

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

11 April 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: GCU Com H #180

Enclosed are the results of analyses for samples received by the laboratory on 03/28/24 15:05. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: T104704398-23-16

Table of Contents

Samples in Report	3
Sample Results	4
2403237-01: MW #102	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser **Reported:** 04/11/24 08:31

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #102	2403237-01	Water	03/28/24 12:00	03/28/24 15:05	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser Reported:

04/11/24 08:31

MW #102

2403237-01 (Ground Water) Sampled Date: 03/28/24 12:00

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
1,1,1-Trichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
1,1,2,2-Tetrachloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
1,1,2-Trichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
1,1-Dichloroethane*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
1,1-Dichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
1,1-Dichloropropene*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
1,2,3-Trichlorobenzene*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
1,2,4-Trichlorobenzene*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
1,2,4-Trimethylbenzene*	0.028	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
1,2-Dibromo-3-chloropropane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
1,2-Dibromoethane*	< 0.0005	0.0005	0.00009	mg/L	1	04/08/24 14:14	8260B	MS
1,2-Dichlorobenzene*	< 0.0005	0.0005	0.00007	mg/L	1	04/08/24 14:14	8260B	MS
1,2-Dichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
1,2-Dichloropropane*	< 0.0005	0.0005	0.00008	mg/L	1	04/08/24 14:14	8260B	MS
1,3,5-Trimethylbenzene*	0.003	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
1,3-Dichlorobenzene*	< 0.0005	0.0005	0.00005	mg/L	1	04/08/24 14:14	8260B	MS
1,3-Dichloropropane*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
1,4-Dichlorobenzene	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
1,4-Dioxane	< 0.010	0.010	0.010	mg/L	1	04/08/24 14:14	8260B	MS
1.2.3-trichloropropane*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
2,2-Dichloropropane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
2-Butanone*	< 0.002	0.002	0.002	mg/L	1	04/08/24 14:14	8260B	MS
2-Chlorotoluene*	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
2-Hexanone*	< 0.001	0.001	0.0003	mg/L	1	04/08/24 14:14	8260B	MS
4-Chlorotoluene*	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
4-Methyl-2-pentanone*	< 0.001	0.001	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
Acetone*	< 0.010	0.010	0.0009	mg/L	1	04/08/24 14:14	8260B	MS
Acrolein*	< 0.005	0.005	0.001	mg/L	1	04/08/24 14:14	8260B	MS
Acrylonitrile*	< 0.002	0.002	0.0008	mg/L	1	04/08/24 14:14	8260B	MS

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser **Reported:** 04/11/24 08:31

MW #102

2403237-01 (Ground Water) Sampled Date: 03/28/24 12:00

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Benzene*	0.0007	0.0005	0.00005	mg/L	1	04/08/24 14:14	8260B	MS
Bromobenzene*	< 0.0005	0.0005	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
Bromochloromethane*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
Bromodichloromethane*	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
Bromoform*	< 0.0005	0.0005	0.00009	mg/L	1	04/08/24 14:14	8260B	MS
Bromomethane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Carbon disulfide*	< 0.005	0.005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
Carbon tetrachloride*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
Chlorobenzene*	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
Chloroethane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Chloroform*	< 0.0005	0.0005	0.00002	mg/L	1	04/08/24 14:14	8260B	MS
Chloromethane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
cis-1,2-Dichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
cis-1,3-Dichloropropene*	< 0.0005	0.0005	0.00009	mg/L	1	04/08/24 14:14	8260B	MS
Dibromochloromethane*	< 0.0005	0.0005	0.00008	mg/L	1	04/08/24 14:14	8260B	MS
Dibromomethane*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
Dichlorodifluoromethane*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Ethylbenzene*	0.003	0.0005	0.00003	mg/L	1	04/08/24 14:14	8260B	MS
Hexachlorobutadiene*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Iodomethane	< 0.001	0.001	0.00006	mg/L	1	04/08/24 14:14	8260B	MS
Isopropylbenzene*	< 0.0005	0.0005	0.00002	mg/L	1	04/08/24 14:14	8260B	MS
m+p - Xylene*	0.018	0.001	0.00008	mg/L	1	04/08/24 14:14	8260B	MS
Methyl tert-butyl ether	< 0.001	0.001	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
Methylene chloride*	< 0.002	0.002	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Naphthalene*	< 0.0005	0.0005	0.00008	mg/L	1	04/08/24 14:14	8260B	MS
n-Butylbenzene*	< 0.0005	0.0005	0.00007	mg/L	1	04/08/24 14:14	8260B	MS
n-Propylbenzene*	< 0.0005	0.0005	0.00005	mg/L	1	04/08/24 14:14	8260B	MS
o-Xylene*	0.006	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
p-Isopropyltoluene*	0.010	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
sec-Butylbenzene*	< 0.0005	0.0005	0.00004	mg/L	1	04/08/24 14:14	8260B	MS
Styrene*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
tert-Butylbenzene*	< 0.0005	0.0005	0.00007	mg/L	1	04/08/24 14:14	8260B	MS

Green Analytical Laboratories

Neronica J Wills

Durango CO, 81302

Project: VOC 8260

PO Box 1653

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser Reported:

04/11/24 08:31

MW #102

2403237-01 (Ground Water) Sampled Date: 03/28/24 12:00

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	l
---------	--------	----	-----	-------	----------	----------	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
Tetrachloroethene*	< 0.0005	0.0005	0.00009	mg/L	1	04/08/24 14:14	8260B	MS
Toluene*	< 0.0005	0.0005	0.00008	mg/L	1	04/08/24 14:14	8260B	MS
Total Xylenes*	0.023	0.001	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
trans-1,2-Dichloroethene*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
trans-1,3-Dichloropropene*	< 0.0005	0.0005	0.00005	mg/L	1	04/08/24 14:14	8260B	MS
trans-1,4-Dichloro-2-butene	< 0.010	0.010	0.0003	mg/L	1	04/08/24 14:14	8260B	MS
Trichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	04/08/24 14:14	8260B	MS
Trichlorofluoromethane*	< 0.0005	0.0005	0.0001	mg/L	1	04/08/24 14:14	8260B	MS
Vinyl acetate*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Vinyl chloride*	< 0.0005	0.0005	0.0005	mg/L	1	04/08/24 14:14	8260B	MS
Surrogate: 4-Bromofluorobenzene			108 %	76.4-114		04/08/24	8260B	MS
						14:14		
Surrogate: Dibromofluoromethane			89.7 %	82.4-141		04/08/24 14:14	8260B	MS
Surrogate: Toluene-d8			103 %	87.1-110		04/08/24 14:14	8260B	MS

Green Analytical Laboratories

Neronica & nulls

Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180

Reported: 04/11/24 08:31

Durango CO, 81302

Project Manager: Kyle Siesser

VOLATILES BY GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4040332 - Volatiles

Blank (4040332-BLK1)			Prepa	red: 04/03/24 A	nalyzed: 04/04	/24	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.010	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0523		mg/L	0.0500	105	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J nulls

Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180

Reported:

Durango CO, 81302 Project Manager: Kyle Siesser

04/11/24 08:31

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4040332 - Volatiles (Continued)

Blank (4040332-BLK1) (Continued)			Prep	pared: 04/03/24 Ar	nalyzed: 04/04/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	0.001	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0473		mg/L	0.0500	94.5	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	ND	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	0.0007	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0511		mg/L	0.0500	102	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wills

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser Reported:

04/11/24 08:31

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4040332 - Volatiles (Continued)

LCS (4040332-BS1)			Prep	pared: 04/03/24 A	Analyzed: 04/04/2	4	
1,1,1,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200	108	82.4-120	
1,1,1-Trichloroethane	0.019	0.0005	mg/L	0.0200	93.4	80.7-121	
1,1,2,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	99.8	76.5-121	
1,1,2-Trichloroethane	0.021	0.0005	mg/L	0.0200	104	81.7-118	
1,1-Dichloroethane	0.019	0.0005	mg/L	0.0200	94.7	74.8-123	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200	103	53.9-149	
1,1-Dichloropropene	0.018	0.0005	mg/L	0.0200	92.4	85.9-115	
1,2,3-Trichlorobenzene	0.019	0.0005	mg/L	0.0200	92.8	76.1-134	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200	100	72.4-136	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	109	67.4-138	
1,2-Dibromo-3-chloropropane	0.018	0.0005	mg/L	0.0200	89.6	71.7-124	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200	100	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	98.9	82.5-119	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200	89.2	72.5-123	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200	97.8	79.4-117	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200	106	69-137	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	101	84.4-120	
1,3-Dichloropropane	0.022	0.0005	mg/L	0.0200	108	82.6-117	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	101	81.7-118	
1,4-Dioxane	0.594	0.010	mg/L	0.400	149	-34.6-193	
1.2.3-trichloropropane	0.019	0.0005	mg/L	0.0200	94.1	44.7-168	
2,2-Dichloropropane	0.019	0.0005	mg/L	0.0200	93.4	62.9-136	
2-Butanone	0.037	0.002	mg/L	0.0400	91.4	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	105	80.2-121	
2-Hexanone	0.034	0.001	mg/L	0.0400	84.5	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0506		mg/L	0.0500	101	76.4-114	
4-Chlorotoluene	0.021	0.0005	mg/L	0.0200	103	82.2-125	
4-Methyl-2-pentanone	0.035	0.001	mg/L	0.0400	87.2	60.7-139	
Acetone	0.037	0.010	mg/L	0.0400	92.8	39.1-168	
Acrolein	0.183	0.005	mg/L	0.200	91.4	26.6-161	
Acrylonitrile	0.034	0.002	mg/L	0.0400	84.7	64.9-135	
Benzene	0.020	0.0005	mg/L	0.0200	97.7	69.4-129	
Bromobenzene	0.026	0.0005	mg/L	0.0200	131	83.5-115	BS
Bromochloromethane	0.023	0.0005	mg/L	0.0200	113	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	99.6	80.3-119	
Bromoform	0.022	0.0005	mg/L	0.0200	111	71.1-141	
Bromomethane	0.017	0.0005	mg/L	0.0200	84.7	55.1-143	
Carbon disulfide	0.039	0.001	mg/L	0.0400	98.6	53.6-147	
Carbon tetrachloride	0.020	0.0005	mg/L	0.0200	101	79.5-125	

Green Analytical Laboratories

Nerovica J Wells

Durango CO, 81302

Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180

Reported:

Project Manager: Kyle Siesser

04/11/24 08:31

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
atch 4040332 - Volatiles (Continued)										
CS (4040332-BS1) (Continued)			Prep	oared: 04/03/	24 Analyz	ed: 04/04/2	4			
Chlorobenzene	0.020	0.0005	mg/L	0.0200		101	85.1-115			
Chloroethane	0.018	0.0005	mg/L	0.0200		88.4	36.9-159			
Chloroform	0.018	0.0005	mg/L	0.0200		92.0	80.9-119			
Chloromethane	0.017	0.0005	mg/L	0.0200		85.4	54.2-142			
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		94.6	73.8-128			
cis-1,3-Dichloropropene	0.023	0.0005	mg/L	0.0200		115	82.5-122			
Dibromochloromethane	0.023	0.0005	mg/L	0.0200		114	83.1-124			
Surrogate: Dibromofluoromethane	0.0483		mg/L	0.0500		96.6	82.4-141			
Dibromomethane	0.018	0.0005	mg/L	0.0200		88.8	77-118			
Dichlorodifluoromethane	0.018	0.0005	mg/L	0.0200		92.0	38.7-147			
Ethylbenzene	0.021	0.0005	mg/L	0.0200		104	70.2-130			
Hexachlorobutadiene	0.022	0.0005	mg/L	0.0200		108	78.9-148			
Iodomethane	0.036	0.001	mg/L	0.0400		89.2	63.5-135			
Isopropylbenzene	0.022	0.0005	mg/L	0.0200		109	85-124			
m+p - Xylene	0.043	0.001	mg/L	0.0400		108	71.9-133			
Methyl tert-butyl ether	0.035	0.001	mg/L	0.0400		86.7	57.7-137			
Methylene chloride	0.019	0.0005	mg/L	0.0200		97.2	49.3-163			
Naphthalene	0.016	0.0005	mg/L	0.0200		82.4	62.1-141			
n-Butylbenzene	0.023	0.0005	mg/L	0.0200		113	75.4-132			
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124			
o-Xylene	0.022	0.0005	mg/L	0.0200		109	69.4-132			
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		107	79.8-131			
sec-Butylbenzene	0.021	0.0005	mg/L	0.0200		104	77.6-133			
Styrene	0.022	0.0005	mg/L	0.0200		110	71.7-128			
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128			
Tetrachloroethene	0.019	0.0005	mg/L	0.0200		94.8	74.2-128			
Toluene	0.022	0.0005	mg/L	0.0200		109	68.1-127			
Surrogate: Toluene-d8	0.0530		mg/L	0.0500		106	87.1-110			
Total Xylenes	0.065	0.001	mg/L	0.0600		108	71.6-132			
trans-1,2-Dichloroethene	0.018	0.0005	mg/L	0.0200		89.5	65.2-133			
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		111	84-123			
trans-1,4-Dichloro-2-butene	0.138	0.010	mg/L	0.0400		345	9.3-235			
Trichloroethene	0.018	0.0005	mg/L	0.0200		90.6	79.3-114			
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		91.1	28.6-162			
Vinyl acetate	0.019	0.0005	mg/L	0.0200		93.9	50.9-135			
Vinyl chloride	0.019	0.0005	mg/L	0.0200		93.9	61.6-133			
CS Dup (4040332-BSD1)			Prep	pared: 04/03/	24 Analyz	ed: 04/04/2	4			
1,1,1,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200		103	82.4-120	5.22	6.88	

