

REVIEWED By Mike Buchanan at 2:55 pm, Sep 20, 2024

ANNUAL GROUNDWATER MONITORING REPORT

LATTION PIT (AP-23) INCIDENT NO. NAUTOFAB000337 UNIT O, SECTION 23, TOWNSHIP 18S, RANGE 26E EDDY COUNTY, NEW MEXICO Review of the Annual Groundwater Monitoring Report (03.26.2024) for **CANGER REFERENCE NO. 5375**

Monitoring Report (03.26.2024) for Lattion Pit (AP-23): accepted for the record and site is currently under review; a meeting is currently being scheduled between OCD and EOG to discuss a work plan and path forward for the site.

PREPARED FOR:

EOG RESOURCES, INC. MIDLAND DIVISION 5509 CHAMPIONS DRIVE MIDLAND, TEXAS 79706

PREPARED BY:

RANGER ENVIRONMENTAL SERVICES, LLC P.O. BOX 201179 AUSTIN, TEXAS 78720

MARCH 26, 2024

Patrick K. Finn, P.G. (TX) Project Geoscientist

William Kierdorf, REM Project Manager

TABLE OF CONTENTS

1.0	SITE LOCATION AND BACKGROUND	.1
2.0	SITE CHRONOLOGY	.2
2.1	Yates Acquisition and Pit Closure (1997 – 2000)	.2
2.2	Additional Assessment Activities and Stage I & II Abatement Plans (2000 – 2005)	.3
2.2.	1 Clarifications - 2024 File and Historical Aerial Photograph Review	.5
2.3	2020-2021 SESI Soil Investigation	.6
2.4	Groundwater Monitoring (2005 through 2022)	.6
3.0	GROUNDWATER MONITORING (2023)	.8
3.1	Groundwater Monitoring Methodologies	.8
3.2	2023 Groundwater Monitoring Results Summary	.9
4.0	CURRENT SITE COMMUNICATIONS AND CORRESPONDENCE	10
5.0	REGULATORY GUIDANCE REQUEST	11
6.0	CONCLUSIONS AND RECOMMENDATIONS	11

FIGURES

- Topographic Map
- Area Map
- Site Map
- Groundwater Gradient Map (11/29/2023)
- Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps (11/29/2023)
- ETGI October 20, 2000 Soil Boring Location Map
- 2020-2021 SESI Soil Sample Location Map
- Proposed Soil Boring/Monitor Well Location Map

TABLES

- Current Event Well Gauging Data
- Current Event Groundwater EPA Method 300.0: Anions
- Current Event Groundwater Dissolved Metals (Table 1 of 2)
- Current Event Groundwater Dissolved Metals (Table 2 of 2)
- Current Event Groundwater TPH and VOC Data Summary
- Current Event Groundwater Specific Conductance, pH, Alkalinity, and TDS
- Cumulative Well Gauging Data
- Cumulative Groundwater EPA Method 300.0: Anions
- Cumulative Groundwater Dissolved Metals (Table 1 of 2)
- Cumulative Groundwater Dissolved Metals (Table 2 of 2)
- Cumulative Groundwater TPH and VOC Data Summary
- Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

TABLE OF CONTENTS (CONTINUED)

ATTACHMENTS

- Attachment 1 Site Photographs
- Attachment 2 Laboratory Analytical Report
- Attachment 3 NMOCD Correspondence
- Attachment 4 1981 and 1997 Aerial Photographs

ANNUAL GROUNDWATER MONITORING REPORT LATTION PIT (AP-23) INCIDENT NO. NAUTOFAB000337 UNIT O, SECTION 23, TOWNSHIP 18S, RANGE 26E EDDY COUNTY, NEW MEXICO 32.729187, -104.349760 RANGER REFERENCE NO. 5375

1.0 SITE LOCATION AND BACKGROUND

The Lattion Pit (Site) is a historic oil and gas production pit formerly located at the Lattion Battery facility and former Lattion #1 well pad, an oil and gas production facility located on private land, approximately 8.25 miles south-southwest of Artesia, within Eddy County, New Mexico. The facility is situated in Unit O, Section 23, T18S-R26E at GPS coordinates 32.729187, -104.349760. In November 2021 operations of the Lattion Battery and were transferred from EOG Resources, Inc. to Silverback Operating II (Silverback). Under the new operator, the Lattion Battery has been decommissioned, the Lattion #1 well has been plugged and abandoned, and all production equipment has been removed for the Site. Based on the site history and transaction history, EOG Resources, Inc. (EOG) maintains environmental responsibility for the impacts to native media at the Site.

The Lattion #1 well and Lattion Battery were historically operated by H&S Oil Company (H&S) and an unlined earthen pit was formerly utilized by H&S for oil and gas fluid storage/impoundment (hereafter referred to as the "former production pit"). Based upon recent review of a historical aerial photograph from 1981 (copy provided in Attachment 4), a former reserve pit is also located at the site to the north of the Lattion #1 well and to the east of the former production pit.

In 1997, Yates Petroleum Corporation (Yates) acquired from H&S the Lattion #1 well and Lattion Battery, as well as the former production pit. While operated by Yates, the former production pit underwent closure, and assessment of the former pit was also conducted. In September 2016, EOG acquired Yates and its associated assets including the Lattion #1 well and Lattion Battery which included the former production pit. The Lattion #1 well was subsequently plugged and abandoned by Silverback in March 2023. In early 2024, the Lattion Battery was decommissioned, and all production equipment was removed from the former Lattion Battery/Lattion #1 facility pad.

The production pit closure and assessment activities completed by Yates documented impacts to the native soil. Groundwater impacts were also documented at the site in the 2002 timeframe. The greatest impacts were observed upgradient of the former production pit (and former reserve pit) and as such the groundwater impacts were not believed to have been caused by the former pit operations and were instead thought to be possibly the result of irrigation seepage from the irrigated fields to the north of the site.

Due to the documented conditions at the Site, coordination with the New Mexico Oil and Gas Division (NMOCD) was initiated. Communication and coordination between the NMOCD and Yates continued until 2005 when a Stage I & II Abatement Plan was submitted to the NMOCD. Based on available information, no response was ever received from the NMOCD regarding this

STATE OF TEXAS PROFESSIONAL GEOSCIENTIST FIRM NO. 50140 • STATE OF TEXAS PROFESSIONAL ENGINEERING FIRM NO. F-6160

P.O. BOX 201179 AUSTIN, TX 78720 OFFICE: 512/335-1785 FAX: 512/335-0527

plan. During the 2005 to 2022 timeframe, a total of 13 groundwater monitoring events were conducted at the Site. In August 2020 and May 2021, additional soil investigation activities were completed at the Site.

EOG has engaged Ranger Environmental Services, LLC (Ranger) to assist in the continuation of the assessment and remediation efforts at the Site as well as to re-establish communications with the NMOCD regarding the Site. In May 2023, Ranger personnel established communications with the NMOCD, and began discussion of the Site with Mr. Nelson Velez of the NMOCD including the steps needed to bring the Site into compliance with the current regulatory criteria and New Mexico Administrative Code (NMAC). Based on Ranger's communications with the NMOCD, on August 9, 2023, a draft comprehensive *Site Chronology and Status Update* report was submitted to the NMOCD to provide the NMOCD with a summary of the Site history and the cumulative soil and groundwater data so that a regulatory path forward can be established. Additionally, Mr. Velez directed that an additional groundwater monitoring report documenting the event to be submitted to the NMOCD by April 1, 2024.

On November 16, 2023, Ranger was informed by Mr. Nelson Velez of the NMOCD that Mr. Mike Buchanan of the NMOCD would be assuming responsibility for the oversight of the project. Since no response has been received from the NMOCD to date with regard to the draft *Site Chronology and Status Update* report submitted to the NMOCD in August 2023, the report was formally submitted to the NMOCD on February 15, 2024.

Based upon the above, groundwater monitoring activities were continued at the subject site in 2023, with an annual groundwater monitoring event completed in November 2023. This report has been prepared to document the completion of the 2023 site groundwater monitoring activities.

A *Topographic Map* and *Area Map* noting the location of the subject Site and surrounding areas are attached. A *Site Map* depicting the pertinent site features is also attached.

2.0 SITE CHRONOLOGY

Below is a chronology of the activities undertaken at the Site to date. The information presented below is derived from the proposals, work plans, and other correspondence available to Ranger. All information presented in this section is available via the NMOCD online imaging portal (https://ocdimage.emnrd.nm.gov/imaging/).

2.1 Yates Acquisition and Pit Closure (1997 – 2000)

As previously stated, Yates acquired the Lattion Battery and the former production pit from H&S in 1997. At the time of the acquisition, the former production pit remained open and had dimensions of approximately 45 feet by 50 feet. The former production pit was reported to be of earthen construction with no liner present. Under Yates' direction, an undated "*Pit Closure*" proposal was submitted to the NMOCD to address the former production pit. In June 1998, the NMOCD approved of the proposed closure activities, with conditions of approval that included the vertical delineation of the soil conditions and directives for sample analysis.

In May 1998, Bioremediation Contractors & Consultants, Inc. (BCC) initiated closure of the former production pit. The activities completed by BCC included the removal of bird netting, debris, and fluids within the pit. The pit was then ripped, tilled, sprayed with a BCC microbial product, treated

with nutrients, and were then managed to assist in the bioremedial process. Soil samples were collected in September 1999 and January 2000 and the pit was subsequently backfilled.

In February 2000, a closure report/request was submitted to the NMOCD. In August 2000, the NMOCD denied the closure request citing lack of pertinent closure details, inadequate soil sampling, and lack of soil chloride analyses.

2.2 Additional Assessment Activities and Stage I & II Abatement Plans (2000 – 2005)

In October 2000, Yates contracted Environmental Technology Group, Inc. (ETGI) to perform additional soil delineation activities at the Site. On October 20, 2000, ETGI and a drilling subcontractor installed six soil borings at the Site. Based on information provided in the November 2000, ETGI prepared, *Preliminary Site Investigation Report* two of the completed soil borings were installed in the former production pit (SB-1 and SB-2) and four soil borings were installed in the former reserve pit (SB's 3-6). Unfortunately, location information for the soil borings is limited to a rudimentary map illustrating the approximate locations of the soil borings. A copy of the ETGI prepared *Site Map* is included in the figures section of this report as the *ETGI October 20, 2000 Soil Boring Location Map*.

During the soil boring installation process, multiple soil samples and a groundwater sample (from soil boring SB-2) were collected for laboratory analysis. Additionally, a background soil sample was collected from a location outside of the apparent impacted areas at the Site. Elevated soil chloride concentrations were documented to be present in all six soil borings.

Soil boring SB-2, installed through the former production pit, was documented to contain 7,267 mg/Kg chloride at a depth of 20'-21' below ground surface (bgs). The vertical extent of this elevated soil chloride concentration was not delineated. The groundwater sample collected from soil boring SB-2 was documented to contain elevated chloride concentrations (81,535 mg/L) and a trace concentration (0.004 mg/L) of benzene. However, since this groundwater sample appeared to have been collected from an open soil boring subject to sloughing effects from overlying soils, these results may or may not have been representative of the actual groundwater quality.

The findings of the October 2000 site assessment activities were documented in the ETGIprepared *Preliminary Site Investigation Report* dated November 2000. In December 2000, Yates submitted the ETGI report and previous BCC report to the NMOCD and petitioned for closure of the Site. On March 7, 2001, the NMOCD denied site closure due to the fact that the groundwater (in soil boring SB-2) contained chloride concentrations in excess of the New Mexico Water Quality Commission (WQCC) standards. The NMOCD directed that an abatement plan for the site be prepared and submitted to the NMOCD.

In July 2001, a *Stage 1 Abatement Plan Proposal* prepared by Harding ESE (Harding) was submitted to the NMOCD. The proposal included provisions for the installation and sampling of three soil borings and the conversion of the soil borings into permanent monitor wells to allow for the collection of representative groundwater samples for laboratory analysis. On September 25, 2001, the NMOCD responded to the proposal with the statement that the plans were "*administratively complete*" and that prior to the NMOCD review of the proposed activities public notification was to be completed.

On October 19, 2001, Yates submitted documentation of the required public notification to the NMOCD with the request that the Harding-prepared *Stage 1 Abatement Plan Proposal* be

reviewed. On February 1, 2002, the NMOCD granted approval of the proposed activities with conditions of approval including the requirement that a Stage I Investigation report be submitted to the NMOCD by April 1, 2002. Due to various reasons, including the transfer of the project from Harding back to ETGI, multiple project timeline extension requests were submitted and approved by the NMOCD.

A June 2003 ETGI-prepared *Preliminary Site Investigation Report* documenting the installation and sampling of four monitor wells (MW's 1-4) was subsequently submitted to the NMOCD. The information provided in the report confirmed that impacts to soil and groundwater were present at the Site. Monitor well MW-4 was reported to have been installed in the approximate center of the pit area. The MW-4 soil analytical data documented an elevated chloride concentration of 2,390 mg/Kg at a depth of 20' bgs which subsequently declined to 213 mg/Kg by a depth of 45 feet where groundwater was encountered thus potentially indicating that the historic pit operations had not affected the underlying groundwater. No soil chloride impacts were documented in MW's 1-3, and none of the soil samples collected from the site were found to contain detectable BTEX or TPH concentrations.

Groundwater samples collected from the installed monitor wells were also documented to contain nondetectable BTEX concentrations. However, groundwater chloride concentrations were documented to be elevated beyond the applicable WQCC standards. Within the report ETGI highlighted that the groundwater sample exhibiting the highest chloride concentration was collected from monitor well MW-1, located upgradient of the former pit location, and that the groundwater sample exhibiting the lowest chloride concentration was collected from monitor well MW-3, located downgradient of the former pit location. Based on this information, ETGI concluded that the former pit area did not appear to be adversely impacting groundwater in the site area. The June 2003 ETGI report proposed that a formal pit closure report be prepared and that the installed monitor wells be plugged and abandoned upon NMOCD approval.

Based on the information presented in the June 2003 ETGI report, the NMOCD issued a response dated October 6, 2004. The NMOCD response stated that the extent of the groundwater impacts at the Site had not been delineated and requested that a groundwater delineation work plan be submitted by December 31, 2004. Prior to the submittal of the NMOCD-directed plan, ETGI was replaced by Safety & Environmental Solutions, Inc. (SESI) who had been retained by Yates to conduct the further site investigative activities. During the transfer of the project from ETGI to SESI, a 45-day extension request was submitted and approved by the NMOCD to allow for the project transition.

In February 2005, an SESI-prepared *Amended Stage 1 Abatement Plan Proposal*, dated February 15, 2005, was submitted to the NMOCD. The amended plan included SESI's review of the previously collected Site data and conditions and proposed additional site investigation activities. The proposed site activities included the resurveying of the existing monitor wells and the installation of a background monitor well in an undisturbed area located upgradient from the former pit areas. The plan also proposed the plugging of monitor well MW-4 located within the footprint of the historic pit and continued groundwater monitoring activities.

On July 18, 2005, the NMOCD responded to SESI's *Amended Stage 1 Abatement Plan Proposal* and denied the proposed activities. The NMOCD response cited a lack of adequate characterization of the impacts at the Site, and insufficient proposed delineation locations. The NMOCD requested submittal of a revised Stage 1 Abatement Plan by August 19, 2005.

As requested by the NMOCD, an *Amended Stage 1 Abatement Plan Proposal*, prepared by SESI and dated August 19, 2005, was subsequently submitted to the NMOCD. The updated plan revisited the information presented in the February 15, 2005 version and proposed additional site activities to address the NMOCD concerns and requests. The plan proposed four soil borings, with the possibility for additional borings, to be installed within the former pit area to assist in the characterization/delineation of the soil impacts. The plan also included provisions for the installation of a minimum of two additional monitor wells. Additional proposed activities included the determination of hydraulic conductivity and transmissivity via groundwater slug tests and the continued monitoring and sampling of the Site monitor wells.

Based on available information, it does not appear that the NMOCD ever replied to SESI's August 19, 2005 *Amended Stage 1 Abatement Plan Proposal*. The final correspondence available via the NMOCD online resources is noted to be a cover letter that appears to have been submitted with the August 19, 2005 amended plan. EOG also conducted an internal review of the project files transferred to them by Yates and an NMOCD response to the August 19, 2005 plan was not discovered.

2.2.1 Clarifications - 2024 File and Historical Aerial Photograph Review

During the preparation of this report, Ranger reviewed historic aerial photographs of the subject site, in particular aerial photographs from 1981 and 1997 (copies provided in Attachment 4). As illustrated in the 1981 photograph, it is apparent that the larger eastern pit at the site was a former reserve pit associated with the Lattion #1 well. The 1997 aerial photograph clearly shows that the smaller western pit noted on the attached *Site Map* was the former production pit.

It was the smaller western pit noted on the attached *Site Map* (i.e. – the former production pit) that was the one closed by BCC, Inc. in the 1999-2000 timeframe. This was also the pit that was the subject of the NMOCD-requested Stage I & II Abatement Plans. As summarized above, on March 7, 2001, the NMOCD denied site closure and directed that an abatement plan be prepared due to the fact that the groundwater at the site contained chloride concentrations in excess of the New Mexico Water Quality Commission (WQCC) standards. The elevated groundwater chloride concentration referenced by the NMOCD as necessitating the abatement plan, was the soil boring SB-2 groundwater chloride concentration of 81,535 mg/L. As reported in the November 2000 ETGI-prepared "*Preliminary Site Investigation Report*," soil boring SB-2 was advanced in the production pit that was closed by BCC, Inc.

