

PROMETHEUS CTB PAD D CLOSURE REQUEST

API NO. 30-025-48763 Unit Letter O, Section 22, Township 24S, Range 33E LEA COUNTY, NEW MEXICO

DATE OF RELEASE: 04/26/2023 INCIDENT NO. NAPP2312327651

> 06/27/2024 Prepared by:

June 27, 2024

New Mexico Energy, Mineral & Natural Resources NMOCD District II C/O Mike Bratcher, Robert Hamlet, Jennifer Naribu, & Jocelyn Harimon 811 S. First Street Artesia, NM 88210

New Mexico State Land Office Water Bureau Manager Faith Crosby 1001 South Atkinson Ave Roswell, NM 88203

Tap Rock Operating, LLC C/O Bill Ramsey 523 Park Point Drive Golden, CO 80401

Subject: Closure Request for Tap Rock Operating – Prometheus CTB Pad D API No. 30-025-48763 Incident No. NAPP2312327651 Legal Unit Letter O, Section 22, Township 24 South, Range 33 East Lea County, New Mexico

To Whom it May Concern:

Tap Rock Operating, LLC has retained Energy Staffing Services, LLC (ESS) to conduct a spill assessment for the Prometheus CTB Pad D (hereafter referred to as the "Prometheus 136H") for the produced water release that occurred on April 26th, 2023. On the same said date, ESS provided the immediate notification of the release to the *New Mexico Oil Conservation Division (NMOCD), District II Office*, via email at 4:03 PM. (Notification Attached). On behalf of Tap Rock, ESS also submitted the initial C141 Release Notification, along with the spill calculator used to determine the volume of the release (attached) on May 3rd, 2023. The NMOCD accepted the C141 as record on May 4th, 2023, at 7:41 AM. The incident number assigned to the release is NAPP231237651. (Notification of correspondence is attached).

This report provides a detailed description of the spill assessment, delineation, and remedial activities, which demonstrate that the closure criteria has been established in the 19.15.29.12 *New Mexico Administrative Code (NMAC: New Mexico Oil Conservation Division, 2018)* have been met and all applicable regulations have been followed. This document is intended to serve as the final report to obtain approval from the NMOCD for the closure of the above-mentioned release.

Incident Description

On April 26th, 2023, a buried flowline leaked causing fluid to surface on the well pad of the Prometheus 136H. The well was immediately shut-in and a hydrovac crew was dispatched to uncover the line and make repairs.

Upon discovery of the release, ESS was notified and dispatched to location to conduct an environmental site assessment of the produced water release. It was determined, after measuring the area of impact, that approximately 15.83 barrels of produced water, with no fluid able to be recovered, had been released onto the pad of the Prometheus 136H. Initial site photos and measuring of the impacted area were conducted. Please see the initial site photos attached.

Site Characterization

The release at the Prometheus 136H occurred on State Land and is located at 32.1981382 latitude and -103.55985600 longitude, 25.2 miles northwest of Jal, New Mexico. The legal description of the site is Unit Letter O, Section 22, Township 24 South, and Range 33 East. This site is located in Lea County, New Mexico. Please see the site schematic attached.

The Prometheus 136H consists of production lines and is near production facilities and well pads. The area of the release occurred on the well pad of the Prometheus 136H. The elevation is 3,559 feet. The area is historically and has been primarily dominated by black grama, sideoats grama, blue grama, little bluestem, and other perennial shrubs and grasses found in Tonuco loamy find sands and Simona-Upton association. Please find the attached Rangeland and Vegetation Classification information attached.

The United States Department of Agriculture Natural Resources Conservation Services indicates that the soil type in the area of the Prometheus 136H consists of 76.3% Tonuco loamy find sands and 23.7% Simona-Upton association. (Soil Map Attached). In the area of the Prometheus 136H, the FEMA National Flood Hazard Layer indicates that there is a 0.2% chance of flood hazard with a 1% chance of flood with an average depth of one foot or with drainage areas of less than one square mile. (See Map Attached).

There is "low potential" for Karst Geology to be present near the Prometheus 136H site, according to the *United States Department of the Interior, Bureau of Land Management*. Please find the Karst Map attached herein.

There is no surface water located near or around the Prometheus 136H. The site is not near a continuously flowing watercourse and or lakebed within ½ a mile from the release. No other critical or community features were found at the Prometheus 136H site. (Attached Watercourse Map).

The nearest and most recent water well to site according to the *New Mexico Office of the State Engineer* is C04339 POD1, drilled in 2019 with a well depth of 47 feet and no groundwater data available. This well is 783 yards from the site. The second well is C04339 POD8, drilled in 2019 with a well depth of 30 feet and no groundwater data available. This well is 862 yards from the site. The third well is C04339 POD7, drilled in 2019 with a well depth of 43' and no groundwater data available, 1,015 yards from the site. The fourth well is C04339 POD2, drilled in 2019 with no well depth or groundwater data available. This well is 1,047 yards from the site. The fifth well is C03600 POD4, drilled in 2013 with no well depth or groundwater data available. This well is 1,047 yards from the site. The fifth well is C03600 POD4, drilled in 2013 with no well depth or groundwater data available. This well is 1,047 yards from the site. The fifth well is C03600 POD4, drilled in 2013 with no well depth or groundwater data available. This well is 1,047 yards from the site. The fifth well is C03600 POD4, drilled in 2013 with no well depth or groundwater data available, 1,339 yards from the site. An extended groundwater search was conducted using the *OSE POD Location Mapping System* and it has been determined that no other wells were found within a ½ mile radius of the Prometheus 136H release. Please find the NMOSE, OSE POD, and groundwater map attached to this report.

Closure Criteria Determination

The Closure Criteria for Soils impacted by a Release is shown in the chart below. With no groundwater data available within a ½ mile radius from the release point, being on State Land, and with having "low karst potential," the site fell under <50' to groundwater. This is only due to not having any recent or available water depths.

DGW	Constituent	Method	Limit
≤ 50'	Chloride	EPA 300.0 OR SM4500 CLB	600 mg/kg
	TPH (GRO + DRO+ MRO)	EPA SW-846 METHOD 8015M	100 mg/kg
	GRO + DRO	EPA SW-846 METHOD 8015M	50 mg/kg
-	BTEX	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg
	Benzene	EPA SW-846 METHOD 8021B OR 8260B	10 mg/kg

Soil Remediation Action Levels

ESS has provided sufficient data that this release has impacted the soil at the Prometheus 136H release site and that the protocol is consistent with the remediation/abatement goals and objectives set forth in the *NMOCD Closure Criteria for Soils Impacted by a Release, dated August 14, 2018.* This document provides direction for Tap Rock's initial response actions, site assessment and sample procedures conducted by ESS Staff. We would like to present to you the following information concerning the delineation process for the release detailed herein.

Soil Sampling Procedures

Soil sampling for laboratory analysis was conducted according to the NMOCD – approved industry standards. Accepted NMOCD soil sampling procedures and laboratory analytical methods are as follows:

- Collect clean samples in airtight glass jars supplied by the laboratory to conduct the analysis.
- Each sample jar was labelled with site and sample information.
- Samples were kept in and stored in a cool place and packed on ice.
- Promptly ship samples to the lab for analysis following the chain of custody procedures.

The following lab analysis method was used for each bottom hole (vertical) and sidewall sample (horizontal) was submitted to Envirotech Analytical Laboratory:

Volatile Organics by EPA 8021B

- Benzene, Toluene, Ethylbenzene, p.m. Xylene, o-Xylene and Total Xylenes Nonhalogenated Organics by EPA 8015D – GRO
 - Gasoline Range Organics (C6-C10)

Nonhalogenated Organics by EPA 8015D – DRO/ORO

- Diesel Range Organics (C10-C28)
- Oil Range Organics (C28-C40)

Anions by EPA 300.0/9056A

• Chloride

Release Investigation Data

On April 26th, 2023, ESS arrived on site of the Prometheus 136H, set delineation sample points, GPS'd each sample point, and began to obtain surface samples. Each surface sample was field tested, logged, and submitted to Envirotech Laboratory for confirmation.

On August 2nd, 2023, an extension was requested to the NMOCD on behalf of Tap Rock and ESS for the delineation and remediation phases on the Prometheus 136H. (Please see email attached).

On August 3rd, 2023, the NMOCD approved the extension for 60-days and updated the remediation due date to September 25th, 2023. (Please see email correspondence attached).

A total of 5 vertical sample points were placed along with 6 horizontal sample points. Each sample point was then sampled by use of backhoe and trackhoe in 1' and 2' intervals. Bottom hole samples were then submitted to the lab for confirmation. Please see the delineation sample data below, with the lab data indicated in yellow. Attached to this report you will find the sample data, delineation sample map, and the lab analysis.

SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
SP1	SURF	3280	Н	37.1	396	65800	18200	84000	4970
	2	240							
_	4	240							
	6	240							

	8	320							
	10	240	L	ND	ND	ND	ND	ND	212
1	1.00		-	No. 2					
SP2	SURF	3280	H	102	1180	42000	11200	53200	5180
	2	1280							
	4	2640							
	6	1520							
	8	320							
	10	320	L	ND	ND	ND	ND	ND	322
1 ALL		In the second		2003-24			States -	32200	67 S.W
SP3	SURF	>4000	Н	42.3	468	34500	7990	42490	6660
	2	2880							
	4	>4000							
	6	1680							
	8	1680							
	10	1120				ne -			
	12	720							
	14	400							
	16	240	L	ND	ND	ND	ND	ND	161
SP4	SURF	2640	H	30.1	271	79500	20900	100400	4380
	2	560					-		
	4	160	L	ND	ND	ND	ND	ND	71.6
								1945 - LAN	
SP5	SURF	>4000	H	27.1	241	50900	12200	63100	6750
	2	880							
	4	240							
	6	400							
	8	400							
	10	480							_
	12	240	L	ND	ND	ND	ND	ND	221
	TENES H				MA PASIAN				
SW1	SURF	1200	Н	ND	ND	10400	12800	23200	1290
	1	240							
	2	80	L	ND	ND	ND	ND	ND	ND
4.8	1.1.2.5			a statistical					
SW2	SURF	320	Н	ND	ND	2490	2140	4630	360
	1	640							
	2	160		-					
	3	160	L	ND	ND	ND	ND	ND	71.3
41	5.6431		1000	V. S. Wi	·通知 建20月		18 . B.N	Treasure 1	

SW3	SURF	>4000	H	ND	ND	2920	1860	4780	5120
	1	880							
	2	720							
	3	240							
	4	240	L	ND	ND	ND	ND	ND	115
			2271						1.1
SW4	SURF	>4000	Н	ND	ND	1800	1670	3470	6220
	1	160							
	2	160	L	ND	ND	ND	ND	ND	68.5
						E.S.V.		the particular	
SW5	SURF	240	Н	ND	ND	5320	4250	9570	211
	1	720							
	2	240							
	3	80	L	ND	ND	ND	ND	ND	ND
					11 - AII				
SW6	SURF	160	Н	ND	ND	2090	2320	4410	33.2
	1	720					_		
	2	880							
	3	160							1.4
	4	80	L	ND	ND	ND	ND	ND	ND

Please see the delineation photos attached herein.

On December 8th, 2023, ESS crews began obtaining 200 square foot composites from the excavation area. A total of 11 bottom hole composites were obtained, field tested, and submitted to the lab for confirmation. Please find the composite sample data below as well as attached to this report followed by the lab confirmation data.

SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL
COMP1	8	80	L	ND	ND	ND	ND	ND	ND
COMP2	8	240	L	ND	ND	ND	ND	ND	126
СОМР3	14	240	L	ND	ND	ND	ND	ND	125
COMP4	2	80	L	ND	ND	ND	ND	ND	ND
COMP5	10	240	L	ND	ND	ND	ND	ND	113
SWCOMP1	8	80	L	ND	ND	ND	ND	ND	ND

SWCOMP2	8	80	L	ND	ND	ND	ND	ND	34
CIA/CON 4D2	1.4	240		ND	ND	ND	ND	ND	125
SWCOMP3	14	240		ND	ND	ND	ND	ND	125
SWCOMP4	2	80	L	ND	ND	ND	ND	ND	ND
SWCOMP5	10	80		ND	ND	ND	ND	ND	ND
Streeting								201	
SWCOMP6	10	80	L	ND	ND	ND	ND	ND	ND
		1.389	112 549	-411	1		L		

The impacted area of the Prometheus 136H measured 991 square feet. During the remediation phase, a total of 294 cubic yards of contaminated soil was excavated and hauled to the Owl Disposal. A total of 264 cubic yards of caliche and topsoil was pushed up and hauled from the NGL Bonnano Pit to location for backfill. The backfill material was staged on the production pad of the Prometheus 136H and then transferred to the impacted area where backfilling took place. The site was contoured and sloped back to its natural grade. Backfilling was completed on January 29th, 2024.

Please find the remediation and final photos attached herein.

Closure Requests

On behalf of Tap Rock Operating, LLC, Energy Staffing Services, LLC requests that the incident (NAPP2312327651) be closed for the produced water release that occurred on the well pad of the Prometheus CTB Pad D. Tap Rock and ESS certify that all information provided and that is detailed in this report to be true and correct. Both Tap Rock and ESS have complied with all applicable closure requirements for the release that occurred on the Prometheus CTB Pad D.

After review of this report, if you have any questions or concerns regarding this closure request, please do not hesitate to contact the undersigned at (575)390-6397 or (575)393-9048. You may also email any issues to <u>natalie@energystaffingllc.com</u>.

Sincerely,

Director of Environmental and Regulatory Services

Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

Attachments

- **Spill Notification**
- Initial C141 and Spill Calculator Form
- Impact Map
- **Initial Site Photos**
- Site Map
- **Rangeland and Vegetation Classification**
- Soil Map
- FEMA National Flood Hazard Layer Map
- Karst Geology Map
- Watercourse Map
- **Groundwater Information**
- Groundwater Map
- **OSE POD Map**
- **Extension Request**
- Delineation Sample Data (including inserts for Surface and Final Lab Analysis)
- Delineation Sample Map and GPS Log
- Lab Analysis for Delineation
- **Delineation Site Photos**
- Composite Notification
- **Composite Sample Data**
- Composite Sample Map and GPS Log
- Composite Sidewall Sample Map and GPS Log
- Lab analysis for Remediation
- **Remediation and Final Photos**
- Final C141

Page 11 of 174

Natalie Gladden

Sent: To: Cc:	Natalie Gladden Wednesday, April 26, 2023 4:03 PM ocdonline, emnrd, EMNRD; Bratcher, Mike, EMNRD; Hamlet, Robert, EMNRD; Nobui, Jennifer, EMNRD; Harimon, Jocelyn, EMNRD Christian Combs; 'Bill Ramsey'; Dakoatah Montanez TAP ROCK - PROMETHEUS STATE COM #136H - SPILL NOTIFICATION
Importance:	High

All,

The buried flowline for the below location was found to have been leaking when the fluid surfaced. The well was shut in immediately. No fluid was recovered as it had just surfaced.

Location: Prometheus State Com #136h API No.: 30-025-48763 ULSTR: O-22-24S-33E County: Lea Released: 15.83bbls Recovered: 0bbls

Uploading of the Initial C141 and the spill calculator will follow shortly.

Sincerely,

7/30/2024 1:56:03 PM

Received by OCD:

Natalie Gladden

Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

Natalie Gladden

From:	Natalie Gladden
Sent:	Wednesday, April 26, 2023 4:05 PM
To:	Crosby, Faith; Griffin, Becky R.; Knight, Tami C.
lo: Subject:	FW: TAP ROCK - PROMETHEUS STATE COM #136H - SPILL NOTIFICATION

Importance:	
-------------	--

High

Please see the below email that was submitted to the OCD for the release that occurred on the above mentioned well pad. I will send you the paperwork shortly.

Natalie Gladden

Director of Environmental and Regulatory Services

Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalic@energystaffingllc.com

From: Natalie Gladden

Sent: Wednesday, April 26, 2023 4:03 PM

To: ocdonline, emnrd, EMNRD <emnrd.ocdonline@state.nm.us>; Bratcher, Mike, EMNRD <mike.bratcher@state.nm.us>; Hamlet, Robert, EMNRD <robert.hamlet@state.nm.us>; Nobui, Jennifer, EMNRD <Jennifer.Nobui@emnrd.nm.gov>; Harimon, Jocelyn, EMNRD <Jocelyn.Harimon@emnrd.nm.gov> Cc: Christian Combs <ccombs@taprk.com>; 'Bill Ramsey' <bramsey@taprk.com>; Dakoatah Montanez <dakoatah@energystaffingllc.com> Subject: TAP ROCK - PROMETHEUS STATE COM #136H - SPILL NOTIFICATION Importance: High

All,

7/30/2024 1:56:03 PM

Received by OCD:

The buried flowline for the below location was found to have been leaking when the fluid surfaced. The well was shut in immediately. No fluid was recovered as it had just surfaced.

Location: Prometheus State Com #136h API No.: 30-025-48763 ULSTR: O-22-24S-33E County: Lea Released: 15.83bbls Recovered: 0bbls

Uploading of the Initial C141 and the spill calculator will follow shortly.

Sincerely,

of 174

Page

Natalie Gladden

Director of Environmental and Regulatory Services

Energy Staffing Services, LLC.

2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: <u>natalie@energystaffingllc.com</u>

^{age} 14 of 174 Natalie Gladden

From:	OCDOnline@state.nm.us
Sent:	Wednesday, May 3, 2023 7:41 AM
To:	Natalie Gladden
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 212998

To whom it may concern (c/o Natalie Gladden for TAP ROCK OPERATING, LLC),

The OCD has accepted the submitted *Notification of a release* (NOR), for incident ID (n#) nAPP2312327651, with the following conditions:

• When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.

Please reference nAPP2312327651, on all subsequent C-141 submissions and communications regarding the remediation of this release. **NOTE:** As of December 2019, NMOCD has discontinued the use of the "RP" number. If you have any questions regarding this application, or don't know why you have received this email, please contact us.

ocd.enviro@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505 District 1 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141

Page 15 of 174

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party TAP ROCK OPERATING, LLC	OGRID 372043	
Contact Name CHRISTIAN COMBS	Contact Telephone (720)360-4028	
Contact email ccombs@taprk.com	Incident # (assigned by OCD)	
Contact mailing address 523 Park Point Dr. #200	Golden CO, 80401	

Location of Release Source

Latitude 32.1981382

Longitude <u>-103.55985600</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name PROMETHEUS CTB PAD D (CLOSEST WELL PROMETHEUS STATE COM #136H)	Site Type PRODUCTION
Date Release Discovered 4/26/2023	API# (if applicable) 30-025-48763

Unit Letter	Section	Township	Range	County
0	22	24S	33E	LEA

Surface Owner: State Federal Tribal Private (Name:

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below) Crude Oil Volume Released (bbls) Volume Recovered (bbls) Volume Released (bbls) 15.83 Volume Recovered (bbls) 0 Produced Water Is the concentration of dissolved chloride in the Yes No produced water >10,000 mg/l? Volume Recovered (bbls) Volume Released (bbls) Condensate Volume Recovered (Mcf) Natural Gas Volume Released (Mcf) Other (describe) Volume/Weight Released (provide units) Volume/Weight Recovered (provide units) Cause of Release LEAK SURFACED FROM A BURIED FLOWLINE. WELL WAS SHUT IN IMMEDIATLEY AND A HYDROVAC WAS

LEAK SURFACED FROM A BURIED FLOWLINE. WELL WAS SHUT IN IMMEDIATLEY AND A HYDROVAC WAS DISPATCHED TO UNCOVER LINE TO MAKE REPAIRS. NO FLUID WAS RECOVERED AS THE LEAK HAD JUST SURFACED.

rm C-141	24 1:56:03 PM State of New Mexico	Page 16 d				
	Oil Conservation Division	Incident ID				
ge 2	On Conservation Division	District RP				
		Facility ID				
		Application ID				
Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible par	y consider this a major release?				
🗌 Yes 🗌 No						
5						
EMAIL WAS SENT B	notice given to the OCD? By whom? To whom? Wh Y ESS ON 04/26/2023 AT 4:03; TO THE NMOCD OWED BY AN EMAIL TO THE SLO (CROSBY,	(BRATHER, HAMLET, NOBUI, HARIMON	AND			
	Initial Respons	e				
The responsible	e party must undertake the following actions immediately unless the					
	lesse has been stanned					
	lease has been stopped.	anment				
-	as been secured to protect human health and the envir					
Released materials l	nave been contained via the use of berms or dikes, abs	orbent pads, or other containment devices.				
Released materials hAll free liquids and		orbent pads, or other containment devices.				
 Released materials h All free liquids and If all the actions describ Per 19.15.29.8 B, (4) NI has begun, please attack within a lined containmed I hereby certify that the information of the environ failed to adequately invest 	have been contained via the use of berms or dikes, abs recoverable materials have been removed and manage ed above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediation in a narrative of actions to date. If remedial efforts have ent area (see 19.15.29.11(A)(5)(a) NMAC), please attra- formation given above is true and complete to the best of my e required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does gate and remediate contamination that pose a threat to group	n immediately after discovery of a release. If reve been successfully completed or if the release ch all information needed for closure evaluation knowledge and understand that pursuant to OCD rule and perform corrective actions for releases which may not relieve the operator of liability should their operation dwater, surface water, human health or the environmediatemed and the stand that pursuant to the environmediatemediat	e occurred es and endanger ons have ent. In			
Released materials H All free liquids and If all the actions describ Per 19.15.29.8 B, (4) NI has begun, please attach within a lined containmu I hereby certify that the inf regulations all operators ar public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations.	have been contained via the use of berms or dikes, abs recoverable materials have been removed and manage ed above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediation in a narrative of actions to date. If remedial efforts have ent area (see 19.15.29.11(A)(5)(a) NMAC), please attra- formation given above is true and complete to the best of my e required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does igate and remediate contamination that pose a threat to group of a C-141 report does not relieve the operator of responsib	n immediately after discovery of a release. If reve been successfully completed or if the release ch all information needed for closure evaluation knowledge and understand that pursuant to OCD rule and perform corrective actions for releases which may not relieve the operator of liability should their operatidwater, surface water, human health or the environmedity for compliance with any other federal, state, or load	e occurred s and endanger ons have ent. In cal laws			
Released materials h All free liquids and If all the actions describ Per 19.15.29.8 B. (4) Nh has begun, please attach within a lined containma I hereby certify that the inf regulations all operators ar public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: NATAL	have been contained via the use of berms or dikes, abs recoverable materials have been removed and manage ed above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediation in a narrative of actions to date. If remedial efforts have ent area (see 19.15.29.11(A)(5)(a) NMAC), please attra- formation given above is true and complete to the best of my e required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does igate and remediate contamination that pose a threat to group of a C-141 report does not relieve the operator of responsib	n immediately after discovery of a release. If reve been successfully completed or if the release ch all information needed for closure evaluation knowledge and understand that pursuant to OCD rule and perform corrective actions for releases which may not relieve the operator of liability should their operation dwater, surface water, human health or the environmediately for compliance with any other federal, state, or load	e occurred s and endanger ons have ent. In cal laws			
 Released materials I All free liquids and If all the actions describe Per 19.15.29.8 B. (4) NI has begun, please attack within a lined containmed I hereby certify that the infregulations all operators are public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: NATAL 	have been contained via the use of berms or dikes, absorecoverable materials have been removed and manage end above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have ent area (see 19.15.29.11(A)(5)(a) NMAC), please attra- tormation given above is true and complete to the best of my e required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does igate and remediate contamination that pose a threat to group of a C-141 report does not relieve the operator of responsib IE GLADDEN Title: DIRI DATE: Date:	n immediately after discovery of a release. If reve been successfully completed or if the release ch all information needed for closure evaluation knowledge and understand that pursuant to OCD rule ad perform corrective actions for releases which may not relieve the operator of liability should their operation dwater, surface water, human health or the environmedity for compliance with any other federal, state, or loce the state of the state o	e occurred s and endanger ons have ent. In cal laws			
Released materials H All free liquids and If all the actions describ Per 19.15.29.8 B, (4) NI has begun, please attack within a lined containment I hereby certify that the inf regulations all operators ar public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: NATAL Signature:	have been contained via the use of berms or dikes, absorecoverable materials have been removed and manage end above have <u>not</u> been undertaken, explain why: MAC the responsible party may commence remediation a narrative of actions to date. If remedial efforts have ent area (see 19.15.29.11(A)(5)(a) NMAC), please attra- tormation given above is true and complete to the best of my e required to report and/or file certain release notifications a ment. The acceptance of a C-141 report by the OCD does igate and remediate contamination that pose a threat to group of a C-141 report does not relieve the operator of responsib IE GLADDEN Title: DIRI DATE: Date:	n immediately after discovery of a release. If reve been successfully completed or if the release ch all information needed for closure evaluation knowledge and understand that pursuant to OCD rule ad perform corrective actions for releases which may not relieve the operator of liability should their operation dwater, surface water, human health or the environmedity for compliance with any other federal, state, or loce the state of the state o	e occurred s and endanger ons have ent. In cal laws			

