-3

Matrix: Solid

Matrix: Solid

Date Collected: 10/18/23 11:03 Date Received: 10/19/23 10:04

Project/Site: Folk 11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	65335	10/23/23 09:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65321	10/23/23 12:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65410	10/23/23 12:24	SM	EET MID
Total/NA	Analysis	8015 NM		1			65375	10/22/23 16:44	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	65276	10/21/23 16:11	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65282	10/22/23 16:44	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	65175	10/20/23 11:15	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	65226	10/20/23 13:36	СН	EET MID

Client Sample ID: A8 - W-SW Date Collected: 10/18/23 10:54

Date Received: 10/10/23 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	65335	10/23/23 09:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65321	10/23/23 12:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65410	10/23/23 12:45	SM	EET MID
Total/NA	Analysis	8015 NM		1			65375	10/22/23 16:22	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	65276	10/21/23 16:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65282	10/22/23 16:22	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	65175	10/20/23 11:15	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	65226	10/20/23 13:41	СН	EET MID

Client Sample ID: A1, B1-FS Date Collected: 10/18/23 12:53 Date Received: 10/19/23 10:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	65335	10/23/23 09:14	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65321	10/23/23 13:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			65410	10/23/23 13:05	SM	EET MID
Total/NA	Analysis	8015 NM		1			65375	10/22/23 17:06	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	65276	10/21/23 16:11	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65282	10/22/23 17:06	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	65175	10/20/23 11:15	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	65226	10/20/23 13:58	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority		am	Identification Number	Expiration Date
lexas 🛛	NELA	P	T104704400-23-26	06-30-24
The following analyt	es are included in this report bu	it the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
for which the agenc	y does not offer certification.	,	, , , , , ,	
0,	1 ,	Matrix	Analyte	
for which the agenc	y does not offer certification.	,	, , , , , ,	

L ID. 000 5400 4

Page 122 of 306

10

Job ID: 890-5489-1 SDG: KH227025

Received by OCD: 7/9/2024 1:03:46 PM

Job ID: 890-5489-1 SDG: KH227025

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID :	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Job ID: 890-5489-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists	
Project/Site: Folk 11	

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
890-5489-1	A1, B1-S-SW	Solid	10/18/23 11:03	10/19/23 10:04	0-4'
890-5489-2	A8 - W-SW	Solid	10/18/23 10:54	10/19/23 10:04	0-2'
890-5489-3	A1, B1-FS	Solid	10/18/23 12:53	10/19/23 10:04	4'

.

10/23/2023

Page 125 of 306

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5489 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5489-1 SDG Number: KH227025

List Source: Eurofins Midland

List Creation: 10/20/23 11:02 AM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5489 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 5847 50th St Lubbock, Texas 79424 Generated 10/25/2023 10:51:41 AM

JOB DESCRIPTION

Folk 11 SDG NUMBER KH227025

JOB NUMBER

890-5500-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

5 6 7

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 10/25/2023 10:51:41 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Eurofins Carlsbad

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER

Laboratory Job ID: 890-5500-1 SDG: KH227025

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	8
Surrogate Summary	11
QC Sample Results	12
	17
Lab Chronicle	19
Certification Summary	20
Method Summary	21
Sample Summary	22
	23
	24
-	

	Definitions/Glossary		
Client: Terracor Project/Site: Fo	i Consulting Eng & Scientists lk 11	Job ID: 890-5500-1 SDG: KH227025	
Qualifiers			
GC VOA Qualifier	Qualifier Description		
S1-	Surrogate recovery exceeds control limits, low biased.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
Glossary			S
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER Dil Fac	Duplicate Error Ratio (normalized absolute difference) Dilution Factor		
DIFAC	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		

Minimum Level (Dioxin)

Most Probable Number Method Quantitation Limit

Not Detected at the reporting limit (or MDL or EDL if shown)

Not Calculated

Presumptive

Quality Control

Negative / Absent Positive / Present

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

 ML MPN

MQL NC

ND

NEG

POS

PQL PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

Case Narrative

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 890-5500-1 SDG: KH227025

Job ID: 890-5500-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5500-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 10/20/2023 9:52 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 1.2°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: TANK 4 - E (890-5500-1), TANK 3 - E (890-5500-2) and B12 - FS (890-5500-3).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-65275 and analytical batch 880-65322 was outside the upper control limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-65447 and analytical batch 880-65444 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: B12 - FS (890-5500-3). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-65120 and analytical batch 880-65444 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: TANK 3 - E (890-5500-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: B12 - FS (890-5500-3). Elevated reporting limits (RLs) are provided.

Method 8021B: The following sample was diluted due to the nature of the sample matrix: TANK 3 - E (890-5500-2). Elevated reporting limits (RLs) are provided.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The continuing calibration verification (CCV) associated with batch 880-65295 recovered below the lower control limit for Gasoline Range Organics (GRO)-C6-C10. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-65295/58).

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

Case Narrative

Job ID: 890-5500-1 SDG: KH227025

Job ID: 890-5500-1 (Continued)

Laboratory: Eurofins Carlsbad (Continued)

Client: Terracon Consulting Eng & Scientists

HPLC/IC

Project/Site: Folk 11

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

4
5
8
9
13

Released to Imaging: 8/8/2024 8:17:27 AM

Dil Fac

1

1

1

1

1

1

1

1

Dil Fac

Job ID: 890-5500-1 SDG: KH227025

Client Sample ID: TANK 4 - E

Date Collected:	10/19/23	11:10
Date Received:	10/20/23	09:52

1,4-Difluorobenzene (Surr)

Sample Depth: 6'

Project/Site: Folk 11

Lab Sample ID: 890-5500-1 Matrix: Solid

5
8
9
13

6 2

Client: Terracon Consulting Eng & Scientists

Analyte	Result	Qualifier	RL	MDL	Unit
Benzene	<0.00200	U	0.00200		mg/Kg
Toluene	<0.00200	U	0.00200		mg/Kg
Ethylbenzene	<0.00200	U	0.00200		mg/Kg
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg
o-Xylene	<0.00200	U	0.00200		mg/Kg
Xylenes, Total	<0.00401	U	0.00401		mg/Kg
Surrogate	%Recovery	Qualifier	Limits		
4-Bromofluorobenzene (Surr)	91		70 - 130		

92

Me	ethod: TAL SOP Total BTEX - Total E	TEX Calo	culation							
An	alyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Tot	al BTEX	<0.00401	U	0.00401		mg/Kg			10/23/23 20:38	1

70 - 130

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC))

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	4840		250		mg/Kg			10/23/23 17:02	1

Method: SW846 8015B NM -	Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<250	U	250		mg/Kg		10/23/23 09:31	10/23/23 17:02	5
(GRO)-C6-C10									
Diesel Range Organics (Over	4840		250		mg/Kg		10/23/23 09:31	10/23/23 17:02	5
C10-C28)									
Oll Range Organics (Over C28-C36)	<250	U	250		mg/Kg		10/23/23 09:31	10/23/23 17:02	5
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	105		70 - 130				10/23/23 09:31	10/23/23 17:02	5
o-Terphenyl	129		70 - 130				10/23/23 09:31	10/23/23 17:02	5

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	672		4.97		mg/Kg			10/24/23 00:28	1

Client Sample ID: TANK 3 - E Date Collected: 10/19/23 15:50

```
Date Received: 10/20/23 09:52
Sample Depth: 3'
```

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.0800		0.0201		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
Toluene	<0.0201	U	0.0201		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
Ethylbenzene	<0.0201	U	0.0201		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
m-Xylene & p-Xylene	<0.0402	U	0.0402		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
o-Xylene	<0.0201	U	0.0201		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
Xylenes, Total	<0.0402	U	0.0402		mg/Kg		10/23/23 14:42	10/24/23 16:17	10
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	44	S1-	70 - 130				10/23/23 14:42	10/24/23 16:17	10

Eurofins Carlsbad

Analyzed

10/23/23 20:38

10/23/23 20:38

10/23/23 20:38

10/23/23 20:38

10/23/23 20:38

10/23/23 20:38

Analyzed

10/23/23 20:38

10/23/23 20:38

Lab Sample ID: 890-5500-2

Matrix: Solid

D

Prepared

10/23/23 11:00

10/23/23 11:00

10/23/23 11:00

10/23/23 11:00

10/23/23 11:00

10/23/23 11:00

Prepared

10/23/23 11:00

10/23/23 11:00

Client Sample Results

Job ID: 890-5500-1 SDG: KH227025

Client Sample ID: TANK 3 - E

Client: Terracon Consulting Eng & Scientists

Date Collected: 10/19/23 15:50 Date Received: 10/20/23 09:52

Sample Depth: 3'

Project/Site: Folk 11

Method: SW846 8021B - Volatile Organic Compounds (GC) (C	Continued)
--	------------

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	105		70 - 130				10/23/23 14:42	10/24/23 16:17	10
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	0.0800		0.0402		mg/Kg			10/24/23 16:17	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	463		50.3		mg/Kg			10/23/23 17:24	
Method: SW846 8015B NM - Dies Analyte		DRO)	(GC) 	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3		mg/Kg		10/23/23 09:31	10/23/23 17:24	
Diesel Range Organics (Over C10-C28)	463		50.3		mg/Kg		10/23/23 09:31	10/23/23 17:24	
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		10/23/23 09:31	10/23/23 17:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	78		70 - 130				10/23/23 09:31	10/23/23 17:24	
o-Terphenyl	87		70 - 130				10/23/23 09:31	10/23/23 17:24	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	79.9		5.04		mg/Kg			10/24/23 00:35	

Client Sample ID: B12 - FS

Date Collected: 10/19/23 12:27 Date Received: 10/20/23 09:52 Sample Depth: 4'

Method: SW846 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene <0.0504 U 0.0504 mg/Kg 10/24/23 09:04 10/25/23 07:16 25 Toluene <0.0504 U 0.0504 10/24/23 09:04 10/25/23 07:16 25 mg/Kg Ethylbenzene <0.0504 U 0.0504 mg/Kg 10/24/23 09:04 10/25/23 07:16 25 m-Xylene & p-Xylene <0.101 U 0.101 10/24/23 09:04 10/25/23 07:16 25 mg/Kg o-Xylene <0.0504 U 0.0504 mg/Kg 10/24/23 09:04 10/25/23 07:16 25 Xylenes, Total <0.101 U 0.101 mg/Kg 10/24/23 09:04 10/25/23 07:16 25 %Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared 70 - 130 25 4-Bromofluorobenzene (Surr) 136 S1+ 10/24/23 09:04 10/25/23 07:16 1,4-Difluorobenzene (Surr) 91 70 - 130 10/24/23 09:04 10/25/23 07:16 25 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.101 U 0.101 10/25/23 07:16 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac

mg/Kg	10/23/23 19:10	1

Eurofins Carlsbad

Lab Sample ID: 890-5500-3

Matrix: Solid

Lab Sample ID: 890-5500-2 Matrix: Solid 5

Total TPH

50.1

Client: Terracon Consulting Eng & Scientists

Client Sample Results

Job ID: 890-5500-1 SDG: KH227025

Client Sample ID: B12 - FS

Date Collected: 10/19/23 12:27 Date Received: 10/20/23 09:52

Project/Site: Folk 11

Lab Sample ID: 890-5500-3 Matrix: Solid

Sample Depth: 4'									
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1		mg/Kg		10/23/23 09:31	10/23/23 19:10	1
Diesel Range Organics (Over C10-C28)	120		50.1		mg/Kg		10/23/23 09:31	10/23/23 19:10	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		10/23/23 09:31	10/23/23 19:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	79		70 - 130				10/23/23 09:31	10/23/23 19:10	1
o-Terphenyl	89		70 - 130				10/23/23 09:31	10/23/23 19:10	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	47.7		4.96		mg/Kg			10/24/23 00:41	1

Eurofins Carlsbad

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
ab Sample ID	Client Sample ID	(70-130)	(70-130)		_
90-5500-1	TANK 4 - E	91	92		- i
90-5500-2	TANK 3 - E	44 S1-	105		
90-5500-3	B12 - FS	136 S1+	91		
CS 880-65275/1-A	Lab Control Sample	100	100		
CS 880-65370/1-A	Lab Control Sample	123	112		
CS 880-65447/1-A	Lab Control Sample	79	117		
CSD 880-65275/2-A	Lab Control Sample Dup	106	101		
CSD 880-65370/2-A	Lab Control Sample Dup	113	104		
CSD 880-65447/2-A	Lab Control Sample Dup	84	112		
IB 880-65120/5-A	Method Blank	115	144 S1+		
IB 880-65275/5-A	Method Blank	105	132 S1+		
IB 880-65370/5-A	Method Blank	72	97		
1B 880-65447/5-A	Method Blank	109	157 S1+		
Surrogate Legend					
BFB = 4-Bromofluorobe	enzene (Surr)				
DFBZ = 1,4-Difluoroben	izene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5500-1	TANK 4 - E	105	129
890-5500-2	TANK 3 - E	78	87
890-5500-3	B12 - FS	79	89
LCS 880-65337/2-A	Lab Control Sample	90	100
LCSD 880-65337/3-A	Lab Control Sample Dup	89	97
MB 880-65337/1-A	Method Blank	107	126

Surrogate Legend 1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Job ID: 890-5500-1 SDG: KH227025

Prep Type: Total/NA

Prep Type: Total/NA

											Client Sa	mple ID: Met	hod	Blank
Matrix: Solid														
Analysis Batch: 65444	Solid Prep Type: Total/NA Prep Batch: 65444 MB MB Prep rotation of the second o													
		мв	МВ											
Analyte	Re			RL		MDL	Unit		D	P	repared	Analvzed		Dil Fac
Benzene								1	_		•			
Toluene														
-														
	<0.00	9400	0	0.00400			mg/rtg	1		10/1	5/25 17.44	10/24/23 11.3	r	
		ΜВ	MB											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyzed		Dil Fac
4-Bromofluorobenzene (Surr)		115		r RL MDL Unit D Prepared Analyzed DI Fac 0.00200 mg/kg 10/19/23 17:44 10/24/23 11:34 1 0.00400 mg/kg 10/19/23 17:44 10/24/23 11:34 1 0.00400 mg/kg 10/19/23 17:44 10/24/23 11:34 1 70-130 10/19/23 17:44 10/24/23 11:34 1 70-130 10/19/23 17:44 10/24/23 11:34 1 Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 65276 r RL MDL Unit D Prepared Analyzed DI Fac 0.00200 mg/kg 10/21/23 15:12 10/23/23 12:11 1 0.002/23 12:11 1										
Ethylbenzene <0.00200 U 0.00200 mg/kg 10/19/23 17.44 10/24/23 11.34 m-Xylene & p-Xylene <0.00400	4	1												
Lab Sample ID: MB 880-65275/5-A											Client Sa	mple ID: Met	hod I	Blank
Matrix: Solid												Prep Type	: Tot	al/NA
Analysis Batch: 65322												Prep Ba	tch: 6	65275
		MB	MB											
Analyte	Re	sult	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed		Dil Fac
Benzene	<0.00	0200	U	0.00200			mg/Kg	I		10/2	1/23 15:12	10/23/23 12:1	1	1
Toluene	<0.00)200	U	0.00200			mg/Kg	1		10/2	1/23 15:12	10/23/23 12:1	1	1
Ethylbenzene	<0.00	0200	U	0.00200			mg/Kg	1		10/2	1/23 15:12	10/23/23 12:1	1	1
m-Xylene & p-Xylene	<0.00	0400	U	0.00400			mg/Kg	1		10/2	1/23 15:12	10/23/23 12:1	1	1
o-Xylene	<0.00	0200	U	0.00200			mg/Kg	1		10/2	1/23 15:12	10/23/23 12:1	1	1
Xylenes, Total	<0.00	0400	U	0.00400			mg/Kg	1		10/2	1/23 15:12	10/23/23 12:1	1	1
		MR	MR											
Surrogate	%Reco			l imits						P	renared	Analyzed		Dil Fac
	,										•			
			S1+											1
Lab Sample ID: LCS 880-65275/1-A									С	lient	Sample	ID: Lab Conti	ol Sa	ample
Matrix: Solid												Prep Type	: Tot	al/NA
Analysis Batch: 65322												Prep Ba	tch: (65275
-				Spike	LCS	LCS	;					%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Benzene				0.100	0.08759			mg/Kg		-	88	70 - 130		
Toluene				0.100	0.07851			mg/Kg			79	70 - 130		
Ethylbenzene				0.100	0.08016						80	70 - 130		
m-Xylene & p-Xylene				0.200	0.1842						92	70 - 130		
o-Xylene											90	70 - 130		
-								0 0						
	LCS													
	Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	100			70 - 130										
1,4-Difluorobenzene (Surr)	100			70 - 130										
								01		•		-h 0		
Lab Sample ID: LCSD 880-65275/2-	A							Cli	ent	Sam	ipie iD: La	ab Control Sa		
Matrix: Solid												Prep Type		
Analysis Batch: 65322				0 11-	1.005		-					Prep Ba	دcn: و	
Australia				Spike	LCSD					_	0/ F	%Rec		RPD
Analyte				Added	Result	Qua	intier	Unit		D	%Rec	Limits F		Limit

Page 139 of 306

Job ID: 890-5500-1

SDG: KH227025

Dup	
al/NA	

35

Released to Imaging: 8/8/2024 8:17:27 AM

Benzene

0.09701

mg/Kg

97

70 - 130

0.100

10

5

Job ID: 890-5500-1 SDG: KH227025

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid											Prep T	ype: To	otal/N/
Analysis Batch: 65322											Prep	Batch:	6527
			Spike	LCSD	LCSI	D					%Rec		RPI
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limi
Toluene			0.100	0.08247			mg/Kg			82	70 - 130	5	3
Ethylbenzene			0.100	0.08707			mg/Kg			87	70 - 130	8	3
m-Xylene & p-Xylene			0.200	0.1945			mg/Kg			97	70 - 130	5	3
p-Xylene			0.100	0.09524			mg/Kg			95	70 - 130	6	3
	LCSD L	CSD											
Surrogate		Qualifier	Limits										
4-Bromofluorobenzene (Surr)	- <u></u>		70 - 130										
1,4-Difluorobenzene (Surr)	101		70 - 130										
,,													
Lab Sample ID: MB 880-6537	70/5-A									Client Sa	ample ID: I	Method	Blan
Matrix: Solid											Prep T	ype: To	otal/N/
Analysis Batch: 65442												Batch:	
	I	IB MB											
Analyte	Res	ult Qualifier	•	·	MDL	Unit		D	P	repared	Analyz	ed	Dil Fa
Benzene	< 0.002	00 U	0.00200)		mg/Kg	9		10/2	3/23 14:42	10/24/23	11:07	
Toluene	<0.002	00 U	0.00200)		mg/Kg	g		10/2	3/23 14:42	10/24/23	11:07	
Ethylbenzene	<0.002	00 U	0.00200)		mg/Kg	g		10/2	3/23 14:42	10/24/23	11:07	
m-Xylene & p-Xylene	<0.004	00 U	0.00400)		mg/Kg	g		10/2	3/23 14:42	10/24/23	11:07	
o-Xylene	<0.002	00 U	0.00200)		mg/Kg	g		10/2	3/23 14:42	10/24/23	11:07	
Xylenes, Total	<0.004	00 U	0.00400)		mg/Kg	g		10/2	3/23 14:42	10/24/23	11:07	
		MB MB											
Surrogate	ہ Recov		r Limits						D	repared	Analyz	od	Dil Fa
4-Bromofluorobenzene (Surr)		$\frac{1}{72}$	70 - 130	-						3/23 14:42			DIIFa
1,4-Difluorobenzene (Surr)		97	70 - 130 70 - 130							3/23 14:42 3/23 14:42	10/24/23		
			/01/00						10/2	0,20 11.12	10/2 //20		
Lab Sample ID: LCS 880-653	370/1-A							C	lient	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid										- C.		ype: To	
Analysis Batch: 65442												Batch:	
			Spike	LCS	LCS						%Rec		
Analyte			Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.08870			mg/Kg		-	89	70 - 130		
Toluene			0.100	0.09900			mg/Kg			99	70 - 130		
Ethylbenzene			0.100	0.1124			mg/Kg			112	70 - 130		
m-Xylene & p-Xylene			0.200	0.2385			mg/Kg			119	70 - 130		
o-Xylene			0.100	0.1137			mg/Kg			110	70 - 130		
			0.100	011101									
	LCS L												
Surrogate	%Recovery	Qualifier	Limits										
4-Bromofluorobenzene (Surr)	123		70 - 130										
1,4-Difluorobenzene (Surr)	112		70 - 130										
Lab Sample ID: LCSD 880-6	5270/2 A						CI	ont	Sam		ab Contro	l Samal	
Las Jampie ID. LUJD 000-0	551012 - M							ent	Jaiii	. כו פוקו		ype: To	
												Batch:	
Matrix: Solid						_					%Rec	Datch:	RPI
Matrix: Solid			Snike	LCSD	1 CSI								
Matrix: Solid Analysis Batch: 65442			Spike Added	LCSD Result			Unit		р	%Rec		RPD	
Matrix: Solid Analysis Batch: 65442 ^{Analyte}			Added	Result			Unit ma/Ka		<u>D</u>	%Rec	Limits		Lim
Matrix: Solid Analysis Batch: 65442 Analyte Benzene Toluene			-				Unit mg/Kg mg/Kg		<u>D</u>	%Rec 92 96		RPD 4 3	

