

March 19, 2025

SMA # 5E34059-BG3

EMNRD – Oil Conservation Division 506 W. Texas Ave Artesia, NM 88210

SUBJECT: Closure Request Report for the Shetland 11 CTB 1, Incident ID # nAPP2436355660 Eddy County, New Mexico.

1.0 Introduction

On behalf of Devon Energy Production Company, LP (Devon), Souder, Miller & Associates (SMA) has prepared this Closure Request Report that describes the corrective actions for an oil release incident related to oil and gas production activities at the Shetland 11 CTB 1 (Shetland), Incident ID nAPP2436355660. The incident occurred at N 32.053269, W -103.74990.

Devon completed a release notification to the New Mexico Energy, Minerals, and Natural Resources Department – Oil Conservation Division (OCD) via Operators Electronic Permitting and Payment Portal on December 28, 2024, for the submission of Notice of Release (NOR), followed by the submission of the Form C-141, Release Notification on December 28, 2024. This letter provides a description of the spill assessment and includes a request for spill closure.

Table 1: Release Information and Closure Criteria									
Name	Shetland 11 CTB 1 Company Devon Energy Productio Company, LP								
API Number	fAPP2123649550	Location	D-11-26S-31E 32.053169, -103.74990 Eddy County						
Incident Number	nAPP2436355660	Federal (BLM)							
Date of Release	December 20, 2024								
Cause of Release	Bleeder valve left open on recy	cle pump.							
Released Volume	5 bbls Recovered Volume 5 bbls								
NMOCD Closure Criteria	DTGW Determination is <50 feet bgs (below ground surface): due to lack of groundwater data within ½ mile and medium karst designation								

2.0 Background

On December 20, 2024, a bleeder valve was left open on a recycle pump, resulting in the release of 5 barrels (bbl) of crude oil in the secondary lined containment. Initial response activities were conducted by the operator, including source elimination, photographs of standing fluids, recovery of approximately 5 bbls of oil, and verification that the affected area was properly exposed and cleaned for visual observation. Photos of the facility layout including tanks, liner, and secondary containment are shown in the Site Assessment Photolog (Attachment 1).

Received by OCD: 3/19/2025 1:07:50 PM

Shetland 11 CTB 1 (nAPP2436355660)

Liner Inspection Closure Report

Page 2 of 71

3.0 Site Geology and Vegetation

The Shetland is located approximately 16.23 miles northeast of Angeles, Texas, on Federal (BLM) land at an elevation of approximately 3,206 feet above mean sea level (amsl). SMA completed a site assessment/characterization pursuant to 19.5.29.11-12 NMAC to determine potential environmental impacts and closure criteria. Site assessment and characterization results are included in Attachments 1 and 2.

The Geologic Map of New Mexico by New Mexico Bureau of Geology and Mineral Resources indicates the surface geology at the incident location area is comprised of primarily Qep –Eolian and piedmont deposits (Holocene to middle Pleistocene) – interlayed eolian sands and piedmont-slope deposits and is characterized as Simona-Bippus complex and Tonuco loamy fine sand. Soil texture is dominantly loamy fine sand to gravelly fine sandy loam and becomes indurated. Ecological settings include vegetation of black grama and dropseeds, tall grasses, giant sacaton, forbs, shinnery oak, sand sage, honey mesquite, and bunch grasses. Creosote, yucca, saltbrush, and ephedra are subdominant.

The surrounding geography and terrain is associated with uplands, plains, dunes, fan piedmonts, terraces, interdunal areas at elevations between 2,842 feet and 4,000 feet above sea level. The annual average rainfall and precipitation ranges between 8 to 13 inches. The soil in the release location area tends to be well to excessively well drained with very high runoff and very low to moderately low available water supply.

4.0 Information and Closure Criteria

There is no surface water located on site or within 300 feet of the site. The nearest significant watercourse, as defined in 19.15.17.7.P NMAC, is an intermittent stream/riverine, located approximately 1.34 miles north of the site, a playa lake or freshwater pond is located 4.24 miles southeast, and a freshwater emergent wetland is located 1.15 miles southeast from Shetland (USFWS, 2025). There are no continuous flowing watercourses or significant watercourses, lakebeds, sinkholes, playa lakes, or other critical water or community features as outlined in Paragraph (4) of Subsection C of 19.15.29.12 NMAC.

There are no active wells or temporary boreholes placed within a half mile radius of Shetland. The nearest active well to the release site is a well identified by the Office of the State Engineers (OSE) used for livestock watering, Pod LWD-01187, located approximately 0.77 miles west of the site and has no known depth recorded. The second nearest OSE pod with recorded well data is a temporary borehole, Pod C-04637-POD1 located 0.87 miles north of the site. The well record indicates the temporary borehole was drilled to a depth of 51 feet below ground surface (bgs) where no groundwater was accumulated or discovered. Additionally, OSE POD C-044644 POD1 is located 0.88 miles northeast and has no recorded depth to water when drilled to 80 ft bgs. Documentation in reference to site characterization and depth to groundwater is included in Attachment 2.

Karst potential for the area that Shetland is in is in a medium karst. Shetland is located 2.88 miles southwest outside of a low karst potential area based off the NM OCD Oil and Gas Map and the New Mexico State Land Office Status Interactive Map (NMSLO).

According to the FEMA National Flood Hazard Layer map, the site is located within an area of minimal flood hazard (Zone X). The nearest 100-year floodplain (Zone A) is 0.09 miles west.

Page 3 of 71

Due to lack of groundwater depth data within ½-mile of the site and the medium karst potential designation, the closure criteria for the site are the constituent concentration limits associated with the less than 50 feet depth to groundwater as stated in Table I of 19.15.29.12 NMAC.

5.0 Remediation Activities

Notification of the liner inspection, scheduled for February 7, 2025, was provided to Devon, OCD, and the Bureau of Land Management (BLM) through email by SMA personnel on February 4, 2025. Devon provided notification to OCD through the ENMRD Electronic Permitting and Payment Portal for Operators on February 4, 2025, with form C-141, Liner Inspection Notification. Notification documentation is included in Attachment 3.

On Friday, February 7, 20254, SMA personnel performed a visual inspection of the secondary containment to verify liner integrity, as outlined in in Paragraph (5)(a) of Subsection A of 19.15.29.11 NMAC.

Visual observation of the liner was completed on all sidewalls and base of the containment, around equipment, and all seams of the liner. The inspection included observations for any potential perforations in the liner that could lead to a breach of the secondary containment. These observations concluded no signs of any rips, cuts, tears, or weathering in any conditions that showed signs in need of repairs or replacements. As evidence, photo documentation is included in the Site Assessment Report and Photolog (Attachment 1).

6.0 Conclusions and Recommendations

As evidenced by the liner inspection and assessment, SMA concludes the liner integrity is adequate to contain the spill related to incident nAPP2436355660, and there is no evidence of release to the environment.

Based on the professional activities and site assessment, Devon respectfully requests closure on the incident nAPP2436355660 that occurred at Shetland 11 CTB 1.

7.0 Scope and Limitations

The scope of our services included: visual inspection for liner integrity; regulatory liaison; and preparing this report. All work has been performed in accordance with generally accepted professional environmental consulting practices for oil and gas releases in the Permian Basin in New Mexico.

If there are any questions regarding this report, please contact Monica Peppin at (575) 909-3418 or Stephanie Hinds at (505) 302-1127.

Prepared by: SOUDER, MILLER & ASSOCIATES Reviewed and Submitted by:

Monica Peppin Project Manager

Aliphanie Ands

Stephanie Hinds, P.E. Senior Engineer

Liner Inspection Closure Report

Devon Energy March 19, 2025

Page 4 of 71

REFERENCES:

 NM OCD Oil and Gas Map online database https://nmemnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca7 5
 New Mexico Office of the State Engineer (NMOSE) online water well database Httpe://gis.ose.state.nm.us/gisapps/ose_pod_locations/
 US Fish and Wildlife Service, National Wetlands Inventory: Online Wetlands Mapper https://fwsprimary.wim.usgs.gov/wetlands/apps/wetlands-mapper/
 USGS National Water Information System: Web interface online water well database https://nwis.waterdata.usgs.gov/nwis/gwlevels?site_no=321205103544701&agency_cd=USGS& format=html

ATTACHMENTS:

Attachment 1: Site Assessment Field Report and Photolog Attachment 2: Closure Criteria Determination Research Attachment 3: Correspondence

ATTACHMENT 1: SITE ASSESSMENT FIELD REPORT

Site Assessment Photolog

Stronger Communities by Design

<u>Client: Devon Energy Corporation</u> <u>Facility ID: fAPP2123649550</u> <u>Lease ID: NMNM089057</u> Site: Shetland 11 CTB 1 Incident ID: nAPP2436355660 Project Manager: Monica Peppin Project Owner: Jim Raley

Field Notes

February 7, 2025

- Arrive on site
- Fill out JHA
- Begin inspection of secondary containment by walking around and inspecting liner.
- Pictures at different positions around the containment and between tanks in all cardinal directions.
- Inspected for any visible perforations, cuts, rips, tears, or substantial weathering that could result in a fluid release passed the secondary containment.
- Secondary containment liner integrity is confirmed and passed the inspection.
- Incident is ready for the report and submission to the applicable regulatory agencies.

Photographs

Photograph #1: Lease sign with site information and geographic data.

Photograph #2: Southwest corner of containment standing near tanks.

Received by OCD: 3/19/2025 1:07:50 PM

Photograph #3: Facing southeast viewing liner from northwest corner towards tanks.

Photograph #4: Viewing southeast corner from the middle of east wall.

Photograph #5: Southwest corner standing near tanks facing west.

Photograph #6: Liner between tanks on south end facing east.

Photograph #7: East wall from south end facing north.

Photograph #9: South view down west wall area from north end.

Photograph #8: Facing east viewing northeast corner from west side.

Photograph #10: Liner under piping and pumps from northeast corner.

Received by OCD: 3/19/2025 1:07:50 PM

Photograph #11: Northeast corner standing near tanks on north end.

Photograph #13: View of liner on norh wall under transfer pumps from west side.

Photograph #12: Facing northwest viewing liner near transfer pumps.

Photograph #14: Viewing south wall area from east side.

Photograph #15: West wall view from south end facing north.

Photograph #17: Between tanks from north end facing south.

Photograph #16: Between tanks from south end facing north.

Photograph #18: Liner area on north side facing west.

Photograph #19: East wall area from northeast corner.

Photograph #20: South wall area facing east.

Technician: Monica Peppin

Date: 2/7/2025

Released to Imaging: 3/24/2025 8:13:45 AM

Signature:

ATTACHMENT 2: CLOSURE CRITERIA DETERMINATION RESEARCH

Received by OCD: 3/19/2025 1:07:50 PM Snetiand 11 CIB 1

Approx Square Footage of Containment: 6,525 square feet POR Coordinates: 32.0531694, -103.74990

And Descent Street, or other

Shetland 11 CTB 1

Google Earth Released to Imaging: 3/24/2025 8:13:45 AM Irrage © 2024 Airbus \mathbb{N}

OSE POD Location Map

3/19/2025, 11:39:22 AM

GIS WATERS PODs New Mexico State Trust Lands

Active

0

- Pending
- Plugged
- Subsurface Estate
 Both Estates

1:18,056

Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community, Maxar

January 23, 2025

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland
- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Released to Imaging: 3/24/2025 8:13:45 AM

/10/2025 1.07.50 DM Received by OCD

U.S. Fish and Wildlife Service National Wetlands Inventory

Shetland 11 CTB 1 **Nearest Watercourse: Riverine** Distance: 1.34 miles/7091 feet

February 22, 2025

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

Released to Imaging: 3/24/2025 8:13:45 AM

- Freshwater Emergent Wetland
- Freshwater Forested/Shrub Wetland
- Freshwater Pond

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife

Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Shetland 11 CTB 1

Nearest Spring or Domestic Fresh Water Well: Livestock Watering POD LWD-01187 Distance: 0.77 mi / 4,061 ft

Override 1 GIS WATERS PODs Plugged

Artesian Planning Area New Mexico State Trust Lands Both Estates

Water Right Regulations

Online web user This is an unofficial map from the OSE's online application.

OSE District Boundary

Received by OCD: 3/19/2025 1-07:50 PM Shetland 11 CIB 1

Nearest Town: Angeles, TX Distance: 16.23 miles (85,703 feet) Page 19 of 71 Legend 3 Shetland 11 CTB 1

Shetland 11 CTB 1

NEW MEXICO

to Firm

BE REALING

5- 1 E-1

WEDER TO A

Angeles

285)

TEXAS

Google Earth Released to Imaging: 3/24/2025 8:13:45 AM Irrage © 2024 Alipous

- S. Tart - In Kat

U.S. Fish and Wildlife Service National Wetlands Inventory

Shetland 11 CTB 1

Distance to nearest wetland: 1.15 mi / 6,097 ft

November 29, 2024

Wetlands

- Estuarine and Marine Deepwater
- Estuarine and Marine Wetland

- Freshwater Pond

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Lake Other Riverine This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Shetland 11 CTB 1 Mines or Unstable Areas

11/29/2024, 1:07:29 AM

Mining_Ghost_Towns

Counties

REE_Districts

REE-Th-U veins, fluorite veins

Vein and replacement deposits in Proterozoic rocks, tin veins, volcanic-epithermal vein

carbonatite

beach-placer sandstone

New Mexico Bureau of Geology and Mineral Resources, New Mexico Bureau of Geology & Mineral Resources, Earthstar Geographics, NMBGMR

ArcGIS Web AppBuilder

Released to Imaging: 3/24/2027 & Maral Resources, Bureau of Land Management | New Mexico Bureau of Geology and Mineral Resources | New Mexico Bureau of Geology & Mineral Resources | NMBGMR |

OCD Karst Potential Map

3/19/2025, 10:49:14 AM

Karst Occurrence Potential

Medium

PLSS Second Division

PLSS First Division

BLM, OCD, New Mexico Tech, OCD, Esri, HERE, Garmin, iPC, Maxar, BLM

New Mexico Oil Conservation Division

Released to Imaging: 3/24/2025 8:13:45 AM OCD Oil and Gas Map. http://nm-emnrd.maps.arcgis.com/apps/webappviewer/index.html?id=4d017f2306164de29fd2fb9f8f35ca75: New Mexico Oil Conservation Division

National Flood Hazard Layer FIRMette

203°45'18"W 32°3'27"N

Shetland 11 CTB 1: Zone X/100-500 Year Distance to Zone A: 0.09 miles (492 feet)

Legend

Basemap Imagery Source: USGS National Map 2023

Natural Resources **Conservation Service**

Web Soil Survey National Cooperative Soil Survey Received by OCD: 3/19/2025 1:07:50 PM

MAP INFORMATION

Received by OCD: 3/19/2025 1:07:50 PM

	MAP LE	GEND		
OI)		000	Spoil Area	

USDA

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SM	Simona-Bippus complex, 0 to 5 percent slopes	4.3	87.8%
TN	Tonuco loamy fine sand, 0 to 3 percent slopes, eroded	0.6	12.2%
Totals for Area of Interest		4.9	100.0%

Shetland 11 CTB 1

11/13/2024, 10:55:44 PM

Lithologic Units

- Playa—Alluvium and evaporite deposits (Holocene)
- Water—Perenial standing water
- Qa—Alluvium (Holocene to upper Pleistocene)

Earthstar Geographics, NMBGMR

ArcGIS Web AppBuilder Released to Imagine: 3/24/20/3 & 8:13:14 Maral Resources, Bureau of Land Management | New Mexico Bureau of Geology and Mineral Resources | New Mexico Bureau of Geology & Mineral Resources | NMBGMR |

1. 1. 1. 1. 8 2022 PL 320

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

NO	OSE POD NO. (WELL NO.) POD 1 (TW-1) WELL TAG ID NO. N/A					OSE FILE NO(S). C-4637						
OCATI	WELL OWNER NAME(S) Devon Energy						PHONE (OPTIONAL) 575-748-1838					
WELL L		WELL OWNER MAILING ADDRESS 6488 7 Rivers Hwy						CITY STATE Artesia NM 88210				ZIP
1. GENERAL AND WELL LOCATION	WELL DEGREES LOCATION LATITUDE 32 (FROM GPS) LONGETUDE 103				3 57.21 _N			ACCURACY REQUIRED: ONE TENTH OF A SECOND				
1. GENE	(FROM GPS) LONGITUDE 103 44 57.0 W * DATUM REQUIRED: WGS 84 DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS – PLSS (SECTION, TOWNSHIJP, RANGE) WHERE AVAILABLE SE SE SW Sec.2 T26S R31S NMPM											
	LICENSE NO. NAME OF LICENSED DRILLER 1249 Jackie D. Atkins						NAME OF WE Atki		G COMPANY ing Associates, 1	Inc.		
	DRILLING ST 6/15/2		DRILLING ENDED 6/15/2022						ble depth (FT) depth water first encountered (FT) ±51 N/A			
N	COMPLETED WELL IS: ARTESIAN TO DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL N/A (FT) DATE STATIC MEASURED 6/15/2022,7/19/2022											
ATIC	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY:											
2. DRILLING & CASING INFORMATION	DRILLING ME		ROTARY HAM	MER CAL	BLE TOOL 🔽 OTH	HER - SPECIF	c E	Hollow Stem	Auger	CHECK HERE	E IF PITLESS ADA	PTER IS
	DEPTH (1 FROM	feet bgl) TO	BORE HOLE DIAM (inches)	(include	(include each casing string, and COI		CONN	ASING NECTION TYPE			ASING WALL THICKNESS (inches)	SLOT SIZE (inches)
C & CA	0	55	±6.5		Boring-HSA		dd coup	ling diameter)	-		-	-
2. DRILLIN												
	DEPTH (feet bgl) BORE HOLE LIST ANNULAR SEAL MATERIAL AN				MEIN			D OF				
TERIAL	FROM	то	DIAM. (inches)	GRA	GRAVEL PACK SIZE-RANGE BY INTE			RVAL	(cubic	feet)	PLACEN	MENT
ANNULAR MATERIAL												
3. AN												
	OSE INTERN									1	G (Version 01/2	8/2022)
			7-POD1 1E.02.4.	4.3.	POD NO), (TRN N WELL TAG II		444	PAGE	1 OF 2

	DEPTH (f	eet bgl)	1	COLOR A	ND TYPE OF M	ATERIAL E	NCOUNTERED -	w	ATER	ESTIMATED
	FROM	то	THICKNESS (feet)	INCLUDE WAT	ER-BEARING C	AVITIES O	R FRACTURE ZONE escribe all units)	S BEA	RING? S / NO)	YIELD FOR WATER- BEARING ZONES (gpm)
	0	39	39	Sand, Me	dium/ Fine graine	ed, poorly gra	aded, Tan brown	Y	√ N	
	39	55	16	Sand, Media	ım/ Fine grained,	poorly grade	ed, Reddish Brown	Y	√ N	
T								Y	N	
								Y	N	
								Y	N	
								Y	N	
A.F.								Y	N	
5								Y	N	
3								Y	N	
				· · · · · · · · · · · · · · · · · · ·				Y	N	
2								Y	N	
HYDROGEOLOGIC LOG OF WELL								Y	N	
DKO								Y	N	
		1.00						Y	N	
4		1.77						Y	N	
								Y	N	
								Y	N	
								Y	N	
			1					Y	N	
								Y	N	
								Y	N	
	METHOD U						TAL ESTIMATED			
	PUME		AIR LIFT	BAILER 0	THER – SPECIF	Y:	······	WELL YIEL	D (gpm):	0.00
NOIO	WELL TEST						WELL TESTING, INC D DRAWDOWN OVI			
TRANSING ON STRAIN	MISCELLAY	NEOUS IN	FORMATION: Te be	mporary well mater ow ground surface(al removed and bgs), then hydra	d soil boring ated benton	g backfilled using dr ite chips ten feet bg	ill cuttings fro s to surface.		
	PRINT NAM	E(S) OF D	RILL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSIT	E SUPERVI	SION OF WELL CON	STRUCTION	OTHER TH	AN LICENSE
	Shane Eldric				State Short					and an oral of the
DIGNALUKE	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELIEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND THE PERMIT HOLDER WITHIN 30 DAYS AFTER COMPLETION OF WELL DRILLING:									
0.01010	Jack At	kins		Ja	ckie D. Atkins	9		8/4	4/2022	
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE	NAME				DATE	
0	OSE INTERN	AL USE					WR-20 WE	LL RECORD	LOG (Ve	rsion 01/28/2022
_		4637			POD NO.	1	TRN NO.	72649		CAUSE OF LOULD

PLUGGING RECORD

NOTE: A Well Plugging Plan of Operations shall be approved by the State Engineer prior to plugging - 19.27.4 NMAC

Well	owner: Plains All America	n Pineline, L.P.		_	_	Phone	No.: 713	3-646-4100
Maili	ng address: 333 Clay Stree	et, Suite 1600						
City:	Houston		State:		1	Texas		Zip code: 77002
1. W	VELL PLUGGING INFO							
1)	Name of well drilling c	company that plug	ged well: _	alon/LPE			-	
2)	New Mexico Well Dril	ler License No.:	NM-1800			_	_ Expira	ation Date: 06-2024
3)	Well plugging activitie Jarod Michalsky	s were supervised	by the follo	owing we	ll driller	r(s)/rig sup	ervisor(s	3):
4)	Date well plugging beg	an: 09-07-202	22	_ Date	well pl	ugging co	ncluded:	09-07-2022
5)	GPS Well Location:	Latitude:		_deg,	3	min,	40.9	_ sec _ sec, WGS 84
		Longitude:	103	_deg,	44	min,	13.9	_ sec, WGS 84
5)	Depth of well confirme by the following manne	d at initiation of per: Grout from bot	olugging as: tom to top	80	ft be	elow grou	nd level ((bgl),
7)	Static water level measured	ured at initiation	of plugging:	N/A	ft bg	gl		
8)	Date well plugging plan	n of operations wa	as approved	by the St	ate Eng	ineer: 06	6-13-2022	2
9)	Were all plugging activ	ities consistent w	ith an appro	ved plug	ging pla	n?	Yes	_ If not, please describe dditional pages as needed):
N/A								
							09	SE DII DEC 8 2022 PM3:45
		11.1	7707					
	35-6	199 1-330	6606					

SAN DE C. NEW HEXIDO

Version: September 8, 2009 Page 1 of 2 10) Log of Plugging Activities - Label vertical scale with depths, and indicate separate plugging intervals with horizontal lines as necessary to illustrate material or methodology changes. Attach additional pages if necessary.

Depth (ft bgl)	Plugging <u>Material Used</u> (include any additives used)	Volume of <u>Material Placed</u> (gallons)	Theoretical Volume of Borehole/ Casing (gallons)	Placement <u>Method</u> (tremie pipe, other)	<u>Comments</u> ("casing perforated first", "open annular space also plugged", etc.)
	Grout from 80' bgs to 0' bgs	118 gallons		Tremie	
La contra la					
a ba na n					
1		MULTIPLY	BY AND OBTAIN	OSE D	II DEC 8 2022 m3:45
I. SIGN	ATURE:	cubic feet x 7. cubic yards x 201	4805 = gallons		

For each interval plugged, describe within the following columns:

Ш

I. Jarod Mark Michalsky , say that I am familiar with the rules of the Office of the State Engineer pertaining to the plugging of wells and that each and all of the statements in this Plugging Record and attachments are true to the best of my knowledge and belief.

Eddy Area, New Mexico

SM—Simona-Bippus complex, 0 to 5 percent slopes

Map Unit Setting

National map unit symbol: 1w5x Elevation: 1,800 to 5,000 feet Mean annual precipitation: 8 to 24 inches Mean annual air temperature: 57 to 70 degrees F Frost-free period: 180 to 230 days Farmland classification: Not prime farmland

Map Unit Composition

Simona and similar soils: 55 percent Bippus and similar soils: 30 percent Minor components: 15 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Simona

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 19 inches: gravelly fine sandy loam *H2 - 19 to 23 inches:* indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 7 to 20 inches to petrocalcic
Drainage class: Well drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Calcium carbonate, maximum content: 15 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 2.1 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D

Page 34 of 71

Ecological site: R070BD002NM - Shallow Sandy *Hydric soil rating:* No

Description of Bippus

Setting

Landform: Flood plains, alluvial fans Landform position (three-dimensional): Talf, rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium

Typical profile

H1 - 0 to 37 inches: silty clay loam *H2 - 37 to 60 inches:* clay loam

Properties and qualities

Slope: 0 to 5 percent
Depth to restrictive feature: More than 80 inches
Drainage class: Well drained
Runoff class: Very low
Capacity of the most limiting layer to transmit water (Ksat): Moderately high to high (0.60 to 2.00 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: Occasional
Frequency of ponding: None
Calcium carbonate, maximum content: 40 percent
Maximum salinity: Nonsaline to very slightly saline (0.0 to 2.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Moderate (about 8.7 inches)

Interpretive groups

Land capability classification (irrigated): 2e Land capability classification (nonirrigated): 3e Hydrologic Soil Group: B Ecological site: R070BC017NM - Bottomland Hydric soil rating: No

Minor Components

Simona

Percent of map unit: 8 percent Ecological site: R070BD002NM - Shallow Sandy Hydric soil rating: No

Bippus

Percent of map unit: 7 percent Ecological site: R070BC017NM - Bottomland

Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 20, Sep 3, 2024

Eddy Area, New Mexico

TN—Tonuco loamy fine sand, 0 to 3 percent slopes, eroded

Map Unit Setting

National map unit symbol: 1w62 Elevation: 3,000 to 4,100 feet Mean annual precipitation: 10 to 14 inches Mean annual air temperature: 60 to 64 degrees F Frost-free period: 200 to 217 days Farmland classification: Not prime farmland

Map Unit Composition

Tonuco and similar soils: 98 percent Minor components: 2 percent Estimates are based on observations, descriptions, and transects of the mapunit.

Description of Tonuco

Setting

Landform: Plains, alluvial fans Landform position (three-dimensional): Rise Down-slope shape: Convex, linear Across-slope shape: Linear Parent material: Mixed alluvium and/or eolian sands

Typical profile

H1 - 0 to 5 inches: loamy fine sand *H2 - 5 to 15 inches:* loamy fine sand *H3 - 15 to 19 inches:* indurated

Properties and qualities

Slope: 0 to 3 percent
Depth to restrictive feature: 6 to 20 inches to petrocalcic
Drainage class: Excessively drained
Runoff class: Very high
Capacity of the most limiting layer to transmit water (Ksat): Very low to moderately low (0.00 to 0.06 in/hr)
Depth to water table: More than 80 inches
Frequency of flooding: None
Frequency of ponding: None
Maximum salinity: Nonsaline (0.0 to 1.0 mmhos/cm)
Sodium adsorption ratio, maximum: 1.0
Available water supply, 0 to 60 inches: Very low (about 1.3 inches)

Interpretive groups

Land capability classification (irrigated): None specified Land capability classification (nonirrigated): 7e Hydrologic Soil Group: D Ecological site: R070BD004NM - Sandy Hydric soil rating: No
Minor Components

Tonuco

Percent of map unit: 1 percent *Ecological site:* R070BD004NM - Sandy *Hydric soil rating:* No

Dune land

Percent of map unit: 1 percent Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 20, Sep 3, 2024

Conservation Service

Ecological site R070BD004NM

Sandy

Accessed: 11/14/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site is on uplands, plains, dunes, fan piedmonts, terraces and in inter dunal areas. The parent material consists of mixed alluvium and or eolian sands or calcareous alluvium derived from sedimentary rock. Slope range on this site range from 0 to 9 percent with the average of 5 percent.

Low stabilized dunes may occur occasionally on this site. Elevations range from 2,800 to 5,000 feet.

Landforms	(1) Plain(2) Fan piedmont(3) Terrace
Flooding frequency	None
Ponding frequency	None
Elevation	2,842–4,500 ft
Slope	0–5%
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer.

The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture,

annual forbs and cool season grasses can make up an important component of this site. Strong winds blow from the southwest in January through June which rapidly dries out the soil during a critical period for cool season plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Frost-free period (average)	200 days
Freeze-free period (average)	219 days
Precipitation total (average)	12 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are moderately deep or very deep. Surface textures are loamy fine sand, fine sandy loam, loamy very fine sand or gravelly sandy loam.

Subsurface is a sandy loam, loam, sandy clay loam, clay loam (contains more than 45 percent sand and 18 to 35 percent clay) and less than 15 percent carbonates.

Substratum is a sandy loam, fine sandy loam, sandy clay loam, clay loam, coarse sandy loam, or coarse sand and Calcium carbonate equivalent of 15 to 40 percent. Some layers high in lime or with caliche fragments may occur at depths of 20 to 30 inches.

These soils, if unprotected by plant cover and organic residue, become wind blown and low hummocks are formed. They contains more than 45 percent sand and 18 to 35 percent clay.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic Soils Are: Anthony Berino Cacique Harkey Pajaritio Reakor Mobeetie Wink Sotim Vinton Drake Onite Alma Poquita Dona Ana Monahans

Note: *Cacique soils is a shallow soil.

Surface texture	(1) Fine sandy loam(2) Sandy loam(3) Loamy fine sand
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately rapid to moderately slow
Soil depth	30–72 in
Surface fragment cover <=3"	0–20%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	3–11 in
Calcium carbonate equivalent (0-40in)	5–30%
Electrical conductivity (0-40in)	0–2 mmhos/cm
Sodium adsorption ratio (0-40in)	0–1
Soil reaction (1:1 water) (0-40in)	6.6–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–15%
Subsurface fragment volume >3" (Depth not specified)	0%

Ecological dynamics

Overview

The Sandy site often intergrades with the Loamy Sand and Deep Sand sites (SD-3). Sandy sites occur on plains, fans, or terraces between drainages. Slopes average less than five percent. Surface textures are usually sandy loams. The historic plant community of the Sandy site is dominated by black grama (*Bouteloua eriopoda*) and dropseeds (*Sporobolus flexuosus*, *S. contractus*, *S. cryptandrus*). Blue grama (*B. gracilis*) also occurs as a subdominant species. Perennial and annual forb abundance is distributed relative to precipitation occurrence. Litter and to a lesser extent, bare ground, compose a significant proportion of the ground cover while grasses compose the remainder. Decreases in black grama and other grass species' cover indicate a transition to states with an increased shrub component. Shinnery oak (*Quercus havardii*), sand sage(*Artemisia filifolia*), and honey mesquite (*Prosopis glandulosa*) can all increase in composition. Lehmann lovegrass (*Eragrostis lehmanniana*) also may occur as a result of invasion and competition among grass species. Heavy grazing intensity and/or drought are influential in decreasing grass cover and subsequently increasing shrub cover. Fire suppression further supports shrub cover increase and an advantage over grass species. However, brush and grazing management may restore grass species and reverse shrub or grass/shrub dominated states back toward the historic plant community.

State and transition model

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Sandy

Climate, fire suppression, competition, over grazing
 Brush control, Prescribed grazing

2.Brush control (insufficient chemical).

3. Brush control

4e. Invasion from seeded areas.

4b. Brush control reseed native species.

5a. Overgrazing, seed dispersal, lack of fire. 5b. Brush control, prescribed fire.

6.Severe loss of grass cover, wind erosion.

7. Brush control, seeding

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: The historic plant community is composed primarily of black grama, dropseeds, and a secondary component of blue grama. Black grama tends to dominate due to the predominance of sandy loam soils; however, dropseeds increase on more loamy soils. Perennial and annual forbs are common but their abundance and

distribution are dependent on seasonal precipitation. Historical fire frequency is unknown but probably contributed to shrub reduction to the competitive advantage of grass species. Excessive grazing and drought are likely the dominant drivers that decrease black grama and increase dropseed and threeawn abundance within the historic plant community. Black grama has low seed viability, and therefore, reproduces vegetatively during the summer growing season. However, black grama growth is delayed one season after normal precipitation. Black grama is dormant for the remainder of the year; however, black grama retains nutritive value yearlong for grazing. In contrast, dropseeds have relatively abundant, viable seed production and can benefit from early spring as well as summer precipitation. Threeawns also respond to spring and summer moisture and tend to be the year's first palatable species. Threeawns and dropseeds, however, are not palatable during dormant periods, which extends grazing pressure to black grama. Moderate to heavy grazing reduces vegetative cover of black grama which increases its susceptibility to wind erosion and drought (Canfield 1939). Black grama is especially vulnerable to grazing during the summer growing season when stoloniferous growth and rooting occur. Black grama sustains short droughts through reduction of plant tufts which will subsequently emerge with sufficient moisture. Prolonged drought or grazing concurrently under drought conditions can delay or impede recovery of black grama (Nelson 1934) and increase abundance of dropseeds, threeawns, and blue grama. Historical fire events may have benefited black grama, especially, frequent, light intensity/severity fires in conjunction with sufficient moisture to increase stolon production (McPherson 1995). Fires which were hot and severe, however, probably contributed to black grama mortality, more so in drought conditions. Diagnosis: This state is a grassland dominated by black grama, dropseeds, and threeawns, with subdominant blue grama. Shrubs, such as sand sage and mesquite, are sparsely dispersed throughout the grassland. Forb populations are present and fluctuate with precipitation variability. Other grasses that could appear on this site include: fall withchgrass, slim tridens, Almejita signalgrass, Indian ricegrass and fluffgrass. Other shrubs include: pale wolfberry, lotebush, tarbush, Apacheplume, and mesquite. Other forbs include: plains tickseed, plains blackfoot, scorpionweed, nama, wooly guara, wooly dalea, spectaclepod mustard, bladderpod mustard, menodora, prickly lettuce, lambsquarter, wooly Indianwheat and wild buckwheat.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	480	720	960
Forb	90	135	180
Shrub/Vine	30	45	60
Total	600	900	1200

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	35 - 40%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	35-45%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-20%

Figure 7. Plant community growth curve (percent production by month). NM2804, R042XC004NM-Sandy-HCPC. SD-3 Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	Мау	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	1	3	4	10	10	25	30	12	5	0	0

State 2 Shinnery Oak Dominated

Community 2.1 Shinnery Oak Dominated

Shinnery Oak Dominated: This state is dominated by Shinnery oak with subdominant grass species from the historic plant community. Bare ground is a significant component in this state. Shinnery oak tends to be clumped in distribution in finer soil textures. Shinnery oak density increases (as well as dropseeds, threeawns, and blue grama) in coarse textured (e.g., Loamy Sand sites) and deeper, coarse textured (e.g., Deep Sand and Sandhills sites) soils. Shinnery oak predominates during periods of above average (i.e., 16 in.) precipitation during the months of July and August. Abundance and distribution also increases with disturbance, such as excessive grazing and fire, due to an aggressive rhizome system. Shinnery oak's extensive root system allows competitive exclusion of grasses and forbs. Brush control with herbicide treatments applied in the spring can reduce Shinnery oak (Herbel et al. 1979, Pettit 1986). In addition, repetitive seasons of goat browsing can also decrease Shinnery oak abundance. However, brush management should maintain shrub patches to prevent erosion and to provide wildlife cover and forage. Diagnosis: This state represents a clumped distribution of Shinnery oak with patches of bare ground and subdominant grass species, such as black grama, dropseeds, threeawns, and blue grama. Shinnery oak density increases, as do dropseeds, threeawns, and blue grama, as Sandy site intergrades with Deep Sand and Sandhills sites. Transition to Shinnery Oak-Dominated State (1a): Decrease in black grama with subsequent decrease in dropseeds and threeawns. Increase in Shinnery oak as a result of drought, above average precipitation (>16 inches), grazing, fire suppression, interspecific competition, and coarse textured soils. Key indicators of approach to transition: • Loss of black grama and other grass species cover • Increase of dropseed/threeawn and shinnery oak • Surface soil erosion and bare patch expansion Transition to Historic Plant Community (1b): The Shinnery oakdominated state begins to transition toward the historic plant community as drivers such as drought, but also above average precipitation (e.g., 16 inches) discontinue. Brush control can also drive the Shinnery oak state toward a grassland state.

State 3 Sand Sage Dominated

Community 3.1 Sand Sage Dominated

Sand Sage Dominated: This state is dominated by sand sage with subdominant grass species from the historic plant community. Sand sage occurs as a result of insufficient herbicide application in Shinnery oak dominated sites with subdominant sand sage. Sand sage either reestablishes dominance or colonizes from an off-site location and stabilizes soils. Sand sage stabilizes light sandy soils from wind erosion and provides a harbor for grass and forb species in heavily grazed conditions (Davis and Bonham 1979). Sand sage abundance increases with drought and/or heavy grazing, but decreases with light grazing due to herbaceous plant competition. Grass and forb species can reestablish as competition from sand sage is relatively light. Herbicide applied in the spring, especially when growth and photosynthesis rates are greatest, can reduce sand sage if there is subsequent rest from grazing (Herbel et al. 1979, Pettit 1986). Brush management should maintain patches of sand sage to prevent wind erosion and subsequent dune formation. Diagnosis: This state is dominated by sand sage with subdominant grass species, such as black grama, dropseeds, threeawns, and blue grama. Sand sage tends to occur in sites with coarser textured soils. Transition to Sand Sage Dominated (2): Sand sage appears from off-site locations and/or increases after insufficient herbicide applications aimed at removing Shinnery oak and sand sage. Key indicators of approach to transition: • Increase of sand sage seedlings and grasses • Reduced soil erosion Transition to Historic Plant Community (3): The sand sage dominated state transitions toward the historic plant community as sand sage decreases primarily through brush management but also with light intensity grazing management. Drought reduction will also support a transition to the historic plant community.

State 4 Lehmann Lovegrass + Natives

Community 4.1 Lehmann Lovegrass + Natives

Lehmann Lovegrass + Natives: This state is dominated by Lehmann lovegrass with subdominant grass species from the historic plant community. Lehmann lovegrass is a warm-season, perennial bunchgrass that was introduced from South Africa in the 1930's for rangeland restoration purposes (Humphrey 1970). Lehmann lovegrass invades from off-site locations with projects utilizing lovegrass for reseeding, soil stabilization, or highway projects. Lehmann lovegrass provides a winter and early spring forage for grazing. Lehmann lovegrass is vigorous in sandy to sandy loam soils which receive approximately 6-8 inches of summer precipitation (Cox et al. 1988). Lehmann lovegrass's aggressive competitive exclusion of native grass species has been attributed to lovegrass's low summer palatability, which reduces vigor of native species and allows lovegrass to increase vigor before grazing. Also, Lehmann lovegrass abundant seed production and establishment, especially after disturbances, allows for increased competition (Cable 1971, Cox et al. 1981). Lehmann lovegrass generally is tolerant to fire because of an aggressive seed-bank; however, severe fires can cause mature lovegrass mortality (Sumrall et al. 1991). Herbicide and reseeding is recommended for control of Lehmann lovegrass (Winn 1991). Diagnosis: Lehmann lovegrass and grass species from the historic plant community, such as black grama, dropseeds, threeawns, and blue grama, dominate this state. Transition to Lehmann lovegrass and native grass species (4a): Decrease in black grama with subsequent decrease in dropseeds and threeawns. Increase in Lehmann lovegrass as a result of drought, grazing, fire and interspecific competition from nearby sources of Lehmann lovegrass. Key indicators of approach to transition: • Loss of black grama and other grass species cover • Disturbance and nearby source of Lehmann lovegrass • Increase of Lehmann lovegrass seedlings Transition to Historic Plant Community (4b): The Lehmann lovegrass/native grass state transitions toward the historic plant community after actions such as herbicide application and native reseeding have occurred. In addition, prevention of disturbances such as fire and livestock grazing also will encourage the transition to a native grass community

State 5 Grass/Mesquite

Community 5.1 Grass/Mesquite

Grass/Mesquite: This state is dominated by honey mesquite with dropseeds and/or threeawns. Black grama generally is rare as a result of heavy grazing intensity. Honey mesquite invades through seed dispersal from grazing livestock and/or wildlife. Dropseeds and threeawns cohabitate with mesquite due to sufficient precipitation. Mesquite tends to be arborescent due to less soil erosion relative to the Coppice Dunes state which reflects large soil loss. Mesquite obtains approximately half of its nitrogen from symbiotic bacteria housed in root nodules (Laitha and Schlesinger 1986). Mesquite also provides nitrogen and soil organic matter to co-dominant grasses (Ansley and Jacoby 1998, Ansley et al. 1998). Historical fire occurrences reduced mesquite abundance by disrupting seed production cycles and suppressing seedlings; thus, grass species remained dominant. However, fire suppression has allowed mesquite to increase in density and abundance, increasing mesquite resistance to fires through aggressive resprouting. Herbicide application combined with subsequent prescribed fire may be effective in mesquite reduction (Britton and Wright 1971). Diagnosis: This state is co-dominated by honey mesquite and dropseeds or threeawns. Transition to Grass/Mesquite State (5a): This state occurs due to a decrease in black grama primarily from heavy grazing intensity and from an introduction of mesquite seeds from grazers. Dropseeds and threeawns increase and co-exist in the absence of black grama. Fire suppression also is responsible for an increase in mesquite. Key indicators of approach to transition: • Loss of black grama • Increase of dropseeds and/or threeawns • Increase of mesquite seedlings Transition to Historic Plant Community (5b): Transition to the historic plant community requires brush management though herbicide application and possibly prescribed fire to reduce mesquite abundance. Once shrub species are removed, prescribed fire may be useful in maintaining a dominant grassland. Precipitation is also necessary in conjunction with management activities to support a dominant grassland.

State 6

Community 6.1 Coppice Dunes

Coppice Dunes: This state is dominated by coppice mesquite dunes with minimal or no grass cover. Honey mesquite occurs in a multi-stemmed growth form which cultivates it's dune formation by entrapping drifting sands. Mesquite utilizes its extensive tap and lateral roots to benefit from moisture deep in coarse textured soils. Grass species cannot compete for moisture, especially with compounding perturbations such as heavy grazing and drought. Soils succumb to wind erosion with the depletion of grass cover and eventually dunes form around mesquite plants (Gould 1982). Brush management is limited to herbicide application, biological control, or manual removal, as a lack of grass cover prevents prescribed burning. Seeding subsequent to brush control may transition this State toward the historic plant community. Diagnosis: This state is characterized by low growing, multi-stemmed mesquite plants which form Coppice dunes by drifting soils from wind erosion. As grass cover decreases, windblown soils are removed from unprotected, inter-dune areas. Soils are then re-deposited on dunes which increases dune size. Transition to Mesquite Coppice Dunes State (6): Decrease in black grama with subsequent decrease in dropseeds and threeawns due to competition with mesquite especially during drought, heavy grazing, and fire suppression. Competitive exclusion of grasses leads to wind erosion of sandy soils and dune formation of low growing mesquite plants. Key indicators of approach to transition: • Loss of black grama and other grass species cover • Wind erosion as evidenced by pedestalled plants • Bare patch expansion • Increase of Coppice dune mesquites Transition to Historic Plant Community (7): Transition toward the historic plant community requires mesquite removal though either herbicide application, biological control, or manual removal. In addition, seeding of native grass species with subsequent years of sufficient moisture is critical.

Additional community tables

Т

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				
1	Warm Season			315–360	
	black grama	BOER4	Bouteloua eriopoda	315–360	_
2	Warm Season			45–90	
	blue grama	BOGR2	Bouteloua gracilis	45–90	
3	Warm Season			27–45	
	bush muhly	MUPO2	Muhlenbergia porteri	27–45	_
4	Warm Season		•	90–135	
	spike dropseed	SPCO4	Sporobolus contractus	90–135	_
	sand dropseed	SPCR	Sporobolus cryptandrus	90–135	_
	mesa dropseed	SPFL2	Sporobolus flexuosus	90–135	_
5	Warm Season			27–45	
	threeawn	ARIST	Aristida	27–45	_
6	Warm Season		•	27–45	
	plains bristlegrass	SEVU2	Setaria vulpiseta	27–45	_
7	Warm Season		·	27–45	
	Arizona cottontop	DICA8	Digitaria californica	27–45	_
8	Warm Season		·	45–72	
	silver bluestem	BOSA	Bothriochloa saccharoides	45–72	_
	little bluestem	SCSC	Schizachyrium scoparium	45–72	_
9	Warm Season			9–27	
	vine mesquite	PAOB	Panicum obtusum	9–27	_

Table 7. Community 1.1 plant community composition

```
Released to Imaging: 3/24/2025 8:13:45 AM
```

10	Warm Season	•	·	9–27	
	tobosagrass	PLMU3	Pleuraphis mutica	9–27	_
11	Other Perennial Grasses	-	I	9–27	
	Grass, perennial	2GP	Grass, perennial	9–27	_
Shru	b/Vine	-	•	•	
12	Shrub			9–45	
	уисса	YUCCA	Yucca	9–45	_
13	Shrub	9–27			
	catclaw mimosa	MIACB	Mimosa aculeaticarpa var. biuncifera	9–27	_
14	Shrub			9–27	
	fourwing saltbush	ATCA2	Atriplex canescens	9–27	_
15	Shrub			9–27	
	jointfir	EPHED	Ephedra	9–27	
16	Shrub	-		9–27	
	javelina bush	COER5	Condalia ericoides	9–27	
17	Shrub	-		9–27	
	sand sagebrush	ARFI2	Artemisia filifolia	9–27	
	broom snakeweed	GUSA2	Gutierrezia sarothrae	9–27	
18	Other Shrubs		1	9–27	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	9–27	_
Forb					
19	Forb	1	1	27–63	
	croton	CROTO	Croton	27–63	
	globemallow	SPHAE	Sphaeralcea	27–63	_
20	Forb		1	27–45	
	curlycup gumweed	GRSQ	Grindelia squarrosa	27–45	_
	woolly groundsel	PACA15	Packera cana	27–45	_
21	Forb		1	9–27	
	Adonis blazingstar	MEMU3	Mentzelia multiflora	9–27	
22	Forb	-	r	27–45	
	redstem stork's bill	ERCI6	Erodium cicutarium	27–45	_
	Texas stork's bill	ERTE13	Erodium texanum	27–45	
23	Other Forbs	-	1	9–27	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	9–27	-

Animal community

This site provides habitat which support a resident animal community that is characterized by pronghorn antelope, black-tailed jackrabbit, spotted ground squirrel, black-tailed prairie dog, yellow-faced pocket gopher, Ord's kangaroo rat, Northern grasshopper mouse, southern plains woodrat, badger, meadowlark, roadrunner, burrowing owl, white-necked raven, cactus wren, pyrrhuloxia, lesser prairie chicken, mourning dove, scaled quail, Harris' hawk, side-blotched lizard, marbled whiptail, Texas horned lizard, prairie rattlesnake, plains spadefoot toad, and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups. Hydrologic Interpretations

Soil Series Hydrologic Group Anthony B Berino B Cacique C *shallow soil Harkey B Pajaritio B Reakor B Mobeetie B Wink B Sotim B Vinton B Drake B Onite B Alma B Poquita B Dona Ana B Monahans B

Recreational uses

This site offers recreation potential for hiking, horseback riding, nature observation, and photography, bird, antelope and predator hunting. During years of abundant spring moisture, this site displays a colorful array of wildflowers.

Wood products

This site has no potential for wood products.

Other products

This site is suitable for grazing by all classes and kinds of livestock during all seasons of the year. Under retrogression, plants such as black grama, blue grama, bush muhly, plains bristlegrass, Arizona cottontop, vine mesquite, little bluestem and fourwing saltbush will decrease while the dropseeds, threeawns, tobosa, yucca, catclaw mimosa, javelinabush, mesquite and broom snakeweed will increase. This site responds well to brush management and deferment. It is best suited to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month

Similarity Index Ac/AUM 100 - 76 2.7 - 3.8 75 - 51 3.5 - 5.0 50 - 26 5.0 - 8.0 25 - 0 8.1 +

Inventory data references

Other References:

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Other References:

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Literature Cited

Ansley, R. J.; Jacoby, P. W. 1998. Manipulation of fire intensity to achieve mesquite management goals in north Texas. In: Pruden, Teresa L.; Brennan, Leonard A., eds. Fire in ecosystem management: shifting the paradigm from suppression to prescription: Proceedings, Tall Timbers fire ecology conference; 1996 May 7-10; Boise, ID. No. 20. Tallahassee, FL: Tall Timbers Research Station:195-204.

Ansley, R. J.; Jones, D. L.; Tunnell, T. R.; [and others]. 1998. Honey mesquite canopy responses to single winter fires: relation to herbaceous fuel, weather and fire temperature. International Journal of Wildland Fire 8(4):241-252.

Britton, Carlton M.; Wright, Henry A. 1971. Correlation of weather and fuel variables to mesquite damage by fire. Journal of Range Management 24:136-141.

Cable, Dwight R. 1971. Lehmann lovegrass on the Santa Rita Experimental Range, 1937-1968. Journal of Range Management 24:17-21.

Canfield, R. H. 1939. The effect of intensity and frequency of clipping on density and yield of black grama and tobosa grass. Tech. Bull. 681. Washington, DC: U.S. Department of Agriculture. 32 p.

Cox, Jerry R.; Ruyle, G.B.; Fourle, Jan H.; Donaldson, Charlie. 1988. Lehmann lovegrass—central South Africa and Arizona, USA. Rangelands 10(2):53-55

Contributors

Don Sylvester Quinn Hodgson

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

1. Number and extent of rills:

- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:
- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):

- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

Conservation Service

USDA Natural Resources

Ecological site R070BC017NM Bottomland

Accessed: 11/14/2024

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occurs on broad valleys, flood plains or basins at the lowest position in relation to adjacent landscapes. They are derived from mixed alluvium for sandstone, shale and limestone. It is found at the mouth of intermittent drainages or draws. Slopes are level to nearly level, averaging less than 3 percent. Elevations range from 2,842 to 4,000 feet.

Landforms	(1) Alluvial flat(2) Valley floor(3) Basin floor
Flooding duration	Very brief (4 to 48 hours) to brief (2 to 7 days)
Flooding frequency	Rare to frequent
Ponding frequency	None
Elevation	2,842–4,000 ft
Slope	1–3%
Aspect	Aspect is not a significant factor

Table 2. Representative physiographic features

Climatic features

The climate of the area is "semi-arid continental". The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most

of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer. The average frost-free season is 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November.

Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of this site. This site receives overflow from heavy summer rains periodically. Occasionally water will stand on the surface for short periods. When this happens frequently, or when water stands for longer periods, only the plants that can tolerate inundation, such as giant sacaton, will survive. During drought periods or when long periods occur between overflows, a variety of plants will move in and establish on the site.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site may be associated or influenced by wetlands and/or streams but does not normally meet wetland criteria.

Soil features

The soils of this site are deep and very deep. Surface textures are loamy fine sand, very fine sandy loam, fine sandy loam, sandy loam, silty loam, loam, clay loam or silty clay loam. The underlying layers may be loam, silt loam, clay loam, silty clay loam, sandy loam, fine sandy loam or loamy fine sand. These soils may have thin stratas of sand, silt, clay, very fine sand or very fine sandy loam. The soils have rapid to moderately slow permeability.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic Soils: Glendale Bippus Bigetty Largo Harkey Pecos Pima Dev Pima Varient

Surface texture	(1) Loamy fine sand(2) Loam(3) Fine sandy loam
Family particle size	(1) Loamy
Drainage class	Moderately well drained to well drained
Permeability class	Moderately slow to rapid
Soil depth	72 in
Surface fragment cover <=3"	0–10%
Surface fragment cover >3"	0–1%
Available water capacity (0-40in)	3–8 in

Table 4. Representative soil features

Released to Imaging: 3/24/2025 8:13:45 AM

Calcium carbonate equivalent (0-40in)	3–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm
Sodium adsorption ratio (0-40in)	0–5
Soil reaction (1:1 water) (0-40in)	7.4–8.4
Subsurface fragment volume <=3" (Depth not specified)	0–15%
Subsurface fragment volume >3" (Depth not specified)	0–1%

Ecological dynamics

The Bottomland site occurs on broad valleys and flood plains at the lowest positions on the landscape and is subject to periodic flooding. This periodic flooding and deep wetting essentially determine vegetation patterns on this site. The Bottomland site is associated with and often found at the mouth of Draw sites. The potential plant community exhibits a tall grass aspect largely dominated by giant sacaton. Soil drying due to overgrazing, gullying, and redirection or blockage of water flow may cause the transition to a tobosa-dominated state. A state dominated by burrograss may result due to continued loss of tobosa, erosion, and soil surface sealing—especially on silt loam and silty clay loam textured surface soils. A mesquite-dominated state may result from the loss of grass cover and dispersal of mesquite seed. Saltcedar may invade in response to changes in the historical flow regimes and the introduction of its seed—especially along stream channels or on soils adjacent to areas with a high water table.

State and transition model

Plant Communities and Transitional Pathways (diagram)

MLRA-42, SD-3, Bottomland

6b. Brush control with follow-up treatment and monitoring.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Bottomland Grassland: The historic plant community is principally dominated by giant sacaton. Some additional grass species representative of this site include alkali sacaton, tobosa, vine mesquite, plains bristlegrass, and twoflower trichloris. Fourwing saltbush and mesquite are two of the more common shrubs associated with this site, but in the historic community they are sparsely scattered across the site. Giant sacaton has the capability to produce large amounts of aboveground biomass, which provides important forage for livestock and helps to slow runoff, increase infiltration, and protect the site from erosion. Grazing in the spring, deferring grazing in the fall, or during dry summers, can maximize forage production.4 Mowing giant sacaton during the summer may improve forage

quality and accessibility while minimizing negative effects on production.3 Fire has produced mixed results depending on time of year and fire intensity. Several growing seasons may be required for giant sacaton to recover pre-burn production levels. Overgrazing, drought, or fire can cause a decrease in giant sacaton, vine mesquite, alkali sacaton, plains bristlegrass, and twoflower trichloris. A sparser, less vigorous sacaton community may result. Continued loss of grass cover increases erosion, effectively drying the site causing the transition to an alternate grassland state (Tobosa Grassland). Diagnosis: Giant sacaton is the dominant grass. Grass cover is uniform. Litter cover is high, and bare patches are few and less than 2 m in length. Shrubs are sparse, averaging less than three percent canopy cover.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	
Grass/Grasslike	2125	3188	4250
Shrub/Vine	200	300	400
Forb	175	262	350
Total	2500	3750	5000

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	35-40%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-45%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%
Bedrock	0%
Water	0%
Bare ground	15-20%

Figure 5. Plant community growth curve (percent production by month). NM2817, R042XC017NM Bottomland HCPC. R042XC017NM Bottomland HCPC Warm Season Plant Community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	0	5	10	10	25	30	15	5	0	0

State 2 Tobosa Grassland

Community 2.1 Tobosa Grassland

Additional States: Tobosa Grassland: This state is characterized by the predominance of tobosa. On fine-textured soils that receive surface run-in water, tobosa may attain dense almost pure stands. On drier sites that receive less water due to gullying, or due to decreased infiltration, associated with loss of grass cover, tobosa occurs in scattered patches with large areas of bare ground. Burrograss is the sub-dominant species. In the absence of grazing, tobosa tends to stagnate and accumulates large amounts of standing dead material. Rotational grazing, or burning during years with adequate precipitation following fire may help to maximize tobosa production and forage quality.1,12 Burning during years with below average precipitation may limit increases in tobosa yield the first year

following fire.6 Diagnosis: Tobosa is the dominant grass species. Grass cover is variable (depending on the degree of site degradation) ranging from uniform to patchy. Transition to Tobosa Grassland (1a) The transition to a tobosadominated community is believed to result from decreased available soil moisture due to the redirection or blockage of run-in water, gullying, or overgrazing. Roads or other physical barriers on site or off site may cause the redirection or blockage of run-in water. Reduction of overland flow and decreased residence time of stand water may favor tobosa dominance. Tobosa is favored by sites that receive periodic flooding, but cannot withstand extended periods of inundation. Overgrazing increases runoff rates and gully formation, reduces infiltration, effectively drying the site. Sites with finer textured soils may have a greater susceptibility for dominance by tobosa. 12 Key indicators of approach to transition: Decreased vigor and cover of giant sacaton Increase in the amount of tobosa Reduced overland flow and residence time of standing water Formation of gullies or deepening of existing channels Transition back to Bottomland Grassland (1b) The natural hydrology of the site must be restored. Culverts, turnouts, or rerouting roads may help re-establish natural overland flow, if roads or trails have blocked or altered the flow of run-in water. Erosion control structures or shaping and filling gullies may help regain natural flow patterns and establish vegetation if the flow has been channeled. Prescribed grazing will help establish proper forage utilization and maintain grass cover and litter necessary to protect the site from accelerated erosion.

State 3 Burrograss Grassland

Community 3.1 Burrograss Grassland

Burrograss Grassland: Burrograss is the dominant species. Tobosa is typically present in varying amounts, usually in patches or clumps occupying the more moist depressions. Burrograss ranks poor as a forage grass, but begins growth early and is used to some extent when young and green. Burrograss is favored by calcareous fine textured soils and spreads by seed and stolons. It produces large amounts of seed with wiry awns that help in dissemination, and in augering the hardened callus (tip of the seed) into the soil. The ability of burrograss to auger into soils enables it to establish and expand on bare soils prone to crust over with physical and biological crusts. Diagnosis: Burrograss is the dominant grass species. Grass cover is variable ranging from patchy to very patchy. Large bare areas are present and interconnected. Physical crusts are present and may occupy most of the bare areas. Transition to Burrograss Grassland (2a) Loss of grass cover, decreased soil moisture, soil surface sealing, and erosion enable this transition. As grass cover declines, organic matter and infiltration decrease. Erosion increases, removing soil and nutrients from bare areas, which results in soil sealing. Burrograss produces substantial amounts of viable seed and is one of the few grasses able to maintain, and even increase, on bottomland soils that are sealed by biological and physical crusts. Key indicators of approach to transition: Decrease in cover of tobosa Increased amount of bare ground Increased evidence of physical and biological crusts. Transition back to Tobosa Grassland (2b) Erosion control structures may help regain natural overland flow and increase vegetation cover (see transition1b above). Re-establishing grass cover will further decrease erosion and increase infiltration. Breaking up physical crusts by soil disturbance may promote infiltration and seedling emergence. Seeding may be necessary if inadequate seed source remains. Prescribed grazing will help establish proper forage utilization and maintain grass cover.

State 4 Mesquite-Dominated

Community 4.1 Mesquite-Dominated

Mesquite-Dominated State: This state is characterized by the dominance of mesquite, and by accelerated erosion. Grass cover is variable, but typically patchy. Diagnosis: Mesquite is the dominant species in aspect and composition. Grass cover is typically patchy with large, interconnected bare areas present. Giant sacaton and alkali sacaton are absent or restricted to small patches. Tobosa or burrograss are the dominant grasses on this site. Rills and gullies may be common and actively eroding. Transition to Mesquite-Dominated (3a, 4, 5) The reasons for different pathways in transitions to a mesquite-dominated state versus a tobosa or burrograss grassland with few shrubs are not known. Dispersal of shrub seed, persistent loss of grass cover, and competition between shrubs and remaining grasses for resources may drive this transition. Loss of grass cover reduces infiltration, decreasing available soil moisture necessary for grass seedling establishment. Reduced soil moisture may favor mesquite

establishment and survival. Accelerated erosion due to loss of grass cover can relocate organic matter and nutrients from shrub interspaces, and concentrate them around shrub bases.14 This relocation of resources further increases the shrubs competitive advantage. Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion. Transition back to Bottomland Grassland (3b) Erosion control methods such as shaping and filling gullies, net wire diversions, rock and brush dams, etc. may be needed to curtail erosion and restore site hydrology. Brush control will be necessary to overcome competition between shrubs and grass seedlings. Seeding may expedite recovery or may be necessary if an adequate seed source is no longer remaining. Prescribed grazing will help ensure adequate deferment and proper forage utilization following grass establishment. The degree to which this site is capable of recovery depends on the restoration of hydrology, the extent of degradation to soil resources, and adequate rainfall necessary to establish grasses.

State 5 Saltcedar State

Community 5.1 Saltcedar State

Saltcedar State: Saltcedar is an aggressive invader that typically invades on fine-textured soils where its roots can reach the water table, but once established it can survive without access to ground water. It reaches maximum density where the water table is from 1.5 to 6 m deep, and forms more open stands where the water table is deeper. 9,10 Saltcedar is a prolific seed producer. It is resistant to fire, periods of inundation with water, salinity, and resprouts following cutting. Saltcedar can also increase soil salinity by up-taking salts and concentrating them in its leaves and subsequent shedding of the leaves to the soil surface. Diagnosis: This state is characterized by the presence of saltcedar. Saltcedar cover is variable ranging from sparse to dense. Densities may depend on such variables as depth to ground water, timing and duration of flood events, and soil texture and salinity. Grass cover varies in response to saltcedar density. Transition to Saltcedar State (6a) It is not know if this transition occurs only on saline affected soils, or if it can occur on non-saline sites. Salty Bottomland sites typically have a higher susceptibility to the invasion of saltcedar. The invasion of saltcedar is associated with saline soils, the presence of saltcedar on adjacent sites and dispersal of its seed, and disturbance to existing vegetation or hydrology. Saltcedar propagules must be present to invade and establish on bottomland sites. Disturbance such as fire, grazing, or drought may facilitate the establishment of saltcedar by decreasing the vigor of native vegetation and providing bare areas for saltcedar seedling establishment with minimal competition. Changes in seasonal timing, rate and volume of run-in water may facilitate the establishment of saltcedar on Bottomland sites.8 Damming rivers has reduced flow volume and caused shifts in the timing of peak flow from spring to summer. The reduced flows have increased fine sediments, creating the ideal conditions for saltcedar seedling establishment. Summer water discharges provide water at times consistent with saltcedar seed production. Increases in salinity due to return of irrigation water to streams and ditches may also support the establishment of saltcedar. (This transition should also possible from the Tobosa-Grassland and Burrograss-Grassland states). Key indicators of approach to transition: Increase in size and frequency of bare patches. Changes in timing and volume of peak discharge Increased soil salinity Presence of saltcedar propagules Transition back to Bottomland Grassland (6b) Saltcedar control is costly and often labor intensive. Control programs utilizing herbicide, or herbicide in conjunction with mechanical control or prescribed fire have proven effective in some instances. 5,7,11 Without restoring historical flow regimes, extensive follow-up management may be necessary to maintain the bottomland grassland.13

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)
Grass	/Grasslike				-
1				2438–2625	
	big sacaton	SPWR2	Sporobolus wrightii	2438–2625	_
2				263–375	
	tobosagrass	PLMU3	Pleuraphis mutica	263–375	-
	alkali sacaton	SPAI	Sporobolus airoides	263–375	_
3				263–375	
	vine mesquite	PAOB	Panicum obtusum	263–375	_
	plains bristlegrass	SEVU2	Setaria vulpiseta	263–375	_
4		-		113–188	
	cane bluestem	BOBA3	Bothriochloa barbinodis	113–188	_
	white tridens	TRAL2	Tridens albescens	113–188	_
	false Rhodes grass	TRCR9	Trichloris crinita	113–188	_
5				113–188	
	Grass, perennial	2GP	Grass, perennial	113–188	_
Shrub	/Vine	•			•
6				113–188	
	fourwing saltbush	ATCA2	Atriplex canescens	113–188	_
7				38–113	
	honey mesquite	PRGL2	Prosopis glandulosa	38–113	-
8				38–113	
	Apache plume	FAPA	Fallugia paradoxa	38–113	-
	American tarwort	FLCE	Flourensia cernua	38–113	-
	littleleaf sumac	RHMI3	Rhus microphylla	38–113	-
9		-	•	38–113	
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	38–113	-
Forb					
10				75–188	
	coyote gourd	CUPA	Cucurbita palmata	75–188	-
	common sunflower	HEAN3	Helianthus annuus	75–188	-
	broadleaved pepperweed	LELA2	Lepidium latifolium	75–188	-
	globemallow	SPHAE	Sphaeralcea	75–188	-
11		<u> </u>	1	75–188	
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	75–188	-

Animal community

This site provides habitats which support a resident animal community that is characterized by black-tailed jackrabbit, yellow-faced pocket gopher, coyote, meadowlark, mourning dove, scaled quail, sparrow hawk, Western spadefoot toad and Western diamondback rattlesnake. Where this site includes riparian vegetation along the Pecos and Black rivers, the resident animal community is characterized by raccoon, gray fox, muskrat, red-winged blackbird, summer tanager, ferruginous hawk, mourning dove, Gambel's quail, killdeer, tree lizard, Eastern fence lizard, tiger salamander, leopard frog, bullfrog and checkered garter shake.

Most resident birds and Bullock's oriole, blue grosbeak, painted bunting, Swainson's hawk and mourning dove nest. Where aquatic macrophytes occur, yellow-throated warbler nest. Sandhill crane and long-billed curlew winter along the Pecos River and American avocet and blacknecked stilt utilize this site during migration. The golden eagle utilizes larger trees for roosting and occasionally, nesting.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series----- Hydrologic Group Bippus------ B Bigetty------ C Glendale------ B Harkey------ B Largo------ B Pima------ B Dev----- A Pecos------ D/B

Recreational uses

This site offers recreation potential for hiking, nature observation and photography in addition to antelope, quail and dove hunting.

Natural beauty is enhanced by the constrast between this lush vegetated site and the drier, more barren sites which surround it.

Wood products

This site has no real potential for wood products. Where woody species have increased, they can be used for curiosities or small furniture.

Other products

This site is well suited for all kinds and classes of livestock, during all seasons of the year. It is best suited for cows during the growing season. Periodic removal of excess coarse stalk material by burning, shredding or mowing every other year will help to keep new growth available to livestock. Burning, if practiced, should be done in late winter or early spring when soil surface moisture is present. Retrogression is characterized by a decrease in vine-mesquite and vigor of giant sacaton. Alkali sacaton, plains bristlegrass and twoflower trichloris decrease. This causes an increase in tobosa to a point of being a colony type of vegetation. Continued retrogression can cause severe water erosion that can destroy the potential of this site.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index - Ac/AUM 100 - 76------ 1.0 - 2.375 - 51----- 2.0 - 3.350 - 26------ 3.4 - 6.025 - 0------ 6.1 - +

Other references

Literature References:

1. Britton, C. M., A.A. Steuter. 1983. Production and nutritional attributes of tobosagrass following burning. Southwestern Naturalist. 28(3): 347-352.

2. Canfield, R.H. 1939. The effect and intensity and frequency of clipping on density and yield of black grama and tobosa grass. U.S. Dept. Agr. Tech. Bul. 681, 32 pp.

3. Cox, J.R. 1988. Seasonal burning and mowing impacts on Sporobolus wrightii grasslands. J. Range. Manage. 41:12-15.

4. Cox, J.R., R.L.Gillen, and G.B. Ruyle. 1989. Big sacaton riparian grassland management: Seasonal grazing effects on plant and animal production. Applied Agricultural Research. 4(2): 127-134

5. Duncan, K. W. 1994. Saltcedar: establishment, effects, and management. Wetland Journal 6(3):10-13.

6. Dwyer, D. D. 1972. Burning and nitrogen fertilization of tobosa grass. NM State Univ Agric. Exp. Station Bull No 595. Las Cruces, NM: New Mexico State University. 8 p.

7. Egan, T. B. 1997. Afton Canyon riparian restoration project: fourth year status report. Presentation at tamarisk and Russian olive workshop, September, 1997, Grand Junction, CO.

8. Everitt. B. L. 1980. Ecology of saltcedar – a plea for research. Environmental Geology 3:77-84.

9. Horton, J. S., F. C. Mounts, and J. M. Kraft. 1960. Seed germination and seedling establishment of phreatophytic species. Research Paper RM-48. USDA-Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO.

10. Horton, J. S. and C. J. Campbell. 1974. Management of phreatophytic and riparian vegetation for maximum multiple use values. Research Paper RM-117, USDA-Forest Service, Rocky Mountain Forest and Range Experiment Station, Ft. Collins, CO.

11. Neill, W. M. 1990. Pp. 91-98, In: M. R. Kunzmann, R. R. Johnson and P. S. Bennett (eds.) Tamarisk control in southwestern United States. Proceedings of Tamarisk Conference, University of Arizona, Tucson, AZ, September 23-3, 1987. Special Report No. 9. National Park Service, Cooperative National Park Resources Studies Unit, School of Renewable Natural Resources, University of Arizona, Tucson, AZ.

12. Paulsen, H.A., Jr. and F.N. Ares. 1962. Grazing values and management of black grama and tobosa grasslands and associated shrub ranges of the Southwest. U. S. Dept. Agr. Tech. Bul. 1270, Washington DC. 56 pp.

13. Smith S. D. and D. A. Devitt. 1996. Physiological ecology of saltcedar: why is it a successful invader? Presentation at Saltcedar Management and Riparian Restoration Workshop, Las Vegas, NV, September, 1996.

14. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Erosion. Rangeland Sheet 9 & 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

David Trujillo Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	
Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production

Indicators

- 1. Number and extent of rills:
- 2. Presence of water flow patterns:
- 3. Number and height of erosional pedestals or terracettes:
- 4. Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
- 5. Number of gullies and erosion associated with gullies:
- 6. Extent of wind scoured, blowouts and/or depositional areas:
- 7. Amount of litter movement (describe size and distance expected to travel):
- 8. Soil surface (top few mm) resistance to erosion (stability values are averages most sites will show a range of values):
- 9. Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):
- 10. Effect of community phase composition (relative proportion of different functional groups) and spatial distribution on infiltration and runoff:

- 11. Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):
- 12. Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):

Dominant:

Sub-dominant:

Other:

Additional:

- 13. Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):
- 14. Average percent litter cover (%) and depth (in):
- 15. Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annualproduction):
- 16. Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing what is NOT expected in the reference state for the ecological site:
- 17. Perennial plant reproductive capability:

ATTACHMENT 3: CORRESPONDENCE

RE: [EXTERNAL] nAPP2436355660 Shetland 11 CTB 1 Liner Notification

From Raley, Jim <Jim.Raley@dvn.com> Date Tue 2/4/2025 7:30 AM

- To Monica Peppin <Monica.Peppin@soudermiller.com>
- Cc Stephanie Hinds <stephanie.hinds@soudermiller.com>

Submitted 2/4/2025

Jim Raley Environmental Professional - Permian Basin 5315 Buena Vista Dr., Carlsbad, NM 88220 C: (575)689-7597 jim.raley@dvn.com

From: Monica Peppin <Monica.Peppin@soudermiller.com>
Sent: Monday, February 3, 2025 7:50 PM
To: Raley, Jim <Jim.Raley@dvn.com>
Cc: Stephanie Hinds <stephanie.hinds@soudermiller.com>
Subject: [EXTERNAL] nAPP2436355660 Shetland 11 CTB 1 Liner Notification

Jim - Here is the liner notice scheduled for Friday 2.7.25 for the Shetland. Let me know if you have any changes. Notice will need to be sent to BLM.

Thanks!

SMA anticipates conducting liner inspection activities at the following site on February 7, 2025 at approximately 11:00 AM.

Details Below:

Proposed Date: Friday February 7, 2025

Time Frame: 10:30 - 11:30 AM

Site Name: Shetland 11 CTB 1

Incident ID: nAPP2436355660

API/Facility ID: fAPP2123649550

Liner Inspection Notification				
Incident ID and Site Name:	Shetland 11 CTB 1/nAPP2436355660			
API # and Corresponding Agency:	fAPP2123649550/NMOCD & BLM			
Question	Answer (Fill In)			
What is the liner inspection surface area in square feet (secondary containmet):	6525 sq ft			
Have all the impacted materials been removed from the liner and cleaned?	Yes/1.15.2025			
Liner inspection date pursuant to Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC: 48 HOURS PRIOR TO INSPECTION	2.7.2025			
Time liner inspection will commence:	10:30 AM - 11:30 AM			
Please provide any information necessary for observers to contact inspector: (Name and Number)	Monica Peppin 575.909.3418			

Intersection of 128/C1 travel south on C1 for 10.42 miles, turn right/west on pipeline rd, in front of western refining station, travel 5.22 miles, turn left, Please provide any information necessary for navigation to liner inspection site and coordinates (Lat/Long) south, on lease rd travel 0.90 miles, turn left, east, travel 0.88 miles, turn left, north and drive onto location 32.053406, -103.750008 Monica Peppin, A.S. Project Manager Direct/Mobile: 575.909.3418 Since 198 Office: 575.689.7040 201 S Halagueno St. Stronger Communities by Design® Carlsbad, NM 88220 in www.soudermiller.com

Corporate Registrations: AZ Engineering/Geology/Surveying Firm (14070), FL Engineering Firm (34203), ID Engineering/Surveying Firm (C-3564), ND Engineering Firm (28545PE), NV Engineering/Surveying Firm (39303) ,OK Engineering Firm (8498), SD Surveying Firm (C-7436), TX Engineering Firm (8877), TX Geology Firm (50254), TX Surveying Firm (10162200), WA Engineering Firm (24003108), WY Engineering/Surveying Firm (S-1704)

Notice of Confidentiality and Privileged Status: This electronic mail message, including all attachments, is for the sole use of the intended recipient(s) and may contain confidential and/or privileged information or otherwise may be protected from disclosure. Any unauthorized review, use, disclosure, distribution or actions which rely on the contents of this information is prohibited. If you are not the intended recipient, please contact the sender and delete the message and any attachment(s) from your system.

Statement on Viruses and Harmful Software: While the message and attachment(s) have been scanned with anti-virus software. SMA does not guarantee that this message or any attachment(s) is free of computer viruses or other harmful software. SMA does not accept liability for any damages caused by any computer virus or other harmful software transmitted herewith.

Confidentiality Warning: This message and any attachments are intended only for the use of the intended recipient(s), are confidential, and may be privileged. If you are not the intended recipient, you are hereby notified that any review, retransmission, conversion to hard copy, copying, circulation or other use of all or any portion of this message and any attachments is strictly prohibited. If you are not the intended recipient, please notify the sender immediately by return e-mail, and delete this message and any attachments from your system.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 66 of 71

QUESTIONS

Action 443933

QU	EST	NS
~~		

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	443933
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites		
nAPP2436355660		
NAPP2436355660 SHETLAND 11 CTB 1 @ 0		
Oil Release		
Remediation Closure Report Received		
[fAPP2123649550] SHETLAND 11 CTB 1		

Location of Release Source

Site Name	SHETLAND 11 CTB 1
Date Release Discovered	12/20/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.			
Crude Oil Released (bbls) Details	Cause: Human Error Pump Crude Oil Released: 5 BBL Recovered: 5 BBL Lost: 0 BBL.		
Produced Water Released (bbls) Details	Not answered.		
Is the concentration of chloride in the produced water >10,000 mg/l	Yes		
Condensate Released (bbls) Details	Not answered.		
Natural Gas Vented (Mcf) Details	Not answered.		
Natural Gas Flared (Mcf) Details	Not answered.		
Other Released Details	Not answered.		
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Bleeder valve left open on recycle pump. 5bbls spilled to secondary lined containment. Fluids fully recovered.		

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 443933

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	443933
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Nature and Volume of Release (continued)			
Is this a gas only submission (i.e. only significant Mcf values reported)	More info needed to determine if this will be treated as a "gas only" report.		
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No		
Reasons why this would be considered a submission for a notification of a major release	Unavailable.		
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e, gas only) are to be submitted on the C-129 form.		

Initial Response				
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.				
The source of the release has been stopped	True			
The impacted area has been secured to protect human health and the environment	True			
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	t True			
All free liquids and recoverable materials have been removed and managed appropriately	True			
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of			
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully complet Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure e	ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 03/19/2025			

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP	6137	
333 West Sheridan Ave.	Action Number:	
Oklahoma City, OK 73102	443933	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 75 and 100 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)	
Any other fresh water well or spring	Between ½ and 1 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1 and 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Medium	
A 100-year floodplain	Between 300 and 500 (ft.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to	the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination	associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	Yes
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed which includes the anticipated timelines for beginning and completing the remediation.	efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will the remediation commence	01/15/2025
On what date will (or did) the final sampling or liner inspection occur	02/07/2025
On what date will (or was) the remediation complete(d)	02/07/2025
What is the estimated surface area (in square feet) that will be remediated	6525
What is the estimated volume (in cubic yards) that will be remediated	0
These estimated dates and measurements are recognized to be the best guess or calculation at the	e time of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

Action 443933

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	69	oj	f 71

QUESTIONS, Page 4

Action 443933

QUESTIONS (continued)				
Operator: DEVON ENERGY PRODUCTION COMPANY, LP 333 West Sheridan Ave. Oklahoma City, OK 73102	OGRID: 6137 Action Number: 443933 Action Type: [C-141] Ren	nediation Closure Request C-141 (C-141-v-Closure)		
QUESTIONS	[]			
Remediation Plan (continued) Please answer all the questions that apply or are indicated. This information must be provi This remediation will (or is expected to) utilize the following processes to re (Select all answers below that apply.)		n 90 days after the release discovery date.		
Is (or was) there affected material present needing to be removed	Yes			
Is (or was) there a power wash of the lined containment area (to be) perform	Yes			
OTHER (Non-listed remedial process)	Not answered.			
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes con which includes the anticipated timelines for beginning and completing the remediation.	efforts at remediation, the report must in	nclude a proposed remediation plan in accordance with 19.15.29.12 N		
I hereby certify that the information given above is true and complete to the bes to report and/or file certain release notifications and perform corrective actions the OCD does not relieve the operator of liability should their operations have fi water, human health or the environment. In addition, OCD acceptance of a C-1- local laws and/or regulations.	eases which may endanger public adequately investigate and remed	health or the environment. The acceptance of a C-141 report diate contamination that pose a threat to groundwater, surfac		
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 03/19/2025			
	and a second she when a bunch of a state second	ountered during remediation. If the responsible party has any need to		

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 443933

Page 70 of 71

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	443933
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Liner	er Inspection Information	
Las	t liner inspection notification (C-141L) recorded	427888
	er inspection date pursuant to Subparagraph (a) of Paragraph (5) of Subsection f 19.15.29.11 NMAC	02/07/2025
Wa	s all the impacted materials removed from the liner	Yes
Wh	at was the liner inspection surface area in square feet	6525

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all r	remediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	Yes
What was the total surface area (in square feet) remediated	6525
What was the total volume (cubic yards) remediated	0
Summarize any additional remediation activities not included by answers (above)	Secondary Containment inspection completed. No breach through liner
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents or
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional

Email: jim.raley@dvn.com Date: 03/19/2025

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	443933
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By		Condition Date
nvelez	Liner inspection approved, release resolved.	3/24/2025

Page 71 of 71

Action 443933