In the June 2003 ETGI-prepared "*Preliminary Site Investigation Report*," ETGI stated that they "*mobilized a hollow-stem auger drilling rig on 3 September and 4 September 2002 to conduct a preliminary site investigation and determine the nature and extent of dissolved phase benzene and chloride concentrations present in the groundwater in the former pit area." They also stated that "Monitor well MW-4 is positioned near the center of the former pit area, as determined from observations made on-site.*" Based upon the above-referenced aerial photograph review, it has now become clear that monitor well MW-4 was installed through the former site reserve pit, not the former production pit which was the subject of the NMOCD-requested Stage I & II Abatement Plans.

Ranger would like to clarify that the draft *Site Chronology and Status Update* report submitted to the NMOCD in August 2023, and the final version of this report that was submitted to the NMOCD on February 15, 2024, was prepared based upon the understanding that the former reserve pit was the one which had been closed by BCC, Inc. and which was the subject of the NMOCD-requested Stage I & II Abatement Plans. Based upon the recent aerial photograph review and

additional file review, it has become clear that the September 2002 ETGI site assessment activities did not include further investigation of the former production pit which was the subject of the NMOCD-requested Stage I & II Abatement Plans. Ranger found no documentation indicating why the former reserve pit at the site was investigated instead of the former production pit.

The attached *Site Map* illustrates the locations of the two former pits at the site, as derived from the historic aerial photograph review, and indicates which one is the former reserve pit and which one is the former production pit subject to the NMOCD-requested abatement plans.

2.3 2020-2021 SESI Soil Investigation

In August 2020 and May 2021, additional soil investigation activities were completed at the Site by SESI. SESI installed a total of 63 test excavations, collected a total of 99 samples for field screening, and submitted a total of 18 soil samples to the laboratory for analysis. The test excavations were installed to depths ranging from 4' to 8' bgs in both of the former pits at the site, as well as in the areas surrounding both pits.

As documented by SESI, elevated chloride concentrations above the 19.15.29.12 NMAC Table 1 Closure Criteria for Soils Impacted by a Release (GW < 50') remain present at the site that will require remediation. The extent of the soil chloride exceedances was not, however, defined during the August 2020 and May 2021 soil investigation activities. Additional soil delineation activities will be required to enable development of the site remediation plan. Input will also be needed from the NMOCD as to whether any further soil investigation or remediation will be needed for the former site reserve pit since this pit was not the subject of the NMOCD-requested abatement plans.

Details of this investigation were provided in the *Site Chronology and Status Update* report. The attached *2020-2021 SESI Soil Investigation Map* illustrates the SESI sampling locations and the former pit locations.

2.4 Groundwater Monitoring (2005 through 2022)

Between 2005 and 2022, a total of 13 groundwater monitoring events were conducted at the Site. The site monitoring wells were gauged and sampled during each event. No light nonaqueous phase liquid (LNAPL) was detected in the site monitoring wells and no elevated concentrations of BTEX or TPH were documented. The groundwater analytical data continued to indicate the presence of elevated chloride, sulfate and TDS concentrations, in exceedance of the applicable WQCC standards. Below is a brief summary of the groundwater monitoring results through 2022.

Well Gauging

As summarized above, no LNAPL was found to be present in the site monitoring wells. The depths to groundwater in the site monitoring wells ranged from a minimum of approximately 44.21 feet below top of casing (btoc) in MW-1 to a maximum of approximately 62.22 feet btoc in MW-3. The site groundwater flow direction was documented to consistently flow in a south-southeasterly direction with gradients ranging from approximately 0.03 - 0.1 ft/ft.

Groundwater Anions

Concentrations of chloride above the NMAC 20.6.2.3103 criteria were documented in three of the four site monitoring wells (MW-1, MW-2 & MW-4). The groundwater chloride data were potentially indicative of an upgradient off-site source unrelated to the former site pit operations. Monitor well MW-1, located upgradient of the former pit locations, was consistently found to contain the highest site chloride concentrations and monitor well MW-3, located downgradient of the former pits, was unaffected with chloride concentrations well below the 20.6.2.3103 NMAC criteria.

Concentrations of sulfate above the NMAC 20.6.2.3103 criteria were documented in all four of the site monitoring wells. Similar to the chloride data described above, the groundwater sulfate data were also potentially suggestive of an upgradient off-site source, as well as elevated background sulfate concentrations (based upon the elevated sulfate concentrations in monitor well MW-3 which appears to be an unaffected well).

Relatively minor detections of fluoride above the NMAC 20.6.2.3103 criteria were also documented during multiple sampling events in MW-1 and MW-4, as well as one event in MW-3. The fluoride concentrations in the wells were all relatively similar suggesting potential background conditions.

Dissolved Metals

Based upon available information, groundwater dissolved metals analyses were initiated at the site during the March 2012 sampling event. Exceedances of the NMAC 20.6.2.3103 criteria for manganese were documented in samples collected during six events in MW-1 and from one event in MW-3. Exceedances of the NMAC criteria for iron were documented in one sample collected from MW-1 during the March 21, 2022 sampling event. All exceedances were relatively minor and could potentially be associated with background conditions, although the multiple manganese detections in upgradient monitor well MW-1, which is the most affected site monitoring well, potentially suggest that these detections may be associated with a groundwater impact.

<u>VOCs</u>

No VOCs were detected in the site monitoring wells.

Specific Conductance, pH, Alkalinity, and TDS

Concentrations of TDS above the NMAC 20.6.2.3103 criteria were documented in all four of the site monitoring wells and, similar to the chloride data described above, the groundwater TDS data were also potentially suggestive of an upgradient off-site source.

In the August 2005 Amended Stage 1 Abatement Plan, it was noted that the elevated chloride and TDS concentrations at the subject site were suspected to be potentially related to the irrigated agricultural field located upgradient from the former pit areas. The 2005-2022 groundwater monitoring data continued to potentially suggest that affected groundwater may be flowing onto the site from the irrigated agricultural fields to the north. Further investigation of the former production pit will, however, be required to confirm whether this is the case, or whether there is an on-site release source.

3.0 GROUNDWATER MONITORING (2023)

On November 29, 2023, an annual groundwater monitoring event was conducted at the Site. The site monitoring wells were gauged and sampled. Ranger has compiled and attached both current (2023) and cumulative tables of the Site well gauging and groundwater analytical data. Also attached are November 2023 isoconcentration maps for the primary groundwater constituents of concern at the Site (chloride, sulfate and TDS), as well as a copy of the laboratory analytical report for the November 2023 annual groundwater sampling event. Below is a summary of the 2023 annual groundwater monitoring activities and results.

3.1 Groundwater Monitoring Methodologies

Upon arrival at the Site, the monitor wells were opened and allowed to equilibrate for approximately 30 minutes prior to the performance of any well gauging or sampling activities. Prior to sampling the groundwater in each monitor well, the wells were first gauged with a decontaminated interface probe to determine the depth to groundwater in each monitor well, and LNAPL thicknesses, if any. This data was utilized to determine the site groundwater flow direction and gradient.

Groundwater samples were subsequently collected from monitor wells MW-1, MW-2 and MW-4 using low-flow sampling techniques. The wells were purged and sampled using a low flow rate (0.026 to 0.264 gpm) that minimized drawdown. The pump-intake was located in the middle or slightly above the middle of the saturated screened interval. The monitoring wells were purged until the field water quality parameters (i.e., pH, temperature, and conductivity) stabilized. Parameters were considered to have stabilized if, over three consecutive readings, the following criteria were met:

- pH ±0.1 unit
- Temperature within 3%
- Conductivity within 3%

It should be noted that an obstruction was encountered in monitor well MW-3 at the approximate depth of 41.70' bgs which prohibited placement of the low-flow pump in this well. As such, a new disposable bailer was utilized to collect the sample from this well.

All sample containers were filled with minimal turbulence. Due to sample turbidity, the samples collected for dissolved metals analysis were first field-filtered through a 10-micron pore size filter. Ranger personnel wore new nitrile gloves while handling each sample in order to prevent cross-contamination of samples.

All samples were containerized using properly selected and cleaned containers, which were preserved by the laboratory as needed for the particular analysis to be performed. All VOC sample vials were filled completely to minimize head space. The samples were subsequently sealed in one or more ziplock bags and stored in a sample shuttle containing ice until arrival at the laboratory for chemical analysis. All sample containers were labeled with the project name, sample identification, date of sample collection, samplers' initials, and time sampled collected. Chain-of-custody forms were completed to document sample transport to the analytical laboratory. The groundwater samples were subsequently analyzed for the following:

- EPA Method 200.8: Antimony, arsenic, lead, selenium, thallium and uranium
- **EPA Method 300.0**: Fluoride, chloride, bromide, phosphorus, orthophosphate (as P), sulfate, Nitrogen, Nitrite (As N), and Nitrogen, Nitrate (As N).
- **SM2510B**: Conductivity
- **SM2320B**: Bicarbonate (as CaCO3), carbonate (as CaCO3), and total alkalinity (as CaCO3)
- **SM2540C MOD**: Total dissolved solids
- SM4500-H+B / 9040C: pH
- **EPA METHOD 200.7**: Aluminum, barium, beryllium, boron, cadmium, calcium, chromium, cobalt, copper, iron, magnesium, manganese, molybdenum, nickel, potassium, silver, sodium, and zinc
- **EPA METHOD 8260B**: Benzene, toluene, ethylbenzene, and total xylenes (BTEX); naphthalene, 1-methylnaphthalene and 2-methylnaphthalene

A trip blank was included in the sampling cooler to assess the potential cross-contamination of field samples during shipment to, and storage in, the laboratory. The trip blank was analyzed for BTEX, naphthalene, 1-methylnaphthalene and 2-methylnaphthalene using Method 8260. All trip blank results were non-detectable. A temperature blank was also included in the sample shipping container. The temperature blank was received by the laboratory at a temperature below 6°C.

All purge water generated during the well purging process was placed in a sealed and labeled 55gallon drum and was temporarily stored on-site pending off-site disposal.

3.2 2023 Groundwater Monitoring Results Summary

Well Gauging Results

No LNAPL was documented to be present in the site monitoring wells. The depth to groundwater in the site monitoring wells was documented to range from approximately 52.32' bgs in MW-1 to a maximum of approximately 62.54' bgs in MW-3. As illustrated on the attached groundwater gradient map, the November 29, 2023 site groundwater gradient and flow direction was documented to be approximately 0.03 ft/ft to the southeast, consistent with the historical well gauging results.

Groundwater Analytical Results

- *Groundwater Anions*: Concentrations of chloride above the NMAC 20.6.2.3103 criteria were documented in monitoring wells MW-1, MW-2 and MW-4. Concentrations of sulfate above the NMAC 20.6.2.3103 criteria were documented in all four site monitoring wells. Upgradient monitor well MW-1 was found to contain the highest site chloride (2,000 mg/L) and sulfate (2,000 mg/L) concentrations while monitor well MW-3 (located downgradient of the former pits) was found to contain the lowest site chloride (43 mg/L) and sulfate (890 mg/L) concentrations. Thus, there was an approximate 98% decrease in the site groundwater chloride concentration, and an approximate 55% decrease in the site groundwater sulfate concentration, while flowing beneath the former reserve pit area.
- *Dissolved Metals*: No exceedances of the NMAC 20.6.2.3103 criteria for these constituents were documented in the site monitor wells.

- *VOCs*: There were no groundwater VOC laboratory detections or exceedances of the NMAC 20.6.2.3103 criteria.
- Specific Conductance, pH, Alkalinity, and TDS: Elevated TDS concentrations were documented in all four monitor wells at the site. Upgradient monitor well MW-1 was found to contain the highest site TDS concentration (6,400 mg/L) while monitor well MW-3 (located downgradient of the former pits) was found to contain the lowest site TDS concentration (1,610 mg/L). Thus, there was an approximate 75% decrease in the site groundwater TDS concentration while flowing beneath the former reserve pit area.

In summary, the 2023 well gauging and groundwater analytical data were consistent with historic results and are indicative of a stable condition. The groundwater analytical data continue to indicate the presence of elevated chloride, sulfate and TDS concentrations, in exceedance of the applicable WQCC standards. As summarized above, in the August 2005 *Amended Stage 1 Abatement Plan*, it was noted that the elevated chloride and TDS concentrations at the subject site were suspected to be potentially related to the irrigated agricultural field located upgradient from the former pit areas. The 2023 groundwater monitoring data continued to potentially suggest that affected groundwater may be flowing onto the site from the irrigated agricultural fields to the north. Further investigation of the former production pit will, however, be required to confirm whether this is the case, or whether there is an on-site release source.

4.0 CURRENT SITE COMMUNICATIONS AND CORRESPONDENCE

In 2023, EOG engaged Ranger to assist in the continuation of the assessment and remediation efforts at the Site, as well as to re-establish communications with the NMOCD regarding the Site. In May 2023, Ranger personnel established communications with the NMOCD, and began discussion of the Site with Mr. Nelson Velez of the NMOCD including the steps needed to bring the Site into compliance with the current regulatory criteria and New Mexico Administrative Code (NMAC). The call included a review of the Site history, the presentation of data collected since 2005, review of the current status of the Site, and a discussion of the appropriate regulatory path forward.

Based on Ranger's communications with the NMOCD, on August 9, 2023, a draft comprehensive *Site Chronology and Status Update* report was submitted to Mr. Velez to provide the NMOCD with a summary of the Site history and the cumulative soil and groundwater data so that a regulatory path forward could be established. Additional directives included the completion of a fourth quarter groundwater monitoring event and the preparation of an annual report to be submitted by April 1, 2024.

On November 16, 2023, Ranger was informed by Mr. Velez that Mr. Mike Buchanan of the NMOCD would be assuming responsibility for the oversight of the project. Since no response has been received from the NMOCD to date with regard to the draft *Site Chronology and Status Update* report submitted to the NMOCD in August 2023, the report was formally submitted to the NMOCD on February 15, 2024.

Based upon the above, groundwater monitoring activities were continued at the subject site in 2023, with an annual groundwater monitoring event completed in November 2023. On November 21, 2023, EOG provided notice to the NMOCD of the planned annual groundwater monitoring

event. A copy of this notification is attached. No NMOCD representatives were present on the day of sampling.

5.0 REGULATORY GUIDANCE REQUEST

In the *Site Chronology and Status Update* report that was initially submitted as a draft report to the NMOCD in August 2023, and as a final report on February 15, 2024, EOG requested NMOCD guidance regarding the appropriate regulatory reporting/proposal format that will be required for the next phase of site activities.

Based upon the recent determination that the larger eastern pit is a former reserve pit, not the former production pit that was the subject of the NMOCD-requested abatement plans, along with the analytical results of soil samples collected during the installation of MW-4, indicating a separation of soil and groundwater impacts in the area, it is proposed to shift further efforts at the Site to former production pit originally identified as the area of concern.

6.0 CONCLUSIONS AND RECOMMENDATIONS

- As noted in this report, the extensive groundwater analytical data potentially support the earlier project conclusions that affected groundwater may be flowing onto the subject site from the irrigated agricultural fields to the north. Further investigation of the former production pit is, however, needed to confirm whether this is the case, or whether there is an on-site release source. Ranger recommends that an additional monitoring well be installed immediately downgradient (southeast), of the former H&S pit. Ranger also recommends the installation of an additional upgradient well located to the northwest of the former H&S pit along the property line with the northern irrigated agricultural field. A *Proposed Soil Boring/Monitor Well Location Map* is attached which illustrates the proposed monitoring well locations.
- Based upon the recent determination that the larger eastern pit is a former reserve pit, not the former production pit that was subject to the NMOCD-requested abatement plans, Ranger recommends that a soil delineation work plan be prepared to attempt to complete the delineation of the soil impacts at the former production pit. Vertical soil delineation activities will be completed within the former production pit in conjunction with the proposed monitor well installation activities, once the NMOCD has provided guidance for the new monitor well installation. Ranger recommends that two soil borings be installed through the former production pit to finish the vertical delineation of the 7,267 mg/Kg soil chloride impact which was previously documented in soil boring SB-2 at a depth of 20'-21' bgs. The attached *Proposed Soil Boring/Monitor Well Location Map* illustrates the proposed soil boring locations.
- Upon NMOCD determination of the appropriate regulatory mechanism and reporting format for the next phase of site work, Ranger will prepare a detailed work plan for NMOCD review. In the interim, groundwater monitoring activities will be continued along with the submittal of annual groundwater monitoring reports.
- Until such time that the NMOCD provides the requested project guidance and direction, EOG will initiate quarterly groundwater monitoring activities beginning in the second quarter of 2024. Based upon the cumulative site groundwater monitoring results, which have

documented generally stable conditions, Ranger recommends that the site chemicals of concern (COCs) for future groundwater monitoring events be reduced to the following constituents which have been detected in exceedance of the NMAC 20.6.2.3103 criteria on at least one or more occasions:

- Chloride
- o Fluoride
- \circ Iron
- o Manganese
- o Sulfate
- Total Dissolved Solids
- Upon NMOCD review of this report and the *Site Chronology and Status Update* report, the above-recommended subset of the site groundwater monitoring COCs will be modified if requested by the NMOCD.