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported:

04/11/24 08:31

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4040332 - Volatiles (Continued)										
LCS Dup (4040332-BSD1) (Continued)			Prep	pared: 04/03/	24 Analyz	ed: 04/04/2	4			
1,1,1-Trichloroethane	0.018	0.0005	mg/L	0.0200		90.4	80.7-121	3.26	7.43	
1,1,2,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200		108	76.5-121	8.03	8.68	
1,1,2-Trichloroethane	0.021	0.0005	mg/L	0.0200		106	81.7-118	2.53	6.82	
1,1-Dichloroethane	0.018	0.0005	mg/L	0.0200		90.2	74.8-123	4.87	4.3	QR-0
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200		98.9	53.9-149	3.87	16.5	
1,1-Dichloropropene	0.018	0.0005	mg/L	0.0200		91.8	85.9-115	0.706	5.47	
1,2,3-Trichlorobenzene	0.019	0.0005	mg/L	0.0200		96.6	76.1-134	3.91	43	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200		101	72.4-136	1.04	22.3	
1,2,4-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		105	67.4-138	3.68	8.94	
1,2-Dibromo-3-chloropropane	0.018	0.0005	mg/L	0.0200		89.0	71.7-124	0.672	15.1	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200		103	84.9-116	2.22	5.83	
1,2-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		95.4	82.5-119	3.60	8.72	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200		88.0	72.5-123	1.47	8.94	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200		99.0	79.4-117	1.27	5.51	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		103	69-137	2.82	16.5	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		97.8	84.4-120	3.67	9	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200		105	82.6-117	2.81	6.06	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		97.7	81.7-118	3.62	7.71	
1,4-Dioxane	0.535	0.010	mg/L	0.400		134	-34.6-193	10.6	35.2	
1.2.3-trichloropropane	0.020	0.0005	mg/L	0.0200		99.9	44.7-168	5.98	49.2	
2,2-Dichloropropane	0.018	0.0005	mg/L	0.0200		90.6	62.9-136	2.99	9.62	
2-Butanone	0.040	0.002	mg/L	0.0400		101	24.1-159	9.64	14.2	
2-Chlorotoluene	0.020	0.0005	mg/L	0.0200		101	80.2-121	3.16	8.62	
2-Hexanone	0.040	0.001	mg/L	0.0400		100	56.3-139	16.8	7.28	QR-0
Surrogate: 4-Bromofluorobenzene	0.0515		mg/L	0.0500		103	76.4-114			
4-Chlorotoluene	0.020	0.0005	mg/L	0.0200		101	82.2-125	1.42	15.5	
4-Methyl-2-pentanone	0.040	0.001	mg/L	0.0400		99.8	60.7-139	13.5	7.57	QR-0
Acetone	0.040	0.010	mg/L	0.0400		101	39.1-168	8.64	30.5	
Acrolein	0.197	0.005	mg/L	0.200		98.3	26.6-161	7.24	22.4	
Acrylonitrile	0.038	0.002	mg/L	0.0400		95.7	64.9-135	12.2	7.62	QR-0
Benzene	0.019	0.0005	mg/L	0.0200		96.1	69.4-129	1.65	4.16	
Bromobenzene	0.022	0.0005	mg/L	0.0200		109	83.5-115	18.7	8.41	QR-0
Bromochloromethane	0.017	0.0005	mg/L	0.0200		85.5	70.7-123	27.4	5.16	QR-0
Bromodichloromethane	0.019	0.0005	mg/L	0.0200		96.9	80.3-119	2.75	5.36	
Bromoform	0.024	0.0005	mg/L	0.0200		118	71.1-141	6.14	14.1	
Bromomethane	0.017	0.0005	mg/L	0.0200		83.8	55.1-143	1.13	21.5	
Carbon disulfide	0.037	0.001	mg/L	0.0400		93.5	53.6-147	5.33	20.3	
Carbon tetrachloride	0.019	0.0005	mg/L	0.0200		94.9	79.5-125	6.57	11.4	
Chlorobenzene	0.020	0.0005	mg/L	0.0200		98.0	85.1-115	3.16	5.18	

Green Analytical Laboratories

Neronica J. Nills

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180
Project Manager: Kyle Siesser

Reported: 04/11/24 08:31

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4040332 - Volatiles (Continued)										
CS Dup (4040332-BSD1) (Continued)			Prep	ared: 04/03/	24 Analyz	ed: 04/04/2	4			
Chloroethane	0.017	0.0005	mg/L	0.0200		86.1	36.9-159	2.58	24.1	
Chloroform	0.017	0.0005	mg/L	0.0200		86.3	80.9-119	6.39	5.15	QR-
Chloromethane	0.016	0.0005	mg/L	0.0200		82.1	54.2-142	3.88	27	
cis-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		93.9	73.8-128	0.796	5.73	
cis-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		112	82.5-122	2.78	6.09	
Dibromochloromethane	0.021	0.0005	mg/L	0.0200		106	83.1-124	7.87	7.24	QR-
Surrogate: Dibromofluoromethane	0.0481		mg/L	0.0500		96.1	82.4-141			
Dibromomethane	0.018	0.0005	mg/L	0.0200		87.8	77-118	1.19	5.75	
Dichlorodifluoromethane	0.018	0.0005	mg/L	0.0200		90.0	38.7-147	2.14	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		102	70.2-130	2.27	4.83	
Hexachlorobutadiene	0.023	0.0005	mg/L	0.0200		114	78.9-148	5.52	18.4	
Iodomethane	0.035	0.001	mg/L	0.0400		88.3	63.5-135	1.01	24.3	
Isopropylbenzene	0.021	0.0005	mg/L	0.0200		107	85-124	1.80	6.25	
m+p - Xylene	0.043	0.001	mg/L	0.0400		107	71.9-133	0.697	5.77	
Methyl tert-butyl ether	0.036	0.001	mg/L	0.0400		89.1	57.7-137	2.67	12.8	
Methylene chloride	0.019	0.0005	mg/L	0.0200		94.4	49.3-163	2.97	19.7	
Naphthalene	0.018	0.0005	mg/L	0.0200		87.8	62.1-141	6.28	33.5	
n-Butylbenzene	0.022	0.0005	mg/L	0.0200		111	75.4-132	1.74	10.1	
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		105	79.6-124	0.332	9.09	
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132	5.70	6.29	
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		106	79.8-131	1.46	9.26	
sec-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	77.6-133	1.66	9.85	
Styrene	0.022	0.0005	mg/L	0.0200		108	71.7-128	2.15	7.55	
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		103	78.8-128	2.49	18.6	
Tetrachloroethene	0.019	0.0005	mg/L	0.0200		96.2	74.2-128	1.36	6.38	
Toluene	0.021	0.0005	mg/L	0.0200		105	68.1-127	3.36	5.67	
Surrogate: Toluene-d8	0.0525		mg/L	0.0500		105	87.1-110			
Total Xylenes	0.064	0.001	mg/L	0.0600		106	71.6-132	2.35	5.83	
trans-1,2-Dichloroethene	0.017	0.0005	mg/L	0.0200		87.0	65.2-133	2.89	19.1	
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		108	84-123	2.10	6.26	
trans-1,4-Dichloro-2-butene	0.126	0.010	mg/L	0.0400		315	9.3-235	8.88	92.8	В
Trichloroethene	0.018	0.0005	mg/L	0.0200		89.6	79.3-114	1.17	4.92	
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.8	28.6-162	1.44	19.8	
Vinyl acetate	0.020	0.0005	mg/L	0.0200		97.7	50.9-135	3.97	7.84	
Vinyl chloride	0.019	0.0005	mg/L	0.0200		92.9	61.6-133	1.07	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180 Reported:

Durango CO, 81302 Project Manager: Kyle Siesser 04/11/24 08:31

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

BS1 Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Veronica Wells, Project Manager

The results in this report apply to the samples analyzed in accordance with the chain of custody document. This analytical report must be reproduced in its entirety. In no event shall Green Analytical Laboratories be liable for incidental or consequential damages. GALs liability, and clients exclusive remedy for any claim arising, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever, shall be deemed waived unless made in writing and received within thirty days after completion of the applicable service.

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported:

04/11/24 08:31

Qualifier Summary

<u>LabNumber</u>	Analysis	<u>Analyte</u>	Qualifier	<u>TextBody</u>
4040332-BS1	Volatile 8260	Bromobenzene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4040332-BS1	Volatile 8260	trans-1,4-Dichloro-2-butene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4040332-BSD1	Volatile 8260	1,1-Dichloroethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	2-Hexanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	4-Methyl-2-pentanone	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Acrylonitrile	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Bromobenzene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Bromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Chloroform	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	Dibromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4040332-BSD1	Volatile 8260	trans-1,4-Dichloro-2-butene	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

Green Analytical Laboratories

Neronica J Wells

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0

Durango, CO 81303 (970) 247-4220 75 Suttle Street

Laboratories	Note: Wite-Out	Note: Wite-Out TM or similar products cannot be used on the Chain of Custody	annot be used on the	he Chain of Custod	y				240
Company or Client: Co	Cottonwood Consulting LLC			Bill to (if different):	ent):		ANALYSIS	REQUEST	EST
Address: PO Box 1653									
City: Durango	State: CO Zip: 81302	02							
Phone #: 970-764-7356									
Contact Person: Kyle Siesser	esser					S ()			
Email Report to: ksiesse	Email Report to: ksiesser@cottonwoodconsulting.com				37()	(۸۸			
Project Name(optional):	007# 0 0		#.O.4						
	GCU COM H #180		3 [ا ہے		70			
Sampler Name (Print): Kelsey O'Brien	(elsey O'Brien		<u></u>	Needed?		poı			
		Collected	Matrix (Matrix (check one) # of c	# of containers	nəi			
Lab I.D.	Sample Name or Location		ABTAW	ervation	oric Acid Acid	N A93			
Juey- PM		Date T	EROUNDY SURFACE SURFACE	OTHER: DRINKING	Hydrochl Sulfuric A Sodium Hy SHTRE:				
0	1) MW #102	3/28/24 /2	200		4	/			
2)									
(8)									
4)									
(s									
ဖွာ် ige 1								_	
5 of						-			
16 24									
1032									
₹ 37 G	(0								
PALEASE NOTE: GAL's liability a Haived unless made in writing an ZI	PALEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or fort, shall be limited to the amount paid by the client for the analyses. All claims including those for negligence and any other cause whatsoever shall be deeme analyses. All claims including without limitation, business interruptions, loss of use, or loss of profits incurred by an are received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by an are consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by an are consequental damages, affiliates or successors arising out of or related to the performance of services hereunder by GAL, regardless of whether such daim is based upon any of the above stated reasons or otherwise.	rract or tort, shall be limited to vice. In no event shall GAL be s performance of services here	the amount paid by the c e liable for incidental or o eunder by GAL, regardle:	lient for the analyses. All onsequental damages, in ss of whether such claim is	claims including thos cluding without limitation s based upon any of the	e for neglig on, busines oe above st	ence and any other or interruptions, loss or ated reasons or other	cause whatsoe of use, or loss or rwise.	ever shall be deem of profits incurred
Pelinquished By:	Date: 3/28/24	Received By:		Date: 3 .28	ADDITIONAL REMARKS	RKS:			
124	Time: 1505	1	79	Time: 505					
89 Blinquished By:	Date:	Received By:		Date:	,				
I 04/ ⁻	Time:			Time:					
:/elinquished By:	Date:	Received By:		Date:	at	ceipt:	Checked by:	On Ice?	Therm. used:
1 08:	Time:			Time:	1-21	ပ	ME	z _	(6 % c (
31:35	† GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com * Chain of Custody must be signed in "Relinguished By:" as an acceptance of services and all applicable charges.	es. Please email change in "Relinguished Bv:" a	s to receiving@greer	nanalytical.com ervices and all appli	cable charges,			Page	e \ of /

