Vent Emissions

Emissions	Lbs
H ₂ S	0.00
Propane	24,837.16
ISO Butane	11,554.49
N-Butane	6,419.16
ISO-Pentane	4,780.98
N-Pentane	3,984.15
Hexanes +	4,758.71
VOC Total	56,334.64

Emission Calculation Information			
Emergency Flare			
mscf	3.9663		
HV)	1138.0345		
otu	4513.7596		
nmbtu*	0.1380		
d NOx*	.5 wt % NH3 in fuel		
mbtu*	0.2755		
	98% Dest. Eff.		
**	98% Dest. Eff.		
/scf	1.2630		
	453.5924		
	453 Based or		

Emission Event Calculation Sheet

Flare Emissions			
Emissions	Lbs		
NOx	609.39		
NO	32.07		
со	1,243.54		
SO ₂	0.00		
Propane	496.74		
ISO Butane	231.09		
N-Butane	128.38		
ISO-Pentane	95.62		
N-Pentane	79.68		
Hexanes +	95.17		
H2S	0.00		
VOC Total	1,126.69		
Flared?	yes		

Reportable Event Determination				
Emissions	Amount	Reportable		
NOx	609.39	No		
NO	32.07	No		
со	1,243.54	No		
SO ₂ or H ₂ S	0.00	No		
Propane	496.74	No		
ISO Butane	231.09	No		
N-Butane	128.38	No		
ISO-Pentane	95.62	No		
N-Pentane	79.68	No		
Hexanes +	95.17	No		
H2S	0.00	No		
VOC Total	1,126.69	No		
Flare Reportable	No			
Vent Reportable	Not Applicable			

 Reportable Event*
 No

 *If Reportable Event is greater than 0 then the event is reportable.

Convert From	(ppm to Mole %)	Convert From (Mole % to ppm)		
H ₂ S (ppm)	H ₂ S Mole %	H ₂ S Mole %	H ₂ S (ppm)	
0	0	1.93	19300	

*Emission Calculation Based on TNRCC: RG-109 (October 2000) - Air Permit Technical Guidance for Chemical Sources: Flare and Vapor Oxidizers **H₂S emissions calculated from weight of gas sent to the flare and multiplied by the flares destruction efficiency of 98%, assuming 98% H₂S by weight is converted to SO₂.

***Speciated VOC emissions calculated from weight of gas sent to flare multiplied by the flares destruction efficiency of 98%.

Gas Component Data								
Component	Mole %	Mole Wt. (g/mol)*	Component Mole Wt. (g)	Weight %	Pounds	Tons	Pure Component LHV (btu/scf)*	Component BTU LHV in Mixture (btu/scf)
Nitrogen	1.20	28.01	0.34	0.02	3,712.51	1.86	N/A	N/A
H ₂ S	0.00	34.08	0.00	0.00	0.00	0.00	586.80	0.00
Methane	79.10	16.04	12.69	0.60	140,146.89	70.07	909.40	719.34
Carbon Dio.	0.70	44.01	0.31	0.01	3,402.28	1.70	N/A	N/A
Ethane	9.50	30.07	2.86	0.13	31,548.55	15.77	1,618.70	153.78
Propane	5.10	44.10	2.25	0.11	24,837.16	12.42	2,314.90	118.06
ISO Butane	1.80	58.12	1.05	0.05	11,554.49	5.78	3,000.40	54.01
N-Butane	1.00	58.12	0.58	0.03	6,419.16	3.21	3,010.80	30.11
ISO-Pentane	0.60	72.15	0.43	0.02	4,780.98	2.39	3,699.00	22.19
N-Pentane	0.50	72.15	0.36	0.02	3,984.15	1.99	3,706.90	18.53
Hexanes +***	0.50	86.18	0.43	0.02	4,758.71	2.38	4,403.80	22.02
Total Components	100.00%		21.29	100.00%	235.144.86	117.57		1.138.03

rotar components	100.0070		21.23	100.00 /0	235,144.00	111.51		1,150.05
Total C3+	9.50%		5.10	23.96%	56,334.64	28.17		264.92
Data from the GPSA - Engineering Data Book 11th Edition, Figure 23-2; page 23-4 "FPS Volumes I & II ver. 2000"								

*** Hexanes +, calculated on mole weight of Hexane

Number	MCF
1	3,966
Total	3,966

Emission Event Calculation Sheet Event Duratio (Hr) Vent Emissions Flare Emissions Reportable Event Determination 103 Emissions Amount Reportable Event lb/h Emissions Lbs Emissions Lbs H₂S 3,067.02 NOx 243.36 NOx 852.75 No 8.32 Propane 9 581 46 NO 12.81 NO 44 88 No 0 4 4 ISO Butane 2,384.93 со 496.68 со 1.740.22 No 16.98 N-Butane 4,417,53 SO₂ 5 759 67 SO₂ or H₂S 5 759 67 Yes 56.19 ISO-Pentane 1.783.02 Propane 191.63 Propane 688.37 No 6.72 N-Pentane 1,312.03 ISO Butane 47.70 ISO Butane 278.79 No 2.72 216.73 No 2.11 2,009.11 Hexanes + N-Butane 88.35 N-Butane ISO-Pentane ISO-Pentane 131.28 No 1.28 35.66 VOC Total 21,488.07 N-Pentane 26.24 N-Pentane 105.92 No 1.03 135.36 Hexanes + 40.18 Hexanes + No 1.32 H2S 61.34 H2S 61.34 No 0.60 Emission Calculation Information VOC Total 429.76 VOC Total 1,556,45 No 15.18 Emerg Flare Reportable v Fla Volume mmscf 1.6745 Flared? yes Vent Reportable Not Applicable Btu/scf (LHV) 1076.6012 Total mmbtu 1802.8180 Reportable Event* If Reportable Event is greater than 0 then the Lbs NOx/mmbtu 0.1380 event is reportable. Fuel Bound NOx* .5 wt % NH3 in fuel Lbs CO/mmbtu* 0.2755 Lbs H₂S** 98% Dest. Eff. Convert From (ppm to Mole %) Convert From (Mole % to ppm) Lbs VOC* 98% Dest. Eff. H₂S (ppm) gm-moles/scf 1.2630 H₂S (ppm) H₂S Mole % H₂S Mole % gm/lbs 453,5924 *Emission Calculation Based on TNRCC: RG-109 (October 2000) - Air Permit Technical Guidance for Chemical Sources: Flare and Vapor Oxidizer **H₂S emissions calculated from weight of gas sent to the flare and multiplied by the flares destruction efficiency of 98%, assuming 98% H₂S by weight is converted to SO₂. ***Speciated VOC emissions calculated from weight of gas sent to flare multiplied by the flares destruction efficiency of 98%. Gas Component Data Component Pure Component Mole Wt. (g) BTU LHV in Component Mole % Mole Wt. (g/mol) Weight % Component Pounds Tons Mixture LHV (btu/scf)* (btu/scf) Nitrogen 1.13 28.01 0.32 0.01 1.475.97 0.74 N/A N/A H₂S 1.93 34.08 0.66 0.03 3.067.02 1.53 586.80 11.33 74.97 16.04 28.04 681.78 Methane 12.03 0.54 56,080.06 909.40 Carbon Dio. 4.56 44.01 2.01 0.09 9.357.29 4.68 N/A N/A 8.90 30.07 1,618.70 144.06 Ethane 2.68 0.12 12,478.42 6.24 4.66 44.10 4.79 Propane 2.05 0.09 9,581.46 2,314.90 107.87 58.12 3,000.40 26.40 ISO Butane 0.88 0.51 0.02 2,384.93 1.19 58.12 0.95 N-Butane 1.63 0.04 4,417.53 2.21 3,010.80 49.08 ISO-Pentane 0.53 72.15 0.38 0.02 1,783.02 0.89 3,699.00 19.60 N-Pentane 0.39 72.15 0.28 0.01 1,312.03 0.66 3,706.90 14.46 Hexanes +*** 0.50 86.18 0.43 0.02 2,009.11 1.00 4,403.80 22.02 Total Components 100.08% 22.29 100.00% 103.946.85 51.97 1.076.60 10.74 4.61 239.43 Total C3+ 8.59% 20.67% 21,488.07 Data from the GPSA - Engineering Data Book 11th Edition, Figure 23-2; page 23-4 "FPS Volumes I & II ver. 2000" *** Hexanes +, calculated on mole weight of Hexane

 Number
 Known MCF

 1
 1,675

 Total
 1,675

Emission Event Calculation Sheet

Vent Emissions			
Emissions	Lbs		
H₂S	3,379.06		
Propane	21,301.75		
ISO Butane	5,302.23		
N-Butane	9,821.18		
ISO-Pentane	3,964.05		
N-Pentane	2,916.94		
Hexanes +	4,466.70		
VOC Total	47,772.85		

Emission Calculation Information			
Emergency Flare			
Volume mmscf	3.7229		
Btu/scf (LHV)	1157.0000		
Total mmbtu	4307.3880		
Lbs NOx/mmbtu*	0.1380		
Fuel Bound NOx*	.5 wt % NH3 in fuel		
Lbs CO/mmbtu*	0.2755		
Lbs H ₂ S**	98% Dest. Eff.		
Lbs VOC***	98% Dest. Eff.		
gm-moles/scf	1.2630		
gm/lbs	453.5924		

Flare Emissions				
Emissions	Lbs			
NOx	580.29			
NO	30.54			
CO	1,186.69			
SO ₂	6,218.74			
Propane	426.03			
ISO Butane	106.04			
N-Butane	196.42			
ISO-Pentane	79.28			
N-Pentane	58.34			
Hexanes +	89.33			
H2S	67.58			
VOC Total	955.46			
Flared?	yes			

			Event Duration (Hr)
Reportable	e Event Determinati	on	12
Emissions	Amount	Reportable	Event lb/hr
NOx	580.29	No	48.357111
NO	30.54	No	2.545111
со	1,186.69	No	98.890449
SO ₂ or H ₂ S	6,218.74	Yes	518.228201
Propane	426.03	No	35.502913
ISO Butane	106.04	No	8.837051
N-Butane	196.42	No	16.368629
ISO-Pentane	79.28	No	6.606745
N-Pentane	58.34	No	4.861567
Hexanes +	89.33	No	7.444504
H2S	67.58	No	5.631766
VOC Total	955.46	No	79.621410
Flare Reportable	Y	es	
Vent Reportable	Not Ar	oplicable	

Reportable Event* Yes *If Reportable Event is greater than 0 then the event is reportable.

Convert From (ppm to Mole %) Convert From (Mole % to ppm)

		 ,		11 /		
	H ₂ S (ppm)	H₂S Mole %	H ₂ S Mole %	H ₂ S (ppm)		
	0	0	0.96	9564.2857		
G-109 (October 20	00) - Air Permit Te	echnical Guidance for	Chemical Sources: I	Flare and Vapor Oxidizers		

*Emission Calculation Based on TNRCC: RG-109 (October 2000) - Air Permit Technical Guidance for Chemical Sources: Flare and Vapor Oxidizers **H₂S emissions calculated from weight of gas sent to the flare and multiplied by the flares destruction efficiency of 98%, assuming 98% H₂S by weight is converted to SO₂. ***Speciated VOC emissions calculated from weight of gas sent to flare multiplied by the flares destruction efficiency of 98%.

Component	Mole %	Mole Wt. (g/mol)*	Component Mole Wt. (g)	Weight %	Pounds	Tons	Pure Component LHV (btu/scf)*	Component BTU LHV in Mixture (btu/scf)
Nitrogen	1.13	28.01	0.32	0.01	3,281.42	1.64	N/A	N/A
H ₂ S	0.96	34.08	0.33	0.01	3,379.06	1.69	586.80	5.61
Vethane	74.97	16.04	12.03	0.55	124,678.66	62.34	909.40	681.78
Carbon Dio.	4.56	44.01	2.01	0.09	20,803.38	10.40	N/A	N/A
Ethane	8.90	30.07	2.68	0.12	27,742.36	13.87	1,618.70	144.06
Propane	4.66	44.10	2.05	0.09	21,301.75	10.65	2,314.90	107.87
SO Butane	0.88	58.12	0.51	0.02	5,302.23	2.65	3,000.40	26.40
N-Butane	1.63	58.12	0.95	0.04	9,821.18	4.91	3,010.80	49.08
SO-Pentane	0.53	72.15	0.38	0.02	3,964.05	1.98	3,699.00	19.60
N-Pentane	0.39	72.15	0.28	0.01	2,916.94	1.46	3,706.90	14.46
Hexanes +***	0.50	86.18	0.43	0.02	4,466.70	2.23	4,403.80	22.02
Total Components	99.11%		21.96	100.00%	227,657.73	113.83		1,070.89
Total C3+	8.59%		4.61	20.98%	47,772.85	23.89		239.43

Number	MCF
1	3,723
Total	3,723

Emission Event Calculation Sheet

Vent Emiss	ions
Emissions	Lbs
l ₂ S	2,652.50
Propane	16,721.51
SO Butane	4,162.16
N-Butane	7,709.46
SO-Pentane	3,111.71
I-Pentane	2,289.75
lexanes +	3,506.29
VOC Total	37,500.87

Emission Calculation Information							
Emergency Flare							
Volume mmscf	2.9224						
Btu/scf (LHV)	1070.8883						
Total mmbtu	3129.5726						
Lbs NOx/mmbtu*	0.1380						
Fuel Bound NOx*	.5 wt % NH3 in fuel						
Lbs CO/mmbtu*	0.2755						
Lbs H ₂ S**	98% Dest. Eff.						
Lbs VOC***	98% Dest. Eff.						
gm-moles/scf	1.2630						
gm/lbs	453.5924						

Flare I	Emissions
Emissions	Lbs
NOx	422.52
NO	22.24
СО	862.20
SO ₂	4,881.60
Propane	334.43
ISO Butane	83.24
N-Butane	154.19
ISO-Pentane	62.23
N-Pentane	45.79
Hexanes +	70.13
H2S	53.05
VOC Total	750.02
Flared?	yes

			Event Duration (Hr)
Reportabl	e Event Determinati	on	19
Emissions	Amount	Reportable	Event lb/hr
NOx	422.52	No	22.238016
NO	22.24	No	1.170422
со	862.20	No	45.378802
SO ₂	4,881.60	No	256.926502
Propane	334.43	No	17.601588
ISO Butane	83.24	No	4.381222
N-Butane	154.19	No	8.115217
ISO-Pentane	62.23	No	3.275483
N-Pentane	45.79	No	2.410261
Hexanes +	70.13	No	3.690827
H2S	53.05	No	2.792109
VOC Total	750.02	No	39.474599
Flare Reportable	1	No	
Vent Reportable	Not Ap	plicable	

 Reportable Event*
 No

 *If Reportable Event is greater than 0 then the
 event is reportable.

	Convert From	(ppm to Mole %)	Convert From (Mole % to ppm)				
	H ₂ S (ppm)	H₂S Mole %	H ₂ S Mole %	H ₂ S (ppm)			
	0	0	0.96	9564.2857			
100 (0 -1 -1 - 00	00) Al- D	shales I Osiden as fee	01				

**mission Calculation Based on TNRCC: RG-109 (October 2000) - Air Permit Technical Guidance for Chemical Sources: Flare and Vapor Oxidizers
 **H₂S emissions calculated from weight of gas sent to the flare and multiplied by the flares destruction efficiency of 98%, assuming 98% H₂S by weight is converted to SO₂.
 ***Speciated VOC emissions calculated from weight of gas sent to flare multiplied by the flares destruction efficiency of 98%.

Component	Mole %	Mole Wt. (g/mol)*	Component Mole Wt. (g)	Weight %	Pounds	Tons	Pure Component LHV (btu/scf)*	Component BTU LHV in Mixture (btu/scf)
Nitrogen	1.13	28.01	0.32	0.01	2,575.86	1.29	N/A	N/A
H ₂ S	0.96	34.08	0.33	0.01	2,652.50	1.33	586.80	5.61
Vethane	74.97	16.04	12.03	0.55	97,870.62	48.94	909.40	681.78
Carbon Dio.	4.56	44.01	2.01	0.09	16,330.30	8.17	N/A	N/A
Ethane	8.90	30.07	2.68	0.12	21,777.28	10.89	1,618.70	144.06
Propane	4.66	44.10	2.05	0.09	16,721.51	8.36	2,314.90	107.87
SO Butane	0.88	58.12	0.51	0.02	4,162.16	2.08	3,000.40	26.40
N-Butane	1.63	58.12	0.95	0.04	7,709.46	3.85	3,010.80	49.08
SO-Pentane	0.53	72.15	0.38	0.02	3,111.71	1.56	3,699.00	19.60
N-Pentane	0.39	72.15	0.28	0.01	2,289.75	1.14	3,706.90	14.46
Hexanes +***	0.50	86.18	0.43	0.02	3,506.29	1.75	4,403.80	22.02
Total Components	99.11%		21.96	100.00%	178,707.43	89.35		1,070.89
Total C3+	8.59%		4.61	20.98%	37,500.87	18.75		239.43

Number	MCF
1	2,922
Total	2,922

November 15, 2024

Mr. Nelson Velez New Mexico, Oil Conservation Division District II – Artesia 811 S. First Street Artesia, New Mexico 88210

> RE: Fire Closure Request Dark Horse Treating Facility (nAPP2334345415) Pinon Midstream, LLC Lea County, New Mexico

Mr. Velez,

This closure request is related to a fire that occurred at Pinon Midstream, LLC's ("Piñon") Dark Horse Treating Facility ("Facility") which occurred on November 25, 2023. Piñon is requesting concurrence on the closure of the fire after final excavation activities.