FIGURES

Topographic Map Area Map Site Map Groundwater Gradient Map Groundwater TDS, Chloride, and Sulfate Isoconcentration Maps

> **ETGI** October 20, 2000 Soil Boring Location Map 2020-2021 SESI Soil **Sample Location** Map Proposed Soil Boring/Monitor Well Location Map

Received by OCD: 4/3/2024 12:08:48 PM

Page 17 of 78

Released to Imaging: 9/20/2024 3:00:13 PM

Released to Imaging: 9/20/2024 3:00:13 PM

TABLES

Current Event Well Gauging Data Current Event Groundwater EPA Method 300.0: Anions Current Event Groundwater Dissolved Metals (Table 1 of 2) Current Event Groundwater Dissolved Metals (Table 2 of 2) Current Event Groundwater TPH and VOC Data Summary Current Event Groundwater Specific Conductance, pH, Alkalinity, and TDS

Cumulative Well Gauging Data

Cumulative Groundwater EPA Method 300.0: Anions Cumulative Groundwater Dissolved Metals (Table 1 of 2) Cumulative Groundwater Dissolved Metals (Table 2 of 2) Cumulative Groundwater TPH and VOC Data Summary Cumulative Groundwater Specific Conductance, pH, Alkalinity, and TDS

CURRENT EVENT TABLES

EDDY COUNTY, NEW MEXICO AP-23												
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENE INTERVA (FT-BGS						
MW-1	11/29/2023	3,310.27	55.17	0.00	3255.10	35'-70'						
MW-2	11/29/2023	3,309.19	64.28	0.00	3244.91	40'-70'						
MW-3	11/29/2023	3309.00	65.74	0.00	3243.26	40'-65'						
MW-4	11/29/2023	3308.88	56.19	0.00	3252.69	30'-55'						

•

CURRENT EVENT GROUNDWATER EPA METHOD 300.0: ANIONS LATTION PIT EDDY COUNTY, NEW MEXICO

AP-23

Released to Imaging: 9/20/2024 3:00:13 PM

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N		
MW-1	11/29/2023	<2.0	2,000	1.1	< 0.50	2,000	<2.0	<0.10			
MW-2	11/29/2023	0.84	810	0.67	< 0.50	1,100	<2.0	3.0			
MW-3	11/29/2023	1.3	43	0.14	< 0.50	890	<0.10	<0.10			
MW-4	11/29/2023	1.2	960	0.57	< 0.50	1,700	<2.0	<0.10			
20.6.2.3103 NMAC GW STANE (<10,000 mg/L)	DARDS										
A. Human Health Standar	ds	1.6					1	10	10 ¹		
B. Other Standards for Domestic W		250			600						
C. Standards for Irrigation	Use										

	CURRENT EVENT GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23																	
	All Values Presented in Parts Per Million (mg/L)																	
SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-1	11/29/2023	< 0.020	0.018	< 0.0020	0.37	< 0.0020	980	< 0.0060	< 0.0060	< 0.020	410	0.077	< 0.0080	< 0.010	5.3	0.023	400	< 0.010
MW-2	11/29/2023	< 0.020	0.010	< 0.0020	0.062	< 0.0020	610	< 0.0060	< 0.0060	< 0.020	200	< 0.0020	< 0.0080	< 0.010	4.7	0.014	110	< 0.010
MW-3	11/29/2023	< 0.020	0.021	< 0.0020	0.11	< 0.0020	280	< 0.0060	< 0.0060	< 0.020	110	0.0074	< 0.0080	< 0.010	2.8	0.0072	33	< 0.010
MW-4	11/29/2023	0.12	0.010	< 0.0020	0.16	< 0.0020	720	< 0.0060	< 0.0060	0.24	290	0.043	< 0.0080	< 0.010	3.8	0.016	140	< 0.010
20.6.2.3103 NMAC GW S (<10,000 mg/l													· · · · ·					
A. Human Health St	andards		2	0.004		0.005		0.05								0.05		
B. Other Standards for Dome	stic Water Supply									1.0		0.2						10
C. Standards for Irrig	ation Use	5.0			0.75				0.05				1.0	0.2				
Notes:																		

1. Exceedances of the listed closure criteria are highlighted in bold, red type.

CURRENT EVENT GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uranium									
MW-1	11/29/2023	< 0.0050	0.0073	< 0.0060	< 0.0025		< 0.0050	< 0.0012	0.0028									
MW-2	11/29/2023	< 0.0050	0.0044	< 0.0060	0.0051		0.020	< 0.0012	0.0055									
MW-3	11/29/2023	< 0.0050	0.0030	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0025									
MW-4	11/29/2023	< 0.0050	0.0054	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0025									
20.6.2.3103 NMAC GW STANDARDS (<10,000 mg/L)																		
A. Human Health Standar	ds	0.006	0.01		0.015	0.002	0.05	0.002	0.03									
B. Other Standards for Domestic W	ater Supply			1.0														
C. Standards for Irrigation	Use																	
Notes:																		
1. Exceedances of the listed closure criteria	a are highlighted in	bold, red type.						. Exceedances of the listed closure criteria are highlighted in bold, red type.										

CURRENT EVENT GROUNDWATER TPH AND VOC DATA SUMMARY LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

					All Values	Presented in Pa	rts Per Million (m	ng/L)						
SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
MW-1	11/29/23					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-2	11/29/23					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	11/29/23					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	11/29/23					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
20.6.2.3103 NMAC GW STAN (<10,000 mg/L)	DARDS													
A. Human Health Standa	rds					0.005	1	0.7	0.62			0.03 ¹	0.03 ¹	0.03 ¹
B. Other Standards for Domestic V	Vater Supply				0.1									
C. Standards for Irrigation	Use													
Notes:														
	The 0.03 mg/L standard is for total naphthalene plus monomethylnaphthalenes. Exceedances of the listed closure criteria are highlighted in bold, red type.													

CURRENT EVENT GROUNDWATER SPECIFIC CONDUCTANCE, pH, ALKALINITY, AND TDS LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)			
MW-1	11/29/2023	8100	7.33	205.2	< 2.000	205.2	6,400			
MW-2	11/29/2023	4,700	7.37	144.5	< 2.000	144.5	3,350			
MW-3	11/29/2023	1,900	7.68	194.8	< 2.000	194.8	1,610			
MW-4	11/29/2023	5,200	7.55	157.5	< 2.000	157.5	3,950			
20.6.2.3103 NMAC GW STAND (<10,000 mg/L)	ARDS									
A. Human Health Standard	ls									
B. Other Standards for Domestic Wa	ater Supply		6 to 9				1,000			
C. Standards for Irrigation Use										

CUMULATIVE TABLES

•

T

	CUMULATIVE WELL GAUGING DATA LATTION PIT EDDY COUNTY, NEW MEXICO AP-23											
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)						
MW-1	9/18/2002	3,309.05	34.42	0.00	3274.63	35'-70'						
MW-1	9/19/2002	3,309.05	34.54	0.00	3274.51							
MW-1	11/3/2004	3,309.05	28.75	0.00	3280.30							
MW-1	12/2/2004	3,309.05	31.02	0.00	3278.03							
MW-1	12/15/2004	3,309.05	31.94	0.00	3277.11							
MW-1	12/21/2004	3,309.05	31.92	0.00	3277.13							
MW-1	12/30/2004	3,309.05	32.41	0.00	3276.64							
MW-1	3/6/2018	3,309.05	45.66	0.00	3263.39							
MW-1	3/27/2018	3,309.05	44.21	0.00	3264.84							
MW-1	3/21/2019	3,310.27	48.82	0.00	3261.45							
MW-1	10/28/2019	3,310.27	49.59	0.00	3260.68							
MW-1	9/17/2020	3,310.27	52.39	0.00	3257.88							
MW-1	8/17/2021	3,310.27	48.95	0.00	3261.32							
MW-1	11/29/2023	3,310.27	55.17	0.00	3255.10							
MW-2	9/18/2002	3307.92	61.40	0.00	3246.52	40'-70'						
MW-2	9/19/2002	3307.92	61.65	0.00	3246.27							
MW-2	11/3/2004	3307.92	62.04	0.00	3245.88							
MW-2	12/2/2004	3307.92	61.67	0.00	3246.25							
MW-2	12/15/2004	3307.92	61.76	0.00	3246.16							
MW-2	12/21/2004	3307.92	61.31	0.00	3246.61							
MW-2	12/30/2004	3307.92	61.13	0.00	3246.79							
MW-2	3/6/2018	3307.92	54.04	0.00	3253.88							
MW-2	3/27/2018	3307.92	53.97	0.00	3253.95							
MW-2	3/21/2019	3,309.19	55.54	0.00	3253.65							
MW-2	10/28/2019	3,309.19	57.90	0.00	3251.29							
MW-2	9/17/2020	3,309.19	58.03	0.00	3251.16							
MW-2	8/17/2021	3,309.19	57.73	0.00	3251.46							
MW-2	11/29/2023	3,309.19	64.28	0.00	3244.91							
MW-3	9/18/2002	3307.90	55.08	0.00	3252.82	40'-65'						
MW-3	9/19/2002	3307.90	58.73	0.00	3249.17							
MW-3	11/3/2004	3307.90	51.28	0.00	3256.62							
MW-3	12/2/2004	3307.90	50.38	0.00	3257.52							
MW-3	12/15/2004	3307.90	50.30	0.00	3257.60							
MW-3	12/21/2004	3307.90	50.01	0.00	3257.89							
MW-3	12/30/2004	3307.90	49.91	0.00	3257.99							
MW-3	3/6/2018	3307.90	57.43	0.00	3250.47							
MW-3	3/27/2018	3307.90	57.38	0.00	3250.52							
Г

			TIVE WELL GAU LATTION PIT COUNTY, NEW AP-23			
WELL NUMBER	DATE	CASING ELEV. (FT)	DEPTH TO WATER (FT-BTOC)	LNAPL THICKNESS (FT)	GW ELEVATION (FT)	SCREENED INTERVAL (FT-BGS)
MW-3	3/21/2019	3309.00	59.13	0.00	3249.87	
MW-3	10/28/2019	3309.00	61.29	0.00	3247.71	
MW-3	9/17/2020	3309.00	61.75	0.00	3247.25	
MW-3	8/17/2021	3309.00	62.22	0.00	3246.78	
MW-3	11/29/2023	3309.00	65.74	0.00	3243.26	
MW-4	9/18/2002	3307.63	38.17	0.00	3269.46	30'-55'
MW-4	9/19/2002	3307.63	38.23	0.00	3269.40	
MW-4	11/3/2004	3307.63	32.95	0.00	3274.68	
MW-4	12/2/2004	3307.63	33.96	0.00	3273.67	
MW-4	12/15/2004	3307.63	34.43	0.00	3273.20	
MW-4	12/21/2004	3307.63	34.32	0.00	3273.31	
MW-4	12/30/2004	3307.63	34.70	0.00	3272.93	
MW-4	3/6/2018	3307.63	47.31	0.00	3260.32	
MW-4	3/27/2018	3307.63	47.47	0.00	3260.16	
MW-4	3/21/2019	3308.88	51.51	0.00	3257.37	
MW-4	10/28/2019	3308.88	51.39	0.00	3257.49	
MW-4	9/17/2020	3308.88	52.58	0.00	3256.30	
MW-4	8/17/2021	3308.88	51.49	0.00	3257.39	
MW-4	11/29/2023	3308.88	56.19	0.00	3252.69	

1. Elevations referenced to a temporary on-site benchmark.

2. MW-1 located immediately adjacent to irrigated field.

3. BTOC = below top of casing

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS LATTION PIT EDDY COUNTY, NEW MEXICO

AP-23

Released to Imaging: 9/20/2024 3:00:13 PM

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

	1			or minor (mg/2	-			1	1
SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N
SB-2	10/20/2000		81,535						
								•	•
MW-1	9/19/2002		1,770						
MW-1	11/3/2004		2,899						
MW-1	3/17/2012	< 2.0	1,400	2.5	< 10	1,900			< 1.0
MW-1	6/18/2012	1.3	1,800	3.1	< 0.50	2,000			< 1.0
MW-1	9/12/2012	1.1	1,600	1.6	< 25	2,000			< 1.0
MW-1	12/6/2012	1	1,700	< 2.0	< 0.50	2,000	< 2.0	<0.10	
MW-1	3/12/2013	1.9	1,500	2.3	< 10	1,800			< 2.0
MW-1	6/27/2013	1.3	1,400	2.1	< 0.50	1,600			< 1.0
MW-1	3/27/2018	0.42	1,700	2.2	< 0.50	1,700			< 1.0
MW-1	3/21/2019	0.62	1,500	2.1	< 0.50	1,600			< 1.0
MW-1	10/28/2019	1	1,500	2	< 0.50	1,600	<2.0	<0.10	
MW-1	9/17/2020	1.1	1,400	2.3	< 2.5	1,500			< 1.0
MW-1	8/17/2021	2	1,800	2.5	< 2.5	1,800	<2.0	<0.50	
MW-1	3/21/2022	2	1,600	2.6	< 10	1,500			< 1.0
MW-1	8/4/2022	3.2	1,500	3.2	< 10	1,800			< 1.0
MW-1	11/29/2023	<2.0	2,000	1.1	< 0.50	2,000	<2.0	<0.10	
								•	•
MW-2	9/19/2002		709						
MW-2	11/3/2004		740						
MW-2	3/17/2012	1.3	790	1	< 0.50	1,200			2.2
MW-2	6/18/2012	1.2	790	1.6	< 0.50	1,200			1.5
MW-2	9/12/2012	0.6	940	1.2	< 25	1,300			3.2
MW-2	12/6/2012	0.98	890	< 2.0	< 0.50	1,200	<2.0	4.5	
MW-2	3/12/2013	0.62	880	1.2	< 10	1,200			2.8
MW-2	6/27/2013	0.98	720	1.4	< 0.50	1,000			3.2
MW-2	3/27/2018	0.44	640	1.1	< 0.50	980			2.4
MW-2	3/21/2019	1	810	1.1	< 0.50	1,100			2
MW-2	10/28/2019	0.87	800	1.2	< 2.5	1,000	<0.50	2.6	
MW-2	9/17/2020	<0.10	760	1.2	< 0.50	1,000			2.4
MW-2	8/17/2021	0.9	730	1.1	< 2.5	1,100	<0.50	2.3	
MW-2	3/21/2022	< 2.0	690	1	< 10	1,000			2.3
MW-2	8/4/2022	0.75	890	1.2	< 0.50	1,100			1.9
MW-2	11/29/2023	0.84	810	0.67	< 0.50	1,100	<2.0	3.0	
MW-3	9/19/2002		59.1						
MW-3	11/3/2004		64						
MW-3	3/17/2012	< 2.0	42	0.13	< 0.50	950			< 1.0
10100-3	3/17/2012	< 2.0	4∠	0.13	< 0.50	900			< 1.0

CUMULATIVE GROUNDWATER EPA METHOD 300.0: ANIONS LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

All Values Presented in Parts Per Million (mg/L) unless otherwise noted

Released to Imaging: 9/20/2024 3:00:13 PM

SAMPLE ID	DATE	Fluoride	Chloride	Bromide	Phosphorus, Orthophosphate (As P)	Sulfate	Nitrogen, Nitrite (As N)	Nitrogen, Nitrate (As N)	Nitrate+Nitrite as N
MW-3	6/18/2012	1.4	45	0.2	< 0.50	900			< 1.0
MW-3	9/12/2012	1.3	45	0.11	< 10	990			< 1.0
MW-3	12/6/2012	1.3	45	0.1	< 0.50	1,000	<0.10	<0.10	
MW-3	3/12/2013	1.4	43	0.12	< 10	960			< 1.0
MW-3	6/27/2013	1.4	43	0.12	< 0.50	1,000			< 1.0
MW-3	3/27/2018	1.7	41	0.15	< 0.50	880			< 1.0
MW-3	3/21/2019	1.6	47	0.12	< 0.50	900			< 1.0
MW-3	10/28/2019	1.6	45	< 0.50	< 2.5	870	<0.50	<0.50	
MW-3	9/17/2020	1.3	45	< 0.50	< 2.5	920			< 1.0
MW-3	8/17/2021	1.5	43	0.13	< 0.50	880	<0.10	<0.10	
MW-3	3/21/2022	1.4	42	0.14	< 0.50	970			< 1.0
MW-3	8/4/2022	1.3	42	0.15	< 0.50	860			< 1.0
MW-3	11/29/2023	1.3	43	0.14	< 0.50	890	<0.10	<0.10	
				1	<u>, </u>			r	·
MW-4	9/19/2002		1,280						
MW-4	11/3/2004		1,899						
MW-4	3/17/2012	< 2.0	1,200	< 2.0	< 10	1,800			< 1.0
MW-4	6/18/2012	1.7	1,200	2.3	< 0.50	1,800			< 1.0
MW-4	9/12/2012	1.3	1,200	1.5	< 25	2,000			< 1.0
MW-4	12/6/2012	1.1	1,200	< 2.0	< 0.50	1,800	<2.0	<0.10	
MW-4	3/12/2013	1.9	1,100	1.5	< 10	1,700			< 1.0
MW-4	6/27/2013	1.2	1,000	1.7	< 0.50	1,600			< 1.0
MW-4	3/27/2018	0.62	930	1.7	< 0.50	1,400			< 1.0
MW-4	3/21/2019	0.87	1,100	1.5	< 0.50	1,700			< 1.0
MW-4	10/28/2019	1.2	990	1.5	< 0.50	1,500	<2.0	<0.10	
MW-4	9/17/2020	1.2	960	1.7	< 2.5	1,500			< 1.0
MW-4	8/17/2021	2.5	1,100	1.6	< 2.5	1,800	<0.50	<0.50	
MW-4	3/21/2022	< 2.0	1,100	1.7	< 10	1,700			< 1.0
MW-4	8/4/2022	2.2	1,000	1.6	< 0.50	1,700			< 1.0
MW-4	11/28/2023	1.2	960	0.57	< 0.50	1,700	<2.0	<0.10	
20.6.2.3103 NMAC GW STANE (<10,000 mg/L)	DARDS								
A. Human Health Standar	ds	1.6					1	10	10 ¹
B. Other Standards for Domestic W	ater Supply		250			600			
C. Standards for Irrigation	Use								
otes: This standarad is for nitrate. The nitrite Exceedances of the listed closure criteria	•								