SAMPLE CONDITION RECEIPT FORM

Client Name: Cotton wood Co.	usalting	Wo	rk Order # 2403-237
Courier: □Fed Ex □UPS □US	SPS Client C Kang	garoo 🗆 Third Party 🗆	Other
Custody Seals on Box/Cooler Present No	∷ □ Yes ☑ No	Seals Intact: ☐ Yes ☐	
Thermometer Used: Samp	ples on ice, cooling process h	nas begun: 🛮 🗸 es 🗆 No	Date/Initials of person examining contents:
Type of Ice: ☑ Wet ☐ Blue ☐ No		,	Labeled by initials:
Cooler Temp: Observed Temp: 12.	PC Correction Factor:	°C Final Temp: 19.1°	(if different than above)
*Temp should be above freezing to 6°C			3
Chain of Custody Present:	☑Yes □No	1.	
Chain of Custody Filled Out:	☑Yes □No	2.	
Chain of Custody Relinquished:	☑Yes □No	3.	
Sampler Name and Signature on COC:	□Yes □No	4.	
Samples arrived within hold time:	☑Yes □No	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No	6.	
Rush Turn Around Time Requested:	□Yes □Mo	7.	
Sufficient Volume:	□Yes □No	8.	
Correct Containers Used:	☑Yes □No	9.	
Containers Intact:	☑Yes □No	10.	
Dissolved Testing Needed:	□Yes ☑Wo	11.	
Field Filtered: □Yes □No		12.	
Sample Labels match COC: -Includes Date/Time/ID	☑Yes □No		
Matrix:	₩ SL OT	13.	
Trip Blank Present: Trip Blank Custody Seals Present:	□Yes □No □N/A □Yes □No □N/A	15.	
Client Notification/Resolution:			
Person Contacted:		Date/Time:	
Comments/Resolution:			
FORM-039, Rev 2	Page 1 of 1		

1000

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

27 June 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: GCU Com H#180

Enclosed are the results of analyses for samples received by the laboratory on 06/13/24 09:20. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: TX-C24-00112

Table of Contents

Samples in Report	3
Sample Results	4
2406168-01: MW #102	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Durango CO, 81302

Project: VOC 8260

PO Box 1653

Project Name / Number: GCU Com H#180

Project Manager: Kyle Siesser

Reported:

06/27/24 14:37

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #102	2406168-01	Water	06/12/24 13:30	06/13/24 09:20	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260
Project Name / Number: GCU Com H#180
Project Manager: Kyle Siesser

Reported:

06/27/24 14:37

MW #102

2406168-01 (Ground Water) Sampled Date: 06/12/24 13:30

Analyte Result RL MDL Units Dilution Analyzed	Method	Notes	Analyst	ı
---	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								I-02
1,1,1,2-Tetrachloroethane*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
1,1,1-Trichloroethane*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
1,1,2,2-Tetrachloroethane*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
1,1,2-Trichloroethane*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
1,1-Dichloroethane*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
1,1-Dichloroethene*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
1,1-Dichloropropene*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
1,2,3-Trichlorobenzene*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
,2,4-Trichlorobenzene*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
1,2,4-Trimethylbenzene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
1,2-Dibromo-3-chloropropane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
1,2-Dibromoethane*	< 0.005	0.005	0.0009	mg/L	10	06/27/24 02:44	8260B	CK
,2-Dichlorobenzene*	< 0.005	0.005	0.0007	mg/L	10	06/27/24 02:44	8260B	Ck
,2-Dichloroethane*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
,2-Dichloropropane*	< 0.005	0.005	0.0008	mg/L	10	06/27/24 02:44	8260B	CK
,3,5-Trimethylbenzene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
,3-Dichlorobenzene*	< 0.005	0.005	0.0005	mg/L	10	06/27/24 02:44	8260B	CK
,3-Dichloropropane*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
1,4-Dichlorobenzene	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
,4-Dioxane	< 0.100	0.100	0.100	mg/L	10	06/27/24 02:44	8260B	CK
.2.3-trichloropropane*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
2,2-Dichloropropane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
2-Butanone*	< 0.020	0.020	0.020	mg/L	10	06/27/24 02:44	8260B	CK
-Chlorotoluene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
2-Hexanone*	< 0.010	0.010	0.003	mg/L	10	06/27/24 02:44	8260B	CK
-Chlorotoluene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
l-Methyl-2-pentanone*	< 0.010	0.010	0.001	mg/L	10	06/27/24 02:44	8260B	CK
Acetone*	< 0.100	0.100	0.009	mg/L	10	06/27/24 02:44	8260B	CK
Acrolein*	< 0.050	0.050	0.011	mg/L	10	06/27/24 02:44	8260B	CK

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting PO Box 1653 Project: VOC 8260

Project Name / Number: GCU Com H#180

Reported: 06/27/24 14:37

Durango CO, 81302

Project Manager: Kyle Siesser

2406168-01 (Ground Water) Sampled Date: 06/12/24 13:30

MW #102

Analyte Result RL MDL Units Dilution Analyzed Method Notes Analyst

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

OLATILES BY GC/MS								I-02
Acrylonitrile*	< 0.020	0.020	0.008	mg/L	10	06/27/24 02:44	8260B	CK
Benzene*	< 0.005	0.005	0.0005	mg/L	10	06/27/24 02:44	8260B	CK
Bromobenzene*	< 0.005	0.005	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
Bromochloromethane*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
Bromodichloromethane*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
Bromoform*	< 0.005	0.005	0.0009	mg/L	10	06/27/24 02:44	8260B	CK
Bromomethane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
Carbon disulfide*	< 0.010	0.010	0.001	mg/L	10	06/27/24 02:44	8260B	CK
Carbon tetrachloride*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
Chlorobenzene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
Chloroethane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
Chloroform*	< 0.005	0.005	0.0002	mg/L	10	06/27/24 02:44	8260B	CK
Chloromethane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
is-1,2-Dichloroethene*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
is-1,3-Dichloropropene*	< 0.005	0.005	0.0009	mg/L	10	06/27/24 02:44	8260B	CK
ibromochloromethane*	< 0.005	0.005	0.0008	mg/L	10	06/27/24 02:44	8260B	CK
ibromomethane*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
oichlorodifluoromethane*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
thylbenzene*	< 0.005	0.005	0.0003	mg/L	10	06/27/24 02:44	8260B	CK
lexachlorobutadiene*	< 0.010	0.010	0.005	mg/L	10	06/27/24 02:44	8260B	CK
odomethane	< 0.010	0.010	0.0006	mg/L	10	06/27/24 02:44	8260B	CK
sopropylbenzene*	< 0.005	0.005	0.0002	mg/L	10	06/27/24 02:44	8260B	CK
1+p - Xylene*	< 0.010	0.010	0.0008	mg/L	10	06/27/24 02:44	8260B	CK
lethyl tert-butyl ether	< 0.010	0.010	0.002	mg/L	10	06/27/24 02:44	8260B	CK
1ethylene chloride*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
aphthalene*	< 0.005	0.005	0.0008	mg/L	10	06/27/24 02:44	8260B	CK
-Butylbenzene*	< 0.005	0.005	0.0007	mg/L	10	06/27/24 02:44	8260B	CK
-Propylbenzene*	< 0.005	0.005	0.0005	mg/L	10	06/27/24 02:44	8260B	CK
-Xylene*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
-Isopropyltoluene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
ec-Butylbenzene*	< 0.005	0.005	0.0004	mg/L	10	06/27/24 02:44	8260B	CK
tyrene*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H#180 Project Manager: Kyle Siesser

Reported: 06/27/24 14:37

MW #102

2406168-01 (Ground Water) Sampled Date: 06/12/24 13:30

Analyte	Result	RL	MDL U	Jnits I	Dilution	Analyzed	Method 1	Notes A	nalyst
---------	--------	----	-------	---------	----------	----------	----------	---------	--------

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								I-02
tert-Butylbenzene*	< 0.005	0.005	0.0007	mg/L	10	06/27/24 02:44	8260B	CK
Tetrachloroethene*	< 0.005	0.005	0.0009	mg/L	10	06/27/24 02:44	8260B	CK
Toluene*	< 0.005	0.005	0.0008	mg/L	10	06/27/24 02:44	8260B	CK
Total Xylenes*	< 0.010	0.010	0.002	mg/L	10	06/27/24 02:44	8260B	CK
trans-1,2-Dichloroethene*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
trans-1,3-Dichloropropene*	< 0.005	0.005	0.0005	mg/L	10	06/27/24 02:44	8260B	CK
trans-1,4-Dichloro-2-butene	< 0.100	0.100	0.003	mg/L	10	06/27/24 02:44	8260B	CK
Trichloroethene*	< 0.005	0.005	0.002	mg/L	10	06/27/24 02:44	8260B	CK
Trichlorofluoromethane*	< 0.005	0.005	0.001	mg/L	10	06/27/24 02:44	8260B	CK
Vinyl acetate*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
Vinyl chloride*	< 0.005	0.005	0.005	mg/L	10	06/27/24 02:44	8260B	CK
Surrogate: 4-Bromofluorobenzene			93.9 %	76.4-114		06/27/24 02:44	8260B	СК
Surrogate: Dibromofluoromethane			119 %	82.4-141		06/27/24 02:44	8260B	CK
Surrogate: Toluene-d8			102 %	87.1-110		06/27/24 02:44	8260B	CK

Green Analytical Laboratories

Neronica J Wills

Cottonwood Consulting PO Box 1653 Project: VOC 8260

Project Name / Number: GCU Com H#180
Project Manager: Kyle Siesser

Reported: 06/27/24 14:37

Durango CO, 81302

VOLATILES BY GC/MS - Quality Control

		eporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4061928 - Volatiles

Blank (4061928-BLK1)			Prepa	red: 06/19/24 A	nalyzed: 06/26	5/24	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.010	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0233		mg/L	0.0250	93.2	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H#180

Reported:

Durango CO, 81302 Project Manager: Kyle Siesser

06/27/24 14:37

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4061928 - Volatiles (Continued)

Blank (4061928-BLK1) (Continued)			Prep	pared: 06/19/24 Ar	nalyzed: 06/26/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	ND	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0294		mg/L	0.0250	118	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	0.0006	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	ND	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0252		mg/L	0.0250	101	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

PO Box 1653

Project Name / Number: GCU Com H#180

Reported:

Project Manager: Kyle Siesser 06/27/24 14:37

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS (4061928-BS1)			Pre	pared: 06/19/	/24 Analyz	ed: 06/26/2	4			

LCS (4061928-BS1)			Prej	pared: 06/19/24	Analyzed: 06/26/2	4	
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200	102	82.4-120	
1,1,1-Trichloroethane	0.023	0.0005	mg/L	0.0200	113	80.7-121	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200	105	76.5-121	
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200	101	81.7-118	
1,1-Dichloroethane	0.016	0.0005	mg/L	0.0200	77.6	74.8-123	
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200	100	53.9-149	
1,1-Dichloropropene	0.022	0.0005	mg/L	0.0200	111	85.9-115	
1,2,3-Trichlorobenzene	0.021	0.0005	mg/L	0.0200	107	76.1-134	
1,2,4-Trichlorobenzene	0.020	0.0005	mg/L	0.0200	98.6	72.4-136	
1,2,4-Trimethylbenzene	0.020	0.0005	mg/L	0.0200	100	67.4-138	
1,2-Dibromo-3-chloropropane	0.023	0.0005	mg/L	0.0200	115	71.7-124	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200	103	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	102	82.5-119	
1,2-Dichloroethane	0.021	0.0005	mg/L	0.0200	104	72.5-123	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200	101	79.4-117	
1,3,5-Trimethylbenzene	0.020	0.0005	mg/L	0.0200	102	69-137	
1,3-Dichlorobenzene	0.021	0.0005	mg/L	0.0200	106	84.4-120	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200	107	82.6-117	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200	95.2	81.7-118	
1,4-Dioxane	0.361	0.010	mg/L	0.400	90.3	-34.6-193	
1.2.3-trichloropropane	0.022	0.0005	mg/L	0.0200	112	44.7-168	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200	74.2	62.9-136	
2-Butanone	0.042	0.002	mg/L	0.0400	105	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	105	80.2-121	
2-Hexanone	0.047	0.001	mg/L	0.0400	117	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0252		mg/L	0.0250	101	76.4-114	
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200	110	82.2-125	
4-Methyl-2-pentanone	0.044	0.001	mg/L	0.0400	111	60.7-139	
Acetone	0.038	0.010	mg/L	0.0400	96.0	39.1-168	
Acrolein	0.251	0.005	mg/L	0.200	126	26.6-161	
Acrylonitrile	0.022	0.002	mg/L	0.0400	55.9	64.9-135	BS2
Benzene	0.020	0.0005	mg/L	0.0200	102	69.4-129	
Bromobenzene	0.020	0.0005	mg/L	0.0200	98.2	83.5-115	
Bromochloromethane	0.020	0.0005	mg/L	0.0200	97.6	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	102	80.3-119	
Bromoform	0.020	0.0005	mg/L	0.0200	98.4	71.1-141	
Bromomethane	0.018	0.0005	mg/L	0.0200	90.8	55.1-143	
Carbon disulfide	0.045	0.001	mg/L	0.0400	113	53.6-147	
Carbon tetrachloride	0.026	0.0005	mg/L	0.0200	128	79.5-125	BS1