Executive Summary

On November 25, 2023, Piñon operators at the Facility witnessed the sudden and uncontrolled release of sour natural gas at the inlet of the Facility. As Piñon operators attempted to isolate the release, the vapor cloud ignited resulting in an intense and sustained fire at the inlet of the Facility. The fire was sustained until November 28, 2023, when the remaining fuel sources were exhausted, and any small remaining fire was completely extinguished.

Excavation and Disposal

Excavation and disposal of fire impacted soils was conducted via mechanical digging. All impacted soil was excavated and removed from the Facility between November 28, 2023 through January 12, 2024. Recovered impacted soils were removed from the Facility and shipped as exploration and production exempt waste to the nearby R360 Environmental Solutions in Hobbs, New Mexico. Photos of the impact of the fire on the Facility and upon reclamation is included with our submission as Appendix B – Photo Log.

Sampling

Confirmation sampling was conducted at the site on December 11, 2023 and September 19, 2024. Samples were compared to Table 1 of the New Mexico Spill Rule NMAC 19.15.29. For the purposes of this closure request, sample results were compared to Table 1 limits associated with ground water less than 50 feet below ground surface. Laboratory samples and a table comparing the sample results to the Table 1 limits can be found attached to this request as Appendix C – Laboratory Analytical Results.

Please do not hesitate to contact Kaitlyn Lopez at <u>klopez@pinonmidstream.com</u> or (713) 834-4247 if you have any questions or require further information regarding this matter.

Respectfully,

Kaitlyn Lopez

Kaitlyn Lopez Regional Compliance Director

Attachments: Appendix A – Figures Appendix B – Photo Log Appendix C – Laboratory Analytical Results Appendix D – Reports and Variances

Page 7 of 95

•

Appendix A Figures

Received by OCD: 11/15/2024 1:02:21 PM

Z:\PROJECTS\Pinon Midstream\PNN2024-0003 NM SPCC Development\GIS\MXD\Figure 1 Site Location Map Dark Horse Plant.mxd

Released to Imaging: 1/22/2025 2:11:19 PA

Received by OCD: 11/15/2024 1:02:21 PM

Z:\PROJECTS\Pinon Midstream\PNN2024-0003 NM SPCC Development\GIS\MXD\Figure 2 Site Details Map Dark Horse Plant.mxd

•

Appendix B Photo Log

Image 1 – Facility post-fire, pre-remedial activities.

Image 2 – Facility during remediation and reconstruction activities.

Image 3 – Facility post-remediation and reconstruction activities.

•

Appendix C Laboratory Analytical Results

Analytical Results Summary

	SUMMAR		SULTS				Analytica	ai itesuits o	unnary								
					Criteria Exceedance	Criteria	Below Criteria	I									
			Chloride (mg/kg)	Chloride Closure Criteria (mg/kg)	Total TPH (mg/kg)	Total TPH Closure Criteria (mg/kg)	GRO+DRO (mg/kg)	GRO+DRO Closure Criteria (mg/kg)	Benzene (mg/kg)	Benzene Closure Criteria (mg/kg)	Toluene (mg/kg)	Ethylbenzene (mg/kg)	m,p-Xylenes (mg/kg)	o-Xylene (mg/kg)	Total Xylenes (mg/kg)	Total BTEX (mg/kg)	BTEX Closure Criteria (mg/kg)
SAMPLE ID	SAMPLE DATE	SAMPLE DEPTH (IN)															
Dark Horse 1	12/11/2023		35	600	372	100	0	1000	0.002	10	0.002	0.002	0.00399	0.002	0.0039	0.0039	50
Dark Horse 2	12/11/2023		11.4	600	302	100	0	1000	0.00225	10	0.0064	0.002	0.00901	0.00507	0.0141	0.248	50
Dark Horse 3	12/11/2023		24.2	600	387	100	0	1000	0.101	10	0.379	0.0765	0.368	0.16	0.5285	1.08	50
Dark Horse 4	12/11/2023		24.5	600	127	100	0	1000	0.002	10	0.002	0.002	0.004	0.002	0.004	0.004	50
Dark Horse 5	12/11/2023		16.5	600	72.7	100	0	1000	0.002	10	0.002	0.002	0.004	0.002	0.004	0.004	50
Dark Horse 6	12/11/2023		81.1	600	57.8	100	0	1000	0.002	10	0.002	0.002	0.004	0.002	0.004	0.004	50
Dark Horse 7	12/11/2023		21.2	600	57.8	100	0	1000	0.002	10	0.002	0.002	0.004	0.002	0.004	0.004	50
Dark Horse 1	9/19/2024	6" - 12"	8.62	600	50	100	0	1000	0.002	10	0.00199	0.00199	0.00398	0.00199	0.00398	0.00398	50
Dark Horse 2	9/20/2024	6" - 12"	22.1	600	49.8	100	0	1000	0.00199	10	0.00199	0.00199	0.00398	0.00199	0.00398	0.00398	50
Dark Horse 3	9/21/2024	6" - 12"	12.7	600	49.8	100	0	1000	0.002	10	0.002	0.002	0.004	0.002	0.004	0.004	50
Dark Horse 4	9/22/2024	6" - 12"	13.3	600	49.7	100	0	1000	0.002	10	0.002	0.002	0.00401	0.002	0.00401	0.00401	50
Dark Horse 5 - 2	9/23/2024	6" - 12"	93.4	600	49.7	100	0	1000	0.002	10	0.002	0.002	0.00399	0.002	0.00399	0.00399	50
Dark Horse 6 - 2	9/24/2024	6" - 12"	33	600	50	100	0	1000	0.00202	10	0.00202	0.00202	0.00403	0.00202	0.00403	0.00403	50
Dark Horse 7 - 2	9/25/2024	6" - 12"	58.2	600	49.8	100	0	1000	0.00199	10	0.00199	0.00199	0.00398	0.00199	0.00398	0.00398	50

Received by OCD: 11/15/2024 1:02:21 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Grant McAfee Resolute Compliance LLC 115 FM 2453 Suite A Royse City, Texas 75189 Generated 12/13/2023 10:24:49 AM

JOB DESCRIPTION

Pinan White House & Dark House

JOB NUMBER

880-36795-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

5 6 7

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 12/13/2023 10:24:49 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	13
QC Sample Results	14
QC Association Summary	18
Lab Chronicle	21
Certification Summary	25
Method Summary	26
Sample Summary	27
Chain of Custody	28
Receipt Checklists	30

Page 21 of 95

Released to Imaging: 1/22/2025 2:11:19 PM

Page 22 of 95

	Definitions/Glossary		
Client: Resolute	e Compliance LLC	Job ID: 880-36795-1	
Project/Site: Pir	an White House & Dark House		
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1-	Surrogate recovery exceeds control limits, low biased.		Ē
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			
Qualifier	Qualifier Description		
F1	MS and/or MSD recovery exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		9
Qualifier	Qualifier Description		6
U	Indicates the analyte was analyzed for but not detected.		ž
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
TNTC	Too Numerous To Count		

.

Case Narrative

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

(QC) is further explained in narrative comments.

to a dilution or otherwise noted in the narrative.

Job ID: 880-36795-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-36795-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method. Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed

Receipt

The samples were received on 12/12/2023 8:25 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C

Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: White House #1 (880-36795-1), White House #2 (880-36795-2), White House #3 (880-36795-3), Dark House #1 (880-36795-4), Dark House #2 (880-36795-5), Dark House #3 (880-36795-6), Dark House #4 (880-36795-7), Dark House #5 (880-36795-8), Dark House #6 (880-36795-9), Dark House #7 (880-36795-10) and Dark House #8 (880-36795-11).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: Dark House #3 (880-36795-6). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-68892 and 880-68892 and analytical batch 880-68889 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or guality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method TX 1005: The surrogate recovery for the blank associated with preparation batch 880-68897 and analytical batch 880-68882 was outside the upper control limits.

Method TX 1005: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-68897 and analytical batch 880-68882 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Job ID: 880-36795-1

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: White House #1 Date Collected: 12/11/23 11:50

Date Received: 12/12/23 08:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analvzed	Dil Fa
Benzene	<0.00199	U	0.00199		ma/Ka		12/12/23 11:12	12/12/23 14:00	
Toluene	< 0.00199	U	0.00199		ma/Ka		12/12/23 11:12	12/12/23 14:00	
Ethylbenzene	< 0.00199	U F1	0.00199		ma/Ka		12/12/23 11:12	12/12/23 14:00	
n-Xvlene & p-Xvlene	< 0.00398	U	0.00398		ma/Ka		12/12/23 11:12	12/12/23 14:00	
p-Xvlene	<0.00199	U F1	0.00199		ma/Ka		12/12/23 11.12	12/12/23 14:00	
Kylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/23 11:12	12/12/23 14:00	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Bromofluorobenzene (Surr)	83		70 - 130				12/12/23 11:12	12/12/23 14:00	
1,4-Difluorobenzene (Surr)	110		70 - 130				12/12/23 11:12	12/12/23 14:00	
Method: TAL SOP Total BTEX - 1	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal BTEX	<0.00398	U	0.00398		mg/Kg			12/12/23 14:00	
Method: TCEQ TX 1005 - Texas -	Total Petroleu	m Hydrocai	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C12 Range Hydrocarbons	<49.9	U	49.9		mg/Kg		12/12/23 09:48	12/12/23 10:42	
C12-C28 Range Hydrocarbons	182	F1	49.9		mg/Kg		12/12/23 09:48	12/12/23 10:42	
C28-C35 Range Hydrocarbons	<49.9	U	49.9		mg/Kg		12/12/23 09:48	12/12/23 10:42	
Fotal Petroleum Hydrocarbons C6-C35)	182		49.9		mg/Kg			12/12/23 10:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane (Surr)	93		70 - 130				12/12/23 09:48	12/12/23 10:42	
p-Terphenyl (Surr)	101		70 - 130				12/12/23 09:48	12/12/23 10:42	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	212		5.03		mg/Kg			12/13/23 00:34	
lient Sample ID: White Hou	ise #2						Lab Sam	ple ID: 880-3	6795-2
ate Collected: 12/11/23 12:00								Matri	x: Solie

Analyte	Result	Quaimer	RL	MDL	Unit	U	Prepared	Analyzed	Dirrac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 14:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				12/12/23 11:12	12/12/23 14:20	1
1,4-Difluorobenzene (Surr)	116		70 - 130				12/12/23 11:12	12/12/23 14:20	1
- Method: TAL SOP Total BTEX	- Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/12/23 14:20	1

Eurofins Midland

Page 24 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-1

Matrix: Solid

5

Released to Imaging: 1/22/2025 2:11:19 PM

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: White House #2 Date Collected: 12/11/23 12:00

Date Received: 12/12/23 08:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
C6-C12 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		12/12/23 09:48	12/12/23 11:48	1
>C12-C28 Range Hydrocarbons	290		49.8		mg/Kg		12/12/23 09:48	12/12/23 11:48	1
>C28-C35 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		12/12/23 09:48	12/12/23 11:48	1
Total Petroleum Hydrocarbons (C6-C35)	290		49.8		mg/Kg			12/12/23 11:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	89		70 - 130				12/12/23 09:48	12/12/23 11:48	1
o-Terphenyl (Surr)	97		70 - 130				12/12/23 09:48	12/12/23 11:48	1
Chloride	26.4		4.98		mg/Kg			12/13/23 00:53	2705 2
Date Collected: 12/11/23 12:10	use #3						Lab Salli	Matri	x: Solid
Date Received: 12/12/23 08:25									
Date Received: 12/12/23 08:25 	Organic Comp	ounds (GC)							
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte	Organic Comp	ounds (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte Benzene	Organic Comp Result <0.00199	ounds (GC) Qualifier U		MDL	Unit mg/Kg	D	Prepared 12/12/23 11:12	Analyzed	Dil Fac
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte Benzene Toluene	Crganic Comp Result <0.00199 <0.00199	ounds (GC) Qualifier U U	RL 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg	<u> </u>	Prepared 12/12/23 11:12 12/12/23 11:12	Analyzed 12/12/23 14:41 12/12/23 14:41	Dil Fac
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Corganic Comp Result <0.00199 <0.00199 <0.00199	ounds (GC) Qualifier U U U	RL 0.00199 0.00199 0.00199	MDL	Unit mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12	Analyzed 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41	Dil Fac
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Corganic Comp Result <0.00199 <0.00199 <0.00199 <0.00398	ounds (GC) Qualifier U U U U	RL 0.00199 0.00199 0.00199 0.00398	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12	Analyzed 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41	Dil Fac
Date Received: 12/12/23 08:25 Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Corganic Comp Result <0.00199 <0.00199 <0.00199 <0.00398 <0.00199	Dounds (GC) Qualifier U U U U U U	RL 0.00199 0.00199 0.00199 0.00398 0.00199	MDL	Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12 12/12/23 11:12	Analyzed 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41 12/12/23 14:41	Dil Fac

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91	70 - 130	12/12/23 11:12	12/12/23 14:41	1
1,4-Difluorobenzene (Surr)	108	70 - 130	12/12/23 11:12	12/12/23 14:41	1

Method: TAL SOP Total BTEX - Total BTEX Calculation									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/12/23 14:41	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		12/12/23 09:48	12/12/23 12:11	1
>C12-C28 Range Hydrocarbons	472		49.7		mg/Kg		12/12/23 09:48	12/12/23 12:11	1
>C28-C35 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		12/12/23 09:48	12/12/23 12:11	1
Total Petroleum Hydrocarbons (C6-C35)	472		49.7		mg/Kg			12/12/23 12:11	1

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	102		70 - 130				12/12/23 09:48	12/12/23 12:11	1
o-Terphenyl (Surr)	102		70 - 130				12/12/23 09:48	12/12/23 12:11	1
_ Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	30.8		5.02		mg/Kg			12/13/23 01:00	1

Page 25 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-2

Matrix: Solid

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: Dark House #1 Date Collected: 12/11/23 14:30

Date Received: 12/12/23 08:25

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				12/12/23 11:12	12/12/23 15:01	1
1,4-Difluorobenzene (Surr)	106		70 - 130				12/12/23 11:12	12/12/23 15:01	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/12/23 15:01	1
Method: TCEQ TX 1005 - Texas	- Total Petroleu	m Hydrocai	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 09:48	12/12/23 12:34	1
>C12-C28 Range Hydrocarbons	372		50.0		mg/Kg		12/12/23 09:48	12/12/23 12:34	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 09:48	12/12/23 12:34	1
Total Petroleum Hydrocarbons (C6-C35)	372		50.0		mg/Kg			12/12/23 12:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	94		70 - 130				12/12/23 09:48	12/12/23 12:34	1
o-Terphenyl (Surr)	107		70 - 130				12/12/23 09:48	12/12/23 12:34	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	35.0		4.97		mg/Kg			12/13/23 01:06	1
lient Sample ID: Dark Hous	se #2						Lab Sam	ple ID: 880-3	6795-5
ate Collected: 12/11/23 14:40								Matri	x: Solid
ate Received: 12/12/23 08:25									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00225		0.00200		mg/Kg		. 12/12/23 11:12	12/12/23 15:22	1
Toluene	0.00640		0.00200		mg/Kg		12/12/23 11:12	12/12/23 15:22	1
Ethylbonzone	0.00202		0 00200		ma/Ka		12/12/23 11.12	12/12/23 15:22	1

Ethylbenzene	0.00202		0.00200	ing/kg	12/12/23 11.12	12/12/23 13.22	
m-Xylene & p-Xylene	0.00901		0.00401	mg/Kg	12/12/23 11:12	12/12/23 15:22	1
o-Xylene	0.00507		0.00200	mg/Kg	12/12/23 11:12	12/12/23 15:22	1
Xylenes, Total	0.0141		0.00401	mg/Kg	12/12/23 11:12	12/12/23 15:22	1
Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	83		70 _ 130		12/12/23 11:12	12/12/23 15:22	1
1,4-Difluorobenzene (Surr)	105		70 - 130		12/12/23 11:12	12/12/23 15:22	1
-							

Method: TAL SOP Total BTEX - Total BTEX Calculation										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	0.0248		0.00401		mg/Kg			12/12/23 15:22	1	

Eurofins Midland

Page 26 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-4

Matrix: Solid

5

Released to Imaging: 1/22/2025 2:11:19 PM

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: Dark House #2 Date Collected: 12/11/23 14:40

Date Received: 12/12/23 08:25

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	136		50.2		mg/Kg		12/12/23 09:48	12/12/23 12:57	1
>C12-C28 Range Hydrocarbons	166		50.2		mg/Kg		12/12/23 09:48	12/12/23 12:57	1
>C28-C35 Range Hydrocarbons	<50.2	U	50.2		mg/Kg		12/12/23 09:48	12/12/23 12:57	1
Total Petroleum Hydrocarbons (C6-C35)	302		50.2		mg/Kg			12/12/23 12:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130				12/12/23 09:48	12/12/23 12:57	1
o-Terphenyl (Surr)	115		70 - 130				12/12/23 09:48	12/12/23 12:57	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	11.4	4.96	mg/Kg			12/13/23 01:13	1

Client Sample ID: Dark House #3

Date Collected: 12/11/23 14:50

Date Received: 12/12/23 08:25

Method: SW846 8021B - Volatile Organic Compounds (GC)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	0.101		0.00199		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
Toluene	0.379		0.00199		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
Ethylbenzene	0.0765		0.00199		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
m-Xylene & p-Xylene	0.368		0.00398		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
o-Xylene	0.160		0.00199		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
Xylenes, Total	0.528		0.00398		mg/Kg		12/12/23 11:12	12/12/23 15:42	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	66	S1-	70 - 130				12/12/23 11:12	12/12/23 15:42	1			
1,4-Difluorobenzene (Surr)	102		70 - 130				12/12/23 11:12	12/12/23 15:42	1			

Method: TAL SOP Total BTEX - Total BTEX Calculation											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Total BTEX	1.08		0.00398		mg/Kg			12/12/23 15:42	1		

Method: TCEQ TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)												
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
C6-C12 Range Hydrocarbons	236		50.4		mg/Kg		12/12/23 09:48	12/12/23 13:19	1			
>C12-C28 Range Hydrocarbons	151		50.4		mg/Kg		12/12/23 09:48	12/12/23 13:19	1			
>C28-C35 Range Hydrocarbons	<50.4	U	50.4		mg/Kg		12/12/23 09:48	12/12/23 13:19	1			
Total Petroleum Hydrocarbons (C6-C35)	387		50.4		mg/Kg			12/12/23 13:19	1			

Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	112		70 - 130				12/12/23 09:48	12/12/23 13:19	1
o-Terphenyl (Surr)	108		70 - 130				12/12/23 09:48	12/12/23 13:19	1
- Method: EPA 300.0 - Anions	s, Ion Chromatograp	ohy - Solubl	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.2		5.02		mg/Kg			12/13/23 01:32	1

Job ID: 880-36795-1

Lab Sample ID: 880-36795-5

Lab Sample ID: 880-36795-6

Matrix: Solid

Matrix: Solid

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: Dark House #4 Date Collected: 12/11/23 15:00

Date Received: 12/12/23 08:25

			,			_			
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/23 11:12	12/12/23 16:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				12/12/23 11:12	12/12/23 16:03	1
1,4-Difluorobenzene (Surr)	108		70 - 130				12/12/23 11:12	12/12/23 16:03	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/12/23 16:03	1
Method: TCEQ TX 1005 - Texas -	Total Petroleu	m Hydrocai	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.5	U	50.5		mg/Kg		12/12/23 09:48	12/12/23 13:42	1
>C12-C28 Range Hydrocarbons	127		50.5		mg/Kg		12/12/23 09:48	12/12/23 13:42	1
>C28-C35 Range Hydrocarbons	<50.5	U	50.5		mg/Kg		12/12/23 09:48	12/12/23 13:42	1
Total Petroleum Hydrocarbons (C6-C35)	127		50.5		mg/Kg			12/12/23 13:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	115		70 - 130				12/12/23 09:48	12/12/23 13:42	1
o-Terphenyl (Surr)	125		70 - 130				12/12/23 09:48	12/12/23 13:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	24.5		5.03		mg/Kg			12/13/23 01:39	1
lient Sample ID: Dark Hous	e #5						Lab Sam	ple ID: 880-3	6795-8
ate Collected: 12/11/23 15:10								Matri	x: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/12/23 11:12	12/12/23 16:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				12/12/23 11:12	12/12/23 16:23	1
1,4-Difluorobenzene (Surr)	119		70 - 130				12/12/23 11:12	12/12/23 16:23	1
- Method: TAL SOP Total BTEX	- Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/12/23 16:23	1

Eurofins Midland

Page 28 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-7

Matrix: Solid

5

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: Dark House #5 Date Collected: 12/11/23 15:10

Date Received: 12/12/23 08:25

Method: TCEQ TX 1005 - Texas -	Total Petroleu	m Hydroca	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		12/12/23 09:48	12/12/23 14:05	1
>C12-C28 Range Hydrocarbons	72.7		49.7		mg/Kg		12/12/23 09:48	12/12/23 14:05	1
>C28-C35 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		12/12/23 09:48	12/12/23 14:05	1
Total Petroleum Hydrocarbons (C6-C35)	72.7		49.7		mg/Kg			12/12/23 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	88		70 - 130				12/12/23 09:48	12/12/23 14:05	1
o-Terphenyl (Surr)	101		70 - 130				12/12/23 09:48	12/12/23 14:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	16.5		5.00		mg/Kg			12/13/23 01:45	1
Client Sample ID: Dark Hous	e #6						Lab Sam	ple ID: 880-3	6795-9

Date Collected: 12/11/23 15:20

Date Received: 12/12/23 08:25

Method: SW846 8021B - Volatile Organic Compounds (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac		
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/23 11:12	12/12/23 16:44	1		
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac		
4-Bromofluorobenzene (Surr)	93		70 - 130				12/12/23 11:12	12/12/23 16:44	1		
1,4-Difluorobenzene (Surr)	116		70 - 130				12/12/23 11:12	12/12/23 16:44	1		

Method: TAL SOP Total BTEX - Tot	al BIEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401		mg/Kg			12/12/23 16:44	1

Method: ICEQ IX 1005 - Iexas	- Total Petroleu	m Hydroca	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 09:48	12/12/23 14:27	1
>C12-C28 Range Hydrocarbons	57.8		50.0		mg/Kg		12/12/23 09:48	12/12/23 14:27	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 09:48	12/12/23 14:27	1
Total Petroleum Hydrocarbons	57.8		50.0		mg/Kg			12/12/23 14:27	1
(C6-C35)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	110		70 - 130				12/12/23 09:48	12/12/23 14:27	1

o-Terphenyl (Surr)	124		70 - 130				12/12/23 09:48	12/12/23 14:27	1
 Method: EPA 300.0 - Anions, I	on Chromatograp	ohy - Soluble	•						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81.1		4.99		mg/Kg			12/13/23 01:52	1

Page 29 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-8 Matrix: Solid

5

Matrix: Solid

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Client Sample ID: Dark House #7 Date Collected: 12/11/23 15:30

Date Received: 12/12/23 08:25

Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		12/12/23 11:12	12/12/23 18:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				12/12/23 11:12	12/12/23 18:54	1
1,4-Difluorobenzene (Surr)	107		70 - 130				12/12/23 11:12	12/12/23 18:54	1
Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/12/23 18:54	1
Method: TCEQ TX 1005 - Texas	- Total Petroleu	m Hydroca	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.9	U	49.9		mg/Kg		12/12/23 09:48	12/12/23 14:48	1
>C12-C28 Range Hydrocarbons	<49.9	U	49.9		mg/Kg		12/12/23 09:48	12/12/23 14:48	1
>C28-C35 Range Hydrocarbons	<49.9	U	49.9		mg/Kg		12/12/23 09:48	12/12/23 14:48	1
Total Petroleum Hydrocarbons (C6-C35)	<49.9	U	49.9		mg/Kg			12/12/23 14:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	93		70 - 130				12/12/23 09:48	12/12/23 14:48	1
o-Terphenyl (Surr)	104		70 - 130				12/12/23 09:48	12/12/23 14:48	1
Method: EPA 300.0 - Anions, Io	n Chromatogra	ohy - Solubl	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	21.2		4.98		mg/Kg			12/13/23 01:59	1

Job ID: 880-36795-1

Page 30 of 95

Lab Sample ID: 880-36795-10

Matrix: Solid

5

Eurofins Midland

Released to Imaging: 1/22/2025 2:11:19 PM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-36795-1	White House #1	83	110		- 27
880-36795-1 MS	White House #1	116	117		
880-36795-1 MSD	White House #1	95	107		- 5
880-36795-2	White House #2	91	116		
880-36795-3	White House #3	91	108		
880-36795-4	Dark House #1	94	106		
880-36795-5	Dark House #2	83	105		
880-36795-6	Dark House #3	66 S1-	102		
880-36795-7	Dark House #4	96	108		
880-36795-8	Dark House #5	102	119		
880-36795-9	Dark House #6	93	116		
880-36795-10	Dark House #7	85	107		
LCS 880-68892/1-A	Lab Control Sample	98	98		
LCSD 880-68892/2-A	Lab Control Sample Dup	99	107		
MB 880-68892/5-A	Method Blank	96	129		
Surrogate Legend					1
BFB = 4-Bromofluorober	nzene (Surr)				
DFBZ = 1,4-Difluorobenz	zene (Surr)				

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC) Matrix: Solid

Prep Type: Total/NA Percent Surrogate Recovery (Acceptance Limits) 1CO ОТРН (70-130) (70-130) Lab Sample ID Client Sample ID 880-36795-1 White House #1 93 101 880-36795-1 MS White House #1 106 96 White House #1 880-36795-1 MSD 108 99 880-36795-2 White House #2 89 97 880-36795-3 White House #3 102 102 880-36795-4 Dark House #1 94 107 880-36795-5 Dark House #2 106 115 880-36795-6 Dark House #3 112 108 880-36795-7 Dark House #4 115 125 880-36795-8 Dark House #5 88 101 880-36795-9 Dark House #6 110 124 880-36795-10 Dark House #7 93 104 LCS 880-68897/2-A Lab Control Sample 108 122 LCSD 880-68897/3-A Lab Control Sample Dup 100 109 MB 880-68897/1-A Method Blank 137 S1+ 166 S1+

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Page 31 of 95

Job ID: 880-36795-1

Prep Type: Total/NA

QC Sample Results

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-68892/5-A Matrix: Solid Analysis Batch: 68889	k									Client Sa	ample ID: N Prep Ty Prep I	ethod pe: To Batch:	Blank tal/NA 68892
	Μ	B MB											
Analyte	Resu	UL Qualifier	RL		MDL	Unit		<u>D</u>	P	repared	Analyze	d	Dil Fac
Benzene	<0.0020		0.00200			mg/Kg	g		12/1	2/23 11:20	12/12/23 1	3:31	1
	<0.0020		0.00200			mg/Kg	g		12/1	2/23 11:20	12/12/23 1	3:31	1
Ethylbenzene	<0.0020	0 U	0.00200			mg/Kg	g 		12/1	2/23 11:20	12/12/23 1	3:31	1
m-Xylene & p-Xylene	<0.0040	00 U	0.00400			mg/Kg	g		12/1	2/23 11:20	12/12/23 13	3:31	1
o-Xylene	<0.0020	0 U	0.00200			mg/K	g		12/1	2/23 11:20	12/12/23 13	3:31	1
Xylenes, Total	<0.0040	0 U	0.00400			mg/K	g		12/1	2/23 11:20	12/12/23 13	3:31	1
	М	B MB											
Surrogate	%Recove	ry Qualifier	· Limits						P	repared	Analyze	d	Dil Fac
4-Bromofluorobenzene (Surr)	S	96	70 - 130						12/1	2/23 11:20	12/12/23 1	3:31	1
1,4-Difluorobenzene (Surr)	12	29	70 - 130						12/1	2/23 11:20	12/12/23 1	3:31	1
Matrix: Solid Analysis Batch: 68889			Spike	LCS	LCS						Prep Ty Prep I %Rec	pe: To Batch:	tal/NA 68892
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits		
Benzene			0.100	0.1038			mg/Kg			104	70 - 130		
Toluene			0.100	0.09472			mg/Kg			95	70 - 130		
Ethylbenzene			0.100	0.09784			mg/Kg			98	70 - 130		
m-Xylene & p-Xylene			0.200	0.1832			mg/Kg			92	70 - 130		
o-Xylene			0.100	0.07947			mg/Kg			79	70 - 130		
	LCS L	cs											
Surrogate	Recovery Q	ualifier	Limits										
4-Bromofluorobenzene (Surr)	98		70 - 130										
1,4-Difluorobenzene (Surr)	98		70 - 130										
Lab Sample ID: LCSD 880-68892/2	2-A						CI	ient	Sam	ple ID: L	ab Control	Sampl	e Dup
Matrix: Solid											Prep Ty	pe: To	tal/NA
Analysis Batch: 68889											Prep I	3atch:	68892
			Spike	LCSD	LCS	D					%Rec		RPD
Analyte			Added	Result	Qual	lifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene			0.100	0.1124			mg/Kg			112	70 - 130	8	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	107		70 _ 130

Lab Sample ID: 880-36795-1 MS Matrix: Solid

alucia Batabu 69990

Analysis Batch: 68889									Prep	Batch: 68892
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00199	U	0.0996	0.1212		mg/Kg		122	70 - 130	
Toluene	<0.00199	U	0.0996	0.07893		mg/Kg		79	70 - 130	

Eurofins Midland

Prep Type: Total/NA

3

2

3

5

35

35

35

35

92

96

95

84

70 - 130

70 - 130

70 - 130

70 - 130

Client Sample ID: White House #1

Job ID: 880-36795-1

12/13/2023

Lab Sample ID: 880-36795-1 MS

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Analysis Batch: 68889

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

QC Sample Results

MS MS

0.06569 F1

0.1803

0.08558

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.0996

0.199

0.0996

Limits 70 - 130

70 - 130

70 - 130

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00199 UF1

<0.00199 UF1

116

117

MS MS

Qualifier

<0.00398 U

%Recovery

Result Qualifier

Job ID: 880-36795-1

Client Sample ID: White House #1 Prep Type: Total/NA Prep Batch: 68892

Client Sample ID: White House #1

Prep Type: Total/NA

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

66

91

85

D

Lab Sample ID: 880-36795-1 MSD Matrix: Solid nalysis Batch: 68889

Analysis Batch: 68889									Prep	Batch:	68892
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00199	U	0.0990	0.1043		mg/Kg		105	70 - 130	15	35
Toluene	<0.00199	U	0.0990	0.07890		mg/Kg		79	70 - 130	0	35
Ethylbenzene	<0.00199	U F1	0.0990	0.07804		mg/Kg		79	70 - 130	17	35
m-Xylene & p-Xylene	<0.00398	U	0.198	0.1548		mg/Kg		78	70 - 130	15	35
o-Xylene	<0.00199	U F1	0.0990	0.06287	F1	mg/Kg		63	70 - 130	31	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	95		70 - 130								

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

107

166 S1+

Lab Sample ID: MB 880-68897/1-A Matrix: Solid Analysis Batch: 68882

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 07:48	12/12/23 08:12	1
>C12-C28 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 07:48	12/12/23 08:12	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		12/12/23 07:48	12/12/23 08:12	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	137	S1+	70 - 130				12/12/23 07:48	12/12/23 08:12	1

70 - 130

Lab Sample ID: LCS 880-68897/2-A Matrix: Solid

o-Terphenyl (Surr)

Analysis Batch: 68882								Prep E	3atch: 68897
		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
C6-C12 Range Hydrocarbons		1000	943.4		mg/Kg		94	75 _ 125	
>C12-C28 Range Hydrocarbons		1000	984.5		mg/Kg		98	75 - 125	
	LCS LCS								
• •									

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	108		70 - 130

Eurofins Midland

12/12/23 07:48 12/12/23 08:12 12/12/23 07:48 12/12/23 08:12

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 68897

1

Client Sample ID: Lab Control Sample Prep Type: Total/NA

QC Sample Results

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC) (Continued)

Lab Sample ID: LCS 880-6889	97/2-A						Client	Sample	ID: Lab Co	ontrol Sa	ample
Matrix: Solid									Prep T	ype: To	tal/NA
Analysis Batch: 68882									Prep	Batch:	<mark>68897</mark>
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
o-Terphenyl (Surr)	122		70 - 130								
- Lab Samala ID: LCSD 880.69	007/2 4					Clie			l ah Cantra	I Commi	- D
Lab Sample ID: LCSD 880-66	697/3-A					Cile	nt San	ipie iD:		i Sampi	
Matrix: Solid									Prepi	ype: 10	
Analysis Batch: 68882									Prep	Batch:	68897
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
C6-C12 Range Hydrocarbons			1000	994.1		mg/Kg		99	75 - 125	5	25
>C12-C28 Range Hydrocarbons			1000	1058		mg/Kg		106	75 - 125	7	25
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	100		70 - 130								
o-Terphenyl (Surr)	109		70 - 130								
- 	40						~	lient On			
Lab Sample ID: 880-36795-11	VIS						C	lient Sa	mpie ID: w		
Matrix: Solid									Prepi	ype: 10	
Analysis Batch: 68882									Prep	Batch:	68897
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
C6-C12 Range Hydrocarbons	<49.9	U	1000	1079		mg/Kg		105	75 - 125		
>C12-C28 Range Hydrocarbons	182	F1	1000	756.8	F1	mg/Kg		57	75 - 125		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	106		70 - 130								
o-Terphenyl (Surr)	96		70 - 130								
- I ah Sampio ID: 880-36705-1 I							c	liont Sa	mplo ID: Wi	hito Hou	100 #1
Matrix: Solid	150						U	nem Ja	Drop T		
Matrix. Solid									Piepi	pet lo	
Analysis Batch: 66662	0	0	0	MOD	MOD				Prep	Batch:	0009/
• • •	Sample	Sample	Бріке				_	a/ B	%Rec		RPD
	Result	Qualifier	Added	Result	Qualifier		<u> </u>	%Rec	Limits		
C6-C12 Range Hydrocarbons	<49.9	0	1000	1095		mg/Kg		107	75 - 125	1	25
>C12-C28 Range Hydrocarbons	182	F1	1000	751.6	F1	mg/Kg		57	75 - 125	1	25
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	108		70 - 130								
o-Terphenyl (Surr)	99		70 - 130								
/lethod: 300.0 - Anions, lo	on Chromat	ography									
- I ab Sample ID: MB 880-6894	2/1-A							Client S	ample ID [.] I	Method	Blank
Matrix: Solid								Shorte	Dron	Type: S	oluble
Analysis Batch: 69051									тер	. , p.c. 00	
Analysis Datoll. 00331											

Eurofins Midland

Job ID: 880-36795-1

5

7 8

Analyte

Chloride

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House Job ID: 880-36795-1

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-68942/2-A Matrix: Solid						Client	Sample	e ID: Lab C Prep	ontrol Sa Type: Se	ample oluble
Analysis Datch. 60351		Snike	LCS	1.05				%Rec		
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride		250	256.2		mg/Kg		102	90 - 110		
Lab Sample ID: LCSD 880-68942/3-A					Clie	nt Sam	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid								Prep	Type: So	oluble
Analysis Batch: 68951										
		Spike	LCSD	LCSD				%Rec		RPD
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride		250	249.9		mg/Kg		100	90 _ 110	2	20
Lab Sample ID: 880-36795-1 MS						С	lient Sa	mple ID: W	hite Hou	ise #1
Matrix: Solid								Prep	Type: Se	oluble
Analysis Batch: 68951										
Sampl	e Sample	Spike	MS	MS				%Rec		
Analyte Resu	t Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride 21	2	252	470.3		mg/Kg		103	90 _ 110		
Lab Sample ID: 880-36795-1 MSD						с	lient Sa	mple ID: W	hite Hou	ise #1
Matrix: Solid								Prep	Type: Se	oluble
Analysis Batch: 68951										
Sampl	e Sample	Spike	MSD	MSD				%Rec		RPD
Analyte Resu	t Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride 21	2	252	472.1		mg/Kg		103	90 - 110	0	20

Eurofins Midland

QC Association Summary

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Analysis Batch: 68889

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36795-1	White House #1	Total/NA	Solid	8021B	68892
880-36795-2	White House #2	Total/NA	Solid	8021B	68892
880-36795-3	White House #3	Total/NA	Solid	8021B	68892
880-36795-4	Dark House #1	Total/NA	Solid	8021B	68892
880-36795-5	Dark House #2	Total/NA	Solid	8021B	68892
880-36795-6	Dark House #3	Total/NA	Solid	8021B	68892
880-36795-7	Dark House #4	Total/NA	Solid	8021B	68892
880-36795-8	Dark House #5	Total/NA	Solid	8021B	68892
880-36795-9	Dark House #6	Total/NA	Solid	8021B	68892
880-36795-10	Dark House #7	Total/NA	Solid	8021B	68892
MB 880-68892/5-A	Method Blank	Total/NA	Solid	8021B	68892
LCS 880-68892/1-A	Lab Control Sample	Total/NA	Solid	8021B	68892
LCSD 880-68892/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	68892
880-36795-1 MS	White House #1	Total/NA	Solid	8021B	68892
880-36795-1 MSD	White House #1	Total/NA	Solid	8021B	68892

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36795-1	White House #1	Total/NA	Solid	5035	
880-36795-2	White House #2	Total/NA	Solid	5035	
880-36795-3	White House #3	Total/NA	Solid	5035	
880-36795-4	Dark House #1	Total/NA	Solid	5035	
880-36795-5	Dark House #2	Total/NA	Solid	5035	
880-36795-6	Dark House #3	Total/NA	Solid	5035	
880-36795-7	Dark House #4	Total/NA	Solid	5035	
880-36795-8	Dark House #5	Total/NA	Solid	5035	
880-36795-9	Dark House #6	Total/NA	Solid	5035	
880-36795-10	Dark House #7	Total/NA	Solid	5035	
MB 880-68892/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-68892/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-68892/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-36795-1 MS	White House #1	Total/NA	Solid	5035	
880-36795-1 MSD	White House #1	Total/NA	Solid	5035	

Analysis Batch: 69008

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36795-1	White House #1	Total/NA	Solid	Total BTEX	
880-36795-2	White House #2	Total/NA	Solid	Total BTEX	
880-36795-3	White House #3	Total/NA	Solid	Total BTEX	
880-36795-4	Dark House #1	Total/NA	Solid	Total BTEX	
880-36795-5	Dark House #2	Total/NA	Solid	Total BTEX	
880-36795-6	Dark House #3	Total/NA	Solid	Total BTEX	
880-36795-7	Dark House #4	Total/NA	Solid	Total BTEX	
880-36795-8	Dark House #5	Total/NA	Solid	Total BTEX	
880-36795-9	Dark House #6	Total/NA	Solid	Total BTEX	
880-36795-10	Dark House #7	Total/NA	Solid	Total BTEX	

Page 36 of 95

5
Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

GC Semi VOA

Analysis Batch: 68882

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36795-1	White House #1	Total/NA	Solid	TX 1005	68897
880-36795-2	White House #2	Total/NA	Solid	TX 1005	68897
880-36795-3	White House #3	Total/NA	Solid	TX 1005	68897
880-36795-4	Dark House #1	Total/NA	Solid	TX 1005	68897
880-36795-5	Dark House #2	Total/NA	Solid	TX 1005	68897
880-36795-6	Dark House #3	Total/NA	Solid	TX 1005	68897
880-36795-7	Dark House #4	Total/NA	Solid	TX 1005	68897
880-36795-8	Dark House #5	Total/NA	Solid	TX 1005	68897
880-36795-9	Dark House #6	Total/NA	Solid	TX 1005	68897
880-36795-10	Dark House #7	Total/NA	Solid	TX 1005	68897
MB 880-68897/1-A	Method Blank	Total/NA	Solid	TX 1005	68897
LCS 880-68897/2-A	Lab Control Sample	Total/NA	Solid	TX 1005	68897
LCSD 880-68897/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005	68897
880-36795-1 MS	White House #1	Total/NA	Solid	TX 1005	68897
880-36795-1 MSD	White House #1	Total/NA	Solid	TX 1005	68897
Prep Batch: 68897					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36795-1	White House #1	Total/NA	Solid	TX_1005_S_Pre	
880-36795-2	White House #2	Total/NA	Solid	p TX_1005_S_Pre	
880-36795-3	White House #3	Total/NA	Solid	p TX_1005_S_Pre	
880-36795-4	Dark House #1	Total/NA	Solid	Р TX_1005_S_Pre р	
880-36795-5	Dark House #2	Total/NA	Solid	۲X_1005_S_Pre	
880-36795-6	Dark House #3	Total/NA	Solid	P TX_1005_S_Pre	
880-36795-7	Dark House #4	Total/NA	Solid	P TX_1005_S_Pre	
880-36795-8	Dark House #5	Total/NA	Solid	۲X_1005_S_Pre	
880-36795-9	Dark House #6	Total/NA	Solid	۲X_1005_S_Pre	
880-36795-10	Dark House #7	Total/NA	Solid	P TX_1005_S_Pre	
MB 880-68897/1-A	Method Blank	Total/NA	Solid	۲ TX_1005_S_Pre n	
LCS 880-68897/2-A	Lab Control Sample	Total/NA	Solid	۲X_1005_S_Pre p	
LCSD 880-68897/3-A	Lab Control Sample Dup	Total/NA	Solid	r TX_1005_S_Pre	

880-36795-1 MS

880-36795-1 MSD

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method Prep Batch
880-36795-1	White House #1	Total/NA	Solid	TX 1005
880-36795-2	White House #2	Total/NA	Solid	TX 1005
880-36795-3	White House #3	Total/NA	Solid	TX 1005
880-36795-4	Dark House #1	Total/NA	Solid	TX 1005

Total/NA

Total/NA

Eurofins Midland

р

р

р

TX_1005_S_Pre

TX_1005_S_Pre

Solid

Solid

Released to Imaging: 1/22/2025 2:11:19 PM

White House #1

White House #1

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

GC Semi VOA (Continued)

Analysis Batch: 68989 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-36795-5	Dark House #2	Total/NA	Solid	TX 1005	
880-36795-6	Dark House #3	Total/NA	Solid	TX 1005	
880-36795-7	Dark House #4	Total/NA	Solid	TX 1005	
880-36795-8	Dark House #5	Total/NA	Solid	TX 1005	
880-36795-9	Dark House #6	Total/NA	Solid	TX 1005	
880-36795-10	Dark House #7	Total/NA	Solid	TX 1005	

HPLC/IC

Leach Batch: 68942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36795-1	White House #1	Soluble	Solid	DI Leach	
880-36795-2	White House #2	Soluble	Solid	DI Leach	
880-36795-3	White House #3	Soluble	Solid	DI Leach	
880-36795-4	Dark House #1	Soluble	Solid	DI Leach	
880-36795-5	Dark House #2	Soluble	Solid	DI Leach	
880-36795-6	Dark House #3	Soluble	Solid	DI Leach	
880-36795-7	Dark House #4	Soluble	Solid	DI Leach	
880-36795-8	Dark House #5	Soluble	Solid	DI Leach	
880-36795-9	Dark House #6	Soluble	Solid	DI Leach	
880-36795-10	Dark House #7	Soluble	Solid	DI Leach	
MB 880-68942/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-68942/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-68942/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-36795-1 MS	White House #1	Soluble	Solid	DI Leach	
880-36795-1 MSD	White House #1	Soluble	Solid	DI Leach	

Analysis Batch: 68951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-36795-1	White House #1	Soluble	Solid	300.0	68942
880-36795-2	White House #2	Soluble	Solid	300.0	68942
880-36795-3	White House #3	Soluble	Solid	300.0	68942
880-36795-4	Dark House #1	Soluble	Solid	300.0	68942
880-36795-5	Dark House #2	Soluble	Solid	300.0	68942
880-36795-6	Dark House #3	Soluble	Solid	300.0	68942
880-36795-7	Dark House #4	Soluble	Solid	300.0	68942
880-36795-8	Dark House #5	Soluble	Solid	300.0	68942
880-36795-9	Dark House #6	Soluble	Solid	300.0	68942
880-36795-10	Dark House #7	Soluble	Solid	300.0	68942
MB 880-68942/1-A	Method Blank	Soluble	Solid	300.0	68942
LCS 880-68942/2-A	Lab Control Sample	Soluble	Solid	300.0	68942
LCSD 880-68942/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	68942
880-36795-1 MS	White House #1	Soluble	Solid	300.0	68942
880-36795-1 MSD	White House #1	Soluble	Solid	300.0	68942

Job ID: 880-36795-1

Project/Site: Pinan White House & Dark House

Job ID: 880-36795-1

Lab Sample ID: 880-36795-1

Lab Sample ID: 880-36795-2

Lab Sample ID: 880-36795-3

Lab Sample ID: 880-36795-4

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client: Resolute Compliance LLC

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 14:00	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 14:00	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.02 g	10 mL	68897	12/12/23 09:48	TKC	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 10:42	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 10:42	SM	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 00:34	СН	EET MID

Client Sample ID: White House #2

Date Collected: 12/11/23 12:00 Date Received: 12/12/23 08:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 14:20	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 14:20	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.04 g	10 mL	68897	12/12/23 09:48	ткс	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 11:48	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 11:48	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 00:53	CH	EET MID

Client Sample ID: White House #3

Date Collected: 12/11/23 12:10

	Date	Rece	ived:	12/12/2	3 08:25
--	------	------	-------	---------	---------

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 14:41	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 14:41	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.06 g	10 mL	68897	12/12/23 09:48	TKC	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 12:11	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 12:11	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:00	CH	EET MID

Client Sample ID: Dark House #1 Date Collected: 12/11/23 14:30 Date Received: 12/12/23 08:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 15:01	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 15:01	SM	EET MID

Eurofins Midland

Page 39 of 95

Released to Imaging: 1/22/2025 2:11:19 PM

Matrix: Solid

Client Sample ID: Dark House #1

Project/Site: Pinan White House & Dark House

Client: Resolute Compliance LLC

Date Collected: 12/11/23 14:30

Job ID: 880-36795-1

Lab Sample ID: 880-36795-4 Matrix: Solid

Lab Sample ID: 880-36795-6

Lab Sample ID: 880-36795-7

Matrix: Solid

Date Received	: 12/12/23 08:2	5								
	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	TX_1005_S_Prep			10.01 g	10 mL	68897	12/12/23 09:48	ТКС	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 12:34	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 12:34	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:06	СН	EET MID

Client Sample ID: Dark House #2 Date Collected: 12/11/23 14:40

Date Received: 12/11/23 08:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 15:22	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 15:22	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			9.96 g	10 mL	68897	12/12/23 09:48	ткс	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 12:57	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 12:57	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:13	СН	EET MID

Client Sample ID: Dark House #3

Date Collected: 12/11/23 14:50

Date Received: 12/12/23 08:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 15:42	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 15:42	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			9.93 g	10 mL	68897	12/12/23 09:48	ткс	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 13:19	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 13:19	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:32	CH	EET MID

Client Sample ID: Dark House #4

Date Collected: 12/11/23 15:00 Date Received: 12/12/23 08:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 16:03	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 16:03	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			9.90 g	10 mL	68897	12/12/23 09:48	TKC	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 13:42	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 13:42	SM	EET MID

Eurofins Midland

Matrix: Solid

2/12/23 14:30 SA EET MID 2/13/23 01:06 CH EET MID Lab Sample ID: 880-36795-5 Matrix: Solid

> 11 12 13

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:39	СН	EET MID

Client Sample ID: Dark House #5 Date Collected: 12/11/23 15:10 Date Received: 12/12/23 08:25

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 16:23	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 16:23	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.07 g	10 mL	68897	12/12/23 09:48	TKC	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 14:05	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 14:05	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:45	СН	EET MID

Client Sample ID: Dark House #6 Date Collected: 12/11/23 15:20 Date Received: 12/12/23 08:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 16:44	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 16:44	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.01 g	10 mL	68897	12/12/23 09:48	ТКС	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 14:27	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 14:27	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:52	СН	EET MID

Client Sample ID: Dark House #7 Date Collected: 12/11/23 15:30

Date Received: 12/12/23 08:25

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	68892	12/12/23 11:12	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	68889	12/12/23 18:54	SM	EET MID
Total/NA	Analysis	Total BTEX		1			69008	12/12/23 18:54	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.03 g	10 mL	68897	12/12/23 09:48	ткс	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	68882	12/12/23 14:48	SM	EET MID
Total/NA	Analysis	TX 1005		1			68989	12/12/23 14:48	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	68942	12/12/23 14:30	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	68951	12/13/23 01:59	СН	EET MID

Eurofins Midland

Page 41 of 95

Job ID: 880-36795-1

Lab Sample ID: 880-36795-7 Matrix: Solid

Lab Sample ID: 880-36795-8

Matrix: Solid

9

Lab Sample ID: 880-36795-9 Matrix: Solid

Lab Sample ID: 880-36795-10

Matrix: Solid

Job ID: 880-36795-1

Lab Chronicle

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Page 43 of 95

Olianti Dagaluta Camplian					
Project/Site: Pinan White F	ce LLC House & Dark House			JOD ID: 880-3679	2
Laboratory: Eurofins	Midland				2
Unless otherwise noted, all analy	tes for this laboratory were o	overed under each accredi	tation/certification below.		
Authority	Progra	am	Identification Number	Expiration Date	
Texas	NELA	P	T104704400-23-26	06-30-24	5
The following analytes a	are included in this report, bu	It the laboratory is not certif	ied by the governing authority. This lis	t may include analytes	5
for which the agency do	Prep Method	Matrix	Analyte		
Total BTEX	·	Solid	Total BTEX		
					0
					ð
					9
					10
					11
					13

Method Summary

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Job ID: 880-36795-1

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
TX_1005_S_Prep	Extraction - Texas Total petroleum Hyrdocarbons	TCEQ	EET MID
Protocol Referen ASTM = AST	nces: TM International		
EPA = US Er	nvironmental Protection Agency		
SW846 = "Te	est Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edi	tion, November 1986 And Its Updates.	
TAL SOP = T	estAmerica Laboratories, Standard Operating Procedure		
TCFQ = Tex	as Commission of Environmental Quality		

Protocol References:

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Resolute Compliance LLC Project/Site: Pinan White House & Dark House

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-36795-1	White House #1	Solid	12/11/23 11:50	12/12/23 08:25
880-36795-2	White House #2	Solid	12/11/23 12:00	12/12/23 08:25
880-36795-3	White House #3	Solid	12/11/23 12:10	12/12/23 08:25
880-36795-4	Dark House #1	Solid	12/11/23 14:30	12/12/23 08:25
880-36795-5	Dark House #2	Solid	12/11/23 14:40	12/12/23 08:25
880-36795-6	Dark House #3	Solid	12/11/23 14:50	12/12/23 08:25
880-36795-7	Dark House #4	Solid	12/11/23 15:00	12/12/23 08:25
880-36795-8	Dark House #5	Solid	12/11/23 15:10	12/12/23 08:25
880-36795-9	Dark House #6	Solid	12/11/23 15:20	12/12/23 08:25
880-36795-10	Dark House #7	Solid	12/11/23 15:30	12/12/23 08:25

CUSTODY RECORD and ANALYS	IS REQUEST							I	
Results to: Covent Mc Afee +									432-741-1529
Address: Jeff Jack ser		1					M	6911	1 Burnett Ln. Midland Tx, 79705
Resolute			■ (-+	E	nviron	ment	al	InRan	ıgeEnvironmental@gmail.com
			$\left \right $		onsulti	8u			
Phone: Fax:	Project N	ame/Numl	ber: Prv	con Here				Analy	isis Requested
Sampling BY:	ers Mat	trix	Preser	ved	Sampli) Bu			
e Aud	of Containe Water Soil	Sludge Other	103 (N) 2SO4 (S) 1CL (C)	e/Ref (l) one (N) ther (O)		24 100	ikrice X	mine	
Sampling Identification:	# 0		H H	Ico N O	Date T	ime +	- 1 - 21 - 137	A Fe	
white Huge Wit	- X			× 	12/11/23 119	ν Υ	××		
548	1					-ee 7	X X		
43	-				z)	x x	XX		
Devel Yourse It I	4				انتر	لا م3	44	メ	
HZ	4				M	40 X	- * *	Х.	
₹ 3	4				14	SO R	XXXX	*	
44	در			****	<u>)</u>	00 X	XXX	X	
FT F	q				21 Si	0 V	¢ X X	×.	
中で	Ŷ				<u>7</u>	8	× ×	%	
も地	ې -				51	1 2	1 2 2	4	
Relinquished by:	Date Time	e Recei	ved by:		Date Ti	ne Re	marks:	4.31	Ϋ́Υ
AN	12/12/23			Ø	12/12/12	202	P	Mav y	nullind th
							n nan	4 8 8	Tert to pust
							(C	
									Page <u> </u>

.

and the second se

	ind	Relinquished by:				Deart How # 8	Sampling Identification:	M	Sampling BY:	Phone: Fax:		e chart	Address: Jroff Januarsen	Count Mc Alee +	CUSTODY RECORD and ANALYSIS	1 2 3 4 5 6 7 8
		Date Time Receiv				X	# (of Contain Water Soil Sludge Other NO3 (N)	ers Matrix	Project Name/Numb					REQUEST	9 1 1 1
		/ed by:				× ×	H2 F Ice No	2SO4 (S) 1CL (C) e/Ref (I) one (N) ther (O)	Preserved	ver: Piter						1 : 1
	12/12/12 825	Date Time Rem				12/1/22 1535 X	Date Time	сli) М	Sampling	als	onsulting	nvironmental				
Page 2 of 2	-	arks: U.3/U.S								Analysis Requested		InRangeEnvironmental@gmail.com	6911 Burnett Ln. Midland Tx. 79705	432-741-1529	Daniel Archer ow.	Loc: 880

Released to Imaging: 1/22/2025 2:11:19 PM

12/13/2023

Job Number: 880-36795-1

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Resolute Compliance LLC

Login Number: 36795 List Number: 1 Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Received by OCD: 11/15/2024 1:02:21 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Kaithlyn Lopez Pinon Midstream 757 N Elridge Pwky 1150 Houston, Texas 77079 Generated 9/20/2024 4:09:15 PM

JOB DESCRIPTION

Dark Horse

JOB NUMBER

880-48719-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization	
Brianna Teel	Generated 9/20/2024 4:09:15 PM
Authorized for release by Brianna Teel, Project Manager <u>Brianna.Teel@et.eurofinsus.com</u> (432)704-5440	

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	15
Lab Chronicle	18
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	26

Page 51 of 95

.

Definitions/Glassery

Page 52 of 95

	Definitions/Glossary		
Client: Pinon M	Idstream Job IE	D: 880-48719-1	
Project/Site: Da	ark Horse		
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		_
U	Indicates the analyte was analyzed for but not detected.		5
GC Semi VOA			
Qualifier	Qualifier Description		6
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
U	Indicates the analyte was analyzed for but not detected.		
Glossom			9
Glossary			
Abbreviation	I nese commonly used abbreviations may or may not be present in this report.		
ц %р	Eisted under the D column to designate that the result is reported on a dry weight basis		
CEU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MI			
MOI	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		
RER	Relative Error Ratio (Radiochemistry)		
RL	Reporting Limit or Requested Limit (Radiochemistry)		
RPD	Relative Percent Difference, a measure of the relative difference between two points		
TEF	Toxicity Equivalent Factor (Dioxin)		
TEQ	Toxicity Equivalent Quotient (Dioxin)		
INIC	Ioo Numerous Io Count		

.

Case Narrative

Job ID: 880-48719-1

Client: Pinon Midstream Project: Dark Horse

Job ID: 880-48719-1

Eurofins Midland

Job Narrative 880-48719-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 9/19/2024 2:00 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C.

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-91078 and analytical batch 880-91173 was outside the upper control limits.

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-91221 and analytical batch 880-91173 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following sample was outside control limits: Dark Horse #7 (880-48719-7). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

Method 8021B: Surrogate recovery for the following samples were outside the upper control limit: Dark Horse #1 (880-48719-1) and Dark Horse #5 (880-48719-5). This sample did not contain any target analytes; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Hydrocarbons

Method TX_1005: The surrogate recovery for the blank associated with preparation batch 880-91250 and analytical batch 880-91162 was outside the upper control limits.

Method TX_1005: Surrogate recovery for the following samples were outside control limits: Dark Horse #5 (880-48719-5) and (LCSD 880-91250/3-A). Evidence of matrix interferences is not obvious.

Method TX_1005: The continuing calibration verification (CCV) associated with batch 880-91162 recovered below the lower control limit for >C12-C28 Range Hydrocarbons. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-91162/31).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Dil Fac

1

1

1

1

1

1

1

Dil Fac

Job ID: 880-48719-1

09/20/24 04:13

Analyzed

09/20/24 04:13

09/20/24 04:13

Lab Sample ID: 880-48719-2

Matrix: Solid

Client: Pinon Midstream Project/Site: Dark Horse

Client Sample ID: Dark Horse #1

Date Collected: 09/19/24 09:50 Date Received: 09/19/24 14:00

Sample Depth: 6"-12"

Method: SW846 8021B - Vo Analyte	latile Organic Comp Result	OUNDS (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed
Benzene	< 0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 04:13
Toluene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 04:13
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 04:13
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/19/24 15:35	09/20/24 04:13
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 04:13

Xylenes, Total	<0.00398	U	0.00398	mg/Kg	09/19/24 15:35
Surrogate	%Recovery	Qualifier	Limits		Prepared
4-Bromofluorobenzene (Surr)	335	S1+	70 - 130		09/19/24 15:35
1,4-Difluorobenzene (Surr)	94		70 - 130		09/19/24 15:35

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/20/24 04:13	1

Method: TCEQ TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/19/24 22:50	1
>C12-C28 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/19/24 22:50	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/19/24 22:50	1
Total Petroleum Hydrocarbons (C6-C35)	<50.0	U	50.0		mg/Kg			09/19/24 22:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130				09/19/24 16:21	09/19/24 22:50	1
o-Terphenyl (Surr)	109		70 - 130				09/19/24 16:21	09/19/24 22:50	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	8.62	4.99	mg/Kg			09/20/24 09:59	1

Client Sample ID: Dark Horse #2

Date Collected: 09/19/24 10:00

Date Received: 09/19/24 14:00

Sample Depth: 6"-12"

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/19/24 15:35	09/20/24 06:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				09/19/24 15:35	09/20/24 06:03	1
1,4-Difluorobenzene (Surr)	98		70 - 130				09/19/24 15:35	09/20/24 06:03	1

Eurofins Midland

Lab Sample ID: 880-48719-1 Matrix: Solid

Job ID: 880-48719-1

Lab Sample ID: 880-48719-2

Project/Site: Dark Horse
Client Sample ID: Dark Horse #2

Date Collected: 09/19/24 10:00 Date Received: 09/19/24 14:00

Date				
Sam	ple D	epth:	6"-12"	

Client: Pinon Midstream

Method: TAL SOP Total BTEX - Tot	al BTEX Cal	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/20/24 06:03	1
Method: TCEQ TX 1005 - Texas - T	otal Petroleu	m Hydrocai	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:10	1
>C12-C28 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:10	1
>C28-C35 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:10	1
Total Petroleum Hydrocarbons (C6-C35)	<49.8	U	49.8		mg/Kg			09/19/24 23:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	106		70 - 130				09/19/24 16:21	09/19/24 23:10	1
o-Terphenyl (Surr)	104		70 - 130				09/19/24 16:21	09/19/24 23:10	1
_ Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	22.1		4.96		mg/Kg			09/20/24 10:06	1
Client Sample ID: Dark Horse	#3						Lab Sam	ple ID: 880-4	8719-3
Date Collected: 09/19/24 10:05								Matri	x: Solid
Date Received: 09/19/24 14:00									
Sample Donth: 6"-12"									

Method:	SW846	8021B	- Volatile	Organic	Con	npo	oun	ds	(GC))
					_		-			

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		09/19/24 15:35	09/20/24 06:24	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	121		70 - 130				09/19/24 15:35	09/20/24 06:24	1
1,4-Difluorobenzene (Surr)	110		70 - 130				09/19/24 15:35	09/20/24 06:24	1

Method:	TAL SOP	Total BT	EX - Total	BTEX	Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			09/20/24 06:24	1

Method:	TCEO T	TX 1005 - 1	Texas - '	Total	Petroleum	Hydroc	arbon	(GC)	ì
mounour			- Ondo		· · · · · · · · · · · · · · · ·				,

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:30	1
>C12-C28 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:30	1
>C28-C35 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/19/24 23:30	1
Total Petroleum Hydrocarbons (C6-C35)	<49.8	U	49.8		mg/Kg			09/19/24 23:30	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	118		70 - 130	09/19/24 16:21	09/19/24 23:30	1
o-Terphenyl (Surr)	113		70 - 130	09/19/24 16:21	09/19/24 23:30	1

Eurofins Midland

Matrix: Solid

		Clien	t Sample R	Results	;				
Client: Pinon Midstream Project/Site: Dark Horse			•					Job ID: 880-	48719-1
Client Sample ID: Dark Horse Date Collected: 09/19/24 10:05 Date Received: 09/19/24 14:00 Sample Depth: 6"-12"	e #3						Lab Sam	ple ID: 880-4 Matri	8719-3 ix: Solid
Method: EPA 300.0 - Anions, Ion of Analyte	Chromatograp Result	o <mark>hy - Solubl</mark> o Qualifier	e RL	MDL	Unit	D	Prepared	Analvzed	Dil Fac
Chloride	12.7		5.04		mg/Kg			09/20/24 10:13	1
Client Sample ID: Dark Horse Date Collected: 09/19/24 10:10 Date Received: 09/19/24 14:00 Sample Depth: 6"-12"	; #4						Lab Sam	ple ID: 880-4 Matri	8719-4 ix: Solid
Method: SW846 8021B - Volatile C	Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:44	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:44	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 06:44	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		ma/Ka		09/19/24 15:35	09/20/24 06:44	1
o-Xvlene	<0.00200	U U	0.00200		ma/Ka		09/19/24 15:35	09/20/24 06:44	1
Xvlenes Total	<0.00200	U	0.00401		ma/Ka		09/19/24 15:35	09/20/24 06:44	. 1
	0.00101	•	0.00101				00,10,2110,000	00,20,2100111	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	114		70 - 130				09/19/24 15:35	09/20/24 06:44	1
1,4-Difluorobenzene (Surr)	100		70 - 130				09/19/24 15:35	09/20/24 06:44	1
Method: TAL SOP Total BTEX - To	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			09/20/24 06:44	1
Method: TCEQ TX 1005 - Texas -	Total Petroleu	m Hydrocar	bon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		09/19/24 16:21	09/19/24 23:50	1
>C12-C28 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		09/19/24 16:21	09/19/24 23:50	1
>C28-C35 Range Hydrocarbons	<49.7	U	49.7		ma/Ka		09/19/24 16:21	09/19/24 23:50	1
Total Petroleum Hydrocarbons (C6-C35)	<49.7	U	49.7		mg/Kg			09/19/24 23:50	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	113		70 - 130				09/19/24 16:21	09/19/24 23:50	1
o-Terphenyl (Surr)	114		70 - 130				09/19/24 16:21	09/19/24 23:50	1
Method: EPA 300.0 - Anions, Ion	Chromatograr	hy - Soluble	9						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	13.3		5.02		mg/Kg			09/20/24 10:19	1
Client Sample ID: Dark Horse Date Collected: 09/19/24 10:15 Date Received: 09/19/24 14:00 Sample Depth: 6"-12"	e #5						Lab Sam	ple ID: 880-4 Matri	8719-5 ix: Solid
Method: SW846 8021B - Volatile C	Organic Comp	ounds (GC)	PI	МП	Unit	П	Propared	Analyzod	Dil Eac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 07:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 07:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 07:05	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		09/19/24 15:35	09/20/24 07:05	1

Job ID: 880-48719-1

Client: Pinon	Mids	tream
Project/Site: I	Dark	Horse

Client Sample ID: Dark Horse #5

Date Collected: 09/19/24 10:15

Lab Sample ID: 880-48719-5

Matrix: Solid

5

Date Received: 09/19/24 14:00 Sample Depth: 6"-12"

			, (Continucu)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		09/19/24 15:35	09/20/24 07:05	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		09/19/24 15:35	09/20/24 07:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	378	S1+	70 - 130				09/19/24 15:35	09/20/24 07:05	1
1,4-Difluorobenzene (Surr)	95		70 - 130				09/19/24 15:35	09/20/24 07:05	1
- Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			09/20/24 07:05	1
Method: TCEQ TX 1005 - Texas	- Total Petroleu	m Hydroca	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		09/19/24 16:21	09/20/24 00:31	1
>C12-C28 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		09/19/24 16:21	09/20/24 00:31	1
>C28-C35 Range Hydrocarbons	<49.7	U	49.7		mg/Kg		09/19/24 16:21	09/20/24 00:31	1
Total Petroleum Hydrocarbons (C6-C35)	<49.7	U	49.7		mg/Kg			09/20/24 00:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	139	S1+	70 - 130				09/19/24 16:21	09/20/24 00:31	1
o-Terphenyl (Surr)	135	S1+	70 - 130				09/19/24 16:21	09/20/24 00:31	1
-									
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Solubl	le	MDI	Unit	D	Bronorod	Applyzed	Dil Ess
Method: EPA 300.0 - Anions, Ion Analyte	n Chromatograp Result	bhy - Solubl Qualifier	e 	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions, lor Analyte Chloride	n Chromatograp Result 93.4	o <mark>hy - Solubl</mark> Qualifier	le 	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors	n Chromatograp Result 93.4 Se #6	<mark>ohy - Solubl</mark> Qualifier	RL 4.98	MDL	Unit mg/Kg	<u>D</u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4	Dil Fac 1 8719-6
Method: EPA 300.0 - Anions, lor Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25	n Chromatograp Result 93.4 se #6	o <mark>hy - Solubl</mark> Qualifier	RL	MDL	Unit mg/Kg	<u> </u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri	Dil Fac 1 8719-6 x: Solid
Method: EPA 300.0 - Anions, lor Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00	n Chromatograp Result 93.4 se #6	o <mark>hy - Solubl</mark> Qualifier	le 	MDL	Unit mg/Kg	<u> </u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri	Dil Fac 1 8719-6 x: Solid
Method: EPA 300.0 - Anions, lor Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12"	n Chromatograp Result 93.4 se #6	o <mark>hy - Solubl</mark> Qualifier	le 	MDL	Unit mg/Kg	<u> </u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri	Dil Fac 1 8719-6 x: Solid
Method: EPA 300.0 - Anions, lor Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12"	n Chromatograp	undo (CC	RL	MDL	Unit mg/Kg	<u>D</u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri	Dil Fac 1 8719-6 x: Solid
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte	e Organic Comp	ounds (GC Qualifier	le RL 4.98) 	MDL	Unit mg/Kg Unit	<u>D</u>	Prepared Lab Sam	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri Analyzed	Dil Fac 1 8719-6 x: Solid Dil Fac
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene	Chromatograp Result 93.4 Se #6 Organic Comp Result <0.00202	ounds (GC Qualifier	RL 4.98 4.98	MDL	Unit mg/Kg	<u>D</u>	Prepared Lab Sam Prepared 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri Analyzed 09/20/24 07:25	<u>Dil Fac</u> 1 8719-6 x: Solid <u>Dil Fac</u> 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene	Chromatograp Result 93.4 Se #6 Organic Comp Result Result Organic Comp Organic Comp Result Organic Comp Result 	ounds (GC) Qualifier	RL 4.98 0 RL 0.00202 0.00202	MDL	Unit mg/Kg Unit mg/Kg mg/Kg	D	Prepared Lab Sam Prepared 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri Analyzed 09/20/24 07:25 09/20/24 07:25	<u>Dil Fac</u> 1 8719-6 x: Solid <u>Dil Fac</u> 1
Method: EPA 300.0 - Anions, lon Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene	Chromatograp Result 93.4 Se #6 Organic Comp Result <0.00202 <	ounds (GC Qualifier U U U	RL 4.98 0.00202 0.00202 0.00202 0.00202 0.00202	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Lab Sam Prepared 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid Dil Fac 1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Chromatograp Result 93.4 se #6 Organic Comp Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00403 	ounds (GC Qualifier U U U U U	RL 4.98 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00403	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid Dil Fac 1 1 1
Method: EPA 300.0 - Anions, lon Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Chromatograp Result 93.4 93.4 se #6 Organic Comp Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00202	ounds (GC Qualifier U U U U U U U	RL 4.98 4.98 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid Dil Fac 1 1 1 1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total	Chromatograp Result 93.4 Se #6 Corganic Comp Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <0.00403 <0.00202 <0.00403 <0.00202 <0.00403 <0.00202 <0.00403 <0.00403 <0.00202 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.00403 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0.0040 <0	ounds (GC Qualifier U U U U U U U U U U	RL 4.98 4.98 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 0.00403	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid Dil Fac 1 1 1 1 1 1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	A Chromatograp Result 93.4 93.6 94.00202 90.0	ounds (GC) Qualifier Qualifier U U U U U U U U U Qualifier	RL 4.98 4.98 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 Limits	MDL	Unit mg/Kg Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Chloride Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00 Sample Depth: 6"-12" Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Chromatograp Result 93.4 93.4 Se #6 90 Organic Comp Result <0.00202	ounds (GC) Qualifier Qualifier U U U U U U Qualifier	RL 4.98 4.98 0 RL 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 0.00403 0.00403 Limits 70 - 130	MDL	Unit mg/Kg Mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	Prepared Lab Sam Prepared 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 Prepared 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-4 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride Chloride Chloride Client Sample ID: Dark Hors Date Collected: 09/19/24 10:25 Date Received: 09/19/24 10:25	A Chromatograp Result 93.4 93.4 Se #6 9000000 0.00202 0.002	ounds (GC Qualifier U U U U U U U U U U U Qualifier	RL 4.98 4.98 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 0.00202 0.00403 <td>MDL</td> <td>Unit mg/Kg Mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg</td> <td><u>D</u></td> <td>Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 Prepared 09/19/24 15:35</td> <td>Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25</td> <td>Dil Fac 1 8719-6 x: Solid 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td>	MDL	Unit mg/Kg Mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	Prepared Lab Sam 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 09/19/24 15:35 Prepared 09/19/24 15:35	Analyzed 09/20/24 10:26 ple ID: 880-44 Matri 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25 09/20/24 07:25	Dil Fac 1 8719-6 x: Solid 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

Job ID: 880-48719-1

Client: Pinon Midstream Project/Site: Dark Horse

Client Sample ID: Dark Horse #6

Date Collected: 09/19/24 10:25 Date Received: 09/19/24 14:00

Sample Depth: 6"-12"

Method: TCEQ TX 1005 - Texa	s - Total Petroleum Hydrocarbon	n (GC)	
Analyte	Result Qualifier	RI	N

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/20/24 00:51	1
>C12-C28 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/20/24 00:51	1
>C28-C35 Range Hydrocarbons	<50.0	U	50.0		mg/Kg		09/19/24 16:21	09/20/24 00:51	1
Total Petroleum Hydrocarbons (C6-C35)	<50.0	U	50.0		mg/Kg			09/20/24 00:51	1

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed
1-Chlorooctane (Surr)	102		70 - 130	09/19/24 16:2	09/20/24 00:51
o-Terphenyl (Surr)	101		70 - 130	09/19/24 16:2	1 09/20/24 00:51

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	33.0		5.00		mg/Kg			09/20/24 10:33	1	

Client Sample ID: Dark Horse #7

Date Collected: 09/19/24 10:30 Date Received: 09/19/24 14:00

Sample Depth: 6"-12"

Method: SW846 8021B - Volatil	e Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
Toluene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		09/19/24 15:35	09/20/24 07:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	148	S1+	70 - 130				09/19/24 15:35	09/20/24 07:46	1
1,4-Difluorobenzene (Surr)	120		70 - 130				09/19/24 15:35	09/20/24 07:46	1
_ Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			09/20/24 07:46	1
- Method: TCEQ TX 1005 - Texas	- Total Petroleu	m Hydroca	rbon (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
C6-C12 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/20/24 01:11	1
>C12-C28 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/20/24 01:11	1
>C28-C35 Range Hydrocarbons	<49.8	U	49.8		mg/Kg		09/19/24 16:21	09/20/24 01:11	1
Total Petroleum Hydrocarbons	<49.8	U	49.8		mg/Kg			09/20/24 01:11	1
(C6-C35)									
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	101		70 - 130				09/19/24 16:21	09/20/24 01:11	1
o-Terphenvl (Surr)	101		70 - 130				09/19/24 16:21	09/20/24 01:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	58.2	5.00	mg/Kg			09/20/24 10:53	1

Eurofins Midland

Released to Imaging: 1/22/2025 2:11:19 PM

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		÷
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-48719-1	Dark Horse #1	335 S1+	94	·	÷
880-48719-2	Dark Horse #2	97	98		
880-48719-3	Dark Horse #3	121	110		5
880-48719-4	Dark Horse #4	114	100		
880-48719-5	Dark Horse #5	378 S1+	95		
880-48719-6	Dark Horse #6	109	97		
880-48719-7	Dark Horse #7	148 S1+	120		
LCS 880-91221/1-A	Lab Control Sample	96	94		
LCSD 880-91221/2-A	Lab Control Sample Dup	115	97		
MB 880-91078/5-A	Method Blank	200 S1+	126		
MB 880-91221/5-A	Method Blank	149 S1+	106		
Surrogate Legend					
BFB = 4-Bromofluorobe	nzene (Surr)				

DFBZ = 1,4-Difluorobenzene (Surr)

Method: TX 1005 - Texas - Total Petroleum Hydrocarbon (GC)

Matrix: Solid

				Percent Surrogate Recovery
		1CO	ОТРН	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-48719-1	Dark Horse #1	111	109	
880-48719-2	Dark Horse #2	106	104	
880-48719-3	Dark Horse #3	118	113	
880-48719-4	Dark Horse #4	113	114	
880-48719-5	Dark Horse #5	139 S1+	135 S1+	
880-48719-6	Dark Horse #6	102	101	
880-48719-7	Dark Horse #7	101	101	
LCS 880-91250/2-A	Lab Control Sample	116	104	
LCSD 880-91250/3-A	Lab Control Sample Dup	133 S1+	128	
MB 880-91250/1-A	Method Blank	212 S1+	205 S1+	

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Prep Type: Total/NA

Prep Type: Total/NA

Page 59 of 95

QC Sample Results

Client: Pinon Midstream Project/Site: Dark Horse

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-91078/5-A											Client Sa	ample ID:	Method	d Blank
Matrix: Solid												Prep	Type: T	
Analysis Batch: 91173												Pre	o Batch	: 91078
Analyta	Boo		MB	ы		MDI	Unit		п	Б	ropored	Analy	ad	
Bonzono						WIDL	malka		_	00/1	8/24 10:04	Analy	13:01	
		200	0	0.00200			mg/Kg			09/1	8/24 10.04	09/19/24	13.01	1
Ethylopzono	<0.002	200	0	0.00200			mg/Kg			09/1	0/24 10.04 0/24 10.04	09/19/24	12.01	1
	<0.002	100		0.00200			mg/Kg			09/1	0/24 10.04	09/19/24	12.01	
	< 0.002	100	0	0.00400			mg/Kg			09/1	8/24 10:04	09/19/24	13:01	1
o-Xylene	<0.002	200	0	0.00200			mg/Kg			09/1	8/24 10:04	09/19/24	13:01	1
Xylenes, Iotal	< 0.002	100	U	0.00400			mg/Kg			09/1	8/24 10:04	09/19/24	13:01	1
		ΜВ	МВ											
Surrogate	%Recov	ery	Qualifier	Limits						P	repared	Analy	zed	Dil Fac
4-Bromofluorobenzene (Surr)	2	200	S1+	70 - 130						09/1	8/24 10:04	09/19/24	13:01	1
1,4-Difluorobenzene (Surr)	1	126		70 - 130						09/1	8/24 10:04	09/19/24	13:01	1
Lab Sample ID: MB 880-91221/5-A											Client Sa	ample ID:	Metho	d Blank
Matrix: Solid												Prep	Type: 1	
Analysis Batch: 91173												Pre	o Batch	: 91221
A walk da	Des	VIB	MB				11		_	_		A		D!!
Analyte	-0.00		Qualifier			MDL			<u> </u>	P	0/24 12:52		2ea	
	<0.002	200	0	0.00200			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	1
Toluene	<0.002	200	0	0.00200			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	1
Etnyibenzene	<0.002	200	U	0.00200			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	
m-Xylene & p-Xylene	< 0.002	100	0	0.00400			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	1
o-Xylene	<0.002	200	0	0.00200			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	1
Xylenes, Total	< 0.002	100	U	0.00400			mg/Kg			09/1	9/24 12:52	09/20/24	00:40	1
		ΜВ	МВ											
Surrogate	%Recov	ery	Qualifier	Limits						P	repared	Analy	zed	Dil Fac
4-Bromofluorobenzene (Surr)		149	S1+	70 _ 130						09/1	9/24 12:52	09/20/24	00:40	1
1,4-Difluorobenzene (Surr)	Ĩ	106		70 - 130						09/1	9/24 12:52	09/20/24	00:40	1
– Lab Sample ID: LCS 880-91221/1-A									С	lient	Sample	ID: Lah C	ontrol 9	Sample
Matrix: Solid									Ŭ		Campio	Pron	Type: T	otal/NA
Analysis Batch: 91173												Pro	n Batch	· 01221
Analysis Datch. 91179				Snike	LCS	LCS						%Rec	Daten	
Analyte					Result	Qua	lifier	Unit		р	%Rec	Limits		
Benzene				0 100	0.08777	Quu		ma/Ka			88	70 130		
				0.100	0.00777			mg/Kg			86	70 130		
				0.100	0.00501			mg/Kg			00	70 - 130		
				0.200	0.00319			mg/Kg			00	70 - 130		
				0.200	0.1004			mg/Kg			00	70 - 130		
o-Xylene				0.100	0.06769			mg/ĸg			00	70 - 130		
	LCS I	cs												
Surrogate %	Recovery	Qual	ifier	Limits										
4-Bromofluorobenzene (Surr)	96			70 - 130										
1,4-Difluorobenzene (Surr)	94			70 - 130										
- Lab Sample ID: LCSD 880-91221/2-	A							Cli	ent	Sam	nple ID: L	ab Contro	ol Samı	ole Dup
Matrix: Solid												Prep	Type: T	otal/NA
Analysis Batch: 91173												Prei	o Batch	: 91221
				Spike	LCSD	LCS	D					%Rec		RPD
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Limit
Benzene				0.100	0.09034			mg/Kg			90	70 - 130	3	35

QC Sample Results

Page 61 of 95

Job ID: 880-48719-1

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-912 Matrix: Solid	221/2-A							Cli	ent	Sam	ple ID: L	ab Contro Prep	ol Samp Type: To	e Duj tal/N/
Analysis Batch: 91173												Prep	Batch:	9122
				Spike	LCSD	LCS	D					%Rec		RP
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Lim
Toluene				0.100	0.08584			mg/Kg			86	70 - 130	0	3
Ethylbenzene				0.100	0.09118			mg/Kg			91	70 - 130	7	3
n-Xylene & p-Xylene				0.200	0.1854			mg/Kg			93	70 - 130	11	3
p-Xylene				0.100	0.09262			mg/Kg			93	70 - 130	5	3
	LCSD	LCS	D											
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	115			70 - 130										
1,4-Difluorobenzene (Surr)	97			70 - 130										
ethod: TX 1005 - Texas -	Total Petro	oleu	m Hydr	ocarbon (GC	;)									
Lab Sample ID: MB 880-91250)/1- A										Client Sa	ample ID:	Method	Blan
Matrix: Solid												Prep [·]	Type: To	tal/N
Analysis Batch: 91162												Prep	Batch:	9125
		ΜВ	MB											
Analyte	R	esult	Qualifier	RL		MDL	Unit		D	P	repared	Analy	zed	Dil Fa
C6-C12 Range Hydrocarbons	<	<50.0	U	50.0			mg/Kg	1	_	09/1	9/24 16:21	09/19/24	19:04	
C12-C28 Range Hydrocarbons	<	<50.0	U	50.0			mg/Kg	1		09/1	9/24 16:21	09/19/24	19:04	
C28-C35 Range Hydrocarbons	<	<50.0	U	50.0			mg/Kg	I		09/1	9/24 16:21	09/19/24	19:04	
		ΜВ	МВ											
Surrogate	%Reco	overy	Qualifier	Limits						P	repared	Analy	zed	Dil Fa
1-Chlorooctane (Surr)		212	S1+	70 - 130						09/1	9/24 16:21	09/19/24	19:04	
o-Terphenyl (Surr)		205	S1+	70 - 130						09/1	9/24 16:21	09/19/24	19:04	
Lab Sample ID: LCS 880-9125	0/2-A								С	lient	Sample	ID: Lab C	ontrol S	ampl
Matrix: Solid												Prep [·]	Type: To	tal/N
Analysis Batch: 91162												Prep	Batch:	9125
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
C6-C12 Range Hydrocarbons				1000	818.3			mg/Kg			82	75 - 125		
C12-C28 Range Hydrocarbons				1000	860.2			mg/Kg			86	75 - 125		
	LCS	LCS	;											
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane (Surr)	116			70 - 130										
	104			70 - 130										
o-Terphenyl (Surr)								Cli	ent	Sam	ple ID: L	ab Contro	ol Samo	e Du
- Terphenyl (Surr) Lab Sample ID: LCSD 880-912	250/3-A										. –			
- <i>lerphenyl (Surr)</i> Lab Sample ID: LCSD 880-912 Matrix: Solid	250/3-A											Prep '	Type: To	tal/N
- Ierphenyl (Surr) Lab Sample ID: LCSD 880-912 Matrix: Solid Analysis Batch: 91162	250/3-A											Prep [·] Prer	Type: To Batch:	tal/N 9125
- Ierphenyl (Surr) Lab Sample ID: LCSD 880-912 Matrix: Solid Analysis Batch: 91162	250/3-A			Spike	LCSD	LCS	D					Prep ⁻ Prep %Rec	Type: To Batch:	tal/N 9125 RP
- Ierphenyl (Surr) Lab Sample ID: LCSD 880-912 Matrix: Solid Analysis Batch: 91162 Analyte	250/3-A			Spike Added	LCSD Result	LCS Qua	D lifier	Unit		D	%Rec	Prep Prep %Rec Limits	Type: To Batch: RPD	tal/N 9125 RP Lim
- Terphenyl (Surr) Lab Sample ID: LCSD 880-912 Matrix: Solid Analysis Batch: 91162 Analyte 26-C12 Range Hydrocarbons	250/3-A			Spike Added 1000	LCSD Result 984.8	LCS Qua	D lifier	Unit mg/Ka		<u>D</u>	%Rec	Prep Prep %Rec Limits 75 - 125	Type: To Batch: RPD 18	tal/N. 9125 RP Lim 2

	2030	LUGD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane (Surr)	133	S1+	70 - 130
o-Terphenyl (Surr)	128		70 - 130

Job ID: 880-48719-1

Client: Pinon Midstream Project/Site: Dark Horse

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-91243/1-A Matrix: Solid												Client S	ample ID: Prep	Method Type: S	Blank oluble
Analysis Batch: 91245		мв	MB												
Analyte	R	NID	NID		RI		мпі	Unit		п	Р	renared	Δnalv	zod	Dil Fac
Chloride		5 00			5.00			ma/Ka	1	<u> </u>		repared	09/20/24	08:39	1
		0.00	0		0.00			ing/ite	,				00/20/21	00.00	
Lab Sample ID: LCS 880-91243/2-	Α									Clie	ent	Sample	ID: Lab C	ontrol S	ample
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 91245															
				Spike		LCS	LCS						%Rec		
Analyte				Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride				250		248.3			mg/Kg			99	90 - 110		
															_
Lab Sample ID: LCSD 880-91243/3	3-A								Cli	ent S	am	ple ID: I	_ab Contro	ol Sampl	e Dup
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 91245				• •				_					~-		
• • •				Spike		LCSD	LCS	D 			_	a/ 5	%Rec		RPD
Analyte				Added		Result	Qual	ifier	Unit		<u>D</u>	%Rec	Limits	RPD	
Chloride				250		250.1			mg/Kg			100	90 - 110	1	20
 Lab Sample ID: 880-48719-6 MS												Client S	ample ID:	Dark Ho	rse #6
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 91245														.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
	Sample	Sam	ple	Spike		MS	MS						%Rec		
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits		
Chloride	33.0			250		293.3			mg/Kg		_	104	90 - 110		
Lab Sample ID: 880-48719-6 MSD												Client S	ample ID:	Dark Ho	rse #6
Matrix: Solid													Prep	Type: S	oluble
Analysis Batch: 91245															
	Sample	Sam	ple	Spike		MSD	MSD						%Rec		RPD
Analyte	Result	Qual	ifier	Added		Result	Qual	ifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	33.0			250		294.1			mg/Kg			104	90 _ 110	0	20

Client: Pinon Midstream Project/Site: Dark Horse Page 63 of 95

GC VOA

Prep Batch: 91078

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-91078/5-A	Method Blank	Total/NA	Solid	5035	
Analysis Batch: 91173					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	8021B	91221
880-48719-2	Dark Horse #2	Total/NA	Solid	8021B	91221
880-48719-3	Dark Horse #3	Total/NA	Solid	8021B	91221
880-48719-4	Dark Horse #4	Total/NA	Solid	8021B	91221
880-48719-5	Dark Horse #5	Total/NA	Solid	8021B	91221
880-48719-6	Dark Horse #6	Total/NA	Solid	8021B	91221
880-48719-7	Dark Horse #7	Total/NA	Solid	8021B	91221
MB 880-91078/5-A	Method Blank	Total/NA	Solid	8021B	91078
MB 880-91221/5-A	Method Blank	Total/NA	Solid	8021B	91221
LCS 880-91221/1-A	Lab Control Sample	Total/NA	Solid	8021B	91221
LCSD 880-91221/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	91221

Prep Batch: 91221

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	5035	
880-48719-2	Dark Horse #2	Total/NA	Solid	5035	
880-48719-3	Dark Horse #3	Total/NA	Solid	5035	
880-48719-4	Dark Horse #4	Total/NA	Solid	5035	
880-48719-5	Dark Horse #5	Total/NA	Solid	5035	
880-48719-6	Dark Horse #6	Total/NA	Solid	5035	
880-48719-7	Dark Horse #7	Total/NA	Solid	5035	
MB 880-91221/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-91221/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-91221/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	

Analysis Batch: 91323

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	Total BTEX	
880-48719-2	Dark Horse #2	Total/NA	Solid	Total BTEX	
880-48719-3	Dark Horse #3	Total/NA	Solid	Total BTEX	
880-48719-4	Dark Horse #4	Total/NA	Solid	Total BTEX	
880-48719-5	Dark Horse #5	Total/NA	Solid	Total BTEX	
880-48719-6	Dark Horse #6	Total/NA	Solid	Total BTEX	
880-48719-7	Dark Horse #7	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 91162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	TX 1005	91250
880-48719-2	Dark Horse #2	Total/NA	Solid	TX 1005	91250
880-48719-3	Dark Horse #3	Total/NA	Solid	TX 1005	91250
880-48719-4	Dark Horse #4	Total/NA	Solid	TX 1005	91250
880-48719-5	Dark Horse #5	Total/NA	Solid	TX 1005	91250
880-48719-6	Dark Horse #6	Total/NA	Solid	TX 1005	91250
880-48719-7	Dark Horse #7	Total/NA	Solid	TX 1005	91250
MB 880-91250/1-A	Method Blank	Total/NA	Solid	TX 1005	91250

Eurofins Midland

Client: Pinon Midstream Project/Site: Dark Horse

GC Semi VOA (Continued)

Analysis Batch: 91162 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-91250/2-A	Lab Control Sample	Total/NA	Solid	TX 1005	91250
LCSD 880-91250/3-A	Lab Control Sample Dup	Total/NA	Solid	TX 1005	91250

Prep Batch: 91250

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	TX_1005_S_Pre	7
				р	
880-48719-2	Dark Horse #2	Total/NA	Solid	TX_1005_S_Pre	8
990 49710 2	Dark Haraa #2	Total/NA	Solid	p TX 1005 S Dro	
000-407 19-3	Dark Horse #3	Total/NA	Solid	n	9
880-48719-4	Dark Horse #4	Total/NA	Solid	TX 1005 S Pre	
				p	
880-48719-5	Dark Horse #5	Total/NA	Solid	TX_1005_S_Pre	
				р	
880-48719-6	Dark Horse #6	Total/NA	Solid	TX_1005_S_Pre	
880 48710 7	Dark Harso #7	Total/NA	Solid	p TV 1005 S Dro	
000-407 19-7	Dark Horse #1	Total/INA	Solid	n	
MB 880-91250/1-A	Method Blank	Total/NA	Solid	TX 1005 S Pre	4.9
				р — — —	13
LCS 880-91250/2-A	Lab Control Sample	Total/NA	Solid	TX_1005_S_Pre	
				p	
LCSD 880-91250/3-A	Lab Control Sample Dup	Total/NA	Solid	TX_1005_S_Pre	
L				р	

Analysis Batch: 91348

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Total/NA	Solid	TX 1005	
880-48719-2	Dark Horse #2	Total/NA	Solid	TX 1005	
880-48719-3	Dark Horse #3	Total/NA	Solid	TX 1005	
880-48719-4	Dark Horse #4	Total/NA	Solid	TX 1005	
880-48719-5	Dark Horse #5	Total/NA	Solid	TX 1005	
880-48719-6	Dark Horse #6	Total/NA	Solid	TX 1005	
880-48719-7	Dark Horse #7	Total/NA	Solid	TX 1005	

HPLC/IC

Leach Batch: 91243

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Soluble	Solid	DI Leach	
880-48719-2	Dark Horse #2	Soluble	Solid	DI Leach	
880-48719-3	Dark Horse #3	Soluble	Solid	DI Leach	
880-48719-4	Dark Horse #4	Soluble	Solid	DI Leach	
880-48719-5	Dark Horse #5	Soluble	Solid	DI Leach	
880-48719-6	Dark Horse #6	Soluble	Solid	DI Leach	
880-48719-7	Dark Horse #7	Soluble	Solid	DI Leach	
MB 880-91243/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-91243/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-91243/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-48719-6 MS	Dark Horse #6	Soluble	Solid	DI Leach	
880-48719-6 MSD	Dark Horse #6	Soluble	Solid	DI Leach	

5 6

Job ID: 880-48719-1

Client: Pinon Midstream Project/Site: Dark Horse Job ID: 880-48719-1

Page 65 of 95

5

Horse

HPLC/IC

Analysis Batch: 91245

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-48719-1	Dark Horse #1	Soluble	Solid	300.0	91243
880-48719-2	Dark Horse #2	Soluble	Solid	300.0	91243
880-48719-3	Dark Horse #3	Soluble	Solid	300.0	91243
880-48719-4	Dark Horse #4	Soluble	Solid	300.0	91243
880-48719-5	Dark Horse #5	Soluble	Solid	300.0	91243
880-48719-6	Dark Horse #6	Soluble	Solid	300.0	91243
880-48719-7	Dark Horse #7	Soluble	Solid	300.0	91243
MB 880-91243/1-A	Method Blank	Soluble	Solid	300.0	91243
LCS 880-91243/2-A	Lab Control Sample	Soluble	Solid	300.0	91243
LCSD 880-91243/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	91243
880-48719-6 MS	Dark Horse #6	Soluble	Solid	300.0	91243
880-48719-6 MSD	Dark Horse #6	Soluble	Solid	300.0	91243

Client Sample ID: Dark Horse #1

5

9

Job ID: 880-48719-1

Lab Sample ID: 880-48719-1 Matrix: Solid

Lab Sample ID: 880-48719-2

Lab Sample ID: 880-48719-3

Lab Sample ID: 880-48719-4

Matrix: Solid

Matrix: Solid

Date Collected: 09/19/24 09:50 Date Received: 09/19/24 14:00

Client: Pinon Midstream

Project/Site: Dark Horse

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 04:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 04:13	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.01 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/19/24 22:50	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/19/24 22:50	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 09:59	СН	EET MID

Client Sample ID: Dark Horse #2

Date Collected: 09/19/24 10:00 Date Received: 09/19/24 14:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 06:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 06:03	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.05 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/19/24 23:10	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/19/24 23:10	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:06	CH	EET MID

Client Sample ID: Dark Horse #3

Date Collected: 09/19/24 10:05

Date Received: 09/19/24 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 06:24	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 06:24	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.04 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/19/24 23:30	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/19/24 23:30	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:13	СН	EET MID

Client Sample ID: Dark Horse #4 Date Collected: 09/19/24 10:10 Date Received: 09/19/24 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 06:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 06:44	SM	EET MID

Eurofins Midland

Matrix: Solid

Page 66 of 95

Released to Imaging: 1/22/2025 2:11:19 PM

Client Sample ID: Dark Horse #4

Job ID: 880-48719-1

Lab Sample ID: 880-48719-4 Matrix: Solid

Lab Sample ID: 880-48719-5

Date Collected: 09/19/24 10:10 Date Received: 09/19/24 14:00

Client: Pinon Midstream

Project/Site: Dark Horse

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep				10.07 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/19/24 23:50	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/19/24 23:50	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:19	СН	EET MID

Client Sample ID: Dark Horse #5 Date Collected: 09/19/24 10:15

Date Received: 09/19/24 14:00

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 07:05	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 07:05	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.06 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/20/24 00:31	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/20/24 00:31	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:26	СН	EET MID

Client Sample ID: Dark Horse #6

Date Collected: 09/19/24 10:25

Date Received: 09/19/24 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 07:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 07:25	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.01 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/20/24 00:51	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/20/24 00:51	SM	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:33	CH	EET MID

Client Sample ID: Dark Horse #7 Date Collected: 09/19/24 10:30

Date Received: 09/19/24 14:00

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	91221	09/19/24 15:35	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	91173	09/20/24 07:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			91323	09/20/24 07:46	SM	EET MID
Total/NA	Prep	TX_1005_S_Prep			10.05 g	10 mL	91250	09/19/24 16:21	AM	EET MID
Total/NA	Analysis	TX 1005		1	1 uL	1 uL	91162	09/20/24 01:11	SM	EET MID
Total/NA	Analysis	TX 1005		1			91348	09/20/24 01:11	SM	EET MID

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-48719-6

Lab Sample ID: 880-48719-7

Matrix: Solid

Matrix: Solid

Client Sample ID: Dark Horse #7

Lab Chronicle

Client: Pinon Midstream Project/Site: Dark Horse Job ID: 880-48719-1

Lab Sample ID: 880-48719-7 Matrix: Solid

Date Collected: 09/19/24 10:30 Date Received: 09/19/24 14:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.00 g	50 mL	91243	09/19/24 15:09	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	91245	09/20/24 10:53	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Pinon Midstream Project/Site: Dark Horse

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Progra	am	Identification Number	Expiration Date
xas		P	T104704400	06-30-25
T I (II) I (
for which the agency d	are included in this report, bu bes not offer certification.	It the laboratory is not certif	fied by the governing authority. This	list may include analytes
for which the agency d Analysis Method	are included in this report, bu bes not offer certification. Prep Method	It the laboratory is not certif Matrix	and by the governing authority. This Analyte	list may include analytes

9/20/2024

Page 69 of 95

Job ID: 880-48719-1

Method Summary

Client: Pinon Midstream Project/Site: Dark Horse Job ID: 880-48719-1

	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
TX 1005	Texas - Total Petroleum Hydrocarbon (GC)	TCEQ	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
TX_1005_S_Prep	Extraction - Texas Total petroleum Hyrdocarbons	TCEQ	EET MID
Protocol Referer	nces: Minternational		
EPA = US En	nvironmental Protection Agency		
SW846 = "Te	est Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editic	n, November 1986 And Its Updates.	
TAL SOP = T	estAmerica Laboratories, Standard Operating Procedure		
TCEQ = Texa	as Commission of Environmental Quality		

Protocol References:

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Pinon Midstream Project/Site: Dark Horse Page 71 of 95

Lab Sample ID	Client Sample ID	Matrix	Collected	Received	Depth
880-48719-1	Dark Horse #1	Solid	09/19/24 09:50	09/19/24 14:00	6"-12"
880-48719-2	Dark Horse #2	Solid	09/19/24 10:00	09/19/24 14:00	6"-12"
880-48719-3	Dark Horse #3	Solid	09/19/24 10:05	09/19/24 14:00	6"-12"
880-48719-4	Dark Horse #4	Solid	09/19/24 10:10	09/19/24 14:00	6"-12"
880-48719-5	Dark Horse #5	Solid	09/19/24 10:15	09/19/24 14:00	6"-12"
880-48719-6	Dark Horse #6	Solid	09/19/24 10:25	09/19/24 14:00	6"-12"
880-48719-7	Dark Horse #7	Solid	09/19/24 10:30	09/19/24 14:00	6"-12"

.

Work C Work C B80-48719 Chain of Custody B80-48719 Chain of Custody WWWXt. MWWXt. Mage of	Work Order Comments	Program: UST/PST PRP Brownfields RRC Superfund	State of Project:	Reporting: Level II C Level III P5T/UST TRRP C Level IV	• Com Deliverables: EDD ADaPT Other:	ANALYSIS REQUEST Preservative Codes	None: NO DI Water: H ₂ O	Cool: Cool MeOH: Me	HOL: HC HNO 3; H 2 NaOH: Na	H ₃ PO ₄ :HP	NaHSO 4: NABIS	Na ₂ 5 ₂ 0 ₃ : NaSO ₃	Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC	Sample Comments	Sample dearn dearn	on availability.				Cu Fe Pb Mg Mn Mo Ni K Se Ag SiO ₂ Na Sr TI Sn U V Zn b Mn Mo Ni Se Ag TI U Hg: 1631/245.1/7470 /7471	assigns standard terms and conditions to circumstances beyond the control will be enforced unless previously negodiated.	hed by: (Signature) Received by: (Signature) Date/Time	4/12/201 H	
Chain of Custody Houston, TX (281) 240-4200, Dallas, TX (214) 902-030 Midland, TX (432) 704-5440, Sam Antronio, TX (210) 509-3 EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-129 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-31	ill to: (if different)	ompany Name:	ddress:	ity, State ZIP:	LLOPER O Pinonkidstrom	- Puno	Whush Code No	or the	y received by ed by 4:30pm	Ves) No		X -; p: .)]	AN HI	Depth Graty # of C C C	11. 2 V N N	~ ~ ~ ~ ~	7 9	8 8 8	> > > > > > > > > >	Texas 11 AI Sb As Ba Be B Cd Ca Cr Co (B6010 : BRCRA Sb As Ba Be Cd Cr Co UP	read is a support of the support of	Date/Time Relinquist	9/19/24/1400 2 7 100	ع
ofins Environment Testing Xenco	Kaitlen 1002	Pinon Widstroom	757 N. Eldnolge Prun, 1150 A	Howston, Tre. 77079	713-834-4247 Email	Tum An	Routine	Due Date:	TAT starts the da	TeppeBlank: Yes No Wet Ice:	act: Yes No Thermometer ID:	Yes No NA Correction Factor:	s: Yes No N/A Temperature Reading:	Infration Matrix Sampled Sampled	4 #1 Soil allater 9:50mm	#2 1 1 1 1 1 1 T 1	#13 10:02MM	W01:01 14	4 () () () () () () () () () (10 200.8/ 6020: 8RCRA 13PPM and Metal(s) to be analyzed TCLP / SPL	and investance of source of an any second current and reinquisiment of sumples constitutes a valid purchase order will be liable only for the cost of samples and shall not assume any responsi ium charge of \$85.00 will be applied to each project and a charge of \$55 for	r (Signature) Received by: (Signature)		
🛟 eurc	Project Manager:	Company Name:	Address:	Cty, State ZIP:	Phone:	Project Name:	Project Number:	Project Location:	Sampler's Name: PO #:	SAMPLE RECEIPT	Samples Received Int	Cooler Custody Seals:	Sample Custody Seal: Total Containers	Sample Ident	Dave Mor					Total 200.7 / 60: Circle Method(s)	Notice: Signature of this do of service. Eurofins Xenco w of Eurofins Xenco. A minimu	Relinquished by	Sand -	5

9/20/2024

Page 72 of 95
🔆 eurofins

Environment Testing Xenco Remit Payment to: Eurofins Xenco, LLC Citibank One Penns Way New Castle, DE 19720 Account Number: 31485573 Routing/ABA Number: 031100209 Swift Number: CITIU533

NEW CLIENT ONBOARDING FORM Instructions: We recommend that you complete all fields directly in the form and return it via e-mail to Xencoar@eurofinset.com. We also need a W-9 form submitted along with this credit application. If this is not possible, please print, complete manually, and scan it. You may also fax to 281.240.4280 Attn: Accounts Receivable. If you have any questions, please call Accounts Receivable at 281.240.4200. **APPLICANT INFORMATION:** Company Name: Pinon Widstreon LLC Main Contact: Kaithin Lopes Full Billing Address: 16014 Port Borrow Done, Cypanso, TX 77429 Phone: 713-834-4247 Fax: Purchase order Required YONO FEIN: Controller's Name: Connic Name of Accounts Payable Contact: Kainyn Lopez Accounts Payable E-mail: KLOPCE @ pinon midsfream. com Accounts Payable Phone: 713-834-4147 Company Type: Company Type: hlopeze pinonmidstream.com CREDIT APPLICATION CREDIT LINE: (Please only fill out credit application portion if requesting terms) Credit Line Terms: Requesting \$ EVOLOTING & G ACH/Wire O Credit Card 📀 **PAYMENT FORM:** Company Check O SPECIAL INVOICE INSTRUCTIONS: (Please write down instructions on how to send invoices) >ptional Email is prificit FINAL APPROVAL: (Xenco AR team only, terms over 60 days and credit lines over \$5,000 will need to be approved by management) Terms: Credit Line Approved \$ Name: Approver Signature: By signing this agreement, I/We authorize the Eurofins Xenco to run a full Credit Check. If your credit history is deemed inadequate, our AR Department will contact you with instructions for payment in advance. Date: Signature Title: Name: **Credit Application Eurofins Xenco - AR Department**

Job Number: 880-48719-1

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Pinon Midstream

Login Number: 48719 List Number: 1 Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

•

Appendix D Reports and Variances

December 8, 2023

State of New Mexico Oil Conservation Division District II - Artesia 811 S. First St., Artesia, NM 88210

RE: Pinon Midstream, LLC Spill Closure Request for Dark Horse Treating Facility, Lea County, New Mexico

To Whom it May Concern,

Resolute Compliance, LLC (Resolute) is writing you on behalf of Pinon Midstream, LLC (Pinon) regarding a release that occurred at their Dark Horse Treating Facility location in Lea County, New Mexico.

Pinon is requesting concurrence on the closure of the spill after final excavation activities. Please see details of the proposed remediation plan herein.

The Dark Horse Treating Facility underwent inlet mechanical failure on 11/26/2023. This failure resulted in Pinon immediately activating Pinon's emergency action and H₂S contingency plans. Pinon isolated the gathering system and pipelines around the source of release.

At the end of the event, 11/29/2023, it was calculated that 5,023.00 MSCF of gas was thermally controlled throughout the duration of the event. Additionally, 3.75 BBL of amine liquid (with no associated reportable quantity) was released.

Pinon depressurized inlet pipelines to the Dark Horse Treating Facility and isolated the plant.

Proposed Remediation Plan

Remediation efforts are currently in progress as the extent of the equipment failure is being determined. Sampling efforts will begin the week of 12/11/2023 to assist in delineating the impacted area. Areas where detection limits are above clean up criteria will promote excavation. Subsequent confirmation sampling will be conducted as necessary pending the results of the initial sampling.

115 FM 2453, Suite A Royse City, TX 75189 (972) 842-4301 www.ResoluteCompliance.com

Should you require any further information regarding the initial incident, or the follow-up actions taken by Pinon, please don't hesitate to reach out directly to me by phone at 972.842.4304 or via email at jj@resolutecompliance.com

Kind regards,

Jeff Jackson Vice President of EHSR

Encl: Initial C-141 Report

115 FM 2453, Suite A Royse City, TX 75189 (972) 842-4301 www.ResoluteCompliance.com District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 District IV 1220 S. St. Francis Dr., Santa Fe, NM 87505 State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505 Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

)

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible Party: Pinon Midstream, LLC	OGRID: 330718
Contact Name: Chris Kassen	Contact Telephone: 469-474-8092
Contact email: ckassen@pinonmidstream.com	Incident # (assigned by OCD):
Contact mailing address: 20445 SH 249, Suite 300, Houston, TX	77070

Location of Release Source

Latitude 32.118743

Longitude <u>-103.289391</u> (NAD 83 in decimal degrees to 5 decimal places)

Site Name: Dark Horse Treating Facility	Site Type: Treating Facility	
Date Release Discovered: 11/26/2023	API# (if applicable): 39823	

Unit Letter	Section	Township	Range	County
L	20	258	36E	Lea

Surface Owner: State Federal Tribal Private (Name: _

Nature and Volume of Release

Material(s) Released (Select all that apply and attach calculations or specific justification for the volumes provided below)

Crude Oil	Volume Released (bbls)	Volume Recovered (bbls)
Produced Water	Volume Released (bbls)	Volume Recovered (bbls)
	Is the concentration of dissolved chloride in the produced water >10,000 mg/l?	Yes No
Condensate	Volume Released (bbls)	Volume Recovered (bbls)
🛛 Natural Gas	Volume Released (Mcf) 5,023.00	Volume Recovered (Mcf) 5,023.00
Other (describe)	Volume/Weight Released (provide units) Amine 3.57 bbl	Volume/Weight Recovered (provide units) Amine 3.57 bbl

Cause of Release

Mechanical failure of on-site equipment.

Page 2

Application ID

Was this a major release as defined by 19.15.29.7(A) NMAC?	If YES, for what reason(s) does the responsible party consider this a major release?	
🛛 Yes 🗌 No		
If YES, was immediate notice given to the OCD? By whom? To whom? When and by what means (phone, email, etc)?		
Immediate notice was given by Chris Kassen (Pinon) to OCD.Enviro@emnrd.nm.gov via email on 11/26/2023 at 12:00 pm.		

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury

 \square The source of the release has been stopped.

The impacted area has been secured to protect human health and the environment.

Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices.

All free liquids and recoverable materials have been removed and managed appropriately.

If all the actions described above have not been undertaken, explain why: N/A

Per 19.15.29.8 B. (4) NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please attach a narrative of actions to date. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please attach all information needed for closure evaluation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Printed Name: Chris Kassen	Title: Director of Operations
Signature: Signed via OCD Submission	Date: <u>12/3/2023</u>
email: <u>ckassen@pinonmidstream.com</u>	Telephone: <u>469-474-8092</u>
OCD Only	
Received by:	Date:

•

Oil Conservation Division

	Page 80 of 95
Incident ID	
District RP	
Facility ID	
Application ID	

Site Assessment/Characterization

This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release?	<u>< 50</u> (ft bgs)
Did this release impact groundwater or surface water?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	🗌 Yes 🛛 No
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	🗌 Yes 🛛 No
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	🗌 Yes 🛛 No
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	🗌 Yes 🛛 No
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	🗌 Yes 🛛 No
Are the lateral extents of the release within 300 feet of a wetland?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying a subsurface mine?	🗌 Yes 🛛 No
Are the lateral extents of the release overlying an unstable area such as karst geology?	🗌 Yes 🛛 No
Are the lateral extents of the release within a 100-year floodplain?	🗌 Yes 🛛 No
Did the release impact areas not on an exploration, development, production, or storage site?	🗌 Yes 🔀 No

Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.

Characterization Report Checklist: Each of the following items must be included in the report.

Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells.
Field data
Data table of soil contaminant concentration data
Depth to water determination
Determination of water sources and significant watercourses within ½-mile of the lateral extents of the release
Boring or excavation logs
Photographs including date and GIS information
Topographic/Aerial maps
Laboratory data including chain of custody

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 11/15/	24 1:02:21 PM	Page 81 of 9.
Page 4		Incident ID
	Oil Conservation Division	District RP
		Facility ID
		Application ID
I hereby certify that the inf regulations all operators an public health or the enviro failed to adequately invest addition, OCD acceptance and/or regulations. Printed Name: Signature: email:	formation given above is true and complete to the best of my re required to report and/or file certain release notifications a onment. The acceptance of a C-141 report by the OCD does tigate and remediate contamination that pose a threat to grou of a C-141 report does not relieve the operator of responsib Title: Date: Telephone:	y knowledge and understand that pursuant to OCD rules and and perform corrective actions for releases which may endanger not relieve the operator of liability should their operations have undwater, surface water, human health or the environment. In bility for compliance with any other federal, state, or local laws
OCD Only		
Received by:		Date:

Received by OCD: 11/15/2024 1:02:21 PM Form C-141 State of New Mexico

Oil Conservation Division

<u>Remediation Plan Checklist</u>: Each of the following items must be included in the plan.

Incident ID	
District RP	
Facility ID	
Application ID	

Remediation Plan

Detailed description of proposed remediation technique Scaled sitemap with GPS coordinates showing delineation points Estimated volume of material to be remediated Closure criteria is to Table 1 specifications subject to 19.15.29.12(C)(4) NMAC Proposed schedule for remediation (note if remediation plan timeline is more than 90 days OCD approval is required) Deferral Requests Only: Each of the following items must be confirmed as part of any request for deferral of remediation. Contamination must be in areas immediately under or around production equipment where remediation could cause a major facility deconstruction. Extents of contamination must be fully delineated. Contamination does not cause an imminent risk to human health, the environment, or groundwater. I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. Printed Name: Title: Signature: _____ Date: _____ email: _____ Telephone: _____ OCD Only Received by: Date: Approved Approved with Attached Conditions of Approval Denied Deferral Approved Signature: Date:

Page 5

Page 6

Oil Conservation Division

Incident ID	
District RP	
Facility ID	
Application ID	

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

<u>Closure Report Attachment Checklist</u> : Each of the followin	ng items must be included in the closure report.				
A scaled site and sampling diagram as described in 19.15.2	29.11 NMAC				
Photographs of the remediated site prior to backfill or pho must be notified 2 days prior to liner inspection)	otos of the liner integrity if applicable (Note: appropriate OCD District office				
Laboratory analyses of final sampling (Note: appropriate C	DDC District office must be notified 2 days prior to final sampling)				
Description of remediation activities					
I hereby certify that the information given above is true and com and regulations all operators are required to report and/or file ce may endanger public health or the environment. The acceptance should their operations have failed to adequately investigate and human health or the environment. In addition, OCD acceptance compliance with any other federal, state, or local laws and/or reg restore, reclaim, and re-vegetate the impacted surface area to the accordance with 19.15.29.13 NMAC including notification to the Printed Name:	nplete to the best of my knowledge and understand that pursuant to OCD rules rtain release notifications and perform corrective actions for releases which e of a C-141 report by the OCD does not relieve the operator of liability I remediate contamination that pose a threat to groundwater, surface water, of a C-141 report does not relieve the operator of responsibility for gulations. The responsible party acknowledges they must substantially e conditions that existed prior to the release or their final land use in the OCD when reclamation and re-vegetation are complete.				
Signature: Date:					
email: Telephone:					
OCD Only					
Received by:	Date:				
Closure approval by the OCD does not relieve the responsible party of liability should their operations have failed to adequately investigate and remediate contamination that poses a threat to groundwater, surface water, human health, or the environment nor does not relieve the responsible party of compliance with any other federal, state, or local laws and/or regulations.					
Closure Approved by:	Date:				
Printed Name:	Title:				

						Searches	Operator Data	Submissions	Administration	
OC	D Perm	itting								
lome	Submissions	Releases	NOR	Submit Application						

Submit Non-Fee [NOTIFY] Notification Of Release (NOR)

Submission Contact, Application, Fee and Payment Details				
	······································			
First Name:	Chris	Application Status: Draft Application		
Last Name:	Kassen	Please call (505) 476-3441 or email ocd.fees@state.nm.us for support.		
Email:	ckassen@pinonmidstream.com	Fee Amount: \$0.00		
Edit Submission Co	ontact Details			

Application Details

Hon

District	County	Location		Туре	ID	
Hobbs	Lea	L-20-25S-36E Lot: 1626 FNL 1993 FEL 32.118743,-103.289391 NAD83	<u>Delete</u>	Facility ID	[<u>fAPP2206937962]</u>	<u>Delete</u>
Add Lo	ocation			Add Well API		

Location of Release Source

Please answer all the questions in this group.

•	Site Name	Dark Horse Treating Facility	<u>Clear</u>
•	Date Release Discovered	11/26/2023	<u>Clear</u>
•	Surface Owner	Federal	<u>Clear</u>

Incident Details

Please answer all the questions in this group.

•	Incident Type	Emergency	<u>Clear</u>
•	Did this release result in a fire or is the result of a fire	Yes	<u>Clear</u>
•	Did this release result in any injuries	No	<u>Clear</u>
۰	Has this release reached or does it have a reasonable probability of reaching a watercourse	No	<u>Clear</u>
٠	Has this release endangered or does it have a reasonable probability of endangering public health	No	<u>Clear</u>
٠	Has this release substantially damaged or will it substantially damage property or the environment	Yes	<u>Clear</u>
٠	Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	<u>Clear</u>

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	0
Produced Water Released (bbls) Details	0
Is the concentration of chloride in the produced water >10,000 mg/l	0

Received by OCD: 11/15/2024 1:02:21 PM

		Searches Operato	r Data Submissions	Administration
٠	Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Non-reportable quantity of amine released. No hydrocarbons	released. <u>Clear</u>	
Natu	re and Volume of Release (continued)			
•	Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this appears to be a	ʻgas only" report.	
•	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes		
۰	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire;		

(d) substantially damages property or the environment; (3) an unauthorized release of gases exceeding 500 MCF.

With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.

Initial Response

The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.

•	The source of the release has been stopped	True	<u>Clear</u>
•	The impacted area has been secured to protect human health and the environment	True	<u>Clear</u>
•	Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	<u>Clear</u>
•	All free liquids and recoverable materials have been removed and managed appropriately	True	<u>Clear</u>
	If all the actions described above have not been undertaken, explain why	0	

If all the actions described above have not been undertaken, explain why .

Per Paragraph 4 of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the followup C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.

Acknowledgments
I acknowledge that I am authorized to submit notification of a release on behalf of my operator.
I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.
I acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.
I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.
I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Submit to OCD Delete

> New Mexico Energy, Minerals and Natural Resources Department | Copyright 2012 1220 South St. Francis Drive | Santa Fe, NM 87505 | P: (505) 476-3200 | F: (505) 476-3220

From:	Velez, Nelson, EMNRD
То:	Kaitlyn Lopez
Subject:	Re: [EXTERNAL] 19.15.29.12.D.(1)(a) - Variance Request
Date:	Monday, September 16, 2024 4:54:11 PM
Attachments:	image001.png
	Outlook-kfr0ofho.png
	Implementation-of-Digital-C-141-and-Incident-Statuses.pdf

CAUTION: External Sender Email: Use caution with links / attachments.

Good afternoon Kaitlyn,

Thank you for the correspondence. Based on the information given, your variance request to forgo 19.15.29.12D (1a) NMAC is approved. Please submit a sampling notification to the portal and date 12/12/2023 (third entry). Within one of the last two (2) entries, state that the sampling notification variance was approved via email and will be included within the final remediation closure report.

Please keep a copy of this communication for inclusion within the appropriate report submittal.

I've also attached the guidance document that I had referred to in our phone conversation.

The OCD requires a copy of all correspondence relative to remedial activities be included in all proposals and/or final closure reports. Correspondence required to be included in reports may include, but not limited to, notifications for liner inspections, sample events, spill/release/fire, and request for time extensions or variances.

Regards,

Nelson Velez • Environmental Specialist - Adv Environmental Bureau | EMNRD - Oil Conservation Division 1000 Rio Brazos Road | Aztec, NM 87410 (505) 469-6146 | nelson.velez@emnrd.nm.gov http://www.emnrd.nm.gov/ocd_

From: Kaitlyn Lopez <klopez@pinonmidstream.com>
Sent: Monday, September 16, 2024 2:20 PM
To: Velez, Nelson, EMNRD <Nelson.Velez@emnrd.nm.gov>
Subject: [EXTERNAL] 19.15.29.12.D.(1)(a) - Variance Request

You don't often get email from klopez@pinonmidstream.com. Learn why this is important

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good afternoon Nelson,

We would like to request a variance for 19.15.29.12.D.(1)(a), verbal notification two business days prior to conducting final sampling, for samples taken on December 11, 2023 at our Dark Horse Treating Facility.

The analytical report prepared by Eurofins is attached for your reference. The samples were taken immediately upon cleanup and were identified to be well below closure standards or non-detect for sampled criteria.

Upon your review of this request, please do not hesitate to contact me for any additional information.

Respectfully,

Kaitlyn Lopez | Regional Compliance Director Piñon Midstream C. 713.834.4247 KLopez@PinonMidstream.com Please Note our New Address 757 N. Eldridge Pkwy, Suite 1150 Houston, Texas 77079

?

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 88 of 95

QUESTIONS

Action 403757

QUESTIONS		
Operator:	OGRID:	
Pinon Midstream LLC	330718	
PO Box 4324	Action Number:	
Houston, TX 77210	403757	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2334345415
Incident Name	NAPP2334345415 DARK HORSE TREATING FACILITY @ 0
Incident Type	Emergency
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2206937962] Pinon Midstream

Location of Release Source

Please answer all the questions	in	this group.
---------------------------------	----	-------------

Site Name	DARK HORSE TREATING FACILITY
Date Release Discovered	11/26/2023
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.		
Incident Type	Emergency	
Did this release result in a fire or is the result of a fire	Yes	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	Νο	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	Yes	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	No	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Cause: Equipment Failure Gas Plant Natural Gas Flared Released: 12,286 Mcf Recovered: 0 Mcf Lost: 12,286 Mcf.	
Other Released Details	Cause: Other (Specify) Released: 0 (Unknown Released Amount) Recovered: 0 Lost: 0	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Non-reportable quantity of amine released. No hydrocarbons released.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Page 89 of 95

Action 403757

QUESTIONS (continued)	
	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

Action Type:

QUESTIONS

Operator:

	Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	Yes, according to supplied volumes this appears to be a "gas only" report.	
ľ	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (2) an unauthorized release of a volume that: (a) results in a fire or is the result of a fire; (d) substantially damages property or the environment; (3) an unauthorized release of gases exceeding 500 MCF.	

|--|

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative o actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Kaitlyn Lopez Title: Regional Compliance Director Email: klopez@pinonmidstream.com Date: 11/15/2024	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757
	Action Type:

QUESTIONS

Site	Characterization
one	Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)
What method was used to determine the depth to ground water	Estimate or Other
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediatio	n plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC		associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and verti	cal extents of contamination been fully delineated	Yes
Was this release entirely	contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride	(EPA 300.0 or SM4500 CI B)	93.4
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	387
GRO+DRO	(EPA SW-846 Method 8015M)	0
BTEX	(EPA SW-846 Method 8021B or 8260B)	1.1
Benzene	(EPA SW-846 Method 8021B or 8260B)	0.1
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date	will the remediation commence	11/28/2023
On what date will (or did)	the final sampling or liner inspection occur	09/19/2024
On what date will (or was) the remediation complete(d)	01/12/2024
What is the estimated sur	face area (in square feet) that will be reclaimed	0
What is the estimated vol	ume (in cubic yards) that will be reclaimed	0
What is the estimated sur	face area (in square feet) that will be remediated	1300
What is the estimated vol	ume (in cubic yards) that will be remediated	12
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		
The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to		

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS, Page 3

Page 90 of 95

Action 403757

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Page 91 of 95

Action 403757

QUESTIONS (continued)	
Operator:	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)

Please answer all the guestions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	R360 ARTESIA LLC LANDFARM [fEEM0112340644]	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Kaitlyn Lopez Title: Regional Compliance Director Email: klopez@pinonmidstream.com	

Date: 11/15/2024 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 403757

Page 92 of 95

QUESTIONS (continued)	
Operator:	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 403757

Page 93 of 95

OUTONIC	(a a mitimu a d)
QUESTIONS	(conunuea)

Operator:	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	384079
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	09/19/2024
What was the (estimated) number of samples that were to be gathered	7
What was the sampling surface area in square feet	1300

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	1300	
What was the total volume (cubic yards) remediated	12	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	0	
What was the total volume (in cubic yards) reclaimed	0	
Summarize any additional remediation activities not included by answers (above)	None	
The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required		
to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.		
	Name: Kaitlyn Lonez	

I hereby agree and sign off to the above statement	Name: Kaitlyn Lopez
	Title: Regional Compliance Director
	Email: klopez@pinonmidstream.com
	Date: 11/15/2024

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 403757

Page 94 of 95

QUESTIONS (continued)				
Operator: Pinon Midstream LLC PO Box 4324 Houston, TX 77210	OGRID: 330718			
	Action Number: 403757			
	Action Type: [C-141] Remediation Closure Request C-141 (C-141-v-Closure)			

QUESTIONS

Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a recl	amation approval with this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	95	of	95
CONDITIONS			

Action 403757

CONDITIONS

Operator:	OGRID:
Pinon Midstream LLC	330718
PO Box 4324	Action Number:
Houston, TX 77210	403757
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

 CONDITIONS

 Created By
 Condition
 Condition

 scott.rodgers
 This Remediation Closure Report is approved. Areas reasonably needed for production or subsequent drilling operations will need to be reclaimed and revegetated as soon as they are no longer reasonably needed. A report for reclamation and revegetation will need to be submitted and approved prior to this incident receiving the final status of "Restoration Complete".
 1/22/2025