•

Soil Type	Porosity	Length	Width	Depth (083 per inch)	Cubic Feet	Estimated Barrels	Soil Type
Clay	0.15	10	10	0.083	8.3	0.22	Clay
Peat	0.40	10	10	0.083	8.3	0.59	Peat
Glacial Sediments	0.13	10	10	0.083	8.3	0.19	Glacial Sediments
Sandy Clay	0.12	10	10	0.083	8.3	0.18	Sandy Clay
Silt	0.16	10	10	0.083	8.3	0.24	Silt
Loess	0.25	10	10	0.083	8.3	0.37	Loess
Fine Sand	0.16	10	10	0.083	8.3	0.24	Fine Sand
Medium Sand	0.25	10	10	0.083	8.3	0.37	Medium Sand
Coarse Sand	0.26	10	10	0.083	8.3	0.38	Coarse Sand
Gravely Sand	0.26	10	10	0.083	8.3	0.38	Gravely Sand
Fine Gravel	0.26	10	10	0.083	8.3	0.38	Fine Gravel
Medium Gravel	0.20	38.52	23.06	0.5	444.1356	15.83	Medium Gravel
Coarse Gravel	0.18	10	10	0.083	8.3	0.27	Coarse Gravel
Sandstone	0.25	10	10	0.083	8.3	0.37	Sandstone
Siltstone	0.18	10	10	0.083	8.3	0.27	Siltstone
Shale	0.05	10	10	0.083	8.3	0.07	Shale
Limestone	0.13	10	10	0.083	8.3	0.19	Limestone
Basalt	0.19	10	10	0.083	8.3	0.28	Basalt
Volcanic Tuff	0.20	10	10	0.083	8.3	0.30	Volcanic Tuff
Standing Liquids	Х	10	10	0.083	8.3	1.48	Standing Liquids

1	2	3	4	5	6
0.083	0.166	0.250	0.332	0.415	0.500
				×	
7	8	9	10	11	12
0.581	0.664	0.750	0.830	0.913	1.000

NOTE: This is an <u>estimate</u> tool designed for quick field estimates of whether a C-141 should be requred (*I.e. a release is estimated to be greater than or less than 5 barrel volumes*)

Choose the one prevailing ground type for estimating spill volumes at a single location.

Note that the depth should be measured in feet and tenths of feet (1 inch = .083)

Cubic Feet = L x W x D Estimated Barrels = ((Cubic Feet x Porosity) / 5.61) Received by OCD: 7/30/2024 1:56:03 PM TAP ROCK PROMETHEUS CTB PAD D IMPACT MAP 20000000

HHH

E

63

P.STASA.

100

125

E

Ł

6

PROMETHEUS CTB PAD D

INITIAL SITE PHOTOS

10 An 128 -

-378

Statul .

PROMETHEUS ST COM #136H

ATT

4

-

- amini

Google Earth Released to Imaging: 9/10/2024 2:02:04 PM mage © 2024 Alkaus

CE.

0

to

Page 25 of 174

Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

In areas that have similar climate and topography, differences in the kind and amount of rangeland or forest understory vegetation are closely related to the kind of soil. Effective management is based on the relationship between the soils and vegetation and water.

This table shows, for each soil that supports vegetation, the ecological site, plant association, or habitat type; the total annual production of vegetation in favorable, normal, and unfavorable years; the characteristic vegetation; and the average percentage of each species. An explanation of the column headings in the table follows.

An ecological site, plant association, or habitat type is the product of all the environmental factors responsible for its development. It has characteristic soils that have developed over time throughout the soil development process; a characteristic hydrology, particularly infiltration and runoff that has developed over time; and a characteristic plant community (kind and amount of vegetation). The hydrology of the site is influenced by development of the soil and plant community. The vegetation, soils, and hydrology are all interrelated. Each is influenced by the others and influences the development of the others. The plant community on an ecological site, plant association, or habitat type is typified by an association of species that differs from that of other ecological sites, plant associations, or habitat types in the kind and/or proportion of species or in total production. Descriptions of ecological sites are provided in the Field Office Technical Guide, which is available in local offices of the Natural Resources Conservation Service (NRCS). Descriptions of plant associations or habitat types are available from local U.S. Forest Service offices.

Total dry-weight production is the amount of vegetation that can be expected to grow annually in a well managed area that is supporting the potential natural plant community. It includes all vegetation, whether or not it is palatable to grazing animals. It includes the current year's growth of leaves, twigs, and fruits of woody plants. It does not include the increase in stem diameter of trees and shrubs. It is expressed in pounds per acre of air-dry vegetation for favorable, normal, and unfavorable years. In a favorable year, the amount and distribution of precipitation and the temperatures make growing conditions are about average. In an unfavorable year, growing conditions are about average. In an unfavorable soil moisture. Yields are adjusted to a common percent of air-dry moisture content.

Characteristic vegetation (the grasses, forbs, shrubs, and understory trees that make up most of the potential natural plant community on each soil) is listed by common name. Under *rangeland composition and forest understory*, the expected percentage of the total annual production is given for each species making up the characteristic vegetation. The percentages are by dry weight for rangeland. Percentages for forest understory are by either dry weight or canopy cover. The amount that can be used as forage depends on the kinds of grazing animals and on the grazing season.

PROMETHEUS ST COM 136H

Page 26 of 174

Range management requires knowledge of the kinds of soil and of the potential natural plant community. It also requires an evaluation of the present range similarity index and rangeland trend. Range similarity index is determined by comparing the present plant community with the potential natural plant community on a particular rangeland ecological site. The more closely the existing community resembles the potential community, the higher the range similarity index. Rangeland trend is defined as the direction of change in an existing plant community relative to the potential natural plant community. Further information about the range similarity index and rangeland trend is available in the "National Range and Pasture Handbook," which is available in local offices of NRCS or on the Internet.

The objective in range management is to control grazing so that the plants growing on a site are about the same in kind and amount as the potential natural plant community for that site. Such management generally results in the optimum production of vegetation, control of undesirable brush species, conservation of water, and control of erosion. Sometimes, however, an area with a range similarity index somewhat below the potential meets grazing needs, provides wildlife habitat, and protects soil and water resources.

Reference:

United States Department of Agriculture, Natural Resources Conservation Service, National range and pasture handbook.

Report—Rangeland and Forest Vegetation Classification, Productivity, and Plant Composition

Received by OCD: 7/30/2024 1:56:03 PM

Map unit symbol and soil	Ecological Site, Plant	Total d	ry-weight proc	luction	Characteristic rangeland	Compositio		
name	Association, or Habitat Type	Favorable year	Normal year	Unfavorable year	or forest understory vegetation	n	Rangeland	Forest understory
		Lb/ac	Lb/ac	Lb/ac		Pct dry wt	Pct dry wt	
SR—Simona-Upton association								
Simona	Shallow Sandy	900	550	200	black grama	25		
	(R070BD002NM)				sideoats grama	20		
					blue grama	10		
					other perennial forbs	10		-
					dropseed	5		
					Hesperostipa neomexicana	5		
					other shrubs	5		
					other perennial grasses	5		
					threeawn	5		-
					featherplume	3		
					уисса	2		
Upton	Shallow (R070BC025NM)	500	350	200	black grama	15		
		10.22	The set		other shrubs	15	n. Gliveli	1222
		1. Sente			other annual forbs	15	7 - X 6 - 4	
	·尼之前,18世纪的19月	民任命に		12.5	creosote bush	10		
					gypsum grama	10	t, galende	
				12.6	other perennial grasses	10		
		Contraction of the	JAL TI		burrograss	5	and state	
				1. 54.35	bush muhly	5		
		Sec. a.	3-1-2-05		other perennial forbs	5		1973-92VL
			in a serie	Const?	slim tridens	5		Stores -
			Sec. 10		sand dropseed	3		
	S		17 Y (Y 84)		mesa dropseed	2	in case in a	1.1.53

USDA Natural Resources Conservation Service

	Rangeland and Forest veg		ioation, i roud	curry, and ra	nt Composition–Lea County			
Map unit symbol and soil name	Ecological Site, Plant	Total d	ry-weight proc	duction	Characteristic rangeland or forest understory	Compositio		
	Association, or Habitat Type	Favorable year	Normal year	Unfavorable year	vegetation		Rangeland	Forest understory
		Lb/ac	Lb/ac	Lb/ac		Pct dry wt	Pct dry wt	
FF—Tonuco loamy fine sand, 0 to 3 percent slopes								
Tonuco	Shallow 12-17" PZ	1,300	900	600	sideoats grama	25		
	(R077DY048TX)				black grama	15		
					little bluestern	15		
					other perennial forbs	10		
					blue grama	5		
					buffalograss	5		
					hairy grama	5		
					other shrubs	5		
					other perennial grasses	5		
					sand dropseed	5		
					New Mexico Feathergrass	3		
					yucca	2		

Data Source Information

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

Released to Imaging: 9/10/2024 2:02:04 PM

Received by OCD: 7/30/2024 1:56:03 PM

Web Soil Survey National Cooperative Soil Survey

MAP LEGEND Spoil Area Area of Interest (AOI) 1:20,000. Area of Interest (AOI) Stony Spot â Soils Very Stony Spot Ø Soil Map Unit Polygons Wet Spot Ŷ Soil Map Unit Lines ~ Other Δ Soil Map Unit Points Special Line Features - M scale. **Special Point Features** Water Features Blowout 0 Streams and Canals ----Borrow Pit measurements. X Transportation Clay Spot 褑 Rails +++ Closed Depression Ô Interstate Highways Gravel Pit X US Routes -Gravelly Spot 4 Major Roads Landfill ۵ Local Roads Lava Flow Background Aerial Photography Marsh or swamp عله Mine or Quarry 衆 Miscellaneous Water ø Perennial Water О Rock Outcrop \sim Saline Spot +12,2020 ****** Sandy Spot Severely Eroded Spot 0 Sinkhole Ô Slide or Slip ò Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map

Source of Map: Natural Resources Conservation Service Web Soil Survey URL: Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 20, Sep 6, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020-May

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Released to Imaging: 9/10/2024 2:02:04 PM

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI		
SR	Simona-Upton association	6.6	23.7%		
TF	Tonuco loamy fine sand, 0 to 3 percent slopes	21.3	76.3%		
Totals for Area of Interest		27.9	100.0%		

.

National Flood Hazard Layer FIRMette

12 33'54"W 32°12'9"N

9/10/2024 2:02:04

Legend

authoritative NFHL web services provided by FEMA. This map was exported on 5/30/2024 at 3:41 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

250

LEA COUNTY

350130

1.500

1.000

Feet 1:6,000

T24S R33E S27

2.000

103°33'17"W 32°11'38"N

(128)

PROMETHEUS CTB PAD D KARST MAP

PROMETHEUS ST COM #136H

128

2

128

Google Earth Released to Imaging: 9/10/2024 2:02:04 PM Intege © 2024 Airbus Hearns pit

(128)

Part Parts Parts

(128)

A.G

2

Hearns pit

PROMETHEUS CTB PAD D WATERCOURSE MAP

PROMETHEUS ST COM #136H

52

fill fill

101

State and

128

Google Earth, Released to Imaging: 9/10/2024 2:02:04 PM

100

0

1 mi

\gtrsim	
0	
0	ing State .
8	1 T 3.
leasea	
2	
2	
2	
-	interstate Storan Commission

New Mexico Office of the State Engineer Wells with Well Log Information

O=orpha	aced, ned,	(quart					(NAD8	3 UTM in meters)				(in fe	et)		
Cala	POD	Country	Source	q q q 6416 4	Sec. 1	we Due	. v	v	Distance Start Date	Finish Date	Log File Date	Depth Well			License Number
Code	CUB	LE	Source				,	3563309	783 08/01/2019			47		CURRIE, SHANEGTY"ENER	1575
	CUB	LE		1 1 3	23	24S 33E	636519	3563681 🌍	862 07/31/2019	07/31/2019	08/22/2019	30		CURRIE, SHANEGTY"ENER	1575
<u>us Searcl</u>	<u>h (in meter</u>	<u>s):</u>													
35742.18			Northing	; (Y): 3	56330	7.27		Radius: 100	00						
L	O=orphai C=the fil closed) Code	POD Code Subbasin CUB CUB	O=orphaned, C=the file is (quart closed) POD Code Subbasin County CUB LE CUB LE	O=orphaned, C=the file is (quarters are 1=N closed) POD Code Subbasin County Source CUB LE CUB LE us Search (in meters):	O=orphaned, C=the file is closed) POD Q Q Q Code Subbasin County Source 6416 4 CUB LE 1 1 3 CUB LE 1 1 3 CUB LE 1 1 3	O=orphaned, C=the file is closed) POD Q Q Q (quarters are 1=NW 2=NE 3=SW 4 (quarters are smallest to large POD Q Q Q Q Code Subbasin County Source 6416 4 Sec T CUB LE 1 1 3 23 2 CUB LE 1 1 3 23 2 CUB LE 1 1 3 2 2 2 CUB LE 1 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	O=orphaned, C=the file is closed) POD Q Q Q Code Subbasin COUB LE QUB LE QUB LE QUB LE QUB LE QUB QUB QUB QUB QUB QUB QUB QUB QUB QU	O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD82 POD q q q Code Subbasin County Source 6416 4 Sec Tws Rng X CUB LE 1 3 3 23 24S 33E 636525 CUB LE 1 1 3 23 24S 33E 636519 us Search (in meters):	O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) POD q q q Code Subbasin County Source 64 16 4 Sec Tws Rng CUB LE 1 1 3 23 24S 33E 636519 3563681 CUB LE 1 1 3 23 24S 33E 636519 3563681	O=orphaned, C=the file is closed) POD POD Quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (NAD83 UTM in met	O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) POD	O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) POD q q q q q q q p p p p <td>O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (in feetile is closed) (in feetile is closed) POD POD Image: Quarters are smallest to largest) (NAD83 UTM in meters) Distance Start Date 783 Finish Date 08/02/2019 Log File Depth Date Depth Date Code Subbasin CUB County LE Source 64 16 4 Sec 1 3 Tws 24S Rng 34S X Y 636525 Distance Start Date 783 Finish Date 08/02/2019 Log File Date Depth Date CUB LE 1 1 3 23 24S 33E 636519 3563681 862 07/31/2019 07/31/2019 08/22/2019 30</td> <td>O=orphaned, C=the file is closed) (quarters are 1=NV 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (in feet) POD Q q q q Q</td> <td>O = orphaned, C = the file is closed) (quarters are 1=NV 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (NAD83 UTM in meters) (in feet) POD POD Q q q q (NAD83 UTM in meters) (NAD83 UTM in meters) (NAD83 UTM in meters) (In feet) (In feet) Code Subbasin CUB County LE Source LE 64 16 4 1 3 3 2 Sec Tws Rng 636525 X Y 636525 Distance 3563681 Start Date 783 Finish Date 08/02/2019 Log File 08/02/2019 Depth 47 Weter Veter 47 Depth Weter CURRIE, SHANEGTY"ENER</td>	O=orphaned, C=the file is closed) (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (in feetile is closed) (in feetile is closed) POD POD Image: Quarters are smallest to largest) (NAD83 UTM in meters) Distance Start Date 783 Finish Date 08/02/2019 Log File Depth Date Depth Date Code Subbasin CUB County LE Source 64 16 4 Sec 1 3 Tws 24S Rng 34S X Y 636525 Distance Start Date 783 Finish Date 08/02/2019 Log File Date Depth Date CUB LE 1 1 3 23 24S 33E 636519 3563681 862 07/31/2019 07/31/2019 08/22/2019 30	O=orphaned, C=the file is closed) (quarters are 1=NV 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (in feet) POD Q q q q Q	O = orphaned, C = the file is closed) (quarters are 1=NV 2=NE 3=SW 4=SE) (quarters are smallest to largest) (NAD83 UTM in meters) (NAD83 UTM in meters) (in feet) POD POD Q q q q (NAD83 UTM in meters) (NAD83 UTM in meters) (NAD83 UTM in meters) (In feet) (In feet) Code Subbasin CUB County LE Source LE 64 16 4 1 3 3 2 Sec Tws Rng 636525 X Y 636525 Distance 3563681 Start Date 783 Finish Date 08/02/2019 Log File 08/02/2019 Depth 47 Weter Veter 47 Depth Weter CURRIE, SHANEGTY"ENER

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

WELLS WITH WELL LOG INFORMATION

New Mexico Office of the State Engineer Wells with Well Log Information

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)	· ·				SW 4=SE	,	D83 UTM in me	ters)				(in fe	eet)		
	POD Sub-		999									Log File	Depth	Depth		License
POD Number	Code basin Co	unty Source		Sec	Tws	Rng	х	Y	Distance	Start Date	Finish Date	•	-	Water	Driller	Number
C 04339 POD1	CUB L	E	133	23	24S	33E	636525	3563309 🌍	783	08/01/2019	08/02/2019	08/22/2019	47		CURRIE, SHANEGTY" ENER	1575
<u>C 04339 POD8</u>	CUB L	E	113	23	24S	33E	636519	3563681 🌍	862	07/31/2019	07/31/2019	08/22/2019	30		CURRIE, SHANEGTY" ENER	1575
C 04339 POD7	CUB L	E	442	23	24S	33E	636473	3564011 🌍	1015	07/31/2019	07/31/2019	08/22/2019	43		CURRIE, SHANEGTY" ENER	1575
C 04339 POD2	CUB L	E	233	23	24S	33E	636789	3563315 🌍	1047	08/06/2019	08/06/2019	08/22/2019			CURRIE, SHANEGTY" ENER	1575
C 03600 POD4	CUB L	E Shallow	331	26	24S	33E	636617	3562293 🥘	1339	01/08/2013	01/08/2013	01/30/2013			RODNEY HAMMER	1186
C 04339 POD3	CUB L	E	243	23	24S	33E	637273	3563323 🤤	1531	08/06/2019	08/06/2019	08/22/2019	38		CURRIE, SHANEGTY" ENER	1575
C 04339 POD4	CUB L	E	243	23	24S	33E	637273	3563323 🌍	1531	08/06/2019	08/07/2019	08/22/2019	47		CURRIE, SHANEGTY" ENER	1575
C 03600 POD1			221	26	24S	33E	637275	3563023 🌍	1558	01/07/2013	01/07/2013	01/30/2013			RODNEY HAMMER	1186
<u>C 04708 POD1</u>		E	134		24S		634149	3563262 🌍		03/23/2023	03/27/2023		100		JOE SKAGGS	1453
<u>C 03600 POD7</u>			313				636726	3561968 🌍		01/08/2013	01/09/2013				RODNEY HAMMER	1186
C 03565 POD9	CUB L	E	44	15	24S	33E	636430	3565005 🌍	1832			04/02/2013				
C 04339 POD5	CUB L	E	234	23	24S	33E	637580	3563328 🌍	1837	08/06/2019	08/07/2019	08/22/2019	54		CURRIE, SHANEGTY" ENER	1575
<u>C 04339 POD6</u>	CUB L	E	312	23	24S	33E	637340	3564386 🌍	1928	07/31/2019	07/31/2019	08/22/2019	60		CURRIE, SHANEGTY" ENER	1575
C 03662 POD1	CL	E Shallow	312	23	24S	33E	637342	3564428 🌍	1953	08/19/2013	08/20/2013	09/16/2013	550	110	JOHN SIRMAN	1654
C 04339 POD10	CUB L	E	414	23	24S	33E	637688	3563503 🌍	1955	08/01/2019	08/01/2019	08/22/2019	49		CURRIE, SHANEGTY" ENER	1575
C 04339 POD9	CUB L	E	342	23	24S	33E	637731	3563913 🌍	2079	08/01/2019	08/01/2019	08/22/2019	45		CURRIE, SHANEGTY" ENER	1575