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid	5370/2-A							Cli	ent	Sam	ple ID: L	ab Contro		
													ype: To	
Analysis Batch: 65442				• "			_					-	Batch:	
				Spike	LCSD							%Rec		RPI
Analyte				Added	Result	Qua	ifier	Unit		D	%Rec	Limits	RPD	Lim
m-Xylene & p-Xylene				0.200	0.2147			mg/Kg			107	70 - 130	10	3
o-Xylene				0.100	0.1029			mg/Kg			103	70 - 130	10	3
	LCSD	LCS	D											
Surrogate	%Recovery	Qual	lifier	Limits										
4-Bromofluorobenzene (Surr)	113			70 - 130										
1,4-Difluorobenzene (Surr)	104			70 - 130										
Lab Sample ID: MB 880-654	47/5-4										Client Sa	mple ID: I	Method	Blan
Matrix: Solid													Type: To	
Analysis Batch: 65444														
Analysis Batch. 05444		мв	MD									Frep	Batch:	0344
A mah da	Π.			DI		MDI	11		_	Β.		Analyz		
Analyte			Qualifier	RL	·	MDL	-		D		repared	Analyz		Dil Fa
Benzene	<0.00		U	0.00200			mg/Kg				4/23 09:04	10/24/23 2		
Toluene	<0.00			0.00200			mg/Kg				4/23 09:04	10/24/23 2		
Ethylbenzene	<0.00	200	U	0.00200			mg/Kg			10/24	4/23 09:04	10/24/23 2	23:10	
m-Xylene & p-Xylene	<0.00	400	U	0.00400			mg/Kg			10/24	4/23 09:04	10/24/23 2	23:10	
o-Xylene	<0.00	200	U	0.00200			mg/Kg			10/24	4/23 09:04	10/24/23 2	23:10	
Xylenes, Total	<0.00	400	U	0.00400			mg/Kg			10/24	4/23 09:04	10/24/23 2	23:10	
		ΜВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits						PI	repared	Analyz	ed	Dil Fa
4-Bromofluorobenzene (Surr)		109		70 - 130						10/2	4/23 09:04	10/24/23	23:10	
1,4-Difluorobenzene (Surr)		157	S1+	70 - 130						10/2-	4/23 09:04	10/24/23	23:10	
Lab Sample ID: LCS 880-654	447/1-A								С	lient	Sample	ID: Lab Co	ontrol S	ampl
Matrix: Solid													Type: To	
Analysis Batch: 65444													Batch:	
Analysis Datch. 03444				Spike	1.00	LCS						%Rec	Datch.	0344
				Spike			1 6 1	11		-	0/ D			
A				Added	Result	Qua	itier	Unit		D	%Rec	Limits		
Analyte				0.100	0.00000					_		70 400		
Benzene				0.100	0.09820			mg/Kg		_	98	70 - 130		
Benzene Toluene				0.100	0.08016			mg/Kg		_	80	70 - 130		
Benzene										_				
Benzene Toluene				0.100	0.08016			mg/Kg		_	80	70 - 130		
Benzene Toluene Ethylbenzene				0.100 0.100	0.08016 0.07170			mg/Kg mg/Kg			80 72	70 ₋ 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	LCS			0.100 0.100 0.200	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg			80 72 84	70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	 		ifier	0.100 0.100 0.200 0.100 <i>Limits</i>	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg			80 72 84	70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene			ifier	0.100 0.100 0.200 0.100	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg			80 72 84	70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate	%Recovery		ifier	0.100 0.100 0.200 0.100 <i>Limits</i>	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg			80 72 84	70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)			ifier	0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg mg/Kg	ent	Sam	80 72 84 80	70 - 130 70 - 130 70 - 130		le Du
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)			ifier	0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg mg/Kg	ent	Sam	80 72 84 80	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130		
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid			ifier	0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130	0.08016 0.07170 0.1674			mg/Kg mg/Kg mg/Kg mg/Kg	ent	Sam	80 72 84 80	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T	Type: To	tal/N/
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6			ifier	0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130	0.08016 0.07170 0.1674	LCS	D	mg/Kg mg/Kg mg/Kg mg/Kg	ent	Sam	80 72 84 80	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T		tal/N/
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65444			ifier _	0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130	0.08016 0.07170 0.1674 0.08039			mg/Kg mg/Kg mg/Kg mg/Kg	ent	Sam	80 72 84 80	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep	Type: To	tal/N 6544 RP
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65444 Analyte			ifier	0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130	0.08016 0.07170 0.1674 0.08039 LCSD Result			mg/Kg mg/Kg mg/Kg Cli	ent		80 72 84 80 ple ID: L	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep %Rec Limits	Batch:	otal/N 6544 RP Lim
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65444 Analyte Benzene			ifier	0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 0.100	0.08016 0.07170 0.1674 0.08039 LCSD Result 0.1111			mg/Kg mg/Kg mg/Kg Cli Unit mg/Kg	ent		80 72 84 80 ple ID: L <u>%Rec</u> 111	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	Sype: To Batch: RPD 12	0tal/N 6544 RP Lim 3
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene p-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid Analysis Batch: 65444 Analyte Benzene Toluene			ifier	0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130 70 - 130	0.08016 0.07170 0.1674 0.08039 LCSD Result 0.1111 0.09239			mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ent		80 72 84 80 ple ID: L. %Rec 111 92	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep %Rec Limits 70 - 130 70 - 130	Sype: To Batch: RPD 12 14	tal/N/ 6544 RP Lim 3
Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: LCSD 880-6 Matrix: Solid			ifier	0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130 Spike Added 0.100	0.08016 0.07170 0.1674 0.08039 LCSD Result 0.1111			mg/Kg mg/Kg mg/Kg Cli Unit mg/Kg	ent		80 72 84 80 ple ID: L <u>%Rec</u> 111	70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 ab Contro Prep T Prep T %Rec Limits 70 - 130	Sype: To Batch: RPD 12	tal/N 6544

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	84		70 - 130
1,4-Difluorobenzene (Surr)	112		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-65337/1-A Matrix: Solid										Client Sa	ample ID: Metho Prep Type:	
Analysis Batch: 65295											Prep Batc	
	МВ	MB										
Analyte	Result	Qualifier	RL		MDL	Unit		D	P	repared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0			mg/Kg			10/2	3/23 07:31	10/23/23 07:59	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0			mg/Kg			10/2	3/23 07:31	10/23/23 07:59	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0			mg/Kg			10/2	3/23 07:31	10/23/23 07:59	1
	МВ	МВ										
Surrogate	%Recovery	Qualifier	Limits						P	repared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130					_	10/2	3/23 07:31	10/23/23 07:59	1
o-Terphenyl	126		70 - 130						10/2	3/23 07:31	10/23/23 07:59	1
Lab Sample ID: LCS 880-65337/2-A								Cli	ient	Sample	ID: Lab Control	Sample
Matrix: Solid											Prep Type:	Total/NA
Analysis Batch: 65295											Prep Batc	h: 65337
			Spike	LCS	LCS						%Rec	
Analyte			Added	Result	Qua	lifier	Unit		D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10			1000	843.5			mg/Kg		_	84	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	90		70 - 130
o-Terphenyl	100		70 - 130

Lab Sample ID: LCSD 880-65337/3-A Matrix: Solid

Diesel Range Organics (Over

C10-C28)

Matrix: Solid Analysis Batch: 65295								Type: To Batch:	
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	 1000	862.0		mg/Kg		86	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	1000	865.3		mg/Kg		87	70 - 130	3	20

1000

843.8

mg/Kg

84

70 - 130

Client Sample ID: Lab Control Sample Dup

LUUD	LCSD	
%Recovery	Qualifier	Limits
89		70 - 130
97		70 - 130
	%Recovery 89	%Recovery Qualifier 89

Job ID: 890-5500-1

Page 142 of 306

5

6

7

SDG: KH227025

Eurofins Carlsbad

Released to Imaging: 8/8/2024 8:17:27 AM

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11 Job ID: 890-5500-1 SDG: KH227025

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-65323/1-A Matrix: Solid										Clie	nt Sa	ample ID: I Prep ⁻		Blank oluble
Analysis Batch: 65465														
	MB	MB												
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepar	ed	Analyze	ed	Dil Fac
Chloride	<5.00	U		5.00			mg/Kg	l				10/23/23 2	21:28	1
Lab Sample ID: LCS 880-65323/2-A									Clie	nt San	nple	ID: Lab Co	ontrol S	ample
Matrix: Solid												Prep ⁻	Type: S	oluble
Analysis Batch: 65465														
			Spike		LCS	LCS						%Rec		
Analyte			Added		Result	Qual	ifier	Unit	0) %R	ec	Limits		
Chloride			250		240.6			mg/Kg			96	90 - 110		
Lab Sample ID: LCSD 880-65323/3-A								Cli	ent Sa	ample	ID: L	ab Contro	l Samp	le Dup
Matrix: Solid												Prep ⁻	Type: S	oluble
Analysis Batch: 65465														
			Spike		LCSD	LCSI	C					%Rec		RPD
Analyte			Added		Result	Qual	ifier	Unit	0) %R	ec	Limits	RPD	Limit
Chloride			250		239.9			mg/Kg			96	90 - 110	0	20

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 890-5500-1 SDG: KH227025

GC VOA

Prep Batch: 65120

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
MB 880-65120/5-A	Method Blank	Total/NA	Solid	5035	
ep Batch: 65275					
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
390-5500-1	TANK 4 - E	Total/NA	Solid	5035	
MB 880-65275/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-65275/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-65275/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
nalysis Batch: 65322	1				
_ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batc
390-5500-1	TANK 4 - E	Total/NA	Solid	8021B	6527
MB 880-65275/5-A	Method Blank	Total/NA	Solid	8021B	6527
-CS 880-65275/1-A	Lab Control Sample	Total/NA	Solid	8021B	6527
CSD 880-65275/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	6527
rep Batch: 65370					
.ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
390-5500-2	TANK 3 - E	Total/NA	Solid	5035	- <u> </u>
/IB 880-65370/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-65370/1-A	Lab Control Sample	Total/NA	Solid	5035	
CSD 880-65370/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
-ab Sample ID	Client Sample ID TANK 4 - E	Prep Type Total/NA	Matrix Solid	Method Total BTEX	Prep Bato
390-5500-1					
890-5500-2	TANK 3 - E	Total/NA	Solid	Total BTEX	
390-5500-3	B12 - FS	Total/NA	Solid	Total BTEX	
nalysis Batch: 65442					
ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Bate
390-5500-2	TANK 3 - E	Total/NA	Solid	8021B	6537
MB 880-65370/5-A	Method Blank	Total/NA	Solid	8021B	6537
_CS 880-65370/1-A	Lab Control Sample	Total/NA	Solid	8021B	6537
LCSD 880-65370/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	6537
nalysis Batch: 65444					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bate
890-5500-3	B12 - FS	Total/NA	Solid	8021B	6544
MB 880-65120/5-A	Method Blank	Total/NA	Solid	8021B	6512
MB 880-65447/5-A	Method Blank	Total/NA	Solid	8021B	6544
LCS 880-65447/1-A	Lab Control Sample	Total/NA	Solid	8021B	6544
LCSD 880-65447/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	6544
rep Batch: 65447					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
890-5500-3	B12 - FS	Total/NA	Solid	5035	
MB 880-65447/5-A	Method Blank	Total/NA	Solid	5035	

Lab Control Sample

Lab Control Sample Dup

LCS 880-65447/1-A

LCSD 880-65447/2-A

Total/NA

Total/NA

Solid

Solid

5035
QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

GC Semi VOA

Analysis Batch: 65295

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5500-1	TANK 4 - E	Total/NA	Solid	8015B NM	65337
890-5500-2	TANK 3 - E	Total/NA	Solid	8015B NM	65337
890-5500-3	B12 - FS	Total/NA	Solid	8015B NM	65337
MB 880-65337/1-A	Method Blank	Total/NA	Solid	8015B NM	65337
LCS 880-65337/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	65337
LCSD 880-65337/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	65337
Prep Batch: 65337					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5500-1	TANK 4 - E	Total/NA	Solid	8015NM Prep	

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5500-1	TANK 4 - E	Total/NA	Solid	8015NM Prep	-
890-5500-2	TANK 3 - E	Total/NA	Solid	8015NM Prep	
890-5500-3	B12 - FS	Total/NA	Solid	8015NM Prep	
MB 880-65337/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-65337/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-65337/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Analysis Batch: 65432

Lab Sample ID 890-5500-1	Client Sample ID TANK 4 - E	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
890-5500-2	TANK 3 - E	Total/NA	Solid	8015 NM	
890-5500-3	B12 - FS	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 65323

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5500-1	TANK 4 - E	Soluble	Solid	DI Leach	
890-5500-2	TANK 3 - E	Soluble	Solid	DI Leach	
890-5500-3	B12 - FS	Soluble	Solid	DI Leach	
MB 880-65323/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-65323/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-65323/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 65465

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-5500-1	TANK 4 - E	Soluble	Solid	300.0	65323
890-5500-2	TANK 3 - E	Soluble	Solid	300.0	65323
890-5500-3	B12 - FS	Soluble	Solid	300.0	65323
MB 880-65323/1-A	Method Blank	Soluble	Solid	300.0	65323
LCS 880-65323/2-A	Lab Control Sample	Soluble	Solid	300.0	65323
LCSD 880-65323/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	65323

Job ID: 890-5500-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists

5 6

9

Job ID: 890-5500-1 SDG: KH227025

Lab Sample ID: 890-5500-1 Matrix: Solid

Lab Sample ID: 890-5500-2

Lab Sample ID: 890-5500-3

Matrix: Solid

Matrix: Solid

Date Collected: 10/19/23 11:16 Date Received: 10/20/23 09:52

Client Sample ID: TANK 4 - E

Project/Site: Folk 11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	65275	10/23/23 11:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	65322	10/23/23 20:38	SM	EET MID
Total/NA	Analysis	Total BTEX		1			65431	10/23/23 20:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			65432	10/23/23 17:02	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	65337	10/23/23 09:31	TKC	EET MID
Total/NA	Analysis	8015B NM		5	1 uL	1 uL	65295	10/23/23 17:02	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	65323	10/23/23 09:00	СН	EET MID
Soluble	Analysis	300.0		1			65465	10/24/23 00:28	СН	EET MID

Client Sample ID: TANK 3 - E Date Collected: 10/19/23 15:50

Date Received: 10/10/23 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	65370	10/23/23 14:42	MNR	EET MID
Total/NA	Analysis	8021B		10	5 mL	5 mL	65442	10/24/23 16:17	SM	EET MID
Total/NA	Analysis	Total BTEX		1			65431	10/24/23 16:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			65432	10/23/23 17:24	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	65337	10/23/23 09:31	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65295	10/23/23 17:24	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	65323	10/23/23 09:00	СН	EET MID
Soluble	Analysis	300.0		1			65465	10/24/23 00:35	CH	EET MID

Client Sample ID: B12 - FS Date Collected: 10/19/23 12:27 Date Received: 10/20/23 09:52

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	65447	10/24/23 09:04	MNR	EET MID
Total/NA	Analysis	8021B		25	5 mL	5 mL	65444	10/25/23 07:16	SM	EET MID
Total/NA	Analysis	Total BTEX		1			65431	10/25/23 07:16	SM	EET MID
Total/NA	Analysis	8015 NM		1			65432	10/23/23 19:10	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	65337	10/23/23 09:31	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	65295	10/23/23 19:10	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	65323	10/23/23 09:00	СН	EET MID
Soluble	Analysis	300.0		1			65465	10/24/23 00:41	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Prog	Iram	Identification Number	Expiration Date		
exas	NEL	AP	T104704400-23-26 06-30-24			
• •	rtes are included in this report, t cy does not offer certification .	but the laboratory is not certified by the governing authority. This list may include analytes				
ior which the agent	by does not oner certification.					
Analysis Method	Prep Method	Matrix	Analyte			
6	,	Matrix Solid	Analyte Total TPH			

Page 147 of 306

10

Job ID: 890-5500-1 SDG: KH227025

Received by OCD: 7/9/2024 1:03:46 PM

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 890-5500-1 SDG: KH227025

Method	Method Description	Protocol	Laboratory	
8021B	Volatile Organic Compounds (GC)	SW846	EET MID	
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID	
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	E
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID	
300.0	Anions, Ion Chromatography	EPA	EET MID	
5035	Closed System Purge and Trap	SW846	EET MID	
8015NM Prep	Microextraction	SW846	EET MID	
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID	
Protocol Refe	rences:			8
ASTM = A	STM International			
EPA = US	Environmental Protection Agency			9
SW846 = "	Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editi	on, November 1986 And Its Updates.		
TAL SOP =	- TestAmerica Laboratories, Standard Operating Procedure			

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Job ID: 890-5500-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists
Project/Site: Folk 11

Depth	Received	Collected	Matrix	Client Sample ID	Lab Sample ID
6'	10/20/23 09:52	10/19/23 11:16	Solid	TANK 4 - E	890-5500-1
3'	10/20/23 09:52	10/19/23 15:50	Solid	TANK 3 - E	890-5500-2
4'	10/20/23 09:52	10/19/23 12:27	Solid	B12 - FS	890-5500-3

Chain of Custody Environment Testing Environment Environment Testing Environment Envitettio Environment Environment Environment Envir
H Mailt EL Mailt EL FL Ho Address: Company Nar Eust Reading: City, State ZIP Address: City, State ZIP Reading: City, State ZIP Turn Around City, State ZIP Reading: City, State ZIP Met Ice: Vet Met Net Ice: Vet Met Net Ice: Vet Met Reading: Loo Inperature: Loo State ZIP Con ILib Con Reading: Loo ILib Con Con Con State ZIP Con Met Ice: Vet No Inperature: Loo IS:50 2' Con Con Sampled Con Intervence Con State and responsibility for any loss Met Ice: 1. Con Con State and stature Con Intervence Con Intervence Con Intervence Con Intervence Con Intervence Con Interven

10/25/2023

Page 150 of 306

5 6

Job Number: 890-5500-1 SDG Number: KH227025

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5500 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

14

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5500 List Number: 2 Creator: Rodriguez, Leticia

<6mm (1/4").

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Jo

Job Number: 890-5500-1 SDG Number: KH227025

List Source: Eurofins Midland

List Creation: 10/23/23 09:18 AM

Received by OCD: 7/9/2024 1:03:46 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Joseph Guesnier Terracon Consulting Eng & Scientists 2526 W Pierce Street Carlsbad, New Mexico 88220 Generated 11/6/2023 2:33:25 PM

JOB DESCRIPTION

Folk 11 SDG NUMBER KH227025

JOB NUMBER

890-5556-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 11/6/2023 2:33:25 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Eurofins Carlsbad

Compliance Statement

Analytical test results meet all requirements of the associated regulatory program (e.g., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis. Data qualifiers are applied to note exceptions. Noncompliant quality control (QC) is further explained in narrative comments. QC data that exceed the upper limits and are associated with non-detect samples are qualified but no further narration is needed since the bias is high and does not change a non-detect result. Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Coliform MCLs

• Based on the EPA primary drinking water standard MCL for total coliforms, a water supply is considered bacteriologically "SAFE" if no coliform bacteria are detected. To be considered "SAFE" your report should indicate "<1 cfu/100mL" or "NEG" for the coliform test. If you report indicates a positive result "POS" or a value greater than or equal to one, then your supply is "UNSAFE FOR DRINKING" contact your local health department.

Warranties, Terms, and Conditions

Analyses for Field Parameters are performed by Eurofins Philadelphia field staff. Locations and certifications are identified on the Chain of Custody as follows:

ERF = field staff performs tests under NJ State certification # 02015.

VL = field staff performs tests under NJ State certification # 06005.

WG = field staff performs tests under NJ State certification # PA001, PA State certification # 48-01334.

H = field staff performs tests under NJ NELAP certification # PA093, PA NELAP certification # 46-05499.

• Test results meet all TNI or other applicable regulatory agency requirements, including holding times and preservation, unless otherwise indicated.

· The report shall not be reproduced, except in full, without the written consent of the laboratory

· All samples are collected as "grab" samples unless otherwise identified.

• Reported results related only to the samples as tested. Eurofins Philadelphia is not responsible for sample integrity unless sampling has been performed by a member of our staff.

• Eurofins Philadelphia is not responsible for sampling and/or testing omissions. Note that regulatory authorities may assess substantial fines for testing omissions. Please track your sample collection schedules and results on a regular basis (e.g. weekly, monthly, or quarterly) to ensure compliance.

• Eurofins' online data portal "TotalAccess" will provide you with real-time access to collection dates and testing results. Please contact Client Services for further information.

• The following personnel or their deputies have approved the results of the tests performed by Eurofins Philadelphia : Nicki Smith (Environmental Chemistry) and Jacqueline Gartner (Water Microbiology).

MRAMER

Laboratory Job ID: 890-5556-1 SDG: KH227025

Table of Contents

Cover Page	1
Table of Contents	4
Definitions/Glossary	5
Case Narrative	6
Client Sample Results	8
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	23

	Definitions/Glassery	
	Definitions/Glossary	
Project/Site: Fo	Consulting Eng & ScientistsJob ID: 890-5556-1k 11SDG: KH227025	
Qualifiers		
GC VOA		1
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
S1-	Surrogate recovery exceeds control limits, low biased.	
U	Indicates the analyte was analyzed for but not detected.	- 2
GC Semi VOA		
Qualifier	Qualifier Description	
S1-	Surrogate recovery exceeds control limits, low biased.	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	
U	Indicates the analyte was analyzed for but not detected.	
Glossary		
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¤	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	
	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	
MDA MDC	Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry)	
MDC	Minimum Detectable Concentration (Radiocnemistry) Method Detection Limit	
ML		
MPN	Minimum Level (Dioxin) Most Probable Number	
MQL	Method Quantitation Limit	
	Not Calculated	
NC		

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present Practical Quantitation Limit PQL

PRES Presumptive Quality Control QC Relative Error Ratio (Radiochemistry) RER Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count **Case Narrative**

Job ID: 890-5556-1 SDG: KH227025

Job ID: 890-5556-1

Laboratory: Eurofins Carlsbad

Narrative

Job Narrative 890-5556-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments. Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 11/2/2023 12:04 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.4°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: c12, c13, - ne - sw (890-5556-1), c13 - fs (890-5556-2) and exc. A12 (890-5556-3).