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H#180
Project Manager: Kyle Siesser

Reported:

06/27/24 14:37

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS (4061928-BS1) (Continued)			Prep	pared: 06/19/	24 Analyz	ed: 06/26/2	4			
Chlorobenzene	0.021	0.0005	mg/L	0.0200		103	85.1-115			
Chloroethane	0.018	0.0005	mg/L	0.0200		92.2	36.9-159			
Chloroform	0.024	0.0005	mg/L	0.0200		122	80.9-119			В
Chloromethane	0.018	0.0005	mg/L	0.0200		88.7	54.2-142			
cis-1,2-Dichloroethene	0.018	0.0005	mg/L	0.0200		89.0	73.8-128			
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		107	82.5-122			
Dibromochloromethane	0.021	0.0005	mg/L	0.0200		103	83.1-124			
Surrogate: Dibromofluoromethane	0.0272		mg/L	0.0250		109	82.4-141			
Dibromomethane	0.020	0.0005	mg/L	0.0200		100	77-118			
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		106	38.7-147			
Ethylbenzene	0.021	0.0005	mg/L	0.0200		104	70.2-130			
Hexachlorobutadiene	0.022	0.0005	mg/L	0.0200		112	78.9-148			
Iodomethane	0.037	0.001	mg/L	0.0400		93.6	63.5-135			
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		101	85-124			
m+p - Xylene	0.041	0.001	mg/L	0.0400		103	71.9-133			
Methyl tert-butyl ether	0.035	0.001	mg/L	0.0400		86.6	57.7-137			
Methylene chloride	0.019	0.0005	mg/L	0.0200		95.2	49.3-163			
Naphthalene	0.023	0.0005	mg/L	0.0200		114	62.1-141			
n-Butylbenzene	0.020	0.0005	mg/L	0.0200		102	75.4-132			
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124			
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132			
p-Isopropyltoluene	0.016	0.0005	mg/L	0.0200		81.8	79.8-131			
sec-Butylbenzene	0.020	0.0005	mg/L	0.0200		98.5	77.6-133			
Styrene	0.020	0.0005	mg/L	0.0200		99.0	71.7-128			
tert-Butylbenzene	0.022	0.0005	mg/L	0.0200		109	78.8-128			
Tetrachloroethene	0.021	0.0005	mg/L	0.0200		105	74.2-128			
Toluene	0.021	0.0005	mg/L	0.0200		104	68.1-127			
Surrogate: Toluene-d8	0.0250		mg/L	0.0250		100	87.1-110			
Total Xylenes	0.062	0.001	mg/L	0.0600		103	71.6-132			
trans-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		95.6	65.2-133			
trans-1,3-Dichloropropene	0.022	0.0005	mg/L	0.0200		109	84-123			
trans-1,4-Dichloro-2-butene	0.031	0.010	mg/L	0.0400		76.4	9.3-235			
Trichloroethene	0.020	0.0005	mg/L	0.0200		102	79.3-114			
Trichlorofluoromethane	0.021	0.0005	mg/L	0.0200		103	28.6-162			
Vinyl acetate	0.011	0.0005	mg/L	0.0200		57.0	50.9-135			
Vinyl chloride	0.020	0.0005	mg/L	0.0200		99.8	61.6-133			
LCS Dup (4061928-BSD1)			Prep	pared: 06/19/	24 Analyz	ed: 06/26/2	4			
1,1,1,2-Tetrachloroethane	0.020	0.0005	mg/L	0.0200		101	82.4-120	0.786	6.88	
			-							

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

PO Box 1653

Project Name / Number: GCU Com H#180
Project Manager: Kyle Siesser

Reported:

....

06/27/24 14:37

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS Dup (4061928-BSD1) (Continued)			Prep	pared: 06/19/	24 Analyz	ed: 06/26/2	4			
1,1,1-Trichloroethane	0.022	0.0005	mg/L	0.0200		111	80.7-121	2.01	7.43	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200		106	76.5-121	0.332	8.68	
1,1,2-Trichloroethane	0.020	0.0005	mg/L	0.0200		98.8	81.7-118	2.35	6.82	
1,1-Dichloroethane	0.016	0.0005	mg/L	0.0200		78.3	74.8-123	0.962	4.3	
1,1-Dichloroethene	0.020	0.0005	mg/L	0.0200		101	53.9-149	0.993	16.5	
1,1-Dichloropropene	0.022	0.0005	mg/L	0.0200		108	85.9-115	3.06	5.47	
1,2,3-Trichlorobenzene	0.021	0.0005	mg/L	0.0200		104	76.1-134	2.33	43	
1,2,4-Trichlorobenzene	0.019	0.0005	mg/L	0.0200		94.3	72.4-136	4.46	22.3	
1,2,4-Trimethylbenzene	0.020	0.0005	mg/L	0.0200		100	67.4-138	0.0498	8.94	
1,2-Dibromo-3-chloropropane	0.022	0.0005	mg/L	0.0200		111	71.7-124	3.37	15.1	
1,2-Dibromoethane	0.021	0.0005	mg/L	0.0200		103	84.9-116	0.388	5.83	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		99.8	82.5-119	1.69	8.72	
1,2-Dichloroethane	0.021	0.0005	mg/L	0.0200		103	72.5-123	0.922	8.94	
1,2-Dichloropropane	0.020	0.0005	mg/L	0.0200		99.8	79.4-117	0.798	5.51	
1,3,5-Trimethylbenzene	0.021	0.0005	mg/L	0.0200		103	69-137	0.975	16.5	
1,3-Dichlorobenzene	0.021	0.0005	mg/L	0.0200		104	84.4-120	2.00	9	
1,3-Dichloropropane	0.021	0.0005	mg/L	0.0200		107	82.6-117	0.468	6.06	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		94.5	81.7-118	0.685	7.71	
1,4-Dioxane	0.361	0.010	mg/L	0.400		90.3	-34.6-193	0.0692	35.2	
1.2.3-trichloropropane	0.022	0.0005	mg/L	0.0200		112	44.7-168	0.224	49.2	
2,2-Dichloropropane	0.021	0.0005	mg/L	0.0200		106	62.9-136	35.0	9.62	QR-(
2-Butanone	0.042	0.002	mg/L	0.0400		104	24.1-159	1.31	14.2	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200		104	80.2-121	0.575	8.62	
2-Hexanone	0.045	0.001	mg/L	0.0400		111	56.3-139	5.20	7.28	
Surrogate: 4-Bromofluorobenzene	0.0249		mg/L	0.0250		99.8	76.4-114			
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200		110	82.2-125	0.273	15.5	
4-Methyl-2-pentanone	0.042	0.001	mg/L	0.0400		106	60.7-139	4.20	7.57	
Acetone	0.033	0.010	mg/L	0.0400		81.8	39.1-168	15.9	30.5	
Acrolein	0.205	0.005	mg/L	0.200		102	26.6-161	20.4	22.4	
Acrylonitrile	0.022	0.002	mg/L	0.0400		54.2	64.9-135	3.18	7.62	BS
Benzene	0.020	0.0005	mg/L	0.0200		102	69.4-129	0.735	4.16	
Bromobenzene	0.020	0.0005	mg/L	0.0200		98.4	83.5-115	0.254	8.41	
Bromochloromethane	0.024	0.0005	mg/L	0.0200		122	70.7-123	22.0	5.16	QR-0
Bromodichloromethane	0.020	0.0005	mg/L	0.0200		101	80.3-119	1.08	5.36	
Bromoform	0.019	0.0005	mg/L	0.0200		95.4	71.1-141	3.04	14.1	
Bromomethane	0.019	0.0005	mg/L	0.0200		96.3	55.1-143	5.88	21.5	
Carbon disulfide	0.044	0.001	mg/L	0.0400		109	53.6-147	3.00	20.3	
Carbon tetrachloride	0.025	0.0005	mg/L	0.0200		126	79.5-125	0.827	11.4	BS
Chlorobenzene	0.020	0.0005	mg/L	0.0200		102	85.1-115	1.46	5.18	

Green Analytical Laboratories

Neronica J. Wells

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260

Project Name / Number: GCU Com H#180
Project Manager: Kyle Siesser

Reported: 06/27/24 14:37

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4061928 - Volatiles (Continued)										
LCS Dup (4061928-BSD1) (Continued)			Prep	oared: 06/19/	24 Analyz	ed: 06/26/2	4			
Chloroethane	0.018	0.0005	mg/L	0.0200		91.9	36.9-159	0.272	24.1	
Chloroform	0.024	0.0005	mg/L	0.0200		122	80.9-119	0.123	5.15	BS
Chloromethane	0.020	0.0005	mg/L	0.0200		99.2	54.2-142	11.2	27	
cis-1,2-Dichloroethene	0.023	0.0005	mg/L	0.0200		113	73.8-128	23.3	5.73	QR-0
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		105	82.5-122	1.79	6.09	
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		101	83.1-124	1.62	7.24	
Surrogate: Dibromofluoromethane	0.0277		mg/L	0.0250		111	82.4-141			
Dibromomethane	0.020	0.0005	mg/L	0.0200		98.6	77-118	1.56	5.75	
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		106	38.7-147	0.282	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		102	70.2-130	1.84	4.83	
Hexachlorobutadiene	0.023	0.0005	mg/L	0.0200		113	78.9-148	0.842	18.4	
Iodomethane	0.036	0.001	mg/L	0.0400		89.1	63.5-135	4.90	24.3	
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		98.9	85-124	1.90	6.25	
m+p - Xylene	0.040	0.001	mg/L	0.0400		99.7	71.9-133	2.87	5.77	
Methyl tert-butyl ether	0.034	0.001	mg/L	0.0400		85.3	57.7-137	1.54	12.8	
Methylene chloride	0.015	0.0005	mg/L	0.0200		76.6	49.3-163	21.6	19.7	QR-0
Naphthalene	0.022	0.0005	mg/L	0.0200		109	62.1-141	4.27	33.5	
n-Butylbenzene	0.020	0.0005	mg/L	0.0200		99.6	75.4-132	2.67	10.1	
n-Propylbenzene	0.021	0.0005	mg/L	0.0200		106	79.6-124	0.520	9.09	
o-Xylene	0.020	0.0005	mg/L	0.0200		99.1	69.4-132	3.76	6.29	
p-Isopropyltoluene	0.016	0.0005	mg/L	0.0200		81.0	79.8-131	0.983	9.26	
sec-Butylbenzene	0.019	0.0005	mg/L	0.0200		97.2	77.6-133	1.33	9.85	
Styrene	0.019	0.0005	mg/L	0.0200		96.0	71.7-128	2.97	7.55	
tert-Butylbenzene	0.022	0.0005	mg/L	0.0200		109	78.8-128	0.183	18.6	
Tetrachloroethene	0.021	0.0005	mg/L	0.0200		104	74.2-128	0.668	6.38	
Toluene	0.020	0.0005	mg/L	0.0200		102	68.1-127	1.36	5.67	
Surrogate: Toluene-d8	0.0247		mg/L	0.0250		98.8	87.1-110			
Total Xylenes	0.060	0.001	mg/L	0.0600		99.5	71.6-132	3.16	5.83	
trans-1,2-Dichloroethene	0.017	0.0005	mg/L	0.0200		84.5	65.2-133	12.3	19.1	
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		106	84-123	2.78	6.26	
trans-1,4-Dichloro-2-butene	0.029	0.010	mg/L	0.0400		72.3	9.3-235	5.51	92.8	
Trichloroethene	0.020	0.0005	mg/L	0.0200		101	79.3-114	0.888	4.92	
Trichlorofluoromethane	0.020	0.0005	mg/L	0.0200		102	28.6-162	1.22	19.8	
Vinyl acetate	0.011	0.0005	mg/L	0.0200		55.4	50.9-135	2.76	7.84	
Vinyl chloride	0.021	0.0005	mg/L	0.0200		106	61.6-133	6.31	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H#180 Reported:
Durango CO, 81302 Project Manager: Kyle Siesser 06/27/24 14:37

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

I-02 This result was analyzed outside of the EPA recommended holding time.