Received by OCD: 7/	/30/2024 1:56	:03 P	M										Page 38 of 1
(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replace O=orphaned C=the file is closed)	ed,				NE 3=SW 4= nallest to larg	,	D83 UTM in me	eters)		(in fe	eet)	
,	POD												
POD Number	Sub- Code basin	Count	v Source	qqq 6416 4	Sec	Tws Rng	х	Y	Distance Start Date	Log File Finish Date Date	-	Depth Water Driller	License Number
C 03600 POD6	CUB	LE				24S 33E	637383	3562026	2081 01/09/2013	01/09/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD6	CUB	LE	Shallow	144	23	24S 33E	637834	3563338 🤤	2091 01/05/2013	01/05/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD2	CUB	LE	Shallow	324	23	24S 33E	637846	3563588 🌍	2122 01/06/2013	01/07/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD7	CUB	LE	Shallow	444	23	24S 33E	637946	3563170 🌍	2208 01/05/2013	01/05/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD5	CUB	LE	Shallow	244	23	24S 33E	637988	3563334 🌍	2246 01/06/2013	01/06/2013 01/30/2013		RODNEY HAMMER	1186
C 03600 POD3	CUB	LE	Shallow	342	26	24S 33E	637784	3562340 🌍	2259 01/16/2013	01/16/2013 01/30/2013		RODNEY HAMMER	1186
C 03565 POD8	CUB	LE		4 1	15	24S 33E	635485	3565610 🌍	2317	04/02/2013			
<u>C 03601 POD3</u>	CUB	LE	Shallow	133	24	24S 33E	638142	3563413 🌍	2401 01/06/2013	01/06/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD1	CUB	LE	Shallow	442	23	24S 33E	638124	3563937 🌍	2463 12/21/2012	12/21/2012 01/08/2013		RODNEY HAMMER	1186
C 03600 POD5	CUB	LE	Shallow	324	26	24S 33E	637857	3562020 🌍	2475 01/09/2013	01/09/2013 01/30/2013		RODNEY HAMMER	1186
C 03603 POD3	CUB	LE	Shallow	411	35	24S 33E	636890	3561092 🌍	2494 01/13/2013	01/13/2013 01/30/2013		RODNEY HAMMER	1186
C 03603 POD2	CUB	LE	Shallow	312	35	24S 33E	637384	3561167 🌍	2697 01/11/2013	01/11/2013 01/30/2013		RODNEY HAMMER	1186
C 03603 POD5	CUB	LE	Shallow	332	35	24S 33E	636745	3560767 🌍	2730 01/12/2013	01/13/2013 01/30/2013		RODNEY HAMMER	1186
C 03603 POD1	CUB	LE	Shallow	322	35	24S 33E	637805	3561225 🌍	2930 01/10/2013	01/10/2013 01/30/2013		RODNEY HAMMER	1186
C 03603 POD6	CUB	LE	Shallow	313	35	24S 33E	636749	3560447 🌍	3032 01/13/2013	01/13/2013 01/30/2013		RODNEY HAMMER	1186
C 03601 POD4	CUB	LE	Shallow	333	24	24S 33E	638162	3561375 🌍	3096 01/03/2013	01/04/2013 01/30/2013		RODNEY HAMMER	1186
C 03600 POD2	CUB	LE	Shallow	441	25	24S 33E	638824	3562329 🌍	3233 01/07/2013	01/08/2013 01/30/2013		RODNEY HAMMER	1186
C 03602 POD2	CUB	LE	Shallow	441	25	24S 33E	638824	3562329 🌍	3233 01/15/2013	01/15/2013 01/30/2013		RODNEY HAMMER	1186
C 03917 POD1	С	LE	Shallow	413	13	24S 33E	638374	3565212 🌍	3249 03/01/2016	03/04/2016 03/11/2016	600	420 CASE KEY	1058
C 04824 POD1	CUB	LE		112	16	24S 33E	634113	3566203 🌍	3323 04/16/2024	04/16/2024 04/25/2024	105	JASON MALEY	1833

5/30/24 2:49 PM

Released to Imaging: 9/10/2024 2:02:04 PM

Received by OCD: 7/3 (A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced O=orphaned, C=the file is closed)	l,	(quarters				SW 4=SE) to largest)	(NA	D83 UTM in m	eters)			(in fe	eet)	Page 39
POD Number	POD Sub- Code basin C	ounty	Source	q q q 6416 4		Tws	Rng	x	Y	Distance Start Date	Finish Date	Log File e Date	Depth Well	Depth Water Driller	License Number
C 03603 POD4		LE	Shallow				•	637789	3560461			01/30/2013		RODNEY HAMMER	1186
C 04741 POD1	CUB	LE		124	10	24S	33E	636076	3567039 🧧	3747 05/08/2023	05/11/2023	06/15/2023	55	JOHN W WHITE	1456
C 03666 POD1	С	LE	Shallow	234	13	24S	33E	639132	3565078 🌍	3824 10/18/2013	10/26/2013	11/14/2013	650	390 CASEY KEYS	1058
C 03565 POD3	CUB	LE		34	08	24S	33E	632763	3566546 🌍	4400 09/27/2012	10/21/2012	12/11/2012		1533 STEWART, PHILLIP D. (LD)	331
C 04768 POD1	CUB	LE		334	19	24S	33E	631048	3563110 🌍	4698 12/13/2023	12/13/2023	01/12/2024	55		1833
Record Count: 41	ius Search (in	mete	ers):												

Easting (X): 635742.18

Northing (Y): 3563307.27

Radius: 5000

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

			(quar	ters a	re 1=l	VW 2=	=NE 3=	SW 4=SE	=)		
			(qua	arters a	are sr	nalles	t to larg	gest)	(NAD83 UT	M in meters)	
Well Tag	РС	DD Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
NA	С	04339 POD1	1	3	3	23	24S	33E	636525	3563309	<u> </u>
Driller Licen	se:	1575	Driller C	omp	any	: Cl	JRRIE	E DRILL	ING COM	PANY, INC	
Driller Name	:	CURRIE, SHAN	EGTY"EN	IER							
Drill Start Da	te:	08/01/2019	Drill Fin	ish C)ate:	1	08/0	02/2019	Plug	Date:	08/02/2019
Log File Date	e:	08/22/2019	PCW Ro	v Da	te:				Sour	ce:	
Pump Type:			Pipe Dis	schar	rge \$	Size:			Estir	nated Yield	l:
Casing Size:			Depth V	Vell:			47 1	feet	Dept	h Water:	
				_	_	_					

			(quarters are 1=	VW 2=	=NE 3=	SW 4=SE	E)		
			(quarters are sr	nalles	t to larg	gest)	(NAD83 UT	M in meters)	
Well Tag	PC	DD Number	Q64 Q16 Q4	Sec	Tws	Rng	Х	Y	
NA	С	04339 POD8	1 1 3	23	24S	33E	636519	3563681	@
Driller Licen	se:	1575	Driller Company	: Cl	JRRIE		ING COM	PANY, INC	
Driller Name):	CURRIE, SHAN	EGTY"ENER						
Drill Start Da	ate:	07/31/2019	Drill Finish Date:		07/3	31/2019	Plug	Date:	07/31/2019
Log File Dat	e:	08/22/2019	PCW Rcv Date:				Sou	ce:	
Pump Type:			Pipe Discharge	Size:			Estir	nated Yield	d:
Casing Size	:		Depth Well:		30 1	feet	Dept	th Water:	
	-								

			(quar	ters a	re 1=	NW 2:	=NE 3=	SW 4=SE	E)		
			(qua	rters	are si	nalles	t to larg	gest)	(NAD83 UT	M in meters)	
Well Tag	РС	D Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
NA	С	04339 POD7	4	4	2	23	24S	33E	636473	3564011	e
Driller Licen	se:	1575	Driller C	omp	any	: CI	JRRI	E DRILL	ING COM	PANY, INC	;
Driller Name):	CURRIE, SHAN	EGTY"EN	IER							
Drill Start Da	ate:	07/31/2019	Drill Fin	ish C	Date	:	07/3	31/2019	Plug	Date:	07/31/2019
Log File Dat	e:	08/22/2019	PCW Ro	v Da	ite:				Sour	ce:	
Pump Type:			Pipe Dis	scha	rge 🗄	Size:			Estir	nated Yiel	d:
Casing Size	:		Depth V	/ell:			43 1	feet	Dept	h Water:	
N											

							=NE 3= t to larg	SW 4=SE jest)		M in meters)	
Well Tag	PC	DD Number	Q64	Q16	Q4	Sec	Tws	Rng	Х	Y	
NA	С	04339 POD2	2	3	3	23	24S	33E	636789	3563315	
Driller Licen	se:	1575	Driller C	omp	any	: Cl	JRRI	E DRILL	ING COM	PANY, INC	
Driller Name	:	CURRIE, SHANI	EGTY"EN	ER							
Drill Start Da	ate:	08/06/2019	Drill Fin	ish C	Date		08/0	06/2019) Plug	Date:	08/06/2019
Log File Dat	e:	08/22/2019	PCW Ro	v Da	te:				Soui	rce:	
Pump Type:			Pipe Dis	scha	rge \$	Size:			Estir	mated Yield	d:
Casing Size	:		Depth V	Vell:					Dept	th Water:	

5

		New l Poi i											
Well Tag		DD Number 03600 POD4		(quarte (quar	ers ar ters a	e 1=N re sn	NW 2= nalles Sec	NE 3= to larg Tws	SW 4=SE		TM in me	ters) Y	
Driller Licen Driller Name		1186 RODNEY HAMM		ler Co	ompa	any:	: NC	DT FC	DR HIRE	=			
Drill Start D Log File Dat Pump Type: Casing Size	te: :	01/08/2013 01/30/2013	PC\ Pip	II Finis W Rcv e Disc oth W	/ Dat	te:		•)8/2013	Sou Esti) Date: rce: mated ` th Wate		Shallow :

128

C04339 POD7-1,015-NO DGW INFO

128

C04339 POD8-862'-NO DGW INFO

PROMETHEUS ST COM #136H

Trent T

Rearns pit

2

C04339 POD2-1,047'-NO DGW INFO

128

C03600 POD4-1,339'-NO DGW INFO

Google Earth Released to Imaging: 9/10/2024 2:02:04 PM

Legend

Page 45 of 174

C03600 POD4-1,339'-NO DGW INFO
C04339 POD1-783'- NO DGW INFO
C04339 POD2-1,047'-NO DGW INFO
C04339 POD7-1,015'-NO DGW INFO
C04339 POD8-862'-NO DGW INFO
PROMETHEUS ST COM #136H

3000 ft

OSE POD Location Map

6/27/2024, 1:21:51 PM

Online web user This is an unofficial map from the OSE's online application.

Natalie Gladden

From:	Velez, Nelson, EMNRD <nelson.velez@emnrd.nm.gov></nelson.velez@emnrd.nm.gov>
Sent:	Thursday, August 3, 2023 8:41 AM
То:	Natalie Gladden
Cc:	tknight@slo.state.nm.us; Bratcher, Michael, EMNRD; Hamlet, Robert, EMNRD; Bramsey@taprk.com; ccombs@taprk.com
Subject:	Re: [EXTERNAL] Tap Rock Extension Request - Prometheus CTB Pad D - NAPP2312327651

Good morning Natalie,

Your 60-day time extension request is approved. Remediation Due date has been updated to September 25, 2023.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

Regards,

Released to Imaging: 9/10/2024 2:02:04 PM

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Natalie Gladden <<u>natalie@energystaffingllc.com</u>>

Sent: Wednesday, August 2, 2023 1:34 PM

To: ocdonline, emnrd, EMNRD <<u>emnrd.ocdonline@emnrd.nm.gov</u>>; Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Hamlet, Robert, EMNRD <<u>Robert.Hamlet@emnrd.nm.gov</u>>; Harimon, Jocelyn, EMNRD <<u>Jocelyn.Harimon@emnrd.nm.gov</u>>; Knight, Tami C. <<u>tknight@slo.state.nm.us</u>> Cc: 'Bill Ramsey' <<u>Bramsey@taprk.com</u>>; Christian Combs <<u>ccombs@taprk.com</u>>

1

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

All,

Imaging: 9/10/2024 2:02:04

PM

On behalf of Tap Rock, we would like to request an extension for the below listed release on the Prometheus CTB Pad D (136H). We will begin delineating this site next week.

Location: Prometheus State Com #136H Incident No. nAPP2312327651 DOR: 4/26/23 API No.: 30-025-48763 ULSTR: O-22-24S-33E County: Lea

Thank you in advance for your time in this matter.

Natalie Gladden Director of Environmental and Regulatory Services Energy Staffing Services, LLC. 2724 NW County Road Hobbs, NM 88240 Cell: 575-390-6397 Office: 575-393-9048 Email: natalie@energystaffingllc.com

Company N	Name:	TAPROCK			Location N	ame:	PROMETH	EUS ST COM	I 136H	Release Da
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil
SP1	SURF	3280	Н	37.1	396	65800	18200	84000	4970	
	2	240								
	4	240								
	6	240								
	8	320								
	10	240	L	ND	ND	ND	ND	ND	212	
SP2	SURF	3280	Н	102	1180	42000	11200	53200	5180	
	2	1280								
	4	2640								
	6	1520								
	8	320								
	10	320	L	ND	ND	ND	ND	ND	322	
			_							
SP3	SURF	>4000	Н	42.3	468	34500	7990	42490	6660	
	2	2880								_
	4	>4000								
	6	1680								
	8	1680								
	10	1120								
	12	720								
	14	400								
	16	240	L	ND	ND	ND	ND	ND	161	
SP4	SURF	2640	н	30.1	271	79500	20900	100400	4380	
	2	560		50.1	2/1	75500	20500	100400	4300	
	4	160	L	ND	ND	ND	ND	ND	71.6	
SP5	SURF	>4000	н	27.1	241	50900	12200	63100	6750	
	2	880								
	4	240								

	6	400								
	8	400								
	10	480								
	12	240	L	ND	ND	ND	ND	ND	221	
SW1	SURF	1200	Н	ND	ND	10400	12800	23200	1290	
	1	240								
	2	80	L	ND	ND	ND	ND	ND	ND	
SW2	SURF	320	Н	ND	ND	2490	2140	4630	360	
	1	640								
	2	160								
	3	160	L	ND	ND	ND	ND	ND	71.3	
SW3	SURF	>4000	Н	ND	ND	2920	1860	4780	5120	
	1	880								
	2	720								
	3	240								
	4	240	L	ND	ND	ND	ND	ND	115	
SW4	SURF	>4000	Н	ND	ND	1800	1670	3470	6220	
	1	160								
	2	160	L	ND	ND	ND	ND	ND	68.5	
SW5	SURF	240	Н	ND	ND	5320	4250	9570	211	
	1	720								
	2	240								
	3	80	L	ND	ND	ND	ND	ND	ND	
SW6	SURF	160	H	ND	ND	2090	2320	4410	33.2	
	1	720								
	2	880								
	3	160								
	4	80	L	ND	ND	ND	ND	ND	ND	

PROMETHEUS CTB PAD D DELINEATION MAP

Google Earth Released to Imaging: 9/10/2024 2:02:04 PM Inage @ 2024 Airbus

Legend

- HORIZONTAL SAMPLE POINTS
- 🖉 Taprock Prometheus St Com 136H 991 sq. ft.
- VERTICAL SAMPLE POINTS

COMPANY: TAP ROCK

LOCATION: PROMETHEUS CTB PAD D

POINT	LATITUDE	LONGITUDE
SP1	32.198404°	-103.559840°
SP2	32.198387°	-103.559887°
SP3	32.198352°	-103.559881°
SP4	32.198352°	-103.559837°
SP5	32.198323°	-103.559846°
SW1	32.198421°	-103.559836°
SW2	32.198401°	-103.559884°
SW3	32.198347°	-103.559893°
SW4	32.198311°	-103.559851°
SW5	32.198338°	-103.559812°
SW6	32.198392°	-103.559807°

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name: Prometheus ST Com 136H

Work Order: E304215

Job Number: 20046-0001

Received: 4/28/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 5/1/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 5/1/23

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Prometheus ST Com 136H Workorder: E304215 Date Received: 4/28/2023 7:00:00AM

Natalie Gladden,

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 4/28/2023 7:00:00AM, under the Project Name: Prometheus ST Com 136H.

The analytical test results summarized in this report with the Project Name: Prometheus ST Com 136H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe

Technical Representative/Client Services Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com

Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

West Texas Midland/Odessa Area Rayny Hagan Technical Representative Office: 505-421-LABS(5227)

Envirotech Web Address: www.envirotech-inc.com

Page 54 of 174

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP1-Surf	5
SP2-Surf	6
SP3-Surf	7
SP4-Surf	8
SP5-Surf	9
QC Summary Data	10
QC - Volatile Organics by EPA 8021B	10
QC - Nonhalogenated Organics by EPA 8015D - GRO	11
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	12
QC - Anions by EPA 300.0/9056A	13
Definitions and Notes	14
Chain of Custody etc.	15

Sample Summary

		Sample Sum	illai y		
Tap Rock 7 W. Compress Road		Project Name: Project Number:	Prometheus ST Cor 20046-0001	m 136H	Reported:
Artesia NM, 88210		Project Manager:	Natalie Gladden		05/01/23 16:13
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP1-Surf	E304215-01A	Soil	04/26/23	04/28/23	Glass Jar, 2 oz.
SP2-Surf	E304215-02A	Soil	04/26/23	04/28/23	Glass Jar, 2 oz.
SP3-Surf	E304215-03A	Soil	04/26/23	04/28/23	Glass Jar, 2 oz.
SP4-Surf	E304215-04A	Soil	04/26/23	04/28/23	Glass Jar, 2 oz.
SP5-Surf	E304215-05A	Soil	04/26/23	04/28/23	Glass Jar, 2 oz.

		impre D					
Tap Rock	Tap Rock Project Name: Prometheus ST Com 136H						
7 W. Compress Road	Project Numbe	er: 200	46-0001		Reported:		
Artesia NM, 88210	Project Manag	er: Nata	alie Gladden			5/1/2023 4:13:47PM	
		SP1-Surf					
		E304215-01					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2317071	
Benzene	0.376	0.250	10	04/28/23	04/28/23		
Ethylbenzene	3.42	0.250	10	04/28/23	04/28/23		
Toluene	3.76	0.250	10	04/28/23	04/28/23		
p-Xylene	9.73	0.250	10	04/28/23	04/28/23		
o,m-Xylene	27.4	0.500	10	04/28/23	04/28/23		
Fotal Xylenes	37.1	0.250	10	04/28/23	04/28/23		
Surrogate: 4-Bromochlorobenzene-PID		102 %	70-130	04/28/23	04/28/23		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: RKS		Batch: 2317071	
Gasoline Range Organics (C6-C10)	396	200	10	04/28/23	04/28/23		
Surrogate: 1-Chloro-4-fluorobenzene-FID		94.9 %	70-130	04/28/23	04/28/23		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2317073	
Diesel Range Organics (C10-C28)	65800	2500	100	04/28/23	05/01/23		
Dil Range Organics (C28-C36)	18200	5000	100	04/28/23	05/01/23		
Surrogate: n-Nonane		266 %	50-200	04/28/23	05/01/23	<i>S5</i>	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: BA		Batch: 2317075	
Chloride	4970	40.0	2	04/28/23	04/28/23		

Sample Data

Sample Data

		ampic D				
Tap Rock	Project Name:	Pro	metheus ST Com 1	36H		
7 W. Compress Road	Project Numbe	er: 200	46-0001		Reported:	
Artesia NM, 88210	Project Manag	ger: Nata	alie Gladden			5/1/2023 4:13:47PM
		SP2-Surf				
		E304215-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2317071
Benzene	12.0	0.250	10	04/28/23	04/28/23	
Ethylbenzene	13.4	0.250	10	04/28/23	04/28/23	
Toluene	64.5	0.250	10	04/28/23	04/28/23	
o-Xylene	24.0	0.250	10	04/28/23	04/28/23	
o,m-Xylene	78.2	0.500	10	04/28/23	04/28/23	
Fotal Xylenes	102	0.250	10	04/28/23	04/28/23	
Surrogate: 4-Bromochlorobenzene-PID		96.5 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	: RKS		Batch: 2317071
Gasoline Range Organics (C6-C10)	1180	200	10	04/28/23	04/28/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		102 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	kg Analyst: KM			Batch: 2317073
Diesel Range Organics (C10-C28)	42000	2500	100	04/28/23	05/01/23	
Dil Range Organics (C28-C36)	11200	5000	100	04/28/23	05/01/23	
Surrogate: n-Nonane		396 %	50-200	04/28/23	05/01/23	<i>S5</i>
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	: BA		Batch: 2317075
Chloride	5180	400	20	04/28/23	04/28/23	

Sample Data

Page	59	of 174

		impre D				
Tap Rock	Project Name:		netheus ST Com 1 46-0001	36Н		D (1
7 W. Compress Road Artesia NM, 88210	Project Numbe Project Manag		46-0001 alie Gladden	Reported: 5/1/2023 4:13:47PM		
Antosia NWI, 66210	I lojeet Mallag	,ci. Nau				5/1/2025 4.15.4/11
		SP3-Surf				
		E304215-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2317071
Benzene	ND	0.500	20	04/28/23	04/28/23	
Ethylbenzene	3.50	0.500	20	04/28/23	04/28/23	
Toluene	2.47	0.500	20	04/28/23	04/28/23	
p-Xylene	11.4	0.500	20	04/28/23	04/28/23	
o,m-Xylene	30.8	1.00	20	04/28/23	04/28/23	
Total Xylenes	42.3	0.500	20	04/28/23	04/28/23	
Surrogate: 4-Bromochlorobenzene-PID		101 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: RKS		Batch: 2317071
Gasoline Range Organics (C6-C10)	468	400	20	04/28/23	04/28/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.5 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2317073
Diesel Range Organics (C10-C28)	34500	2500	100	04/28/23	05/01/23	
Oil Range Organics (C28-C36)	7990	5000	100	04/28/23	05/01/23	
Surrogate: n-Nonane		271 %	50-200	04/28/23	05/01/23	<i>S5</i>
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: BA		Batch: 2317075
Chloride	6660	400	20	04/28/23	04/28/23	

Sample Data

Page (50 (of .	17	'4
--------	------	------	----	----

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbo Project Manag	er: 2004	netheus ST Com 1 46-0001 alie Gladden	136H		Reported: 5/1/2023 4:13:47PM
		SP4-Surf				
		E304215-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RKS		Batch: 2317071
Benzene	ND	0.250	10	04/28/23	04/28/23	
Ethylbenzene	2.57	0.250	10	04/28/23	04/28/23	
oluene	1.18	0.250	10	04/28/23	04/28/23	
-Xylene	8.44	0.250	10	04/28/23	04/28/23	
o,m-Xylene	21.6	0.500	10	04/28/23	04/28/23	
Total Xylenes	30.1	0.250	10	04/28/23	04/28/23	
urrogate: 4-Bromochlorobenzene-PID		99.5 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RKS		Batch: 2317071
Gasoline Range Organics (C6-C10)	271	200	10	04/28/23	04/28/23	
urrogate: 1-Chloro-4-fluorobenzene-FID		91.7 %	70-130	04/28/23	04/28/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2317073
Diesel Range Organics (C10-C28)	79500	2500	100	04/28/23	05/01/23	
Dil Range Organics (C28-C36)	20900	5000	100	04/28/23	05/01/23	
'urrogate: n-Nonane		243 %	50-200	04/28/23	05/01/23	\$5
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2317075
Chloride	4380	40.0	2	04/28/23	04/28/23	

p,m-Xylene

	Sam	ple Dat	ta					
Tap Rock	Project Name:	Project Name: Prometheus ST Com 136H						
7 W. Compress Road	Project Number:	20046-	0001			Reported:		
Artesia NM, 88210	Project Manager:	Natalie	Natalie Gladden					
	SP	5-Surf						
	E30	4215-05						
		Reporting						
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes		
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RKS		Batch: 2317071		
Benzene	0.201	0.0500	2	04/28/23	05/01/23			
Ethylbenzene	2.40	0.0500	2	04/28/23	05/01/23			
Toluene	1.11	0.0500	2	04/28/23	05/01/23			
o-Xylene	7.73	0.0500	2	04/28/23	05/01/23			