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-66219 and analytical batch 880-66218 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: c12, c13, - ne - sw (890-5556-1) and c13 - fs (890-5556-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-66219 and analytical batch 880-66218 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-66149 and analytical batch 880-66125 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (CCV 880-66125/31) and (CCV 880-66125/47). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The method blank for preparation batch 880-66149 and analytical batch 880-66125 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-66135 and analytical batch 880-66127 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCSD 880-66135/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: c12, c13, - ne - sw (890-5556-1) and c13

5

Case Narrative

Job ID: 890-5556-1
SDG: KH227025

Job ID: 890-5556-1 (Continued)

Project/Site: Folk 11

Laboratory: Eurofins Carlsbad (Continued)

Client: Terracon Consulting Eng & Scientists

- fs (890-5556-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Project/Site: Folk 11

Sample Depth: 0-4

Job ID: 890-5556-1 SDG: KH227025

Client Sample ID: c12, c13, - ne - sw Date Collected: 10/31/23 13:28 Date Received: 11/02/23 12:04

Method: SW846 8021B - Volatile Organic Compounds (GC)

Client: Terracon Consulting Eng & Scientists

Lab Sample ID: 890-5556-1

Matrix: Solid

Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
Toluene	<0.00200	U F1	0.00200		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
Ethylbenzene	<0.00200		0.00200		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
m-Xylene & p-Xylene	<0.00399		0.00399		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
o-Xylene	<0.00200		0.00200		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
Xylenes, Total	<0.00399		0.00399		mg/Kg		11/05/23 10:15	11/05/23 15:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130				11/05/23 10:15	11/05/23 15:56	1
1,4-Difluorobenzene (Surr)	83		70 - 130				11/05/23 10:15	11/05/23 15:56	1
Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			11/05/23 15:56	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	85.9		49.5		mg/Kg			11/03/23 18:40	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.5	U	49.5		mg/Kg		11/03/23 12:03	11/03/23 18:40	1
Diesel Range Organics (Over C10-C28)	85.9		49.5		mg/Kg		11/03/23 12:03	11/03/23 18:40	1
Oll Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		11/03/23 12:03	11/03/23 18:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130				11/03/23 12:03	11/03/23 18:40	1
o-Terphenyl	141	S1+	70 - 130				11/03/23 12:03	11/03/23 18:40	1
Method: EPA 300.0 - Anions, Ior	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	59.9		5.02		mg/Kg			11/03/23 22:49	1
lient Sample ID: c13 - fs							Lab San	nple ID: 890-	5556-2
ate Collected: 10/31/23 13:42								Matri	ix: Solid
ate Received: 11/02/23 12:04									
ample Depth: 4									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg	_	11/05/23 10:15	11/05/23 13:32	1

4-Bromofluorobenzene (Surr)	69	S1-	70 - 130		11/05/23 10:15	11/05/23 13:32	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
Xylenes, Total	<0.00401	U	0.00401	mg/Kg	11/05/23 10:15	11/05/23 13:32	1
o-Xylene	<0.00200	U	0.00200	mg/Kg	11/05/23 10:15	11/05/23 13:32	1
m-Xylene & p-Xylene	<0.00401	U	0.00401	mg/Kg	11/05/23 10:15	11/05/23 13:32	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg	11/05/23 10:15	11/05/23 13:32	1
Toluene	<0.00200	U	0.00200	mg/Kg	11/05/23 10:15	11/05/23 13:32	1
Benzene	<0.00200	U	0.00200	mg/Kg	11/05/23 10:15	11/05/23 13:32	1

Eurofins Carlsbad

Client: Terracon Consulting Eng & Scientists

Job ID: 890-5556-1 SDG: KH227025

Lab Sample ID: 890-5556-2

Client Sample ID: c13 - fs

Date Collected: 10/31/23 13:42 Date Received: 11/02/23 12:04

Sample Depth: 4

Project/Site: Folk 11

Method: SW846 8021B - Volatile Organic Compounds (GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr)	74		70 - 130				11/05/23 10:15	11/05/23 13:32	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			11/05/23 13:32	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	82.0		50.2		mg/Kg			11/03/23 19:01	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		11/03/23 12:03	11/03/23 19:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	82.0		50.2		mg/Kg		11/03/23 12:03	11/03/23 19:01	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		11/03/23 12:03	11/03/23 19:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	121		70 - 130				11/03/23 12:03	11/03/23 19:01	1
o-Terphenyl	137	S1+	70 - 130				11/03/23 12:03	11/03/23 19:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	79.1		5.04		mg/Kg			11/03/23 22:54	1

5.04 11/03/23 22:54 Chloride 79.1 mg/Kg Lab Sample ID: 890-5556-3

Client Sample ID: exc. A12

Date Collected: 10/31/23 14:21 Date Received: 11/02/23 12:04 Sample Depth: 2

Method: SW846 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Benzene <0.00202 U 0.00202 mg/Kg 11/05/23 10:15 11/05/23 13:52 Toluene <0.00202 U 0.00202 11/05/23 10:15 11/05/23 13:52 mg/Kg 1 Ethylbenzene <0.00202 U 0.00202 mg/Kg 11/05/23 10:15 11/05/23 13:52 <0.00403 U 0.00403 11/05/23 13:52 m-Xylene & p-Xylene mg/Kg 11/05/23 10:15 1 o-Xylene <0.00202 U 0.00202 mg/Kg 11/05/23 10:15 11/05/23 13:52 1 Xylenes, Total <0.00403 U 0.00403 mg/Kg 11/05/23 10:15 11/05/23 13:52 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 11/05/23 13:52 4-Bromofluorobenzene (Surr) 91 11/05/23 10:15 1 1,4-Difluorobenzene (Surr) 80 70 - 130 11/05/23 10:15 11/05/23 13:52 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00403 U 0.00403 11/05/23 13:52 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Α

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			11/03/23 23:16	1

Eurofins Carlsbad

Matrix: Solid

Matrix: Solid

5

Released to Imaging: 8/8/2024 8:17:27 AM

Client: Terracon Consulting Eng & Scientists

5

Client Sample Results

Job ID: 890-5556-1 SDG: KH227025

Client Sample ID: exc. A12

Date Collected: 10/31/23 14:21

Project/Site: Folk 11

Lab Sample ID: 890-5556-3 Matrix: Solid

Date Received: 11/02/23 12:04 Sample Depth: 2

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1		mg/Kg		11/03/23 11:40	11/03/23 23:16	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1		mg/Kg		11/03/23 11:40	11/03/23 23:16	1
OII Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		11/03/23 11:40	11/03/23 23:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane			70 - 130				11/03/23 11:40	11/03/23 23:16	1
o-Terphenyl	112		70 - 130				11/03/23 11:40	11/03/23 23:16	1
Mathadi EDA 200.0 Aniana lan	Chromatograp	hy - Solubl	e						
viethou: EPA 300.0 - Anions, Ion		-				-	Duran and		D11 E
Method: EPA 300.0 - Anions, Ion Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 890-5556-1 c12, c13, - ne - sw 88 83 890-5556-1 MS c12, c13, - ne - sw 118 105 890-5556-1 MSD c12, c13, - ne - sw 114 109 74 890-5556-2 c13 - fs 69 S1-890-5556-3 exc. A12 91 80 LCS 880-66219/1-A Lab Control Sample 110 121 LCSD 880-66219/2-A Lab Control Sample Dup 119 114 MB 880-66219/5-A Method Blank 69 S1-102 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
890-5556-1	c12, c13, - ne - sw	125	141 S1+
890-5556-2	c13 - fs	121	137 S1+
890-5556-3	exc. A12	118	112
LCS 880-66135/2-A	Lab Control Sample	75	95
LCS 880-66149/2-A	Lab Control Sample	106	116
LCSD 880-66135/3-A	Lab Control Sample Dup	69 S1-	84
LCSD 880-66149/3-A	Lab Control Sample Dup	101	111
MB 880-66135/1-A	Method Blank	189 S1+	219 S1+
MB 880-66149/1-A	Method Blank	230 S1+	226 S1+

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Furofins	Carlsbad
Luionns	Calisbau

3

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-66219/5-A							Client Sa	mple ID: Metho	d Blank	
Matrix: Solid								· Prep Type: 1		
Analysis Batch: 66218								Prep Batch	n: 66219	
-	МВ	МВ								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00200	U	0.00200		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	
Toluene	<0.00200	U	0.00200		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	-
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	5
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	
o-Xylene	<0.00200	U	0.00200		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	5
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		11/05/23 10:15	11/05/23 12:50	1	
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	69	S1-	70 - 130				11/05/23 10:15	11/05/23 12:50	1	
1,4-Difluorobenzene (Surr)	102		70 - 130				11/05/23 10:15	11/05/23 12:50	1	
Lab Sample ID: LCS 880-66219/1-	Δ					c	lient Sample I	D: Lab Control	Sample	
Matrix: Solid						Ŭ		Prep Type: 1		

Analysis Batch: 66218

	Spike	LCS LCS				%Rec	
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1218	mg/Kg		122	70 - 130	
Toluene	0.100	0.1165	mg/Kg		116	70 - 130	
Ethylbenzene	0.100	0.1133	mg/Kg		113	70 - 130	
m-Xylene & p-Xylene	0.200	0.2369	mg/Kg		118	70 - 130	
o-Xylene	0.100	0.1148	mg/Kg		115	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	121		70 - 130

Lab Sample ID: LCSD 880-66219/2-A

Matrix: Solid

Analysis Batch: 66218							Prep	Batch:	66219
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1124		mg/Kg		112	70 - 130	8	35
Toluene	0.100	0.1007		mg/Kg		101	70 - 130	15	35
Ethylbenzene	0.100	0.09686		mg/Kg		97	70 - 130	16	35
m-Xylene & p-Xylene	0.200	0.2234		mg/Kg		112	70 - 130	6	35
o-Xylene	0.100	0.1065		mg/Kg		107	70 - 130	7	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	114		70 - 130

Lab Sample ID: 890-5556-1 MS Matrix: Solid

Analysis Bataby 66249

Analysis Batch: 66218									Pre	p Batch: 66219
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200		0.0996	0.07840	F1	mg/Kg		57	70 - 130	
Toluene	<0.00200		0.0996	0.07884	F1	mg/Kg		-84	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Job ID: 890-5556-1

SDG: KH227025

Prep Batch: 66219

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client Sample ID: c12, c13, - ne - sw

Released to Imaging: 8/8/2024 8:17:27 AM

Lab Sample ID: 890-5556-1 MS

Matrix: Solid

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Client Sample ID: c12, c13, - ne - sw
Prep Type: Total/NA
Prep Batch: 66219

Client Sample ID: c12, c13, - ne - sw

Prep Type: Total/NA

Analysis Batch: 66218									Prep B	atch: 6621
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200		0.0996	0.08216	F1	mg/Kg		69	70 - 130	
m-Xylene & p-Xylene	<0.00399		0.199	0.1740	F1	mg/Kg		69	70 - 130	
o-Xylene	<0.00200		0.0996	0.08430		mg/Kg		70	70 - 130	
	MS	MS								
Surrogate	%Recovery	Qualifier	Limits							
4-Bromofluorobenzene (Surr)	118		70 - 130							
1,4-Difluorobenzene (Surr)	105		70 - 130							

Lab Sample ID: 890-5556-1 MSD Matrix: Solid

Analysis Batch: 66218

1,4-Difluorobenzene (Surr)

Analysis Batch: 66218									Prep	Batch:	66219	
_	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00200	U F1	0.0994	0.07674		mg/Kg		77	70 - 130	2	35	
Toluene	<0.00200	U F1	0.0994	0.07652		mg/Kg		77	70 - 130	3	35	ī
Ethylbenzene	<0.00200	U F1	0.0994	0.07939		mg/Kg		80	70 - 130	3	35	
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.1677		mg/Kg		84	70 - 130	4	35	ĩ
o-Xylene	<0.00200	U	0.0994	0.08154		mg/Kg		82	70 - 130	3	35	
	MSD	MSD										
Surrogate	%Recovery	Qualifier	Limits									
4-Bromofluorobenzene (Surr)			70 - 130									

70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

109

Lab Sample ID: MB 880-66135/1-A **Client Sample ID: Method Blank** Matrix: Solid Prep Type: Total/NA Analysis Batch: 66127 Prep Batch: 66135 MB MB Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Analyte <50.0 U 50.0 11/03/23 07:41 11/03/23 08:26 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10 11/03/23 08:26 Diesel Range Organics (Over 50.0 11/03/23 07:41 <50.0 U mg/Kg 1 C10-C28) Oll Range Organics (Over C28-C36) <50.0 U 50.0 11/03/23 07:41 11/03/23 08:26 mg/Kg 1 MB MB %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 1-Chlorooctane 189 S1+ 70 - 130 11/03/23 07:41 11/03/23 08:26 1 o-Terphenyl 219 S1+ 70 - 130 11/03/23 07:41 11/03/23 08:26 1 **Client Sample ID: Lab Control Sample**

Lab Sample ID: LCS 880-66135/2-A Matrix: Solid Analysis Batch: 66127

Analysis Batch: 66127							Prep	Batch: 66135
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	874.2		mg/Kg		87	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	844.3		mg/Kg		84	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

QC Sample Results

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Page 166 of 306

5

Lab Sample ID: LCS 880-6613 Matrix: Solid Analysis Batch: 66127	5/2-A									С	lient	Sample		ontrol S ype: To Batch:	otal/NA
	LCS	LCS													
Surrogate	%Recovery	Qua	lifier	Limits											
1-Chlorooctane	75			70 - 130	-										
o-Terphenyl	95			70 - 130											
Lab Sample ID: LCSD 880-661	35/3-A								Cli	ent	Sam	ple ID: L	ab Contro	l Samp	le Dup
Matrix: Solid												· · · ·		ype: To	
Analysis Batch: 66127														Batch:	
-				Spike		LCSD	LCS	D					%Rec		RPD
Analyte				Added		Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1000		837.4			mg/Kg		_	84	70 - 130	4	20
(GRO)-C6-C10															
Diesel Range Organics (Over				1000		804.7			mg/Kg			80	70 - 130	5	20
C10-C28)															
	LCSD	LCS	D												
Surrogate		Qua		Limits											
1-Chlorooctane		S1-		70 - 130	-										
o-Terphenyl	84			70 - 130											
	•														
Lab Sample ID: MB 880-66149	/1-A											Client Sa	ample ID:	Method	Blank
Matrix: Solid														ype: To	
Analysis Batch: 66125														Batch:	
		ΜВ	МВ												
Analyte	Re	sult	Qualifier		RL		MDL	Unit		D	Р	repared	Analyz	ed	Dil Fac
Gasoline Range Organics	<	50.0	U		50.0			mg/Kg	3	_	11/0	3/23 11:39	11/03/23	19:44	1
(GRO)-C6-C10															
Diesel Range Organics (Over	<	50.0	U		50.0			mg/Kg	9		11/0	3/23 11:39	11/03/23	19:44	1
C10-C28)															
Oll Range Organics (Over C28-C36)	<	50.0	U		50.0			mg/Kg	9		11/0	3/23 11:39	11/03/23	19:44	1
		ΜВ	МВ												
Surrogate	%Reco	very	Qualifier	Lim	its						P	repared	Analyz	ed	Dil Fac
1-Chlorooctane		230	S1+	70 -	130						11/0	3/23 11:39	11/03/23	19:44	1
o-Terphenyl		226	S1+	70 -	130						11/0	3/23 11:39	11/03/23	19:44	1
	0/2 4									~	llert	Consula			
Lab Sample ID: LCS 880-6614	9/2-A									C	lient	Sample	ID: Lab Co		
Matrix: Solid														ype: To	
Analysis Batch: 66125														Batch:	66149
America				Spike			LCS		11		-	0/ D	%Rec		
Analyte				Added		Result	Qua	infier	Unit		<u>D</u>	%Rec	Limits		
Gasoline Range Organics				1000		900.9			mg/Kg			90	70 - 130		
(GRO)-C6-C10 Diesel Range Organics (Over				1000		973.8			mg/Kg			97	70 - 130		
C10-C28)				1000		575.0			mg/ixy			31	70-100		
	LCS	LCS													
Surrogate	%Recovery			Limits											
1-Chlorooctane	106	aud		70 - 130	-										
o-Terphenyl	100			70 - 130 70 - 130											
	110			10 - 130											

Eurofins Carlsbad

QC Sample Results

5

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 66125									Prep	Batch:	66149
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10			1000	869.7		mg/Kg		87	70 - 130	4	20
Diesel Range Organics (Over			1000	924.8		mg/Kg		92	70 - 130	5	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	101		70 - 130								
o-Terphenyl	111		70 - 130								
lethod: 300.0 - Anions,	Ion Chromat	ography									

Matrix: Solid											Prep Type	: Soluble
Analysis Batch: 66207												
	МВ	MB										
Analyte	Result	Qualifier		RL		MDL	Unit		D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U		5.00			mg/Kg	1			11/03/23 21:36	1
Lab Sample ID: LCS 880-66174/2-A									Clier	nt Sample	ID: Lab Contro	I Sample
Matrix: Solid											Prep Type	: Soluble
Analysis Batch: 66207												
			Spike		LCS	LCS					%Rec	
Analyte			Added		Result	Qual	ifier	Unit	D	%Rec	Limits	
Chloride			250		272.6			mg/Kg		109	90 - 110	
Lab Sample ID: LCSD 880-66174/3-A								CI	ient Sa	mple ID:	Lab Control San	nple Dup
Matrix: Solid											Prep Type	: Soluble
Analysis Batch: 66207												
			Spike		LCSD	LCS	D				%Rec	RPD

Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	263.2		mg/Kg		105	90 - 110	4	20

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

GC VOA

Analysis Batch: 66218

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-1	c12, c13, - ne - sw	Total/NA	Solid	8021B	66219
890-5556-2	c13 - fs	Total/NA	Solid	8021B	66219
890-5556-3	exc. A12	Total/NA	Solid	8021B	66219
MB 880-66219/5-A	Method Blank	Total/NA	Solid	8021B	66219
LCS 880-66219/1-A	Lab Control Sample	Total/NA	Solid	8021B	66219
LCSD 880-66219/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	66219
890-5556-1 MS	c12, c13, - ne - sw	Total/NA	Solid	8021B	66219
890-5556-1 MSD	c12, c13, - ne - sw	Total/NA	Solid	8021B	66219

Prep Batch: 66219

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-1	c12, c13, - ne - sw	Total/NA	Solid	5035	
890-5556-2	c13 - fs	Total/NA	Solid	5035	
890-5556-3	exc. A12	Total/NA	Solid	5035	
MB 880-66219/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-66219/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-66219/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
890-5556-1 MS	c12, c13, - ne - sw	Total/NA	Solid	5035	
890-5556-1 MSD	c12, c13, - ne - sw	Total/NA	Solid	5035	

L	ab Sample ID	Client Sample ID	Prep Type	Matrix	Method F	Prep Batch
8	90-5556-1	c12, c13, - ne - sw	Total/NA	Solid	Total BTEX	
8	90-5556-2	c13 - fs	Total/NA	Solid	Total BTEX	
8	90-5556-3	exc. A12	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 66125

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-3	exc. A12	Total/NA	Solid	8015B NM	66149
MB 880-66149/1-A	Method Blank	Total/NA	Solid	8015B NM	66149
LCS 880-66149/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	66149
LCSD 880-66149/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	66149

Analysis Batch: 66127

Lab Sample ID 890-5556-1	Client Sample ID c12, c13, - ne - sw	Prep Type Total/NA	Matrix Solid	Method 8015B NM	Prep Batch 66135
890-5556-2	c13 - fs	Total/NA	Solid	8015B NM	66135
MB 880-66135/1-A	Method Blank	Total/NA	Solid	8015B NM	66135
LCS 880-66135/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	66135
LCSD 880-66135/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	66135

Prep Batch: 66135

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-1	c12, c13, - ne - sw	Total/NA	Solid	8015NM Prep	
890-5556-2	c13 - fs	Total/NA	Solid	8015NM Prep	
MB 880-66135/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-66135/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-66135/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Eurofins Carlsbad

5

8 9

Job ID: 890-5556-1

SDG: KH227025

QC Association Summary

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

GC Semi VOA

Prep Batch: 66149

_ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-5556-3	exc. A12	Total/NA	Solid	8015NM Prep	
MB 880-66149/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
_CS 880-66149/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
_CSD 880-66149/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
nalysis Batch: 66278					
		Ргер Туре	Matrix	Method	Prep Batch
nalysis Batch: 66278				·	Prep Batch
nalysis Batch: 66278 _ab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch

Leach Batch: 66174

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-1	c12, c13, - ne - sw	Soluble	Solid	DI Leach	
890-5556-2	c13 - fs	Soluble	Solid	DI Leach	
890-5556-3	exc. A12	Soluble	Solid	DI Leach	
MB 880-66174/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-66174/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-66174/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Analysis Batch: 66207

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-5556-1	c12, c13, - ne - sw	Soluble	Solid	300.0	66174
890-5556-2	c13 - fs	Soluble	Solid	300.0	66174
890-5556-3	exc. A12	Soluble	Solid	300.0	66174
MB 880-66174/1-A	Method Blank	Soluble	Solid	300.0	66174
LCS 880-66174/2-A	Lab Control Sample	Soluble	Solid	300.0	66174
LCSD 880-66174/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	66174

Page 169 of 306

Job ID: 890-5556-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists

Client Sample ID: c12, c13, - ne - sw

5

9

Job ID: 890-5556-1 SDG: KH227025

Lab Sample ID: 890-5556-1 Matrix: Solid

Lab Sample ID: 890-5556-2

Lab Sample ID: 890-5556-3

Matrix: Solid

Matrix: Solid

Date Collected: 10/31/23 13:28 Date Received: 11/02/23 12:04

Project/Site: Folk 11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	66219	11/05/23 10:15	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66218	11/05/23 15:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			66296	11/05/23 15:56	SM	EET MID
Total/NA	Analysis	8015 NM		1			66278	11/03/23 18:40	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	66135	11/03/23 12:03	ткс	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66127	11/03/23 18:40	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	66174	11/03/23 15:06	СН	EET MID
Soluble	Analysis	300.0		1			66207	11/03/23 22:49	СН	EET MID

Client Sample ID: c13 - fs Date Collected: 10/31/23 13:42

Date Received: 11/02/23 12:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	66219	11/05/23 10:15	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66218	11/05/23 13:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			66296	11/05/23 13:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			66278	11/03/23 19:01	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	66135	11/03/23 12:03	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66127	11/03/23 19:01	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	66174	11/03/23 15:06	СН	EET MID
Soluble	Analysis	300.0		1			66207	11/03/23 22:54	СН	EET MID

Client Sample ID: exc. A12 Date Collected: 10/31/23 14:21 Date Received: 11/02/23 12:04

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	66219	11/05/23 10:15	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	66218	11/05/23 13:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			66296	11/05/23 13:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			66278	11/03/23 23:16	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	66149	11/03/23 11:40	ТКС	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	66125	11/03/23 23:16	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	66174	11/03/23 15:06	СН	EET MID
Soluble	Analysis	300.0		1			66207	11/03/23 22:59	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Prog	ram	Identification Number	Expiration Date
exas	NELA	λP	T104704400-23-26	06-30-24
• •		out the laboratory is not certi	fied by the governing authority. This lis	t may include analytes
for which the agend	cy does not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
Ū		Matrix Solid	Analyte Total TPH	

Released to Imaging: 8/8/2024 8:17:27 AM

10

Job ID: 890-5556-1 SDG: KH227025

Received by OCD: 7/9/2024 1:03:46 PM

Client: Terracon Consulting Eng & Scientists Project/Site: Folk 11

Job ID: 890-5556-1 SDG: KH227025

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Ref	erences:		
ASTM = A	ASTM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E	dition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Carlsbad

Lab Sample ID 890-5556-1 890-5556-2 890-5556-3 Page 173 of 306

Job ID: 890-5556-1 SDG: KH227025

Client: Terracon Consulting Eng & Scientists
Project/Site: Folk 11

Client Sample ID	Matrix	Collected	Received	Depth	
c12, c13, - ne - sw	Solid	10/31/23 13:28	11/02/23 12:04	0-4	4
c13 - fs	Solid	10/31/23 13:42	11/02/23 12:04	4	
exc. A12	Solid	10/31/23 14:21	11/02/23 12:04	2	5
					8
					9
					12
					13

ir No:		co.com Page of	Work Order Comments	Brownfields RRC Superfund	1		ADaPT D Other:	Preservative Codes	None: NO DI Water: H ₂ O	o	HCL: HC HNO 3: HN H.SO 2: H - NAOH: NA		NaHSO 4: NABIS	Na25203: NaSO 3	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Sample Comments							SiO ₂ Na Sr Tl Sn U V Zn 1631 / 245.1 / 7470 / 7471		gnature) Date/Time		
Work Order No:		www.xenco.com	Work C	Program: UST/PST PRP	State of Project:	Reporting: Level II 🗌 Level III 🗍	Deliverables: EDD	EST					690-5556 Chain of Custody											vi K Se Ag Hg:	us and conditions cond the control 5 previously negotiated.	ire) Received by: (Signature)		
Houston, 1X (281) 249-4200, Dallas, 1X (214) 202-0500 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	TX (806) 794-1296 NM (575) 988-3199						Ermail: Gus.Sanchez@Terracon.com; Travis.Casey@Terracon.com; Joseph.Guesnier@Terracon.com	ANALYSIS REQUEST	_				00000-060											3 Cd Ca Cr Co Cu Fe Pb Mg Mn Mo Ni Cd Cr Co Cu Pb Mn Mo Ni Se Ag Tl U	Notice: Signature of this document and reliquithment of samples constitutes a valid purchase order from dient company to Eurofins Xenco. Its affiliates and subcontractors. It suspine standard terms and conditions Notice: Signature of this document and reliquithment of samples constitutes a valid purchase order from dient company to Eurofins Xenco. Its affiliates and subcontractors. It suspine standard terms and conditions of service. Eurofins Xenco will be liable only for the cost of samples unsue any responsibility for any busces or expenses incurred by the client if such tosts are due to clicumstances beyond the control of service. Eurofins Xenco will be liable only for the cost of samples submitted to Eurofins Xenco, but not analyzed. These terms will be enforced unless previously negotiated.	Relinquished by: (Signature)	2	
Houston, I X (281) 240-4200, Dallas, I X (214) 202-0200 dland, TX (432) 204-5440, San Antonio, TX (210) 509-33	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1295 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199		Spur				vis.Casey@Terracon.c						(00		120)8)	Chlori BTEX TPH (JVV	ンンン		2			 b As Ba Be B Cd Sb As Ba Be Cd (Xenco, its affiliates and incurred by the client if fins Xenco, but not ana	Date/Time	Su 11/01	
TX (432) 7	(219) XT.	ł	S	-		_	n.com; Tra		Pres. Code		_	sıə	ອເມຍາ				# of Cont	-	-	-	-		\uparrow		to Eurofins r expenses red to Euro		15.	
Midland,	EL Paso Hobbs,		Bill to: (if different)	Company Name:	Address:	City, State ZIP:	Sus.Sanchez@Terraco	tround	Rush	48 hour	lay received by ved by 4:30pm	See No	Y I	0.2	5.6	2.4	Depth Grab/ Comp	0-4 600	y long		2 Ginete			s 11 : 8R(r from client company is bility for any losses or or each sample submitt			
esting				-		-	Email:	Turn Around	Routine	Due Date:	TAT starts the day received by the lab, if received by 4:30pm	+-	eter ID:	i Factor:	Temperature Reading:	Corrected Temperature:	Time Sampled	13:28	10-21-23 13:42		12:410			BRCRA 13PPM Texa TCLP / SPLP 6010	s a valid purchase orde to tassume any respon it and a charge of \$5 for	Received by: (Signature)		
ment To												- I	Thermometer ID:	Correction Factor:	Temperati	Corrected	Date Sampled	10-11-23	10-31-5		12-16-01				les constitutes les and shall r to each projec	Received	alrebur	
-	Xenco		Joseph Guesnier	nox	4526 W. Pierce St	Carlsbad NM, 88220	(806)-300-0140	11	KH227025		Gus Sanchez		Ver No	Yes No (N/D)	Yes No WLA		Matrix	M						200.8 / 6020: etal(s) to be ana	d relinquishment of samp e only for the cost of samp of SBS DO will be applied	ture)		
			Project Manager: Joseph			e ZIP:	Π	Project Name		Project Location:	er's Name:	PO #:	SAMPLE RECEIPT	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Sample Identification	112 CI3 - NE-	1	A17-2/	Exc. AI2	×		Total 200.7 / 6010 200.8 / 6020: Circle Method(s) and Metal(s) to be analyzed	Let it care in the only of the document and relinquishment of samples constitutes a valid purchause order from client Notice: Signature of this document and relinquishment of samples constitutes a valid purchause order from client of secure. Eurofins Xento will be liable only for the a profied to each profice and a charge of 55 for text-burch	Relinquished by: (Signature)	24 LL	