BS2 Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.

BS1 Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H#180 Reported:
Durango CO, 81302 Project Manager: Kyle Siesser 06/27/24 14:37

Qualifier Summary

<u>LabNumber</u>	Analysis	<u>Analyte</u>	Qualifier	<u>TextBody</u>
4061928-BS1	Volatile 8260	Acrylonitrile	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4061928-BS1	Volatile 8260	Carbon tetrachloride	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BS1	Volatile 8260	Chloroform	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	2,2-Dichloropropane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Acrylonitrile	BS2	Blank spike recovery below laboratory acceptance criteria. Results for analyte potentially biased low.
4061928-BSD1	Volatile 8260	Bromochloromethane	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Carbon tetrachloride	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	Chloroform	BS1	Blank spike recovery above laboratory acceptance criteria. Results for analyte potentially biased high.
4061928-BSD1	Volatile 8260	cis-1,2-Dichloroethene	QR-04	The RPD for the BS/BSD was outside of historical limits.
4061928-BSD1	Volatile 8260	Methylene chloride	QR-04	The RPD for the BS/BSD was outside of historical limits.
2406168-01	Volatile 8260		I-02	This result was analyzed outside of the EPA recommended holding time.

Green Analytical Laboratories

Neronica J Wells

		Relinquished By:	7	Relinquished By:	2	Relinquished By:		waived unless made in writing										a	2466-168 Lab Use Only	Lab I.D.		Sampler Name (Print): Joseph LaFortune		Project Name(optional):	Email Report to: ksie	Contact Person: Kyle Siesser	Phone #: 970-764-7356	City: Durango	Address: PO Box 1653	Company or Client:	Analytical Laboratories
T GAL cannot acc	Time:	Date:	Time:	Date:	Time:	Date	client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise	When the contract or tort, shall be limited to the amount paid by the client for the waived unless made in writing and received by GAL within 30 days after completion of the applicable service. In no event shall GAL be liable for incidental or consequental	10)	9)	8)	7)	6)	5)	4)	3)	2)	1) MW #102		Sample Name or Location): Joseph LaFortune	**************************************		Email Report to: ksiesser@cottonwoodconsulting.com	Siesser	56	State:	553	Cottonwood Consulting LLC	75 Suttle Street Durango, CO 81303 [(970) 247-4220
T GAL Cannot accept verbal changes. Please email changes to receiving@greenanalytical.com * Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges.			0915	1.010	e: 1700	Date: 6/12/24	out of or related to the pe	whether based in contract of the applicable service												cation			100	100				CO Zip: 81302			Note : Wite-Out TM or similar products cannot be used on the Chain of Custody
"Relinquished By	•	Received By:	M	Received By:	1	Received By:	erformance of services	t or tort, shall be limite e. In no event shall GA										6/12/2024	Date		Collected										or similar produc
nges to receiving:" as an acceptar			11				hereunder by GAL,	d to the amount paid be liable for incide										330 X	Time	VATER			10.								ts cannot be us
@greenanalytica	Time:	Date:	Time	Date	Time	Date:	regardless of whethe	d by the client for the ental or consequental											SURFACE WASTEWA PRODUCE DRINKING SOIL	TER D WATER	Matrix (check one)		Rush?	P.O. #:						Bill 1	sed on the Chair
l.com nd all applicable			120	1 11 200			er such claim is base	analyses. All claim I damages, including											OTHER: No prese Nitric Acid Hydrochlo		# of containers	Needed?	TAT							Bill to (if different):	n of Custody
charges.	4-4	Temperature at receipt:				ADDITIONAL REMARKS	ed upon any of the ak	analyses. All claims including those for negligence and any other cause damages, including without limitation, business interruptions, loss of use,											Sulfuric A Sodium Hy OTHER:	THE RESERVE AND PERSONS NAMED IN	1	nod	826	30 (VO	Cs)					CHAIN-OF-C
	°c / MM	t: Checked by:					ove stated reasons	negligence and any usiness interruptions	+		+	+	+		+				***************************************	**************************************										ANALYSIS	FORM-00
Page	Y N	by: On Ice?								-	+	+		1	+														_	YSIS REQUEST	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0
e of L	(use/L	Therm. used:						whatsoever shall be deemed or loss of profits incurred by												Page 15 of	16.0	24061	68.0	ΔΙ Ε	INIAI	06.0	07.04	1142	1		24 14:37:13

Released to Imaging: 1/2/2025 4:28:46 PM

SAMPLE CONDITION RECEIPT FORM

Client Name: Cottonu	wood Consult	ina Wor	k Order # <u>2486 -</u> 166
	USPS ☑Client ☐ Kan	_	Other
Custody Seals on Box/Cooler Preser	nt: □ Yes ☑ No	Seals Intact: ☐ Yes ☐ No	
Thermometer Used: #2 San	nples on ice, cooling process	has begun: ✓ Yes ☐ No	Date/Initials of person CON
Type of Ice: ☐ Wet ☐ Blue ☐ N			examining contents: 6.13.24
Cooler Temp: Observed Temp: 4.4 * Temp should be above freezing to 6°C	C Correction Factor:	_°C Final Temp: <u>4.9</u> °C	Labeled by initials: (if different than above)
Chain of Custody Present:	☑Yes □No	1.	
Chain of Custody Filled Out:	□Yés □No	2.	
Chain of Custody Relinquished:	□Yes □No	3.	•
Sampler Name and Signature on COC:	□Yes □No	4.	
Samples arrived within hold time:	☑Yes □No	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No	6.	
Rush Turn Around Time Requested:	□Yes ☑No	7.	
Sufficient Volume:	□Yes □No	8.	
Correct Containers Used:	⊠Yes □No	9.	
Containers Intact:	⊠Yes □No	10. Air backers in 02,03,0	54
Dissolved Testing Needed:	□Yes ☑No	11.	
Field Filtered: □Yes □No		12.	
Sample Labels match COC: -Includes Date/Time/ID	ØYes □No	12.	
Matrix:	MST SL OT		
Trip Blank Present: Trip Blank Custody Seals Present:	□Yes □No □M/A □Yes □No □M/A	13.	
Client Notification/Resolution:			
Person Contacted:		Date/Time:	
Comments/Resolution:			
FORM-039, Rev 2	Page 1 of 1		

75 Suttle Street Durango, CO 81303 970.247.4220 Phone jeremy.allen@greenanalytical.com

26 September 2024

Kyle Siesser Cottonwood Consulting PO Box 1653 Durango, CO 81302

RE: GCU Com H #180

Enclosed are the results of analyses for samples received by the laboratory on 09/17/24 16:20. The data to follow was performed, in whole or in part, by Green Analytical Laboratories. Any data that was performed by a subcontract laboratory is included within the GAL report, or with an additional report attached.

If you need any further assistance, please feel free to contact me.

Sincerely,

Veronica Wells

Project Manager

Neronica & Wells

All accredited analytes contained in this report are denoted by an asterisk (*). For a complete list of accredited analytes please do not hesitate to contact us via any of the contact information contained in this report. All of our certifications can be viewed at http://greenanalytical.com/certifications/

Green Analytical Laboratories is NELAP accredited through the Texas Commission on Environmental Quality. Accreditation applies to drinking water and non-potable water matrices for trace metals and a variety of inorganic parameters. Green Analytical Laboratories is also accredited through the Colorado Department of Public Health and Environment and EPA region 8 for trace metals, Cyanide, Fluoride, Nitrate, and Nitrite in drinking water. TNI Certificate Number: TX-C24-00019

Our affiliate laboratory, Cardinal Laboratories, is also NELAP accredited through the Texas Commission on Environmental Quality for a variety of organic constituents in drinking water, non-potable water and solid matrices. Cardinal is also accredited for regulated VOCs, TTHM, and HAA-5 in drinking water through the Colorado Department of Public Health and Environment and EPA region 8. TNI Certificate Number: TX-C24-00112

Table of Contents

Samples in Report	3
Sample Results	4
2409202-01: MW #102	4
Quality Assurance Results	7
Notes and Definitions	13
Qualifier Summary	14
Chain of Custody & Attachments	15

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser **Reported:** 09/26/24 10:09

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received	Notes
MW #102	2409202-01	Water	09/17/24 12:10	09/17/24 16:20	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported: 09/26/24 10:09

MW #102

2409202-01 (Ground Water) Sampled Date: 09/17/24 12:10

nalyte Resu	t RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	
-------------	------	-----	-------	----------	----------	--------	-------	---------	--

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
1,1,1,2-Tetrachloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
1,1,1-Trichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
1,1,2,2-Tetrachloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
1,1,2-Trichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
1,1-Dichloroethane*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
1,1-Dichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
1,1-Dichloropropene*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
1,2,3-Trichlorobenzene*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
1,2,4-Trichlorobenzene*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
1,2,4-Trimethylbenzene*	0.013	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
1,2-Dibromo-3-chloropropane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
1,2-Dibromoethane*	< 0.0005	0.0005	0.00009	mg/L	1	09/24/24 17:34	8260B	MS
1,2-Dichlorobenzene*	< 0.0005	0.0005	0.00007	mg/L	1	09/24/24 17:34	8260B	MS
1,2-Dichloroethane*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
1,2-Dichloropropane*	< 0.0005	0.0005	0.00008	mg/L	1	09/24/24 17:34	8260B	MS
1,3,5-Trimethylbenzene*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
1,3-Dichlorobenzene*	< 0.0005	0.0005	0.00005	mg/L	1	09/24/24 17:34	8260B	MS
1,3-Dichloropropane*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
1,4-Dichlorobenzene	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
1,4-Dioxane	< 0.010	0.010	0.010	mg/L	1	09/24/24 17:34	8260B	MS
1.2.3-trichloropropane*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
2,2-Dichloropropane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
2-Butanone*	< 0.002	0.002	0.002	mg/L	1	09/24/24 17:34	8260B	MS
2-Chlorotoluene*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
2-Hexanone*	< 0.001	0.001	0.0003	mg/L	1	09/24/24 17:34	8260B	MS
4-Chlorotoluene*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
4-Methyl-2-pentanone*	< 0.001	0.001	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
Acetone*	< 0.010	0.010	0.0009	mg/L	1	09/24/24 17:34	8260B	MS
Acrolein*	< 0.005	0.005	0.001	mg/L	1	09/24/24 17:34	8260B	MS

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting PO Box 1653

Durango CO, 81302

Project: VOC 8260

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser Reported:

09/26/24 10:09

MW #102

2409202-01 (Ground Water) Sampled Date: 09/17/24 12:10

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst
									I

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

Acrylonitrile*	< 0.002	0.002	0.0008	mg/L	1	09/24/24 17:34	8260B	MS
Benzene*	0.0007	0.0005	0.00005	mg/L	1	09/24/24 17:34	8260B	MS
Bromobenzene*	< 0.0005	0.0005	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
Bromochloromethane*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
Bromodichloromethane*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
Bromoform*	< 0.0005	0.0005	0.00009	mg/L	1	09/24/24 17:34	8260B	MS
Bromomethane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Carbon disulfide*	< 0.001	0.001	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
Carbon tetrachloride*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
Chlorobenzene*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
Chloroethane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Chloroform*	< 0.0005	0.0005	0.00002	mg/L	1	09/24/24 17:34	8260B	MS
Chloromethane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
is-1,2-Dichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
is-1,3-Dichloropropene*	< 0.0005	0.0005	0.00009	mg/L	1	09/24/24 17:34	8260B	MS
Dibromochloromethane*	< 0.0005	0.0005	0.00008	mg/L	1	09/24/24 17:34	8260B	MS
Dibromomethane*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
Dichlorodifluoromethane*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Ethylbenzene*	0.002	0.0005	0.00003	mg/L	1	09/24/24 17:34	8260B	MS
Hexachlorobutadiene*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
odomethane	< 0.001	0.001	0.00006	mg/L	1	09/24/24 17:34	8260B	MS
sopropylbenzene*	0.0007	0.0005	0.00002	mg/L	1	09/24/24 17:34	8260B	MS
n+p - Xylene*	< 0.001	0.001	0.00008	mg/L	1	09/24/24 17:34	8260B	MS
Methyl tert-butyl ether	< 0.001	0.001	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
Methylene chloride*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Naphthalene*	< 0.0005	0.0005	0.00008	mg/L	1	09/24/24 17:34	8260B	MS
n-Butylbenzene*	< 0.0005	0.0005	0.00007	mg/L	1	09/24/24 17:34	8260B	MS
-Propylbenzene*	< 0.0005	0.0005	0.00005	mg/L	1	09/24/24 17:34	8260B	MS
-Xylene*	0.002	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
-Isopropyltoluene*	0.010	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
ec-Butylbenzene*	< 0.0005	0.0005	0.00004	mg/L	1	09/24/24 17:34	8260B	MS
Styrene*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported: 09/26/24 10:09

MW #102

2409202-01 (Ground Water) Sampled Date: 09/17/24 12:10

Analyte	Result	RL	MDL	Units	Dilution	Analyzed	Method	Notes	Analyst	ĺ
---------	--------	----	-----	-------	----------	----------	--------	-------	---------	---

Subcontracted -- Cardinal Laboratories 101 East Marland Hobbs, NM 88240

VOLATILES BY GC/MS								
tert-Butylbenzene*	0.0006	0.0005	0.00007	mg/L	1	09/24/24 17:34	8260B	MS
Tetrachloroethene*	< 0.0005	0.0005	0.00009	mg/L	1	09/24/24 17:34	8260B	MS
Toluene*	< 0.0005	0.0005	0.00008	mg/L	1	09/24/24 17:34	8260B	MS
Total Xylenes*	0.003	0.001	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
trans-1,2-Dichloroethene*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
trans-1,3-Dichloropropene*	< 0.0005	0.0005	0.00005	mg/L	1	09/24/24 17:34	8260B	MS
trans-1,4-Dichloro-2-butene	< 0.010	0.010	0.0003	mg/L	1	09/24/24 17:34	8260B	MS
Trichloroethene*	< 0.0005	0.0005	0.0002	mg/L	1	09/24/24 17:34	8260B	MS
Trichlorofluoromethane*	< 0.0005	0.0005	0.0001	mg/L	1	09/24/24 17:34	8260B	MS
Vinyl acetate*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Vinyl chloride*	< 0.0005	0.0005	0.0005	mg/L	1	09/24/24 17:34	8260B	MS
Surrogate: 4-Bromofluorobenzene			102 %	76.4-114		09/24/24 17:34	8260B	MS
Surrogate: Dibromofluoromethane			108 %	82.4-141		09/24/24 17:34	8260B	MS
Surrogate: Toluene-d8			102 %	87.1-110		09/24/24 17:34	8260B	MS

Green Analytical Laboratories

Neronica & Wells

Durango CO, 81302

Project: VOC 8260

PO Box 1653

Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported: 09/26/24 10:09

VOLATILES BY GC/MS - Quality Control

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Ratch 4091935 - Volatiles										

Blank (4091935-BLK1)			Prepar	ed: 09/19/24 A	nalyzed: 09/24	24	
1,1,1,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,1-Trichloroethane	ND	0.0005	mg/L				
1,1,2,2-Tetrachloroethane	ND	0.0005	mg/L				
1,1,2-Trichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethane	ND	0.0005	mg/L				
1,1-Dichloroethene	ND	0.0005	mg/L				
1,1-Dichloropropene	ND	0.0005	mg/L				
1,2,3-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trichlorobenzene	ND	0.0005	mg/L				
1,2,4-Trimethylbenzene	ND	0.0005	mg/L				
1,2-Dibromo-3-chloropropane	ND	0.0005	mg/L				
1,2-Dibromoethane	ND	0.0005	mg/L				
1,2-Dichlorobenzene	ND	0.0005	mg/L				
1,2-Dichloroethane	ND	0.0005	mg/L				
1,2-Dichloropropane	ND	0.0005	mg/L				
1,3,5-Trimethylbenzene	ND	0.0005	mg/L				
1,3-Dichlorobenzene	ND	0.0005	mg/L				
1,3-Dichloropropane	ND	0.0005	mg/L				
1,4-Dichlorobenzene	ND	0.0005	mg/L				
1,4-Dioxane	ND	0.010	mg/L				
1.2.3-trichloropropane	ND	0.0005	mg/L				
2,2-Dichloropropane	ND	0.0005	mg/L				
2-Butanone	ND	0.002	mg/L				
2-Chlorotoluene	ND	0.0005	mg/L				
2-Hexanone	ND	0.001	mg/L				
Surrogate: 4-Bromofluorobenzene	0.0246		mg/L	0.0250	98.4	76.4-114	
4-Chlorotoluene	ND	0.0005	mg/L				
4-Methyl-2-pentanone	ND	0.001	mg/L				
Acetone	ND	0.010	mg/L				
Acrolein	ND	0.005	mg/L				
Acrylonitrile	ND	0.002	mg/L				
Benzene	ND	0.0005	mg/L				
Bromobenzene	ND	0.0005	mg/L				
Bromochloromethane	ND	0.0005	mg/L				
Bromodichloromethane	ND	0.0005	mg/L				
Bromoform	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Durango CO, 81302

Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180

Reported:

Project Manager: Kyle Siesser

09/26/24 10:09

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4091935 - Volatiles (Continued)

Blank (4091935-BLK1) (Continued)			Prep	pared: 09/19/24 Ar	nalyzed: 09/24/2	4	
Bromomethane	ND	0.0005	mg/L				
Carbon disulfide	ND	0.001	mg/L				
Carbon tetrachloride	ND	0.0005	mg/L				
Chlorobenzene	ND	0.0005	mg/L				
Chloroethane	ND	0.0005	mg/L				
Chloroform	ND	0.0005	mg/L				
Chloromethane	ND	0.0005	mg/L				
cis-1,2-Dichloroethene	ND	0.0005	mg/L				
cis-1,3-Dichloropropene	ND	0.0005	mg/L				
Dibromochloromethane	ND	0.0005	mg/L				
Surrogate: Dibromofluoromethane	0.0254		mg/L	0.0250	102	82.4-141	
Dibromomethane	ND	0.0005	mg/L				
Dichlorodifluoromethane	ND	0.0005	mg/L				
Ethylbenzene	ND	0.0005	mg/L				
Hexachlorobutadiene	ND	0.0005	mg/L				
Iodomethane	ND	0.001	mg/L				
Isopropylbenzene	ND	0.0005	mg/L				
m+p - Xylene	ND	0.001	mg/L				
Methyl tert-butyl ether	ND	0.001	mg/L				
Methylene chloride	ND	0.0005	mg/L				
Naphthalene	ND	0.0005	mg/L				
n-Butylbenzene	ND	0.0005	mg/L				
n-Propylbenzene	ND	0.0005	mg/L				
o-Xylene	ND	0.0005	mg/L				
p-Isopropyltoluene	ND	0.0005	mg/L				
sec-Butylbenzene	ND	0.0005	mg/L				
Styrene	ND	0.0005	mg/L				
tert-Butylbenzene	ND	0.0005	mg/L				
Tetrachloroethene	ND	0.0005	mg/L				
Toluene	ND	0.0005	mg/L				
Surrogate: Toluene-d8	0.0249		mg/L	0.0250	99.7	87.1-110	
Total Xylenes	ND	0.001	mg/L				
trans-1,2-Dichloroethene	ND	0.0005	mg/L				
trans-1,3-Dichloropropene	ND	0.0005	mg/L				
trans-1,4-Dichloro-2-butene	ND	0.010	mg/L				
Trichloroethene	ND	0.0005	mg/L				
Trichlorofluoromethane	ND	0.0005	mg/L				
Vinyl acetate	ND	0.0005	mg/L				
Vinyl chloride	ND	0.0005	mg/L				

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser **Reported:** 09/26/24 10:09

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch 4091935 - Volatiles (Continued)

CS (4091935-BS1)			Prep	pared: 09/19/24	Analyzed: 09/24/24	ļ	
1,1,1,2-Tetrachloroethane	0.017	0.0005	mg/L	0.0200	87.2	82.4-120	
1,1,1-Trichloroethane	0.019	0.0005	mg/L	0.0200	95.6	80.7-121	
1,1,2,2-Tetrachloroethane	0.021	0.0005	mg/L	0.0200	105	76.5-121	
1,1,2-Trichloroethane	0.019	0.0005	mg/L	0.0200	93.4	81.7-118	
1,1-Dichloroethane	0.020	0.0005	mg/L	0.0200	100	74.8-123	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200	105	53.9-149	
1,1-Dichloropropene	0.020	0.0005	mg/L	0.0200	100	85.9-115	
1,2,3-Trichlorobenzene	0.023	0.0005	mg/L	0.0200	114	76.1-134	
1,2,4-Trichlorobenzene	0.023	0.0005	mg/L	0.0200	117	72.4-136	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	112	67.4-138	
1,2-Dibromo-3-chloropropane	0.021	0.0005	mg/L	0.0200	106	71.7-124	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200	100	84.9-116	
1,2-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	97.8	82.5-119	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200	87.8	72.5-123	
1,2-Dichloropropane	0.021	0.0005	mg/L	0.0200	105	79.4-117	
1,3,5-Trimethylbenzene	0.022	0.0005	mg/L	0.0200	110	69-137	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200	97.6	84.4-120	
1,3-Dichloropropane	0.020	0.0005	mg/L	0.0200	101	82.6-117	
1,4-Dichlorobenzene	0.019	0.0005	mg/L	0.0200	96.4	81.7-118	
1,4-Dioxane	0.350	0.010	mg/L	0.400	87.4	-34.6-193	
1.2.3-trichloropropane	0.023	0.0005	mg/L	0.0200	116	44.7-168	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200	73.0	62.9-136	
2-Butanone	0.036	0.002	mg/L	0.0400	89.1	24.1-159	
2-Chlorotoluene	0.021	0.0005	mg/L	0.0200	107	80.2-121	
2-Hexanone	0.036	0.001	mg/L	0.0400	90.8	56.3-139	
Surrogate: 4-Bromofluorobenzene	0.0251		mg/L	0.0250	101	76.4-114	
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200	111	82.2-125	
4-Methyl-2-pentanone	0.041	0.001	mg/L	0.0400	103	60.7-139	
Acetone	0.045	0.010	mg/L	0.0400	112	39.1-168	
Acrolein	0.185	0.005	mg/L	0.200	92.7	26.6-161	
Acrylonitrile	0.041	0.002	mg/L	0.0400	103	64.9-135	
Benzene	0.020	0.0005	mg/L	0.0200	98.6	69.4-129	
Bromobenzene	0.020	0.0005	mg/L	0.0200	98.4	83.5-115	
Bromochloromethane	0.020	0.0005	mg/L	0.0200	101	70.7-123	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200	97.7	80.3-119	
Bromoform	0.019	0.0005	mg/L	0.0200	96.8	71.1-141	
Bromomethane	0.017	0.0005	mg/L	0.0200	87.4	55.1-143	
Carbon disulfide	0.042	0.001	mg/L	0.0400	104	53.6-147	
Carbon tetrachloride	0.019	0.0005	mg/L	0.0200	93.9	79.5-125	

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180
Project Manager: Kyle Siesser