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

All Values Presented in Parts Per Million (mg/L)

					-		All Values F	Presented in Pa	rts Per Million	(mg/L)					-	-	-	
SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
MW-1	3/17/2012		0.02			< 0.0020	880	< 0.0060		0.41	350	0.032			4.8	< 0.0050	290	0.015
MW-1	6/18/2012		0.018			< 0.0020	940	< 0.0060		< 0.020	350	0.028			4.3	< 0.0050	370	0.012
MW-1	9/12/2012		0.02			< 0.0020	830	< 0.0060		0.68	320	0.25			4.2	< 0.0050	230	0.017
MW-1	12/6/2012		0.022			< 0.0020	940	< 0.0060		< 0.020	370	0.2			5.5	< 0.0050	310	0.033
MW-1	3/12/2013		0.019			< 0.0020	820	< 0.0060		0.2	300	0.33			4.3	< 0.0050	230	< 0.010
MW-1	6/27/2013		0.018			< 0.0020	910	< 0.0060		0.031	300	0.16			4.9	< 0.050	200	0.021
MW-1	3/27/2018		0.015			< 0.0020	910	< 0.0060		< 0.020	350	0.14			4.2	0.031	280	0.02
MW-1	3/21/2019	< 0.020	0.014	< 0.0020	0.32	< 0.0020	940	< 0.0060	< 0.0060	0.048	320	0.22	< 0.0080	< 0.010	4.1	0.011	230	0.017
MW-1	10/28/2019	< 0.020	0.018	< 0.0020	0.35	< 0.0020	920	< 0.0060	< 0.0060	< 0.020	330	0.14	< 0.0080	< 0.010	4.3	0.016	230	0.046
MW-1	9/17/2020	<0.10	0.017	< 0.010	0.39	< 0.010	970	< 0.030	< 0.030	<0.10	370	0.25	< 0.040	< 0.050	5.1	< 0.025	320	<0.050
MW-1	8/17/2021	< 0.10	0.04	< 0.010	0.36	< 0.010	940	< 0.030	< 0.030	0.3	370	1.7	< 0.040	< 0.050	5.3	< 0.025	270	< 0.050
MW-1	3/21/2022	< 0.020	0.027	< 0.0020	0.39	< 0.0020	1,000	< 0.0060	0.0071	1.2	340	0.33	< 0.0080	< 0.010	6.1	< 0.0050	250	< 0.010
MW-1	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	920	< 0.060	< 0.060	< 0.20	330	0.13	< 0.080	< 0.10	< 10	< 0.050	220	0.29
MW-1	11/29/2023	< 0.020	0.018	< 0.0020	0.37	< 0.0020	980	< 0.0060	< 0.0060	< 0.020	410	0.077	< 0.0080	< 0.010	5.3	0.023	400	< 0.010
MW-2	3/17/2012		0.014			< 0.0020	570	< 0.0060		0.044	180	0.0027			4.6	< 0.0050	81	< 0.010
MW-2	6/18/2012		0.014			< 0.0020	550	< 0.0060		0.061	180	0.0032			4.6	< 0.0050	89	0.01
MW-2	9/12/2012		0.014			< 0.0020	570	< 0.0060		0.001	180	0.0026			4.1	< 0.0050	86	0.011
MW-2	12/6/2012		0.016			< 0.0020	600	< 0.0060		< 0.020	200	0.0023			5.1	< 0.0050	100	< 0.010
MW-2	3/12/2013		0.012			< 0.0020	560	< 0.0060		0.023	180	0.0020			4.6	< 0.0050	92	< 0.010
MW-2	6/27/2013		0.013			< 0.0020	610	< 0.0060		0.035	170	0.0021			4.7	< 0.050	87	< 0.010
MW-2	3/27/2018		0.013			< 0.0020	580	< 0.0060		0.04	180	0.0023			4.5	0.021	97	0.028
MW-2	3/21/2019	< 0.020	0.012	< 0.0020	0.067	< 0.0020	570	< 0.0060	< 0.0060	0.025	170	0.0025	< 0.0080	< 0.010	4.2	0.0079	85	0.022
MW-2	10/28/2019	< 0.020	0.012	< 0.0020	0.067	< 0.0020	600	< 0.0060	< 0.0060	0.026	190	< 0.0020	< 0.0080	< 0.010	4.5	0.015	94	0.031
MW-2	9/17/2020	<0.10	0.015	< 0.010	<0.20	<0.010	610	< 0.030	<0.030	<0.10	200	< 0.010	<0.040	<0.050	5.4	< 0.025	100	<0.050
MW-2	8/17/2021	< 0.020	0.012	< 0.0020	0.071	< 0.0020	510	< 0.0060	< 0.0060	0.039	160	0.0029	< 0.0080	< 0.010	4.5	< 0.0050	89	0.015
MW-2	3/21/2022	< 0.020	0.014	< 0.0020	0.083	< 0.0020	520	< 0.0060	< 0.0060	0.027	160	0.0041	< 0.0080	< 0.010	4.3	< 0.0050	100	0.011
MW-2	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	570	< 0.060	< 0.060	< 0.20	180	< 0.020	< 0.080	< 0.10	< 10	< 0.050	99	< 0.10
MW-2	11/29/2023	< 0.020	0.010	< 0.0020	0.062	< 0.0020	610	< 0.0060	< 0.0060	< 0.020	200	< 0.0020	< 0.0080	< 0.010	4.7	0.014	110	< 0.010
					1	1	1						1		1	1	1	
MW-3	3/17/2012		0.019			< 0.0020	270	< 0.0060		< 0.020	100	0.042			2.7	< 0.0050	34	0.016
MW-3	6/18/2012		0.017			< 0.0020	270	< 0.0060		< 0.020	99	0.0029			2.8	< 0.0050	36	0.026
MW-3	9/12/2012		0.017			< 0.0020	270	< 0.0060		< 0.020	97	0.03			2.3	< 0.0050	33	< 0.010
MW-3	12/6/2012		0.019			< 0.0020	270	< 0.0060		< 0.020	110	< 0.0020			3.2	< 0.0050	39	< 0.010
MW-3	3/12/2013		0.018			< 0.0020	240	< 0.0060		0.22	92	0.06			2.4	< 0.0050	34	< 0.010
MW-3	6/27/2013		0.018			< 0.0020	260	< 0.0060		< 0.020	98	0.0034			2.8	< 0.025	34	< 0.010
MW-3	3/27/2018		0.018			< 0.0020	280	< 0.0060		< 0.020	100	0.089			2.8	0.011	37	0.032
MW-3	3/21/2019	< 0.020	0.018	< 0.0020	0.11	< 0.0020	270	< 0.0060	< 0.0060	< 0.020	95	0.037	0.009	< 0.010	2.5	< 0.0050	34	0.027
MW-3	10/28/2019	< 0.020	0.018	< 0.0020	0.11	< 0.0020	240	< 0.0060	< 0.0060	< 0.020	100	0.012	< 0.0080	< 0.010	2.8	0.0071	34	0.068
MW-3	9/17/2020	<0.10	0.018	<0.010	<0.20	<0.010	290	<0.030	<0.030	<0.10	110	0.011	<0.040	<0.050	<5.0	<0.025	36	<0.050
MW-3	8/17/2021	< 0.020	0.019	< 0.0020	0.12	< 0.0020	280	< 0.0060	< 0.0060	< 0.020	100	< 0.0020	< 0.0080	< 0.010	2.7	< 0.0050	33	0.047
MW-3	3/21/2022	< 0.020	0.024	< 0.0020	0.14	< 0.0020	270	< 0.0060	< 0.0060	< 0.020	100	0.22	< 0.0080	< 0.010	3	< 0.0050	40	0.014
MW-3	8/4/2022	< 0.20	0.021	< 0.020	< 0.40	< 0.020	280	< 0.060	< 0.060	< 0.20	110	< 0.020	< 0.080	< 0.10	< 10	< 0.050	34	0.19
MW-3	11/29/2023	< 0.020	0.021	< 0.0020	0.11	< 0.0020	280	< 0.0060	< 0.0060	< 0.020	110	0.0074	< 0.0080	< 0.010	2.8	0.0072	33	< 0.010

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 1 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

							All Values I	Presented in Pa	rts Per Million (mg/L)								
SAMPLE ID	DATE	Aluminum	Barium	Beryllium	Boron	Cadmium	Calcium	Chromium	Cobalt	Iron	Magnesium	Manganese	Molybdenum	Nickel	Potassium	Silver	Sodium	Zinc
	-			· · · · ·		·,					_				·,			
MW-4	3/17/2012		0.016			< 0.0020	780	< 0.0060		0.071	310	0.051			3.6	< 0.0050	200	0.012
MW-4	6/18/2012		0.016			< 0.0020	780	< 0.0060		0.14	300	0.073			3.5	< 0.0050	220	0.043
MW-4	9/12/2012		0.013			< 0.0020	760	< 0.0060		0.021	300	0.048			3.2	< 0.0050	200	< 0.010
MW-4	12/6/2012		0.016			< 0.0020	780	< 0.0060		0.086	320	0.076			4.2	< 0.0050	230	0.02
MW-4	3/12/2013		0.013			< 0.0020	710	< 0.0060		0.089	280	0.049			3.7	< 0.0050	180	0.038
MW-4	6/27/2013		0.014			< 0.0020	750	< 0.0060		0.27	280	0.063			4.3	< 0.050	180	0.019
MW-4	3/27/2018		0.011			< 0.0020	770	< 0.0060		0.023	290	0.027			3.7	0.025	150	0.027
MW-4	3/21/2019	< 0.020	0.011	< 0.0020	0.16	< 0.0020	750	< 0.0060	< 0.0060	< 0.020	280	0.031	< 0.0080	< 0.010	3.5	0.0092	140	0.03
MW-4	10/28/2019	< 0.020	0.012	0.0023	0.17	< 0.0020	720	< 0.0060	< 0.0060	< 0.020	250	0.032	< 0.0080	< 0.010	3.6	0.019	130	0.023
MW-4	9/17/2020	<0.10	0.012	<0.010	<0.20	<0.010	760	<0.030	<0.030	<0.10	300	0.053	<0.040	<0.050	<5.0	<0.025	150	<0.050
MW-4	8/17/2021	< 0.020	0.012	< 0.0020	0.19	< 0.0020	710	< 0.0060	< 0.0060	0.03	280	0.042	< 0.0080	< 0.010	4.2	< 0.0050	140	0.019
MW-4	3/21/2022	< 0.020	0.014	< 0.0020	0.2	< 0.0020	730	< 0.0060	0.0066	< 0.020	300	0.035	< 0.0080	< 0.010	4	< 0.0050	150	< 0.010
MW-4	8/4/2022	< 0.20	< 0.020	< 0.020	< 0.40	< 0.020	720	< 0.060	< 0.060	< 0.20	290	0.036	< 0.080	< 0.10	< 10	< 0.050	120	< 0.10
MW-4	11/29/2023	0.12	0.010	< 0.0020	0.16	< 0.0020	720	< 0.0060	< 0.0060	0.24	290	0.043	< 0.0080	< 0.010	3.8	0.016	140	< 0.010
20.6.2.3103 NMAC GW STAI (<10,000 mg/L)	NDARDS																	
A. Human Health Stand	ards		2	0.004		0.005		0.05								0.05		
B. Other Standards for Domestic	Water Supply									1.0		0.2						10
C. Standards for Irrigatio	n Use	5.0			0.75				0.05				1.0	0.2				
Notes:																		
1. Exceedances of the listed closure	criteria are highlig	ghted in bold, red	d type.															

Page 41 of 78

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uranium
MW-1	3/17/2012		0.0015	< 0.0060	< 0.0050	< 0.00020	0.0052		0.002
MW-1	6/18/2012		0.0021	< 0.0060	< 0.0050	< 0.00020	0.0086		0.0027
MW-1	9/12/2012		0.0023	0.0062	< 0.0010	< 0.00020	0.0083		0.0057
MW-1	12/6/2012		0.0018	< 0.0060	< 0.0010	< 0.00020	0.0093		0.0045
MW-1	3/12/2013		0.0025	< 0.0060	< 0.0050	< 0.00020	0.0045		0.0027
MW-1	6/27/2013		0.0063	< 0.0060	< 0.0050	< 0.00020	0.022		< 0.0050
MW-1	3/27/2018		< 0.0050	< 0.0050	< 0.0025	< 0.00020	< 0.0050		< 0.0025
MW-1	3/21/2019	< 0.0050	< 0.0050	< 0.010	< 0.0050	< 0.00020	< 0.010	< 0.0025	< 0.0050
MW-1	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0025	< 0.0025
MW-1	9/17/2020	< 0.010	< 0.010	< 0.030	< 0.0050		< 0.010	< 0.0050	< 0.0050
MW-1	8/17/2021	< 0.0010	0.0023	< 0.030	< 0.0025		< 0.0010	< 0.0012	< 0.0025
MW-1	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0012	0.0036
MW-1	8/4/2022	< 0.0010	0.0016	< 0.060	< 0.00050		< 0.0010	< 0.00025	0.0009
MW-1	11/29/2023	< 0.0050	0.0073	< 0.0060	< 0.0025		< 0.0050	< 0.0012	0.0028
MW-2	3/17/2012		0.0019	< 0.0060	< 0.0050	< 0.00020	0.025		0.0061
MW-2	6/18/2012		0.0022	< 0.0060	< 0.0050	< 0.00020	0.024		0.0069
MW-2	9/12/2012		0.0019	0.0021	< 0.0010	< 0.00020	0.027		0.0071
MW-2	12/6/2012		0.0018	< 0.0060	< 0.0010	< 0.00020	0.026		0.0078
MW-2	3/12/2013		0.0017	< 0.0060	0.0060	< 0.00020	0.026		0.0068
MW-2	6/27/2013		0.0045	< 0.0060	< 0.0050	< 0.00020	0.037		0.0069
MW-2	3/27/2018		< 0.0050	< 0.0010	< 0.0025	< 0.00020	0.017		0.0059
MW-2	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.00020	0.013	< 0.00050	0.0054
MW-2	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		0.018	< 0.0025	0.0058
MW-2	9/17/2020	< 0.010	< 0.010	< 0.030	< 0.0050		0.013	< 0.0050	0.0052
MW-2	8/17/2021	< 0.0010	< 0.0010	< 0.0060	< 0.00050		0.012	< 0.00025	0.0054
MW-2	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		0.012	< 0.0012	0.0043
MW-2	8/4/2022	< 0.0010	0.0011	< 0.060	< 0.00050		0.016	< 0.00025	0.0056
MW-2	11/29/2023	< 0.0050	0.0044	< 0.0060	0.0051		0.020	< 0.0012	0.0055
MW-3	3/17/2012		0.0012	< 0.0060	< 0.0050	< 0.00020	< 0.0010		< 0.0010
MW-3	6/18/2012		< 0.0010	< 0.0060	< 0.0050	< 0.00020	< 0.0010		< 0.0010
MW-3	9/12/2012		0.0012	0.0021	< 0.0010	< 0.00020	< 0.0010		< 0.0010
MW-3	12/6/2012		< 0.0010	< 0.0060	< 0.0010	< 0.00020	0.001		0.0011
MW-3	3/12/2013		< 0.0010	< 0.0060	0.0064	< 0.00020	< 0.0010		< 0.0010
MW-3	6/27/2013		0.0013	< 0.0060	< 0.0050	< 0.00020	0.0027		0.0011

All Values Presented in Parts Per Million (mg/L)

Released to Imaging: 9/20/2024 3:00:13 PM

CUMULATIVE GROUNDWATER DISSOLVED METALS (TABLE 2 OF 2) LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

Released to Imaging: 9/20/2024 3:00:13 PM

		А	II Values Present	ed in Parts Per N	lillion (mg/L)				
SAMPLE ID	DATE	Antimony	Arsenic	Copper	Lead	Mercury	Selenium	Thallium	Uraniı
MW-3	3/27/2018		0.0011	< 0.0010	< 0.00050	< 0.00020	< 0.0010		0.000
MW-3	3/21/2019	< 0.0010	< 0.0010	< 0.0010	< 0.00050	< 0.00020	< 0.010	< 0.00050	< 0.00
MW-3	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0025	< 0.00
MW-3	9/17/2020	< 0.010	< 0.010	< 0.030	< 0.0050		< 0.010	< 0.0050	< 0.00
MW-3	8/17/2021	< 0.0010	0.0014	< 0.0060	< 0.00050		< 0.0010	< 0.00025	0.000
MW-3	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0012	< 0.0
MW-3	8/4/2022	< 0.0010	0.0024	< 0.060	< 0.00050		< 0.0010	< 0.00025	0.000
MW-3	11/29/2023	< 0.0050	0.0030	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0
			r	1	1	r		1	
MW-4	3/17/2012		0.0014	< 0.0060	< 0.0050	< 0.00020	0.0042		0.00
MW-4	6/18/2012		0.002	< 0.0060	< 0.0050	< 0.00020	0.0058		0.00
MW-4	9/12/2012		0.0017	< 0.0050	< 0.0050	< 0.00020	< 0.0050		0.00
MW-4	12/6/2012		0.0014	< 0.0060	< 0.0010	< 0.00020	0.0059		0.00
MW-4	3/12/2013		0.0012	< 0.0060	< 0.0050	< 0.00020	0.0036		0.00
MW-4	6/27/2013		0.0041	< 0.0060	< 0.0050	< 0.00020	0.017		0.00
MW-4	3/27/2018		< 0.0050	< 0.0050	< 0.0025	< 0.00020	< 0.0050		< 0.0
MW-4	3/21/2019	< 0.0010	< 0.0010	0.0015	< 0.00050	< 0.00020	< 0.010	< 0.00050	< 0.0
MW-4	10/28/2019	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0025	< 0.0
MW-4	9/17/2020	< 0.010	< 0.010	<0.030	< 0.0050		< 0.010	< 0.0050	< 0.0
MW-4	8/17/2021	< 0.0010	0.001	< 0.0060	< 0.0025		< 0.0010	< 0.0012	< 0.0
MW-4	3/21/2022	< 0.0050	< 0.0050	< 0.0050	< 0.0025		< 0.0050	< 0.0012	< 0.0
MW-4	8/4/2022	< 0.0010	0.0016	< 0.060	< 0.00050		< 0.0010	< 0.00025	0.00
MW-4	11/29/2023	< 0.0050	0.0054	< 0.0060	< 0.0025		< 0.0050	< 0.0012	< 0.0
20.6.2.3103 NMAC GW ST (<10,000 mg/L)									
A. Human Health Star	ndards	0.006	0.01		0.015	0.002	0.05	0.002	0.0
B. Other Standards for Domest	ic Water Supply			1.0					
C. Standards for Irrigat	ion Use								
8									
ceedances of the listed closure cr	iteria are highlighted in	hold red type							

