1. Continue O&M & sampling as stated in report. 2. Submit next quarterly report by July 15, 2025.

April 14, 2025

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: 2025 First Quarter – Remediation System Operation and Monitoring Report

Hare 15

San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident No: NRM2020945060

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this 2025 First Quarter - Remediation System Operation and Monitoring Report summarizing remediation system performance during the first quarter of 2025 at the Hare 15 natural gas production well (Site, Figure 1) on land managed by the Bureau of Lan Management (BLM). The Site is located in Unit M, Section 3, Township 29 North, Range 10 West in San Juan County, New Mexico (Figure 1). The duration of operation and monitoring activities included in this report is for the period from December 30, 2024 through March 31, 2025.

This report was prepared following the approval from the New Mexico Oil Conservation Division (NMOCD) regarding the dual-phase extraction (DPE) remediation system described in the *Dual-Phase Extraction (DPE) Pilot Test Report and Final Remediation Work Plan* prepared by Ensolum and submitted to the NMOCD in April 2023. Per the conditions of approval (COAs) issued by the NMOCD on May 19, 2023, this report includes the following information:

- A summary of remediation activities during the quarter;
- The system run time summary;
- Total system flow and vacuum measurements;
- Individual well flow rates, photoionization detector (PID) measurements of volatile organic compounds (VOCs), vacuum measurements, and oxygen/carbon dioxide measurements via hand-held analyzers;
- The petroleum mass removal and fluid product recovery from the remediation system.

As approved in the *Dual-Phase Extraction (DPE) Pilot Test Report and Final Remediation Work Plan,* groundwater sampling is being conducted semi-annually beginning in 2024. As such, this quarterly remediation summary report does not include data from semi-annual groundwater sampling events as the next semi-annual event is scheduled for the second quarter of 2025.

REMEDIATION SYSTEM DESCRIPTION

The remediation system at the Site includes a DPE system which uses a rotary lobe positive displacement blower to apply vacuum to 10 remediation wells (MW01, MW06, MW08, MW09, MW10, MW11, MW13, MW14, MW15, and MW16) connected to the blower via subsurface piping. The extracted air, petroleum vapors, and fluids enter a vapor/liquid separator or "knockout" tank.

Page 2

Air and petroleum vapors are passed through the high vacuum extraction blower and discharged to the atmosphere via an exhaust stack. Separated liquid, which includes phase separated hydrocarbons (PSH) and potentially dissolved phase impacted groundwater, is pumped to an open-top below grade tank for storage and off-site disposal. The system layout is depicted on Figure 2.

FIRST QUARTER 2025 OPERATION AND MAINTENANCE

Field data measurements were collected from the system weekly throughout the first quarter of 2025. Regular operations and maintenance (O&M) activities have been performed throughout the first quarter of 2025. Field forms completed during O&M visits are presented in Appendix A.

Since startup on August 13, 2024, all Site DPE wells were operated in order to recover PSH, draw down the groundwater table, and induce air flow in impacted soil zones. Between December 30, 2024 and March 31, 2025, the DPE system operated for 1,846 hours for a runtime efficiency of 85 percent (%). Downtime was the result of fouled float switches within the knockout tank not functioning as designed and allowing an overflow event to occur, resulting in a seized blower. The NMOCD was notified of the broken blower and associated downtime on March 21, 2025. Appendix B presents photographs of the runtime meter for calculating the first quarter 2025 runtime efficiency and the NMOCD correspondence is included as Appendix C. Table 1 presents the SVE system operational hours and calculated percent runtime. Field measurements collected during O&M events are summarized in Table 2.

Vapor Recovery

Per the May 2023 COAs, influent vapor samples are collected from the DPE system bi-monthly (every other month) throughout the first year of operation. One influent vapor sample was collected on February 6, 2025, using a high vacuum air sampling pump on the system inlet, after the manifold assembly, but prior to the liquid knockout tank. The sample was collected into two 1-Liter Tedlar® bags and submitted to Eurofins Environment Testing (Eurofins) in Albuquerque, New Mexico for analysis of VOCs following United States Environmental Protection Agency (EPA) Method 8260B, total petroleum hydrocarbons (TPH) following EPA Method 8015D, and fixed gas analysis of oxygen and carbon dioxide following Gas Processors Association (GPA) Method 2261. A summary of laboratory analytical results are summarized in Table 3, with complete laboratory analytical reports attached as Appendix D. Graphs 1 and 2 also present oxygen and carbon dioxide levels over time, respectively. Per the May 2023 COAs, influent vapor samples will continue to be collected bi-monthly (every other month) during the first quarter of 2025 and for the remainder of the first year of system operation.

Vapor sample data and measured influent flow rates are used to estimate total mass recovered and total emissions generated by the DPE system (Table 4). Based on these estimates, 4,882 pounds (2.4 tons) of vapor phase TPH have been removed by the system to date.

Liquid Recovery

Total liquid recovery volumes are measured using a totalizing flow metering device. During December 2024, it was determined the totalizer was no longer functioning correctly and was not recording accurate volumes. An attempt at repairing the totalizer was made following identification of the issue; however, the repair did not remedy the problem, and a replacement totalizer was procured. The replacement totalizer was installed on March 11, 2025. As such, accurate liquid recovery volumes could not be recorded during the first quarter of 2025. Liquid recovery is summarized in Table 5.

Page 3

GROUNDWATER MONITORING

Since September 2020, groundwater gauging and sampling activities have been conducted at the Site. Groundwater monitoring is conducted semi-annually, and no monitoring was conducted in the first quarter of 2025. The next semi-annual monitoring event is scheduled for the second quarter of 2025.

DISCUSSIONS AND RECOMMENDATIONS

Hilcorp has procured a replacement blower and will install the replacement in the beginning of April 2025 to resume DPE system operation. Additionally, redundant floats will be installed to minimize the risk of a recurrence and routine, monthly float cleaning will be conducted to ensure the floats operate as intended.

Bi-weekly (every other week) O&M visits and bi-monthly (every other month) sampling events will be performed by Ensolum and/or Hilcorp personnel to ensure the DPE system is operating within normal working ranges (i.e., temperature, pressure, and vacuum). Deviations from regular operations will be noted on field logs and included in the following quarterly report. Semi-annual groundwater sampling events will continue to be conducted in the second and fourth quarters of the year.

Reporting

Updated remediation reports will be prepared and submitted to the NMOCD on a quarterly basis within 15 days following the end of the quarter and will contain the following:

- A summary of remediation and monitoring activities during the period;
- System run-time summary;
- Petroleum hydrocarbon mass removal and fluid recovery from the remediation system;
- DPE volume liquid removal; and
- Groundwater monitoring results, when applicable.

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this report, please contact the undersigned.