2

04/28/23

05/01/23

Total Xylenes	27.1	0.0500	2	04/28/23	05/01/23	
Surrogate: 4-Bromochlorobenzene-PID		110 %	70-130	04/28/23	05/01/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: RKS		Batch: 2317071
Gasoline Range Organics (C6-C10)	241	40.0	2	04/28/23	05/01/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		105 %	70-130	04/28/23	05/01/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	yst: KM		Batch: 2317073
Diesel Range Organics (C10-C28)	50900	2500	100	04/28/23	05/01/23	
Oil Range Organics (C28-C36)	12200	5000	100	04/28/23	05/01/23	
Surrogate: n-Nonane		218 %	50-200	04/28/23	05/01/23	<i>S5</i>
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: BA		Batch: 2317075
Chloride	6750	400	20	04/28/23	04/28/23	

0.100

19.3

OC Summary Data

Tap Rock 7 W. Compress Road		Project Name: Project Number:		Prometheus ST 20046-0001					Reported:		
Artesia NM, 88210		Project Manager:		Natalie Gladden	1				5/1/2023 4:13:47PM		
	Volatile Organics by EPA 8021B								Analyst: RKS		
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit			
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes		
Blank (2317071-BLK1)							Prepared: 0	4/28/23 A	analyzed: 04/28/23		
Benzene	ND	0.0250									
Ethylbenzene	ND	0.0250									
Toluene	ND	0.0250									
p-Xylene	ND	0.0250									
p,m-Xylene	ND	0.0500									
Total Xylenes	ND	0.0250									
Surrogate: 4-Bromochlorobenzene-PID	7.42		8.00		92.8	70-130					
LCS (2317071-BS1)							Prepared: 0	4/28/23 A	analyzed: 04/28/23		
Benzene	4.01	0.0250	5.00		80.2	70-130					
Ethylbenzene	4.35	0.0250	5.00		86.9	70-130					
Foluene	4.36	0.0250	5.00		87.2	70-130					
o-Xylene	4.50	0.0250	5.00		90.0	70-130					
o,m-Xylene	8.87	0.0500	10.0		88.7	70-130					
Total Xylenes	13.4	0.0250	15.0		89.1	70-130					
Surrogate: 4-Bromochlorobenzene-PID	7.51		8.00		93.9	70-130					
LCS Dup (2317071-BSD1)							Prepared: 0	4/28/23 A	analyzed: 04/28/23		
Benzene	4.25	0.0250	5.00		85.0	70-130	5.76	20			
Ethylbenzene	4.65	0.0250	5.00		93.0	70-130	6.72	20			
Toluene	4.65	0.0250	5.00		92.9	70-130	6.31	20			
p-Xylene	4.79	0.0250	5.00		95.9	70-130	6.38	20			
p,m-Xylene	9.47	0.0500	10.0		94.7	70-130	6.59	20			
Total Xylenes	14.3	0.0250	15.0		95.1	70-130	6.52	20			
Surrogate: 4-Bromochlorobenzene-PID	7.50		8.00		93.7	70-130					

QC Summary Data

		QU L	Juiiiii		a				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number Project Manage	:	Prometheus ST 20046-0001 Natalie Gladder		I			Reported: 5/1/2023 4:13:47PM
	No	onhalogenated	Organic	s by EPA 80	15D - G	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2317071-BLK1)							Prepared: 0	4/28/23 A	nalyzed: 04/28/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.28		8.00		91.0	70-130			
LCS (2317071-BS2)							Prepared: 0	4/28/23 A	nalyzed: 04/28/23
Gasoline Range Organics (C6-C10)	43.8	20.0	50.0		87.5	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.57		8.00		94.6	70-130			
LCS Dup (2317071-BSD2)							Prepared: 0	4/28/23 A	nalyzed: 04/28/23
Gasoline Range Organics (C6-C10)	47.7	20.0	50.0		95.4	70-130	8.56	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.55		8.00		94.4	70-130			

QC Summary Data

		QC D	uIIIII	lary Data	•				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:		Prometheus ST C 20046-0001 Natalie Gladden	Com 136I	H			Reported: 5/1/2023 4:13:47PM
	Nonh	alogenated Org	anics b	y EPA 8015D	- DRO	/ORO			Analyst: KM
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2317073-BLK1)							Prepared: 0	4/28/23 A	nalyzed: 04/28/23
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	44.7		50.0		89.4	50-200			
LCS (2317073-BS1)							Prepared: 0	4/28/23 A	analyzed: 04/28/23
Diesel Range Organics (C10-C28)	256	25.0	250		102	38-132			
Surrogate: n-Nonane	44.7		50.0		89.4	50-200			
Matrix Spike (2317073-MS1)				Source: F	304206-	01	Prepared: 0	4/28/23 A	analyzed: 04/28/23
Diesel Range Organics (C10-C28)	272	25.0	250	ND	109	38-132			
Surrogate: n-Nonane	43.2		50.0		86.3	50-200			
Matrix Spike Dup (2317073-MSD1)				Source: H	304206-	01	Prepared: 0	4/28/23 A	analyzed: 04/28/23
Diesel Range Organics (C10-C28)	276	25.0	250	ND	110	38-132	1.23	20	
Surrogate: n-Nonane	44.0		50.0		88.0	50-200			

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$	•••••						
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager		Prometheus ST 20046-0001 Natalie Gladder		Í			Reported: 5/1/2023 4:13:47PM
		Anions	by EPA	300.0/90564	۸				Analyst: BA
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2317075-BLK1)							Prepared: 0	4/28/23 <i>A</i>	Analyzed: 04/28/23
Chloride	ND	20.0							
LCS (2317075-BS1)							Prepared: 0	4/28/23 A	Analyzed: 04/28/23
Chloride	247	20.0	250		98.9	90-110			
Matrix Spike (2317075-MS1)				Source:	E304205-	01	Prepared: 0	4/28/23 A	Analyzed: 04/28/23
Chloride	246	20.0	250	ND	98.3	80-120			
Matrix Spike Dup (2317075-MSD1)				Source:	E304205-	01	Prepared: 0	4/28/23 A	Analyzed: 04/28/23
Chloride	244	20.0	250	ND	97.6	80-120	0.717	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Definitions and Notes

Tap Rock	Project Name:	Prometheus ST Com 136H	
7 W. Compress Road	Project Number:	20046-0001	Reported:
Artesia NM, 88210	Project Manager:	Natalie Gladden	05/01/23 16:13

S5 Surrogate spike recovery exceeded acceptance limits due to interfering target and/or non-target analytes.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

DNI Did Not Ignite

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

niort	Information	

Andrew Misso

maging

Chain of Custody

Client: TAPROCK Project: PROMETHEUS STCOM 1364 TAT **EPA** Program Lab Use Only Bill To 3D Standard CWA Job Number 1D 2D SDWA Attention: ESS Lab WO# F304215 20046-0001 X 2724 NW COUNTY ROAD Address: Project Manager: Analysis and Method RCRA City, State, Zip HOBBS, NM 88240 Address: Phone: 575-393-9048 City, State, Zip State by 8015 EMAIL TO: Natalie@energystaffingllc.com GRO/DRO by 8015 Phone: NM CO UT AZ TX Dakoatah@energystaffingllc.com Chloride 300.0 VOC by 3260 Email: BTEX by 8021 6010 NN X × Report due by: DRO/ORO RGDOC Metals BGDOC Lillabi Time Date No. of Remarks Matrix Sample ID Containers IN LANAN JOLEN Sampied Sampled X SPI-SURF 5 4/2423 SP2 - SYRF 2 SP3 - 542F SP4 - 542F 3 SP5- SULF \$ 4/26/23 S 1 Additional Instructions: I, ffield sampler), attest to the validity and authenticity of this sample. Lam aware that tampering with or intentionally misbelling the sample location, date or time of collection is considered fraud and may be grounds for legal action. Samples requiring thermal preservation must be received on ice the day they are sampled or (eceived packed in ice at an ave temp above 0 but less than 6°C on subsequent days Lab Use Guly Relinquished by (Signature) Received by: (Signature) ime 4-27-23 1330 mand and (8) 1 W Greicenverd' em lider IMM Received by: (Signature) Date U-2723 100 Date 04/28/23 7:00 Relinquished by. (Signature) Time 27-23 1745 micull Curs 4.0"(Relinquished by: (Signation) Time

Page _____ of /

Received by OCD:

7/30/2024 1:56:03 PM

16

Page 15 of

5

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock I	Date Received:	04/28/23 0	7:00	Work Order ID: E304215
Phone:	(575) 390-6397	Date Logged In:	04/28/23 0	7:32	Logged In By: Irene Yazzie
Email:		Due Date:	05/01/23 1	7:00 (1 day TAT)	
Chain o	<u>f Custody (COC)</u>				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was the	he COC complete, i.e., signatures, dates/times, requeste	d analyses?	No		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in th i.e, 15 minute hold time, are not included in this disucssion		Yes		Comments/Resolution
Sample	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Project manager and time sampled not
<u>Sample</u>	<u>Cooler</u>				provided on the COC by client.
7. Was a	sample cooler received?		Yes		
8. If yes	, was cooler received in good condition?		Yes		
9. Was the	he sample(s) received intact, i.e., not broken?		Yes		
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are r minutes of sampling		Yes		
13. If no	visible ice, record the temperature. Actual sample te	mperature: 4°	С		
	Container	-			
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?		Yes		
19. Is the	e appropriate volume/weight or number of sample container	rs collected?	Yes		
	abel				
Field La					
	e field sample labels filled out with the minimum inform	nation:			
20. Were	Sample ID?	nation:	Yes		
20. Were	Sample ID? Date/Time Collected?	nation:	Yes		
20. Were	Sample ID? Date/Time Collected? Collectors name?	nation:			
20. Were Sample	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u>		Yes Yes		
20. Were 3 3 5 5 5 5 6 5 6 6 7 7 7 7 7 7 7 7 7 7 7 7 7	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres		Yes Yes No		
20. Were Sample 21. Does 22. Are	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved?	served?	Yes Yes No NA		
20. Were Sample 21. Does 22. Are 24. Is lat	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met	served?	Yes Yes No		
20. Were Sample 21. Does 22. Are 24. Is lal Multiph	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met tase Sample Matrix	erved? als?	Yes Yes No NA No		
20. Were Sample 21. Does 22. Are 24. Is lal Multiph 26. Does	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were pres sample(s) correctly preserved? b filteration required and/or requested for dissolved met <u>hase Sample Matrix</u> s the sample have more than one phase, i.e., multiphase	served? tals? ?	Yes Yes No NA No		
20. Were 3 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met mase Sample Matrix s the sample have more than one phase, i.e., multiphase is, does the COC specify which phase(s) is to be analyze	served? tals? ?	Yes Yes No NA No		
20. Were 3 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met mase Sample Matrix s the sample have more than one phase, i.e., multiphase es, does the COC specify which phase(s) is to be analyze tract Laboratory	erved? tals? ? ed?	Yes Yes No No No		
20. Were 3 3 3 3 3 3 3 3 3 3 3 4 5 5 5 5 5 5 5 5 5 5 5 5 5	Sample ID? Date/Time Collected? Collectors name? <u>Preservation</u> s the COC or field labels indicate the samples were press sample(s) correctly preserved? b filteration required and/or requested for dissolved met mase Sample Matrix s the sample have more than one phase, i.e., multiphase is, does the COC specify which phase(s) is to be analyze	erved? tals? ? ed? ?	Yes Yes No NA No	Subcontract Lab	

Date

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Jackson 906H

Work Order: E312037

Job Number: 20046-0001

Received: 12/7/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 12/8/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 12/8/23

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Jackson 906H Workorder: E312037 Date Received: 12/7/2023 7:30:00AM

Natalie Gladden,

Page 70 of 174

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 12/7/2023 7:30:00AM, under the Project Name: Jackson 906H.

The analytical test results summarized in this report with the Project Name: Jackson 906H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Michelle Golzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SW 1- Surf	5
SW 2- Surf	6
SW 3- Surf	7
SW 4- Surf	8
SW 5- Surf	9
SW 6- Surf	10
QC Summary Data	11
QC - Volatile Organic Compounds by EPA 8260B	11
QC - Nonhalogenated Organics by EPA 8015D - GRO	12
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	13
QC - Anions by EPA 300.0/9056A	14
Definitions and Notes	15
Chain of Custody etc.	16

Sample Summary

Page 72 of 174

		Sumple Sum	iniai y			
Tap Rock		Project Name:	Jackson 906H		Reported:	
7 W. Compress Road		Project Number:	20046-0001	046-0001		
Artesia NM, 88210		Project Manager:	Natalie Gladden		12/08/23 16:40	
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container	
SW 1- Surf	E312037-01A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	
SW 2- Surf	E312037-02A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	
SW 3- Surf	E312037-03A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	
SW 4- Surf	E312037-04A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	
SW 5- Surf	E312037-05A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	
SW 6- Surf	E312037-06A	Soil	12/05/23	12/07/23	Glass Jar, 2 oz.	

Sumpre Dutu													
Tap Rock	Project Name:	Jack	son 906H										
7 W. Compress Road	Project Numbe	er: 2004	46-0001			Reported:							
Artesia NM, 88210	Project Manag	ger: Nata	ilie Gladden			12/8/2023 4:40:24PM							
		SW 1- Surf											
		E312037-01											
		Reporting											
Analyte	Result	Limit	Dilut	ion Prepared	Analyzed	Notes							
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg	I	Analyst: RKS		Batch: 2349078							
Benzene	ND	0.0250	1	12/07/23	12/08/23								
Ethylbenzene	ND	0.0250	1	12/07/23	12/08/23								
Toluene	ND	0.0250	1	12/07/23	12/08/23								
o-Xylene	ND	0.0250	1	12/07/23	12/08/23								
p,m-Xylene	ND	0.0500	1	12/07/23	12/08/23								
Total Xylenes	ND	0.0250	1	12/07/23	12/08/23								
Surrogate: Bromofluorobenzene		106 %	70-130	12/07/23	12/08/23								
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130	12/07/23	12/08/23								
Surrogate: Toluene-d8		111 %	70-130	12/07/23	12/08/23								
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	I	Analyst: RKS		Batch: 2349078							
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/07/23	12/08/23								
Surrogate: Bromofluorobenzene		106 %	70-130	12/07/23	12/08/23								
Surrogate: 1,2-Dichloroethane-d4		96.0 %	70-130	12/07/23	12/08/23								
Surrogate: Toluene-d8		111 %	70-130	12/07/23	12/08/23								
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	I	Analyst: KM		Batch: 2349083							
Diesel Range Organics (C10-C28)	10400	1250	50	12/07/23	12/08/23								
Oil Range Organics (C28-C36)	12800	2500	50	12/07/23	12/08/23								
Surrogate: n-Nonane		79.7 %	50-200	12/07/23	12/08/23								
Anions by EPA 300.0/9056A	mg/kg	mg/kg	I	Analyst: BA		Batch: 2349080							
Chloride	1290	20.0	1	12/07/23	12/07/23								

Sample Data

Sample Data

	. Du	imple D	uu				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Number Project Manage	r: 2004	son 906H 6-0001 lie Gladd				Reported: 12/8/2023 4:40:24PM
	S	SW 2- Surf					
]	E312037-02					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	RKS		Batch: 2349078
Benzene	ND	0.0250		1	12/07/23	12/08/23	
Ethylbenzene	ND	0.0250		1	12/07/23	12/08/23	
Toluene	ND	0.0250		1	12/07/23	12/08/23	
p-Xylene	ND	0.0250		1	12/07/23	12/08/23	
o,m-Xylene	ND	0.0500		1	12/07/23	12/08/23	
Total Xylenes	ND	0.0250		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		104 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		94.7 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		110 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	RKS	Batch: 2349078	
Gasoline Range Organics (C6-C10)	ND	20.0		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		104 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4	1	94.7 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		110 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: KM		Batch: 2349083
Diesel Range Organics (C10-C28)	2490	250		10	12/07/23	12/08/23	
Oil Range Organics (C28-C36)	2140	500		10	12/07/23	12/08/23	
Surrogate: n-Nonane		88.6 %	50-200		12/07/23	12/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	BA		Batch: 2349080
Chloride	360	20.0		1	12/07/23	12/07/23	

Sample Data

	. Du	imple D	uu				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manage	r: 2004	son 906H 46-0001 Ilie Gladde	en			Reported: 12/8/2023 4:40:24PM
	S	SW 3- Surf					
]	E312037-03					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst: RKS			Batch: 2349078
Benzene	ND	0.0250		1	12/07/23	12/08/23	
Ethylbenzene	ND	0.0250		1	12/07/23	12/08/23	
Toluene	ND	0.0250		1	12/07/23	12/08/23	
p-Xylene	ND	0.0250		1	12/07/23	12/08/23	
p,m-Xylene	ND	0.0500		1	12/07/23	12/08/23	
Total Xylenes	ND	0.0250		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		105 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		92.5 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		110 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: RKS		Batch: 2349078
Gasoline Range Organics (C6-C10)	ND	20.0		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		105 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		92.5 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		110 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: KM		Batch: 2349083
Diesel Range Organics (C10-C28)	2920	125		5	12/07/23	12/08/23	
Oil Range Organics (C28-C36)	1860	250		5	12/07/23	12/08/23	
Surrogate: n-Nonane		89.2 %	50-200		12/07/23	12/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	BA		Batch: 2349080
Chloride	5120	200		10	12/07/23	12/07/23	

Sample Data

	. Du	imple D	uu				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Number Project Manage	r: 2004	son 906H 46-0001 Ilie Gladde				Reported: 12/8/2023 4:40:24PM
	S	SW 4- Surf					
]	E312037-04					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	RKS		Batch: 2349078
Benzene	ND	0.0250		1	12/07/23	12/08/23	
Ethylbenzene	ND	0.0250		1	12/07/23	12/08/23	
Toluene	ND	0.0250		1	12/07/23	12/08/23	
p-Xylene	ND	0.0250		1	12/07/23	12/08/23	
o,m-Xylene	ND	0.0500		1	12/07/23	12/08/23	
Total Xylenes	ND	0.0250		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		94.0 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		109 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	RKS	Batch: 2349078	
Gasoline Range Organics (C6-C10)	ND	20.0		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		94.0 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		109 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: KM		Batch: 2349083
Diesel Range Organics (C10-C28)	1800	125		5	12/07/23	12/08/23	
Oil Range Organics (C28-C36)	1670	250		5	12/07/23	12/08/23	
Surrogate: n-Nonane		92.0 %	50-200		12/07/23	12/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	BA		Batch: 2349080
Chloride	6220	200		10	12/07/23	12/08/23	

Sample Data

		mpic D					
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manage	r: 2004	son 906H 16-0001 Ilie Gladd				Reported: 12/8/2023 4:40:24PM
		SW 5- Surf					
]	E312037-05					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: RKS		Batch: 2349078
Benzene	ND	0.0250		1	12/07/23	12/08/23	
Ethylbenzene	ND	0.0250		1	12/07/23	12/08/23	
Toluene	ND	0.0250		1	12/07/23	12/08/23	
o-Xylene	ND	0.0250		1	12/07/23	12/08/23	
p,m-Xylene	ND	0.0500		1	12/07/23	12/08/23	
Total Xylenes	ND	0.0250		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		111 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: RKS		Batch: 2349078
Gasoline Range Organics (C6-C10)	ND	20.0		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		96.8 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		111 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: KM		Batch: 2349083
Diesel Range Organics (C10-C28)	5320	250		10	12/07/23	12/08/23	
Oil Range Organics (C28-C36)	4250	500		10	12/07/23	12/08/23	
Surrogate: n-Nonane		86.8 %	50-200		12/07/23	12/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	: BA		Batch: 2349080
Chloride	211	20.0		1	12/07/23	12/07/23	

Sample Data

		imple D					
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manage	r: 2004	son 906H 46-0001 Ilie Gladd				Reported: 12/8/2023 4:40:24PM
	S	SW 6- Surf					
	1	E312037-06					
Analyte	Result	Reporting Limit	Di	lution	Prepared	Analyzed	Notes
Volatile Organic Compounds by EPA 8260B	mg/kg	mg/kg		Analyst	: RKS		Batch: 2349078
Benzene	ND	0.0250		1	12/07/23	12/08/23	
Ethylbenzene	ND	0.0250		1	12/07/23	12/08/23	
Toluene	ND	0.0250		1	12/07/23	12/08/23	
p-Xylene	ND	0.0250		1	12/07/23	12/08/23	
p,m-Xylene	ND	0.0500		1	12/07/23	12/08/23	
Total Xylenes	ND	0.0250		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4		95.7 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		107 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg		Analyst	: RKS		Batch: 2349078
Gasoline Range Organics (C6-C10)	ND	20.0		1	12/07/23	12/08/23	
Surrogate: Bromofluorobenzene		106 %	70-130		12/07/23	12/08/23	
Surrogate: 1,2-Dichloroethane-d4	-	95.7 %	70-130		12/07/23	12/08/23	
Surrogate: Toluene-d8		107 %	70-130		12/07/23	12/08/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg		Analyst	: KM		Batch: 2349083
Diesel Range Organics (C10-C28)	2090	250		10	12/07/23	12/08/23	
Oil Range Organics (C28-C36)	2320	500		10	12/07/23	12/08/23	
Surrogate: n-Nonane		87.5 %	50-200		12/07/23	12/08/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg		Analyst	BA		Batch: 2349080
Chloride	33.2	20.0		1	12/07/23	12/07/23	

QC Summary Data

Tap Rock		Project Name:	Jac	kson 906H					Donortad.			
7 W. Compress Road		Project Number:		046-0001					Reported:			
Artesia NM, 88210		Project Manager:		talie Gladden				1'	2/8/2023 4:40:24PM			
Alusia IVII, 66210								1.				
		Volatile Organic	Compou	inds by EPA	82601	B		Analys				
Analyte		Reporting	Spike	Source		Rec		RPD				
-	Result	Limit	Level	Result	Rec	Limits	RPD	Limit				
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes			
Blank (2349078-BLK1)							Prepared: 12	2/07/23 Ana	lyzed: 12/07/23			
Benzene	ND	0.0250										
Ethylbenzene	ND	0.0250										
Toluene	ND	0.0250										
o-Xylene	ND	0.0250										
p,m-Xylene	ND	0.0500										
Total Xylenes	ND	0.0250										
Surrogate: Bromofluorobenzene	0.520		0.500		104	70-130						
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.2	70-130						
Surrogate: Toluene-d8	0.545		0.500		109	70-130						
LCS (2349078-BS1)							Prenared: 12	2/07/23 Ans	lyzed: 12/08/23			
· · · · · ·	2.68	0.0250	2.50		107	70-130	Tieparea. II	2/0//25 / Inc	iij200. 12/00/23			
Benzene	2.63	0.0250	2.50		107	70-130						
Ethylbenzene		0.0250										
Toluene	2.63	0.0250	2.50		105	70-130						
p-Xylene	2.56	0.0250	2.50		102	70-130						
o,m-Xylene	5.17	0.0500	5.00		103	70-130						
Total Xylenes	7.73	0.0250	7.50		103	70-130						
Surrogate: Bromofluorobenzene	0.520		0.500		104	70-130						
Surrogate: 1,2-Dichloroethane-d4	0.463		0.500		92.6	70-130						
Surrogate: Toluene-d8	0.528		0.500		106	70-130						
Matrix Spike (2349078-MS1)				Source: E			Prepared: 12	2/07/23 Ana	lyzed: 12/08/23			
Benzene	2.73	0.0250	2.50	ND	109	48-131						
Ethylbenzene	2.73	0.0250	2.50	ND	109	45-135						
Toluene	2.73	0.0250	2.50	ND	109	48-130						
p-Xylene	2.67	0.0250	2.50	ND	107	43-135						
o,m-Xylene	5.41	0.0500	5.00	ND	108	43-135						
Total Xylenes	8.07	0.0250	7.50	ND	108	43-135						
Surrogate: Bromofluorobenzene	0.529		0.500		106	70-130						
			0.500		96.6	70-130						
Surrogate: 1,2-Dichloroethane-d4	0.483		0.500									
	0.483 0.536		0.500 0.500		107	70-130						
Surrogate: 1,2-Dichloroethane-d4 Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1)				Source: E	107	70-130	Prepared: 12	2/07/23 Ana	lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1)	2.83	0.0250	0.500	Source: E	107	70-130 03 48-131	3.63	23	lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene	0.536	0.0250 0.0250	0.500		107 312037-0	70-130 03	-		lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene Ethylbenzene	2.83		0.500	ND	107 312037- 113	70-130 03 48-131	3.63	23	lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene Ethylbenzene Foluene	0.536 2.83 2.79	0.0250	0.500 2.50 2.50	ND ND	107 312037-0 113 111	70-130 03 48-131 45-135	3.63 1.97	23 27	llyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene Ethylbenzene Toluene p-Xylene	0.536 2.83 2.79 2.77	0.0250 0.0250	0.500 2.50 2.50 2.50	ND ND ND	107 312037-0 113 111 111	70-130 03 48-131 45-135 48-130	3.63 1.97 1.48	23 27 24	lyzed: 12/08/23			
Surrogate: Toluene-d8	0.536 2.83 2.79 2.77 2.74	0.0250 0.0250 0.0250	0.500 2.50 2.50 2.50 2.50	ND ND ND ND	107 312037-0 113 111 111 110	70-130 03 48-131 45-135 48-130 43-135	3.63 1.97 1.48 2.78	23 27 24 27	lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene Ethylbenzene Toluene p.m-Xylene p.m-Xylene Total Xylenes	0.536 2.83 2.79 2.77 2.74 5.51	0.0250 0.0250 0.0250 0.0500	0.500 2.50 2.50 2.50 2.50 5.00	ND ND ND ND ND	107 312037-4 113 111 111 110 110	70-130 03 48-131 45-135 48-130 43-135 43-135	3.63 1.97 1.48 2.78 1.82	23 27 24 27 27	lyzed: 12/08/23			
Surrogate: Toluene-d8 Matrix Spike Dup (2349078-MSD1) Benzene Ethylbenzene Toluene p-Xylene p,m-Xylene	0.536 2.83 2.79 2.77 2.74 5.51 8.25	0.0250 0.0250 0.0250 0.0500	0.500 2.50 2.50 2.50 2.50 5.00 7.50	ND ND ND ND ND	107 312037-4 113 111 111 110 110 110	70-130 03 48-131 45-135 48-130 43-135 43-135 43-135	3.63 1.97 1.48 2.78 1.82	23 27 24 27 27	lyzed: 12/08/23			

QC Summary Data

		QC DI		iry Data					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	20	ickson 906H 0046-0001 atalie Gladden					Reported: 12/8/2023 4:40:24PM
	No	onhalogenated O	rganics	by EPA 801:	5D - GI	RO			Analyst: RKS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2349078-BLK1)							Prepared: 1	12/07/23	Analyzed: 12/07/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: Bromofluorobenzene	0.520		0.500		104	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.481		0.500		96.2	70-130			
Surrogate: Toluene-d8	0.545		0.500		109	70-130			
LCS (2349078-BS2)							Prepared: 1	12/07/23	Analyzed: 12/08/23
Gasoline Range Organics (C6-C10)	51.0	20.0	50.0		102	70-130			
Surrogate: Bromofluorobenzene	0.522		0.500		104	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.472		0.500		94.3	70-130			
Surrogate: Toluene-d8	0.539		0.500		108	70-130			
Matrix Spike (2349078-MS2)				Source: E	312037-0	03	Prepared: 1	12/07/23	Analyzed: 12/08/23
Gasoline Range Organics (C6-C10)	57.3	20.0	50.0	ND	115	70-130			
Surrogate: Bromofluorobenzene	0.524		0.500		105	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.458		0.500		91.6	70-130			
Surrogate: Toluene-d8	0.548		0.500		110	70-130			
Matrix Spike Dup (2349078-MSD2)				Source: E	312037-0	03	Prepared: 1	2/07/23	Analyzed: 12/08/23
Gasoline Range Organics (C6-C10)	59.9	20.0	50.0	ND	120	70-130	4.50	20	
Surrogate: Bromofluorobenzene	0.525		0.500		105	70-130			
Surrogate: 1,2-Dichloroethane-d4	0.464		0.500		92.8	70-130			
Surrogate: Toluene-d8	0.538		0.500		108	70-130			

•

QC Summary Data

		QC SI	ummi	iry Data					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	20	uckson 906H 0046-0001 atalie Gladden					Reported: 12/8/2023 4:40:24PM
	Nonh	alogenated Orga	anics by	EPA 8015D	- DRO	/ORO			Analyst: KM
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2349083-BLK1)							Prepared: 1	2/07/23 A	nalyzed: 12/07/23
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	47.0		50.0		94.0	50-200			
LCS (2349083-BS1)							Prepared: 1	2/07/23 A	analyzed: 12/07/23
Diesel Range Organics (C10-C28)	206	25.0	250		82.3	38-132			
Surrogate: n-Nonane	46.0		50.0		92.1	50-200			
Matrix Spike (2349083-MS1)				Source: E	312037-	03	Prepared: 1	2/07/23 A	analyzed: 12/07/23
Diesel Range Organics (C10-C28)	2290	25.0	250	2920	NR	38-132			M4
Surrogate: n-Nonane	47.8		50.0		95.5	50-200			
Matrix Spike Dup (2349083-MSD1)				Source: E	312037-	03	Prepared: 1	2/07/23 A	analyzed: 12/07/23
Diesel Range Organics (C10-C28)	2310	25.0	250	2920	NR	38-132	0.786	20	M4
Surrogate: n-Nonane	49.6		50.0		99.2	50-200			

QC Summary Data

		QU N		ary Data	•					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:		Jackson 906H 20046-0001 Natalie Gladden						orted: 4:40:24PM
		Anions		Analyst: BA						
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	t	Notes
Blank (2349080-BLK1)							Prepared:	12/07/23	Analyzed: 1	2/07/23
Chloride LCS (2349080-BS1)	ND	20.0					Prepared:	12/07/23	Analyzed: 1	2/07/23
Chloride	247	20.0	250	_	98.9	90-110	-			- / /
Matrix Spike (2349080-MS1)				Source: E	312038-	02	Prepared:	12/07/23	Analyzed: 1	.2/07/23
Chloride	8180	200	250	8330	NR	80-120				M4
Matrix Spike Dup (2349080-MSD1)				Source: F	312038-	02	Prepared:	12/07/23	Analyzed: 1	2/07/23
Chloride	8140	200	250	8330	NR	80-120	0.560	20		M4

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Tap Rock	Project Name:	Jackson 906H	
7 W. Compress Road	Project Number:	20046-0001	Reported:
Artesia NM, 88210	Project Manager:	Natalie Gladden	12/08/23 16:40

M4 Matrix spike recovery value is suspect since the analyte concentration in the sample is disproportionate to the spike level. The associated LCS spike recovery was acceptable.

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

RPD Relative Percent Difference

- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Page <u>1</u> of <u>1</u>

Released to	ject Info	ormation)							Chain	of Custody													Page 🚄	of Z
									D:I	То	- 1	1. Nala	and the	la	b Us	e On	lv.	10.25			T	AT		EPA I	rogram
<u>Sec</u>	ent: 07	anager:	R OCO	H			10	Attentio	n: ENERGY S	TAFFING SERV	ICES	Lab Y	WO#			Job I	Vum			2D	3D	Sta	ndard	CWA	SDWA
Pr	oje Ma	anager:	900					Address	: 2724 NW CC	UNTY RD		E:	512	03-	1:31	200	AU sis at	o-000	nd	10	1	1	1. 19 A		RCRA
Ac	dress:							City, Sta	te, Zip HOE 575-393-9048	3BS, NM 88240						Anary	313 01		1	T	Τ				1
	y, State	, Zip						Email:	NATALIE@ENER	RGYSTAFFINGL	LC.COM	15	15											State	
	one: nail:								BRITTNEY@ENH			y 80	oy 80	21	00	0	0.00		WN				and the second sec	UT AZ	: TX
	port du	e by:					-15		bidi insie			DRO t	DRO H	oy 80	γ 826	s 601	de 3(C TX			Ø	1	
2:0	Time ampled	Date Sampled	Matrix		o. of tainers	Sample ID)				Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.		BGDOC	BGDOC				Remark	5
I PM	ampied	Jumpico	S	*	1	Sw1.	-Sen	ŧ			1								P						
						Scu 2- Sw 2	Suf	5.			2			-					1						
-					-	Sw 3	Surf				3														
						Sw 3 Sw 9	Surf				4														
			$\left \right $	+	$\left \right $	SU 5	Surf				5														
+			S			Swu	Surf				6								2						
-					1																				
													1		and the second										
-				+							and the second			T											
4	ddition	al Instru	ctions:]					A CALINE DAY A CAL				- J	J									
1,	(field sam)	pler), attest	to the valie	dity and	authen	ticity of this	sample. I ar	n aware that	tampering with or in Sampled	ntentionally mislat	alling the same	neleça	tion,			Samp	cles rec ed in ic	quiring therm e at an avg te	al preser Imp abov	vation ve 0 but	nust be less tha	received In 6 °C or	on ice the day subsequent o	y they are sam lays.	pled or received
F	ate or time	ed y: fig	nature	ered fra	Date	may be grou	Time	IRC	eceived by: (Signa	ule)	Date Date	13	Tim	230	0	Re	ceive	ed on ice		Y/	Use C	Only			
A		ed by: (Sig	nature)	1	Date	1-6-2	2 Time		echived by: (Signa		Date 12/01			144		T1			T2	<u> </u>			тз		
		ulu ned by: (Sig	nature)	p	Date	e/ (Time Z24	× ×	eceived by: (Signa	ture)	Date 121-	112	Tim	7:7	<u>}()</u>	AV	'G Te	emp °C_	4	14 14 14	1 × -		1. A. A.		
1	The	trix: S - Soil,	V Selici	Se . Chu		101			7. 1. 1.	0	Contair	or Tu	00.0	- glas	s, p -	nolv/	plast	ic. ag - ar	nber g	lass,	v - VO	A			
ŕ				20 1-		andte area	onorted up	nless other :	arrangements are	made. Hazardo	is samples w	ill be r	return	ed to	client	or dis	posed	of at the	client e	xpens	ie. Th	le repoi	rt for the a	halysis of th	e above
Į	samples is	s applicable	e only to t	hose s	amples	received b	y the labor	ratory with	this COC. The liabi	lity of the laborat	ory is limited	to the	e amo	unt pa		<u>(</u>	1)								C

Page 84 of 174

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock	Date Received:	12/07/23 07	7:30	Work Order ID: E312037
Phone:	(575) 390-6397	Date Logged In:	12/06/23 14	1:04	Logged In By: Jordan Montano
Email:	natalie@energystaffingllc.com	Due Date:	12/08/23 17	7:00 (1 day TAT)	
<u>Chain o</u>	f Custody (COC)				
1. Does	the sample ID match the COC?		Yes		
2. Does	the number of samples per sampling site location mate	ch the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was th	he COC complete, i.e., signatures, dates/times, request	ted analyses?	Yes		
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in i.e, 15 minute hold time, are not included in this disucssio		Yes		Comments/Resolution
<u>Sample</u>	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not on COC per client.
Sample	Cooler				
	sample cooler received?		Yes		Date sampled not on COC per client.
8. If yes,	, was cooler received in good condition?		Yes		- •
9. Was tl	he sample(s) received intact, i.e., not broken?		Yes		Project manager not listed on COC. Natalie
10. Were	e custody/security seals present?		No		Gladden
11. If ye	s, were custody/security seals intact?		NA		Gladden
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i Note: Thermal preservation is not required, if samples are minutes of sampling		Yes		
13. If no	visible ice, record the temperature. Actual sample	temperature: <u>4°</u>	<u>C</u>		
Sample	Container				
14. Are a	aqueous VOC samples present?		No		
15. Are '	VOC samples collected in VOA Vials?		NA		
16. Is the	e head space less than 6-8 mm (pea sized or less)?		NA		
17. Was	a trip blank (TB) included for VOC analyses?		NA		
18. Are 1	non-VOC samples collected in the correct containers?		Yes		
19. Is the	e appropriate volume/weight or number of sample contained	ers collected?	Yes		
Field La					
	e field sample labels filled out with the minimum infor	rmation:			
	Sample ID?		Yes		
	Date/Time Collected? Collectors name?		No		
	Preservation		No		
	s the COC or field labels indicate the samples were pro-	eserved?	No		
	sample(s) correctly preserved?		NA		
	b filteration required and/or requested for dissolved m	etals?	No		
	ase Sample Matrix				
	s the sample have more than one phase, i.e., multiphas	e?	No		
	es, does the COC specify which phase(s) is to be analyzed		NA		
•	tract Laboratory_				
			No		
	samples required to get sent to a subcontract laborator	y:	110		
28. Are s	samples required to get sent to a subcontract laborator a subcontract laboratory specified by the client and if	-		Subcontract Lab	: NA

Signature of client authorizing changes to the COC or sample disposition.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Jackson Unit 906H

Work Order: E312059

Job Number: 20046-0001

Received: 12/11/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 12/12/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 12/12/23

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Jackson Unit 906H Workorder: E312059 Date Received: 12/11/2023 7:30:00AM

Natalie Gladden,

Page 87 of 174

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 12/11/2023 7:30:00AM, under the Project Name: Jackson Unit 906H.

The analytical test results summarized in this report with the Project Name: Jackson Unit 906H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Michelle Golzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP 1-10'	5
SP 2-10'	6
SP 3-16'	7
SP 4-4'	8
QC Summary Data	9
QC - Volatile Organics by EPA 8021B	9
QC - Nonhalogenated Organics by EPA 8015D - GRO	10
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	11
QC - Anions by EPA 300.0/9056A	12
Definitions and Notes	13
Chain of Custody etc.	14

Sample Summary

Page 89 of 174

		Sample Sum	illai y		
Tap Rock 7 W. Compress Road		Project Name: Project Number:			Reported:
Artesia NM, 88210		Project Manager:	Natalie Gladden		12/12/23 16:25
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP 1-10'	E312059-01A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SP 2-10'	E312059-02A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SP 3-16'	E312059-03A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SP 4-4'	E312059-04A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.

	~	ampic D				
Tap Rock 7 W. Compress Road	Project Name Project Numb		son Unit 906H 46-0001		Reported:	
Artesia NM, 88210	Project Manag		ilie Gladden			12/12/2023 4:25:27PM
		SP 1-10'				
		E312059-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	Analyst: RAS		
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
oluene	ND	0.0250	1	12/11/23	12/11/23	
-Xylene	ND	0.0250	1	12/11/23	12/11/23	
,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Total Xylenes	ND	0.0250	1	12/11/23	12/11/23	
urrogate: 4-Bromochlorobenzene-PID		92.4 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
urrogate: 1-Chloro-4-fluorobenzene-FID		88.8 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
urrogate: n-Nonane		119 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2350015
Chloride	212	200	10	12/11/23	12/11/23	

Sample Data

Sample Data

	5	ample D	ala				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	son Unit 906H 46-0001 Ilie Gladden			Reported: 12/12/2023 4:25:27PM	
		SP 2-10'					
		E312059-02					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2350012	
Benzene	ND	0.0250	1	12/11/23	12/11/23		
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23		
oluene	ND	0.0250	1	12/11/23	12/11/23		
-Xylene	ND	0.0250	1	12/11/23	12/11/23		
,m-Xylene	ND	0.0500	1	12/11/23	12/11/23		
otal Xylenes	ND	0.0250	1	12/11/23	12/11/23		
urrogate: 4-Bromochlorobenzene-PID		94.4 %	70-130	12/11/23	12/11/23		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2350012	
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23		
urrogate: 1-Chloro-4-fluorobenzene-FID		87.5 %	70-130	12/11/23	12/11/23		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: KM		Batch: 2350017	
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23		
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23		
urrogate: n-Nonane		96.4 %	50-200	12/11/23	12/12/23		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: BA		Batch: 2350015	
Chloride	322	40.0	2	12/11/23	12/11/23		

Sample Data

	5	ample D	ala				
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	son Unit 906H 46-0001 Ilie Gladden			Reported: 12/12/2023 4:25:27PM	
		SP 3-16'					
		E312059-03					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012	
Benzene	ND	0.0250	1	12/11/23	12/11/23		
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23		
Toluene	ND	0.0250	1	12/11/23	12/11/23		
p-Xylene	ND	0.0250	1	12/11/23	12/11/23		
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23		
Fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23		
Surrogate: 4-Bromochlorobenzene-PID		94.9 %	70-130	12/11/23	12/11/23		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012	
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23		
Surrogate: 1-Chloro-4-fluorobenzene-FID		87.8 %	70-130	12/11/23	12/11/23		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2350017	
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23		
Oil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23		
Surrogate: n-Nonane		99.4 %	50-200	12/11/23	12/12/23		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2350015	
Chloride	161	40.0	2	12/11/23	12/11/23		

Sample Data

	3	ample D	ลเล			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	per: 2004	son Unit 906H 46-0001 alie Gladden	I		Reported: 12/12/2023 4:25:27PM
		SP 4-4'				
		E312059-04				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	An	alyst: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
Foluene	ND	0.0250	1	12/11/23	12/11/23	
p-Xylene	ND	0.0250	1	12/11/23	12/11/23	
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23	
Surrogate: 4-Bromochlorobenzene-PID		93.6 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	An	alyst: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		89.2 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	An	alyst: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
Surrogate: n-Nonane		93.4 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	An	alyst: BA		Batch: 2350015
Chloride	71.6	20.0	1	12/11/23	12/11/23	

QC Summary Data

				a	I y Data	umma	QC D					
Reported: 12/12/2023 4:25:27PM					ekson Unit 90 046-0001 talie Gladder	20	Project Name: Project Number: Project Manager:		Tap Rock 7 W. Compress Road Artesia NM, 88210			
Analyst: RAS		Volatile Organics by EPA 8021B										
	RPD Limit	RPD	Rec Limits	Rec	Source Result	Spike Level	Reporting Limit	Result	Analyte			
Notes	%	%	%	%	mg/kg	mg/kg	mg/kg	mg/kg				
Analyzed: 12/11/23	12/11/23 A	Prepared: 1							Blank (2350012-BLK1)			
							0.0250	ND	Benzene			
							0.0250	ND	Ethylbenzene			
							0.0250	ND	Toluene			
							0.0250	ND	o-Xylene			
							0.0500	ND	p,m-Xylene			
							0.0250	ND	Total Xylenes			
			70-130	91.0		8.00		7.28	Surrogate: 4-Bromochlorobenzene-PID			
Analyzed: 12/11/23	12/11/23 A	Prepared: 1							LCS (2350012-BS1)			
			70-130	97.4		5.00	0.0250	4.87	Benzene			
			70-130	103		5.00	0.0250	5.16	Ethylbenzene			
			70-130	102		5.00	0.0250	5.11	Toluene			
			70-130	103		5.00	0.0250	5.16	o-Xylene			
			70-130	105		10.0	0.0500	10.5	p,m-Xylene			
			70-130	105		15.0	0.0250	15.7	Total Xylenes			
			70-130	91.0		8.00		7.28	Surrogate: 4-Bromochlorobenzene-PID			
Analyzed: 12/11/23	12/11/23 A	Prepared: 1	01	E312059-(Source:				Matrix Spike (2350012-MS1)			
			54-133	92.9	ND	5.00	0.0250	4.64	Benzene			
			61-133	99.8	ND	5.00	0.0250	4.99	Ethylbenzene			
			61-130	98.4	ND	5.00	0.0250	4.92	Toluene			
			63-131	100	ND	5.00	0.0250	5.02	o-Xylene			
			63-131	102	ND	10.0	0.0500	10.2	p,m-Xylene			
			63-131	101	ND	15.0	0.0250	15.2	Total Xylenes			
			70-130	93.2		8.00		7.45	Surrogate: 4-Bromochlorobenzene-PID			
Analyzed: 12/11/23	12/11/23 A	Prepared: 1	01	E312059-(Source:				Matrix Spike Dup (2350012-MSD1)			
	20	4.77	54-133	97.4	ND	5.00	0.0250	4.87	Benzene			
	20	5.02	61-133	105	ND	5.00	0.0250	5.25	Ethylbenzene			
	20	4.79	61-130	103	ND	5.00	0.0250	5.16	Toluene			
	20	4.86	63-131	105	ND	5.00	0.0250	5.27				
	20	4.92	63-131	107	ND	10.0	0.0500	10.7	•			
	20	4.90	63-131	106	ND	15.0	0.0250	16.0				
			70-130	93.7		8.00		7.49				
	20	4.92	63-131 63-131	107 106	ND	10.0 15.0	0.0500	10.7	o-Xylene p.m-Xylene Total Xylenes <i>Surrogate: 4-Bromochlorobenzene-PID</i>			

QC Summary Data

		QC 3	uIIIIIiii	ary Data	1				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	ackson Unit 90 0046-0001 Iatalie Gladden					Reported: 12/12/2023 4:25:27PM
	No	nhalogenated C	Organics	by EPA 801	5D - GI	RO			Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	N
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2350012-BLK1)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.20		8.00		90.0	70-130			
LCS (2350012-BS2)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	47.9	20.0	50.0		95.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.19		8.00		89.9	70-130			
Matrix Spike (2350012-MS2)				Source:	E312059-(01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	49.4	20.0	50.0	ND	98.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.15		8.00		89.3	70-130			
Matrix Spike Dup (2350012-MSD2)				Source:	E312059-(01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	49.7	20.0	50.0	ND	99.3	70-130	0.450	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.18		8.00		89.8	70-130			

OC Summary Data

		QC S	umm	ary Data					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	ackson Unit 906 20046-0001 Natalie Gladden	Н				Reported: 12/12/2023 4:25:27PM
	Nonh	alogenated Org	anics by	v EPA 8015D	- DRO	/ORO			Analyst: KM
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2350017-BLK1)							Prepared: 1	2/11/23 A	analyzed: 12/12/23
Diesel Range Organics (C10-C28) Oil Range Organics (C28-C36)	ND ND	25.0 50.0							
Surrogate: n-Nonane	47.0		50.0		94.0	50-200			
LCS (2350017-BS1)							Prepared: 1	2/11/23 A	analyzed: 12/12/23
Diesel Range Organics (C10-C28)	231	25.0	250		92.6	38-132			
Surrogate: n-Nonane	47.9		50.0		95.9	50-200			
Matrix Spike (2350017-MS1)				Source: I	2312059-	04	Prepared: 1	2/11/23 A	analyzed: 12/12/23
Diesel Range Organics (C10-C28)	230	25.0	250	ND	91.8	38-132			
Surrogate: n-Nonane	48.9		50.0		97.8	50-200			
Matrix Spike Dup (2350017-MSD1)				Source: I	2312059-	04	Prepared: 1	2/11/23 A	analyzed: 12/12/23
Diesel Range Organics (C10-C28)	232	25.0	250	ND	92.9	38-132	1.16	20	
Surrogate: n-Nonane	47.9		50.0		95.8	50-200			

QC Summary Data

		QU N	u	ary Duc					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	2	ackson Unit 90 20046-0001 Natalie Gladder					Reported: 12/12/2023 4:25:27P
		Anions	by EPA	300.0/9056A	1				Analyst: BA
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	
Blank (2350015-BLK1)	015-BLK1) Prepared: 1.				12/11/23 Analyzed: 12/11/23				
Chloride LCS (2350015-BS1)	ND	20.0					Prepared:	12/11/23	Analyzed: 12/11/23
Chloride	246	20.0	250		98.5	90-110			
Matrix Spike (2350015-MS1)				Source:	E312060-	02	Prepared: 1	12/11/23	Analyzed: 12/11/23
Chloride	276	200	250	ND	110	80-120			
Matrix Spike Dup (2350015-MSD1)				Source:	E312060-	02	Prepared: 1	12/11/23	Analyzed: 12/11/23
Chloride	271	200	250	ND	108	80-120	1.79	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Tap Rock	Project Name:	Jackson Unit 906H	
7 W. Compress Road	Project Number:	20046-0001	Reported:
Artesia NM, 88210	Project Manager:	Natalie Gladden	12/12/23 16:25

ND	Analyte NOT DETECTED at or above the reporting limit
----	--

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite
- DNR Did not react with the addition of acid or base.
- Note (1): Methods marked with ** are non-accredited methods.
- Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

oject In	formation					Chain of Custody	/											Page	1_of
	10	-1/			Dill Ta		1. The las	- Alici	12	hlls	e On	lv.	15 P.U	1		TAT	ī	EPA P	rogram
lient:	ap hoc	K	nal. 1		Bill To Attention: ENERGY STAFFIN	IG SERVICES	Lah	WO#	La		Job	Numb	er	1D			Standard	CWA	SDW
roject:	lanager:	Unit	900 \$	F	Address: 2724 NW COUNTY RD		E	312	05	9	Job Number			P					
ddress:	lanager.				City, State, Zip HOBBS, NM	M 88240					Analy	sis an	d Method	ł					RCRA
ity, Stat	e, Zip				Phone: 575-393-9048												1991 BR 23 192	State	
hone:					Email: NATALIE@ENERGYSTA		3015	3015				0					NM CO	UT AZ	TX
mail:				P	BRITTNEY@ENERGYST	AFFINGLLC.COM	DR0/OR0 by 8015	GRO/DRO by 8015	8021	VOC by 8260	Metals 6010	Chloride 300.0		NN	X		4		
eport d	1		1			Lab	/ORG	/DR(BTEX by 8021	by 8	als 6	oride		BGDOC	BGDOC			Remarks	
Time Sampled	Date Sampled	Matrix	No. of Containers	Sample ID		Number	DRO	GRO	BTE)	VOC	Met	CPTC		1	BGE				
	12/2/23.	S.	1	DP1-20'										Ø					
	1100.	1	1	SP2-20'		2													
				SP3-16'		3													
		S	1	DPH- 4.		1	1							X					
				<u> </u>				1											
														+					
							-				-			-					
						1		-		-	-							1972 - 1944 - 1974 - 1	
								-	_		-			1					
														1					
	1					tea (12)													
Additio	nal Instru	ctions:	1	1															
					n aware that tampering with or intentiona	ally mislabelling the sam		tion,			Samp	oles requi ed in ice :	ring thermal at an avg terr	preserva np above	ation mus 0 but les	st be rec is than 6	eived on ice the day °C on subsequent o	y they are samı lays.	pled or rece
				may be grounds for lega	laction. Sampled by:	Date	y	Tim			-	1	1. 1. 200	1	ab Us	e On	ly		1.
Religion	ALLA	nature)	Dat	- 2-75	Received by: (Signature)	nte Date	23		120)	Re	ceived	on ice:	6	N		1		
Relinquis	KAWA	nature)	Da	Time	Received by: (Signature)	Date		Tim	e		1								
m	ull	(un)		2-8-23 151	S Andrew Mrsso		9.23		50	0	-T1			<u>T2</u>	ati i		<u>T3</u>		
Relinguis	hed by: (Sig	nature)	Da		Received by: (Signature)	Date 12/10	100	1	· 21	\sim		C 7	np°c_L	t			A CAR		
And		4,380		2.4.23 210	20 41111/HND	1414	143	1	10	<u> </u>			, ag - aml	her ala	ass. v -	VOA			
		Sd - Solid, S	g - Sludge, A	Aqueous, O - Other	nless other arrangements are made.	Hazardous samples v	vill he i	return	ed to a	lient	or dis	posed o	f at the cl	ient ex	pense.	Ther	eport for the a	nalysis of the	e above
Note: Sa	mples are di	scarded 3C	days after	results are reported u	atory with this COC. The liability of th	e laboratory is limited	to the	e amo	unt pa	id for	on th	e repor	t.						

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

lient:	Tap Rock Da	te Received:	12/11/23 07	7:30	Work Order ID: E312059
Phone:	(575) 390-6397 Da	te Logged In:	12/11/23 07	7:50	Logged In By: Jordan Montano
imail:		ie Date:	12/12/23 1	7:00 (1 day TAT)	
Chain o	f Custody (COC)				
. Does	the sample ID match the COC?		Yes		
	the number of samples per sampling site location match	the COC	Yes		
3. Were	samples dropped off by client or carrier?		Yes	Carrier: (Courier
4. Was th	he COC complete, i.e., signatures, dates/times, requested	analyses?	No	-	
5. Were	all samples received within holding time? Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,	Yes		Comments/Resolution
Sample	<u>Turn Around Time (TAT)</u>				
6. Did th	ne COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not provided on COC per
Sample	Cooler_				client.
7. Was a	a sample cooler received?		Yes		
8. If yes	, was cooler received in good condition?		Yes		Project manager not listed on COC.
9. Was th	he sample(s) received intact, i.e., not broken?		Yes		Troject manager not instea on eoe.
10. Were	e custody/security seals present?		No		
11. If ye	s, were custody/security seals intact?		NA		
12. Was t	the sample received on ice? If yes, the recorded temp is 4°C, i.e Note: Thermal preservation is not required, if samples are rec		Yes		
	minutes of sampling		_		
13. If no	o visible ice, record the temperature. Actual sample ten	nperature: <u>4°</u>	<u>'C</u>		
	<u>Container</u>				
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	e head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?		NA		
	non-VOC samples collected in the correct containers?	11 . 10	Yes		
	e appropriate volume/weight or number of sample containers	collected?	Yes		
Field La		- 4 *			
	e field sample labels filled out with the minimum information Sample ID?	ation:	Yes		
	Date/Time Collected?		No		
	Collectors name?		No		
<u>Sample</u>	Preservation				
21. Does	s the COC or field labels indicate the samples were prese	rved?	No		
	sample(s) correctly preserved?		NA		
24. Is lal	b filteration required and/or requested for dissolved meta	ls?	No		
<u>Multiph</u>	nase Sample Matrix				
26. Does	s the sample have more than one phase, i.e., multiphase?		No		
27. If ye	es, does the COC specify which phase(s) is to be analyzed	1?	NA		
	tract Laboratory		_		
	samples required to get sent to a subcontract laboratory?		No		
29. Was	a subcontract laboratory specified by the client and if so	who?	NA	Subcontract Lab	o: NA

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Jackson Unit 906H

Work Order: E312060

Job Number: 20046-0001

Received: 12/11/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 12/12/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 12/12/23

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Jackson Unit 906H Workorder: E312060 Date Received: 12/11/2023 7:30:00AM

Natalie Gladden,

Page 102 of 174

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 12/11/2023 7:30:00AM, under the Project Name: Jackson Unit 906H.

The analytical test results summarized in this report with the Project Name: Jackson Unit 906H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Michelle Golzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP5-12'	5
SW1-2'	6
SW2-3'	7
SW3-4'	8
SW4-2'	9
SW5-3'	10
SW6-4'	11
QC Summary Data	12
QC - Volatile Organics by EPA 8021B	12
QC - Nonhalogenated Organics by EPA 8015D - GRO	13
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	14
QC - Anions by EPA 300.0/9056A	15
Definitions and Notes	16
Chain of Custody etc.	17

Sample Summary

		Sampic Sum	illai y		
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	Jackson Unit 906H 20046-0001 Natalie Gladden		Reported: 12/12/23 16:24
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP5-12'	E312060-01A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW1-2'	E312060-02A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW2-3'	E312060-03A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW3-4'	E312060-04A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW4-2'	E312060-05A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW5-3'	E312060-06A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.
SW6-4'	E312060-07A	Soil	12/07/23	12/11/23	Glass Jar, 2 oz.

	0	ampic D	ala						
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numł Project Mana			Jackson Unit 906H 20046-0001 Natalie Gladden					
		SP5-12'							
		E312060-01							
		Reporting							
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes			
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2350012			
Benzene	ND	0.0250	1	12/11/23	12/11/23				
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23				
Toluene	ND	0.0250	1	12/11/23	12/11/23				
p-Xylene	ND	0.0250	1	12/11/23	12/11/23				
p,m-Xylene	ND	0.0500	1	12/11/23	12/11/23				
Fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23				
Surrogate: 4-Bromochlorobenzene-PID		92.6 %	70-130	12/11/23	12/11/23				
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Anal	yst: RAS		Batch: 2350012			
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23				
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.8 %	70-130	12/11/23	12/11/23				
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Anal	yst: KM		Batch: 2350017			
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23				
Oil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23				
Surrogate: n-Nonane		101 %	50-200	12/11/23	12/12/23				
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Anal	yst: BA		Batch: 2350015			
Chloride	221	20.0	1	12/11/23	12/11/23				

Sample Data

Sample Data

	56	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	son Unit 906H 46-0001 ılie Gladden	Reported: 12/12/2023 4:24:12PM		
		SW1-2'				
		E312060-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
Toluene	ND	0.0250	1	12/11/23	12/11/23	
o-Xylene	ND	0.0250	1	12/11/23	12/11/23	
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23	
Surrogate: 4-Bromochlorobenzene-PID		93.7 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.7 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
Surrogate: n-Nonane		99.7 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: BA		Batch: 2350015
Chloride	ND	200	10	12/11/23	12/11/23	

Sample Data

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	son Unit 906H 46-0001 Ilie Gladden	Reported: 12/12/2023 4:24:12PM		
		SW2-3'				
		E312060-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
oluene	ND	0.0250	1	12/11/23	12/11/23	
-Xylene	ND	0.0250	1	12/11/23	12/11/23	
,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Total Xylenes	ND	0.0250	1	12/11/23	12/11/23	
urrogate: 4-Bromochlorobenzene-PID		92.7 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	/st: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
urrogate: 1-Chloro-4-fluorobenzene-FID		87.7 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	/st: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
urrogate: n-Nonane		95.3 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	/st: BA		Batch: 2350015
Chloride	71.3	20.0	1	12/11/23	12/11/23	

Sample Data

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	son Unit 906H 46-0001 Ilie Gladden	Reported: 12/12/2023 4:24:12PM		
		SW3-4'				
		E312060-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ithylbenzene	ND	0.0250	1	12/11/23	12/11/23	
oluene	ND	0.0250	1	12/11/23	12/11/23	
-Xylene	ND	0.0250	1	12/11/23	12/11/23	
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23	
urrogate: 4-Bromochlorobenzene-PID		90.7 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.2 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
urrogate: n-Nonane		97.8 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: BA		Batch: 2350015
Chloride	115	20.0	1	12/11/23	12/11/23	

Sample Data

	5	ampie D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Manaş	er: 2004	son Unit 906H 46-0001 ılie Gladden			Reported: 12/12/2023 4:24:12PM
		SW4-2'				
		E312060-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
oluene	ND	0.0250	1	12/11/23	12/11/23	
o-Xylene	ND	0.0250	1	12/11/23	12/11/23	
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Total Xylenes	ND	0.0250	1	12/11/23	12/11/23	
urrogate: 4-Bromochlorobenzene-PID		92.2 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	vst: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.0 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	vst: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
Surrogate: n-Nonane		85.3 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	vst: BA		Batch: 2350015
Chloride	68.5	20.0	1	12/11/23	12/11/23	

Sample Data

	0	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numb Project Mana	ber: 2004	son Unit 906H 46-0001 alie Gladden			Reported: 12/12/2023 4:24:12PM
		SW5-3'				
		E312060-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
Toluene	ND	0.0250	1	12/11/23	12/11/23	
p-Xylene	ND	0.0250	1	12/11/23	12/11/23	
p,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Total Xylenes	ND	0.0250	1	12/11/23	12/11/23	
Surrogate: 4-Bromochlorobenzene-PID		93.3 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	:: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		88.9 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
Surrogate: n-Nonane		85.6 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: BA		Batch: 2350015
Chloride	ND	200	10	12/11/23	12/11/23	

Sample Data

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numb Project Manag	er: 2004	son Unit 906H 46-0001 Ilie Gladden			Reported: 12/12/2023 4:24:12PM
		SW6-4'				
		E312060-07				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012
Benzene	ND	0.0250	1	12/11/23	12/11/23	
Ethylbenzene	ND	0.0250	1	12/11/23	12/11/23	
Toluene	ND	0.0250	1	12/11/23	12/11/23	
p-Xylene	ND	0.0250	1	12/11/23	12/11/23	
o,m-Xylene	ND	0.0500	1	12/11/23	12/11/23	
Fotal Xylenes	ND	0.0250	1	12/11/23	12/11/23	
Surrogate: 4-Bromochlorobenzene-PID		90.8 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2350012
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/11/23	12/11/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.6 %	70-130	12/11/23	12/11/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: KM		Batch: 2350017
Diesel Range Organics (C10-C28)	ND	25.0	1	12/11/23	12/12/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/11/23	12/12/23	
Surrogate: n-Nonane		84.9 %	50-200	12/11/23	12/12/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: BA		Batch: 2350015
Chloride	ND	200	10	12/11/23	12/11/23	

QC Summary Data

		QC D	u1111116	ing Dat	a					
Tap Rock 7 W. Compress Road		Project Name: Project Number:		Jackson Unit 906H 20046-0001					Reported:	
Artesia NM, 88210		Project Manager:	ager: Natalie Gladden						12/12/2023 4:24:12PM	
		Volatile O	rganics l	by EPA 802	21B				Analyst: RAS	
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit		
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes	
Blank (2350012-BLK1)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23	
Benzene	ND	0.0250					1		•	
Ethylbenzene	ND	0.0250								
Toluene	ND	0.0250								
o-Xylene	ND	0.0250								
p,m-Xylene	ND	0.0500								
Total Xylenes	ND	0.0250								
Surrogate: 4-Bromochlorobenzene-PID	7.28	0.0250	8.00		91.0	70-130				
LCS (2350012-BS1)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23	
Benzene	4.87	0.0250	5.00		97.4	70-130				
Ethylbenzene	5.16	0.0250	5.00		103	70-130				
Toluene	5.11	0.0250	5.00		102	70-130				
-Xylene	5.16	0.0250	5.00		103	70-130				
p,m-Xylene	10.5	0.0500	10.0		105	70-130				
Total Xylenes	15.7	0.0250	15.0		105	70-130				
Surrogate: 4-Bromochlorobenzene-PID	7.28		8.00		91.0	70-130				
Matrix Spike (2350012-MS1)				Source:	E312059-0	1	Prepared: 1	2/11/23 A	nalyzed: 12/11/23	
Benzene	4.64	0.0250	5.00	ND	92.9	54-133				
Ethylbenzene	4.99	0.0250	5.00	ND	99.8	61-133				
Toluene	4.92	0.0250	5.00	ND	98.4	61-130				
p-Xylene	5.02	0.0250	5.00	ND	100	63-131				
o,m-Xylene	10.2	0.0500	10.0	ND	102	63-131				
Total Xylenes	15.2	0.0250	15.0	ND	101	63-131				
Surrogate: 4-Bromochlorobenzene-PID	7.45		8.00		93.2	70-130				
Matrix Spike Dup (2350012-MSD1)				Source:	E312059-0	1	Prepared: 1	2/11/23 A	nalyzed: 12/11/23	
Benzene	4.87	0.0250	5.00	ND	97.4	54-133	4.77	20		
Ethylbenzene	5.25	0.0250	5.00	ND	105	61-133	5.02	20		
Foluene	5.16	0.0250	5.00	ND	103	61-130	4.79	20		
p-Xylene	5.27	0.0250	5.00	ND	105	63-131	4.86	20		
p,m-Xylene	10.7	0.0500	10.0	ND	107	63-131	4.92	20		
Total Xylenes	16.0	0.0250	15.0	ND	106	63-131	4.90	20		
Surrogate: 4-Bromochlorobenzene-PID	7.49		8.00		93 .7	70-130				

QC Summary Data

		QU D		il y Date	•				
Tap Rock 7 W. Compress Road		Project Name: Project Number:	2	ackson Unit 900 0046-0001	5H				Reported:
Artesia NM, 88210		Project Manager:	N	atalie Gladden					12/12/2023 4:24:12PM
	Noi	nhalogenated C	Organics	by EPA 801	5D - GI	RO			Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2350012-BLK1)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.20		8.00		90.0	70-130			
LCS (2350012-BS2)							Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	47.9	20.0	50.0		95.8	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.19		8.00		89.9	70-130			
Matrix Spike (2350012-MS2)				Source: l	E312059-	01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	49.4	20.0	50.0	ND	98.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.15		8.00		89.3	70-130			
Matrix Spike Dup (2350012-MSD2)				Source: 1	E 312059- (01	Prepared: 1	2/11/23 A	nalyzed: 12/11/23
Gasoline Range Organics (C6-C10)	49.7	20.0	50.0	ND	99.3	70-130	0.450	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.18		8.00		89.8	70-130			

QC Summary Data

Project Name: Project Number: Project Manager:	2	0046-0001					Reported: 12/12/2023 4:24:12PM
logenated Org	anics by	EPA 8015I) - DRO	/ORO			Analyst: KM
Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
					Prepared: 12	2/11/23 A	analyzed: 12/12/23
25.0 50.0							
	50.0		94.0	50-200			
					Prepared: 12	2/11/23 A	analyzed: 12/12/23
25.0	250		92.6	38-132			
	50.0		95.9	50-200			
		Source:	E312059-	04	Prepared: 12	2/11/23 A	analyzed: 12/12/23
25.0	250	ND	91.8	38-132			
	50.0		97.8	50-200			
		Source:	E312059-	04	Prepared: 12	2/11/23 A	analyzed: 12/12/23
25.0	250	ND	92.9	38-132	1.16	20	
	50.0		95.8	50-200			
	Project Number: Project Manager: Ilogenated Org Reporting Limit mg/kg 25.0 50.0 25.0 25.0	Project Number: 2 Project Number: 2 Project Manager: N Alogenated Organics by Reporting Spike Limit Level mg/kg mg/kg 25.0 50.0 25.0 25.0 50.0 25.0 25.0 50.0 25.0 2	Project Number: 20046-0001 Project Manager: Natalie Gladder Alogenated Organics by EPA 8015I Reporting Spike Source Limit Level Result mg/kg mg/kg mg/kg 25.0 50.0 25.0 25.0 25.0 50.0 Source: 25.0 25.0 25.0 50.0 Source: 25.0 25.0 Source: 25.0 25.0 Source: Source: Sou	Project Number: 20046-0001 Project Manager: Natalie Gladden Ilogenated Organics by EPA 8015D - DRO Reporting Spike Source mg/kg mg/kg mg/kg % 25.0 50.0 94.0 25.0 50.0 95.9 25.0 50.0 95.9 25.0 50.0 95.9 25.0 50.0 95.9 25.0 50.0 95.9 25.0 250 97.8 25.0 250 97.8 25.0 250 ND 91.8 25.0 250 ND 97.8 25.0 250 ND 97.8 25.0 250 ND 92.9	Project Number: 20046-0001 Project Manager: Natalie Gladden Ilogenated Organics by EPA 8015D - DRO/ORO Rec Limit Level Result Rec Limit Level Result Rec Limits mg/kg mg/kg mg/kg % % 25.0 50.0 94.0 50-200 25.0 50.0 95.9 50-200 25.0 250 95.9 50-200 25.0 50.0 95.9 50-200 25.0 250 97.8 38-132 25.0 250 97.8 50-200 E Source: E312059-04 50-200 50.0 25.0 250 ND 91.8 38-132 25.0 250 ND 97.8 50-200 E Source: E312059-04 25.0 250 ND 92.9 38-132	Project Number: 20046-0001 Project Manager: Natalie Gladden Ilogenated Organics by EPA 8015D - DRO/ORO Reporting Spike Limit Level Result Rec Limit Level mg/kg mg/kg mg/kg mg/kg 25.0 50.0 50.0 94.0 50.0 95.9 50.0 95.9 50.0 95.9 50.0 95.9 50.0 95.9 50.0 91.8 38-132 50.0 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.8 50.0 97.9 50.0 97.8 50.0 97.9 50.0 97.9	Project Number: 20046-0001 Project Manager: Natalie Gladden Ilogenated Organics by EPA 8015D - DRO/ORO Reporting Spike Limit Level Result Rec Jung/kg mg/kg mg/kg mg/kg Prepared: 12/11/23 A 25.0 50.0 94.0 50.0 94.0 50.0 95.9 50.0 95.9 50.0 95.9 50.0 95.9 50.0 95.9 50.0 97.8 25.0 50.0 Source: E312059-04 Prepared: 12/11/23 25.0 250 25.0 250 ND 91.8 38-132 25.0 250 97.8 50-200 Corree: E312059-04 Prepared: 12/11/23 25.0 250 ND 91.8 38-132 25.0 250 ND 92.9 38-132 1.16 20 <

QC Summary Data

		$\mathbf{x} \in \mathbf{v}$	•	J –	•				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:		Jackson Unit 90 20046-0001 Natalie Gladden					Reported: 12/12/2023 4:24:12P
		Anions	by EPA	300.0/9056A					Analyst: BA
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD %	RPD Limi %	t
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	70	70	Notes
Blank (2350015-BLK1)							Prepared:	12/11/23	Analyzed: 12/11/23
Chloride	ND	20.0							
LCS (2350015-BS1)							Prepared:	12/11/23	Analyzed: 12/11/23
Chloride	246	20.0	250		98.5	90-110			
Matrix Spike (2350015-MS1)				Source: 1	E312060-	02	Prepared:	12/11/23	Analyzed: 12/11/23
Chloride	276	200	250	ND	110	80-120			
Matrix Spike Dup (2350015-MSD1)				Source: 1	E312060-	02	Prepared:	12/11/23	Analyzed: 12/11/23
Chloride	271	200	250	ND	108	80-120	1.79	20	

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Taj	p Rock	Project Name:	Jackson Unit 906H	
7 V	V. Compress Road	Project Number:	20046-0001	Reported:
Ar	tesia NM, 88210	Project Manager:	Natalie Gladden	12/12/23 16:24

ND	Analyte NOT DETECTED at or above the reporting limit
----	--

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Projec	t Information

lient: QD Kock.

Chain of Custody

Bill To

Lab Use Only

Page 1 of 1

EPA Program

SDWA

RCRA

CWA

TAT

3D Standard Attention: ENERGY STAFFING SERVICES 1D 2D Job Number ackson Unit Wett. Lab WO# Project 200410-000 E 312060 6 Address: 2724 NW COUNTY RD Project Manager: Analysis and Method HOBBS, NM 88240 City, State, Zip Address Phone: 575-393-9048 City, State, Zip State Email: NATALIE@ENERGYSTAFFINGLLC.COM GRO/DRO by 8015 DRO/ORO by 8015 Phone: NM CO UT AZ TX Chloride 300.0 BRITTNEY@ENERGYSTAFFINGLLC.COM MN Email: Metals 6010 BTEX by 8023 VOC by 8260 \simeq 4 Report due by: BGDOC BGDOC Lab Remarks Time Date No. of Sample ID Matrix Number Containers Sampled Sampled SP 5-12" S 17/23. P SwI-2 7 2 SW2- 3 Sw3-4 1 Sw 4-2 805-3 0 12/ 7/23. 500-4. Ø 1 Additional Instructions: Samples requiring thermal preservation must be received on ice the day they are sampled or received I, (field sampler), attest to the validity and authenticity of this sample. I am aware that tampering with or intentionally mislabeling the sample location, date or time of collection is considered fraud and may be grounds for legal action. packed in ice at an avg temp above 0 but less than 6 °C on subsequent days. tab Use Only Time Received by: (Signature) Time Relinquished by: (Signature) 128-27 1120 (Y) N 12/2/28 Received on ice: malle horas as Date Received by: (Signature) Relinquished by: (Signature) Time 12.9.23 1500 **T**3 Received by: (Signature) Date Relinquished by: (Signature AVG Temp °C 11173 12.4.73 MASSO Container Type: g - glass, p - poly/plastic, ag - amber glass, v - VOA Sample Matrix: S - Soil, Sd - Solid, Sg - Sludge, A - Aqueous, O - Other Note: Samples are discarded 30 days after results are reported unless other arrangements are made. Hazardous samples will be returned to client or disposed of at the client expense. The report for the analysis of the above samples is applicable only to those samples received by the laboratory with this COC. The liability of the laboratory is limited to the amount paid for on the report. enviro⁺ech

Page 117 of 174

11

Envirotech Analytical Laboratory

Sample Receipt Checklist (SRC)

Client:	Tap Rock	Date Received:	12/11/23 07:	:30	Work Order ID: E312060
Phone:	(575) 390-6397	Date Logged In:	12/11/23 07:	:52	Logged In By: Jordan Montano
Email:	natalie@energystaffingllc.com	Due Date:	12/12/23 17	:00 (1 day TAT)	
Chain of	Custody (COC)				
l. Does t	he sample ID match the COC?		Yes		
2. Does t	he number of samples per sampling site location m	atch the COC	Yes		
3. Were s	samples dropped off by client or carrier?		Yes	Carrier: C	Courier
4. Was th	e COC complete, i.e., signatures, dates/times, requ	ested analyses?	Yes	-	
5. Were a	all samples received within holding time? Note: Analysis, such as pH which should be conducted i.e, 15 minute hold time, are not included in this disucss		Yes		Comments/Resolution
<u>Sample '</u>	<u>Furn Around Time (TAT)</u>				
6. Did th	e COC indicate standard TAT, or Expedited TAT?		Yes		Time sampled not provided on COC per
Sample	<u>Cooler</u>				client.
7. Was a	sample cooler received?		Yes		
8. If yes,	was cooler received in good condition?		Yes		Project manager not listed on COC.
9. Was tł	he sample(s) received intact, i.e., not broken?		Yes		- rejeet manager not instea on eee.
10. Were	custody/security seals present?		No		
11. If yes	s, were custody/security seals intact?		NA		
12. Was t	he sample received on ice? If yes, the recorded temp is 4°C Note: Thermal preservation is not required, if samples a		Yes		
10.70	minutes of sampling		a		
13. If no	visible ice, record the temperature. Actual sampl	e temperature: <u>4°</u>	<u>C</u>		
	<u>Container</u>				
	aqueous VOC samples present?		No		
	VOC samples collected in VOA Vials?		NA		
	head space less than 6-8 mm (pea sized or less)?		NA		
	a trip blank (TB) included for VOC analyses?	0	NA		
	non-VOC samples collected in the correct container		Yes		
	appropriate volume/weight or number of sample conta	mers conected?	Yes		
Field La		Formation			
	field sample labels filled out with the minimum in: Sample ID?	iormation:	Yes		
	Date/Time Collected?		No		
(Collectors name?		No		
Sample]	Preservation				
21. Does	the COC or field labels indicate the samples were	preserved?	No		
	sample(s) correctly preserved?		NA		
24. Is lat	filteration required and/or requested for dissolved	metals?	No		
<u>Multiph</u>	ase Sample Matrix				
26. Does	the sample have more than one phase, i.e., multiph	ase?	No		
27. If ye	s, does the COC specify which phase(s) is to be ana	lyzed?	NA		
	ract Laboratory_				
Subcont					
-	amples required to get sent to a subcontract laborat	ory?	No		

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

•

PROMETHEUS CTB PAD D

DELINEATION SITE PHOTOS

Brittney Corral

From: Sent:	OCDOnline@state.nm.us Monday, December 11, 2023 11:20 AM
То:	Natalie Gladden
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 293093

To whom it may concern (c/o Natalie Gladden for TAP ROCK OPERATING, LLC),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2312327651.

The sampling event is expected to take place:

When: 12/14/2023 @ 07:00 Where: O-22-24S-33E 0 FNL 0 FEL (32.1981382,-103.559856)

Additional Information: PLEASE CONTACT NATALIE GLADDEN AT 5753906397 OR BY EMAIL AT NATALIE@ENERGYSTAFFINGLLC.COM

Additional Instructions: GPS 32.1981382 -103.55985600

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Company Name:	TAPROCK				Location N	ame:	PROMETH	EUS 136H		Release Date:
SP ID	Depth	Titr	PID	L-BTEX	L-GRO	L-DRO	L-ORO	L-TPH	L-CHL	Soil
COMP1	8	80	L	ND	ND	ND	ND	ND	ND	5011
COMP2	8	240	L	ND	ND	ND	ND	ND	126	
COMP3	14	240	L	ND	ND	ND	ND	ND	125	
COMP4	2	80	L	ND	ND	ND	ND	ND	ND	
COMP5	10	240	L	ND	ND	ND	ND	ND	113	
SWCOMP1	8	80	L	ND	ND	ND	ND	ND	ND	
SWCOMP2	8	80	L	ND	ND	ND	ND	ND	34	
SWCOMP3	14	240	L	ND	ND	ND	ND	ND	125	
SWCOMP4	2	80	L	ND	ND	ND	ND	ND	ND	
SWCOMP5	10	80	L	ND	ND	ND	ND	ND	ND	
SWCOMP6	10	80	L	ND	ND	ND	ND	ND	ND	

Page 130 of 174

Taprock Prometheus St. Com. 136H - 991 sq. ft - 5 Composites

Legend

Composite #

Taprock Promethues St. Com. 136H 991 Sq. Ft.

C1

CLIENTS LOCATION Taprock Prometheus St. Com. 136H

SAMPLE ID	LAT	LONG
Composite 1	32;11'54.26"N	103;33'35.45"W
Composite 2	32;11'54.18"N	103;33'35.61"W
Composite 3	32;11'54.16"N	103;33'35.44"W
Composite 4	32;11'54.07"N	103;33'35.47"W
Composite 5	32;11'53.99"N	103;33'35.48"W

PROMETHEUS ST COM 136H SIDEWALL COMPOSITE MAP

S. martine and

L

Google Earth Released to Imaging: 9/10/2024 2:02:04 PM Inage © 2024 Airbus

17

COMPANY: TAP ROCK

LOCATION: PROMETHEUS ST COM 136H

POINT	LATITUDE	LONGITUDE
CSW1	32.198420°	-103.559821°
CSW2	32.198356°	-103.559803°
CSW3	32.198315°	-103.559820°
CSW4	32.198316°	-103.559882°
CSW5	32.198364°	-103.559906°
CSW6	32.198403°	-103.559884°

5796 U.S. Hwy 64 Farmington, NM 87401

Phone: (505) 632-1881 Envirotech-inc.com

envirotech

Practical Solutions for a Better Tomorrow

Analytical Report

Tap Rock

Project Name:

Jackson Unit 906H

Work Order: E312115

Job Number: 20046-0001

Received: 12/18/2023

Revision: 1

Report Reviewed By:

Walter Hinchman Laboratory Director 12/19/23

Envirotech Inc. certifies the test results meet all requirements of TNI unless noted otherwise. Statement of Data Authenticity: Envirotech Inc, attests the data reported has not been altered in any way. Partial or incomplete reproduction of this report is prohibited, unless approved by Envirotech Inc. Envirotech Inc, holds the Utah TNI certification NM00979 for data reported. Envirotech Inc, holds the Texas TNI certification T104704557 for data reported. Date Reported: 12/19/23

Natalie Gladden 7 W. Compress Road Artesia, NM 88210

Project Name: Jackson Unit 906H Workorder: E312115 Date Received: 12/18/2023 7:30:00AM

Natalie Gladden,

Page 135 of 174

Thank you for choosing Envirotech, Inc. as your analytical testing laboratory for the sample(s) received on, 12/18/2023 7:30:00AM, under the Project Name: Jackson Unit 906H.

The analytical test results summarized in this report with the Project Name: Jackson Unit 906H apply to the individual samples collected, identified and submitted bearing the project name on the enclosed chain-of-custody. Subcontracted sample analyses not conducted by Envirotech, Inc., are attached in full as issued by the subcontract laboratory.

Please review the Chain-of-Custody (COC) and Sample Receipt Checklist (SRC) for any issues reguarding sample receipt temperature, containers, preservation etc. To best understand your test results, review the entire report summarizing your sample data and the associated quality control batch data.

All reported data in this analytical report were analyzed according to the referenced method(s) and are in compliance with the latest NELAC/TNI standards, unless otherwise noted. Samples or analytical quality control parameters not meeting specific QC criteria are qualified with a data flag. Data flag definitions are located in the Notes and Definitions section of this analytical report.

If you have any questions concerning this report, please feel free to contact Envirotech, Inc.

Respectfully,

Walter Hinchman Laboratory Director Office: 505-632-1881 Cell: 775-287-1762 whinchman@envirotech-inc.com

Field Offices:

Southern New Mexico Area Lynn Jarboe Laboratory Technical Representative Office: 505-421-LABS(5227) Cell: 505-320-4759 ljarboe@envirotech-inc.com Raina Schwanz Laboratory Administrator Office: 505-632-1881 rainaschwanz@envirotech-inc.com Alexa Michaels Sample Custody Officer Office: 505-632-1881 labadmin@envirotech-inc.com

Michelle Golzales Client Representative Office: 505-421-LABS(5227) Cell: 505-947-8222 mgonzales@envirotech-inc.com

Envirotech Web Address: www.envirotech-inc.com

•

Table of Contents

Title Page	1
Cover Page	2
Table of Contents	3
Sample Summary	4
Sample Data	5
SP Com 1-8'	5
SP Com 2-8'	6
SP Com 3-14'	7
SP Com 4-2'	8
SP Com 5-10'	9
SW Com 1-8'	10
SW Com 2-8'	11
SW Com 3-14'	12
SW Com 4-2'	13
SW Com 5-10'	14
SW Com 6-10'	15
QC Summary Data	16
QC - Volatile Organics by EPA 8021B	16
QC - Nonhalogenated Organics by EPA 8015D - GRO	17
QC - Nonhalogenated Organics by EPA 8015D - DRO/ORO	18
QC - Anions by EPA 300.0/9056A	19
Definitions and Notes	20
Chain of Custody etc.	21

Sample Summarv

		Sample Sum	mary		
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	Jackson Unit 906H 20046-0001 Natalie Gladden		Reported: 12/19/23 13:51
Client Sample ID	Lab Sample ID	Matrix	Sampled	Received	Container
SP Com 1-8'	E312115-01A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SP Com 2-8'	E312115-02A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SP Com 3-14'	E312115-03A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SP Com 4-2'	E312115-04A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SP Com 5-10'	E312115-05A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 1-8'	E312115-06A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 2-8'	E312115-07A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 3-14'	E312115-08A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 4-2'	E312115-09A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 5-10'	E312115-10A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.
SW Com 6-10'	E312115-11A	Soil	12/14/23	12/18/23	Glass Jar, 2 oz.

	50	imple D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	son Unit 906H 46-0001 alie Gladden			Reported: 12/19/2023 1:51:10PM
	S	SP Com 1-8'				
		E312115-01				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	yst: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
oluene	ND	0.0250	1	12/18/23	12/18/23	
-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/18/23	
urrogate: 4-Bromochlorobenzene-PID		92.0 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	yst: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
urrogate: 1-Chloro-4-fluorobenzene-FID		90.9 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analy	yst: KM		Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
urrogate: n-Nonane		86.1 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	yst: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/18/23	

Sample Data

Sample Data

	Di	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	son Unit 906H 46-0001 ilie Gladden			Reported: 12/19/2023 1:51:10PM
	S	SP Com 2-8'				
		E312115-02				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
o-Xylene	ND	0.0250	1	12/18/23	12/18/23	
p,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		93.2 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	Analyst: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.6 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		88.6 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2351022
Chloride	126	20.0	1	12/18/23	12/18/23	

Sample Data

	Di	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbe Project Manag	er: 2004	son Unit 906H 46-0001 Ilie Gladden			Reported: 12/19/2023 1:51:10PM
	S	P Com 3-14'				
		E312115-03				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	st: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
p-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Fotal Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		92.8 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RAS			Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.8 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	Batch: 2351012		
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		90.8 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	st: DT		Batch: 2351022
Chloride	125	20.0	1	12/18/23	12/18/23	

Sample Data

	5	ampic D	ata			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numb Project Manag	er: 2004	son Unit 906H 46-0001 ılie Gladden			Reported: 12/19/2023 1:51:10PM
	S	SP Com 4-2'				
		E312115-04				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
p-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		93.4 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.2 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM		Batch: 2351012	
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		86.9 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	:: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/18/23	

Sample Data

		ampic D	ata			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numbo Project Manag	er: 2004	son Unit 906H 46-0001 Ilie Gladden			Reported: 12/19/2023 1:51:10PM
	S	P Com 5-10'				
		E312115-05				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analy	st: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
p-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		92.6 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analy	st: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.1 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM		Batch: 2351012	
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		91.6 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analy	st: DT		Batch: 2351022
Chloride	113	20.0	1	12/18/23	12/18/23	

Sample Data

	D		ala			
Tap Rock 7 W. Compress Road	Project Name Project Numl		tson Unit 906H 46-0001			Reported:
Artesia NM, 88210	Project Mana	nger: Nata	alie Gladden			12/19/2023 1:51:10PM
	\$	SW Com 1-8'				
		E312115-06				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
p-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Fotal Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		92.9 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst: RAS			Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.0 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		89.2 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	:: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/18/23	

Sample Data

	r.		ata				
Tap Rock	Project Name Project Num		Jackson Unit 906H 20046-0001			Donortodi	
7 W. Compress Road Artesia NM, 88210	Project Mana		alie Gladden		Reported: 12/19/2023 1:51:10PM		
	5						
		E312115-07					
		Reporting					
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes	
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015	
Benzene	ND	0.0250	1	12/18/23	12/18/23		
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23		
Toluene	ND	0.0250	1	12/18/23	12/18/23		
p-Xylene	ND	0.0250	1	12/18/23	12/18/23		
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23		
Total Xylenes	ND	0.0250	1	12/18/23	12/18/23		
Surrogate: 4-Bromochlorobenzene-PID		92.4 %	70-130	12/18/23	12/18/23		
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015	
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23		
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.1 %	70-130	12/18/23	12/18/23		
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst: KM			Batch: 2351012	
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23		
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23		
Surrogate: n-Nonane		89.2 %	50-200	12/18/23	12/18/23		
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2351022	
Chloride	34.0	20.0	1	12/18/23	12/18/23		

Sample Data

	5	ample D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name: Project Numb Project Manag	er: 2004	son Unit 906H 46-0001 alie Gladden	[Reported: 12/19/2023 1:51:10PM
	S	W Com 3-14	,			
		E312115-08				
		Reporting				
Analyte	Result	Limit	Dilution	n Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Ana	alyst: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/18/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/18/23	
Toluene	ND	0.0250	1	12/18/23	12/18/23	
p-Xylene	ND	0.0250	1	12/18/23	12/18/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/18/23	
Fotal Xylenes	ND	0.0250	1	12/18/23	12/18/23	
Surrogate: 4-Bromochlorobenzene-PID		92.1 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Ana	ılyst: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/18/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		92.0 %	70-130	12/18/23	12/18/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Ana	ılyst: KM		Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Dil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		91.4 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Ana	ılyst: DT		Batch: 2351022
Chloride	125	20.0	1	12/18/23	12/18/23	

Sample Data

Tap Rock 7 W. Compress Road	Project Name: Project Numb		son Unit 906H 46-0001			Reported:
Artesia NM, 88210	Project Manag	ger: Nata	alie Gladden			12/19/2023 1:51:10PM
	S	W Com 4-2'				
		E312115-09				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/19/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/19/23	
Toluene	ND	0.0250	1	12/18/23	12/19/23	
p-Xylene	ND	0.0250	1	12/18/23	12/19/23	
o,m-Xylene	ND	0.0500	1	12/18/23	12/19/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/19/23	
Surrogate: 4-Bromochlorobenzene-PID		92.3 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/19/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.2 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	t: KM		Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		88.4 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/18/23	

Sample Data

	D	ampic D	ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Num Project Mana	ber: 2004	son Unit 906H 46-0001 alie Gladden			Reported: 12/19/2023 1:51:10PM
	S	SW Com 5-10	•			
		E312115-10				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analyst	:: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/19/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/19/23	
Toluene	ND	0.0250	1	12/18/23	12/19/23	
p-Xylene	ND	0.0250	1	12/18/23	12/19/23	
p,m-Xylene	ND	0.0500	1	12/18/23	12/19/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/19/23	
Surrogate: 4-Bromochlorobenzene-PID		92.5 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analyst	t: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/19/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		91.7 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analyst	:: KM		Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/18/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/18/23	
Surrogate: n-Nonane		88.9 %	50-200	12/18/23	12/18/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analyst	t: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/19/23	

Sample Data

	D		ala			
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name Project Numl Project Mana	ber: 2004	son Unit 906H 46-0001 alie Gladden			Reported: 12/19/2023 1:51:10PM
	S	SW Com 6-10	'			
		E312115-11				
		Reporting				
Analyte	Result	Limit	Dilution	Prepared	Analyzed	Notes
Volatile Organics by EPA 8021B	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015
Benzene	ND	0.0250	1	12/18/23	12/19/23	
Ethylbenzene	ND	0.0250	1	12/18/23	12/19/23	
Toluene	ND	0.0250	1	12/18/23	12/19/23	
p-Xylene	ND	0.0250	1	12/18/23	12/19/23	
p,m-Xylene	ND	0.0500	1	12/18/23	12/19/23	
Total Xylenes	ND	0.0250	1	12/18/23	12/19/23	
Surrogate: 4-Bromochlorobenzene-PID		93.4 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - GRO	mg/kg	mg/kg	Analys	t: RAS		Batch: 2351015
Gasoline Range Organics (C6-C10)	ND	20.0	1	12/18/23	12/19/23	
Surrogate: 1-Chloro-4-fluorobenzene-FID		90.3 %	70-130	12/18/23	12/19/23	
Nonhalogenated Organics by EPA 8015D - DRO/ORO	mg/kg	mg/kg	Analys	:: KM		Batch: 2351012
Diesel Range Organics (C10-C28)	ND	25.0	1	12/18/23	12/19/23	
Oil Range Organics (C28-C36)	ND	50.0	1	12/18/23	12/19/23	
Surrogate: n-Nonane		87.9 %	50-200	12/18/23	12/19/23	
Anions by EPA 300.0/9056A	mg/kg	mg/kg	Analys	t: DT		Batch: 2351022
Chloride	ND	200	10	12/18/23	12/19/23	

QC Summary Data

		QC D	umme	il y Dat	a				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	20	eckson Unit 90 0046-0001 atalie Gladder					Reported: 12/19/2023 1:51:10PM
Anesia NM, 88210		, ,							12/19/2023 1.51.10FM
		volatile O	rganics i	oy EPA 802	218				Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2351015-BLK1)							Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Benzene	ND	0.0250							
Ethylbenzene	ND	0.0250							
Toluene	ND	0.0250							
o-Xylene	ND	0.0250							
p,m-Xylene	ND	0.0500							
Total Xylenes	ND	0.0250							
Surrogate: 4-Bromochlorobenzene-PID	7.51		8.00		93.9	70-130			
LCS (2351015-BS1)							Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Benzene	4.60	0.0250	5.00		92.1	70-130			
Ethylbenzene	4.53	0.0250	5.00		90.7	70-130			
Foluene	4.59	0.0250	5.00		91.7	70-130			
p-Xylene	4.54	0.0250	5.00		90.7	70-130			
o,m-Xylene	9.26	0.0500	10.0		92.6	70-130			
Total Xylenes	13.8	0.0250	15.0		92.0	70-130			
Surrogate: 4-Bromochlorobenzene-PID	7.50		8.00		93.7	70-130			
Matrix Spike (2351015-MS1)				Source:	E312115-01		Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Benzene	5.07	0.0250	5.00	ND	101	54-133			
Ethylbenzene	4.97	0.0250	5.00	ND	99.5	61-133			
Toluene	5.04	0.0250	5.00	ND	101	61-130			
p-Xylene	4.98	0.0250	5.00	ND	99.6	63-131			
p,m-Xylene	10.1	0.0500	10.0	ND	101	63-131			
Total Xylenes	15.1	0.0250	15.0	ND	101	63-131			
Surrogate: 4-Bromochlorobenzene-PID	7.43		8.00		92.9	70-130			
Matrix Spike Dup (2351015-MSD1)				Source:	E312115-01		Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Benzene	4.94	0.0250	5.00	ND	98.7	54-133	2.70	20	
Ethylbenzene	4.86	0.0250	5.00	ND	97.3	61-133	2.25	20	
Toluene	4.93	0.0250	5.00	ND	98.5	61-130	2.36	20	
p-Xylene	4.86	0.0250	5.00	ND	97.3	63-131	2.36	20	
p,m-Xylene	9.92	0.0500	10.0	ND	99.2	63-131	2.14	20	
Total Xylenes	14.8	0.0250	15.0	ND	98.5	63-131	2.21	20	
Surrogate: 4-Bromochlorobenzene-PID	7.34		8.00		91.8	70-130			

QC Summary Data

		QU D	u	ary Data					
Tap Rock 7 W. Compress Road Artesia NM, 88210	Project Name:Jackson Unit 906HProject Number:20046-0001Project Manager:Natalie Gladden								Reported: 12/19/2023 1:51:10PM
	Noi	nhalogenated (Organics	by EPA 80	15D - GI	RO			Analyst: RAS
Analyte	Result	Reporting Limit	Spike Level	Source Result	Rec	Rec Limits	RPD	RPD Limit	
	mg/kg	mg/kg	mg/kg	mg/kg	%	%	%	%	Notes
Blank (2351015-BLK1)							Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Gasoline Range Organics (C6-C10)	ND	20.0							
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.23		8.00		90.4	70-130			
LCS (2351015-BS2)							Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Gasoline Range Organics (C6-C10)	40.1	20.0	50.0		80.2	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.37		8.00		92.1	70-130			
Matrix Spike (2351015-MS2)				Source:	E312115-(01	Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Gasoline Range Organics (C6-C10)	43.0	20.0	50.0	ND	85.9	70-130			
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.40		8.00		92.5	70-130			
Matrix Spike Dup (2351015-MSD2)				Source:	E312115-(01	Prepared: 1	2/18/23 A	nalyzed: 12/18/23
Gasoline Range Organics (C6-C10)	40.3	20.0	50.0	ND	80.6	70-130	6.36	20	
Surrogate: 1-Chloro-4-fluorobenzene-FID	7.35		8.00		91.8	70-130			

QC Summary Data

		QC D	u 1 1 1 1 1 1	aly Data	L				
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:	:	Jackson Unit 900 20046-0001 Natalie Gladden	5H				Reported: 12/19/2023 1:51:10PM
	Nonh	alogenated Org	anics by	y EPA 8015D	- DRO	/ORO			Analyst: KM
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPD Limit %	Notes
Blank (2351012-BLK1)							Prepared: 1	2/18/23 A	Analyzed: 12/18/23
Diesel Range Organics (C10-C28)	ND	25.0							
Oil Range Organics (C28-C36)	ND	50.0							
Surrogate: n-Nonane	44.2		50.0		88.3	50-200			
LCS (2351012-BS1)							Prepared: 1	2/18/23 A	Analyzed: 12/18/23
Diesel Range Organics (C10-C28)	226	25.0	250		90.3	38-132			
Surrogate: n-Nonane	44.1		50.0		88.3	50-200			
Matrix Spike (2351012-MS1)				Source: 1	E 312115- (01	Prepared: 1	2/18/23 A	Analyzed: 12/18/23
Diesel Range Organics (C10-C28)	233	25.0	250	ND	93.3	38-132			
Surrogate: n-Nonane	45.1		50.0		90.1	50-200			
Matrix Spike Dup (2351012-MSD1)				Source: l	E312115-0	01	Prepared: 1	2/18/23 A	Analyzed: 12/18/23
Diesel Range Organics (C10-C28)	236	25.0	250	ND	94.6	38-132	1.38	20	
Surrogate: n-Nonane	45.5		50.0		91.0	50-200			

QC Summary Data

		$\mathbf{x} \in \mathbf{z}$	•••••		-					
Tap Rock 7 W. Compress Road Artesia NM, 88210		Project Name: Project Number: Project Manager:		Jackson Unit 90 20046-0001 Natalie Gladden					-	orted: 1:51:10PM
		Anions	by EPA	300.0/9056A	1				Analyst	: DT
Analyte	Result mg/kg	Reporting Limit mg/kg	Spike Level mg/kg	Source Result mg/kg	Rec %	Rec Limits %	RPD %	RPE Limi %	t	Notes
Blank (2351022-BLK1)							Prepared:	12/18/23	Analyzed: 1	2/18/23
Chloride LCS (2351022-BS1)	ND	20.0					Prepared:	12/18/23	Analyzed: 1	2/18/23
Chloride	251	20.0	250		100	90-110				
Matrix Spike (2351022-MS1)				Source:	E312114-()5	Prepared:	12/18/23	Analyzed: 1	2/18/23
Chloride	472	100	250	194	111	80-120				
Matrix Spike Dup (2351022-MSD1)				Source:	E312114-()5	Prepared:	12/18/23	Analyzed: 1	2/18/23
Chloride	440	100	250	194	98.1	80-120	7.02	20		

QC Summary Report Comment:

Calculations are based off of the raw (non-rounded) data. However, for reporting purposes all QC data is rounded to three significant figures. Therefore, hand calculated values may differ slightly.

Γ	Tap Rock	Project Name:	Jackson Unit 906H	
	7 W. Compress Road	Project Number:	20046-0001	Reported:
	Artesia NM, 88210	Project Manager:	Natalie Gladden	12/19/23 13:51

ND	Analyte NOT DETECTED at or above the reporting limit
----	--

- NR Not Reported
- RPD Relative Percent Difference
- DNI Did Not Ignite

DNR Did not react with the addition of acid or base.

Note (1): Methods marked with ** are non-accredited methods.

Note (2): Soil data is reported on an "as received" weight basis, unless reported otherwise.

Pro	prt	Information
	coc	monuteron

Released to

Page 1 of 2

Im		1 15	7 16			1	Bill To		1. Pak	· State	12	ah U	lse On	ilv	. /s. 18-12	1		TAT		EPA P	rogram
Imaging:	lient-	ap k	OUL	1-11	201.11	10.1	Attention: ENERGY STAFFING SI	ERVICES	Lah	WO#		10 0	lob	Num	ber	1D	2D	3D	Standard	CWA	SDWA
Sul	roject:	Aanager:	ma	nate	10 Caps	1 15	Address: 2724 NW COUNTY RD		FZ	sia	11=	5	200	JL	00001						
	Address:	nanager.	2.0	nan	~~··	a san	City, State, Zip HOBBS, NM 882	240	- c	مىر		_	Analy	ysis a	nd Metho	d					RCRA
10	City, Stat	e 7in					Phone: 575-393-9048			1	1	1							Se 16 818	2	
20	hone:	<u>, , , , , , , , , , , , , , , , , , , </u>					Email: NATALIE@ENERGYSTAFFIN	GLLC.COM	15	15										State	
124	Email:						BRITTNEY@ENERGYSTAFFD		y 80	y 80	17	0	0	0.0		WN			NM CC	UT AZ	IX
N	Report d	ue by:					biitt this contained a		ROb	ROb	y 80.	826	601	le 30			TX				
9/10/2024 2:02:04	Time	Date		No. of	Completion			Lab	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC	BGDOC			Remarks	;
.04	Sampled	Sampled	Matrix	Containers	Sample ID			Numbe	DR	GR	BT	2	ž	5		11	- MA				
PM		12/14/23	S	1	SPCom	1-0	£,	1								a					
		1	1		Splam 2	-8'		2													
					Sptom	3-14	<i>//</i>	3													
					SPLANIG	1-2	<i>st</i>	4													
					Sploms	-20	3'	5		1											
					Swlom.	1-	SI	6				T					Í				
					Sw Com	2-8	20	7			1	1		T							
					SwCom	3-14	<i>q</i> ,	8													
					Swcom	N-	2	9													
		12/14/20		1	Sw com	15	-10	10													
	Additio	nal Instru						C MANAGE C M													
							aware that tampering with or intentionally mis	labelling the safe	ple loca	ation,			Sam	ples rec ced in ic	uiring therma e at an avg ter	l presen mp abov	vation m e 0 but l	ust be reco ess than 6	eived on ice the o °C on subsequen	lay they are sam t days.	pled or received
		hed by: Sigr	atura	Dat	may be grounds for	me 7	Received by: (biscoure)	Date 12	15.2	Tim	21	3) Re	ceive	ed on ice:		Lab L	lse Onl	y	195 N	20
0	Hennouis	ed by: (Sig	ort/ natyle)	Dat	1 JT7	me	Received by: (Signature)		317	Z Tim		3) T1			T2			Т3		
V	Relinquis	hed by: (Sigr	nature)	Dat	Tie Ti	me	Received by: (Signature) (Date	014	Tim	ne	\sim			mp °C	4		2			
								<u> </u>			alaa	. n			ic, ag - am	her a	ass v	- VOA			
	Sample Ma	atrix: S - Soil, S	d - Solid, Se	g - Sludge, A -	Aqueous, O - Othe	er		[Contai	will be	pe:g	- glas	clipp	t or dis	plast	of at the c	lient e	xpense	. The r	eport for the	analysis of th	ie above
	Note: Sar	nples are dis	carded 30	days after i	results are repor	ted un	less other arrangements are made. Hazar atory with this COC. The liability of the labo	cous samples v	d to th	eamo	unt o	aid fo	or on th	e rep	ort.				1411	6	
	samples	is applicable	only to the	ose samples	received by the	ladora	actly with this COC. The figurity of the labo	a doi y is innite					Ø	<u>.</u>				۲			
													(-	3	P	n		7	ro	7 e	Cr
													No.	-	0					-	<u> </u>

Project	Information

Page e of F

lient: 19	Coch	K it 900	1H		Bill To ENERGY STAFFING SER	VICES	Lab V	NO#	1	o Use	ob Ni	mbe		1D	2D	TAT 3D	Standard	EPA PI CWA	rogram SDW
project: Project Manager Address:	N.G	lad	din	City, State,	724 NW COUNTY RD Zip HOBBS, NM 88240)	E3	19	112		nalysi	s and l	COO Method						RCR
City, State, Zip Phone: Email:				(A) (A)	5-393-9048 `ALIE@ENERGYSTAFFINGI ITNEY@ENERGYSTAFFING		by 8015	by 8015	32.1	60	10	0.00		WN	IX		NM CC	State	TX
Time Date Sampled Sampled	Matrix	No. of Containers	Sample ID	984		Lab Number	DRO/ORO by 8015	GRO/DRO by 8015	BTEX by 8021	VOC by 8260	Metals 6010	Chloride 300.0		BGDOC	BGDOC 1		P	Remarks	
12/14/	Ze	1	Sur Com C	e-10'		11								P					
													_						
												-							
								ļ											
							-												
Additional Inst	uctions:							-									1		
I, (field sampler), atte	st to the validit	ty and auther	nticity of this sample.	I am aware that tamp	ering with or intentionally mislat	celling the string	le locat	ion,	\geq	>	Sample: packed	s requirir in ice at :	g therma an avg ter	preserv np above	ation mu 0 but le	st be rece ss than 6 '	ived on ice the d 'C on subsequent	yy they are samp days.	pled or rec
Relinquished 19: 0	phature)	Dat	2.15.23 Time	21Shereiv	and all island are the	12.15	5.2	3 1	2	5	Rece	ived o	on ice:		ab U	se Onl	y		
(Xa)	ignature)	Dat	te 15.23	5000	ed by: (Signature) ed by: (Signature)	Date 12/18 Date	23	Time	73	Ó	<u>T1</u>	2		<u>T2</u>	e.		<u></u>		
Relinquished by: (- Aqueous, O - Other			Containe	or Tyr	<u> </u>	plass	n - n		Temp		H ber gla	ass, v	VOA	17.6		

Envirotech Analytical Laboratory

structions	: Please take note of any NO checkmarks.	Sample	Receipt Ch	ecklist (SRC)		
we receiv	e no response concerning these items within 24 hours of the	date of this noti	ce, all the san	nples will be an	alyzed as reque	sted.	
Client:	Tap Rock D	ate Received:	12/18/23 07:	30		Work Order ID:	E312115
Phone:	(575) 390-6397 D	ate Logged In:	12/18/23 08:	18		Logged In By:	Alexa Michaels
Email:	natalie@energystaffingllc.com D	ue Date:	12/19/23 17:	00 (1 day TAT)			
<u>Chain o</u>	<u>f Custody (COC)</u>						
1. Does	the sample ID match the COC?		Yes				
2. Does	the number of samples per sampling site location match	the COC	Yes				
3. Were	samples dropped off by client or carrier?		Yes	Carrier:	Courier		
4. Was the	he COC complete, i.e., signatures, dates/times, requester	d analyses?	Yes	_			
5. Were	all samples received within holding time?		Yes				
	Note: Analysis, such as pH which should be conducted in the i.e, 15 minute hold time, are not included in this disucssion.	e field,				Commen	ts/Resolution
Samnla	Turn Around Time (TAT)						
	e COC indicate standard TAT, or Expedited TAT?		Yes		Time sar	npled is not do	cumented on the
Sample	•		100		COC by		
	sample cooler received?		Yes				
	, was cooler received in good condition?		Yes				
-	he sample(s) received intact, i.e., not broken?		Yes				
	e custody/security seals present?		No				
	s, were custody/security seals intact?						
•	he sample received on ice? If yes, the recorded temp is 4°C, i.e	6110C	NA				
12. was t	Note: Thermal preservation is not required, if samples are re- minutes of sampling	,	Yes				
13. If no	visible ice, record the temperature. Actual sample te	mperature: <u>4°</u>	<u>C</u>				
Sample	<u>Container</u>						
14. Are a	aqueous VOC samples present?		No				
15. Are	VOC samples collected in VOA Vials?		NA				
16. Is th	e head space less than 6-8 mm (pea sized or less)?		NA				
17. Was	a trip blank (TB) included for VOC analyses?		NA				
18. Are	non-VOC samples collected in the correct containers?		Yes				
19. Is the	appropriate volume/weight or number of sample container	s collected?	Yes				
Field La	<u>ıbel</u>						
	e field sample labels filled out with the minimum inform	nation:					
	Sample ID?		Yes				
	Date/Time Collected? Collectors name?		Yes				
	Preservation		Yes				
-	s the COC or field labels indicate the samples were pres	erved?	No				
	sample(s) correctly preserved?		NA				
	b filteration required and/or requested for dissolved met	als?	No				
	ase Sample Matrix						
-	s the sample have more than one phase, i.e., multiphase	,	No				
	s, does the COC specify which phase(s) is to be analyze		NO NA				
-			INA				
	ract Laboratory	,					
	samples required to get sent to a subcontract laboratory		No				
∠9. Was	a subcontract laboratory specified by the client and if so	o wno?	NA S	ubcontract Lal	o: NA		
<u>Client</u>	Instruction						

Signature of client authorizing changes to the COC or sample disposition.

envirotech Inc.

PROMETHEUS CTB PAD D

REMEDIATION SITE PHOTOS

PROMETHEUS CTB PAD D

FINAL SITE PHOTOS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 368251

QUESTIONS					
Operator: TAP ROCK OPERATING, LLC 523 Park Point Drive Golden, CO 80401	OGRID: 372043 Action Number: 368251				
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)				
QUESTIONS					
Prerequisites					

Incident ID (n#)	nAPP2312327651
Incident Name	NAPP2312327651 PROMETHEUS STATE COM #136H @ 30-025-48763
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Well	[30-025-48763] JACKSON UNIT #906H
Incident Facility	[fAPP2213858184] Prometheus D CTB

Location of Release Source

Please answer all the questions in this group.					
Site Name	PROMETHEUS STATE COM #136H				
Date Release Discovered	04/26/2023				
Surface Owner	State				

Incident Details

Please answer all the questions in this group.				
Incident Type	Produced Water Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Not answered.			
Produced Water Released (bbls) Details	Cause: Corrosion Flow Line - Production Produced Water Released: 16 BBL Recovered: 0 BBL Lost: 16 BBL.			
Is the concentration of chloride in the produced water >10,000 mg/l	Yes			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.			

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 168 of 174

QUESTIONS, Page 2

Action 368251

QUESTIONS (continued)				
Operator:	OGRID:			
TAP ROCK OPERATING, LLC	372043			
523 Park Point Drive	Action Number:			
Golden, CO 80401	368251			
	Action Type:			
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)			

QUESTIONS

Is this a gas only submission (i.e. only significant Mcf values reported) No, according to supplied volumes this does not appear to be a "gas only" report. Was this a major release as defined by Subsection A of 19.15.29.7 NMAC No Reasons why this would be considered a submission for a notification of a major release Unavailable. With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	lature and Volume of Release (continued)					
Reasons why this would be considered a submission for a notification of a major release	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.				
release Unavailable.	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No				
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.		Unavailable.				
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.				

Initial Response					
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.				
The source of the release has been stopped	True				
The impacted area has been secured to protect human health and the environment	True				
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True				
All free liquids and recoverable materials have been removed and managed appropriately	True				
If all the actions described above have not been undertaken, explain why	Not answered.				
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.					
hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or ocal laws and/or regulations.					
I hereby agree and sign off to the above statement	Name: Natalie Gladden Title: Environmental Email: natalie@energystaffingllc.com Date: 07/30/2024				

District I

1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505

Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 169 of 174

QUESTIONS, Page 3

Action 368251

 QUESTIONS (continued)

 Operator:

 OGRID:
 372043
 4ction Number:
 368251
 Action Type:

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission Yes Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC. Have the lateral and vertical extents of contamination been fully delineated Yes Was this release entirely contained within a lined containment area No Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.) Chloride (EPA 300.0 or SM4500 CI B) 6750 TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M) 100400 GRO+DRO (EPA SW-846 Method 8015M) 79771 BTEX (EPA SW-846 Method 8021B or 8260B) 102 (EPA SW-846 Method 8021B or 8260B) Benzene 0 Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation. On what estimated date will the remediation commence 12/13/2023 On what date will (or did) the final sampling or liner inspection occur 12/14/2023 On what date will (or was) the remediation complete(d) 01/29/2024 What is the estimated surface area (in square feet) that will be reclaimed 0 What is the estimated volume (in cubic yards) that will be reclaimed 0 What is the estimated surface area (in square feet) that will be remediated 991 What is the estimated volume (in cubic yards) that will be remediated 250 These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed. The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

.

QUESTIONS, Page 4

Action 368251

QUESTIONS (continued)		
Operator:	OGRID:	
TAP ROCK OPERATING, LLC	372043	
523 Park Point Drive Golden, CO 80401	Action Number: 368251	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	e / reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	OWL LANDFILL JAL [fJEG1635837366]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	No	
OR is the off-site disposal site, to be used, an NMED facility	No	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	No	
(In Situ) Soil Vapor Extraction	No	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	No	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	No	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	No	
Ground Water Abatement pursuant to 19.15.30 NMAC	No	
OTHER (Non-listed remedial process)	No	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Natalie Gladden Title: Environmental Email: natalie@energystaffingllc.com Date: 07/30/2024	
significantly deviate from the remediation plan proposed, then it should consult with the division to d	ordance with the physical realities encountered during remediation. If the responsible party has any need to letermine if another remediation plan submission is required.	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action 368251

Page 171 of 174

QUESTIONS (continued)	
Operator: TAP ROCK OPERATING, LLC	OGRID: 372043
523 Park Point Drive Golden, CO 80401	Action Number: 368251
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
	·

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.		
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο	

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 368251

Page 172 of 174

QUESTIONS (continued) Operator: OGRID: TAP ROCK OPERATING, LLC 372043 523 Park Point Drive Action Number: Golden, CO 80401 368251 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	293093
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	12/14/2023
What was the (estimated) number of samples that were to be gathered	7
What was the sampling surface area in square feet	526

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all re	e questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	991	
What was the total volume (cubic yards) remediated	294	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	All of the impacted areas were excavated and hauled off to Owl. The impact area was on the well pad, no pasture areas affected.	
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a water, human health or the environment. In addition, OCD acceptance of a C-141 repor	knowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ally restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ng notification to the OCD when reclamation and re-vegetation are complete.	

I hereby agree and sign off to the above statement	Name: Natalie Gladden
	Title: Environmental
	Email: natalie@energystaffingllc.com
	Date: 07/30/2024

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Page 173 of 174

Action 368251

QUESTIONS (continued)	
Operator: TAP ROCK OPERATING, LLC	OGRID: 372043
523 Park Point Drive Golden, CO 80401	Action Number: 368251
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Reclamation Report	

Only answer the questions in this group if all reclamation steps have been completed. Requesting a reclamation approval with this submission No

District I 1625 N. French Dr., Hobbs, NM 88240 Phone: (575) 393-6161 Fax: (575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV 1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 174 of 174

CONDITIONS

Action 368251

Operator: OGRID: TAP ROCK OPERATING, LLC 372043 523 Park Point Drive Action Number: Golden, CO 80401 368251 Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

CONDITIONS

Created By		Condition Date
nvelez	None	9/10/2024