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

					All Values	Presented in Pa	rts Per Million (n	ng/L)						
SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	МТВЕ	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
SB-2	10/20/2000	<1.00	<0.5	<0.5		0.004	<0.001	<0.001	<0.002					
MW-1	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-1	11/3/2004					<0.002	< 0.002	<0.002	<0.006					
MW-1	3/17/2012				<0.002	<0.002	<0.002	<0.002	< 0.004	<0.002	<0.002	<0.004	<0.008	<0.008
MW-1	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	9/12/2012					<0.002	< 0.002	<0.002	<0.004			<0.004		
MW-1	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-1	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	< 0.004	<0.004
MW-1	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-1	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-1	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-1	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-1	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	< 0.004	<0.004
MW-1	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
			-		-			-						
MW-2	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-2	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-2	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	< 0.004
MW-2	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-2	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-2	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-2	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-3	9/19/2002					<0.001	<0.001	<0.001	<0.002					
MW-3	11/3/2004					<0.002	<0.002	<0.002	<0.006					
MW-3	3/17/2012				<0.001	<0.001	<0.001	<0.001	<0.002	<0.001	<0.001	<0.002	<0.004	<0.004
MW-3	6/18/2012				<0.001	<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	9/12/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	12/6/2012					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	3/12/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	6/27/2013					<0.001	<0.001	<0.001	<0.002			<0.002		
MW-3	3/27/2018					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004

CUMULATIVE GROUNDWATER TPH AND VOC DATA SUMMARY LATTION PIT EDDY COUNTY, NEW MEXICO AP-23

ΔII	Values	Presented in	Parts Per	Million	(ma/l)
~	values	i resenteu m			

					All Values	s Presented in Pa	rts Per Million (r	ng/L)						
SAMPLE ID	DATE	TPH TOTAL	TPH GRO	TPH DRO	MTBE	Benzene	Toluene	Ethylbenzene	Xylenes	1,2,4- Trimethyl benzene	1,3,5- Trimethyl benzene	Naphthalene	1-Methyl naphthalene	2-Methyl naphthalene
MW-3	3/21/2019					<0.001	<0.001	<0.001	<0.0015			<0.002		
MW-3	10/28/2019					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-3	9/17/2020					<0.001	<0.001	<0.001	<0.0015			<0.002	< 0.004	< 0.004
MW-3	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-3	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-3	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-3	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	9/19/2002		Τ	T		<0.001	0.001	<0.001	<0.002	I				
							<0.001							
MW-4	11/3/2004					<0.002	<0.002	<0.002	< 0.006					
MW-4 MW-4	3/17/2012				< 0.001	<0.001 <0.001	<0.001	<0.001	<0.002 <0.002	<0.001	<0.001	<0.002 <0.002	<0.004	<0.004
	6/18/2012				<0.001		<0.001	<0.001						
MW-4	9/12/2012					<0.001	< 0.001	<0.001	<0.002			< 0.002		
MW-4	12/6/2012					<0.001	< 0.001	< 0.001	<0.002			< 0.002		
MW-4	3/12/2013					<0.001	< 0.001	<0.001	<0.002			< 0.002		
MW-4	6/27/2013					<0.001	< 0.001	< 0.001	<0.002			< 0.002		
MW-4	3/27/2018					<0.001	< 0.001	< 0.001	<0.0015			< 0.002	<0.004	<0.004
MW-4	3/21/2019					< 0.001	<0.001	<0.001	< 0.0015			< 0.002		
MW-4	10/28/2019					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	< 0.004
MW-4	9/17/2020					<0.001	<0.001	<0.001	<0.0015			< 0.002	<0.004	< 0.004
MW-4	8/17/2021					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	3/21/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	< 0.004
MW-4	8/4/2022					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
MW-4	11/29/2023					<0.001	<0.001	<0.001	<0.0015			<0.002	<0.004	<0.004
20.6.2.3103 NMAC GW S (<10,000 mg/L														
A. Human Health Sta	Indards					0.005	1	0.7	0.62			0.03 ¹	0.03 ¹	0.03 ¹
B. Other Standards for Domes	tic Water Supply				0.1									
C. Standards for Irriga	ation Use													
otes:														
The 0.03 mg/L standard is for total	naphthalene plus mono	omethylnaphthale	nes.											
vecodances of the listed closure														

2. Exceedances of the listed closure criteria are highlighted in bold, red type.

•

	CUMULATIVE GROUI	L	FIC CONDUCT, ATTION PIT JNTY, NEW ME AP-23	-	INITY, AND TDS		
	A	II Values Presente	ed in Parts Per	Million (mg/L)	Alkolinity (mg/l	<u>\</u>	
SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Alkalinity (mg/L Carbonate (As CaCO3)) Total Alkalinity (as CaCO3)	TDS (mg/L)
MW-1	9/19/2002						6,140
MW-1	11/3/2004						8,172
MW-1	3/17/2012	6300	7.07	170	< 2.0	170	5,080
MW-1	6/18/2012	6700	7.19	200	< 2.0	200	5,940
MW-1	9/12/2012	6600		160	< 2.0	160	5,270
MW-1	12/6/2012	7000	7.13	170	< 2.0	170	5,760
MW-1	3/12/2013	6500	7.38	160	< 2.0	160 140	5,380
MW-1 MW-1	6/27/2013 3/27/2018	6800 6600	7.28	140 151.7	< 2.0 < 2.000	140 151.7	5,330 5,460
MW-1	3/21/2019	6400	6.99	177.8	< 2.000	177.8	5,480
MW-1	10/28/2019	6900	7.39	168.6	< 2.000	168.6	5,550
MW-1	9/17/2020	7000	7.41	169.8	< 2.000	169.8	5,650
MW-1	8/17/2021	7500	7.05	186.4	< 2.000	186.4	5,970
MW-1	3/21/2022	7200	7.76	152.8	< 2.000	152.8	6,140
MW-1	8/4/2022	6800	7.53	124.9	< 2.000	124.9	5,990
MW-1	11/29/2023	8100	7.33	205.2	< 2.000	205.2	6,400
				-			
MW-2	9/19/2002						3,420
MW-2	11/3/2004						3,216
MW-2	3/17/2012	3,800	7.28	150	< 2.0	150	3,090
MW-2	6/18/2012	3,900	7.34	150	< 2.0	150	3,260
MW-2 MW-2	9/12/2012 12/6/2012	4,300 4,300	7.75	140	< 2.0 < 2.0	140 140	3,370 3,510
MW-2	3/12/2013	4,300	7.48	140	< 2.0	140	3,360
MW-2	6/27/2013	4,300	7.36	150	< 2.0	150	3,380
MW-2	3/27/2018	3,600	7.66	156.9	< 2.000	156.9	2,870
MW-2	3/21/2019	3,900	7.2	146.8	< 2.000	146.8	2,920
MW-2	10/28/2019	4,300	7.52	150.7	< 2.000	150.7	3,110
MW-2	9/17/2020	4,000	7.67	149.2	< 2.000	149.2	3,160
MW-2	8/17/2021	3,800	7.40	152.5	< 2.000	152.5	2,920
MW-2	3/21/2022	3,600	7.83	152.7	< 2.000	152.7	2,840
MW-2	8/4/2022	4,200	7.69	150.4	< 2.000	150.4	3,530
MW-2	11/29/2023	4,700	7.37	144.5	< 2.000	144.5	3,350
104/0	0/10/0000				1	<u>г</u> г	
MW-3	9/19/2002						1,700
MW-3 MW-3	3/17/2012	1,800	7.43	180	 < 2.0	 180	1,545 1,590
MW-3	6/18/2012	1,800	7.43	180	< 2.0	180	1,590
MW-3	9/12/2012	1,900		180	< 2.0	180	1,580
MW-3	12/6/2012	1,800	7.60	180	< 2.0	180	1,600
MW-3	3/12/2013	1,900	7.70	190	< 2.0	190	1,620
MW-3	6/27/2013	2,000	7.61	190	< 2.0	190	1,630
MW-3	3/27/2018	1,900	7.86	180.8	< 2.000	180.8	1,620
MW-3	3/21/2019	1,900	7.35	175.8	< 2.000	175.8	1,610
MW-3	10/28/2019	1,900	7.73	182.6	< 2.000	182.6	1,590
MW-3	9/17/2020	1,900	7.69	177.7	< 2.000	177.7	1,600
MW-3	8/17/2021	1,900	7.53	176.2	< 2.000	176.2	1,590
MW-3	3/21/2022	1,900	7.85	183	< 2.000	183	1,630
MW-3 MW-3	8/4/2022	1,900 1,900	7.88	195.5 194.8	< 2.000 < 2.000	195.5 194.8	1,670 1,610
UVIV "3	11/23/2023	1,300	1.00	134.0	< 2.000	134.0	1,010
MW-4	9/19/2002						5,350
MW-4	11/3/2004						5,650
MW-4	3/17/2012	5,400	7.16	160	< 2.0	160	4,470
MW-4	6/18/2012	5,500	7.27	160	< 2.0	160	4,880
MW-4	9/12/2012	5,800		160	< 2.0	160	4,370
MW-4	12/6/2012	5,700	7.26	160	< 2.0	160	4,550

•

		EDDY COUN	TION PIT	XICO			
			AP-23				
	A	II Values Presented	in Parts Per	Million (mg/L)			
					Alkalinity (mg/L)	
SAMPLE ID	DATE	Conductivity µmhos/c	рН	Bicarbonate (As CaCO3)	Carbonate (As CaCO3)	Total Alkalinity (as CaCO3)	TDS (mg/L)
MW-4	3/12/2013	5,600	7.46	160	< 2.0	160	4,450
MW-4	6/27/2013	5,800	7.36	160	< 2.0	160	4,340
MW-4	3/27/2018	5,400	7.66	146.7	< 2.000	146.7	4,360
MW-4	3/21/2019	5,400	7.16	144.7	< 2.000	144.7	4,170
MW-4	10/28/2019	5,500	7.46	147.6	< 2.000	147.6	4,200
MW-4	9/17/2020	5,300	7.68	141.6	< 2.000	141.6	4,310
MW-4	8/17/2021	5,500	7.27	148.2	< 2.000	148.2	4,200
MW-4	3/21/2022	5,400	7.74	142.7	< 2.000	142.7	4,280
MW-4	8/4/2022	5,400	7.54	140	< 2.000	140	4,640
MW-4	11/29/2023	5,200	7.55	157.5	< 2.000	157.5	3,950
20.6.2.3103 NMAC GW ST (<10,000 mg/L)							
A. Human Health Star	ndards						
3. Other Standards for Domest	ic Water Supply		6 to 9				1,000
C. Standards for Irrigat	ion Use						

ATTACHMENT 1 – SITE PHOTOGRAPHS

PHOTOGRAPH NO. 1 – View of former production pit location with monitor well "MW-1" visible. The view is towards the northwest.

(Approximate GPS: 32.729102,-104.349881)

Released to Imaging: 9/20/2024 3:00:13 PM

PHOTOGRAPH NO. 2 – A view of the approximate former reserve pit area and monitor wells "MW-4" and "MW-3". The view is towards the northeast. (*Approximate GPS*: 32.728827, -104.349882)

ATTACHMENT 2 – LABORATORY ANALYTICAL REPORT

Environment Testing

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

January 18, 2024 Will Kierdorf EOG 105 South Fourth Street Artesia, NM 88210 TEL: FAX:

RE: Lattions Pit

OrderNo.: 2312013

Dear Will Kierdorf:

Eurofins Environment Testing South Central, LLC received 5 sample(s) on 12/1/2023 for the analyses presented in the following report.

These were analyzed according to EPA procedures or equivalent. To access our accredited tests please go to www.hallenvironmental.com or the state specific web sites. In order to properly interpret your results, it is imperative that you review this report in its entirety. See the sample checklist and/or the Chain of Custody for information regarding the sample receipt temperature and preservation. Data qualifiers or a narrative will be provided if the sample analysis or analytical quality control parameters require a flag. When necessary, data qualifiers are provided on both the sample analysis report and the QC summary report, both sections should be reviewed. All samples are reported, as received, unless otherwise indicated. Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH and residual chlorine are qualified as being analyzed outside of the recommended holding time.

Please do not hesitate to contact Eurofins Albuquerque for any additional information or clarifications.

ADHS Cert #AZ0682 -- NMED-DWB Cert #NM9425 -- NMED-Micro Cert #NM0901

Sincerely,

andy

Andy Freeman Laboratory Manager 4901 Hawkins NE Albuquerque, NM 87109

Hall Environmental Analysis Laboratory, Inc.

Lab Order 2312013 Date Reported: 1/18/2024

.

CLIENT:		Client Sample ID: Trip Blank	
Project:	Lattions Pit	Collection Date:	
Lab ID:	2312013-001	Matrix: TRIP BLANK Received Date: 12/1/2023 7:45:00 AM	
Analyses		Result RL Qual Units DF Date Analyzed	Batch
EPA ME	THOD 8260B: VO	LATILES SHORT LIST Analyst	: CCM

Benzene	ND	1.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
Toluene	ND	1.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
Ethylbenzene	ND	1.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
Naphthalene	ND	2.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
1-Methylnaphthalene	ND	4.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
2-Methylnaphthalene	ND	4.0	µg/L	1	12/5/2023 11:31:00 PM	R101602
Xylenes, Total	ND	1.5	µg/L	1	12/5/2023 11:31:00 PM	R101602
Surr: 4-Bromofluorobenzene	101	70-130	%Rec	1	12/5/2023 11:31:00 PM	R101602
Surr: Toluene-d8	91.7	70-130	%Rec	1	12/5/2023 11:31:00 PM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Released to Imaging: 9/20/2024 3:00:13 PM

Hall E	Hall Environmental Analysis Laboratory, Inc.					Lab Order 2312013 Date Reported: 1/18/2024				
CLIENT Project: Lab ID:	Lattions Pit	Matrix: AQUE	(Collect		: 11/2	V-1 29/2023 1:37:00 PM 1/2023 7:45:00 AM			
Analyses	S	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA 200	0.8: DISSOLVED METALS						Analyst	bcv		
Antimon	Ŋ	ND	0.0050		mg/L	5	12/4/2023 5:10:20 PM	D101582		
Arsenic		0.0073	0.0025		mg/L	5	12/4/2023 5:10:20 PM	D101582		
Lead		ND	0.0025		mg/L	5	12/4/2023 5:10:20 PM	D101582		
Seleniur	n	ND	0.0050		mg/L	5	12/4/2023 5:10:20 PM	D101582		
Thallium	1	ND	0.0012		mg/L	5	12/4/2023 5:10:20 PM	D101582		
Uranium	1	0.0028	0.0025		mg/L	5	12/4/2023 5:10:20 PM	D101582		
EPA ME	THOD 300.0: ANIONS						Analyst	: JTT		
Fluoride		ND	2.0		mg/L	20	12/1/2023 12:15:59 PM	R101552		
Chloride		2000	100	*	mg/L	200	12/15/2023 9:35:31 AM	R101873		
Nitrogen	n, Nitrite (As N)	ND	2.0		mg/L	20	12/1/2023 12:15:59 PM	R101552		
Bromide	9	1.1	0.10		mg/L	1	12/1/2023 12:01:16 PM	R101552		
Nitrogen	n, Nitrate (As N)	ND	0.10		mg/L	1	12/1/2023 12:01:16 PM	R101552		
Phospho	orus, Orthophosphate (As P)	ND	0.50		mg/L	1	12/1/2023 12:01:16 PM	R101552		
Sulfate		2000	100	*	mg/L	200	12/15/2023 9:35:31 AM	R101873		
SM2510	B: SPECIFIC CONDUCTANCE						Analyst	: MCA		
Conduct	tivity	8100	10		µmhos/c	1	12/12/2023 1:11:24 PM	R101791		
SM2320	B: ALKALINITY						Analyst	: MCA		
Bicarbor	nate (As CaCO3)	205.2	20.00		mg/L Ca	1	12/6/2023 6:28:16 PM	R101661		
Carbona	ate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 6:28:16 PM	R101661		
Total All	kalinity (as CaCO3)	205.2	20.00		mg/L Ca	1	12/6/2023 6:28:16 PM	R101661		
SM2540	C MOD: TOTAL DISSOLVED SOLI	DS					Analyst	: KS		
Total Dis	ssolved Solids	6400	250	*D	mg/L	1	12/7/2023 4:14:00 PM	79174		
SM4500-	-H+B / 9040C: PH						Analyst	MCA		
pН		7.33		н	pH units	1	12/6/2023 6:28:16 PM	R101661		
EPA ME	THOD 200.7: DISSOLVED METAL	s					Analyst	: VP		
Aluminu	Im	ND	0.020		mg/L	1	12/11/2023 4:38:10 PM	D101749		
Barium		0.018	0.0030		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Berylliun	n	ND	0.0020		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Boron		0.37	0.040		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Cadmiur	m	ND	0.0020		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Calcium	1	980	10		mg/L	10	12/12/2023 12:29:10 PM	1 A101766		
Chromiu	ım	ND	0.0060		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Cobalt		ND	0.0060		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Copper		ND	0.0060		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Iron		ND	0.020		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Magnesi	ium	410	5.0		mg/L	5	12/12/2023 9:49:43 AM	A101766		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

В Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2312013

Date Reported: 1/18/2024

CLIENT:	EOG		Client Sample ID: MW-1								
Project:	Lattions Pit		Collection Date: 11/29/2023 1:37:00 PM								
Lab ID:	2312013-002	Matrix:	AQUEC	OUS	Recei	ved Dat	e: 12/	/1/2023 7:45:00 AM			
Analyses	5	Ro	esult	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA ME	THOD 200.7: DISSOLVE	ED METALS						Analyst	VP		
Mangane	ese	(0.077	0.0020	*	mg/L	1	12/12/2023 9:46:15 AM	A101766		
Molybde	num		ND	0.0080		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Nickel			ND	0.010		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Potassiu	m		5.3	1.0		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Silver		(0.023	0.0050		mg/L	1	12/12/2023 9:46:15 AM	A101766		
Sodium			400	5.0		mg/L	5	12/12/2023 9:49:43 AM	A101766		
Zinc			ND	0.010		mg/L	1	12/12/2023 9:46:15 AM	A101766		
EPA ME	THOD 8260B: VOLATIL	ES SHORT LIST						Analyst	CCM		
Benzene	9		ND	1.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
Toluene			ND	1.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
Ethylben	zene		ND	1.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
Naphtha	lene		ND	2.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
1-Methyl	naphthalene		ND	4.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
2-Methyl	naphthalene		ND	4.0		µg/L	1	12/5/2023 11:55:00 PM	R101602		
Xylenes,	Total		ND	1.5		µg/L	1	12/5/2023 11:55:00 PM	R101602		
Surr: 4	4-Bromofluorobenzene		101	70-130		%Rec	1	12/5/2023 11:55:00 PM	R10160		
Surr: ⁻	Toluene-d8		91.8	70-130		%Rec	1	12/5/2023 11:55:00 PM	R101602		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- NDNot Detected at the ReportingPQLPractical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- JAnalyte detected below quantitation limitsPSample pH Not In Range
- RL Reporting Limit
- RL Rep

Released to Imaging: 9/20/2024 3:00:13 PM

Hall Environmental Analysis Laboratory, Inc.						Lab Order 2312013 Date Reported: 1/18/2024				
0	Lattions Pit	Matrix: AQUE	(Collect		: 11/	V-2 29/2023 4:15:00 PM 1/2023 7:45:00 AM			
Analyses		Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA 200.8	B: DISSOLVED METALS						Analyst	bcv		
Antimony		ND	0.0050		mg/L	5	12/4/2023 5:12:37 PM	D101582		
Arsenic		0.0044	0.0025		mg/L	5	12/4/2023 5:12:37 PM	D10158		
Lead		0.0051	0.0025		mg/L	5	12/4/2023 5:12:37 PM	D101582		
Selenium		0.020	0.0050		mg/L	5	12/4/2023 5:12:37 PM	D101582		
Thallium		ND	0.0012		mg/L	5	12/4/2023 5:12:37 PM	D101582		
Uranium		0.0055	0.0025		mg/L	5	12/4/2023 5:12:37 PM	D101582		
EPA METH	HOD 300.0: ANIONS						Analyst	JTT		
Fluoride		0.84	0.10		mg/L	1	12/1/2023 12:31:09 PM	R101552		
Chloride		810	50	*	mg/L	100	12/15/2023 9:48:23 AM	R101873		
Nitrogen, N	Nitrite (As N)	ND	2.0		mg/L	20	12/1/2023 12:46:19 PM	R101552		
Bromide		0.67	0.10		mg/L	1	12/1/2023 12:31:09 PM	R101552		
Nitrogen, N	Nitrate (As N)	3.0	2.0		mg/L	20	12/1/2023 12:46:19 PM	R101552		
Phosphoru	us, Orthophosphate (As P)	ND	0.50		mg/L	1	12/1/2023 12:31:09 PM	R101552		
Sulfate		1100	50	*	mg/L	100	12/15/2023 9:48:23 AM	R101873		
SM2510B:	SPECIFIC CONDUCTANCE						Analyst	MCA		
Conductivi	ity	4700	10	Н	µmhos/c	1	1/9/2024 2:39:00 PM	R102332		
SM2320B:							Analyst	MCA		
Bicarbonat	te (As CaCO3)	144.5	20.00		mg/L Ca	1	12/6/2023 7:11:29 PM	R101661		
Carbonate	e (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 7:11:29 PM	R101661		
Total Alkal	linity (as CaCO3)	144.5	20.00		mg/L Ca	1	12/6/2023 7:11:29 PM	R101661		
SM2540C	MOD: TOTAL DISSOLVED SOLI	DS					Analyst	KS		
Total Diss	olved Solids	3350	50.0	*	mg/L	1	12/7/2023 4:14:00 PM	79174		
SM4500-H	I+B / 9040C: PH						Analyst	: MCA		
рН		7.37		н	pH units	1	12/6/2023 7:11:29 PM	R101661		
EPA METH	HOD 200.7: DISSOLVED METALS	5					Analyst	: VP		
Aluminum		ND	0.020		mg/L	1	12/11/2023 4:40:12 PM	D101749		
Barium		0.010	0.0030		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Beryllium		ND	0.0020		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Boron		0.062	0.040		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Cadmium		ND	0.0020		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Calcium		610	10		mg/L	10	12/12/2023 12:32:19 PM	1 A101766		
Chromium	1	ND	0.0060		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Cobalt		ND	0.0060		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Copper		ND	0.0060		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Iron		ND	0.020		mg/L	1	12/12/2023 9:53:13 AM	A101766		
Magnesiur	m	200	5.0		mg/L	5	12/12/2023 9:56:58 AM	A101766		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

% Recovery outside of standard limits. If undiluted results may be estimated. S

В Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Released to Imaging: 9/20/2024 3:00:13 PM

Hall Environmental Analysis Laboratory, Inc.

Analytical Report Lab Order 2312013

Date Reported: 1/18/2024

CLIENT:	: EOG		Client Sample ID: MW-2								
Project:	Lattions Pit		Collection Date: 11/29/2023 4:15:00 PM								
Lab ID:	2312013-003	Matrix: A	QUEOUS	Received Dat	te: 12	2/1/2023 7:45:00 AM	1/2023 7:45:00 AM				
Analyses		Resu	lt RL	Qual Units	DF	Date Analyzed	Batch				
EPA ME	THOD 200.7: DISSOLVE	D METALS				Analyst	t: VP				
Mangane	ese	Ν	ID 0.0020	mg/L	1	12/12/2023 9:53:13 AM	A101766				
Molybder	num	Ν	ID 0.0080	mg/L	1	12/12/2023 9:53:13 AM	A101766				
Nickel		Ν	ID 0.010	mg/L	1	12/12/2023 9:53:13 AM	A101766				
Potassiu	ım	2	.7 1.0	mg/L	1	12/12/2023 9:53:13 AM	A10176				
Silver		0.0	14 0.0050	mg/L	1	12/12/2023 9:53:13 AM	A101766				
Sodium		1	10 5.0	mg/L	5	12/12/2023 9:56:58 AM	A101766				
Zinc		Ν	ID 0.010	mg/L	1	12/12/2023 9:53:13 AM	A10176				
EPA ME	THOD 8260B: VOLATILE	ES SHORT LIST				Analyst	:: CCM				
Benzene)	Ν	ID 1.0	µg/L	1	12/6/2023 12:20:00 AM	R10160				
Toluene		Ν	ID 1.0	µg/L	1	12/6/2023 12:20:00 AM	R10160				
Ethylben	izene	Ν	ID 1.0	µg/L	1	12/6/2023 12:20:00 AM	R10160				
Naphtha	lene	Ν	ID 2.0	µg/L	1	12/6/2023 12:20:00 AM	R101602				
1-Methyl	naphthalene	Ν	ID 4.0	µg/L	1	12/6/2023 12:20:00 AM	R10160				
2-Methyl	naphthalene	Ν	ID 4.0	µg/L	1	12/6/2023 12:20:00 AM	R10160				
Xylenes,	Total	Ν	ID 1.5	μg/L	1	12/6/2023 12:20:00 AM	R10160				
Surr: 4	4-Bromofluorobenzene	1	01 70-130	%Rec	1	12/6/2023 12:20:00 AM	R10160				
Surr: 7	Toluene-d8	93	.1 70-130	%Rec	1	12/6/2023 12:20:00 AM	R10160				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- NDNot Detected at the ReportinPQLPractical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated ValueJ Analyte detected below quantitation limits
- JAnalyte detected below quantitation limPSample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.					Lab Order 2312013 Date Reported: 1/18/2024				
CLIENT: EOG Project: Lattions Pit Lab ID: 2312013-004	Matrix: AQUE	(Collect		:11/	W-3 /29/2023 3:35:00 PM /1/2023 7:45:00 AM			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA 200.8: DISSOLVED METALS						Analyst	bcv		
Antimony	ND	0.0050		mg/L	5	12/4/2023 5:14:55 PM	D101582		
Arsenic	0.0030	0.0025		mg/L	5	12/4/2023 5:14:55 PM	D10158		
Lead	ND	0.0025		mg/L	5	12/4/2023 5:14:55 PM	D10158		
Selenium	ND	0.0050		mg/L	5	12/4/2023 5:14:55 PM	D10158		
Thallium	ND	0.0012		mg/L	5	12/4/2023 5:14:55 PM	D10158		
Uranium	ND	0.0025		mg/L	5	12/4/2023 5:14:55 PM	D10158		
EPA METHOD 300.0: ANIONS						Analyst	JTT		
Fluoride	1.3	0.10		mg/L	1	12/1/2023 1:01:28 PM	R101552		
Chloride	43	25		mg/L	50	12/15/2023 10:01:15 AN	R10187		
Nitrogen, Nitrite (As N)	ND	0.10		mg/L	1	12/1/2023 1:01:28 PM	R101552		
Bromide	0.14	0.10		mg/L	1	12/1/2023 1:01:28 PM	R10155		
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	12/1/2023 1:01:28 PM	R10155		
Phosphorus, Orthophosphate (As P)	ND	0.50		mg/L	1	12/1/2023 1:01:28 PM	R10155		
Sulfate	890	25	*	mg/L	50	12/15/2023 10:01:15 AN	R10187		
SM2510B: SPECIFIC CONDUCTANCE						Analyst	MCA		
Conductivity	1900	10	Н	µmhos/c	1	1/11/2024 3:06:04 PM	R102414		
SM2320B: ALKALINITY						Analyst	MCA		
Bicarbonate (As CaCO3)	194.8	20.00		mg/L Ca	1	12/6/2023 7:21:41 PM	R10166		
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 7:21:41 PM	R10166 ⁻		
Total Alkalinity (as CaCO3)	194.8	20.00		mg/L Ca	1	12/6/2023 7:21:41 PM	R10166 ⁻		
SM2540C MOD: TOTAL DISSOLVED S	OLIDS					Analyst	KS		
Total Dissolved Solids	1610	50.0	*	mg/L	1	12/7/2023 4:14:00 PM	79174		
SM4500-H+B / 9040C: PH						Analyst	MCA		
рН	7.68		Н	pH units	1	12/6/2023 7:21:41 PM	R10166 ⁻		
EPA METHOD 200.7: DISSOLVED MET	ALS					Analyst	VP		
Aluminum	ND	0.020		mg/L	1	12/11/2023 4:47:40 PM	D101749		
Barium	0.021	0.0030		mg/L	1	12/12/2023 10:08:14 AN	A10176		
Beryllium	ND	0.0020		mg/L	1	12/12/2023 10:08:14 AM	A10176		
Boron	0.11	0.040		mg/L	1	12/12/2023 10:08:14 AM	A10176		
Cadmium	ND	0.0020		mg/L	1	12/12/2023 10:08:14 AN	A10176		
Calcium	280	5.0		mg/L	5	12/12/2023 10:11:45 AN			
Chromium	ND	0.0060		mg/L	1	12/12/2023 10:08:14 AM			
Cobalt	ND	0.0060		mg/L	1	12/12/2023 10:08:14 AM			
Copper	ND	0.0060		mg/L	1	12/12/2023 10:08:14 AN			
Iron	ND	0.020		mg/L	1	12/12/2023 10:08:14 AN			
Magnesium	110	5.0		mg/L	5	12/12/2023 10:11:45 AN	A101766		

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:**

Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated. В Analyte detected in the associated Method Blank

Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.	Date Rep

Date Reported: 1/18/2024

CLIENT: EOG		Client Sample ID: MW-3								
Project: Lattions Pit	Collection Date: 11/29/2023 3:35:00 PM									
Lab ID: 2312013-004	Matrix: AQUEC	DUS Re	ceived Dat	e: 12	/1/2023 7:45:00 AM					
Analyses	Result	RL Q	ual Units	DF	Date Analyzed	Batch				
EPA METHOD 200.7: DISSOLVED M	IETALS				Analyst	: VP				
Manganese	0.0074	0.0020	mg/L	1	12/12/2023 10:08:14 AM	A101766				
Molybdenum	ND	0.0080	mg/L	1	12/12/2023 10:08:14 AM	A101766				
Nickel	ND	0.010	mg/L	1	12/12/2023 10:08:14 AM	A101766				
Potassium	2.8	1.0	mg/L	1	12/12/2023 10:08:14 AM	1 A101766				
Silver	0.0072	0.0050	mg/L	1	12/12/2023 10:08:14 AM	A101766				
Sodium	33	1.0	mg/L	1	12/12/2023 10:08:14 AM	A101766				
Zinc	ND	0.010	mg/L	1	12/12/2023 10:08:14 AM	1 A101766				
EPA METHOD 8260B: VOLATILES S	HORT LIST				Analyst	CCM				
Benzene	ND	1.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
Toluene	ND	1.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
Ethylbenzene	ND	1.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
Naphthalene	ND	2.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
1-Methylnaphthalene	ND	4.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
2-Methylnaphthalene	ND	4.0	µg/L	1	12/6/2023 12:44:00 AM	R101602				
Xylenes, Total	ND	1.5	µg/L	1	12/6/2023 12:44:00 AM	R101602				
Surr: 4-Bromofluorobenzene	102	70-130	%Rec	1	12/6/2023 12:44:00 AM	R101602				
Surr: Toluene-d8	91.8	70-130	%Rec	1	12/6/2023 12:44:00 AM	R101602				

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level.D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Hall Environmental Analysis Laboratory, Inc.					Lab Order 2312013 Date Reported: 1/18/2024				
CLIENT: EOGProject:Lattions PitLab ID:2312013-005	Matrix: AQUEO	(Collect		: 11/2	V-4 29/2023 2:32:00 PM 1/2023 7:45:00 AM			
Analyses	Result	RL	Qual	Units	DF	Date Analyzed	Batch		
EPA 200.8: DISSOLVED METALS						Analyst	bcv		
Antimony	ND	0.0050		mg/L	5	12/4/2023 5:17:13 PM	D10158		
Arsenic	0.0054	0.0025		mg/L	5	12/4/2023 5:17:13 PM	D10158		
Lead	ND	0.0025		mg/L	5	12/4/2023 5:17:13 PM	D10158		
Selenium	ND	0.0050		mg/L	5	12/4/2023 5:17:13 PM	D10158		
Thallium	ND	0.0012		mg/L	5	12/4/2023 5:17:13 PM	D10158		
Uranium	ND	0.0025		mg/L	5	12/4/2023 5:17:13 PM	D10158		
EPA METHOD 300.0: ANIONS						Analyst	JTT		
Fluoride	1.2	0.10		mg/L	1	12/1/2023 1:31:46 PM	R10155		
Chloride	960	50	*	mg/L	100	12/15/2023 10:39:47 AN	R10187		
Nitrogen, Nitrite (As N)	ND	2.0		mg/L	20	12/1/2023 1:46:55 PM	R10155		
Bromide	0.57	0.10		mg/L	1	12/1/2023 1:31:46 PM	R10155		
Nitrogen, Nitrate (As N)	ND	0.10		mg/L	1	12/1/2023 1:31:46 PM	R10155		
Phosphorus, Orthophosphate (As P)	ND	0.50		mg/L	1	12/1/2023 1:31:46 PM	R10155		
Sulfate	1700	50	*	mg/L	100	12/15/2023 10:39:47 AN	I R101873		
SM2510B: SPECIFIC CONDUCTANCE						Analyst	MCA		
Conductivity	5200	10	Н	µmhos/c	1	1/11/2024 3:08:55 PM	R102414		
SM2320B: ALKALINITY						Analyst	MCA		
Bicarbonate (As CaCO3)	157.5	20.00		mg/L Ca	1	12/6/2023 7:32:30 PM	R10166		
Carbonate (As CaCO3)	ND	2.000		mg/L Ca	1	12/6/2023 7:32:30 PM	R10166 ⁻		
Total Alkalinity (as CaCO3)	157.5	20.00		mg/L Ca	1	12/6/2023 7:32:30 PM	R10166 ⁻		
SM2540C MOD: TOTAL DISSOLVED SOLI	DS					Analyst	KS		
Total Dissolved Solids	3950	100	*D	mg/L	1	12/7/2023 4:14:00 PM	79174		
SM4500-H+B / 9040C: PH						Analyst	MCA		
рН	7.55		н	pH units	1	12/6/2023 7:32:30 PM	R10166 ⁻		
EPA METHOD 200.7: DISSOLVED METALS	6					Analyst	VP		
Aluminum	0.12	0.020		mg/L	1	12/11/2023 4:49:47 PM	D101749		
Barium	0.010	0.0030		mg/L	1	12/12/2023 10:14:42 AN	I A101766		
Beryllium	ND	0.0020		mg/L	1	12/12/2023 10:14:42 AN	A10176		
Boron	0.16	0.040		mg/L	1	12/12/2023 10:14:42 AN	A10176		
Cadmium	ND	0.0020		mg/L	1	12/12/2023 10:14:42 AN			
Calcium	720	10		mg/L	10	12/12/2023 12:35:19 PM	I A101766		
Chromium	ND	0.0060		mg/L	1	12/12/2023 10:14:42 AN			
Cobalt	ND	0.0060		mg/L	1	12/12/2023 10:14:42 AN			
Copper	ND	0.0060		mg/L	1	12/12/2023 10:14:42 AN			
Iron	0.24	0.020		mg/L	1	12/12/2023 10:14:42 AN			
Magnesium	290	5.0		mg/L	5	12/12/2023 10:18:27 AN	A101766		
	200	0.0			~	,,,,,,, _, , , , , ,			