Job Number: 890-5556-1 SDG Number: KH227025

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5556 List Number: 1 Creator: Bruns, Shannon

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Job Number: 890-5556-1 SDG Number: KH227025

List Source: Eurofins Midland

List Creation: 11/03/23 10:38 AM

Login Sample Receipt Checklist

Client: Terracon Consulting Eng & Scientists

Login Number: 5556 List Number: 2 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

FOLK STATE #011 BATTERY CLOSURE REPORT/DEFERRAL REQUEST

API NO. 30-015-37397 2RP-5527 INCIDENT ID: NAB1919234395 RELEASE DATE: 06/12/2019 U/L J, SECTION 17, RANGE 17S, TOWNSHIP 29E EDDY COUNTY, NEW MEXICO

> 05/18/2021 PREPARED BY:

ARTESIA, NM 88210

May 18, 2021

New Mexico Energy, Minerals & Natural Resources NMOCD District II C/O Mike Bratcher, Chad Hensley, Robert Hamlet & Christina Eads 811 S. First Street Artesia, NM 88220

Spur Energy Partners C/O Braidy Moulder and Dakota Neel 920 Memorial City Way, Suite 1000 Houston, TX 77024

RE: Closure/Deferral Request for Spur Energy Partners – Folk State #011 Battery API No. 30-015-37397 RP ID: 2RP-5527 Incident ID No. NAB1919234395 U/L J, Section 17, Range 17S, Township 29E Eddy County, New Mexico

To Whom it May Concern,

On behalf of Spur Energy Partners, Energy Staffing & Services (ESS) has prepared this Closure/Deferral Report that describes the assessment, delineation and remediation associated with the Folk State #011 Battery (hereafter referred to as the "Folk State", dated June 12th, 2019). COG Operating provided the notification and submission of the C141 Release Notification on June 12th, 2019 with RP# 2RP-5527 and Incident ID NAB1919234395.

This letter provides a description of the spill assessment and remediation activities and demonstrates that the closure criteria established in 19.15.29.12 *New Mexico Administrative Code (NMAC; New Mexico Oil Conservation Division, 2018),* have been met and all applicable regulations have been followed. This document is intended to serve as a final report to obtain approval from the NMOCD for closure of this release.

Incident Description

On June 12, 2019 a release occurred at the Folk State #011 Battery site when a hole developed on the circulating line, releasing the fluid inside the lined containment. It was observed that approximately 112bbls of crude oil was released. A vacuum truck was dispatched, 80bbls of crude oil was recovered and hauled to disposal. Although the release that occurred on June 12, 2019 it was contained withing the boundaries of the engineered pad and within the secondary containment. No fluid was released into any undisturbed areas and/or waterways.

This release was reported under COG Operating, LLC as they were the operator of record during the release, while Spur Energy Partners was in the process of finalizing the purchase of this lease. Spur took over operation on November 11, 2019.

Site Description

The release at the Folk State, occurred on State Land, 32.83377, -104.09565, approximately 6.81 miles northwest of Loco Hills, New Mexico. The description of the site is Unit Letter J, Section 17, Township 17S, Range 29E in Eddy County, New Mexico. The location is within the Permian Basin and has historically been used for oil and gas exploration and production. The aerial photograph and site schematic are included.

The Folk State complex consists of oil and gas equipment, a tank battery and a nearby oil and gas exploration and production well. This well is the closest well to the release and is known as the Folk State #011, which is the API No. associated with this release. The following sections precisely describe the release area inside the facility.

The surrounding landscape is associated with the Kimbrough-Stegall Loams, with 0 to 3 percent slopes. The elevation is 3622 ft. The soil map and data are attached herein.

There is no surface water located on or near the site. There are no continuously flowing watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features at the Folk State, as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

The site has a "medium potential" for Karst Geology to be present near the Folk State site according to the *United States Department of the Interior, Bureau of Land Management*. Please find the Karst Map attached herein.

The nearest groundwater well according to the *New Mexico Office of the State Engineer* is RA 11807 POD1 and is found to be 3173' from the site with ground water data of 76'bgs (below ground surface) and was drilled in 2012. Upon researching the OSE Database (map included); no wells were found inside the ½ mile radius. Please find the attached groundwater data and mapping.

Closure Criteria Determination

Using Table I, Closure Criteria for Soils Impacted by a Release dated 8/14/2018, this site falls under the site ranking of <100'bgs due to the groundwater depth but due to this site falling under the "medium karst potential", the closure criteria then fall under <50'bgs.

DGW	Constituent	Method	Limit
≤ 50'	Chloride	EPA 300.0 OR SM4500 CLB	600 mg/kg
	TPH (GRO + DRO + MRO)	EPA SW-846 METHOD 8015M	100 mg/kg
	GRO + DRO	EPA SW-846 METHOD 8015M	50 mg/kg
	BTEX	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg
	Benzene	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg

Soil Sampling Procedures

Soil sampling for laboratory analysis was conducted according to the NMOCD – approved industry standards. Accepted NMOCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect clean samples in air tight glass jars supplied by the laboratory to conduct the analysis
- Each sample jar was labelled with site and sample information
- Samples were kept in and stored in a cool place and packed on ice
- Promptly ship samples to the lab for analysis following the COC (chain of custody) procedures

The following lab analysis method was used for each bottom hole and sidewall samples submitted to Envirotech Analytical Laboratory:

Volatile Organics by EPA 8021B

• Benzene, Toluene, Ethylbenzene, p.m. Xylene, o-Xylene and Total Xylenes Nonhalogenated Organics by EPA 8015

- Gasoline Range Organics (C6-C10)
- Nonhalogenated Organics by EPH 8015D DRO/GRO
 - Diesel Range Organics (C10-C28)
 - Oil Range Organics (C28-C40)

Anions by EPA 300.0/9056A

Chloride
Delineation and Remedial Activities

On or about, January 28th, 2020, Hungry Horse, LLC dispatched a crew to the location to begin digging out the material that was previously placed over the lined containment. The site had previously been mapped and photographed. The impacted material inside the containment was excavated out of the containment area by hand. The contaminated material was then stockpiled on plastic outside the lined containment. Upon fully excavating the material from on-top of the liner it became apparent that the liner contained numerous large holes, rips and missing liner in some areas. At this time, it was determined that the liner was not worth patching or repairing. The liner was then cut out and hauled to disposal. The area inside the containment then had to be fully delineated both vertically and horizontally. Thirteen (13) vertical sample points were set inside the containment with (8) horizontal sidewalls sample points. The site was sampled in 1' and 2' intervals. Both a hand-auger and mini track-hoe was used to delineate the site, due to the electrical lines, production lines and production equipment being in the area of impact. All of the surface samples obtained for sample point 1 thru 13 showed no indication of impact at the surface. The impacted area measured 12750.037 sq. ft. covering the entire containment. Taking out the production equipment and lines in the area, this leaves approximatley 4000 square feet of free space.

Vertical delineation continued after the sample points were placed and surface samples were tested and logged. Each sample was titrated in the field, then jarred and sent to Envirotech Laboratory for confirmation. A PID Meter was also used to detect high concentrations of TPH. SP1 was delineated to 2'bgs and hit refusal due to hard rock in the area, chlorides were under the criteria but TPH and BTEX were above recommended levels. SP2 was delineated to 6'bgs and hit refusal, with concentrations above criteria on TPH only. SP3 was delineated to 2'bgs and hit refusal, with concentrations below the levels for chlorides but above for TPH. SP4 was delineated to 2'bgs, hitting refusal with concentrations above the levels for TPH only. SP5 thru SP13 was delineated to 4-6'bgs, with all levels below the concentration requirements. SP5 thru SP12 did not show any elevated field-testing during delineation. SP13 showed field testing was elevated in chlorides but lab analysis showed otherwise.

After obtaining the vertical samples, a full horizontal delineation began to ascertain the edges of the impacted area. Each sidewalls were sampled in the field, using the titration method, then jarred and sent to Envirotech Laboratories for confirmation. Out of the (8) samples taken during the horizontal delineation only SP5 and SP6 were elevated in chloride contamination. Please find the vertical and delineation sample data and laboratory reports attached herein.

Upon receipt of the confirmed lab analysis, it was decided to excavate 1'to 2'bgs in the area of impact from the containment area. This would maintain the integrity of the tank battery and other production lines and equipment within the containment. Excavation began by using hand shovels and a mini track-hoe when possible. The impacted material was then placed on plastic.

Following excavation an email was sent to the NMOCD requesting witnessing of final closure samples. Approximately 240 cu. yds. of contaminated soil was then loaded and hauled to Lea Land Disposal. Approximately 280 yards of clean soil was back-hauled and stockpiled on site. Following expiration of the 48-waiting period, closure samples were obtained and with no witnessing from the NMOCD due to time constraints.

The area of impact was divided into two halves, each half had 5 sample points (taking out the covered areas with production equipment) and a total of 6 sidewalls. The site was not fully excavated to meet the standard for this site due to infrastructure interference. The closure sample data indicates that contamination of the soil is still evident, that falls outside the closure criteria for this site. Therefore, a decision was made to backfill the excavated area and request a deferral of this release for the Folk State. Following receipt of the confirmed closure samples, the site was backfilled with approximately 280 cu. yds. of imported clean soil. The area was then leveled, production lines were stabilized and the area was contoured back to its natural state. The berms were replaced to contain any future spills or releases.

Closure Report Submittal and Denial

A closure report was drafted and submitted to the OCD on June 24th, 2020. The closure report was then denied by the OCD on September 30, 2020 for the following reasons:

The OCD has denied the submitted Closure Report/Deferral Request C-141 for incident # NAB1919234395 FOLK STATE #011 @ 30-015-37397 for the following reasons:

• The Depth to groundwater has not been established. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, data should be no more than 25 years old, and well construction information should be provided:

http://www.emnrd.state.nm.us/OCD/documents/OCDInternalPolicy-SpillRuleClarifications.pdf. Therefore, the remediation levels outlined in Table 1 of 19.15.29 NMAC have not been established for this site.

• Vertical delineation, which is driven by depth to water, is incomplete because the depth to groundwater has not been established.

• Each confirmation floor sample was representative of ~6000 square feet, exceeding part 29 Closure Requirements by over 30 times.

• The OCD wants to clarify that the entire release area will not be deferred, only the sample points that are around production equipment such as production tanks, wellheads and pipelines. The release must be remediated to the fullest extent possible. The deferral may be granted so long as the contamination is fully delineated and does not cause an imminent risk to human health, the environment, or ground water. All sample points, except the requested sample points for deferral, must have contaminated soil removed before a deferral request is uploaded to the payment portal.

At this time, Spur Energy decided to drill a borehole to confirm that ground water was not found <76'. A boring rig went out to the site on Monday May 10th, 2021. Boring log

information is found below and is attached to this report. The location of the borehole was placed at 32.8336260 -104.0965154. The borehole was placed on the west side of the location, side gradient of the release, away from any flowlines, buried lines of production infrastructure.

0' to 3' – topsoil 3' to 14' – caliche 14' to 20' – red sand/clay 20' to 30' – red sand 30' to 78' – anhydrite/red sand/clay

The borehole was left open for 48hours. Upon returning the borehole was still dry at 78'. The Borehole was then plugged from bottom to top with 35 sacks of bentonite chips.

No further delineation was completed as this site will need a further delineation, excavation and reclamation once the wells have been plugged and the facility is no longer needed.

Closure/Deferral Request

ESS on behalf of Spur Energy Partners requests that the delineation, partial remediation and depth to ground water determination to provide resourceful information to have this release that occurred on the Folk State to be placed under deferment. Due to lines, production infrastructure and safe excavating restrictions, that deferment be granted until the wells going to this facility have been plugged or reconstruction and/or placement of the facility is redesigned, that the impacted area stay in place and this release in question be deferred. With the removal of the liner, full delineation and partial remediation only in the impacted zone, that enough evidence has been provided to prove that there is no imminent danger to the environment and drinking water due to the Folk State Release that occurred on June 12, 2019. The tank battery area will require further delineation and remediation once the location is decommissioned, tanks are removed and all other production equipment is removed or relocated. Due to safety precautions, live production lines and electrical sources, it is determined unsafe to compromise the production equipment with further excavation at this time.

The information provided in this report can be used to determine that further actions are needed at time of abandonment. If you have any questions or concerns, please contact the undersigned.

Sincerely,

Natalie Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC.

#7 Compress Rd Artesia, NM 88210 Cell: 575-390-6397 Email: <u>natalie@energystaffingllc.com</u>

Attachments: Initial C141 Site Map Soil Map Karst Map Groundwater Data and Mapping Before Photos Sample Data Delineation Sample Map w/GPS **Delineation Lab Analysis During Photos** Closure Sample Map w/GPS Closure Lab Analysis **Final Photos Closure Denial Email Boring Logs Drilling Photos** Final C141

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141

Page 185 of 306

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party	OGRID
Contact Name	Contact Telephone
Contact email	Incident # (assigned by OCD)
Contact mailing address	

Location of Release Source

Latitude	
Lautude	

(NAD 83 in decimal degrees to 5 decimal places)

Site Name	Site Type
Date Release Discovered	API# (if applicable)

Unit Letter	Section	Township	Range	County

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
Natural Gas	Volume Released (Mcf)	Volume Recovered (Mcf)
Other (describe)	Volume/Weight Released (provide units)	Volume/Weight Recovered (provide units)
Cause of Release		

Page	2
1 uge	-

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?
If YES, was immediate n	otice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why:

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name:	Title:
Signature:	Date:
email:	Telephone:
OCD Only	
Received by:	Date:

Received by OCD: 7/9/2024 1:03:46 PMI SPUR ENERGY

FOLK STATE #011 BATTERY DOR: 6.12.19

Old Leee Rd N

211

Released to Imaging: 8/8/2024 8:17:27 AM

FOLK STATE #011 BATTERY

Received by OCD: 7/9/2024 11:403:5464PMM

Released to Imaging: 8/8/2024 8:17:27 AM

				MAP INFORMATION
Area of I	Area of Interest (AOI) Area of Interest (AOI)	₩ •	Spoil Area Story Spot	The soil surveys that comprise your AOI were mapped at 1:20,000.
Soils	Soil Man Linit Dolymous	8	Very Stony Spot	Warning: Soil Map may not be valid at this scale.
) \	Soil Map Unit Lines	¢>	Wet Spot	Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of manoing and accuracy of soil
	Soil Map Unit Points	⊲	Other	line placement. The maps do not show the small areas of
Specia	Special Point Features	ţ,	Special Line Features	contrasting soits that could have been shown at a more detailed scale.
Э	Blowout	Water Features	tures	
×	Borrow Pit	3	Streams and Canals	Please rely on the par scale on each map sheet for map measurements.
ж	Clay Spot	Iransportation +++ Rai	ation Rails	Source of Map: Natural Resources Conservation Service
0	Closed Depression	}	Interstate Highways	Web Soil Survey URL: Coordinate Svstem: Web Mercator (EPSG:3857)
አ	Gravel Pit	5	US Routes	Maps from the Web Soil Survey are based on the Web Mercator
•:	Gravelly Spot	8	Major Roads	projection, which preserves direction and shape but distorts
0	Landfill	Z	Local Roads	uisiance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more
×	Lava Flow	Background	pu	accurate calculations of distance or area are required.
-#	Marsh or swamp	2	Aerial Photography	This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.
¢	Mine or Quarry			Coll Curvey Arnor Eddy Arna New Merica
0	Miscellaneous Water			
0	Perennial Water			Soil map units are labeled (as space allows) for map scales
>	Rock Outcrop			1:50,000 or larger.
+	Saline Spot			Date(s) aerial images were photographed: Feb 27, 2020—Feb 28, 2020
•••	Sandy Spot			The orthorhorto or other have man on which the edit lines were
0	Severely Eroded Spot			compiled and digitized probably differs from the background
\$	Sinkhole			imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.
A	Slide or Slip			-
Ø	Sodic Spot			

5/18/2021 Page 2 of 3

FOLK STATE #011 BATTERY

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
кт	Kimbrough-Stegall loams, 0 to 3 percent slopes	7.9	100.0%
Totals for Area of Interest		7.9	100.0%

Received by OCD: 7/9/2024 1:03:46 PM1 SPUR ENERGY PARINERS

FOLK STATE #011 BATTERY DOR: 6.12.19 KARST MAP: MEDIUM

360

Legend

FOLK STATE #011 BATTERY 🯉 High

FOLK STATE #011 BATTERY

82

🥖 Medium

Lovington Hwy

Received by OCD: 7/9/2024 1:03:46 PM1 SPUR ENERGY PARINERS

FOLK STATE #011 BATTERY DOR: 6.12.19 GROUNDWATER MAP

RA 12307 POD 1 - 4214' FROM SITE 58' DGW

(360)

E R. C. B. B.B.

Google Earth <u>Released to Imaging: 8/8/2024 8:17:27 AM</u> mage Landsat / Copernicus

82

S. MARY TOTAL

The set of a set of the

OLK STATE #011 BATTERY

FOLK STATE #011 BEGINNING PHOTOS

Received by OCD: 7/9/2024114035464PMM

Comp	any Name:	SPUR			Location Name:		FOLK STA	TE #011 BTY	1	Release Date:	6/12/2019
SP ID	Depth	Titr	PID	L-BTEX	L-DRO	L-ORO	L-GRO	L-TPH	L-CHL	Soil	Notes
SP 1	SURF	160	TPH								
	1'	240	ТРН								
	2'	400	ТРН	8.9	8770	3660	162	12592.00	153		COULDN'T GO DEEPER - ROCK
SP 2	SURF	320	ТРН								
	1'	400	TPH								
	2'	320	TPH								
	4'	320	ТРН								
	6'	320	ТРН	ND	1010	507	ND	1517.00	190		
SP 3	SURF	240	ТРН								
38.2	1'	1760	ТРН								
	1 2'	1040	ТРН	ND	882	480	ND	1362.00	564		
SP 4	SURF	160	ТРН								
	1'	160	ТРН								
	2'	160	ТРН	0.0951	5210	<mark>2460</mark>	ND	7670.00	28.1		
SP 5	SURF	240	TPH								
	1'	240	TPH								
	2'	240	TPH								
	4'	240	TPH								
	6'	240	ТРН	ND	498	287	ND	785.00	98.7		
SP 6	SURF	160	ТРН								
	1'	160	TPH	1							
	2'	240	TPH	1							
<u> </u>	4'	240	TPH	1							
	<mark>6'</mark>	240	ТРН	ND	147	105	ND	252.00	ND		
SP 7	SURF	240	TPH								

	1'	160	ТРН								
	2'	560	TPH								
	4'	160	TPH								
	6'	160	ТРН	ND	386	231	ND	627.00	33.7		
SP 8	SURF	160	TPH								
	1'	240	TPH								
	2'	240	TPH								
	4'	160									
	6'	320		ND	ND	ND	ND	ND	ND		
SP 9	SURF	240	TPH								
	1'	240	TPH								
	2'	160	TPH								
	4'	160									
	6'	160		ND	ND	ND	ND	ND	ND		
SP 10	SURF	240	TPH								
	1'	160	TPH								
	2'	240	TPH								
	4'	160	TPH								
	6'	160		ND	46.2	ND	ND	46.20	ND		
SP 11	SURF	240	TPH								
	1'	240	TPH								
	2'	240	TPH								
	4'	240	TPH								
	6'	240		ND	ND	ND	ND	ND	135		
SP 12	SURF	320	TPH								
	1'	480	TPH								
	2'	320	TPH								
	4'	480		ND	ND	ND	ND	ND	266		

SP13	SURF	ND	ТРН								
	1'	1440	TPH								
	2'	1200	ТРН								
	4'	1440		ND	ND	ND	ND	ND	220		
	•	1440							220		
BG		160		ND	ND	ND	ND	ND	21.3		
DO		100							21.5		
SW1	SURF	320					1		1		
5001	1'	160		ND	ND	ND	ND	ND	ND		
	-	100									
SW2	SURF	960					1		1		
5002	1'	80		ND	ND	ND	ND	ND	ND		
	<u>1-</u>	00								<u> </u>	
SW3	SURF	1050									
3003	1'	240		ND	ND	ND	ND	ND	49.4		
	<u> </u> ±	240							43.4		
SW4	SURF	1200									
3004	1'	240		ND	ND	ND	ND	ND	33.3		
	4	240							55.5		
SW5	SURF	3600									
3003	1'	2320		ND	ND	ND	ND	ND	2110		
	4	2320							2110		
SW6	SURF	800									
3000	1'	960		ND	34.9	ND	ND	ND	870		
	-	500			34.3				070		
SW7	SURF	800					1		1		
5007	1'	560		ND	ND	ND	ND	ND	462		
	<u> -</u>	500							402		
SW8	SURF	320									
5440	1'	320		ND	ND	ND	ND	ND	130		
	<u> -</u>	520							130		
C SW 1		160		ND	30.3	ND	ND	30.30	46.1		
		100			30.5			30.30	40.1		
<mark>C SW 2</mark>		160		ND	ND	ND	ND	ND	1260		
		100							1200		

C SW 4 80 ND 165							-				
C SW 5 240 ND ND ND ND ND ND 165 Image: Constraint of the second	C SW 3		240	ND	ND	ND	ND	ND	2430		
C SW 5 240 ND ND ND ND ND ND 165 Image: Constraint of the second											
C SW 6 400 ND 41.8 ND ND 41.80 490 Image: Second Secon	C SW 4		80	ND	ND	ND	ND	ND	ND		
C SW 6 400 ND 41.8 ND ND 41.80 490 Image: Second Secon			•								
C SW 6 400 ND 41.8 ND ND 41.80 490 Image: Second Secon	C SW 5		240	ND	ND	ND	ND	ND	165		
NCSP 1240240ND112005010ND27410.0025.1Image: State Sta			_								
NCSP 1240240ND112005010ND27410.0025.1Image: State Sta	C SW 6		400	ND	41.8	ND	ND	41.80	490		
Image: section of the section of th	<u> </u>										
Image: section of the section of th	NCSP 1		240	ND	11200	5010	ND	27410.00	25.1		
Image: Normal systemImage: Normal system											
Image: Normal systemImage: Normal system	NCSP 2		720	ND	3760	1860	ND	5620.00	ND		
Image: Normal systemImage: Normal system			720		5700	1000		5020.00			
Image: Normal systemImage: Normal system			160	ND	9690	1850	ND	11540.00	28.3		
Image: series of the series	NCJF J		100		3030	1050		11340.00	30.3		
Image: series of the series			160	ND	4750	1040		E800.00	ND		
Image: series of the series	NCSP 4		100		4750	1040		5890.00			
Image: series of the series			160		4460	1000		6440.00			
Image: SCSP1Image: SCSP1Image: SCSP2Image: SCSP3Image: SCSP3 </td <td>INCSP 5</td> <td></td> <td>100</td> <td>ND</td> <td>4460</td> <td>1980</td> <td></td> <td>6440.00</td> <td></td> <td></td> <td></td>	INCSP 5		100	ND	4460	1980		6440.00			
Image: SCSP1Image: SCSP1Image: SCSP2Image: SCSP3Image: SCSP3 </td <td></td> <td></td> <td>240</td> <td></td> <td>7470</td> <td>2510</td> <td>ND</td> <td>10000.00</td> <td>150</td> <td></td> <td></td>			240		7470	2510	ND	10000.00	150		
SCSP2720ND39701760ND5730.00NDAddSCSP3720ND160ND160016001600160016001600SCSP3160160ND1680929ND2609.00ND10001000SCSP4160ND1200601ND1801.00134100010001000SCSP5160ND403459ND862.0014710001000147	CPIN		240	ND	7470	3210	ND	10980.00	120		
SCSP2720ND39701760ND5730.00NDAddSCSP3720ND160ND160016001600160016001600SCSP3160160ND1680929ND2609.00ND10001000SCSP4160ND1200601ND1801.00134100010001000SCSP5160ND403459ND862.0014710001000147	<u></u>		240	2.62	45600	6220	54.0	24074.20			
Image: Normal SCSP3Image: Normal	SCSP1		240	2.63	15600	6220	51.2	218/1.20	ND		
Image: Normal SCSP3Image: Normal					0.070	4760					
Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP5Image: SCSP5 </td <td>SCSP2</td> <td></td> <td>/20</td> <td>ND</td> <td>3970</td> <td>1/60</td> <td>ND</td> <td>5730.00</td> <td>ND</td> <td></td> <td></td>	SCSP2		/20	ND	3970	1/60	ND	5730.00	ND		
Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP4Image: SCSP5Image: SCSP5 </td <td></td>											
SCSP5 160 ND 403 459 ND 862.00 147 <t< td=""><td>SCSP3</td><td></td><td>160</td><td>ND</td><td>1680</td><td>929</td><td>ND</td><td>2609.00</td><td>ND</td><td></td><td></td></t<>	SCSP3		160	ND	1680	929	ND	2609.00	ND		
SCSP5 160 ND 403 459 ND 862.00 147 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>											
	SCSP4		160	ND	1200	601	ND	1801.00	134		
CP S COMP 240 0.151 4250 1870 ND 6120.00 65.4 Image: Complex in the second sec	SCSP5		160	ND	403	459	ND	862.00	147		
CP S COMP 240 0.151 4250 1870 ND 6120.00 65.4											
	CP S	COMP	240	0.151	4250	1870	ND	6120.00	65.4		

Received by OCD: 7/9/2024 11:03:46 PM1

Page 202 of 306

SW1

FOLK STATE BATTERY DOR: 06/12/2019

SIDEWALL GPS SW1: 32.834216 -104.095874 SW2: 32.834129 -104.095726 SW3: 32.833921 -104.095580 SW4: 32.833689 -104.095408 SW5: 32.833603 -104.095350 SW6: 32.833619 -104.095535 SW2 SW7: 32.833878 -104.095720 SW8: 32.834076 -104.095861

SW3

oSP8

SW6

SPS

SW4

oSP11

SP12 SW5

Legend

0

Point_generic

SamplePoint

oSP6

BG SAMPLE

ESS

SW8 SP2

0

oSP4

oSP

SW7

BACKGROUND GPS 32.834129 -104.095219

SAMPLE POINT GPS SP1: 32.834151 -104.095837 SP2: 32.834086 -104.095826 SP3: 32.834091 -104.095741 SP4: 32.833958 -104.095751 SP5: 32.833938 -104.095655 SP6: 32.833880 -104.095627 SP7: 32.833812 -104.095588 SP8: 32.833689 -104.095545 SP9: 32.833713 -104.095545 SP9: 32.833627 -104.095507 SP11: 32.833625 -104.095407 SP12: 32.833516 -104.095364 SP13: 32.833552 -104.095448

Source: Esrl, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Alrous DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

•

Received by OCD: 7/9/2024 11:03:464PM

Analytical Report

Report Summary

Client: Spur

Samples Received: 3/31/2020 Job Number: 19054-0003 Work Order: P003135 Project Name/Location: Folk State

Walter Hinkow

Date: 4/1/20

Report Reviewed By:

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

Ph (505) 632-0615 Fx (505) 632-1865

5796 Highway 64, Farmington, NM 87401

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP1-6'	P003135-01A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP2-6'	P003135-02A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP3-2'	P003135-03A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP4-2'	P003135-04A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP5-6'	P003135-05A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP6-6'	P003135-06A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP7-6'	P003135-07A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP8-6'	P003135-08A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP9-6'	P003135-09A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP10-6'	P003135-10A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP11-6'	P003135-11A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP12-4'	P003135-12A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
SP13-4'	P003135-13A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.
Background	P003135-14A	Soil	03/30/20	03/31/20	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Proje	ct Name:	Folk	State					
PO Box 1058	Proje	1905	54-0003				Reported:		
Hobbs NM, 88240	Proje	ct Manager:	Nata	lie Gladden				04/01/20 15:58	
			SP1-6'						
		P0031	35-01 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	0.138	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	0.991	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	1.96	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	5.26	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	3.64	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	8.90	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		125 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	80								
Diesel Range Organics (C10-C28)	8770	500	mg/kg	20	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	3660	1000	mg/kg	20	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		208 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	<i>S5</i>
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	162	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		106 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	153	100	mg/kg	5	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Proj	ect Name:	Folk	State					
PO Box 1058	Project Number:			54-0003				Reported:	
Hobbs NM, 88240	Proj	ect Manager:	Nata	lie Gladden	04/01/20 15:58				
		;	SP2-6'						
		P0031	35-02 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		108 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/ORO)								
Diesel Range Organics (C10-C28)	1010	125	mg/kg	5	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	507	250	mg/kg	5	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		106 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
- Surrogate: 1-Chloro-4-fluorobenzene-FID		92.6 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	190	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Proj	ect Name:	Folk	State					
PO Box 1058	Project Number:		1905	54-0003				Reported:	
Hobbs NM, 88240	Proj	ect Manager:	Nata	lie Gladden		04/01/20 15:58			
		;	SP3-2'						
			35-03 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		108 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/ORO)								
Diesel Range Organics (C10-C28)	882	125	mg/kg	5	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	480	250	mg/kg	5	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		109 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.2 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	564	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Projec	t Name:	Folk	State					
PO Box 1058	Projec	t Number:	1905	54-0003				Reported:	
Hobbs NM, 88240	Projec	t Manager:	Nata	lie Gladden				04/01/20 15:	58
			SP4-2'						
		P0031	35-04 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	0.0739	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	0.0698	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	0.0253	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	0.0951	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		107 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/O	RO								
Diesel Range Organics (C10-C28)	5210	500	mg/kg	20	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	2460	1000	mg/kg	20	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		111 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.0 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	28.1	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Proj	ect Name:	Folk	State					
PO Box 1058	Proj	ect Number:	1905	19054-0003					
Hobbs NM, 88240	Proj	ect Manager:	Nata	lie Gladden				04/01/20 15:	58
			SP5-6'						
		P0031	35-05 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		107 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/ORG)								
Diesel Range Organics (C10-C28)	498	50.0	mg/kg	2	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	287	100	mg/kg	2	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		108 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
- Surrogate: 1-Chloro-4-fluorobenzene-FID		90.8 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	98.7	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Projec	t Name:	Folk	State					
PO Box 1058	Projec	t Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Projec	t Manager:	Natalie Gladden					04/01/20 15:	58
			SP6-6'						
			35-06 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		107 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	147	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	105	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		93.4 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.5 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	40.0	mg/kg	2	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Project	Name:	Folk	State					
PO Box 1058	Project	Number:	1905	4-0003			Reported:		
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden	04/01/20 15:58				
			SP7-6'						
			35-07 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		106 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/O	ORO								
Diesel Range Organics (C10-C28)	386	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	231	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		109 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.9 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	33.7	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Projec	et Name:	Folk	State					
PO Box 1058	Projec	et Number:	19054-0003					Reported:	
Hobbs NM, 88240	Projec	et Manager:	Natalie Gladden					04/01/20 15::	58
			SP8-6'						
			35-08 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		106 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/ORG	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		86.6 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.6 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	100	mg/kg	5	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Projec	t Name:	Folk	State					
PO Box 1058	Projec	t Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Projec	t Manager:	Nata	lie Gladden				04/01/20 15:	58
			SP9-6'						
			35-09 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		104 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	RO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		84.2 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.2 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Proje	ect Name:	Folk	State					
PO Box 1058	Proje	ect Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Proje	ect Manager:	Nata	lie Gladden				04/01/20 15:	58
		S	SP10-6'						
			35-10 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		103 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	46.2	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		101 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.9 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Proje	ect Name:	Folk	State					
PO Box 1058	Proje	ect Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Proje	ect Manager:	Natalie Gladden					04/01/20 15::	58
		5	SP11-6'						
		P0031	35-11 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		103 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		82.5 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.1 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	135	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Proje	ct Name:	Folk	State					
PO Box 1058	Proje	ct Number:	1905	19054-0003				Reported:	
Hobbs NM, 88240	Proje	ct Manager:	Nata	lie Gladden				04/01/20 15:	58
		S	SP12-4'						
			35-12 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		103 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		90.6 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.2 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	266	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com
envirotech
Analytical Laboratory

Spur	Proje	ect Name:	Folk State						
PO Box 1058	Proje	ect Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Proje	ect Manager:	Nata	lie Gladden				04/01/20 15:	58
		S	SP13-4'						
		P0031	35-13 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		104 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/ORG)								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		86.3 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.5 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	220	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Project	t Name:	Folk	State					
PO Box 1058	Project	Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden				04/01/20 15:	58
		Ba	ckgroun	d					
			35-14 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		103 %	50	-150	2014006	03/31/20	03/31/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/O	RO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014004	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		94.5 %	50	-200	2014004	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014006	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		86.8 %	50	-150	2014006	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	21.3	20.0	mg/kg	1	2014003	03/31/20	03/31/20	EPA 300.0/9056A	

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

			•		·					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2014006 - Purge and Trap EPA 5030A										
Blank (2014006-BLK1)				Prepared:	03/31/20 0 4	Analyzed: (03/31/20 1			
Benzene	ND	0.0250	mg/kg							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
p,m-Xylene	ND	0.0500								
o-Xylene	ND	0.0250								
Total Xylenes	ND	0.0250	"							
Surrogate: 4-Bromochlorobenzene-PID	8.31		"	8.00		104	50-150			
LCS (2014006-BS1)				Prepared:	03/31/20 0 A	Analyzed: (03/31/20 1			
Benzene	5.06	0.0250	mg/kg	5.00		101	70-130			
Toluene	5.09	0.0250	"	5.00		102	70-130			
Ethylbenzene	5.10	0.0250		5.00		102	70-130			
p,m-Xylene	10.2	0.0500		10.0		102	70-130			
-Xylene	5.11	0.0250	"	5.00		102	70-130			
Total Xylenes	15.3	0.0250	"	15.0		102	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.53		"	8.00		107	50-150			
Matrix Spike (2014006-MS1)	Sou	ırce: P003133-	01	Prepared:	03/31/20 0 4	Analyzed: (03/31/20 1			
Benzene	4.80	0.0250	mg/kg	5.00	ND	96.0	54.3-133			
Toluene	4.82	0.0250	"	5.00	ND	96.3	61.4-130			
Ethylbenzene	4.81	0.0250	"	5.00	ND	96.1	61.4-133			
p,m-Xylene	9.60	0.0500	"	10.0	ND	96.0	63.3-131			
p-Xylene	4.83	0.0250		5.00	ND	96.6	63.3-131			
Total Xylenes	14.4	0.0250	"	15.0	ND	96.2	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.38		"	8.00		105	50-150			
Matrix Spike Dup (2014006-MSD1)	Sou	ırce: P003133-	01	Prepared:	03/31/20 0 4	Analyzed: (03/31/20 1			
Benzene	4.97	0.0250	mg/kg	5.00	ND	99.4	54.3-133	3.49	20	
Toluene	4.97	0.0250	"	5.00	ND	99.4	61.4-130	3.17	20	
Ethylbenzene	4.96	0.0250		5.00	ND	99.2	61.4-133	3.17	20	
p,m-Xylene	9.90	0.0500		10.0	ND	99.0	63.3-131	3.10	20	
p-Xylene	4.98	0.0250		5.00	ND	99.6	63.3-131	3.06	20	
Total Xylenes	14.9	0.0250	"	15.0	ND	99.2	0-200	3.09	200	
Surrogate: 4-Bromochlorobenzene-PID	8.42		"	8.00		105	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Nonhalogenated Organics by 8015 - DRO/ORO - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2014004 - DRO Extraction EPA 3570										
Blank (2014004-BLK1)				Prepared: (03/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0	"							
Surrogate: n-Nonane	51.0		"	50.0		102	50-200			
LCS (2014004-BS1)				Prepared: (Prepared: 03/31/20 0 Analyzed: 03/31/20 1					
Diesel Range Organics (C10-C28)	443	25.0	mg/kg	500		88.6	38-132			
Surrogate: n-Nonane	46.9		"	50.0		93.9	50-200			
Matrix Spike (2014004-MS1)	Sou	rce: P003133-	01	Prepared: (03/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	468	25.0	mg/kg	500	ND	93.6	38-132			
Surrogate: n-Nonane	47.3		"	50.0		94.7	50-200			
Matrix Spike Dup (2014004-MSD1)	Sou	rce: P003133-	01	Prepared: (03/31/20 0 4	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	490	25.0	mg/kg	500	ND	98.0	38-132	4.55	20	
Surrogate: n-Nonane	48.7		"	50.0		97.3	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Nonhalogenated Organics by 8015 - GRO - Quality Control

Envirotech Analytical Laboratory										
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2014006 - Purge and Trap EPA 5030A										
Blank (2014006-BLK1)				Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		"	8.00		91.9	50-150			
LCS (2014006-BS2)				Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Gasoline Range Organics (C6-C10)	44.7	20.0	mg/kg	50.0		89.3	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.38		"	8.00		92.2	50-150			
Matrix Spike (2014006-MS2)	Sour	ce: P003133-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Gasoline Range Organics (C6-C10)	45.3	20.0	mg/kg	50.0	ND	90.6	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		"	8.00		91.9	50-150			
Matrix Spike Dup (2014006-MSD2)	Sour	ce: P003133-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Gasoline Range Organics (C6-C10)	44.7	20.0	mg/kg	50.0	ND	89.5	70-130	1.25	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.38		"	8.00		92.3	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Anions by 300.0/9056A - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2014003 - Anion Extraction EPA 300.0/9056A										
Blank (2014003-BLK1)				Prepared &	Analyzed:	03/31/20 0				
Chloride	ND	20.0	mg/kg							
LCS (2014003-BS1)				Prepared & Analyzed: 03/31/20 0						
Chloride	235	20.0	mg/kg	250		93.8	90-110			
Matrix Spike (2014003-MS1)	Sour	ce: P003131-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Chloride	508	20.0	mg/kg	250	252	102	80-120			
Matrix Spike Dup (2014003-MSD1)	Sour	ce: P003131-	01	Prepared: 03/31/20 0 Analyzed: 03/31/20 1						
Chloride	509	20.0	mg/kg	250	252	103	80-120	0.289	20	

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401	
---------------------------------------	--

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

Released to Imaging: 8/8/2024 8:17:27 AM

envirotech-inc.com Labadmin@envirotech-inc.com

Page 20 of 23

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 15:58

Notes and Definitions

S5	Surrogate spike recovery exceeded acceptance limits of	due to interfering target and/or non-target analytes.
----	--	---

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

lient: Sfuk	Bill To	ek.			ab Us	se Or	ıly		T	AT	E	EPA Program
roject: Folk State Attention: roject Manager: Address:	······································	Lab	WO#	‡ 2 C			Numbe		1D	3D	RCRA	CWA SDWA
Address: City, State, Zip		PU	03	5			usis and			1		State
City, State, Zip Phone:									Ī			NM CO UT AZ
hone: <u>Email: Natalie</u>	ie	3015	3015									
eport due by:		3 yd C	2 hy 8	8021	260	010	300.0		WN	×		ТХ ОК
Time Date Matrix No Sampled Sampled Matrix Containers Sample ID	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC - TX		Remarks
S SP1-4'	Number	a	15	8	×	Σ	5		V BG	BG		
								+				
SPZ-6	2	-										
SP3-2'	3											
SP4-2'	9											
SP5-6'	S											
SPle-L'	6											
SP7-6'	F											
588-6'	8											
SP9-6'	9											
SP10-10'	10											
Additional Instructions:												
(field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intenti	islabelling the sample location, date or					Samples	requiring the	ermal preser	vation m	ust be rea	ceived on ice th	ne day they are sampled or
me of collection is considered fraud and may be grounds for legal action. Sampled by:												n subsequent days.
elimpuished by: (Signature) Bate 30 D Time 4:05 Received by:	101 Date 3.30.	20	Time	40	5	Rece	eived or	nice:		b Us / N	e Only	
elinquished by: (Signature) Date Time Received by: 3-30-2020 1640	ture) Date 3/3/2:		Time	.30			iii cu oi	i icc.	<u> </u>	//		
elinguished by: (Signature) Date Time Received by:	ture) Date		Time	100		<u>T1</u>			12	See Sta		<u>T3</u>
amole Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other	Cantainer	Tues		de a -		AVG	Temp '	°cy				
ample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other lote: Samples are discarded 30 days after results are reported unless other arrangements are mad	Container	Type	: g - g	lass,	p - pc	oly/pl	astic, ag	- ambe	r glas	is, v - \	VOA	

Released to Imaging: 8/8/2024 8:17:27 AM

lient: SEUF roject: FOIK State	Bill To		1				se Or			AT		PA Program
roject Manager:	Attention: Address:		Lab	WO	‡ 135		Job	Number	1D	3D	RCRA	CWA SDWA
ddress:	City, State, Zip		FU	00	10-		Analy	ysis and Metho		1		State
ity, State, Zip	Phone:					-				1		NM CO UT AZ
none: nail: Natalie	Email: Natalie		015	015								
eport due by:			by 8	by 8	8021	260	10	300.0	M			ТХ ОК
Time Date Matrix No Sample ID		Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	BGDOC - NM	BGDOC - TX		
	16 19	Number	DR(GR(BTE	Ň	Me	Chic	BGL	BGD		Remarks
S SP -	6'	11							X			
SP12-	4'	12							1			
5813-6	ì	13										
Backg		14							+			
Dickg	rung								'			
									1			
		<u> </u>							-			
									-			
dditional Instructions:		and the second										
field sampler), attest to the validity and authenticity of this sample. I am aware tha	t tampering with or intentionally mislabelling the sample	location, date or	_				Samples	requiring thermal prese	rvation m	nust be rec	ceived on ice th	e day they are sampled or
ne of collection is considered fraud and may be grounds for legal action. Sampled b	/:							l packed in ice at an avg				
Inquisited by: (Sighature) Date Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time Time	Received by: (Signature)	Date 3.30-2	020	Time	40-	5	Dage				e Only	
elinquistied by: (Signature) Juace lime	Received by: (Signature)	Date		Time		_	Rece	eived on ice:	Q)/ N		
Tipquished by: (Signature) Date Time		3/31/2 Date	مر		30		<u>T1</u>		<u>T2</u>		<u></u>	<u>T3</u>
interior of the provide the second seco	Received by: (Signature)	Date		Time			AVG	Temp °C_4				
mple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		Container	Type	:g-g	lass.	n - no	lv/pl	astic, ag - ambe	or glag	S V-V	100	

.

Received by OCD: 7/9/2024 11:03:464PM

Analytical Report

Report Summary

Client: Spur

Samples Received: 3/31/2020 Job Number: 19054-0003 Work Order: P003134 Project Name/Location: Folk State

Walter Hinkory

Date: 4/1/20

Report Reviewed By:

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

5796 Highway 64, Farmington, NM 87401

24 Hour Emergency Response Phone (800) 362-1879

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Pagg 226 of 306

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SW1-1'	P003134-01A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW2-1'	P003134-02A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW3-1'	P003134-03A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW4-1'	P003134-04A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW5-2'	P003134-05A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW6-1'	P003134-06A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW7-1'	P003134-07A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.
SW8-1'	P003134-08A	Soil	03/28/20	03/31/20	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur PO Box 1058	Projec	t Name: t Number:		4-0003				Reported:	22
Hobbs NM, 88240	Projec	t Manager:	Natal	lie Gladden				04/01/20 13:	23
		-	SW1-1'						
		P0031 Reporting	34-01 (So	olid)					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		105 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.5 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/O	RO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		86.7 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		101 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		105 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.5 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur PO Box 1058 Hobbs NM, 88240	Project	Name: Number: Manager:		State 4-0003 lie Gladden				Reported: 04/01/20 13:	23
110005 NWI, 88240	Project	-		le Gladden				04/01/20 13:	23
			SW2-1' .34-02 (So	Jid)					
		Reporting	.54-02 (50	iiu)					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		104 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		95.7 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/O	ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		88.4 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		97.2 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		104 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		95.7 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech	
Analytical Laboratory	

Spur	Project	Name:	Folk S	State					
PO Box 1058	Project	Number:	19054	-0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Natali	e Gladden		04/01/20 13:23			
		,	SW3-1'						
			.34-03 (Sol	lid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-	130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-	130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		98.2 %	70-	130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO	/ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		88.7 %	50	200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRC)								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		99.5 %	70-	130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-	130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		98.2 %	70-	130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	49.4	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Projec	ct Name:	Folk	State						
PO Box 1058	Project Number:		1905-	4-0003				Reported:		
Hobbs NM, 88240	Projec	et Manager:	Natal	ie Gladden				04/01/20 13:2	23	
		5	SW4-1'							
			34-04 (So	olid)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Volatile Organic Compounds by 8260										
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B		
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B		
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B		
Surrogate: Bromofluorobenzene		96.4 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B		
Nonhalogenated Organics by 8015 - DRO/OR	0									
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D		
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D		
Surrogate: n-Nonane		90.8 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D		
Nonhalogenated Organics by 8015 - GRO										
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D		
Surrogate: 1,2-Dichloroethane-d4		97.6 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D		
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D		
Surrogate: Bromofluorobenzene		96.4 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D		
Anions by 300.0/9056A										
Chloride	33.3	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A		

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech	
Analytical Laboratory	

Spur	Projec	t Name:	Folk	State					
PO Box 1058	Projec	t Number:	19054-0003					Reported:	
Hobbs NM, 88240	Projec	t Manager:	Nata	lie Gladden				04/01/20 13:	23
		5	SW5-2'						
		P0031	34-05 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		105 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		100 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		82.4 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		105 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		100 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	2110	40.0	mg/kg	2	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Spur	Project	Name:	Folk	State					
PO Box 1058	Project	Number:	19054-0003					Reported:	
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden				04/01/20 13:	23
		5	SW6-1'						
		P0031	34-06 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.5 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/ORC)								
Diesel Range Organics (C10-C28)	34.9	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		79.9 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.5 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	870	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

e	Analytical Laboratory

Spur PO Box 1058	Project Name: Project Number:			State 54-0003				Reported:	
Hobbs NM, 88240	5	et Manager:	Nata	lie Gladden				04/01/20 13:	
		5	SW7-1'						
			34-07 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		96.2 %	70	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		105 %	70	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.9 %	70	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		86.5 %	50	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		96.2 %	70	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		105 %	70	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.9 %	70	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	462	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Project	Name:	Folk	State					
PO Box 1058	Project Number:		1905	4-0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden				04/01/20 13:	23
		5	SW8-1'						
		P0031	34-08 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Toluene-d8		107 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Surrogate: Bromofluorobenzene		99.4 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/ORO)								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2014005	03/31/20	03/31/20	EPA 8015D	
Surrogate: n-Nonane		85.4 %	50-	-200	2014005	03/31/20	03/31/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Toluene-d8		107 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Surrogate: Bromofluorobenzene		99.4 %	70-	-130	2014007	03/31/20	03/31/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	130	20.0	mg/kg	1	2014002	03/31/20	03/31/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Volatile Organic Compounds by 8260 - Quality Control

Envirotech Analytical Laboratory Spike %REC RPD Reporting Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes Batch 2014007 - Purge and Trap EPA 5030A Blank (2014007-BLK1) Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Benzene ND 0.0250 mg/kg Toluene ND 0.0250 Ethylbenzene ND 0.0250, p,m-Xylene ND 0.0500 ND 0.0250 ... o-Xylene ... Total Xylenes ND 0.0250 Surrogate: 1,2-Dichloroethane-d4 0.525 " 0.500 105 70-130 Surrogate: Toluene-d8 0.534 0.500 107 70-130 Surrogate: Bromofluorobenzene 0.493 0.500 98.5 70-130 LCS (2014007-BS1) Prepared: 03/31/20 0 Analyzed: 03/31/20 1 2.26 0.0250 2.50 70-130 Benzene 90.5 mg/kg Toluene 2.56 0.0250 2 50 102 70-130 .. Ethylbenzene 2.56 0.0250 2.50 102 70-130 .. p,m-Xylene 5.08 0.0500 5.00 102 70-130 2.51 0.0250 ... 2.50 100 70-130 o-Xylene ... 7.59 0.0250 101 Total Xylenes 7.50 0-200 Surrogate: 1,2-Dichloroethane-d4 0.502 " 0.500 100 70-130 70-130 Surrogate: Toluene-d8 0.534 0.500 107 Surrogate: Bromofluorobenzene 0.493 0.500 98.6 70-130 Matrix Spike (2014007-MS1) Source: P003134-01 Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Benzene 2.32 0.0250 mg/kg 2.50 ND 92.9 48-131 Toluene 2.58 0.0250 2.50 ND 103 48-130 Ethylbenzene 2.59 0.0250 .. 2.50 ND 104 45-135 ... p,m-Xylene 103 43-135 5.16 0.0500 5.00 ND o-Xylene 2.56 0.0250 2.50 ND 103 43-135 7.72 0.0250 ... 7.50 ND 103 0-200 Total Xylenes Surrogate: 1,2-Dichloroethane-d4 0.533 0.500 107 70-130 0.538 0.500 108 70-130 Surrogate: Toluene-d8 0.490 Surrogate: Bromofluorobenzene 0.500 98.0 70-130 Matrix Spike Dup (2014007-MSD1) Source: P003134-01 Prepared: 03/31/20 0 Analyzed: 03/31/20 1 2.31 23 Benzene 0.0250 mg/kg 2.50 ND 92.3 48-131 0.626 0.0250 2.50 ND 102 48-130 1.35 24 Toluene 2.54 Ethylbenzene 2.54 0.0250 ... 2.50 ND 102 45-135 1.97 27 .. 0.0500 27 5.09 5.00 ND 102 43-135 1.39 p,m-Xylene " o-Xylene 2.52 0.0250 2.50 ND 101 43-135 1.93 27 ... Total Xylenes 7.60 0.0250 7.50 ND 101 0-200 1.57 200 0.505 Surrogate: 1,2-Dichloroethane-d4 0.500 101 70-130 Surrogate: Toluene-d8 0.519 0.500 104 70-130 Surrogate: Bromofluorobenzene 0.489 0.500 97.8 70-130

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

 5796 Highway 64, Farmington, NM 87401
 Ph (505) 632-0615 Fx (505) 632-1865
 envirotech-inc.com

 24 Hour Emergency Response Phone (800) 362-1879
 Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Nonhalogenated Organics by 8015 - DRO/ORO - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2014005 - DRO Extraction EPA 3570										
Blank (2014005-BLK1)				Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0	"							
Surrogate: n-Nonane	51.0		"	50.0		102	50-200			
LCS (2014005-BS1)				Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	457	25.0	mg/kg	500		91.3	38-132			
Surrogate: n-Nonane	48.5		"	50.0		97.0	50-200			
Matrix Spike (2014005-MS1)	Sour	ce: P003132-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	452	25.0	mg/kg	500	ND	90.5	38-132			
Surrogate: n-Nonane	49.0		"	50.0		97.9	50-200			
Matrix Spike Dup (2014005-MSD1)	Sour	ce: P003132-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Diesel Range Organics (C10-C28)	444	25.0	mg/kg	500	ND	88.8	38-132	1.90	20	
Surrogate: n-Nonane	47.7		"	50.0		95.4	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Nonhalogenated Organics by 8015 - GRO - Quality Control

Envirotech Analytical Laboratory Spike %REC RPD Reporting Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes Batch 2014007 - Purge and Trap EPA 5030A Blank (2014007-BLK1) Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Gasoline Range Organics (C6-C10) ND 20.0 mg/kg Surrogate: 1,2-Dichloroethane-d4 0.525 0.500 105 70-130 " Surrogate: Toluene-d8 0.534 0.500 107 70-130 Surrogate: Bromofluorobenzene 0.493 0.500 98.5 70-130 LCS (2014007-BS2) Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Gasoline Range Organics (C6-C10) 53.6 20.0 50.0 107 70-130 mg/kg Surrogate: 1,2-Dichloroethane-d4 0.512 0.500 102 70-130 0.542 0.500 108 70-130 Surrogate: Toluene-d8 0.477 0.500 95.3 70-130 Surrogate: Bromofluorobenzene Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Matrix Spike (2014007-MS2) Source: P003134-01 Gasoline Range Organics (C6-C10) 52.3 70-130 20.0 mg/kg 50.0 ND 105 0.479 95.7 70-130 Surrogate: 1,2-Dichloroethane-d4 0.500 Surrogate: Toluene-d8 0.540 0.500 108 70-130 Surrogate: Bromofluorobenzene 0.497 0.500 99.3 70-130 Matrix Spike Dup (2014007-MSD2) Source: P003134-01 Prepared: 03/31/20 0 Analyzed: 03/31/20 1 Gasoline Range Organics (C6-C10) 50.5 20.0 mg/kg 50.0 ND 70-130 3.50 20 101 0.498 0.500 99.5 70-130 Surrogate: 1,2-Dichloroethane-d4 107 0 537 0 500 70-130 Surrogate: Toluene-d8

0.500

98.1

70-130

0.491

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Surrogate: Bromofluorobenzene

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Anions by 300.0/9056A - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2014002 - Anion Extraction EPA 30	00.0/9056A									
Blank (2014002-BLK1)				Prepared &	Analyzed:	03/31/20 0				
Chloride	ND	20.0	mg/kg							
LCS (2014002-BS1)				Prepared &	Analyzed:	03/31/20 0				
Chloride	240	20.0	mg/kg	250		95.9	90-110			
Matrix Spike (2014002-MS1)	Sour	ce: P003132-	01	Prepared: ()3/31/20 0 A	Analyzed: 0	3/31/20 1			
Chloride	247	20.0	mg/kg	250	ND	98.8	80-120			
Matrix Spike Dup (2014002-MSD1)	Sour	ce: P003132-	01	Prepared: 03/31/20 0 Analyzed: 03/31/20 1			3/31/20 1			
Chloride	248	20.0	mg/kg	250	ND	99.1	80-120	0.295	20	

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

_	5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
	24 Hour Emergency Response Phone (800) 362-1879		Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/01/20 13:23

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Received by OCD: 7/9/2024 11:03:46 PMI

												Page c
ent: SPUR	Bill To		1.1.1		La	ab Us	e On	llv	Т	AT	F	PA Program
pject: FOIK State	Attention:		Lab	WO#				Number	-	3D	RCRA	CWA SDWA
oject Manager:	Address:		PO	03	134	1		054-0003	V			
dress:	City, State, Zip					ŀ		sis and Metho	d/			State
y, State, Zip one:	Phone:											NM CO UT AZ
nail: Natalie	Email: Natalie		3015	1015								
port due by:			by 8	by 8	021	60	10	0.00	Σ			TX OK
Time Date	1999 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	Lab	ORC	DRO	by 8	oy 82	ls 60	ide 3	C-P	XI-:		
Impled Sampled Matrix Containers Sample ID		Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0	BGDOC - NM	BGDOC - TX		Remarks
2 20 20 5 1 0	i i					-	~	0				
3.28.20 5 1 SW1-		1.1.1							X			
	(A)	2							1			
SWZ-		1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1										
SW3-		3										
					1					$\left \right $		
SW4-1		4										
		Aller a data a										
3.29.20 SW 5-	2	5										
3.28.20 SW6-1	1	6										
	1	and the second of the										
SW7-1		7										
		and the second second										
SW8-1		8							1			
							_					
ditional Instructions:		1000000000										
d sampler), attest to the validity and authenticity of this sample. I am aware t	hat tampering with or intentionally mislabelling the sample loc	ation, date or										day they are sampled or
of collection is considered fraud and may be grounds for legal action. Samples						re	eceived	packed in ice at an avg t	emp abo	ve 0 but le:	ss than 6 °C on s	ubsequent days.
nquished by: (Sighature) Date Time	Received by (Signature)	Date		Time	110	-			بالر	ab Use	Only	
aquished by: (Signature)	Received by: (Signature)	3.30-1 Date	102	D / Time	40	> F	Rece	ived on ice:	Y)/ N		
3.30.2020 1	640 Rain John	3/3/12			30		F1		TO			
nquished by: (Signature) Date Time	Received by: (Signature)	Date		Time	در	2	<u>[1</u>	The second second	12			13
							WG	Temp °C				
ple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		Container	Type:	: g - g	lass, r	- nol	v/nla	stic ag - amhe	rglas	5. V - V	ΌΑ	
e: Samples are discarded 30 days after results are reported unless oth	er arrangements are made. Hazardous samples will be	returned to cli	ent or c	dispose	ed of at	the clie	ent exp	pense. The report	for the	e analysi	s of the abov	e samples is applicable
to those samples received by the laboratory with this COC. The liab	lity of the laboratory is limited to the amount paid for o	n the report.	_		-					23		
Senvirotech	5795 US Highway 64, Famington, NM 87401				~	15052 54					envix	tech-inc.com
envirotech	24 How Emergency Response Phone (600) 362-1879				F 3	(2003) 02	32-168	1 Fx (505) 632-1865	2	lat	The state of the	rirotech-inc.com

FOLK STATE #011 DURING PHOTOS – RELEASE DATE 06/12/2019

ÓESS

Spur Energy Partners Folk State 011

NORTH COMPOSITE SAMPLE GPS NCSP1: 32.834132 -104.095861 NCSP2: 32.834132 -104.095766 NCSP3: 32.834045 -104.095791 NCSP4: 32.833973 -104.095657 NCSP5: 32.833884 -104.095688

CLOSURE SAMPLE MAP

CLOSURE SIDEWALL GPS CSW1: 32.834219 -104.095887 CSW2: 32.834078 -104.095666 CSW3: 32.833770 -104.095438 CSW4: 32.833494 -104.095346 CSW5: 32.833618 -104.095536 CSW6: 32.834004 -104.095820

*NCSP4

NCSP5 12750.037

80

Yards

SCSP1

*SCSP2

SCSP3

*SCSP4

*SCSP5 C SW4

SOUTH COMPOSITE SAMPLE GPS: SCSP1: 32.833804 -104.095634 SCSP2: 32.833767 -104.095508 SCSP3: 32.833690 -104.095555 SCSP4: 32.833641 -104.095413 SCSP5: 32.833502 -104.095402

40

60

Released to Imaging: 8/8/2024 8:17:27 AM

20

10

(0)

Source: Esri, DigitalGlobe, GeoEye, Earthstar Geographics, CNES/Airbus DS, USDA, USGS, AeroGRID, IGN, and the GIS User Community

Received by OCD: 7/9/2024 11:03:464PM

Analytical Report

Report Summary

Client: Spur

Samples Received: 4/6/2020 Job Number: 19054-0003 Work Order: P004015 Project Name/Location: Folk State Bty

Report Reviewed By:

Walter Hinking

Date: 4/7/20

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

Ph (505) 632-0615 Fx (505) 632-1865

5796 Highway 64, Farmington, NM 87401

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State Bty	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Comp South - SP1	P004015-01A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.
Comp South - SP2	P004015-02A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.
Comp South - SP3	P004015-03A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.
Comp South - SP4	P004015-04A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.
Comp South - SP5	P004015-05A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.
Comp South	P004015-06A	Soil	03/31/20	04/06/20	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

0	envirotech Analytical Laboratory

Spur	Project	Name:	Folk	State Bty						
PO Box 1058	Project	Number:	19054-0003					Reported:		
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden				04/07/20 12:04		
		Comp	South -	SP1						
			15-01 (Se	olid)						
		Reporting								
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes	
Volatile Organics by EPA 8021										
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
Toluene	0.125	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
Ethylbenzene	0.759	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
p,m-Xylene	1.39	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
o-Xylene	1.25	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
Total Xylenes	2.63	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B		
Surrogate: 4-Bromochlorobenzene-PID		123 %	50	-150	2015001	04/06/20	04/06/20	EPA 8021B		
Nonhalogenated Organics by 8015 - DRO	D/ORO									
Diesel Range Organics (C10-C28)	15600	1250	mg/kg	50	2015002	04/06/20	04/06/20	EPA 8015D		
Oil Range Organics (C28-C40)	6220	2500	mg/kg	50	2015002	04/06/20	04/06/20	EPA 8015D		
Surrogate: n-Nonane		162 %	50	-200	2015002	04/06/20	04/06/20	EPA 8015D		
Nonhalogenated Organics by 8015 - GRO	0									
Gasoline Range Organics (C6-C10)	51.2	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D		
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D		
Anions by 300.0/9056A										
Chloride	ND	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A		

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Project Name:		Folk	State Bty							
PO Box 1058	Project Number:		19054-0003					Reported:			
Hobbs NM, 88240	Project Manager:		Natalie Gladden					04/07/20 12:04			
		Comp	South -	SP2							
			15-02 (Se	olid)							
Reporting											
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Volatile Organics by EPA 8021											
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
Toluene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
Ethylbenzene	0.0543	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
p,m-Xylene	ND	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
o-Xylene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
Total Xylenes	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B			
Surrogate: 4-Bromochlorobenzene-PID		110 %	50-150		2015001	04/06/20	04/06/20	EPA 8021B			
Nonhalogenated Organics by 8015 - DRO	/ORO										
Diesel Range Organics (C10-C28)	3970	500	mg/kg	20	2015002	04/06/20	04/06/20	EPA 8015D			
Oil Range Organics (C28-C40)	1760	1000	mg/kg	20	2015002	04/06/20	04/06/20	EPA 8015D			
Surrogate: n-Nonane		100 %	50-200		2015002	04/06/20	04/06/20	EPA 8015D			
Nonhalogenated Organics by 8015 - GRO											
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D			
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.1 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D			
Anions by 300.0/9056A											
Chloride	ND	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A			

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com
Spur	Proje	ect Name:	Folk	State Bty					
PO Box 1058	Proje	et Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Proje	et Manager:	Nata	lie Gladden				04/07/20 12:0	04
		Comp	South -	SP3					
			15-03 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		108 %	50	-150	2015001	04/06/20	04/06/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	1680	125	mg/kg	5	2015002	04/06/20	04/06/20	EPA 8015D	
Oil Range Organics (C28-C40)	929	250	mg/kg	5	2015002	04/06/20	04/06/20	EPA 8015D	
Surrogate: n-Nonane		107 %	50	-200	2015002	04/06/20	04/06/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.4 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	20.8	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Projec	et Name:	Folk	State Bty					
PO Box 1058	Projec	et Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Projec	et Manager:	Nata	lie Gladden				04/07/20 12:	04
		Comp	South -	SP4					
			15-04 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		107 %	50	-150	2015001	04/06/20	04/06/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	1200	50.0	mg/kg	2	2015002	04/06/20	04/06/20	EPA 8015D	
Oil Range Organics (C28-C40)	601	100	mg/kg	2	2015002	04/06/20	04/06/20	EPA 8015D	
Surrogate: n-Nonane		106 %	50	-200	2015002	04/06/20	04/06/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.9 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	134	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A	

Ph (505) 632-0615 Fx (505) 632-1865

Labadmin@envirotech-inc.com

0	envirotech Analytical Laboratory

Spur	Projec	et Name:	Folk	State Bty					
PO Box 1058	Projec	et Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Projec	et Manager:	Nata	lie Gladden				04/07/20 12:0	04
		-	South -						
			15-05 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
o-Xylene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Total Xylenes	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		109 %	50	-150	2015001	04/06/20	04/06/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	503	125	mg/kg	5	2015002	04/06/20	04/06/20	EPA 8015D	
Oil Range Organics (C28-C40)	459	250	mg/kg	5	2015002	04/06/20	04/06/20	EPA 8015D	
Surrogate: n-Nonane		99.6 %	50	-200	2015002	04/06/20	04/06/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D	
- Surrogate: 1-Chloro-4-fluorobenzene-FID		93.0 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	147	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Project	Name:	Folk	State Bty					
PO Box 1058	Project	Number:	1905	4-0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Nata	lie Gladden				04/07/20 12:0	04
		Co	mp Sout	h					
			15-06 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organics by EPA 8021									
Benzene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Toluene	ND	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Ethylbenzene	0.154	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
p,m-Xylene	0.0624	0.0500	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
o-Xylene	0.0888	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Total Xylenes	0.151	0.0250	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8021B	
Surrogate: 4-Bromochlorobenzene-PID		111 %	50	-150	2015001	04/06/20	04/06/20	EPA 8021B	
Nonhalogenated Organics by 8015 - DR	D/ORO								
Diesel Range Organics (C10-C28)	4250	250	mg/kg	10	2015002	04/06/20	04/06/20	EPA 8015D	
Oil Range Organics (C28-C40)	1870	500	mg/kg	10	2015002	04/06/20	04/06/20	EPA 8015D	
Surrogate: n-Nonane		109 %	50	-200	2015002	04/06/20	04/06/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GR	0								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015001	04/06/20	04/06/20	EPA 8015D	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.5 %	50	-150	2015001	04/06/20	04/06/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	65.4	20.0	mg/kg	1	2015003	04/06/20	04/06/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

Spur	Project Name:	Folk State Bty		
PO Box 1058	Project Number:	19054-0003	Reported:	
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04	

Volatile Organics by EPA 8021 - Quality Control

Envirotech Analytical Laboratory

			·		v					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 2015001 - Purge and Trap EPA 5030A										
Blank (2015001-BLK1)				Prepared: (04/06/20 0 A	Analyzed: (4/06/20 1			
Benzene	ND	0.0250	mg/kg							
Toluene	ND	0.0250	"							
Ethylbenzene	ND	0.0250	"							
p,m-Xylene	ND	0.0500	"							
o-Xylene	ND	0.0250	"							
Total Xylenes	ND	0.0250	"							
Surrogate: 4-Bromochlorobenzene-PID	8.69		"	8.00		109	50-150			
LCS (2015001-BS1)				Prepared: (04/06/20 0 A	Analyzed: (4/06/20 1			
Benzene	4.52	0.0250	mg/kg	5.00		90.3	70-130			
Toluene	4.62	0.0250	"	5.00		92.5	70-130			
Ethylbenzene	4.66	0.0250	"	5.00		93.2	70-130			
o,m-Xylene	9.33	0.0500	"	10.0		93.3	70-130			
p-Xylene	4.71	0.0250	"	5.00		94.3	70-130			
Total Xylenes	14.0	0.0250	"	15.0		93.6	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.50		"	8.00		106	50-150			
Matrix Spike (2015001-MS1)	Sou	ırce: P004013-	01	Prepared: (04/06/20 0 A	Analyzed: (4/06/20 1			
Benzene	4.74	0.0250	mg/kg	5.00	ND	94.7	54.3-133			
Toluene	4.85	0.0250	"	5.00	ND	97.1	61.4-130			
Ethylbenzene	4.89	0.0250	"	5.00	ND	97.9	61.4-133			
p,m-Xylene	9.78	0.0500	"	10.0	ND	97.8	63.3-131			
p-Xylene	4.92	0.0250	"	5.00	ND	98.4	63.3-131			
Total Xylenes	14.7	0.0250	"	15.0	ND	98.0	0-200			
Surrogate: 4-Bromochlorobenzene-PID	8.69		"	8.00		109	50-150			
Matrix Spike Dup (2015001-MSD1)	Sou	ırce: P004013-	01	Prepared: (04/06/20 0 A	Analyzed: (4/06/20 1			
Benzene	4.74	0.0250	mg/kg	5.00	ND	94.7	54.3-133	0.0243	20	
Toluene	4.83	0.0250	"	5.00	ND	96.7	61.4-130	0.422	20	
Ethylbenzene	4.87	0.0250	"	5.00	ND	97.4	61.4-133	0.495	20	
p,m-Xylene	9.72	0.0500	"	10.0	ND	97.2	63.3-131	0.591	20	
p-Xylene	4.90	0.0250	"	5.00	ND	97.9	63.3-131	0.430	20	
Total Xylenes	14.6	0.0250	"	15.0	ND	97.5	0-200	0.537	200	
Surrogate: 4-Bromochlorobenzene-PID	8.44		"	8.00		106	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State Bty	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04

Nonhalogenated Organics by 8015 - DRO/ORO - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015002 - DRO Extraction EPA 3570										
Blank (2015002-BLK1)				Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0	"							
Surrogate: n-Nonane	46.4		"	50.0		92.8	50-200			
LCS (2015002-BS1)				Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Diesel Range Organics (C10-C28)	411	25.0	mg/kg	500		82.3	38-132			
Surrogate: n-Nonane	46.4		"	50.0		92.8	50-200			
Matrix Spike (2015002-MS1)	Sou	rce: P004013-	01	Prepared: ()4/06/20 0 A	Analyzed: 0	4/06/20 1			
Diesel Range Organics (C10-C28)	438	25.0	mg/kg	500	ND	87.6	38-132			
Surrogate: n-Nonane	44.3		"	50.0		88.6	50-200			
Matrix Spike Dup (2015002-MSD1)	Sou	rce: P004013-	01	Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Diesel Range Organics (C10-C28)	437	25.0	mg/kg	500	ND	87.3	38-132	0.278	20	
Surrogate: n-Nonane	46.4		"	50.0		92.9	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State Bty	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04

Nonhalogenated Organics by 8015 - GRO - Quality Control

	En	virotech A	Analyti	cal Labor	atory					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015001 - Purge and Trap EPA 5030A										
Blank (2015001-BLK1)				Prepared: 0	04/06/20 0 A	Analyzed: 0	4/06/20 1			
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.44		"	8.00		93.0	50-150			
LCS (2015001-BS2)				Prepared: 0	04/06/20 0 A	Analyzed: 0	4/06/20 1			
Gasoline Range Organics (C6-C10)	45.3	20.0	mg/kg	50.0		90.7	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		"	8.00		91.8	50-150			
Matrix Spike (2015001-MS2)	Sour	ce: P004013-	01	Prepared: 0	04/06/20 0 A	Analyzed: 0	4/06/20 1			
Gasoline Range Organics (C6-C10)	46.9	20.0	mg/kg	50.0	ND	93.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.50		"	8.00		93.8	50-150			
Matrix Spike Dup (2015001-MSD2)	Sour	ce: P004013-	01	Prepared: 0	04/06/20 0 A	Analyzed: 0	4/06/20 1			
Gasoline Range Organics (C6-C10)	46.5	20.0	mg/kg	50.0	ND	93.1	70-130	0.794	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.51		"	8.00		93.9	50-150			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State Bty	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04

Anions by 300.0/9056A - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015003 - Anion Extraction EPA 30	0.0/9056A									
Blank (2015003-BLK1)				Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Chloride	ND	20.0	mg/kg							
LCS (2015003-BS1)				Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Chloride	253	20.0	mg/kg	250		101	90-110			
Matrix Spike (2015003-MS1)	Sour	ce: P004013-	01	Prepared: (04/06/20 0 A	Analyzed: 0	4/06/20 1			
Chloride	596	20.0	mg/kg	250	295	120	80-120			
Matrix Spike Dup (2015003-MSD1)	Sour	ce: P004013-	01	Prepared: (Prepared: 04/06/20 0 Analyzed: 04/06/20 1					
Chloride	607	20.0	mg/kg	250	295	125	80-120	1.75	20	M2

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

	5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
-	24 Hour Emergency Response Phone (800) 362-1879		Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State Bty	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Natalie Gladden	04/07/20 12:04

Notes and Definitions

M2	Matrix spike recovery wa	s outside quality control limits	The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Project Information

Released to Imaging: 8/8/2024 8:17:27 AM

Client: Oper Chersy	Bill To				L	ab U.	se Or	nly	C. Participant	Т	AT	E	PA Progra	am
Project: FOIK Starte Bty	Attention: Labela G	addel	Lab	WO#	F		Job	Num	iber 🚬	10	3D	RCRA	CWA	SDWA
Project Manager: N. Gladden	Address: your Places H	uf_	PD	040	15				-0003					
Address:	City, State, Zip						Analy	sis a	nd Metho	d /				ate
<u>City, State, Zip</u> Phone:	Phone: 370-USA7						1						NM CO	UT AZ
Email:	Email: nylooldege		015	015										
Report due by:	ape hungery-horse	.com) by 8	by 8	8021	260	10	000.0		Σ			TX OK	
Time Date Matrix No Sampled Sampled Matrix Containers	140.401	Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	BGDOC - TX		Ren	narks
21 1 5 7	1	Number	ā	15	8	×	Σ	5		BG	BG			
	p Southe - SPI)				
3/31 (Com	p South -SP2	2												
()/Con	p South -SP3	3												
/ / Com	South - SP4	4												
L (Com	South - SP5	5)				
22	p Saith	6								5				
										1				
							-							
Additional Instructions:														
I, (field sampler), attest to the validity and authenticity of this sample. I am av		cation, date or					Samples	requirin	g thermal prese	rvation n	nust be re	ceived on ice the	day they are san	npled or
time of collection is considered fraud and may be grounds for legal action. Sa Relinguished by: (Signature) Date Tim							received	packed	mice at an avg t				subsequent days	
hour 2001 4320	11:50 7 7	Date 4.3.20	20	Time	50	2	Rece	eived	on ice:		ab Us)/ N	e Only		
Relinquished by: (Signature) Date Tim 4.3.2020	e Received by: (Signature)	Date 4/6/2	۵	Time	:30	\	T1						73	
Relinquished by: (Signature) Date Tim	e Received by: (Signature)	Date		Time				Tam	p°C 4				<u></u>	
Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		Container	Type	: g - g	lass.	p - p(astic	ag - ambe	er glag	S V-	104		

Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report.

24 Hour Emergency Response Phone (800) 362-1879

Ph (505) 632-1881 Fx (505) 632-1865

envirotech-inc.com labadmin@envirotech-inc.com Received by OCD: 7/9/2024 11:03:464PM

Analytical Report

Report Summary

Client: Spur

Samples Received: 4/9/2020 Job Number: 19054-0003 Work Order: P004024 Project Name/Location: Folk State SWD

Walter Hinkow

Date: 4/10/20

Report Reviewed By:

Walter Hinchman, Laboratory Director

Envirotech Inc. certifies the test results meet all requirements of TNI unless footnoted otherwise. Statement of Data Authenticity: Envirotech, Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc. Envirotech, Inc, holds the Utah TNI certification NM009792018-1 for the data reported. Envirotech, Inc, holds the Texas TNI certification T104704557-19-2 for the data reported.

5796 Highway 64, Farmington, NM 87401

24 Hour Emergency Response Phone (800) 362-1879

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Analytical Report for Samples

Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
Composite North SP1	P004024-01A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
Composite North SP2	P004024-02A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
Composite North SP3	P004024-03A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
Composite North SP4	P004024-04A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
Composite North SP5	P004024-05A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
Composite North	P004024-06A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW1	P004024-07A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW2	P004024-08A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW3	P004024-09A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW4	P004024-10A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW5	P004024-11A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.
CSW6	P004024-12A	Soil	04/02/20	04/09/20	Glass Jar, 4 oz.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

24 Hour Emergency Response Phone (800) 362-1879

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project	Project Name:		State SWD									
PO Box 1058	Project	Project Number:		4-0003			Reported:						
Hobbs NM, 88240	Project	Manager:	Kenn	ny Kidd				04/10/20 11:	17				
Composite North SP1 P004024-01 (Solid)													
		P0040 Reporting	24-01 (So	olid)									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes				
Volatile Organic Compounds by 8260	Volatile Organic Compounds by 8260												
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B					
Surrogate: 1,2-Dichloroethane-d4		93.1 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B					
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B					
Surrogate: Bromofluorobenzene		99.9 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B					
Nonhalogenated Organics by 8015 - DRO/	ORO												
Diesel Range Organics (C10-C28)	11200	1250	mg/kg	50	2015016	04/09/20	04/09/20	EPA 8015D					
Oil Range Organics (C28-C40)	5010	2500	mg/kg	50	2015016	04/09/20	04/09/20	EPA 8015D					
Surrogate: n-Nonane		116 %	50-	-200	2015016	04/09/20	04/09/20	EPA 8015D					
Nonhalogenated Organics by 8015 - GRO													
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D					
Surrogate: 1,2-Dichloroethane-d4		93.1 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D					
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D					
Surrogate: Bromofluorobenzene		99.9 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D					
Anions by 300.0/9056A													
Chloride	25.1	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A					

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Notes

Reported: 04/10/20 11:17

Method

EPA 8260B

EPA 8260B EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

	irote						
Spur	Project	Name:	Folk	State SWD			
PO Box 1058	5	Number:		4-0003 ny Kidd			
Hobbs NM, 88240	Project	Manager: Compos P0040					
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzec
Volatile Organic Compounds by 8260 Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Surrogate: 1,2-Dichloroethane-d4		99.7 %	70	-130	2015019	04/09/20	04/09/20
Surrogate: Toluene-d8		106 %	70	-130	2015019	04/09/20	04/09/20
Surrogate: Bromofluorobenzene		97.8 %	70	-130	2015019	04/09/20	04/09/20

Surrogate: Bromofluorobenzene		97.8 %	70-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DR	O/ORO							
Diesel Range Organics (C10-C28)	3760	250	mg/kg 10	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	1860	500	mg/kg 10	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		96.1 %	50-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GR	0							
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg 1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		<i>99.7 %</i>	70-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.8 %	70-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A								
Chloride	562	20.0	mg/kg 1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Projec	et Name:	Folk State SWD						
PO Box 1058	Project Number:		1905	4-0003				Reported:	
Hobbs NM, 88240	Project Manager:		Kenny Kidd					04/10/20 11:17	
		Compos	site Nort	th SP3					
			24-03 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		93.7 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		107 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		98.4 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	9690	500	mg/kg	20	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	1850	1000	mg/kg	20	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		95.3 %	50	-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		93.7 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		107 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		98.4 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	38.3	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Notes

Reported: 04/10/20 11:17

Method

EPA 8260B

EPA 8260B

EPA 8260B EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8260B

EPA 8015D

EPA

300.0/9056A

Spur	Project	Name:	Folk	State SWD			
PO Box 1058	Project	Number:	1905	4-0003			
Hobbs NM, 88240	Project	Manager:	Kenn	ny Kidd			
		-	site Nort 24-04 (So				
		Reporting					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed
Volatile Organic Compounds by 826	0						
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20
				1	2015019	04/09/20	04/09/20
Total Xylenes	ND	0.0250	mg/kg	1	2015017	01.09/20	
Total Xylenes Surrogate: 1,2-Dichloroethane-d4	ND	0.0250 99.1 %		-130	2015019	04/09/20	04/09/20
	ND		70-				

1040

ND

ND

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

20

1

70-130

70-130

70-130

1

50-200

mg/kg

mg/kg

mg/kg

1000

20.0

99.1 %

103~%

99.2 %

20.0

92.2 %

2015016

2015016

2015019

2015019

2015019

2015019

2015021

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

04/09/20

5796 Highway 64, Farmington, NM 87401

Oil Range Organics (C28-C40)

Gasoline Range Organics (C6-C10)

Surrogate: 1,2-Dichloroethane-d4

Surrogate: Bromofluorobenzene

Anions by 300.0/9056A

Nonhalogenated Organics by 8015 - GRO

Surrogate: n-Nonane

Surrogate: Toluene-d8

Chloride

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Project	t Name:	Folk State SWD								
PO Box 1058	Project	Project Number:		19054-0003					Reported:		
Hobbs NM, 88240	Project	Project Manager:		Kenny Kidd					17		
			site Nort								
			24-05 (So	olid)							
		Reporting									
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Volatile Organic Compounds by 8260											
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B			
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B			
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B			
Surrogate: Bromofluorobenzene		99.5 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B			
Nonhalogenated Organics by 8015 - DRO	/ORO										
Diesel Range Organics (C10-C28)	4460	250	mg/kg	10	2015016	04/09/20	04/09/20	EPA 8015D			
Oil Range Organics (C28-C40)	1980	500	mg/kg	10	2015016	04/09/20	04/09/20	EPA 8015D			
Surrogate: n-Nonane		120 %	50-	-200	2015016	04/09/20	04/09/20	EPA 8015D			
Nonhalogenated Organics by 8015 - GRO											
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D			
Surrogate: 1,2-Dichloroethane-d4		97.5 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D			
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D			
Surrogate: Bromofluorobenzene		99.5 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D			
Anions by 300.0/9056A											
Chloride	ND	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A			

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur PO Box 1058	Project Name: Project Number:		1905	State SWD 4-0003	Reported:				
Hobbs NM, 88240	Project	Project Manager:		ny Kidd		04/10/20 11:17			
		-	osite No						
		P0040 Reporting	24-06 (So	olid)					
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Analyte	Kesun	Liiiit	Units	Dilution	Datell	riepaieu	Anaryzeu	Method	INDIES
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		107 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.2 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO	/ORO								
Diesel Range Organics (C10-C28)	7470	500	mg/kg	20	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	3510	1000	mg/kg	20	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		108 %	50	-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO	•								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		96.7 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		107 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.2 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	150	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Project	Name:	Folk	State SWD					
PO Box 1058	Project Number:		1905	4-0003				Reported:	
Hobbs NM, 88240	Project	Project Manager: Kenny Kidd					04/10/20 11:17		
			CSW1						
			24-07 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		98.0 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.1 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/	ORO								
Diesel Range Organics (C10-C28)	30.3	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		86.2 %	50-	-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		98.0 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		105 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.1 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	46.1	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Droio	et Name:	Fellz	State SWD					
PO Box 1058	-	et Number:		54-0003				Donout-J.	
Hobbs NM, 88240	5	et Manager:		ny Kidd				Reported: 04/10/20 11:	17
H0005 NM, 88240	Projec			iy Kida				04/10/20 11:	17
			CSW2						
		P0040 Reporting	24-08 (Se	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.8 %	70	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/OR	0								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		104 %	50	-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		98.8 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.8 %	70	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	1260	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

envirotech
Analytical Laboratory

Spur	Project	Name:	Folk	State SWD					
PO Box 1058	Project	Number:	19054	4-0003	Reported:				
Hobbs NM, 88240	Project	Project Manager:						04/10/20 11:17	
			CSW3						
			24-09 (So	lid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		96.9 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-	130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		96.8 %	70-	130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRC	/ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		91.9 %	50-	200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRC)								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		96.9 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		96.8 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	2430	100	mg/kg	5	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project	Name:	Folk	State SWD					
PO Box 1058	Project	Number:	19054	4-0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Kenn	y Kidd				04/10/20 11:	17
			CSW4						
		P0040	24-10 (So	lid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	70-	130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-	130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		97.6 %	70-	130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO	D/ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		108 %	50-	200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GR	0								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		93.9 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		97.6 %	70-	130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	ND	20.0	mg/kg	1	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

e	Analytical Laboratory
	Analytical Laboratory

Spur	Project	Name:	Folk S	tate SWD					
PO Box 1058	Project	Number:	19054-	0003				Reported:	
Hobbs NM, 88240	Project	Manager:	Kenny	Kidd				04/10/20 11:	17
			CSW5						
		P0040	24-11 (Soli	d)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		106 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		99.7 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRC	/ORO								
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		88.5 %	50-2	00	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO)								
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		102 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		106 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		99.7 %	70-1	30	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	165	100	mg/kg	5	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Project	t Name:	Folk	State SWD					
PO Box 1058	Project Number:		1905	4-0003				Reported:	
Hobbs NM, 88240	Project	t Manager:	Kenn	ıy Kidd				04/10/20 11:	17
			CSW6						
		P0040	24-12 (So	olid)					
		Reporting							
Analyte	Result	Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Notes
Volatile Organic Compounds by 8260									
Benzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Toluene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Ethylbenzene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
p,m-Xylene	ND	0.0500	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
o-Xylene	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Total Xylenes	ND	0.0250	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: 1,2-Dichloroethane-d4		93.2 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Toluene-d8		107 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Surrogate: Bromofluorobenzene		95.3 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8260B	
Nonhalogenated Organics by 8015 - DRO/ORO)								
Diesel Range Organics (C10-C28)	41.8	25.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Oil Range Organics (C28-C40)	ND	50.0	mg/kg	1	2015016	04/09/20	04/09/20	EPA 8015D	
Surrogate: n-Nonane		89.3 %	50-	-200	2015016	04/09/20	04/09/20	EPA 8015D	
Nonhalogenated Organics by 8015 - GRO									
Gasoline Range Organics (C6-C10)	ND	20.0	mg/kg	1	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: 1,2-Dichloroethane-d4		93.2 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Toluene-d8		107 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Surrogate: Bromofluorobenzene		95.3 %	70-	-130	2015019	04/09/20	04/09/20	EPA 8015D	
Anions by 300.0/9056A									
Chloride	490	40.0	mg/kg	2	2015021	04/09/20	04/09/20	EPA 300.0/9056A	

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Volatile Organic Compounds by 8260 - Quality Control

Envirotech Analytical Laboratory Spike %REC RPD Reporting Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes Batch 2015019 - Purge and Trap EPA 5030A Blank (2015019-BLK1) Prepared: 04/09/20 0 Analyzed: 04/09/20 2 Benzene ND 0.0250 mg/kg Toluene ND 0.0250 Ethylbenzene ND 0.0250, p,m-Xylene ND 0.0500 ND 0.0250 ... o-Xylene ... Total Xylenes ND 0.0250 Surrogate: 1,2-Dichloroethane-d4 0.512 " 0.500 102 70-130 Surrogate: Toluene-d8 0.531 0.500 106 70-130 Surrogate: Bromofluorobenzene 0.491 0.500 98.2 70-130 Prepared: 04/09/20 0 Analyzed: 04/09/20 2 LCS (2015019-BS1) 2.15 0.0250 2.50 70-130 Benzene 85.9 mg/kg Toluene 2 41 0.0250 2 50 96.4 70-130 .. Ethylbenzene 2.42 0.0250 2.50 97.0 70-130 .. p,m-Xylene 4 80 0.0500 5.00 959 70-130 2.40 0.0250 ... 2.50 70-130 o-Xylene 96.1 ... 0.0250 Total Xylenes 7.20 7.50 96.0 0-200 Surrogate: 1,2-Dichloroethane-d4 0.490 " 0.500 98.0 70-130 70-130 Surrogate: Toluene-d8 0.543 0.500 109 Surrogate: Bromofluorobenzene 0.483 0.500 96.6 70-130 Matrix Spike (2015019-MS1) Source: P004024-01 Prepared: 04/09/20 0 Analyzed: 04/09/20 2 Benzene 2.10 0.0250 mg/kg 2.50 ND 84.1 48-131 Toluene 2.36 0.0250 2.50 ND 94.5 48-130 Ethylbenzene 2.39 0.0250 .. 2.50 ND 95.6 45-135 ... 4.74 94.7 43-135 p,m-Xylene 0.0500 5.00 ND o-Xylene 2.36 0.0250 2.50 ND 94.5 43-135 7.10 0.0250 ... 7.50 ND 94.6 0-200 Total Xylenes Surrogate: 1,2-Dichloroethane-d4 0.495 0.500 99.0 70-130 0.531 0.500 106 70-130 Surrogate: Toluene-d8 0.487 Surrogate: Bromofluorobenzene 0.500 97.4 70-130 Matrix Spike Dup (2015019-MSD1) Prepared: 04/09/20 0 Analyzed: 04/10/20 0 Source: P004024-01 2.30 23 Benzene 0.0250 mg/kg 2.50 ND 91.8 48-131 8.82 2.62 0.0250 2.50 ND 105 10.4 24 Toluene 48-130 Ethylbenzene 2.65 0.0250 ... 2.50 ND 106 45-135 10.3 27 .. 0.0500 27 5.24 5.00 ND 105 43-135 10.1 p,m-Xylene " o-Xylene 2.63 0.0250 2.50 ND 105 43-135 10.7 27 ... Total Xylenes 7.87 0.0250 7.50 ND 105 0-200 10.3 200 Surrogate: 1,2-Dichloroethane-d4 0.505 0.500 101 70-130 Surrogate: Toluene-d8 0.535 0.500 107 70-130 Surrogate: Bromofluorobenzene 0.494 0.500 98.7 70-130

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

 5796 Highway 64, Farmington, NM 87401
 Ph (505) 632-0615 Fx (505) 632-1865
 envirotech-inc.com

 24 Hour Emergency Response Phone (800) 362-1879
 Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Nonhalogenated Organics by 8015 - DRO/ORO - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015016 - DRO Extraction EPA 3570										
Blank (2015016-BLK1)				Prepared &	analyzed:	04/09/20 0)			
Diesel Range Organics (C10-C28)	ND	25.0	mg/kg							
Oil Range Organics (C28-C40)	ND	50.0	"							
Surrogate: n-Nonane	44.4		"	50.0		88.8	50-200			
LCS (2015016-BS1)				Prepared:	04/09/20 0 A	Analyzed: (04/09/20 1			
Diesel Range Organics (C10-C28)	471	25.0	mg/kg	500		94.2	38-132			
Surrogate: n-Nonane	47.3		"	50.0		94.7	50-200			
Matrix Spike (2015016-MS1)	Sou	rce: P004024-	07	Prepared:	04/09/20 0 A	Analyzed: (
Diesel Range Organics (C10-C28)	520	25.0	mg/kg	500	30.3	97.9	38-132			
Surrogate: n-Nonane	44.7		"	50.0		89.3	50-200			
Matrix Spike Dup (2015016-MSD1)	Sou	rce: P004024-	07	Prepared: (04/09/20 0 A	Analyzed: (04/09/20 2			
Diesel Range Organics (C10-C28)	531	25.0	mg/kg	500	30.3	100	38-132	2.08	20	
Surrogate: n-Nonane	49.8		"	50.0		99.6	50-200			

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Nonhalogenated Organics by 8015 - GRO - Quality Control

Envirotech Analytical Laboratory Spike %REC RPD Reporting Source Analyte Result Limit Units Level Result %REC Limits RPD Limit Notes Batch 2015019 - Purge and Trap EPA 5030A Blank (2015019-BLK1) Prepared: 04/09/20 0 Analyzed: 04/09/20 2 Gasoline Range Organics (C6-C10) ND 20.0 mg/kg Surrogate: 1,2-Dichloroethane-d4 0.512 0.500 102 70-130 " Surrogate: Toluene-d8 0.531 0.500 106 70-130 Surrogate: Bromofluorobenzene 0.491 0.500 98.2 70-130 LCS (2015019-BS2) Prepared: 04/09/20 0 Analyzed: 04/09/20 2 Gasoline Range Organics (C6-C10) 52.2 20.0 50.0 104 70-130 mg/kg Surrogate: 1,2-Dichloroethane-d4 0.491 0.500 98.1 70-130 0.541 0.500 108 70-130 Surrogate: Toluene-d8 0.475 0.500 95.0 70-130 Surrogate: Bromofluorobenzene Prepared: 04/09/20 0 Analyzed: 04/10/20 0 Matrix Spike (2015019-MS2) Source: P004024-01 Gasoline Range Organics (C6-C10) 52.8 ND 70-130 20.0 mg/kg 50.0 106 0.485 96.9 70-130 Surrogate: 1,2-Dichloroethane-d4 0.500 Surrogate: Toluene-d8 0.539 0.500 108 70-130 Surrogate: Bromofluorobenzene 0.485 0.500 97.0 70-130 Matrix Spike Dup (2015019-MSD2) Source: P004024-01 Prepared: 04/09/20 0 Analyzed: 04/10/20 0 Gasoline Range Organics (C6-C10) 51.9 20.0 mg/kg 50.0 ND 104 70-130 1.57 20 0.505 101 0.500 70-130 Surrogate: 1,2-Dichloroethane-d4 105 0 524 0 500 70-130 Surrogate: Toluene-d8 Surrogate: Bromofluorobenzene 0.492 0.500 98.3 70-130

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Anions by 300.0/9056A - Quality Control

Envirotech Analytical Laboratory

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 2015021 - Anion Extraction EPA 300	0.0/9056A									
Blank (2015021-BLK1)				Prepared: (04/09/20 0 A	4/09/20 2				
Chloride	ND	20.0	mg/kg							
LCS (2015021-BS1)				Prepared: (04/09/20 0 4					
Chloride	255	20.0	mg/kg	250		102	90-110			
Matrix Spike (2015021-MS1)	Sour	ce: P004024-	01	Prepared: (04/09/20 0 A	Analyzed: 0	4/09/20 2			
Chloride	278	20.0	mg/kg	250	25.1	101	80-120			
Matrix Spike Dup (2015021-MSD1)	Sour	ce: P004024-	01	Prepared: (04/09/20 0 4	Analyzed: 0	4/09/20 2			
Chloride	280	20.0	mg/kg	250	25.1	102	80-120	0.416	20	

QC Summary Report

Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values my differ slightly.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401	Ph (505) 632-0615 Fx (505) 632-1865	envirotech-inc.com
24 Hour Emergency Response Phone (800) 362-1879		Labadmin@envirotech-inc.com

Spur	Project Name:	Folk State SWD	
PO Box 1058	Project Number:	19054-0003	Reported:
Hobbs NM, 88240	Project Manager:	Kenny Kidd	04/10/20 11:17

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

** Methods marked with ** are non-accredited methods.

Soil data is reported on an "as received" weight basis, unless reported otherwise.

Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech, Inc.

5796 Highway 64, Farmington, NM 87401

Ph (505) 632-0615 Fx (505) 632-1865

envirotech-inc.com

Labadmin@envirotech-inc.com

Proi	ect	Information	
		monnation	

Received by OCD: 7/9/2024 11:03:46 PMI

20010211

lient.	non Fred	Cata			1.525	Bill To		PO	041	_		0	and the second						
roject:	-IR Ste	ESIN	n		Attention: Vlak	lie Glacken		Lab	WO#		ab Us		Numb	or	1D	AT	RCRA	CWA	
roject N	Manager:	henny)	hice		Address:			Por		TI	-			-0003			NUNA	CVVA	SDWA
ddress:		J			City, State, Zip					419	170	Analy	sis and	Metho	d			St	ate
City, Stat	te, Zip				Phone:	_									T	T		1711 F.	UT AZ
hone:					Email: 19lac	den Othingy.	Horce.co	8015	15									X	
mail:				1		00			oy 80	21	00	0	0.0		5			TX OK	
eport d	T T			Т	all of		1	DRO/ORO by	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC - NM	XT -			
Time Sampled	Date Sampled	Matrix	No Containers	Sample ID			Lab	RO/(RO/I	rex t	ocb	etal	llorid		3DO(BGDOC.		Ren	narks
<u>k</u>	42	0	1		0		Number	0	9	8.	ž	Σ	ð		BC	86			
	2020	S	9	Comp	ositelloth	SPI	1								X				
				Conpo	sik North S	SP2	2								I				
				Compos	sile North Sk	23	3												
				Campo	sile North Spe	4	4												
				Campo	sile North S	PS	5												
				Comp	oste North	2	6												
				CSU	IC		7												
			1	CSU	52		8												
	V	L	U	CSU	>3		9							0					
	4.2	S	G	CSU	v4		10							X	X				
ddition	al Instruct	ions:												U					
					vare that tampering with or intentiona	mislabelling the sample loca	ition, date or											day they are san	
				s for legal action. Sar								received	packed in I	le at an avg				ubsequent days	
the	ed by: (Signa	0	- An	·1.2.2020 Tim	3:48 Received by: (Si	ie Cladble	Date 4/7/4	20	Time 3	48	7	Rece	ived o	n ice:		ab Us Y N	e Only		
etinquish	ed by: (Signa	ture)	Date	18/20 I	e Received by: (Si	ignature)	Date 4.8.2	020	Time	30	-	T1			T2	4		тз	
	ed by: (Signa	ture)	Date	8.2020	e Received by: (Si	ignature)	Date		Time	30			Temp	°C 1					
mple Mat	rix: S - Soil, Sd	- Solid, Sg - S	1.25.1	queous, O - Other		- July	Container	Type:							er glag	is. v - 1	JOA		
ote: Samp	les are discard	ed 30 days a	fter results a	re reported unless	s other arrangements are made. I	Hazardous samples will be r	eturned to clin	ent or o	dispose	ed of at	t the cl	ient ex	pense.	he report	t for the	e analys	is of the abo	ve samples is	applicable
ly to thos	e samples rece	eived by the	laboratory w	ith this COC. The	liability of the laboratory is limite	ed to the amount paid for o	n the report.												

.

ent: Sour Energy oject: File State Swp oject Manager: Idress: cy, State, Zip one: nail: port due by: Time Date Matrix No containers Sample ID 4.2 S G CSW5 4.2 S G CSW5	Bill To Attention: Natalic, Glassen Address: City, State, Zip Phone: Email: Marken & Hungy - Hon	Lab Number	DRO/ORO by 8015	8015	024	10	Num	ber - 0003 nd Metho	X	AT 3D	RCRA	State NM CO UT AZ X TX OK TX OK
oject Manager: Idress: y, State, Zip one: nail: port due by: Time Date Matrix Containers Sample ID Y.2 S G CSU5 4.2 S G CSU5	Address: City, State, Zip Phone:	Lab Number	PO	140		Ana	lysis ar	- 0003	d		RCRA	State NM CO UT AZ X TX OK TX OK
Idress: xy, State, Zip one: nail: port due by: Time Date sampled Matrix Containers Sampled Y·2 2020 Y·2 2020 Y·2 Y·2 <	City, State, Zip Phone:	Lab Number				Ana	lysis ar		d	DC-TX		NM CO UT AZ X
one: hail: port due by: Time Date Matrix Containers Sample ID 4.2 S G CSU5 4.2 S C COLUS	Phone: Email:ngloesen@Hungg-Hon	Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	-				DC - TX		NM CO UT AZ X
nail: port due by: Time Date Sampled Matrix Containers Sample ID 4.2 S G CSU5 4.2 S C COLUS	Email:ngloeten(9'Hungry -Hon	Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	/OC by 8260 Aetals 6010	loride 300.0		OC - NM)C - TX		ТХОК
port due by: Time Date Matrix No ampled Matrix Containers Sample ID 4.2 S G CSU5 4.2 S C COL		Lab Number	DRO/ORO by 8	GRO/DRO by 8	BTEX by 8021	/OC by 8260 Aetals 6010	loride 300.0		OC - NM	XT - DC		
Time ampled Date Sampled Matrix No Containers Sample ID 4.2 S G CSU5 4.2 S C CQU5		Number	DRO/ORC	GRO/DRO	BTEX by 8	/OC by 82 Aetals 60	loride 3		0C - N	C - TX		
$\begin{array}{c c} & & & \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & &$		11	DRC	GRC	BTE	/oC	0					
4.2 2 6 6011						2 2	ch		BGD	BGD(Remarks
4.2 2020 3 G CSW6		12							X			
		The second s							X			
		Sector Sector				_				_		
		. Children										
				_								
ditional Instructions:			II					l	J1			
eld sampler), attest to the validity and authenticity of this sample. I am aware that	Tal	tion, date or										he day they are sampled or on subsequent days.
e of collection is considered fraud and may be grounds for legal action. Sampled by incluished by Signature Date 4, 2 Time 3:00		Date		Time		Carlos de					Only	
		4/1	20	3	:UX	Rec	eived	on ice:	(V)	/ N	. Only	
inquished by: (Signature) Date Time	Received by: (8ignature)	Date 4-8-2		Time	2							
inquished by: (Signature) Date Time	Received by: (Signature)	Date		Time	305		22 - 1.900) 199	- 15 	<u>T2</u>		<u></u>	<u>T3</u>
2 -5 0 4.8.2020 169		4/91	20	9:	30	AVO	G Tem	p°c 4				
nple Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other		Container	Type:	g - gla	ass, p -	poly/p	lastic,	ag - ambe	er glass	s, v - V	/OA	
te ⁴ Samples are discarded 30 days after results are reported unless other y to those samples received by the laboratory with this COC. The liability	arrangements are made. Hazardous samples will be n y of the laboratory is limited to the amount paid for or	eturned to cli	ient or o	disposed	d of at th	ne client	expense.	The report	for the	analysi	s of the ab	ove samples is applicable
										100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100 - 100		
	795 US Highway 64, Farmington, NM 87401 4 Hour Emergency Response Phone (600) 362-1879				Ph (50	05) 632-1	381 Fx (505) 532-186	5			frotech-inc.com mvirotech-inc.com

Released to Imaging: 8/8/2024 8:17:27 AM

.

FOLK STATE #011 BATTERY

FINAL PHOTOS

Received by OCD: 7/9/2024 11:03:46 PM

Page 6

Oil Conservation Division

Incident ID	NAB1919234395
District RP	
Facility ID	
Application ID	

Page 288 of 306

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.
A scaled site and sampling diagram as described in 19.15.29.11 NMAC
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)
Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)
Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: Natalie Gladden Title: Director of Environmental and Regulatory Signature: Date: Date: Date: Date: email: natalie@energystaffingllc.com Telephone: 575-390-6397
OCD Only Received by: Victoria Venegas Date: 06/24/2020
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approve	ed by: CLOSURE DENIED	Date:	09/30/2020
Printed Name:	Victoria Venegas	Title:	Engineering Tech. III
Venegas, Victoria, EMNRD

From: Venegas, Victoria, EMNRD	
Sent:	Wednesday, September 30, 2020 10:40 AM
То:	Kenny Kidd; Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Eads, Cristina, EMNRD
Cc: spills@slo.state.nm.us; natalie@energystaffingllc.com	
Subject: NAB1919234395 FOLK STATE #011 @ 30-015-37397	
Attachments:	(C-141 Closure) NAB1919234395 FOLK STATE #011 @ 30-015-37397.pdf

NAB1919234395 FOLK STATE #011 @ 30-015-37397

Mr. Kidd,

The OCD has denied the submitted Closure Report/Deferral Request C-141 for incident # NAB1919234395 FOLK STATE #011 @ 30-015-37397 for the following reasons:

- The Depth to groundwater has not been established. When nearby wells are used to determine depth to groundwater, the wells should be no further than ½ mile away from the site, data should be no more than 25 years old, and well construction information should be provided:
 <u>http://www.emnrd.state.nm.us/OCD/documents/OCDInternalPolicy-SpillRuleClarifications.pdf</u>. Therefore, the remediation levels outlined in Table 1 of 19.15.29 NMAC have not been established for this site.
- Vertical delineation, which is driven by depth to water, is incomplete because the depth to groundwater has not been established.
- Each confirmation floor sample was representative of ~6000 square feet, exceeding part 29 Closure Requirements by over 30 times.
- The OCD wants to clarify that the entire release area will not be deferred, only the sample points that are around production equipment such as production tanks, wellheads and pipelines. The release must be remediated to the fullest extent possible. The deferral may be granted so long as the contamination is fully delineated and does not cause an imminent risk to human health, the environment, or ground water. All sample points, except the requested sample points for deferral, must have contaminated soil removed before a deferral request is uploaded to the payment portal.

The Denied C-141 can be found in the online image file. Please review and make the required correction prior to resubmitting through the fee portal. Thank you,

Victoria Venegas State of New Mexico Energy, Minerals, and Natural Resources Oil Conservation Division 811 S. First St., Artesia NM 88210 (575) 909-0269 Victoria.Venegas@state.nm.us

OCD approval does not relieve the operator of liability should their operations fail to adequately investigate and remediate contamination that may pose a threat to groundwater, surface water, human health or the environment. In addition, OCD approval does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Soil Bore Report

Info	Customer:				Phone:	Date:
Well In	ESS/Spur Energy				575-390-6397	5/10/20
-	Well Name:			an a	Location:	
General	Folk Sta	ate			32.8336260, -104.09651	154
	DEPTH					
	FROM	TO	THICKNESS (feet)	COLOR	AND TYPE OF MATERIAL ENCOUNTERED BEARING CAVITIES OR FRACTUR	
	0	. 3	3		TOP SOIL	*
	3	14	11		CHALECHE	
	14	20	6		RED SAND/CLAY	
	20	30	10		RED SAND	
	30	78	48		ANHYDRITE / RED SNAD / CLA	AY
	and the second se	and a second				
				LEFT BORE	HOLE OPEN FOR 48 HOURS. UPON RETUR	NING THE BORE WAS
	and			STILL DRY	AT 78'. PLUGGED BORE HOLE FROM	M THE BOTTOM UP
		and and a second s			WITH 3/8 HOLE PLUG (BENTONITE	CHIP).
	Part International Part Internat	- Bangg				
TI	and	The second second				
NE						
F						
0	COLUMN STREET					
00		Broadway Broadway		Mallin, a a Sila da Mangalan, daga ganga		
F				1979 A.		
				and a second school of the sec		
			non a star			
			SN - A	100 100 100 100 100 100 100		
		A Contraction of the second se	na i jii	2000 A A A A A A A A A A A A A A A A A A		
			ne sos n <u>ne</u> ne	an a		
	a di anti a	The Reason is	perturbed denotes in			
			and the second second			
				an a		
				and kator physical and the device in the device and a subscription of the subscription of the subscription of t		

1118 West Broadway Place

Hobbs, N.M. 88240

Office: 575-396-3790

Received by OCD: 7/9/2024 1:03:46 PML SPUK ENERGY PARTNERS

FOLK STATE #11 BATTERY BOREHOLE MAP

T.

Legend \$ 32.8336260 - 104.0965154

Page 291 of 306

Carth PcN

BOREHO

211

Old Loco Rd N

FOLK STATE #11 BATTERY DRILLING PHOTOS

Received by OCD: 7/9/2024 11:03:46 PM1 Form C-141 State of

Page 3

State of New Mexico Oil Conservation Division

Page	294	of 306
------	-----	--------

Sito	Assessment/	Character	rization
Sile	Assessment/	Unaracie	rization

Incident ID

District RP Facility ID Application ID

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>>78'BGS</u> (ft bgs)
Did this release impact groundwater or surface water?	🗋 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🖾 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🛛 Yes 🗌 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🛛 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

- Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
- Field data
- Data table of soil contaminant concentration data
- Depth to water determination
- Determination of water sources and significant watercourses within ¹/₂-mile of the lateral extents of the release
- Boring or excavation logs
- Photographs including date and GIS information
- Topographic/Aerial maps
- Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 7/9/202411:03:46 PM				Page 295 of 3
Form C-141	State of New Mexico		Incident ID	
Page 4	Oil Conservation Divis	ion	District RP	
			Facility ID	
			Application ID	
regulations all operators are r public health or the environm failed to adequately investiga addition, OCD acceptance of and/or regulations. Printed Name: <u>NATALIE</u> Signature: <u>JUIA</u> email: <u>NATALIE@ENER</u>	mation given above is true and complete t equired to report and/or file certain releas tent. The acceptance of a C-141 report by te and remediate contamination that pose a C-141 report does not relieve the operat GLADDEN Title: DIRECTOR (UL Collector) GYSTAFFINGLLC.COM	e notifications and perform co the OCD does not relieve the a threat to groundwater, surfa tor of responsibility for compl	orrective actions for rele e operator of liability sh ce water, human health liance with any other fe	eases which may endanger ould their operations have or the environment. In deral, state, or local laws
OCD Only				
		Date:		

Received by OCD: 7/9/2024 11:03:46 PM1 Form C-141 State of New Mexico

Page 5

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Remediation Plan Checklist: Each of the following items must be included in the plan.		
 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 		
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.		
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.		
Extents of contamination must be fully delineated.		
Contamination does not cause an imminent risk to human health, the environment, or groundwater.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Signature: Atalie Caladde Date: 5-20-21		
email: <u>NATALIE@ENERGYSTAFFINGLLC.COM</u> Telephone: <u>575-390-6397</u>		
OCD Only		
Received by: Date:		
Approved Approved with Attached Conditions of Approval Denied Deferral Approved		
Signature: Date:		

Received by OCD: 7/9/2024114035464PM

State of New Mexico

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Page 297 of 306

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC

Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)

Laboratory analyses of final sampling (Note: appropriate ODC District office must be notified 2 days prior to final sampling)

Description of remediation activities

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Printed Name: NATALIE GLADDEN_ Title: DIRECTOR OF E	NVIRONMENTAL AND REGULATORY
Signature: Jatalie Galade	Date: 5/20/21
email: <u>NATALIE@ENERGYSTAFFINGLLC.COM</u>	Telephone: <u>575-390-6397</u>

OCD Only

Received by:

Date:

Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.

Closure Approved by:	Date:
Printed Name:	Title:

Form C-141 Page 6 Received by OCD: 7/9/2024 11:03:46 PM1 Form C-141 State of New Mexico

Page 298 of 306

Page 5

Oil Conservation Division

Remediation Plan Checklist: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

 Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) 		
Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation.		
Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction.		
Extents of contamination must be fully delineated.		
Contamination does not cause an imminent risk to human health, the environment, or groundwater.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: NATALIE GLADDEN Title: DIRECTOR OF ENVIRONMENTAL AND REGULATORY Signature: Date: 5-20-21 email: NATALIE@ENERGYSTAFFINGLLC.COM Telephone: 575-390-6397		
OCD Only Received by: Chad Hensley Date: 07/01/2021		
Approved Approved with Attached Conditions of Approval Denied Deferral Approved		
Signature:		

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	29039
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By	Condition	Condition Date
chensley	Spur's deferral requests to complete final remediation during any future major construction/alteration or final plugging and abandonment, whichever occurs first is approved. The deferred C- 141 will be accepted for record and marked accordingly. The release will remain open in OCD database files and reflect an open environmental issue.	7/1/2021

CONDITIONS

Action 29039

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 362267

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

QUESTIONS

Prerequisites	
Incident ID (n#)	nAB1919234395
Incident Name	NAB1919234395 FOLK STATE #011 @ 30-015-37397
Incident Type	Oil Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-015-37397] FOLK STATE #011

Location of Release Source

Please answer all the questions in this group.	
Site Name	FOLK STATE #011
Date Release Discovered	06/12/2019
Surface Owner	State

Incident Details

Please answer all the questions in this group.	
Incident Type	Oil Release
Did this release result in a fire or is the result of a fire	Νο
Did this release result in any injuries	Νο
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο
Has this release endangered or does it have a reasonable probability of endangering public health	Νο
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.	
Crude Oil Released (bbls) Details	Cause: Equipment Failure Other (Specify) Crude Oil Released: 112 BBL Recovered: 80 BBL Lost: 32 BBL.
Produced Water Released (bbls) Details	Not answered.
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19 15 27 NMAC (05/25/2021) venting and/or flaring of natural gas (i.e.	a gap only) are to be submitted on the C 120 form

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.	
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	n/a
	iation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of evaluation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releated to a construction of the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Katherine Purvis Title: EHS Coordinator Email: katherine.purvis@spurenergy.com Date: 07/09/2024

QUESTIONS, Page 2

Action 362267

Released to Imaging: 8/8/2024 8:17:27 AM

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the elease discovery date. What is the shallowest depth to groundwater beneath the area affected by the Between 75 and 100 (ft.) release in feet below ground surface (ft bgs) What method was used to determine the depth to ground water **Direct Measurement**

Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1 and 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Medium	
A 100-year floodplain	Between 1 and 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan

Please answer all the questions that	t apply or are indicated. This information must be provided t	to the appropriate district once no rater than so days after the release discovery date.
Requesting a remediation pl	an approval with this submission	Yes
Attach a comprehensive report demo	onstrating the lateral and vertical extents of soil contamination	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical of	extents of contamination been fully delineated	Yes
Was this release entirely con	ntained within a lined containment area	No
Soil Contamination Sampling:	(Provide the highest observable value for each, in n	nilligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 Cl B)	672
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	4840
GRO+DRO	(EPA SW-846 Method 8015M)	4840
BTEX	(EPA SW-846 Method 8021B or 8260B)	1.1
Benzene	(EPA SW-846 Method 8021B or 8260B)	0.1
Per Subsection B of 19.15.29.11 NM		0.1 ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 NM	AC unless the site characterization report includes complet ines for beginning and completing the remediation.	
Per Subsection B of 19.15.29.11 NM which includes the anticipated time! On what estimated date will	AC unless the site characterization report includes complet ines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 NM which includes the anticipated time! On what estimated date will	IAC unless the site characterization report includes complet lines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA
Per Subsection B of 19.15.29.11 NM which includes the anticipated timel On what estimated date will On what date will (or did) the On what date will (or was) the	IAC unless the site characterization report includes complet lines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 10/09/2023 02/23/2024
Per Subsection B of 19.15.29.11 NM which includes the anticipated time! On what estimated date will On what date will (or did) the On what date will (or was) the What is the estimated surface	AC unless the site characterization report includes complet lines for beginning and completing the remediation. the remediation commence final sampling or liner inspection occur e remediation complete(d)	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 10/09/2023 02/23/2024 02/23/2024
Per Subsection B of 19.15.29.11 NM which includes the anticipated time! On what estimated date will On what date will (or did) the On what date will (or was) th What is the estimated surface What is the estimated volume	AC unless the site characterization report includes complet lines for beginning and completing the remediation. the remediation commence e final sampling or liner inspection occur e remediation complete(d) e area (in square feet) that will be reclaimed	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMA 10/09/2023 02/23/2024 02/23/2024 760
Per Subsection B of 19.15.29.11 NM which includes the anticipated time! On what estimated date will On what date will (or did) the On what date will (or was) th What is the estimated surface What is the estimated volume What is the estimated surface	AC unless the site characterization report includes complet lines for beginning and completing the remediation. the remediation commence e final sampling or liner inspection occur e remediation complete(d) e area (in square feet) that will be reclaimed e (in cubic yards) that will be reclaimed	Interview Interview <t< td=""></t<>

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

Action 362267

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Page 303 of 306

Action 362267

QUESTIONS (continued)		
Operator:	OGRID:	
Spur Energy Partners LLC	328947	
9655 Katy Freeway	Action Number:	
Houston, TX 77024	362267	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
This remediation will (or is expected to) utilize the following processes to remediate	This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)			
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes		
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]		
OR which OCD approved well (API) will be used for off-site disposal	Not answered.		
OR is the off-site disposal site, to be used, out-of-state	Not answered.		
OR is the off-site disposal site, to be used, an NMED facility	Not answered.		
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.		
(In Situ) Soil Vapor Extraction	Not answered.		
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.		
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.		
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.		
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.		
OTHER (Non-listed remedial process)	Not answered.		
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
I hereby agree and sign off to the above statement	Name: Katherine Purvis Title: EHS Coordinator Email: katherine.purvis@spurenergy.com Date: 07/09/2024		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 362267

Page 304 of 306

QUESTIONS (continued)

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction	Yes	
Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction	REQUESTING TO LEAVE AFFECTED SOIL AROUND STORAGE TANK AND PIPELINES DUE TO SAFETY CONCERNS OF WEAKENING THE STRUCTURAL INTEGRITY OF THE PRODUCTION EQUIPMENT WITH THE BATTERY WHICH COULD LEAD TO MORE LEAKS	
What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted	2000	
What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted	450	
	ately under or around production equipment such as production tanks, wellheads and pipelines where may be deferred with division written approval until the equipment is removed during other operations, or when	
Enter the facility ID (f#) on which this deferral should be granted	Folk State 11 Tank Battery [fAPP2201051330]	
Enter the well API (30-) on which this deferral should be granted	Not answered.	
Contamination does not cause an imminent risk to human health, the environment, or groundwater	True	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface a does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Katherine Purvis Title: EHS Coordinator Email: katherine.purvis@spurenergy.com	

Date: 07/09/2024

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 362267

Page 305 of 306

QUESTIONS (continued)

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	296871
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	10/16/2023
What was the (estimated) number of samples that were to be gathered	6
What was the sampling surface area in square feet	1200

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed. Requesting a remediation closure approval with this submission No

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Spur Energy Partners LLC	328947
9655 Katy Freeway	Action Number:
Houston, TX 77024	362267
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)
CONDITIONS	

CONDITIONO		
Created By	Condition	Condition Date
crystal.walker	Deferral is approved for incident nAB1919234395 of application 362267 of an area of 2,000sqft/450cubic yards per the report at Location Tank 4-E. Per 19.15.29.12.C.(2). If the contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, resortation and reclamation may be deferred with division written approved until the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first. Final remediation and reclamation shall take place in accordance with 19.15.29.12 and 19.15.29.13 NMAC once the site is no longer being used for oil and gas operations.	8/8/2024

CONDITIONS

Page 306 of 306

Action 362267