Sincerely, **Ensolum**, **LLC**

Stuart Hyde, PG (licensed in TX, WA, & WY) Senior Managing Geologist

(970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Page 4

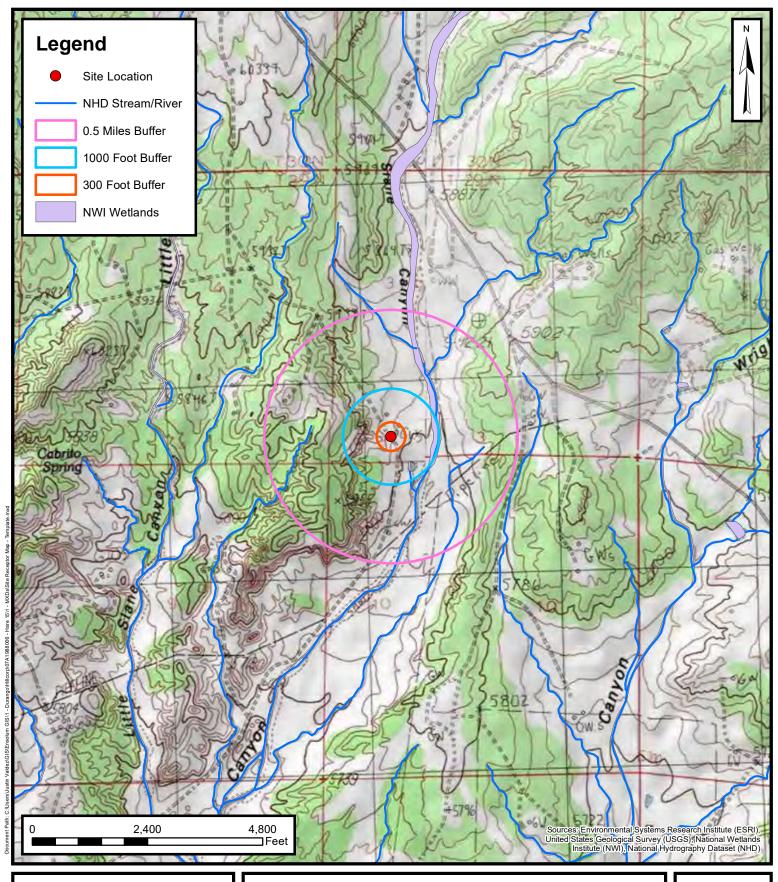
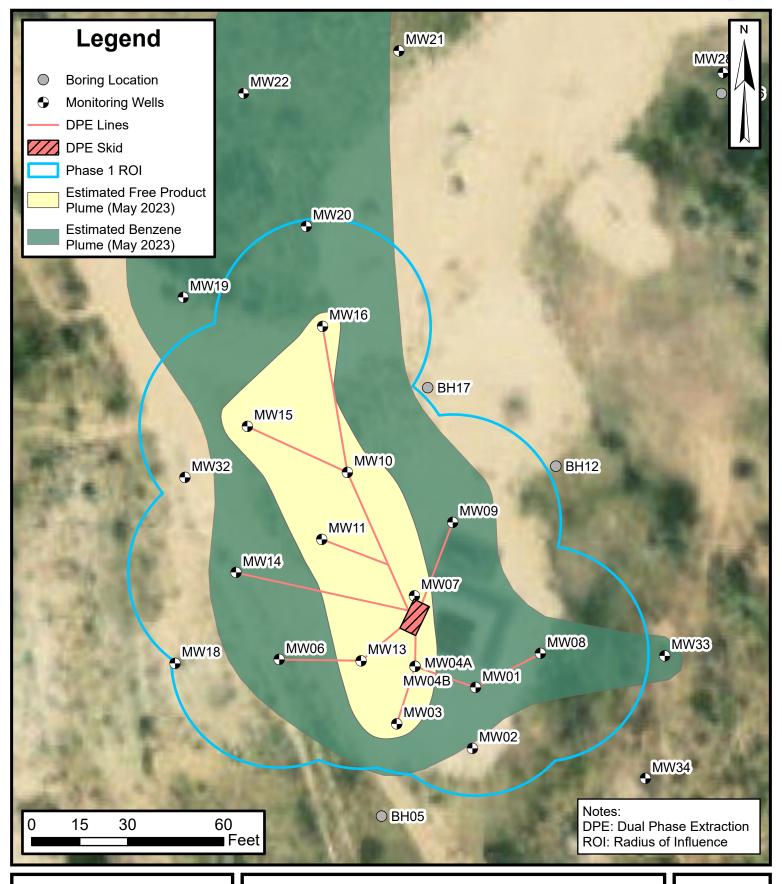

Attachments:

Figure 1 Figure 2 Figure 3 Figure 4	Site Location Map Dual Phase Extraction System Layout Groundwater Elevation Map – Q4 2024 Groundwater Analytical Results – Q4 2024
Table 1 Table 2 Table 3 Table 4 Table 5 Table 6 Table 7 Table 8	Dual Phase Extraction System Runtime Calculations Dual Phase Extraction System Field Measurements Dual Phase Extraction System Emissions Analytical Results Dual Phase Extraction System Mass Removal and Emissions Liquid Recovery Groundwater Elevation Groundwater Analytical Results PSH Recovery Summary
Graph 1 Graph 2	O_2 vs. Time CO_2 vs. Time
Appendix A Appendix B Appendix C Appendix D	O&M Field Notes Project Photographs Correspondence DPE Laboratory Analytical Reports

Figures


Site Receptor Map

Hare 15 Hilcorp Energy Company 36.749188, -107.877461 San Juan County, NM

PROJECT NUMBER: 07A1988006

FIGURE

1

Dual Phase Extraction System

Hare 15 Hilcorp Energy Company SW/SW, Sec 3, T29N, R10W 36.749188, -107.877461 San Juan County, New Mexico FIGURE

2

Tables & Graphs

TABLE 1 DUAL PHASE EXTRACTION SYSTEM RUNTIME CALCULATIONS Hare 15

Hilcorp Energy Company San Juan County, New Mexico

Date/Time of Reading	System Hour Runtime	Run Time (%)	Cumulative Run Time (%)	Notes
8/13/2024	4	STAF	RT UP	
12/30/2024	3,050	96%	91%	
1/8/2025	3,263	99%	92%	
1/25/2025	3,673	101%	93%	
2/6/2025	3,962	100%	93%	
2/21/2025	4,321	100%	94%	
3/11/2025	4,751	99%	94%	
3/31/2025	4,896	30%	89%	
	1st Qrt 25	Runtime%	85%	

Notes:

%: percent

Dashed line indicates quarter change

--: not applicable/not collected

NR: Not Recorded

Ensolum 1 of 29

TABLE 2 DUAL PHASE EXTRACTION SYSTEM FIELD MEASUREMENTS Hare 15 Hilcorp Energy Company San Juan County, New Mexico SVE Well ID Date PID (ppm) Differential Pressure (IWC) Plow Rate (acfm) Pressure (IWC) Flow Rate (acfm) Flow Rate (scfm) Flow Rate (scfm) Flow Rate (scfm) 8/13/2024 1,572 0.40 221 127 8.0 3.93 8/14/2024 1,915 0.40 221 127 8.0 3.93 8/15/2024 1,372 0.55 259 142 9.0 4.42 8/16/2024 1,277 0.50 247 139 8.5 4.17 8/21/2024 1,838 0.50 247 120 11.5 5.65 8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	12.7 16.5 20.4 20.4 20.1 20.9	Carbon Dioxide (%) >5.0 3.52
Hare 15 Hillcorp Energy Company San Juan Country, New Mexico SVE Well ID Date PID	12.7 16.5 20.4 20.4 20.1 20.9	(%) >5.0
SVE Well ID Date PID (ppm) Differential Pressure (IWC) Flow Rate (acfm) Flow Rate (acfm) Vacuum (IHG) Vacuum (psi)	12.7 16.5 20.4 20.4 20.1 20.9	(%) >5.0
8/14/2024 1,915 0.40 221 127 8.0 3.93 8/15/2024 1,372 0.55 259 142 9.0 4.42 8/16/2024 1,277 0.50 247 139 8.5 4.17 8/21/2024 1,838 0.50 247 120 11.5 5.65 8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	16.5 20.4 20.4 20.1 20.9	
8/15/2024 1,372 0.55 259 142 9.0 4.42 8/16/2024 1,277 0.50 247 139 8.5 4.17 8/21/2024 1,838 0.50 247 120 11.5 5.65 8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	20.4 20.4 20.1 20.9	3.52
8/16/2024 1,277 0.50 247 139 8.5 4.17 8/21/2024 1,838 0.50 247 120 11.5 5.65 8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	20.4 20.1 20.9	_
8/21/2024 1,838 0.50 247 120 11.5 5.65 8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	20.1 20.9	0.96
8/28/2024 2,020 0.55 259 136 10.0 4.91 9/4/2024 495 300 157 10.0 4.91	20.9	0.94 0.94
		0.00
	20.4	0.34
9/11/2024 691 - 300 157 10.0 4.91	20.9	0.34
9/19/2024 1,004 300 149 11.0 5.40 9/25/2024 421 300 149 11.0 5.40	20.2 18.8	0.26 0.26
10/1/2024 435 - 300 169 8.5 4.17		
10/16/2024 389 325 204 6.0 2.95	19.8	0.22
Influent, All Wells 10/23/2024		
11/6/2024 129 250 144 8.0 3.93	20.9	0.08
11/14/2024 360 202 8.5 4.17 11/27/2024 378 280 139 11.0 5.40	19.9	
12/5/2024 276 - 280 143 10.5 5.16	20.9	0.03
12/11/2024 184 300 153 10.5 5.16		
12/18/2024 169 220 112 10.5 5.16	20.8	0.14
12/30/2024 281 275 129 12.0 5.89 1/8/2025 189 0.40 221 113 10.5 5.16	20.9	0.19
1/0/2025 169 0.40 221 113 10.3 5.16 1/25/2025 258 0.35 207 112 9.3 4.54	20.9	0.07
2/6/2025 67 0.35 207 114 9.0 4.42	20.9	0.05
2/21/2025 187 0.33 199 107 9.5 4.67		
3/11/2025 125 0.53 253 146 8.0 3.93		
3/31/2025 System Off - Blower Broken		. 5.00
8/13/2024 736 62 38 6.5 3.19 8/14/2024 1,515 60 39 5.0 2.46	14.6 18.5	>5.00 1.78
8/15/2024 2,298 68 44 5.0 2.46	20.4	0.64
8/16/2024 1,454 64 42 5.0 2.46	20.4	0.60
8/21/2024 1,270 - 76 42 9.0 4.42	20.6	0.36
8/28/2024 2,601 - 70 43 6.5 3.19	20.1	0.72
9/4/2024 344 45 29 5.0 2.46 9/11/2024 211 45 30 4.5 2.21	20.4	0.20 0.24
9/19/2024 201 28 18 6.0 2.95	20.2	0.22
9/25/2024 92 50 31 6.0 2.95	19.0	0.18
10/1/2024 326 - 66 41 6.0 2.95		
10/16/2024 41 54 35 5.0 2.46 10/23/2024 66 7.0 3.44	19.9 21.4	0.16 0.02
MW01 10/23/2024 66 7.0 3.44 11/6/2024 6 - 48 29 6.5 3.19	20.9	0.02
11/14/2024 64 70 41 7.5 3.68	20.9	0.08
11/27/2024 6 50 30 7.0 3.44	20.9	0.11
12/5/2024 59 55 35 6.0 2.95	20.8	0.20
12/11/2024 4 - 75 44 7.5 3.68 12/18/2024 31 55 30 9.0 4.42	20.9	0.04
12/18/2024 31 55 30 9.0 4.42 12/30/2024 39 70 41 7.5 3.68	20.9	0.07
1/8/2025 148 - 46 27 7.3 3.56	20.9	0.05
1/25/2025 153 30 18 7.5 3.68	20.9	0.02
2/6/2025 98 32 19 7.5 3.68 2/21/2025 76 40 23 8.0 3.93	20.9	0.02
2/21/2025 76 40 23 8.0 3.93 3/11/2025 49 36 21 8.0 3.93		-
3/31/2025 System Off - Blower Broken		
8/13/2024 42 30 19 6.0 2.95	20.9	0.02
8/14/2024 325 20 13 5.0 2.46	20.0	1.70
8/15/2024 274 22 15 4.0 1.96	20.9	0.88
8/16/2024 364 26 17 5.0 2.46 8/21/2024 368 58 29 11.0 5.40	20.9	0.86
8/28/2024 378 55 33 7.0 3.44	20.9	0.40
9/4/2024 144 55 35 6.0 2.95	20.9	0.14
9/11/2024 56 50 31 6.0 2.95	20.9	0.10
9/19/2024 98 50 31 6.0 2.95	20.5	0.14
MW06 9/25/2024 254 45 29 5.5 2.70 10/1/2024 409 74 46 6.0 2.95	19.4	0.08
10/16/2024 14 44 29 5.0 2.46	21.1	0.10
10/23/2024 26 7.0 3.44	21.4	0.04
11/6/2024 58 50 30 7.0 3.44	20.9	0.11
11/14/2024 58 34 7.5 3.68		
11/27/2024 76 60 35 7.5 3.68 12/5/2024 117 50 31 6.0 2.95	20.9	0.19 0.11
12/3/2024	20.9	0.10
12/11/2024 24 - 60 35 8.0 3.93	20.9	0.10

				TABI	LE 2				
			DUAL PHASE E	XTRACTION SY	STEM FIELD M 15	EASUREMENTS	;		
				Hilcorp Energ San Juan Coun					
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾	Vacuum (IHG)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)
	12/30/2024	53		50	30	7.0	3.44	20.9	0.11
-	1/8/2025	43		54	32	7.0	3.44	20.7	0.02
MW06	1/25/2025 2/6/2025	468 52		54 54	32 32	7.0 7.0	3.44 3.44	20.8	0.02
WWWOO	2/21/2025	43		54	30	8.8	4.30	20.9	
F	3/11/2025	37		24	14	7.3	3.56		
	3/31/2025				System Off -	Blower Broken			
	8/13/2024	16		28	18	6.0	2.95	17.9	4.58
-	8/14/2024	403		30	20	5.0	2.46	19.7	1.62
-	8/15/2024 8/16/2024	346 436		32 38	21 25	5.0 5.0	2.46 2.46	20.9	0.74 0.48
-	8/21/2024	110		38	21	9.0	4.42	20.9	0.42
	8/28/2024	37		30	18	7.5	3.68	20.9	0.24
	9/4/2024	35		30	18	7.5	3.68	20.4	0.14
	9/11/2024	69		30	18	7.5	3.68	20.9	0.12
ļ	9/19/2024 9/25/2024	57		25	15	7.5	3.68	20.5	0.16
}	10/1/2024	28 79		40 14	25 9	6.0 5.0	2.95 2.46	19.5	0.10
	10/16/2024	79	-	14	9	6.0	2.46	20.0	0.18
AMAZOO	10/23/2024	6				6.5	3.19	21.4	0.08
MW08	11/6/2024	5		25	15	7.0	3.44	20.2	0.90
-	11/14/2024	3	-	22	13	7.5	3.68	20.9	0.12
-	11/27/2024 12/5/2024	8 52		25 25	15 14	7.5 8.0	3.68 3.93	20.9 20.8	0.70 0.35
F	12/11/2024	27		20	16	0.0	0.00	20.9	0.03
	12/18/2024	45		30	17	8.5	4.17	20.9	0.05
-	12/30/2024	73				7.5	3.68	20.8	0.06
	1/8/2025	66		16	9	7.5	3.68	20.9	0.00
-	1/25/2025 2/6/2025	70 63		16 14	9 8	7.5 8.0	3.68 3.93	20.9 20.9	0.00
F	2/21/2025	58		20	12	8.0	3.93	20.9	0.00
ŀ	3/11/2025			10	8	0.0	0.00		
	3/31/2025				System Off -	Blower Broken			
	8/13/2024	59		32	21	5.5	2.70	16.5	>5.00
-	8/14/2024	373		34	23	4.5	2.21	19.4	3.06
-	8/15/2024 8/16/2024	283 619		74 50	50 34	4.0	1.96 1.96	20.4	1.58 1.16
ŀ	8/21/2024	162		58	33	8.0	3.93	20.9	0.48
	8/28/2024	85		50	31	6.0	2.95	20.9	0.40
	9/4/2024	87		60	38	5.5	2.70	20.4	0.24
-	9/11/2024	50		40	25	6.0	2.95	20.9	0.24
-	9/19/2024 9/25/2024	53 52		60 60	38 40	6.0 4.5	2.95 2.21	20.2 19.3	0.26 0.18
F	10/1/2024	57		100	65	5.0	2.46	19.5	0.16
F	10/16/2024	15		30	20	5.0	2.46	20.0	0.24
MW09	10/23/2024	24				6.0	2.95	21.9	0.08
19199 09	11/6/2024	6		60	37	6.5	3.19	20.9	0.16
-	11/14/2024 11/27/2024	11 12		100 75	59 46	7.5 6.5	3.68 3.19	20.9 20.9	0.20 0.13
}	12/5/2024	90		60	35	8.0	3.19	20.9	0.13
ŀ	12/11/2024	124		75	44	7.5	3.68	20.9	0.04
	12/18/2024	115		75	42	8.5	4.17	20.9	0.15
[12/30/2024	289		80	47	7.5	3.68	20.9	0.19
}	1/8/2025 1/25/2025	62	-	50 10	31	6.0	2.95	19.2	0.06
ŀ	2/6/2025	76 		0	0	7.0 0.0	3.44 0.00	20.9	0.06
ŀ	2/21/2025	-	_	0	0	0.0	0.00	-	_
	3/11/2025	42		10	6	7.0	3.44		-
	3/31/2025					Blower Broken			
	8/13/2024	1,334	-	56	36	5.5	2.70	17.7	3.38
-	8/14/2024 8/15/2024	1,803	-	44 62	29 42	4.5 4.0	2.21 1.96	12.0 16.4	3.46 1.78
}	8/16/2024	2,053 1,978		58	38	5.0	2.46	18.0	1.66
ŀ	8/21/2024	2,851	-	70	38	9.0	4.42	18.9	1.50
MW10	8/28/2024	1,302		65	43	4.5	2.21	20.9	0.32
	9/4/2024	1,112		70	46	5.0	2.46	20.8	0.38
-	9/11/2024	704	-	70 70	45	5.5	2.70	20.8	0.40
}	9/19/2024 9/25/2024	1,201 556		70 65	44 42	6.0 5.0	2.95 2.46	19.9 17.0	0.38 0.64
	10/1/2024	834	_	60	38	5.5	2.70		
I	10/1/2024								

				TABI	F2				
			DUAL PHASE E	XTRACTION SY	STEM FIELD M	EASUREMENTS	;		
				Hare Hilcorp Energ San Juan Count	gy Company				
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾	Vacuum (IHG)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide
	10/23/2024	307				5.0	2.46	20.9	0.16
	11/6/2024	288	-	75	48	5.5	2.70	20.9	0.22
	11/14/2024		-	74	45	6.5	3.19		
	11/27/2024	335 506		65 70	42 49	5.0	2.46 1.72	20.8	0.21
	12/5/2024 12/11/2024	484		80	53	3.5 4.5	2.21	220.9	0.59
	12/18/2024	409		75	50	4.5	2.21	20.1	0.45
MW10	12/30/2024	279		65	44	4.0	1.96	20.1	0.44
	1/8/2025	611		60	43	2.5	1.23	20.3	0.21
	1/25/2025	478		62	44	3.0	1.47	20.7	0.15
	2/6/2025 2/21/2025	457 372	-	64 64	46 46	2.8	1.35 1.23	20.9	0.10
ŀ	3/11/2025	326		56	40	2.5	1.23	_	
	3/31/2025		•		System Off -	Blower Broken			•
	8/13/2024	1,751		44	26	7.0	3.44	10.3	>5.00
	8/14/2024	1,940		40	26	5.0	2.46	15.1	3.80
	8/15/2024	1,852		74	48	5.0	2.46	18.2	1.64
	8/16/2024 8/21/2024	2,190		68 76	36	5.0	2.46	18.8	1.46 0.94
ŀ	8/21/2024	2,381 2,964		76 80	36 47	12.0 7.5	5.89 3.68	19.3 20.6	0.94
ŀ	9/4/2024	977		55	32	7.5	3.68	20.6	0.31
İ	9/11/2024	423		80	47	7.5	3.68	20.9	0.26
	9/19/2024	1,999		60	36	7.0	3.44	20.5	0.28
	9/25/2024	461		70	44	6.0	2.95	17.3	0.46
	10/1/2024	592		100	63	6.0	2.95		
	10/16/2024	229		58	37	5.5	2.70	19.8	0.28
MW11	10/23/2024 11/6/2024	179 170		 50	30	7.5 7.0	3.68 3.44	20.9	0.18 0.19
ŀ	11/14/2024			56	32	8.0	3.93		
	11/27/2024	142		60	35	7.5	3.68	20.8	0.19
	12/5/2024	386		80	52	5.0	2.46	20.5	0.32
	12/11/2024	130		80	44	9.0	4.42	20.9	0.41
ļ	12/18/2024	172		80	40	11.0	5.40	20.7	0.34
ŀ	12/30/2024 1/8/2025	152 394		50 48	29 28	8.0 7.5	3.93 3.68	20.9	0.22 0.13
ŀ	1/25/2025	482		40	24	7.5	3.68	20.9	0.13
	2/6/2025	457		52	29	8.5	4.17	20.9	0.07
	2/21/2025	189		50	30	7.3	3.56	1	-
	3/11/2025	104		40	25	6.5	3.19		
	3/31/2025				System Off -	Blower Broken			
	8/13/2024	290		44	24	9.0	4.42	18.9	2.28
	8/14/2024	963		10	6	6.0	2.95	20.9	0.14
	8/15/2024 8/16/2024	662 451		14 14	10 10	4.0	1.96 1.96	20.9 20.9	0.10 0.06
ŀ	8/21/2024	2,845		72	38	10.0	4.91	20.6	0.48
ŀ	8/28/2024	993		60	35	8.0	3.93	20.9	0.00
ļ	9/4/2024	122		60	39	5.0	2.46	20.9	0.02
	9/11/2024	63			-	4.0	1.96	20.9	0.04
	9/19/2024	113	-		-	7.5	3.68	20.5	0.04
	9/25/2024 10/1/2024	464 552		 52	30	7.5 8.0	3.68 3.93	17.4	0.26
ŀ	10/1/2024	9		52	37	5.5	3.93 2.70	20.0	0.02
10	10/23/2024	153				9.0	4.42	21.4	0.02
MW13	11/6/2024	80		60	33	9.0	4.42	20.8	0.11
	11/14/2024			90	·	10.0	4.91		
	11/27/2024	94		80	43	9.5	4.67	20.9	0.17
	12/5/2024	148		60	36	7.0	3.44	20.7	0.17
	12/11/2024 12/18/2024	14 39		65 60	34 31	10.0 10.5	4.91 5.16	20.4 20.9	0.13 0.13
ŀ	12/30/2024	38		60	32	9.5	4.67	20.9	0.19
ŀ	1/8/2025	236	-	52	28	9.5	4.67	20.9	0.04
ļ	1/25/2025	262		62	33	9.5	4.67	20.9	0.05
Į	2/6/2025	132	-	42	22	10.0	4.91	20.9	0.04
	2/21/2025	123	-	50	26	10.0	4.91	-	
	3/11/2025		-	48	27	8.3	4.05		
	3/31/2025		Ţ			Blower Broken	T		
	8/13/2024	379	-	42	25	7.0	3.44	14.8	>5.00
NAVA 4	8/14/2024	1,074		32	21	5.0	2.46	18.3	4.18
MW14	8/15/2024 8/16/2024	759 726		50 52	34 34	4.0 5.0	1.96 2.46	19.9 19.9	1.94 2.02
ŀ	8/21/2024	688		58	27	12.0	5.89	20.6	1.26
			1				0.00		

			DUAL PHASE E	TAB XTRACTION SY		EASUREMENTS			
				Hare Hilcorp Ener San Juan Coun	e 15 gy Company				
SVE Well ID	Date	PID (ppm)	Differential Pressure (IWC)	Flow Rate (acfm)	Flow Rate (scfm) ⁽¹⁾	Vacuum (IHG)	Vacuum (psi)	Oxygen (%)	Carbon Dioxide (%)
	8/28/2024	633		50	30	7.0	3.44	20.9	0.65
	9/4/2024	210		45	28	6.5	3.19	20.9	0.40
	9/11/2024 9/19/2024	150 161		45 60	28 35	6.5 7.5	3.19 3.68	20.9 20.9	0.32 0.05
	9/25/2024	203		60	38	6.0	2.95	19.5	0.20
	10/1/2024	143		60	36	7.0	3.44		
	10/16/2024	72		48	31	5.0	2.46	19.9	0.23
	10/23/2024 11/6/2024	81 51		 50	30	6.5 7.0	3.19 3.44	21.1 20.9	0.16 0.14
	11/14/2024			60	35	7.5	3.68	20.9	0.14
MW14	11/27/2024	78		75	44	7.5	3.68	20.9	0.10
	12/5/2024	108		70	46	5.0	2.46	20.9	0.26
	12/11/2024	21		65	37	8.0	3.93	20.9	0.27
	12/18/2024 12/30/2024	64 64		70 50	40 30	7.0	3.93 3.44	20.9	0.26 0.20
	1/8/2025	233		40	24	7.5	3.68	20.9	0.12
	1/25/2025	262		100	59	7.3	3.56	20.9	0.09
	2/6/2025	144		52	30	8.0	3.93	20.8	0.05
	2/21/2025 3/11/2025	84 112		48 36	27	8.5 8.5	4.17 4.17		
	3/31/2025	112	1	30		Blower Broken	7.17		
	8/13/2024	379		70	42	7.0	3.44	12.0	>5.00
	8/14/2024	1,932		52	33	5.5	2.70	14.6	>5.00
	8/15/2024	1,677		58	36	6.0	2.95	16.9	4.26
	8/16/2024	1,262		44 70	29 35	5.0 11.0	2.46	17.7	3.82 2.52
	8/21/2024 8/28/2024	1,555 1,865		55	33	7.0	5.40 3.44	18.9 20.9	0.76
	9/4/2024	975		55	33	7.0	3.44	20.7	0.72
	9/11/2024	555		60	35	7.5	3.68	20.8	0.54
	9/19/2024	602		70	41	7.5	3.68	19.9	0.50
	9/25/2024 10/1/2024	393 386		60 70	38 43	6.0 6.5	2.95 3.19	18.2	0.62
	10/16/2024	220		62	43	5.0	2.46	19.9	0.39
MW15	10/23/2024	205				7.0	3.44	20.9	0.22
IVIVV 15	11/6/2024	214		70	41	7.5	3.68	20.9	0.25
	11/14/2024			72	41	8.0	3.93		
	11/27/2024 12/5/2024	442 539		60 70	35 46	7.5 5.0	3.68 2.46	20.4	0.31 0.49
	12/11/2024	395		75	41	9.0	4.42	20.9	0.39
	12/18/2024	371		65	36	9.0	4.42	20.9	0.46
	12/30/2024	299		70	41	7.5	3.68	20.6	0.35
	1/8/2025 1/25/2025	628 701		62 58	36 34	7.5 7.5	3.68 3.68	20.3	0.23 0.21
	2/6/2025	218		50	29	7.8	3.81	20.9	0.20
	2/21/2025	338		52	29	9.0	4.42		-
	3/11/2025	305		44	26 System Off	7.3	3.56		
	3/31/2025	4 700	T	1 44 1		Blower Broken	2.11	40.5	.500
	8/13/2024 8/14/2024	1,796 480		14 12	8	7.0 5.5	3.44 2.70	13.5 20.9	>5.00 0.02
	8/15/2024	501		18	12	5.0	2.46	20.9	0.02
	8/16/2024	47		26	17	5.0	2.46	20.9	0.02
	8/21/2024	404		25	12	11.0	5.40	20.9	0.02
	8/28/2024 9/4/2024	4,787 1,810		45 30	27 18	7.0 7.0	3.44 3.44	20.9 20.8	0.76 0.51
	9/11/2024	1,335		30	18	7.5	3.68	20.7	0.42
	9/19/2024	1,421		NM	NM	7.0	3.44	20.2	0.32
	9/25/2024	188	-	30	19	6.0	2.95	19.9	0.04
	10/1/2024 10/16/2024	112 68		58 14	36 9	6.0 5.5	2.95 2.70	19.9	0.02
MW16	10/16/2024	30				6.0	2.70	20.2	0.02
	11/6/2024	279		50	29	7.5	3.68	20.9	0.11
	11/14/2024	-		48	28	8.0	3.93	-	
	11/27/2024	422		55	32	7.5	3.68	20.5	0.25
	12/5/2024 12/11/2024	751 217		20 15	12 11	7.5 1.0	3.68 0.49	20.9	0.32 0.28
	12/18/2024	273		75	41	9.0	4.42	20.9	0.21
	12/30/2024	241				8.0	3.93	20.9	
	1/8/2025	91		14	8	7.8	3.81	20.9	0.00
	1/25/2025	83		16	9	7.8	3.81	20.9	0.00
	2/6/2025 2/21/2025	125 94		24 16	14 8	8.0 9.8	3.93 4.79	20.9	0.00
			·		-				

TABLE 2 DUAL PHASE EXTRACTION SYSTEM FIELD MEASUREMENTS Hare 15 Hilcorp Energy Company San Juan County, New Mexico										
SVE Well ID	Date	e PID Differential Pressure (IWC) Flow Rate (acfm) Flow Rate (scfm) Vacuum (IHG) Vacuum (psi) Oxygen (%) Carbon Dioxide (%)								
MW16 3/11/2025 150 10 6 7.5 3.68										
IVIVV 16	3/31/2025				System Off - I	Blower Broken				

Notes:

(1) Individual Well Flow Rates in scfm estimated based on rotometer readings from 1/2/24 to 1/5/24

IHG: inches of mercury

PID: photoionization detector

ppm: parts per million

acfm: actual cubic feet per minute

scfm: standard cubic feet per minute

%: percent

--: not measured

TABLE 3 DUAL PHASE EXTRACTION SYSTEM EMISSIONS ANALYTICAL RESULTS Hare 15 Hilcorp Energy Company San Juan County, New Mexico

Date	PID (ppm)	Benzene (µg/L)	Toluene (μg/L)	Ethylbenzene (µg/L)	Total Xylenes (μg/L)	TVPH/GRO (µg/L)	Oxygen (%)	Carbon Dioxide (%)
8/13/2024	1,572	310	240	36	530	45,000	12.01	7.68
8/14/2024	1,915	180	250	30	390	28,000	16.73	3.02
8/21/2024	1,838	54	280	37	480	18,000	20.46	0.95
8/28/2024	2,020	20	160	28	380	12,000	21.20	0.64
9/4/2024	495	14	100	14	190	6,600	21.57	0.33
9/19/2024	1,004	69	360	<50	590	3,700	21.78	0.28
10/1/2024	135	6.1	31	< 5.0	56	64	21.47	0.40
10/16/2024	389	2.3	10	0.68	11	18	21.65	0.23
11/15/2024		1.3	1.9	< 0.50	<0.75	440	19.33	0.19
11/27/2024	378	4.4	24.0	< 5.0	78	2,100	22.01	0.16
12/5/2024	276	1.1	1.8	< 0.50	0.92	440	21.80	0.16
2/6/2025	67	0.63	6.2	0.59	13	530	21.96	0.18

Notes:

GRO: gasoline range organics μg/L: microgram per liter PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

%: percent
--: not sampled

Grey: Result below laboratory reporting limit

TABLE 4

DUAL PHASE EXTRACTION SYSTEM MASS REMOVAL AND EMISSIONS

Hare 15 Hilcorp Energy Company San Juan County, New Mexico

Laboratory Analysis

Date	PID (ppm)	Benzene (μg/L)	Toluene (μg/L)	Ethylbenzene (μg/L)	Total Xylenes (μg/L)	TVPH (μg/L)
8/13/2024	1,572	310	240	36	530	45,000
8/14/2024	1,915	180	250	30	390	28,000
8/21/2024	1,838	54	280	37	480	18,000
8/28/2024	2,020	20	160	28	380	12,000
9/4/2024	495	14	100	14	190	6,600
9/19/2024	1,004	69	360	<50	590	3,700
10/1/2024	135	6.1	31	< 5.0	56	64
10/16/2024	389	2.3	10	0.68	11	18
11/15/2024		1.3	1.9	< 0.50	< 0.75	440
11/27/2024	378	4.4	24.0	< 5.0	78	2,100
12/5/2024	276	1.1	1.8	< 0.50	0.92	440
2/6/2025	67	0.6	6.2	< 0.59	13.00	530
Average	917	55	122	17	227	9,741

Vapor Extraction Summary

			Vapo	or Extraction Sunii	iiai y			
Date	Flow Rate (scfm)	Total System Flow (cf)	Delta Flow (cf)	Benzene (lb/hr)	Toluene (lb/hr)	Ethylbenzene (lb/hr)	Total Xylenes (lb/hr)	TVPH (lb/hr)
8/13/2024	127	0	0	0.1472	0.1140	0.0171	0.2517	21.37
8/14/2024	127	150,114	150,114	0.0855	0.1187	0.0142	0.1852	13.30
8/21/2024	120	1,346,034	1,195,920	0.0242	0.1257	0.0166	0.2154	8.08
8/28/2024	136	2,681,010	1,334,976	0.0102	0.0814	0.0142	0.1933	6.10
9/4/2024	157	4,251,324	1,570,314	0.0082	0.0587	0.0082	0.1116	3.88
9/19/2024	149	7,457,208	3,205,884	0.0385	0.2006	0.0279	0.3288	2.06
10/1/2024	169	9,000,516	1,543,308	0.0039	0.0196	0.0032	0.0354	0.04
10/16/2024	204	13,408,140	4,407,624	0.0018	0.0075	0.0005	0.0084	0.01
11/15/2024 ⁽¹⁾	202	21,629,136	8,220,996	0.0010	0.0014	0.0004	0.0006	0.33
11/27/2024	139	23,828,394	2,199,258	0.0023	0.0125	0.0026	0.0406	1.09
12/5/2024	143	25,460,310	1,631,916	0.0006	0.0010	0.0003	0.0005	0.24
2/6/2025	114	35,297,598	9,837,288	0.0003	0.0026	0.0003	0.0055	0.23
			Average	0.0270	0.062	0.0088	0.115	4.73

Mass Recovery

				Mass Recovery				
Date	Total SVE System Hours	Delta Hours	Benzene (pounds)	Toluene (pounds)	Ethylbenzene (pounds)	Total Xylenes (pounds)	TVPH (pounds)	TVPH (tons)
8/13/2024	4	0.0	0.0	0.0	0.0	0.0	0.0	0.00
8/14/2024	24	20	1.7	2.3	0.3	3.6	262.0	0.13
8/21/2024	190	166	4.0	20.9	2.8	35.8	1341.9	0.67
8/28/2024	354	164	1.7	13.3	2.3	31.6	998.6	0.50
9/4/2024	520	167	1.4	9.8	1.4	18.6	646.0	0.32
9/19/2024	879	359	13.8	71.9	10.0	117.9	739.4	0.37
10/1/2024	1,031	152	0.6	3.0	0.5	5.4	6.2	0.00
10/16/2024	1,391	360	0.6	2.7	0.2	3.0	4.9	0.00
11/15/2024	2,070	678	0.7	1.0	0.3	0.4	225.5	0.11
11/27/2024	2,333	264	0.6	3.3	0.7	10.7	287.9	0.14
12/5/2024	2,523	190	0.1	0.2	0.1	0.1	44.8	0.02
2/6/2025	3,962	1,438	0.4	3.8	0.4	8.0	325.0	0.16
	Total Mass	Recovery to Date	26	132	19	235	4,882	2.4

Notes:

cf: cubic feet

cfm: cubic feet per minute

μg/L: micrograms per liter

lb/hr: pounds per hour

--: not sampled

PID: photoionization detector

ppm: parts per million

TVPH: total volatile petroleum hydrocarbons

Grey: Laboratory reporting limit used to estimate mass removal

(1): Flow rate and hours from 11/14/24 applied to analytical data from 11/15/24

				LIQUID R Har lilcorp Ene	LE 5 ECOVERY e 15 rgy Compar nty, New Me								
	Flow Meter Gallons Cumulative Recovery Rate												
Date/Time	Hour Meter	Reading	Recovered	Volume	Time Period	Time Period	Necovi	ery Rate	Notes				
Date, Time	Reading	(gal)	this Period	Recovered (gal)	(hr:min:sec)	(min)	(gpm)	(gal/day)	Notes				
8/12/2024					System	Startup							
8/20/2024		Totalizer Installed											
8/21/2024	189.7												
8/28/2024	352.6	4,680	4,680	4,680	168:45:00	10,125	0.46	666					
9/4/2024	520.3	9,057	4,378	9,057	168:25:00	10,105	0.43	624					
9/11/2024	687.4	13,093	4,035	13,093	153:30:00	9,210	0.44	631					
9/19/2024	878.9	17,197	4,105	17,197	192:00:00	11,520	0.36	513					
9/25/2024	970.3	20,511	3,313	20,511	157:58:00	9,478	0.35	503					
10/1/2024	1,031.1	22,652	2,142	22,652	130:02:00	7,802	0.27	395					
10/16/2024	1,391	23,665	1,013	23,665	360:00:00	21,600	0.05	68					
10/23/2024	NR	NR	NR	NR	168:00:00	10,080	NR	NR					
11/6/2024	1,880	32,212	8,546	32,212	336:00:00	20,160	0.42	610					
11/14/2024 ⁽¹⁾	2,070	35,998	3,786	35,998									
11/27/2024 ⁽¹⁾	2,333	38,388	6,176	38,388									
12/5/2024 ⁽¹⁾	2,523	38,388	0	38,388									
12/11/2024 ⁽¹⁾	2,605	38,398	10	38,398									
12/18/2024 ⁽¹⁾	2,774	38,398	0	38,398									
12/30/2024 ⁽¹⁾	3,050	38,398	0	38,398									
1/8/2025 ⁽¹⁾	3,263	38,388	-10	38,388									
1/25/2025 ⁽¹⁾	3,673	38,390	3	38,390									
2/6/2025 ⁽¹⁾	3,962	38,390	0	38,390									
2/21/2025 ⁽¹⁾	4,321	38,390	0	38,390									
3/11/2025 ⁽²⁾	4,751	9,994,755							Totalizer Replaced				
3/31/2025				. <u></u>	Syste	m Off							

Notes:

*: totalizing meter installed on 8/16/2024

bbl: barrel in: inch
ft: feet min: minute
gal: gallon sec: second

gal/day: gallon per day

Dashed line indicated quarter change

gpm: gallon per minute --: not applicable
hr: hour NR: Not recorded
(1) Totalizer not functioning (2) Totalizer replaced

Total Quantity of Liquid Removed: 38,398 Gal

914 bbl

APPENDIX A

O&M Field Notes

HARE 15 DPE SYSTEM **O&M FORM** O&M PERSONNEL: B Sinclair
TIME OFFSITE: DATE: 1-8 TIME ONSITE: DPE ALARMS: KO TANK HIGH LEVEL **DPE SYSTEM** READING TIME Blower Hours (take photo) Transfer Pump Hours Pre-Filter Vacuum (InHg) Post-Filter Vacuum (InHg) Differential Pressure (IWC) **Exhaust Temperature** Transfer Pump Pressure Transfer Pump Totalizer **SVE SYSTEM SAMPLING** SAMPLE ID: SAMPLE TIME: **CARBON DIOXIDE (%)** PID (ppm) OXYGEN (%) Analytes: Sample Weekly through 9/12/24, biweekly through 11/12/24, bimonthly through 8/12/25 for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2) **OPERATING WELLS** Change in Well

	Operation:	
1	VELLHEAD MEASUREMENTS	

DIOXIDE (%)	CARBON DIOX	OXYGEN (%)	PID HEADSPACE (PPM)	CDIFF PRESSURE (IWC)	VACUUM (IWC)	WELL ID
50	460	20.9	147.9	1977	7.25	MW01
	180	20.7	43.4		7.0	MW06
0	20	20.9	65.6	65.6	7.5	MW08
	580	19.2	61.7	61.7	6.0	MW09
	2170	20.3	610.9	410-9	2.5	MW10
	1320	20.2	394.0	394.0	7.5	MW11
WEST STORY	440	20,9	235.7	235.7	9.5	MW13
100	1100	20.9	233.0	233.0	7.5	MW14
00	2300	20.3	627,6	627.6	7.5	
THE RESIDENCE OF THE PARTY OF T	40	1000 1000 1000 1000 1000 1000 1000 100	91.2		7.75	MW15
	The second secon	20.9	91.2		7.75	MW16

MANIFOLD MEASUREME	VACUUM (IHg)	FLOW (CFM)
WELL ID	85	46
MW01	05	54
MW06	175	16
MW08	90	59
MW09	7.5	60
MW10	9.5	48
MW11	90	52
MW13	110	40
MW14	90	62
MW15	75	19
MW16	1	

COMMENTS/MAINTENANCE ISSUES

HARE 15 DPE SYSTEM **O&M FORM**

DATE: TIME ONSITE:	1-25	O&M PERSONNEL: B Sinclair TIME OFFSITE:

KO TANK HIGH LEVEL

DPE SYSTEM	READING	TIME
Blower Hours (take photo)	3673.4	1411
Transfer Pump Hours	129.6	
Pre-Filter Vacuum (InHg)	9.25	
Post-Filter Vacuum (InHg)	9.5	
Differential Pressure (IWC)	0.35	
Exhaust Temperature	165	
Transfer Pump Pressure	0	
Transfer Pump Totalizer	38240 41	

SVE SYSTEM SAMPLING

SAMPLE TIME: SAMPLE ID:

CARBON DIOXIDE TO 740 OXYGEN (%) 20,9 PID (ppm) 258, 4

Analytes: Sample Weekly through 9/12/24, biweekly through 11/12/24, bimonthly through 8/12/25 for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2)

OPERATING WELLS

DPE ALARMS:

Change in Well Operation:					AH.
/ELLHEAD MEASUREME	nts in Ha				Pr
	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)
WELL ID	VACOUNI (IVA)		153.4	20.9	240
MW01	1,5		46.8	20.8	200
MW06	1.0		69.8	700	20
MW08	7. 5		75.5	70 9	620

MVV08	70	75.5	20.9	620
MW09	2.0	477.6	20.7	1480
MW10	7 6	481.5	20.9	1100
MW11	0.5	262.1	20.9	480
MW13	7.5	357.3	20.9	860
MW14	76	701.1	20.7	2120
MW15	775	83.2	20.9	40
MW16	1.10			10

MANIFOLD MEASUREMEN	VACUUM (IHg)	FLOW (CFM)
WELL ID	9.0	30-100*
MW01	9.5	54
MW06	7.5	16
MW08	9.0	10-100*
MW09	9.0	62
MW10	9.75	40-100
MW11	10.0	62
MW13	11.5	100

0	COMMENTS/MAINTENANCE ISSUES
$\ $	* oscillating ratemeter
1	

MW14

MW15

MW16

HARE 15 DPE SYSTEM **O&M FORM**

DATE: 2 - 6	O&M PERSONNEL: B Sinclair
	TIME OFFSITE:

DPE ALARMS: KO TANK HIGH LEVEL

DPE SYSTEM	READING	TIME
Blower Hours (take photo)	3961.7	1427
Transfer Pump Hours	131.2	
Pre-Filter Vacuum (InHg)	9.0	
Post-Filter Vacuum (InHg)	10.0	
Differential Pressure (IWC)	0.35	
Exhaust Temperature	175	
Transfer Pump Pressure	02	
Transfer Pump Totalizer	38390.412	

SVE SYSTEM SAMPLING

SAMPLE ID: SVE-1

SAMPLE TIME: 1420

PID (ppm)

OXYGEN (%) 20.9

CARBON DIOXIDE (%) 5 2 0

Analytes: Sample Weekly through 9/12/24, biweekly through 11/12/24, bimonthly through 8/12/25 for TVPH (8015), BTEX (8260), Fixed Gas (CO2 AND O2)

OPERATING WELLS

Change in Well Operation:

WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)
MW01	75		98.2	20.9	160
MW06	7.0		51.7	20.9	320
MW08	8.0		63,3	20.9	40
MW09	0'				
MW10	2.75		457.4	20.4	1000
MW11	8.5		138.0	20.9	740
MW13	10.0		131.	20.9	360
MW14	8.0		197.3	20.8	540
MW15	7.75		1741	20.9	1980
MW16	8.0		127.6	20.9	20

MANIFOLD MEASUREME		FLOW (CFM)
WELL ID	VACUUM (IHg)	32
MW01	4.75	54
MW06	10.0	14
MW08	0.2	0
MW09	4.3	64
MW10	100	52
MW11	19.0	42
MW13	1275	52
MW14	075	50
MW15	97.5	24
MW16	1.70	

COMMENTS/MAINTENANCE ISSUES

1. array appears to be elevated within sight tube, likely needs replacement 2. Pump totalizer & pressure gauge non-functional

Post ko vac pre-filter = 9.75

HARE 15 DPE SYSTEM O&M FORM

DATE: TIME ONSITE: DPE ALARMS: DPE SYSTEM Blower Hours (take photo)	READING 4321.1	TIME 13 5 2	O&M PERSONNEL: 13 TIME OFFSITE:	Sinclair	
Pre-Filter Vacuum (InHg) Post-Filter Vacuum (InHg) Differential Pressure (IWC) Exhaust Temperature Transfer Pump Pressure Transfer Pump Totalizer	9.5				
		SVE SYSTEM SAMP	LING		
SAMPLE ID:	18		SAMPLE TIME:		
PID (ppm)	187.4	OXYGEN (%)	C	ARBON DIOXIDE (%)	
Analytes:	Sample Weekly through 9/12/2	24, biweekly through 11/12/24, bimont	hly through 8/12/25 for TVPH	(8015), BTEX (8260), Fixed Gas (C	O2 AND O2)
OPERATING WELLS					
Change in Well Operation:				9	

ELLHEAD MEASUREME		DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OKYGEN (%)	CARBON DIOXIDE (%
WELL ID	VACUUM (IWC)	DITT TALEGOOM (1115)	758		
MW01	8.0		43.4		
MW06	8.75		57.9		
MW08	9.0			_	
MW09	04		371.8		
MW10	4.5		189.2		
MW11	7.25		123.4		9 3 6 7 40
MW13	10.0		84.3		
MW14	8.3		338.3		
MW15	9.0		93.5		

			COMMENTS/MAINTENANCE ISSUES
MANIFOLD MEASUREMEN	VACUUM (IHg)	FLOW (CFM)	* persisting
WELL ID	9.5	90	
MW01	10.0	57	
MW06	8.0	20	2 Sensor dis
MW08	9.0	0	
MW09	9.25	60	
MW10	9.5	24	
MW11	10.25	44	
MW13	11.75	65	
MW14	9.5	12	
MW15	8,5		
MW16	Marie Control		

- * persisting issues

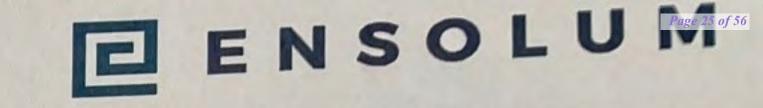
Oz sensor disabled

			PE SYSTEM FORM		
	2/28/25			- Daget	
TIME ONSITE:	1000		TIME OFFSI	EL: Harul	
	ystem Running Upon Arrival	(Y/N)? KO TANK HIGH LEVEL] 22左目	SGT	
DPE ALARMS:	-	KO TANK HIGH LEVEL			
DPE SYSTEM	READING	TIME		57.62	15 16.5 tz 21.5
ower Hours (take photo)	4439.0		Motor Running	60.00 H	tz 21.5
Transfer Pump Hours	135.2		Fresh Air Bypass Percent C	open? 1/2 open	
Pre-Filter Vacuum (InHg)	9.5		Vacuum Relief Valve Pulling	g? