ENSOLUM

January 2, 2025

New Mexico Oil Conservation Division 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Deferral Request Outrider 28 Fed CVB Incident Numbers nAPP2429626088 Lea County, New Mexico

To Whom It May Concern:

Ensolum, LLC (Ensolum), on behalf of XTO Energy, Inc. (XTO), has prepared this *Deferral Request* to document assessment, delineation, and soil sampling activities at the Outrider 28 Fed CVB (Site). The purpose of the Site assessment and soil sampling activities was to assess for the presence or absence of impacts to soil following a crude oil release on the pad surface due to equipment failure. Based on field observations, field screening activities, and soil sample laboratory analytical results, XTO is submitting this *Deferral Request*, describing Site assessment and delineation activities that have occurred and requesting deferral of final remediation for Incident Number nAPP2429626088 until the Site is reconstructed, and/or the well pad is abandoned.

SITE DESCRIPTION AND RELEASE SUMMARY

The Site is located in Unit J, Section 28, Township 24 South, Range 32 East, in Lea County, New Mexico (32.1864°, -103.67567°) and is associated with oil and gas exploration and production operations on Federal Land managed by the Bureau of Land Management (BLM).

On October 21, 2024, a failed Victaulic clamp resulted in the release of 9 barrels (bbls) of crude oil onto the surface of the well pad. A vacuum truck was immediately dispatched to the Site to recover free-standing fluids; 8 bbls of crude oil were recovered. XTO reported the release to the New Mexico Oil Conservation Division (NMOCD) via Notification of Release (NOR) and submitted an Initial C-141 Application (C-141) on October 22, 2024. The release was assigned Incident Number nAPP2429626088.

SITE CHARACTERIZATION AND CLOSURE CRITERIA

The Site was characterized to assess the applicability of Table I, Closure Criteria for Soils Impacted by a Release, of Title 19, Chapter 15, Part 29 (19.15.29) of the New Mexico Administrative Code (NMAC). Results from the characterization desktop review are presented below. Potential Site receptors are identified on Figure 1.

Depth to groundwater at the Site is greater than 100 feet below ground surface (bgs) based on data from a water well permitted by the New Mexico Office of the State Engineer (C-04536) drilled on June 9, 2021. The water well was drilled 0.43 miles southeast of the Site. Depth to water recorded following

XTO Energy, Inc Deferral Request Outrider 28 Fed CVB

drilling activities was 314 feet bgs. All wells used to determine depth to groundwater are depicted on Figure 1. The Well Record and Log is included in Appendix A.

The closest continuously flowing or significant watercourse to the Site is a seasonal dry wash, located approximately 6.3 miles east of the Site. The Site is greater than 200 feet from a lakebed, sinkhole, or playa lake and greater than 300 feet from an occupied residence, school, hospital, institution, church, or wetland. The Site is greater than 1,000 feet to a freshwater well or spring and is not within a 100-year floodplain or overlying a subsurface mine. The Site is not underlain by unstable geology (low potential karst designation area). Site receptors are identified on Figure 1.

Based on the results of the Site Characterization, the following NMOCD Table I Closure Criteria (Closure Criteria) apply:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH)-gasoline range organics (GRO) and TPH-diesel range organics (DRO): 1,000 mg/kg
- TPH: 2,500 mg/kg
- Chloride: 20,000 mg/kg

SITE ASSESSMENT AND DELINEATION SOIL SAMPLING ACTIVITIES

On November 4, 2024, Ensolum personnel visited the Site to evaluate the release extent based on information provided on the C-141 and visual observations of the release. The release extent was mapped utilizing a handheld Global Positioning System (GPS) unit. On November 4, 2024, Ensolum personnel conducted delineation and surface scraping activities. Five delineation soil samples, SS02 through SS06, were collected from a depth of approximately 0.5 feet bgs around the release to assess the lateral extent. Additionally, one borehole, BH01, was advanced via hand auger within the release extent to a terminal depth of 4 feet bgs to assess the vertical extent of the release. The delineation soil samples were field screened for volatile organic compounds (VOCs) utilizing a calibrated photoionization detector (PID) and chloride utilizing Hach[®] chloride QuanTab[®] test strips. The release extent and delineation soil sample locations are depicted on Figure 2. Photographic documentation is included in Appendix B.

The soil samples were placed directly into pre-cleaned glass jars, labeled with the location, date, time, sampler name, method of analysis, and immediately placed on ice. The soil samples were transported under strict chain-of-custody procedures to Cardinal Laboratories (Cardinal) in Hobbs, New Mexico, for analysis of the following contaminants of concern (COCs): BTEX following United States Environmental Protection Agency (EPA) Method 8021B; TPH- GRO, TPH- DRO, and TPH-oil range organics (ORO) following EPA Method 8015M/D; and chloride following Standard Methods SM4500.

LABORATORY ANALYTICAL RESULTS

Delineation soil samples, SS02 through SS06, collected around the release extent from a depth of 0.5 feet bgs indicated all COCs were in compliance with Site Closure Criteria and the strictest Table I Closure Criteria, successfully defining the lateral extent of the release. Laboratory analytical results for delineation soil samples BH01 and BH01A, collected at depths of 0.5 feet and 1-foot bgs, respectively, indicated benzene, BTEX, TPH-GRO/TPH-DRO, and/or TPH concentrations exceeded the Closure

XTO Energy, Inc Deferral Request Outrider 28 Fed CVB

ENSOLUM

Criteria. Delineation soil sample BH01D, collected at a depth of 4 feet bgs, indicated all COC concentrations were in compliance with the Closure Criteria, successfully defining the vertical extent of the release.

SURFACE SCRAPING ACTIVITIES

Following delineation activities, surface scraping of visibly stained soil was conducted in the release area to the maximum extent possible. Surface scraping activities were performed utilizing hand tools, as no mechanical equipment could access the impacted soil due to active production equipment and surface pipelines. The estimated area of impacted soil left in place immediately adjacent to active production equipment measures approximately 705 square feet and a total of approximately 105 cubic yards of impacted soil remains in place. The estimated area of remaining impacted soil and delineation soil sample locations are presented on Figure 2.

DEFERRAL REQUEST

XTO is requesting deferral of final remediation due to the presence of active production equipment and surface pipelines preventing excavation of impacted soil. The impacted soil is limited to the area between active production equipment, where remediation would require a major facility deconstruction. The impacted soil remaining in place is delineated vertically by delineation soil sample BH01D, collected at 4 feet bgs. The soil is laterally defined by delineation soil samples SS02 through SS06.

XTO does not believe deferment will result in imminent risk to human health, the environment, or groundwater. Depth to groundwater was determined to be greater than 100 feet bgs and the impacted soil remaining in place is limited in areal and vertical extent.

Based on the presence of active production equipment within the release area and the complete lateral and vertical delineation of impacted soil remaining in place, XTO requests deferral of final remediation for Incident Number nAPP2429626088 until final reclamation of the well pad or major construction, whichever comes first.

If you have any questions or comments, please contact Ms. Tacoma Morrissey at (337) 257-8307 or tmorrissey@ensolum.com.

Sincerely, **Ensolum, LLC**

Tran Hittan

Tracy Hillard Project Engineer

cc: Colton Brown, XTO Kaylan Dirkx, XTO Bureau of Land Management

Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist

XTO Energy, Inc Deferral Request Outrider 28 Fed CVB

E N S O L U M

Appendices:

Figure 1	Site Receptor Map
Figure 2	Delineation Soil Sample Locations
Table 1	Soil Sample Analytical Results
Appendix A	Referenced Well Records
Appendix B	Photographic Log
Appendix C	Lithologic Soil Sampling Logs
Appendix D	Laboratory Analytical Reports & Chain-of-Custody Documentation
	· · · ·

.

FIGURES

.

Received by OCD: 1/3/2025 7.26.23 AM

Received by OCD: 1/3/2025 7.26.23 AM

FIGURE

2

Delineation Soil Sample Locations

Outrider 28 Fed CVB Incident Number: nAPP2429626088 Unit J, Sec 28, T24S, R32E Eddy Co, New Mexico, United States

Released to Imaging: 4/17/2025 2:49:41 PM

E N S O L U M

Environmental, Engineering and

Hydrogeologic Consultants

TABLES

.

Released to Imaging: 4/17/2025 2:49:41 PM

E N S O L U M

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS Outrider 28 Federal CVB XTO Energy, Inc Lea County, New Mexico												
Sample I.D.Sample Depth DateBenzene (feet bgs)Total BTEX (mg/kg)TPH GRO (mg/kg)TPH DRO (mg/kg)TPH ORO (mg/kg)GRO+DRO (mg/kg)Total TPH (mg/kg)Chl (mg/kg)													
NMOCD Table I C	losure Criteria (I	NMAC 19.15.29)	10	50	NE	NE	NE	1,000	2,500	20,000			
				Delii	neation Soil Sai	nples							
SS02	11/04/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	224			
SS03	11/04/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	32.0			
SS04	11/04/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	64.0			
SS05	11/04/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	160			
SS06	11/04/2024	0.5	<0.050	<0.300	<10.0	<10.0	<10.0	<10.0	<10.0	560			
BH01	11/04/2024	0.5	23.7	793	10,800	19,500	2,830	30,300	33,130	160			
BH01A	11/04/2024	1	2.24	114	1,560	3,390	525	4,950	5,475	32.0			
BH01D	11/04/2024	4	<0.050	<0.300	<10.0	52.7	<10.0	52.7	52.7	16.0			

Notes:

bgs: below ground surface

mg/kg: milligrams per kilogram

NMOCD: New Mexico Oil Conservation Division

BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes

Concentrations in **bold** exceed the NMOCD Table I Closure Criteria or reclamation requirement where applicable.

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

ORO: Oil Range Organics

TPH: Total Petroleum Hydrocarbon NMAC: New Mexico Administrative Code

Grey text indicates soil sample removed during excavation activities

.

APPENDIX A

Referenced Well Records

OSE DII JUL 9 2021 M1:52

w. _____

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

CSE 017 JUN 21 2021 PM10:14

PAGE 1 OF 2

20E3

WELL TAG ID NO.

NOL	OSE POD NO.	POT			WELL TAG ID NO 20E37	D.		OSE FILE NO(C-4536	$\overline{\mathbf{V}}$		
DCAT	WELL OWNE BASIN PR		S RANCHES LLC	2				PHONE (OPTI	ONAL)		
VELL LO	WELL OWNE 3300 N A S		ADDRESS BLDG 1, STE 220					CITY MIDLAND		state TX	ZIP 79705
1. GENERAL AND WELL LOCATION											
	LICENSE NO WD1		NAME OF LICENSED	DRILLER	Bryce Wallace				NAME OF WELL DR Elite	ELLING COMPANY Drillers Corporation	
	DRILLING ST 06/09		DRILLING ENDED 06/10/21	DEPTH OF CO	MPLETED WELL () 500	FT)	[LE DEPTH (FT) 500	DEPTH WATER FIR	ST ENCOUNTERED (F 314	T)
N	COMPLETED WELL IS: ARTESIAN DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL (FT) 314										
ATIC	DRILLING FI	LUD:	🖸 AIR	MUD	ADDIT	VES – SPE	CIFY:				
DRM	DRILLING M	ETHOD:	ROTARY	HAMMER	CABLE	TOOL	OTHE:	R - SPECIFY:			
CASING INFORMATION	DEPTH ((feet bgl) TO	BORE HOLE DIAM (inches)	(include	CASING MATERIAL AND/OR GRADE (include each casing string, and note sections of screen) (add				CASING INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches)
8	0	20	12 3/4		STEEL			N/A	8.28	.337	
Ŋ	0	300	7 7/8		SDR17 PVC			PLINE	4.3	SDR17	
2. DRILLING	300	500	7 7/8		SDR17 PVC			LINE	4.3	SDR17	.032
F	DEPTH ((feet bgl)	BORE HOLE DIAM. (inches)	1	ST ANNULAR S VEL PACK SIZI				AMOUNT (cubic feet)		IOD OF EMENT
ERI,	0	20	12 3/4		, . ,.	EMENT			10	TOP	FILL
TV1	0	20	7 7/8	1	CE	EMENT		•	6	TOP	FILL
3. ANNULAR MATERIAL	300	500	7 7/8		8/16 SI	LICA SA	ND		46	ТОР	FILL
FOR	OSE INTER	NAL USE	1405-0		POD N			WR-20	WELL RECORD	& LOG (Version 06	/30/17)

24.32.33.122

4

LOCATION STK

• ′

DSE DI JUN 21 2021 M10:14

	DEPTH (1 FROM	fect bgl) TO	THICKNESS (feet)	INCLUDE WATE	ND TYPE OF MA ER-BEARING CA pplemental sheet	VITIES C	R FRAC	TURE ZONE	s	WA BEAR (YES	ING?	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)
	0	3	3		RED S	SAND				Y	√ N	Source (Shu)
	3	12	9		CAL	ICHE				Y	√ N	
	12	180	168		RED (CLAY				Y	√ N	
анан 1917 - С. 1917 - С. 1 1917 - С. 1917 - С	180	235	415		TAN SAN	DSTONE				Y	√ N	
	235	480	245	TAN	SANDSTONE &	CLAY ST	FRINGER	RS		√ Y	N	4.00
	480	500	20	RE	D CLAY WITH	SAND STF	RINGERS	3		Y	√ N	
4. HYDROGEOLOGIC LOG OF WELL										Y	N	
OF										Y	N	
90										Y	N	
ICI.										Y	N	
TO										Y	N	
GEO										Y	N	
RO										Y	N	
HYL										Y	N	
4										Y	N	
										Y	Ν	
										Y	N	
				*						Y	N	
								-		Y	N	
										Y	N	
										Y	N	
	METHOD U	SED TO ES	TIMATE YIELD	OF WATER-BEARIN	G STRATA:				TOT	AL ESTIN	ATED	
	PUM		R LIFT	BAILER 01	THER - SPECIFY	' :			WEL	L YIELD	(gpm):	4.00
NO	WELL TES	T TEST	RESULTS - ATT. I TIME, END TIN	ACH A COPY OF DAT ME, AND A TABLE SI	FA COLLECTED HOWING DISCH	DURING ARGE AN	WELL T	ESTING, INC VDOWN OVI	CLUDI ER THI	NG DISC E TESTIN	HARGE I	METHOD, DD.
ISIA	MISCELLA	NEOUS INF	ORMATION:		to in a second							
TEST; RIG SUPERVISION												
5. TES	PRINT NAM	IE(S) OF DF	ULL RIG SUPER	VISOR(S) THAT PRO	VIDED ONSITE	SUPERVI	SION OF	WELL CON	STRU	CTION O	THER TH	IAN LICENSEE:
TURE	CORRECT F	RECORD OF	F THE ABOVE D	IES THAT, TO THE B ESCRIBED HOLE AN 0 DAYS AFTER COM	D THAT HE OR	SHE WILL	L FILE T					
6. SIGNATURE	R	r n/	L	B	Bryce Wallace					06/16	5/2021	
		SIGNAT	JRE OF DRILLE	R / PRINT SIGNEE	NAME						DATE	
FOF	OSE INTERI	NAL USE	_					WR-20 WE	LLRE	CORD	LOG	rsion 06/30/2017)
	ENOC-C	1536	-+01	/	POD NO.	1		TRN NO.	195	378	7	
LOC	CATION 5	TK-	24.32	2.33.122			WELL	TAG ID NO.	2	DE	37	PAGE 2 OF 2

APPENDIX B

Photographic Log

Released to Imaging: 4/17/2025 2:49:41 PM

APPENDIX C

Lithologic Soil Sampling Logs

•

i								Sample Name: BH01	Date: 11/4/2024
									Date. 11/4/2024
			N		U	LU	Μ	Incident Number: nAPP24296260	88
								Job Number: 03C1558568	
l		LITHOL	OGI			GLOG		Logged By: SB	Method: Hand Auger
Coord				3.677168				Hole Diameter: 4"	Total Depth: 4'
Comm	ents: Fie	ld screen	ing c	onducted w				PID for chloride and vapor, respection factor is included.	ctively. Chloride test
Moisture Content	Chloride (ppm)	Vapor (ppm)	Staining	Sample ID	Sample Depth (ft bgs)	Depth (ft bgs)	USCS/Rock Symbol	Lithologic De	-
М	<168	1,007	Y	BH01	0.5	0	CCHE	(0-1') CALICHE, tan, well gra with silt and sand	aded, gravel,
Μ	<168	1,504	Y	BH01A	1	_ 1	SP	(1-4') SAND, red, poorly gra	ded, with silt
D	<168	317	Y		2	2			
D	<168	37.9	Ν		3	- 3			
D	<168	31.9	Ν	BH01D	4	4			
					-	Total Dep	oth @ 4	feet bgs	
									<

APPENDIX D

Laboratory Analytical Reports & Chain of Custody Documentation

November 08, 2024

TRACY HILLARD ENSOLUM 3122 NATIONAL PARKS HWY

CARLSBAD, NM 88220

RE: OUTRIDER 28 FEDERAL CVB

Enclosed are the results of analyses for samples received by the laboratory on 11/05/24 13:30.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Total Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Cardinal Laboratories is accredited through the State of New Mexico Environment Department for:

Method SM 9223-B	Total Coliform and E. coli (Colilert MMO-MUG)
Method EPA 524.2	Regulated VOCs and Total Trihalomethanes (TTHM)
Method EPA 552.2	Total Haloacetic Acids (HAA-5)

Accreditation applies to public drinking water matrices for State of Colorado and New Mexico.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: Project Number: Project Manager: Fax To:		Reported: 08-Nov-24 16:48
--	--	--	------------------------------

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
BH 01 0.5'	H246724-01	Soil	04-Nov-24 11:35	05-Nov-24 13:30
BH 01 A 1'	H246724-02	Soil	04-Nov-24 11:54	05-Nov-24 13:30
BH 01 D 4'	H246724-03	Soil	04-Nov-24 12:30	05-Nov-24 13:30
SS 02 0.5'	H246724-05	Soil	04-Nov-24 15:55	05-Nov-24 13:30
SS 03 0.5'	H246724-06	Soil	04-Nov-24 15:59	05-Nov-24 13:30
SS 04 0.5'	H246724-07	Soil	04-Nov-24 16:05	05-Nov-24 13:30
SS 05 0.5'	H246724-08	Soil	04-Nov-24 13:47	05-Nov-24 13:30
SS 06 0.5'	H246724-09	Soil	04-Nov-24 14:37	05-Nov-24 13:30

11/08/24 - Client cancelled sample -04 (see COC). This is the revised report and will replace the one sent on 11/07/24.

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HV CARLSBAD NM, 88220	WY		0	Reported: 08-Nov-24 16:48						
				01 0.5 724-01 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds Chloride	160		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B	
Volatile Organic Compounds		021	10.0	66						S-04
Benzene*	23.7		2.00	mg/kg	2000	4110515	ЛН	06-Nov-24	8021B	
Toluene*	233		2.00	mg/kg	2000	4110515	ЈН	06-Nov-24	8021B	
Ethylbenzene*	79.4		2.00	mg/kg	2000	4110515	ЛН	06-Nov-24	8021B	
Total Xylenes*	457		6.00	mg/kg	2000	4110515	JH	06-Nov-24	8021B	
Total BTEX	793		12.0	mg/kg	2000	4110515	ЛН	06-Nov-24	8021B	
Surrogate: 4-Bromofluorobenzene (PII))		155 %	71.5	-134	4110515	JH	06-Nov-24	8021B	
Petroleum Hydrocarbons by	GC FID									S-06
GRO C6-C10*	10800		50.0	mg/kg	5	4110532	MS	06-Nov-24	8015B	
DRO >C10-C28*	19500		50.0	mg/kg	5	4110532	MS	06-Nov-24	8015B	
EXT DRO >C28-C36	2830		50.0	mg/kg	5	4110532	MS	06-Nov-24	8015B	
Surrogate: 1-Chlorooctane			706 %	48.2	-134	4110532	MS	06-Nov-24	8015B	
Surrogate: 1-Chlorooctadecane			295 %	49.1	-148	4110532	MS	06-Nov-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220		Project: OUTRIDER 28 FEDERAL CVB Reported: Project Number: 03C1558568 08-Nov-24 16:4 Project Manager: TRACY HILLARD Fax To:									
				[01 A 1' 724-02 (Se							
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	tories						
Inorganic Compounds											
Chloride	32.0		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021								S-04	
Benzene*	2.24		0.500	mg/kg	500	4110515	JH	06-Nov-24	8021B		
Toluene*	27.8		0.500	mg/kg	500	4110515	JH	06-Nov-24	8021B		
Ethylbenzene*	11.9		0.500	mg/kg	500	4110515	JH	06-Nov-24	8021B		
Total Xylenes*	72.1		1.50	mg/kg	500	4110515	JH	06-Nov-24	8021B		
Total BTEX	114		3.00	mg/kg	500	4110515	JH	06-Nov-24	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			145 %	71.5	-134	4110515	ЛН	06-Nov-24	8021B		
Petroleum Hydrocarbons by GC	C FID									S-04	
GRO C6-C10*	1560		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
DRO >C10-C28*	3390		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
EXT DRO >C28-C36	525		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
Surrogate: 1-Chlorooctane			143 %	48.2	-134	4110532	MS	05-Nov-24	8015B		
Surrogate: 1-Chlorooctadecane			109 %	49.1	-148	4110532	MS	05-Nov-24	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HW CARLSBAD NM, 88220	ſŶ		Pro Project Num Project Mana Fay	CVB	Reported: 08-Nov-24 16:48					
				[01 D 4' 724-03 (Se						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds										
Chloride	16.0		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B	
Volatile Organic Compounds	by EPA Method 8	021								
Benzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Surrogate: 4-Bromofluorobenzene (PID))		98.8 %	71.5	-134	4110515	JH	05-Nov-24	8021B	
Petroleum Hydrocarbons by (GC FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
DRO >C10-C28*	52.7		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctane			91.0 %	48.2	-134	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctadecane			93.3 %	49.1	-148	4110532	MS	05-Nov-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220			Project Num Project Num Project Mana Fax	CVB	Reported: 08-Nov-24 16:48					
				02 0.5' 724-05 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	ories					
Inorganic Compounds			160			4110(01		06.31	4500 CL D	
Chloride	224		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			99.9 %	71.5	-134	4110515	ЛН	05-Nov-24	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctane			87.7 %	48.2	-134	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctadecane			85.1 %	49.1	-148	4110532	MS	05-Nov-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: OUTRIDER 28 FEDERAL CVB Project Number: 03C1558568 Project Manager: TRACY HILLARD Fax To:							Reported: 08-Nov-24 16:48			
				03 0.5' 724-06 (So	oil)						
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds Chloride	32.0		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B		
			10.0	mg/kg	4	4110021	AC	00-100-24	4500-СІ-В		
Volatile Organic Compounds by		8021	0.050		-	4110515		05.31	00015		
Benzene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	Л	05-Nov-24	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	Л	05-Nov-24	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	JH	05-Nov-24	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			98.8 %	71.5	-134	4110515	JH	05-Nov-24	8021B		
Petroleum Hydrocarbons by GC	FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
Surrogate: 1-Chlorooctane			96.6 %	48.2	-134	4110532	MS	05-Nov-24	8015B		
Surrogate: 1-Chlorooctadecane			95.9 %	49.1	-148	4110532	MS	05-Nov-24	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220			Project Num Project Num Project Mana Fax	CVB	Reported: 08-Nov-24 16:48					
				6 04 0.5' 724-07 (Se	oil)					
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes
			Cardina	l Laborat	tories					
Inorganic Compounds										
Chloride	64.0		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B	
Volatile Organic Compounds by	EPA Method	8021								
Benzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Toluene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B	
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	ЛН	05-Nov-24	8021B	
Surrogate: 4-Bromofluorobenzene (PID)			99.2 %	71.5	-134	4110515	JH	05-Nov-24	8021B	
Petroleum Hydrocarbons by GC	FID									
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctane			96.2 %	48.2	-134	4110532	MS	05-Nov-24	8015B	
Surrogate: 1-Chlorooctadecane			95.0 %	49.1	-148	4110532	MS	05-Nov-24	8015B	

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220		Project: OUTRIDER 28 FEDERAL CVB Project Number: 03C1558568 Project Manager: TRACY HILLARD Fax To:							Reported: 08-Nov-24 16:48			
SS 05 0.5' H246724-08 (Soil)												
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes		
			Cardina	l Laborat	ories							
Inorganic Compounds												
Chloride	160		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B			
Volatile Organic Compounds by	EPA Method	8021										
Benzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B			
Toluene*	0.051		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B			
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B			
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	JH	05-Nov-24	8021B			
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	ЛН	05-Nov-24	8021B			
Surrogate: 4-Bromofluorobenzene (PID)			101 %	71.5	-134	4110515	ЛН	05-Nov-24	8021B			
Petroleum Hydrocarbons by GC	C FID											
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B			
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B			
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B			
Surrogate: 1-Chlorooctane			82.4 %	48.2	-134	4110532	MS	05-Nov-24	8015B			
Surrogate: 1-Chlorooctadecane			83.0 %	49.1	-148	4110532	MS	05-Nov-24	8015B			

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: OUTRIDER 28 FEDERAL CVB Project Number: 03C1558568 Project Manager: TRACY HILLARD Fax To:							Reported: 08-Nov-24 16:48			
SS 06 0.5' H246724-09 (Soil)											
Analyte	Result	MDL	Reporting Limit	Units	Dilution	Batch	Analyst	Analyzed	Method	Notes	
			Cardina	l Laborat	ories						
Inorganic Compounds											
Chloride	560		16.0	mg/kg	4	4110621	AC	06-Nov-24	4500-Cl-B		
Volatile Organic Compounds by	EPA Method	8021									
Benzene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Toluene*	< 0.050		0.050	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Ethylbenzene*	< 0.050		0.050	mg/kg	50	4110515	JH	05-Nov-24	8021B		
Total Xylenes*	< 0.150		0.150	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Total BTEX	< 0.300		0.300	mg/kg	50	4110515	ЛН	05-Nov-24	8021B		
Surrogate: 4-Bromofluorobenzene (PID)			101 %	71.5	-134	4110515	ЈН	05-Nov-24	8021B		
Petroleum Hydrocarbons by GC	C FID										
GRO C6-C10*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
DRO >C10-C28*	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
EXT DRO >C28-C36	<10.0		10.0	mg/kg	1	4110532	MS	05-Nov-24	8015B		
Surrogate: 1-Chlorooctane			88.7 %	48.2	-134	4110532	MS	05-Nov-24	8015B	_	
Surrogate: 1-Chlorooctadecane			86.2 %	49.1	-148	4110532	MS	05-Nov-24	8015B		

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: Project Number: Project Manager: Fax To:		Reported: 08-Nov-24 16:48
--	--	--	------------------------------

Inorganic Compounds - Quality Control

Cardinal Laboratories										
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch 4110621 - 1:4 DI Water										
Blank (4110621-BLK1)	Prepared & Analyzed: 06-Nov-24									
Chloride	ND	16.0	mg/kg							
LCS (4110621-BS1)	Prepared & Analyzed: 06-Nov-24									
Chloride	432	16.0	mg/kg	400		108	80-120			
LCS Dup (4110621-BSD1)				Prepared &	k Analyzed:	06-Nov-24				
Chloride	448	16.0	mg/kg	400		112	80-120	3.64	20	

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

ENSOLUM 3122 NATIONAL PARKS HWY CARLSBAD NM, 88220	Project: Project Number: Project Manager: Fax To:		Reported: 08-Nov-24 16:48
--	--	--	------------------------------

Volatile Organic Compounds by EPA Method 8021 - Quality Control

Cardinal	Labor	atories

		Reporting		Spike	Source		%REC		RPD		
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes	
Batch 4110515 - Volatiles											
Blank (4110515-BLK1)				Prepared &	Analyzed:	05-Nov-24	4				
Benzene	ND	0.050	mg/kg								
Toluene	ND	0.050	mg/kg								
Ethylbenzene	ND	0.050	mg/kg								
Total Xylenes	ND	0.150	mg/kg								
Total BTEX	ND	0.300	mg/kg								
Surrogate: 4-Bromofluorobenzene (PID)	ND		mg/kg	0.0500		98.6	71.5-134				
LCS (4110515-BS1)	Prepared & Analyzed: 05-Nov-24										
Benzene	2.25	0.050	mg/kg	2.00		113	82.8-130				
Toluene	2.15	0.050	mg/kg	2.00		107	86-128				
Ethylbenzene	2.16	0.050	mg/kg	2.00		108	85.9-128				
m,p-Xylene	4.30	0.100	mg/kg	4.00		108	89-129				
o-Xylene	2.11	0.050	mg/kg	2.00		105	86.1-125				
Total Xylenes	6.41	0.150	mg/kg	6.00		107	88.2-128				
Surrogate: 4-Bromofluorobenzene (PID)	0.0505		mg/kg	0.0500		101	71.5-134				
LCS Dup (4110515-BSD1)				Prepared &	Analyzed:	05-Nov-24	4				
Benzene	2.25	0.050	mg/kg	2.00		112	82.8-130	0.275	15.8		
Toluene	2.13	0.050	mg/kg	2.00		107	86-128	0.794	15.9		
Ethylbenzene	2.12	0.050	mg/kg	2.00		106	85.9-128	1.84	16		
m,p-Xylene	4.23	0.100	mg/kg	4.00		106	89-129	1.71	16.2		
o-Xylene	2.07	0.050	mg/kg	2.00		103	86.1-125	2.02	16.7		
Total Xylenes	6.30	0.150	mg/kg	6.00		105	88.2-128	1.81	16.3		
Surrogate: 4-Bromofluorobenzene (PID)	0.0495		mg/kg	0.0500		99.0	71.5-134				

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

|--|

Petroleum Hydrocarbons by GC FID - Quality Control

		Donostic -		Smiles	Source		%REC		RPD	
Analyte	Result	Reporting Limit	Units	Spike Level	Result	%REC	Limits	RPD	Limit	Notes
Analyte	Result	Liinit	Ollits	Level	Kesun	70KEC	Lillits	КID	Linin	Notes
Batch 4110532 - General Prep - Organics										
Blank (4110532-BLK1)				Prepared &	Analyzed:	05-Nov-24	4			
GRO C6-C10	ND	10.0	mg/kg							
DRO >C10-C28	ND	10.0	mg/kg							
EXT DRO >C28-C36	ND	10.0	mg/kg							
Surrogate: 1-Chlorooctane	44.7		mg/kg	50.0		89.4	48.2-134			
Surrogate: 1-Chlorooctadecane	44.1		mg/kg	50.0		88.2	49.1-148			
LCS (4110532-BS1)				Prepared &	Analyzed:	05-Nov-24	4			
GRO C6-C10	198	10.0	mg/kg	200		98.8	81.5-123			
DRO >C10-C28	194	10.0	mg/kg	200		96.9	77.7-122			
Total TPH C6-C28	391	10.0	mg/kg	400		97.9	80.9-121			
Surrogate: 1-Chlorooctane	50.8		mg/kg	50.0		102	48.2-134			
Surrogate: 1-Chlorooctadecane	50.2		mg/kg	50.0		100	49.1-148			
LCS Dup (4110532-BSD1)				Prepared &	Analyzed:	05-Nov-24	4			
GRO C6-C10	201	10.0	mg/kg	200		101	81.5-123	1.76	13	
DRO >C10-C28	196	10.0	mg/kg	200		98.0	77.7-122	1.15	15.6	
Total TPH C6-C28	397	10.0	mg/kg	400		99.3	80.9-121	1.46	18.5	
Surrogate: 1-Chlorooctane	50.5		mg/kg	50.0		101	48.2-134			
Surrogate: 1-Chlorooctadecane	50.2		mg/kg	50.0		100	49.1 - 148			

Cardinal Laboratories

*=Accredited Analyte

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

S-06	The recovery of this surrogate is outside control limits due to sample dilution required from high analyte concentration and/or matrix interference's.
S-04	The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C
	Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Received by OCD: 1/3/2025 7:26:23 AM

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising whether based in contract or bort, shall be limited to the amount paid analyses. All claims including those for negligence and any other cause whatooever shall be deemed waived unless made in writing and received by Cardinal within 30 days after service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by cla service. Relinquished By Relinquished By Project Location: Company Name: Ensolum, LLC Sampler Name: Phone #: City: Carlsbad Project Manager: Sampler - UPS - Bus - Other: Delivered By: (Circle One) Project Name: Project #: Address: 3122 National Parks Hwy FOR LAB USE DNLY Lab I.D. A Pay 02 QU) b Unider aboratories 101 East Marland, Hobbs, NM 88240 out of or related to the peri Sample I.D. (575) 393-2326 FAX (575) 393-2476 U -126-June Decu SO 2 20 Fred CUB Corrected Temp. Observed Temp. *C D (Fax #: Project Owner: Date: 5/24 Date: SP Time: Date: </ Received By: State: NM + Cardinal cannot accept verbal changes. Please email changes to celey keene@cardinallabsnm.com Depth (feet) 0 NOG 12ro ider by -9.3c ini Zip: 88220 Received By: (G)RAB OR (C)OMP + CONTAINERS 1 GROUNDWATER Spage Cool Sample Condition Ves Ves WASTEWATER MATRIX SOIL Intact OIL claim is based upon any of the above stated No SLUDGE XVCA C City: OTHER Fax #: Phone #: State: NMZip: 88770 Address: 3/04 E Greene Attn: (P.O. #: Company: ACID/BASE PRESERV CHECKED BY ICE / COOL Vallo pedshe (Initials) BILL TO OTHER incurred by client, its subsidiaries. 1424 DATE C SAMPLING Brown Wern paid by the client for the Turnaround Time All Results are emailed. Please provide Email address: REMARKS: completion of the applicable 11:35 Verbal Result: 12:30 thill and Deusolum, com, 14 honason deusoli TIME ÿ 20 P Zere #13 □ Yes \$P1# Standard H O No on do ANALYSIS **X** Add'l Phone #: Ves Yes Cool Intact Bacteria (only) Sample Condition 5XC REQUEST Observed Temp. °C Corrected Temp. °C 4/11 2 M.COM

Released to Imaging: 4/17/2025 2:49:41 PM

ARDINAL

Page 15 of 16

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

Received by OCD: 1/3/2025 7:26:23 AM

Relinquished By Sampler Name: Project Name: Phone #: Project Manager: 1 racu Relinguished By: service. In no event shall Cardinal be liable for incidental or consequential damages, including without limitation, business interanalyses. All claims including those for negligence and any other Project Location: Project #: City: Carlsbad Company Name: Ensolum, LLC Sampler - UPS - Bus - Other: LEASE NOTE: Liability : Address: 3122 National Parks Hwy Delivered By: (Circle One) 424673 FOR LAB USE ONLY Lab I.D. 10/01 0301550568 Project Owner 20 200 R aboratories Outrider 28 Fed 101 East Marland, Hobbs, NM 88240 23 Sample I.D. (575) 393-2326 FAX (575) 393-2476 Nerele JUNE 7-3906 Fax #: 20c 0 CSO CO 0 0 Corr Observed Temp. °C Rearcy hlland cause whatsoever shall be deemed v Pine Date: 5/24 soted Temp Date Time: State: NM 9 + Depth (feet) Cardinal cannot accept verbal changes. Please email changes to celey.keene@cardinallabsnm.com 21330 ° 1.Ac w Received By: G (G)RAB OR (C)OMP Zip: 88220 **Received By** ١ CMB arsing whether based in contract or ion, shall be limited to the amount paid by waived unless made in writing and received by Cardinal within 30 days after con # CONTAINERS GROUNDWATER 3 Sample Condition Ves Ves Cool Intact WASTEWATER MATRIX SOIL OIL uptions, loss of use, or loss of profits incurred by client, its subsidiaries SLUDGE Fax #: OTHER State: N/M Zip: 88770 City: P.O. #: Phone #: Address: 3041 Attn: COLITION Company: ACID/BASE PRESERV (Initials) CHECKED BY: ICE / COOL Sarisher BILL TO OTHER DATE 4124 Brown SAMPLING Ahen avoro 15:55 14:51 Thermometer ID ATTS # 140 All Results are emailed. Please provide Email address: by the client for the S0:91 REMARKS: thill and Bensolum. com, lethomason & eusalu IS:SO Verbal Result:
Ves TIME pletion of the app Zere en cable X l No Add'l Phone #: Monde 1 RD ANALYSIS Cool Intact Bacteria (only) Sample Condition REQUEST Observed Temp. °C Corrected Temp. °C M. COM

Released to Imaging: 4/17/2025 2:49:41 PM

2 40

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

CARDINAL

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

- 70						~		1
$\boldsymbol{\nu}$	aa	0	~	1	0	t.	л	
	ag	C.	.,	-	12		-	U
	o				~ .			

QUESTIONS

Action 416780

QUESTIONS				
Operator:	OGRID:			
XTO ENERGY, INC	5380			
6401 Holiday Hill Road	Action Number:			
Midland, TX 79707	416780			
	Action Type:			
	[C-141] Deferral Request C-141 (C-141-v-Deferral)			

QUESTIONS

Prerequisites		
Incident ID (n#)	nAPP2429626088	
Incident Name	NAPP2429626088 OUTRIDER 28 FED CVB @ 0	
Incident Type	Oil Release	
Incident Status	Deferral Request Received	
Incident Facility	[fAPP2320729912] OUTRIDER 28 FEDERAL CVB	

Location of Release Source

Site Name	OUTRIDER 28 FED CVB
Date Release Discovered	10/21/2024
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.				
Incident Type	Oil Release			
Did this release result in a fire or is the result of a fire	No			
Did this release result in any injuries	No			
Has this release reached or does it have a reasonable probability of reaching a watercourse	No			
Has this release endangered or does it have a reasonable probability of endangering public health	No			
Has this release substantially damaged or will it substantially damage property or the environment	No			
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No			

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.				
Crude Oil Released (bbls) Details	Cause: Other Other (Specify) Crude Oil Released: 9 BBL Recovered: 8 BBL Lost: 1 BBL.			
Produced Water Released (bbls) Details	Not answered.			
Is the concentration of chloride in the produced water >10,000 mg/l	No			
Condensate Released (bbls) Details	Not answered.			
Natural Gas Vented (Mcf) Details	Not answered.			
Natural Gas Flared (Mcf) Details	Not answered.			
Other Released Details	Not answered.			
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Victolic clamp failed			

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 416780

QUESTIONS (continued)				
Operator:	OGRID:			
XTO ENERGY, INC	5380			
6401 Holiday Hill Road A Midland, TX 79707	Action Number:			
	416780			
	Action Type:			

QUESTIONS

Nature and Volume of Release (continued)			
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.		
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No		
Reasons why this would be considered a submission for a notification of a major release	Unavailable.		
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response				
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.				
The source of the release has been stopped	True			
The impacted area has been secured to protect human health and the environment	True			
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True			
All free liquids and recoverable materials have been removed and managed appropriately	True			
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of			
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.				
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are requirer to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.				
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com Date: 01/03/2025			

Page	35	of 40

[C-141] Deferral Request C-141 (C-141-v-Deferral)

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Page 36 of 40

Action 416780

QUESTIONS	(continued)	1
QUEUNONU	contantaca	

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	416780
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between ½ and 1 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1000 (ft.) and ½ (mi.)
Any other fresh water well or spring	Between 1000 (ft.) and ½ (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between ½ and 1 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report de	emonstrating the lateral and vertical extents of soil contamination	on associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertic	al extents of contamination been fully delineated	Yes
Was this release entirely of	ontained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride	(EPA 300.0 or SM4500 CI B)	560
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	33130
GRO+DRO	(EPA SW-846 Method 8015M)	30300
BTEX	(EPA SW-846 Method 8021B or 8260B)	793
Benzene	(EPA SW-846 Method 8021B or 8260B)	23.7
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date w	ill the remediation commence	10/24/2024
On what date will (or did) t	he final sampling or liner inspection occur	11/04/2024
On what date will (or was)	the remediation complete(d)	11/04/2024
What is the estimated surf	ace area (in square feet) that will be reclaimed	705
What is the estimated volu	me (in cubic yards) that will be reclaimed	13
What is the estimated surf	ace area (in square feet) that will be remediated	705
What is the estimated volume (in cubic yards) that will be remediated 13		13
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 416780

Page 37 of 40

QUESTIONS (continued)		
Operator: XTO ENERGY, INC	OGRID: 5380	
6401 Holiday Hill Road Midland, TX 79707	Action Number: 416780	
	Action Type: [C-141] Deferral Request C-141 (C-141-v-Deferral)	
QUESTIONS		

Remediation Plan (continued)

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	e appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	e / reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	OWL LANDFILL JAL [fJEG1635837366]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed el which includes the anticipated timelines for beginning and completing the remediation.	fforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Colton Brown Title: Environmental Advisor Email: colton s.brown@exxonmobil.com

Date: 01/03/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Email: colton.s.brown@exxonmobil.com

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 416780

OUESTIONS	(continued)
QUESTIONS	(continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	416780
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction	Yes	
Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction	Seperator and production lines	
What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted	705	
What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted	105	
Per Paragraph (2) of Subsection C of 19.15.29.12 NMAC if contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approval until the equipment is removed during other operations, or whe the well or facility is plugged or abandoned, whichever comes first.		
Enter the facility ID (f#) on which this deferral should be granted	OUTRIDER 28 FEDERAL CVB [fAPP2320729912]	
Enter the well API (30-) on which this deferral should be granted	Not answered.	
Contamination does not cause an imminent risk to human health, the environment, or groundwater	True	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Title: Environmental Advisor Email: colton.s.brown@exxonmobil.com Date: 01/03/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
XTO ENERGY, INC	5380
6401 Holiday Hill Road	Action Number:
Midland, TX 79707	416780
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	397512
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	11/08/2024
What was the (estimated) number of samples that were to be gathered	15
What was the sampling surface area in square feet	750

Remediation Closure Request

 Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.

 Requesting a remediation closure approval with this submission
 No

QUESTIONS, Page 6

Action 416780

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

	Page	40	of	`40
--	------	-----------	----	------------

CONDITIONS

Action 416780

-	~ * *	DIT	-	10
1.1	ON	1 11 1	1()[us –

Operator:	OGRID:	
XTO ENERGY, INC	5380	
6401 Holiday Hill Road	Action Number:	
Midland, TX 79707	416780	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

CONDITIONS

Created By		Condition Date
rhamlet	XTO's deferral requests final remediation for (Incident Number NAPP2429626088) until final reclamation of the well pad or major construction, whichever comes first. Ensolum and XTO do not believe deferment will result in imminent risk to human health, the environment, or groundwater. The impacted soil is the area designated as "Release Extent and Deferral Area" on figure 2 that is next to active production equipment and surface pipelines, where remediation would require a major facility deconstruction. At this time, OCD approves this request. The Deferral Request and C-141 will be accepted for record and placed in the incident file. The release will remain open in OCD database files and reflect an open environmental issue.	4/17/2025