Reported:

anager: Kyle Siesser 09/26/24 10:09

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4091935 - Volatiles (Continued)										
CS (4091935-BS1) (Continued)			Prep	pared: 09/19/	24 Analyz	ed: 09/24/2	4			
Chlorobenzene	0.019	0.0005	mg/L	0.0200		95.4	85.1-115			
Chloroethane	0.019	0.0005	mg/L	0.0200		94.1	36.9-159			
Chloroform	0.018	0.0005	mg/L	0.0200		92.2	80.9-119			
Chloromethane	0.020	0.0005	mg/L	0.0200		102	54.2-142			
cis-1,2-Dichloroethene	0.020	0.0005	mg/L	0.0200		101	73.8-128			
cis-1,3-Dichloropropene	0.020	0.0005	mg/L	0.0200		102	82.5-122			
Dibromochloromethane	0.019	0.0005	mg/L	0.0200		96.8	83.1-124			
Surrogate: Dibromofluoromethane	0.0241		mg/L	0.0250		96.4	82.4-141			
Dibromomethane	0.019	0.0005	mg/L	0.0200		94.0	77-118			
Dichlorodifluoromethane	0.021	0.0005	mg/L	0.0200		104	38.7-147			
Ethylbenzene	0.020	0.0005	mg/L	0.0200		100	70.2-130			
Hexachlorobutadiene	0.025	0.0005	mg/L	0.0200		123	78.9-148			
Iodomethane	0.036	0.001	mg/L	0.0400		90.3	63.5-135			
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		100	85-124			
m+p - Xylene	0.040	0.001	mg/L	0.0400		101	71.9-133			
Methyl tert-butyl ether	0.037	0.001	mg/L	0.0400		93.6	57.7-137			
Methylene chloride	0.021	0.0005	mg/L	0.0200		103	49.3-163			
Naphthalene	0.021	0.0005	mg/L	0.0200		105	62.1-141			
n-Butylbenzene	0.022	0.0005	mg/L	0.0200		108	75.4-132			
n-Propylbenzene	0.022	0.0005	mg/L	0.0200		111	79.6-124			
o-Xylene	0.021	0.0005	mg/L	0.0200		104	69.4-132			
p-Isopropyltoluene	0.021	0.0005	mg/L	0.0200		107	79.8-131			
sec-Butylbenzene	0.023	0.0005	mg/L	0.0200		117	77.6-133			
Styrene	0.020	0.0005	mg/L	0.0200		98.8	71.7-128			
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128			
Tetrachloroethene	0.018	0.0005	mg/L	0.0200		89.8	74.2-128			
Toluene	0.018	0.0005	mg/L	0.0200		92.0	68.1-127			
Surrogate: Toluene-d8	0.0254		mg/L	0.0250		101	87.1-110			
Total Xylenes	0.061	0.001	mg/L	0.0600		102	71.6-132			
trans-1,2-Dichloroethene	0.020	0.0005	mg/L	0.0200		98.6	65.2-133			
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		104	84-123			
trans-1,4-Dichloro-2-butene	0.069	0.010	mg/L	0.0400		172	9.3-235			
Trichloroethene	0.019	0.0005	mg/L	0.0200		95.2	79.3-114			
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.2	28.6-162			
Vinyl acetate	0.013	0.0005	mg/L	0.0200		66.4	50.9-135			
Vinyl chloride	0.021	0.0005	mg/L	0.0200		106	61.6-133			
.CS Dup (4091935-BSD1)			Prep	pared: 09/19/	24 Analyzo	ed: 09/24/2	4			
1,1,1,2-Tetrachloroethane	0.017	0.0005	mg/L	0.0200		85.5	82.4-120	1.97	6.88	

Green Analytical Laboratories

Neronica J Wells

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported:

09/26/24 10:09

VOLATILES BY GC/MS - Quality Control (Continued)

Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4091935 - Volatiles (Continued)	-100011	Ziiiit						2		2.3000
LCS Dup (4091935-BSD1) (Continued)			Prep	pared: 09/19/	24 Analyz	ed: 09/24/2	4			
1,1,1-Trichloroethane	0.020	0.0005	mg/L	0.0200		97.9	80.7-121	2.38	7.43	
1,1,2,2-Tetrachloroethane	0.022	0.0005	mg/L	0.0200		109	76.5-121	4.21	8.68	
1,1,2-Trichloroethane	0.019	0.0005	mg/L	0.0200		96.2	81.7-118	2.95	6.82	
1,1-Dichloroethane	0.020	0.0005	mg/L	0.0200		102	74.8-123	1.98	4.3	
1,1-Dichloroethene	0.021	0.0005	mg/L	0.0200		103	53.9-149	2.31	16.5	
1,1-Dichloropropene	0.020	0.0005	mg/L	0.0200		99.4	85.9-115	0.602	5.47	
1,2,3-Trichlorobenzene	0.022	0.0005	mg/L	0.0200		111	76.1-134	2.89	43	
1,2,4-Trichlorobenzene	0.022	0.0005	mg/L	0.0200		112	72.4-136	4.68	22.3	
1,2,4-Trimethylbenzene	0.022	0.0005	mg/L	0.0200		111	67.4-138	1.30	8.94	
1,2-Dibromo-3-chloropropane	0.020	0.0005	mg/L	0.0200		101	71.7-124	4.68	15.1	
1,2-Dibromoethane	0.020	0.0005	mg/L	0.0200		101	84.9-116	0.299	5.83	
1,2-Dichlorobenzene	0.019	0.0005	mg/L	0.0200		96.0	82.5-119	1.86	8.72	
1,2-Dichloroethane	0.018	0.0005	mg/L	0.0200		92.4	72.5-123	5.05	8.94	
1,2-Dichloropropane	0.021	0.0005	mg/L	0.0200		107	79.4-117	1.42	5.51	
1,3,5-Trimethylbenzene	0.023	0.0005	mg/L	0.0200		113	69-137	2.33	16.5	
1,3-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		100	84.4-120	2.73	9	
1,3-Dichloropropane	0.020	0.0005	mg/L	0.0200		98.6	82.6-117	2.50	6.06	
1,4-Dichlorobenzene	0.020	0.0005	mg/L	0.0200		98.6	81.7-118	2.26	7.71	
1,4-Dioxane	0.372	0.010	mg/L	0.400		93.1	-34.6-193	6.28	35.2	
1.2.3-trichloropropane	0.024	0.0005	mg/L	0.0200		118	44.7-168	1.97	49.2	
2,2-Dichloropropane	0.015	0.0005	mg/L	0.0200		73.0	62.9-136	0.137	9.62	
2-Butanone	0.043	0.002	mg/L	0.0400		109	24.1-159	19.6	14.2	OR-0
2-Chlorotoluene	0.043	0.002	mg/L mg/L	0.0200		104	80.2-121	2.23	8.62	QIC-0
2-Hexanone	0.021	0.0003	mg/L mg/L	0.0400		99.3	56.3-139	8.92	7.28	QR-0
Surrogate: 4-Bromofluorobenzene	0.0251		mg/L	0.0250		100	76.4-114			
4-Chlorotoluene	0.022	0.0005	mg/L	0.0200		110	82.2-125	0.902	15.5	
4-Methyl-2-pentanone	0.043	0.001	mg/L	0.0400		107	60.7-139	3.63	7.57	
Acetone	0.047	0.010	mg/L	0.0400		119	39.1-168	5.43	30.5	
Acrolein	0.196	0.005	mg/L	0.200		98.2	26.6-161	5.72	22.4	
Acrylonitrile	0.043	0.002	mg/L	0.0400		107	64.9-135	4.13	7.62	
Benzene	0.020	0.0005	mg/L	0.0200		101	69.4-129	2.31	4.16	
Bromobenzene	0.020	0.0005	mg/L	0.0200		98.3	83.5-115	0.102	8.41	
Bromochloromethane	0.019	0.0005	mg/L	0.0200		97.4	70.7-123	3.23	5.16	
Bromodichloromethane	0.020	0.0005	mg/L	0.0200		99.7	80.3-119	2.03	5.36	
Bromoform	0.020	0.0005	mg/L	0.0200		101	71.1-141	4.64	14.1	
Bromomethane	0.017	0.0005	mg/L	0.0200		85.0	55.1-143	2.79	21.5	
Carbon disulfide	0.042	0.001	mg/L	0.0400		105	53.6-147	0.671	20.3	
Carbon tetrachloride	0.042	0.0005	mg/L mg/L	0.0200		94.6	79.5-125	0.690	11.4	
Chlorobenzene	0.019	0.0005	mg/L	0.0200		97.6	85.1-115	2.23	5.18	

Green Analytical Laboratories

Neronica J nulls

Project: VOC 8260

PO Box 1653 Durango CO, 81302 Project Name / Number: GCU Com H #180 Project Manager: Kyle Siesser

Reported: 09/26/24 10:09

VOLATILES BY GC/MS - Quality Control (Continued)

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch 4091935 - Volatiles (Continued)										
LCS Dup (4091935-BSD1) (Continued)			Prep	ared: 09/19/2	24 Analyze	ed: 09/24/2	4			
Chloroethane	0.019	0.0005	mg/L	0.0200		95.9	36.9-159	1.89	24.1	
Chloroform	0.018	0.0005	mg/L	0.0200		90.8	80.9-119	1.48	5.15	
Chloromethane	0.020	0.0005	mg/L	0.0200		101	54.2-142	0.785	27	
cis-1,2-Dichloroethene	0.021	0.0005	mg/L	0.0200		105	73.8-128	3.15	5.73	
cis-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		106	82.5-122	3.93	6.09	
Dibromochloromethane	0.020	0.0005	mg/L	0.0200		98.6	83.1-124	1.84	7.24	
Surrogate: Dibromofluoromethane	0.0244		mg/L	0.0250		97.5	82.4-141			
Dibromomethane	0.019	0.0005	mg/L	0.0200		96.8	77-118	2.88	5.75	
Dichlorodifluoromethane	0.020	0.0005	mg/L	0.0200		102	38.7-147	1.02	22.6	
Ethylbenzene	0.020	0.0005	mg/L	0.0200		99.8	70.2-130	0.200	4.83	
Hexachlorobutadiene	0.025	0.0005	mg/L	0.0200		124	78.9-148	0.731	18.4	
Iodomethane	0.036	0.001	mg/L	0.0400		90.5	63.5-135	0.249	24.3	
Isopropylbenzene	0.020	0.0005	mg/L	0.0200		100	85-124	0.0499	6.25	
m+p - Xylene	0.040	0.001	mg/L	0.0400		101	71.9-133	0.447	5.77	
Methyl tert-butyl ether	0.039	0.001	mg/L	0.0400		97.0	57.7-137	3.57	12.8	
Methylene chloride	0.021	0.0005	mg/L	0.0200		104	49.3-163	1.21	19.7	
Naphthalene	0.021	0.0005	mg/L	0.0200		105	62.1-141	0.476	33.5	
n-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	75.4-132	1.35	10.1	
n-Propylbenzene	0.022	0.0005	mg/L	0.0200		112	79.6-124	0.850	9.09	
o-Xylene	0.021	0.0005	mg/L	0.0200		103	69.4-132	0.727	6.29	
p-Isopropyltoluene	0.023	0.0005	mg/L	0.0200		114	79.8-131	5.65	9.26	
sec-Butylbenzene	0.023	0.0005	mg/L	0.0200		117	77.6-133	0.384	9.85	
Styrene	0.020	0.0005	mg/L	0.0200		99.4	71.7-128	0.606	7.55	
tert-Butylbenzene	0.021	0.0005	mg/L	0.0200		106	78.8-128	0.283	18.6	
Tetrachloroethene	0.018	0.0005	mg/L	0.0200		89.1	74.2-128	0.783	6.38	
Toluene	0.019	0.0005	mg/L	0.0200		93.3	68.1-127	1.40	5.67	
Surrogate: Toluene-d8	0.0253	_	mg/L	0.0250	_	101	87.1-110			
Total Xylenes	0.061	0.001	mg/L	0.0600		101	71.6-132	0.541	5.83	
trans-1,2-Dichloroethene	0.019	0.0005	mg/L	0.0200		95.4	65.2-133	3.25	19.1	
trans-1,3-Dichloropropene	0.021	0.0005	mg/L	0.0200		104	84-123	0.672	6.26	
trans-1,4-Dichloro-2-butene	0.069	0.010	mg/L	0.0400		172	9.3-235	0.218	92.8	
Trichloroethene	0.020	0.0005	mg/L	0.0200		99.8	79.3-114	4.62	4.92	
Trichlorofluoromethane	0.018	0.0005	mg/L	0.0200		89.0	28.6-162	0.224	19.8	
Vinyl acetate	0.014	0.0005	mg/L	0.0200		70.6	50.9-135	6.13	7.84	
Vinyl chloride	0.021	0.0005	mg/L	0.0200		105	61.6-133	1.14	23	

Green Analytical Laboratories

Neronica J Wells

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180 Reported:
Durango CO, 81302 Project Manager: Kyle Siesser 09/26/24 10:09

Notes and Definitions

QR-04 The RPD for the BS/BSD was outside of historical limits.

DET Analyte DETECTED

ND Analyte NOT DETECTED at or above the reporting limit

NR Not Reported

dry Sample results reported on a dry weight basis

*Results reported on as received basis unless designated as dry.