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

* **Qualifiers:** D

Value exceeds Maximum Contaminant Level. Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

Not Detected at the Reporting Limit

В Analyte detected in the associated Method Blank Е Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

Р Sample pH Not In Range

RL Reporting Limit

PQL Practical Quanitative Limit % Recovery outside of standard limits. If undiluted results may be estimated. S

ND

Analytical Report

Lab Order 2312013

Date Reported: 1/18/2024

CLIENT: EOG		C	ient Sample I	D: M	W-4	
Project: Lattions Pit			Collection Dat	e: 11	/29/2023 2:32:00 PM	
Lab ID: 2312013-005	Matrix: AQUEO	US	Received Dat	e: 12	2/1/2023 7:45:00 AM	
Analyses	Result	RL	Qual Units	DF	Date Analyzed	Batch
EPA METHOD 200.7: DISSOLVED	METALS				Analys	t: VP
Manganese	0.043	0.0020	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
Molybdenum	ND	0.0080	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
Nickel	ND	0.010	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
Potassium	3.8	1.0	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
Silver	0.016	0.0050	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
Sodium	140	5.0	mg/L	5	12/12/2023 10:18:27 AM	A A 101766
Zinc	ND	0.010	mg/L	1	12/12/2023 10:14:42 AM	A A 101766
EPA METHOD 8260B: VOLATILE	S SHORT LIST				Analys	t: CCM
Benzene	ND	1.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
Toluene	ND	1.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
Ethylbenzene	ND	1.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
Naphthalene	ND	2.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
1-Methylnaphthalene	ND	4.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
2-Methylnaphthalene	ND	4.0	µg/L	1	12/6/2023 1:08:00 AM	R101602
Xylenes, Total	ND	1.5	µg/L	1	12/6/2023 1:08:00 AM	R101602
Surr: 4-Bromofluorobenzene	99.5	70-130	%Rec	1	12/6/2023 1:08:00 AM	R101602
Surr: Toluene-d8	92.6	70-130	%Rec	1	12/6/2023 1:08:00 AM	R101602

Refer to the QC Summary report and sample login checklist for flagged QC data and preservation information.

Qualifiers:

- * Value exceeds Maximum Contaminant Level. D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- Not Detected at the Reporting Limit
- ND PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits Р Sample pH Not In Range
- RL Reporting Limit

Released to Imaging: 9/20/2024 3:00:13 PM

QC DEDODT Hal _____

-		/IARY REP nmental Anal			ory, Inc.					WO#:	231201 18-Jan-2-
Client: Project:		EOG Lattions Pit									
Sample ID:	MB-D	Sam	рТуре: МІ	BLK	Tes	stCode: E	PA Method	200.7: Dissolv	ved Metals	5	
Client ID:	PBW	Bat	tch ID: D1	01749	I	RunNo: 1	01749				
Prep Date:		Analysis	Date: 12	2/11/2023	:	SeqNo: 3	749970	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		ND	0.020			JUILEO	LOWEININ	- iigneinit			Quui
Sample ID:	LCS-D	Sam	рТуре: LC	S	Tes	stCode: E	PA Method	200.7: Dissol	ved Metals	5	
Client ID:	LCSW	Bat	ich ID: D1	01749	ł	RunNo: 1	01749				
Prep Date:		Analysis	Date: 12	2/11/2023	:	SeqNo: 3	749972	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Aluminum		0.48	0.020	0.5000	0	97.0	85	115			
Sample ID:	MB-A	Sam	рТуре: М	BLK	Tes	stCode: E	PA Method	200.7: Dissol	ved Metals	3	
Client ID:	PBW	Bat	tch ID: A1	01766	I	RunNo: 1	01766				
Prep Date:		Analysis	Date: 12	2/12/2023	:	SeqNo: 3	750832	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium		ND	0.0030								
Beryllium		ND	0.0020								
Boron		ND	0.040								
Cadmium		ND	0.0020								
Calcium Chromium		ND ND	1.0 0.0060								
Cobalt		ND	0.0060								
Copper		ND	0.0060								
Iron		ND	0.020								
Magnesium		ND	1.0								
Manganese		ND	0.0020								
Molybdenum		ND	0.0080								
Nickel		ND	0.010								
Potassium		ND	1.0								
Silver		ND	0.0050								
Sodium		ND	1.0								
Zinc		ND	0.010								
Sample ID:	LCS-A	Sam	рТуре: LC	S	Tes	stCode: E	PA Method	200.7: Dissolv	ved Metals	3	
Client ID:	LCSW	Bat	ich ID: A1	01766	I	RunNo: 1	01766				
Prep Date:		Analvsis	Date: 12	2/12/2023	:	SegNo: 3	750837	Units: ma/L			

ECON	Duit	ALLE: ALL	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	•		/// 00				
Prep Date:	Analysis	Date: 12	/12/2023	S	SeqNo: 37	750837	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Barium	0.48	0.0030	0.5000	0	95.3	85	115			
Beryllium	0.48	0.0020	0.5000	0	95.7	85	115			
Boron	0.48	0.040	0.5000	0	95.7	85	115			

Qualifiers:

- Value exceeds Maximum Contaminant Level. *
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- Reporting Limit RL

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

Sample ID: LCS-A	Samp	Type: LC	S	Tes	tCode: El	PA Method	200.7: Dissolv	ed Metals	;	
Client ID: LCSW	Bate	ch ID: A1	01766	F	RunNo: 1	01766				
Prep Date:	Analysis Date: 12/12/2023			Ş	SeqNo: 3	750837	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Cadmium	0.47	0.0020	0.5000	0	94.5	85	115			
Chromium	0.48	0.0060	0.5000	0	95.7	85	115			
Cobalt	0.48	0.0060	0.5000	0	95.0	85	115			
Copper	0.48	0.0060	0.5000	0	95.4	85	115			
Iron	0.49	0.020	0.5000	0	97.2	85	115			
Vanganese	0.48	0.0020	0.5000	0	95.2	85	115			
Volybdenum	0.47	0.0080	0.5000	0	94.8	85	115			
Nickel	0.48	0.010	0.5000	0	95.0	85	115			
Silver	0.48	0.0050	0.5000	0	96.1	85	115			
Zinc	0.48	0.010	0.5000	0	95.3	85	115			
Sample ID: LCS_CAT-A	Samp	Туре: LC	s	Tes	tCode: El	PA Method	200.7: Dissolv	ved Metals	;	
Client ID: LCSW	Bate	ch ID: A1	01766	F	RunNo: 1	01766				
Prep Date:	Analysis	Date: 12	/12/2023	Ş	SeqNo: 3	750839	Units: mg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Calcium	51	1.0	50.00	0	102	85	115			
Vagnesium	51	1.0	50.00	0	102	85	115			
Potassium	50	1.0	50.00	0	101	85	115			
Sodium	51	1.0	50.00	0	102	85	115			

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank В
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

WO#: 2312013

18-Jan-24

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

	age	64	of	78
			-	

WO#:	2312013
	18-Jan-24

Client: Project:		EOG Lattions Pit									
Sample ID:	MB	San	прТуре: М І	BLK	Tes	tCode: EF	PA 200.8: D	issolved Met	als		
Client ID:	PBW	Ba	atch ID: D1	01582	F	RunNo: 1(01582				
Prep Date:		Analysi	s Date: 12	2/4/2023	S	SeqNo: 37	740702	Units: mg/L			
Analyte		Resul	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Antimony		ND	0.0010								
Arsenic		NC	0.00050								
Lead		ND	0.00050								
Selenium		ND	0.0010								
Thallium		ND	0.00025								
mainain		INL.	0.00025								
Uranium		ND									
	LCS	ND		:S	Tes	tCode: EF	PA 200.8: D	issolved Meta	als]
Uranium	LCS LCSW	ND San	0.00050			tCode: EF		issolved Meta	als		
Uranium Sample ID:		ND San Ba	0.00050 npType: LC	01582	F		01582	issolved Meta Units: mg/L	als		
Uranium Sample ID: Client ID:		ND San Ba	0.00050 npType: LC atch ID: D1 s Date: 12	01582 2/4/2023	F	RunNo: 1(01582		als %RPD	RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date:		ND San Ba Analysi	0.00050 npType: LC atch ID: D1 s Date: 1; t PQL	01582 2/4/2023	F	RunNo: 10 SeqNo: 37	01582 740704	Units: mg/L		RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date: Analyte		ND San Ba Analysi Resul	0.00050 npType: LC atch ID: D1 s Date: 1; t PQL 0.0010	01582 2/4/2023 SPK value	F S SPK Ref Val	RunNo: 10 SeqNo: 37 %REC	01582 740704 LowLimit	Units: mg/L HighLimit		RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date: Analyte Antimony		ND San Ba Analysi Resul 0.024	0.00050 atch ID: D1 s Date: 1: PQL 0.0010 0.00050	01582 2/4/2023 SPK value 0.02500	F SPK Ref Val 0	RunNo: 10 SeqNo: 37 %REC 97.1	01582 740704 LowLimit 85	Units: mg/L HighLimit 115		RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date: Analyte Antimony Arsenic		ND San Ba Analysi Resul 0.024 0.025	0.00050 atch ID: D1 s Date: 1; PQL 0.0010 0.00050 0.00050	01582 2/4/2023 SPK value 0.02500 0.02500	F S SPK Ref Val 0 0	RunNo: 10 SeqNo: 37 %REC 97.1 99.0	01582 740704 LowLimit 85 85	Units: mg/L HighLimit 115 115		RPDLimit	Qual
Uranium Sample ID: Client ID: Prep Date: Analyte Antimony Arsenic Lead		NE San Ba Analysi Resul 0.024 0.025 0.013	0.00050 arpType: LC atch ID: D1 s Date: 1; PQL 0.0010 0.00050 0.00050 0.00050	01582 2/4/2023 SPK value 0.02500 0.02500 0.01250	F SPK Ref Val 0 0 0	RunNo: 10 SeqNo: 37 <u>%REC</u> 97.1 99.0 100	01582 740704 LowLimit 85 85 85	Units: mg/L HighLimit 115 115 115		RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

WO#:	2312013
	18-Jan-24

Client: Project:		EOG Lattions F	Pit									
Sample ID:	МВ		Samp	Туре: МЕ	BLK	Tes	stCode: E	PA Method	300.0: Anions			
Client ID:	PBW		Bato	h ID: R1	01552	I	RunNo: 1	101552				
Prep Date:			Analysis I	Date: 12	2/1/2023	:	SeqNo: 3	3738833	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride			ND	0.10								
Nitrogen, Nitrit	e (As N)		ND	0.10								
Bromide	. ()		ND	0.10								
Nitrogen, Nitra	. ,	hata (A a D)	ND	0.10								
Phosphorus, C	urtnopnosp	nate (As P)	ND	0.50								
Sample ID:	LCS		Samp	Туре: LC	S	Tes	stCode: E	PA Method	300.0: Anions			
Client ID:	LCSW		Bato	h ID: R1	01552	I	RunNo: 1	101552				
Prep Date:			Analysis I	Date: 12	2/1/2023	:	SeqNo: 3	3738834	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Fluoride			0.49	0.10	0.5000	0	97.3	90	110			
Nitrogen, Nitrit	e (As N)		0.94	0.10	1.000	0	94.3	90	110			
Bromide			2.4	0.10	2.500	0	94.6	90	110			
Nitrogen, Nitra			2.4	0.10	2.500	0	96.6	90	110			
Phosphorus, C	Orthophosp	hate (As P)	4.6	0.50	5.000	0	91.5	90	110			
Sample ID:	MB		Samp	Туре: МЕ	BLK	Tes	stCode: E	PA Method	300.0: Anions			
Client ID:	PBW		Bato	h ID: R1	01873	I	RunNo: 1	101873				
Prep Date:			Analysis I	Date: 12	2/15/2023	:	SeqNo: 3	3756389	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	0.50								
Sulfate			ND	0.50								
Sample ID:	LCS		Samp	Туре: LC	S	Tes	stCode: E	PA Method	300.0: Anions			
Client ID:	LCSW		Bato	h ID: R1	01873	ł	RunNo: 1	101873				
Prep Date:			Analysis I	Date: 12	2/15/2023	:	SeqNo: 3	3756390	Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			4.9	0.50	5.000	0	97.2	90	110			
Sulfate			9.9	0.50	10.00	0	99.3	90	110			
Sample ID:	МВ		Samp	Туре: МЕ	BLK	Tes	stCode: E	PA Method	300.0: Anions			
Client ID:	PBW		Bato	h ID: R1	01873	I	RunNo: 1	101873				
Prep Date:			Analysis I				SeqNo: 3		Units: mg/L			
Analyte			Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride			ND	0.50								
Sulfate			ND	0.50								

Qualifiers:

* Value exceeds Maximum Contaminant Level.

D Sample Diluted Due to Matrix

H Holding times for preparation or analysis exceeded

ND Not Detected at the Reporting Limit

PQL Practical Quanitative Limit

S % Recovery outside of standard limits. If undiluted results may be estimated.

B Analyte detected in the associated Method Blank

E Above Quantitation Range/Estimated Value

J Analyte detected below quantitation limits

P Sample pH Not In Range

RL Reporting Limit

EOG

Lattions Pit

Client:

Project:

Sample ID: LCS

Client ID: LCSW

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

Batch ID: R101873

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S
- Analyte detected in the associated Method Blank в
- Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

.

WO#:	2312013
	10 7 24

18-Jan-24

Prep Date:	Analysis Date: 12/1	Analysis Date: 12/15/2023 SeqNo: 3756425							
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.8 0.50	5.000	0	96.7	90	110			
Sulfate	9.8 0.50	10.00	0	98.2	90	110			
Sample ID: MB	SampType: MBL	К	Tes	tCode: El	PA Method	300.0: Anions			
Client ID: PBW	Batch ID: R101	873	F	lunNo: 1	01873				
Prep Date:	Analysis Date: 12/1	5/2023	S	SeqNo: 3	756452	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	ND 0.50								
Sulfate	ND 0.50								
Sample ID: LCS	SampType: LCS		Tes	tCode: El	PA Method	300.0: Anions			
Client ID: LCSW	Batch ID: R101	873	F	unNo: 1	01873				
Prep Date:	Analysis Date: 12/1	5/2023	5	SeqNo: 3	756453	Units: mg/L			
Analyte	Result PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Chloride	4.9 0.50	5.000	0	97.5	90	110			
Sulfate	9.9 0.50	10.00	0	98.9	90	110			

TestCode: EPA Method 300.0: Anions

RunNo: 101873

EOG

Lattions Pit

Client:

Project:

Sample ID: 100ng Ics 3

QC SUMMARY REPORT Hall Environmental Analysis Laboratory, Inc.

SampType: LCS

WO#:	2312013
	18-Jan-24

в

- Analyte detected in the associated Method Blank Е Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- Р Sample pH Not In Range
- RL Reporting Limit

.

Client ID: LCSW	Batc	n ID: R1	01602	F	RunNo: 1(01602				
Prep Date:	Analysis [Date: 12	2/5/2023	S	SeqNo: 37	742765	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	20	1.0	20.00	0	98.8	70	130			
Toluene	19	1.0	20.00	0	94.3	70	130			
Surr: 1,2-Dichloroethane-d4	10		10.00		101	70	130			
Surr: 4-Bromofluorobenzene	10		10.00		103	70	130			
Surr: Dibromofluoromethane	10		10.00		102	70	130			
Surr: Toluene-d8	9.4		10.00		94.0	70	130			
Sample ID: mb 3	Samp	ype: ME	BLK	Tes	tCode: EF	PA Method	8260B: Volatil	les Short	List	
Client ID: PBW	Batc	n ID: R1	01602	F	RunNo: 1(01602				
Prep Date:	Analysis [Date: 12	/5/2023	S	SeqNo: 37	742766	Units: µg/L			
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Benzene	ND	1.0								
Toluene	ND	1.0								
Ethylbenzene	ND	1.0								
Naphthalene	ND	2.0								
1-Methylnaphthalene	ND	4.0								
2-Methylnaphthalene	ND	4.0								
Xylenes, Total	ND	1.5								
Surr: 1,2-Dichloroethane-d4	9.9		10.00		98.6	70	130			
Surr: 1,2-Dichloroethane-d4 Surr: 4-Bromofluorobenzene	9.9 10		10.00 10.00		98.6 103	70 70	130 130			
						-				

TestCode: EPA Method 8260B: Volatiles Short List

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- Н Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- % Recovery outside of standard limits. If undiluted results may be estimated. S

3

Page 67 of 78

EOG

Client:

2312013	WO#:
18-Jan-24	

Project:	Lattions F	Pit									
Sample ID:	LCS-1 98.9uS eC	SampT	ype: LC	S	Tes	tCode: SI	//2510B: Sp	ecific Condu	ctance		
Client ID:	LCSW	Batch	ID: R1	01791	F	RunNo: 1(01791				
Prep Date:		Analysis D	ate: 12	2/12/2023	S	SeqNo: 37	751696	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		96	10	98.90	0	97.2	85	115			
Sample ID:	LCS-1 100uS eC	SampT	ype: LC	S	Tes	tCode: SI	M2510B: Sp	ecific Condu	ctance		
Client ID:	LCSW	Batch	ID: R1	02332	F	RunNo: 1(02332				
Prep Date:		Analysis D	ate: 1/9	9/2024	S	SeqNo: 37	778756	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		110	10	100.0	0	108	85	115			
Sample ID:	LCS-1 100uS eC	SampT	ype: LC	S	Tes	tCode: SI	//2510B: Sp	ecific Condu	ctance		
Client ID:	LCSW	Batch	ID: R1	02414	F	RunNo: 1(02414				
Prep Date:		Analysis D	ate: 1/	11/2024	5	SeqNo: 37	782726	Units: µmho	os/cm		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Conductivity		100	10	100.0	0	101	85	115			-

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

	WO#:	2312013
ory, Inc.		18-Jan-24

Client:	EOG										
Project:	Lattions	Pit									
Sample ID:	MB-1 Alk	SampTy	уре: МЕ	BLK	Tes	tCode: SI	M2320B: Al	kalinity			
Client ID:	PBW	Batch	ID: R1	01661	F	RunNo: 1	01661				
Prep Date:		Analysis Da	ate: 12	2/6/2023	S	SeqNo: 3	744722	Units: mg/L	CaCO3		
Analyte Total Alkalinity	(as CaCO3)	Result ND	PQL 20.00	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Sample ID:	LCS-1 Alk	SampTy	ype: LC	S	Tes	tCode: SI	M2320B: Al	kalinity			
Client ID:	LCSW	Batch	ID: R1	01661	F	RunNo: 1	01661				
Prep Date:		Analysis Da	ate: 12	2/6/2023	S	SeqNo: 3	744723	Units: mg/L	CaCO3		
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Alkalinity	(as CaCO3)	76.56	20.00	80.00	0	95.7	90	110			
	(45 64666)	10.00	20.00	00.00	0						
Sample ID:		SampTy			-		M2320B: Al	-			
		SampTy		BLK	Tes		M2320B: AI	-			
Sample ID:	MB-2 alk	SampTy	ype: ME ID: R1	3LK 01661	Tes	tCode: SI	M2320B: Al	-	CaCO3		
Sample ID: Client ID:	MB-2 alk	SampTy Batch	ype: ME ID: R1	BLK 01661 2/6/2023	Tes	tCode: SI RunNo: 10	M2320B: Al	kalinity	. CaCO3 %RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date:	MB-2 alk PBW	SampTy Batch Analysis Da	ype: ME ID: R1 ate: 12	BLK 01661 2/6/2023	Tes F	tCode: SI RunNo: 10 SeqNo: 3	M2320B: Al 01661 744746	kalinity Units: mg/L		RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Total Alkalinity	MB-2 alk PBW	SampTy Batch Analysis Da Result	ype: ME ID: R1 ate: 12 PQL 20.00	3LK 01661 2/6/2023 SPK value	Tes F SPK Ref Val	tCode: SI RunNo: 10 SeqNo: 3 %REC	M2320B: Al 01661 744746	kalinity Units: mg/L HighLimit		RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Total Alkalinity Sample ID:	MB-2 alk PBW (as CaCO3)	SampTy Batch Analysis Da Result ND SampTy	ype: ME ID: R1 ate: 12 PQL 20.00	3LK 01661 2/6/2023 SPK value	Tes F SPK Ref Val Tes	tCode: SI RunNo: 10 SeqNo: 3 %REC	M2320B: AI 01661 744746 LowLimit M2320B: AI	kalinity Units: mg/L HighLimit		RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Total Alkalinity Sample ID:	MB-2 alk PBW (as CaCO3) LCS-2 Alk	SampTy Batch Analysis Da Result ND SampTy	ype: ME ID: R1 ate: 12 PQL 20.00 ype: Ics ID: R1	BLK 01661 2/6/2023 SPK value	Tes F SPK Ref Val Tes F	tCode: SI RunNo: 10 SeqNo: 3 %REC tCode: SI	M2320B: AI 01661 744746 LowLimit M2320B: AI 01661	kalinity Units: mg/L HighLimit	%RPD	RPDLimit	Qual
Sample ID: Client ID: Prep Date: Analyte Total Alkalinity Sample ID: Client ID:	MB-2 alk PBW (as CaCO3) LCS-2 Alk	SampTy Batch Analysis Da Result ND SampTy Batch	ype: ME ID: R1 ate: 12 PQL 20.00 ype: Ics ID: R1	BLK 01661 2/6/2023 SPK value	Tes F SPK Ref Val Tes F	tCode: SI RunNo: 11 SeqNo: 3 %REC tCode: SI RunNo: 11	M2320B: AI 01661 744746 LowLimit M2320B: AI 01661	kalinity Units: mg/L HighLimit kalinity	%RPD	RPDLimit	Qual

Qualifiers:

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit

Analysis Date: 12/7/2023

PQL

50.0

Result

1070

2312013

WO#:

Hall Envi	ronmenta	al Analys	sis La	aborato	ry, Inc.						18-Jan-24
Client: Project:	EOG Lattions	Pit									
Sample ID: ME	3-79174	SampTy	/pe: MB	LK	Tes	tCode: SI	M2540C MC	D: Total Diss	olved Soli	ids	
Client ID: PB	W	Batch	ID: 791	74	F	RunNo: 1(01684				
Prep Date: 12	2/6/2023	Analysis Da	ate: 12/	7/2023	S	SeqNo: 37	745622	Units: mg/L			
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Total Dissolved Sol	ids	ND	50.0								
Sample ID: LC	S-79174	SampTy	/pe: LCS	5	Tes	tCode: SI	M2540C MC	D: Total Diss	olved Soli	ids	
Client ID: LC	SW	Batch	ID: 791	74	F	RunNo: 10	01684				

SPK value SPK Ref Val %REC

0

1000

SeqNo: 3745623

107

LowLimit

80

Units: mg/L

HighLimit

120

%RPD

RPDLimit

Qual

Qualifiers:

Prep Date:

Total Dissolved Solids

Analyte

12/6/2023

- * Value exceeds Maximum Contaminant Level.
- D Sample Diluted Due to Matrix
- H Holding times for preparation or analysis exceeded
- ND Not Detected at the Reporting Limit
- PQL Practical Quanitative Limit
- S % Recovery outside of standard limits. If undiluted results may be estimated.
- B Analyte detected in the associated Method Blank
- E Above Quantitation Range/Estimated Value
- J Analyte detected below quantitation limits
- P Sample pH Not In Range
- RL Reporting Limit
- Released to Imaging: 9/20/2024 3:00:13 PM

euro	fins
	euro

Page 71 of 78

Eurofins Environment Testing South Central, LLC 4901 Hawkins NE Albuquerque, NM 87109 TEL: 505-345-3975 FAX: 505-345-4107 Website: www.hallenvironmental.com

Sample Log-In Check List

	Website: www.hal	lenvironmen	tal.com		
Client Name: EOG	Work Order Number:	2312013		RcptNo:	1
Received By: Juan Rojas	12/1/2023 7:45:00 AM		Guarda g		
Completed By: Cheyenne Cason	12/1/2023 9:12:29 AM		Warrag g		
Reviewed By: JN 12/1/23					
Chain of Custody					
1. Is Chain of Custody complete?		Yes 🗹	No 🗌	Not Present	
2. How was the sample delivered?		<u>Courier</u>			
<u>Log In</u>					
3. Was an attempt made to cool the samples?		Yes 🗹	Νο	NA 🗌	
 Were all samples received at a temperature of 	>0° C to 6.0°C	Yes 🗹	No 🗌	NA 🗌	
5. Sample(s) in proper container(s)?		Yes 🗹	No 🗌		
5. Sufficient sample volume for indicated test(s)?		Yes 🗹	No 🗌		
7. Are samples (except VOA and ONG) properly p	preserved?	Yes 🗹	No 🗌		
3. Was preservative added to bottles?		Yes 🗌	No 🗹	NA 🗌	
). Received at least 1 vial with headspace <1/4" f	or AQ VOA?	Yes 🗹	No 🗌		
0. Were any sample containers received broken?	•	Yes 🗌	No 🗹 🗌	# of preserved	
1. Does paperwork match bottle labels?		Yes 🗹	No 🗆	bottles checked (for pH:	>12 unless noted)
(Note discrepancies on chain of custody) 2. Are matrices correctly identified on Chain of Cu	istody?	Yes 🗹	No 🗍	Adjusted?	NO
3. Is it clear what analyses were requested?		Yes 🗹			
4. Were all holding times able to be met? (If no, notify customer for authorization.)		Yes 🗹	No 🗌	Checked by	MN 12/11/0
pecial Handling (if applicable)					
5. Was client notified of all discrepancies with thi	s order?	Yes 🗌	No 🗌	NA 🗹	
Person Notified:	Date:				
By Whom:	Via:	eMail	Phone 🗌 Fax	In Person	
Regarding: Client Instructions:					
· · · · · · · · · · · · · · · · · · ·	105		TRAGAL CALL		600
	NOT PROVIDED	D DY E	100 CUITIIN	in ceptral.	12/1/23
7. <u>Cooler Information</u> Cooler No Temp °C Condition Sea	I Intact Seal No Se	eal Date	Signed By		101.(*>
	resent Yogi		oiglied by		

and the local division of the local division
-
<u> </u>
-
\sim
114
Marco I.
9
-
5
0
00
2 M A
Test.
N.
<u></u>
\sim
~
0
-
~
2 1
<u> </u>
-
0
_
<u></u>
2.1
<u> </u>
9
- (
• •
• •
50
50
s:
ng:
ng:
ing:
ing:
ging:
ging:
aging:
aging:
naging:
naging:
maging:
naging:
Imaging:
Imaging:
Imaging:
o Imaging:
Imaging:
to Imaging:
to Imaging:
d to Imaging:
d to Imaging:
to Imaging:
ed to Imaging:
sed to Imaging:
ised to Imaging:
sed to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:
ised to Imaging:

je bo
tical
hieue
thea
d o
otate
μ Σ
clear
ll be
ita wi
sd da
tracte
-601
dus '
Any
oility.
ossik
his p
e of t
otice
s as 1
erve
his s
E. T
torie
abora
ted Is
credi
ar ao
F
ed to
itraat
peor
S
ø
nay be
ntal may be
nmental may be
nvironmental may be
all Environmental may be
to Hall Environmental may be
litted to Hall Environmental may be
submitted to Hall Environmental may be
oles submitted to Hall Environmental may be
samples submitted to Hall Environmental may be
ary, samples submitted to Hall Environmental may be
cessary, samples submitted to Hall Environmental may be
If necessary, samples submitted to Hall Environmental may be
If necessary, samples submitted to Hall Environmental may be

									1			
Client: EOG-Artesia / Ranger Env.	Artesia / Ra	nger Env.	X Standard	C Rush				A	Xs	ANALYSIS LABORATORY	ORATO	ORY
			Project Name: Alter TAA-5	KI W TAM	SEAL WAY IN THE			www.h	allenvir	www.hallenvironmental.com	F	
Mailing Addres	ss: EOG - 105	Mailing Address: EOG - 105 S 4th St, Artesia NM, 88210	7	LATTZONS PET	L	490	1 Hawki	ns NE	- Albu	4901 Hawkins NE - Albuquerque, NM 87109	87109	
Ranger: PO B	ox 201179, A	Ranger: PO Box 201179, Austin TX 78720	Project #: 5375	75		Tel.	505-345-3975	5-3975		Fax 505-345-4107	107	
Phone #: 521-335-1785	1-335-1785								Analys	Analysis Request		
email or Fax	#: Will@Ran	email or Fax#: Will@RangerEnv.com	Project Manag	ger: W. Kierdorf	dorf	(0						
QA/QC Package:	ide:	Level 4 (Full Validation)) / WB	M	STAT				
Accreditation:		□ Az Compliance □ Other	Sampler: W. KTE200 ^{KF} On Ice:	KERROOPF	D No	אם ו מ	שאות 00)	SUDJA BAN AJ		J.201		
EDD (Type)			# of Coolers:		1005					1		
			Cooler Temp(Including CF):	5	9+6.1=3.0					10/0		
Date Time	le Matrix	Sample Name	Container Type and #	Preservative Type	HEAL NO. 2312013	8) X∃T8 r08:H9T	Shloride AJTS	MOR	SOL	sp. cl sp. cl		
11/29/23 -	- AR	TAZP BLANN	2 VOAS	HCL	Jao		×					
1/29/03 3337	37 AR	1-MW	U.	SELENDITES	202		Х	X X	X	XX		
"/29/23 16/5	IS AR	Mw-2	Ø	1	003		X	×	X	XX		
×/29/23 1535	35 AR	mw-3	10		hao		X	× ×	\star	\star \star		
1/25/33 143A	A AQ	mw-t	v	-)	645		X	$\stackrel{\star}{\times}$	×	X		
Date: Time: 11/3//23 (03/32)	: Relinquished by:	t ber	Received by:	Via:	Date Time	Remarks: Bill to EOG Artesia <i>C</i> กับส ราษณ์ 77/055	Bill to EO(Q A	tesia			
Date: Time:	: Relinquished by:	ned by:	Received by	Via:	Date Time	3× 40mL MLL UDAS IX SOONL PUBSTECCUMP.	1 NCL	DUSTIC ((and			
Wald Igen	_		A	12	ALIN NIL	101	ALL OF C	14	(n) cal)	+1,10014		DIACTTINUDZ

ATTACHMENT 3 – NMOCD CORRESPONDENCE

From: Wells, Shelly, EMNRD < Shelly, Wells, Barnard nm nov> SReceived, by OCD: 4/3/2024 12:08:48 PM

To: Miriam Morales <<u>Miriam Morales@eogresources.com</u>>; Buchanan, Michael, EMNRD <<u>Michael,Buchanan@emnrd.nm.gov</u>> Cc: Artesia Regulatory <<u>Artesia Regulatory@eogresources.com</u>>; Bratcher, Michael, EMNRD <<u>mike bratcher@emnrd.nm.gov</u>>; Velez, Nelson, EMNRD <<u>Nelson Velez@emnrd.nm.gov</u>> Subject: RE: [EXTERNAL] Lattion Pit (NAUTOFAB000337) Sampling Notification

CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

Good morning Miriam,

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|<u>Shelly,Wells@emnrd.nm.gov</u> http://www.emnrd.state.nm.us/OCD/

From: Miriam Morales < Miriam Morales@eogresources.com >

Sent: Tuesday, November 21, 2023 9:14 AM
To: Enviro, OCD, EMNRD <<u>OCD.Enviro@emnrd.nm.gov</u>>; Velez, Nelson, EMNRD <<u>Nelson.Velez@emnrd.nm.gov</u>>; Buchanan, Michael, EMNRD <<u>Michael.Buchanan@emnrd.nm.gov</u>>;
Cc: Artesia Regulatory <<u>Artesia Regulatory@eogresources.com</u>>; Artesia S&E Spill Remediation <<u>Artesia S&E Spill Remediation@eogresources.com</u>>;
Subject: [EXTERNAL] Lattion Pit (NAUTOFAB000337) Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good morning,

EOG Resources, Inc. respectfully submits notification (2) business days prior to conducting sampling on the following location. (Due to the holiday this week, this is going out early)

Lattion Pit O-23-18S-26E Eddy County, NM NAUTOFAB000337

Sampling will begin at 12:00 p.m. on Tuesday, November 28, 2023.

Thank you,

Miriam Morales

ATTACHMENT 4 – 1981 AND 1997 AERIAL PHOTOGRAPHS

District I 1625 N. French Dr., Hobbs, NM 88240 Phone:(575) 393-6161 Fax:(575) 393-0720 District II

811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III

1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

District IV

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone: (505) 476-3470 Fax: (505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 329523

CONDITIONS

Operator:	OGRID:	
EOG RESOURCES INC	7377	
5509 Champions Drive	Action Number:	
Midland, TX 79706	329523	
	Action Type:	
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)	

CONDITIONS

Created By	Condition	Condition
,		Date
michael.buchanan	Review of the Annual Groundwater Monitoring Report (03.26.2024) for Lattion Pit (AP-23): accepted for the record and site is currently under review; a meeting is currently being scheduled between OCD and EOG to discuss a work plan and path forward for the site.	9/20/2024