RPD Relative Percent Difference

LCS Laboratory Control Sample (Blank Spike)

RL Report Limit

MDL Method Detection Limit

Green Analytical Laboratories

Neronica J Wells

Released to Imaging: 1/2/2025 4:28:46 PM

Cottonwood Consulting Project: VOC 8260

PO Box 1653 Project Name / Number: GCU Com H #180 Reported:
Durango CO, 81302 Project Manager: Kyle Siesser 09/26/24 10:09

Qualifier Summary

<u>LabNumber</u> <u>Analysis</u> <u>Analyte</u> <u>Qualifier</u> <u>TextBody</u>

4091935-BSD1Volatile 82602-ButanoneQR-04The RPD for the BS/BSD was outside of historical limits.4091935-BSD1Volatile 82602-HexanoneQR-04The RPD for the BS/BSD was outside of historical limits.

Green Analytical Laboratories

Neronica J NULLS

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST FORM-006, R 8.0

75 Suttle Street
Durango, CO 81303
(970) 247-4220

Note: Wite-OutTM or simila

)				1				Time:		
Checked by: On Ice? Therm. used:		Temperature at receipt:	Ü	Date:		By:	Received By:	Date:		Relinquished By:
			ie:	Time			1	Time:		
			e.	Date:		A.	Received By:	Date:		reinquisned by:
			16	Time	7	M		Time: 16 25	~	0 July
	RKS:	ADDITIONAL REMARKS		Date		By:	Received By:	Date: 9/17/94		Relinquished By:
waived unless made in writing and received by GAL within 30 days after competion of the applicable service. In no event shall GAL be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by GAL, regardless of whether such claim is based upon any of the above stated reasons or otherwise.	se for negligen on, business in ne above state	claims including those cluding without limitations based upon any of the	ne analyses. All ital damages, inc ther such claim is	or consequent andless of wheth	for incidenta by GAL, rega	shall GAL be liable services hereunder	rvice. In no event e performance of	fifter completion of the applicable ser essors arising out of or related to the	and received by GAL within 30 days a client, its subsidiaries, affiliates or succ	waived unless made in writing
						no limited to the	tract or took shall	claim arising whether based in con-	PLEASE NOTE: GAL's liability and client's exclusive remedy for any claim arising whether based in contract or tool shall be limited to the construct to the limited to the limite	PLEASE NOTE: GAL's liability
	-		+		+		\dagger		10)	
	+	+	+	#	+		1		9)	
	+		+		+				8)	
	\downarrow				1				7)	
	+								6)	
	+								5)	
	\downarrow								4)	
	\downarrow								3)	
	1								2)	
		4			_	4 1210	12/4/16		1) MW #102	O
	EPA Me	Hydrochloric Acid Sulfuric Acid Sodium Hydroxide DTHER:	SOIL OTHER: No preservation Nitric Acid	WASTEWATER PRODUCED WATER DRINKING WATER	GROUNDWATER SURFACE WATER	Time	Date	Sample Name or Location	Sample Nam	Lab I.D. Mg-267 Lab Use Only
	eth	# of containers		Matrix (check one)	Ma	Collected				
	od 8	od s	Needed?	Z			O'Brray	Souper (Kelsey O	Dylan	Sampler Name (Print):
	526	226	TAT	Rush?				# 100	1	
	OB	OB		P.O. #:	.Р			H #180	GCII Com H #180	Project Name(optional):
	(VC	0.40						J.com	Email Report to: ksiesser@cottonwoodconsulting.com	Email Report to: ksies
	Cs	· C-							Siesser	Contact Person: Kyle Siesser
)								56	Phone #: 970-764-7356
							302	State: CO Zip: 81302		City: Durango
					+				653	Address: PO Box 1653
ANALYSIS REQUEST		rent):	I to (if different):	Bill t				C	Company or client: Cottonwood Consulting LLC	company or chent
		Y	ain of Custody	on the Cria	r pe used	silling products calling be used on the Chair	or sittliar i	וייסנט. איונט טענ		Common or Oliont

* Chain of Custody must be signed in "Relinquished By:" as an acceptance of services and all applicable charges. GAL cannot accept verbal changes. Please email changes to receiving@greenanalytical.com

약

Page 15 of 16 2409202 GAL FINAL 09 26 24 1009 09/26/24 10:09:46

SAMPLE CONDITION RECEIPT FORM

Client Name: Cotto N wood Cons	sulting	Work	Order # 2409-202
Courier: □Fed Ex □UPS □USPS	☑Client ☐ Kang	aroo □ Third Party □0	Other
Custody Seals on Box/Cooler Present: ☐ Ye	es, 🗹 No	Seals Intact: ☐ Yes ☐ No	
Thermometer Used: 47 Samples on	ice, cooling process h	nas begun: ☑Ƴes □ No	Date/Initials of person 9.17.24 examining contents:
Type of Ice: ☑Wet ☐ Blue ☐ None	~		Labeled by initials:
Cooler Temp: Observed Temp: 16.2 °C *Temp should be above freezing to 6°C	Correction Factor:	°C Final Temp: 16.2°C	(if different than above)
*Temp should be above freezing to 6°C	(
Chain of Custody Present:	⊠Yes □No	1.	
Chain of Custody Filled Out:	⊠Yes □No	2.	
Chain of Custody Relinquished:	☐Yes □No	3.	
Sampler Name and Signature on COC:	☐Yes □No	4.	
Samples arrived within hold time:	r Yes □No	5.	
Short Hold Time Analysis (<72hr):	□Yes ☑No	6.	
Rush Turn Around Time Requested:	□Yes ☑No	7.	
Sufficient Volume:	⊠Yes □No	8. Vou w/ handspace	76nn
Correct Containers Used:	☑Yes □No	9.	
Containers Intact:	⊠Yes □No	10.	
Dissolved Testing Needed:	□Yes ☑No	11.	
Field Filtered: □Yes □No			
Sample Labels match COC:	✓Yes □No	12.	
-Includes Date/Time/ID	AT SL OT		
Matrix:	□Yes □No ☑NA	13.	
Trip Blank Present: Trip Blank Custody Seals Present:	□Yes □No □N/A		
Client Notification/Resolution:			
Person Contacted:		Date/Time:	
Comments/Resolution:			

FORM-039, Rev 2

Page 1 of 1

Date : WELL #	12/1	0/24							
The state of the s		10.			D	EVELOPER	A / SAMPLER :	DS/K	50
	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	pН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
#101	100.00	4.60	7.05	11.65	-	-	- 1	-	-
#102	99.02	6.35	6,23	12.58	1350	7.93	6,22	11.2	3.11
#103	99.51	5,85	6.73	12.58		-	-		
#104	99.45	5,30	6.90	12.20		-	-	- 4	-
#105		5,71	6.29	12.00		-	-	-	-
			ee (3) wellbor			2.00" well o	diameter =	0.49 gal./ft.	of water.
Collect sample	e from #102-	all other wells	have 8 consec	cutive clean	quarters.				

on-site	temp	GRADIE III CO
off-site	temp	
sky cond.		STATE OF THE PARTY
wind speed	direct.	

CLIENT:	SINICOE	LLC						<i>a</i> .	,	
GCU Com H	#180 API#:	30-045-07814	1		LABORATOR	RY(S) USED) <u>:</u>	GA	L	
1	3 T29N R12W					(-)				•
Date :	6/12	2/24				DEVELOPER	/ SAMPLER :	D5/ka)	-
WELL	WELL	WATER	DEPTH TO	TOTAL	SAMPLING	рН	CONDUCT	TEMP.	VOLUME	
#	ELEV.	ELEV.	WATER	DEPTH	TIME		(umhos)	(celcius)	PURGED	
	(ft)	(ft)	(ft)	(ft)					(gal.)]
	·									1
#101	100.00	3.81	7.87	11.65	-	1-6		-		2.72 Ko
#102	99.02	5.56	1.02	12.58	1330	7,34	5430	30,6	556	6-12
#103 #104	99.51	5.01	7.57	12.58 12.20	-	-	-		-	-
#104	99.45	5,26	6.74	12.20	-		 		<u> </u>	•
NOTES:			from well price. h = 1 ft.)				gal./ft ³) x 3 (w	rellbores).		
	Ideally a mi	nimum of thr	ee (3) wellbor	e volumes:		2.00" well d	iameter =	0.49 gal./ft.	of water.	
Comments	or note well	diameter if no	ot standard 2"	i.						
Collect samp	le from #102-	all other wells	have 8 conse	cutive clean	quarters.					
										-
			-4							-:
		w								•
										•
							Managara (1944)			•
										-
Assessment of the second of th										50

on-site	temp	
off-site	temp	
sky cond.		
wind speed	direct.	

CLIENT:	SIMCOE	LLC		i					
	I #180 API#:	remain the state of the state of	4		LABORATOR	RY (S) USED):	GAL	
Unit J Sec 2	8 T29N R12W								
Date :	3/28	5/24	4		E	EVELOPER	/ SAMPLER :	D5/	KO
WELL	1 1/4/51 1	WATER	DEPTH TO	TOTAL	SAMPLING	рН	CONDUCT	TEMP.	VOLUME
	WELL	WATER ELEV.	WATER	DEPTH	TIME	рп	(umhos)	(celcius)	PURGED
#	ELEV.			50-45 CONTROLS (SECOND 25	IIIVIE		(uninos)	(ceicius)	(gal.)
<u></u>	(ft)	(ft)	(ft)	(ft)	<u> </u>		<u> </u>		(yai.)
#101	100.00	4.2	7.45	11.65	T - 1	_	-	-	-
#102	99.02	5 93	6.65	12.58	1200	8,15	5110	15.1	3
#103	99.51	5,4	7.18	12.58	-	-	-	-	-
#104	99.45	4.86	7.34	12.20	-	-	-	-	-
#105	-	5.51	6,49	12.00	-	-	-	-	-
NOTES:	(i.e. 2" MW	r = (1/12) ff		(i.e. 4" MW	ng; V = pi x r ² r = (2/12) ft.			ellbores). 0.49 gal./ft.	of water.
• • • • • • • • • • • • • • • • • • • •	or note well o			-	quarters.				
•									
							programme to the control of the cont		
									

on-site	1130	temp	55° F
off-site	1230	temp	55°F
sky cond.	Cleas		
wind speed	0-3 MP	կ direct.	5 W

MONITOR WELL DEVELOPMENT & / OR SAMPLING DATA

	SIMCOE H #180 API#: 8 T29N R12W	30-045-0781	4		LABORATOR	RY(S) USED):	GA	L
Date :	9/17	124			Γ	DEVELOPER	/ SAMPLER :	1011	25
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	рН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
#101 #102 #103	100.00 99.02 99.51	4.74 6.47 6.00	6.50	11.65 11 12.58 12.58 12.20	1210	7.35	2.81	20.2	3,17
#104 #105	99.45	5,56	6.64	12.20	-	-	-	-	-
	or note well on ple from #102-	diameter if n		".		2.00" well d		0.49 gal./ft.	

wind speed

direct.

CLIENT:	SIMCOE	LLC		:					
1	I #180 API#: 8 T29N R12W		1		LABORATOR	RY (S) USED) :	GAL DS/K	
Date :	,	124			[DEVELOPER	/SAMPLER:	D5/K	(0
WELL #	WELL ELEV. (ft)	WATER ELEV. (ft)	DEPTH TO WATER (ft)	TOTAL DEPTH (ft)	SAMPLING TIME	рН	CONDUCT (umhos)	TEMP. (celcius)	VOLUME PURGED (gal.)
#101 #102 #103 #104 #105	100.00 99.02 99.51 99.45	4.60 6.35 5.85 5.30 5.30	7.05 6.23 6.73 6.90 6.29	11.65 12.58 12.58 12.20 12.00	1350	7.43	6,22	11.2	3-11
	(i.e. 2" MW	r = (1/12) ft nimum of threadiameter if no	. h = 1 ft.) ee (3) wellbo	(i.e. 4" MW re volumes: ".				0.49 gal./ft.	of water.
				1					
on-site off-site sky cond. wind speed		temp temp direct.							

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 415777

CONDITIONS

Operator:	OGRID:
SIMCOE LLC	329736
1199 Main Ave., Suite 101	Action Number:
Durango, CO 81301	415777
	Action Type:
	[UF-GWA] Ground Water Abatement (GROUND WATER ABATEMENT)

CONDITIONS

Created By	Condition	Condition Date
michael.buchanan	GCU Com H #180 Groundwater Lab Results and associated field forms accepted for the record. App ID: 415777	1/2/2025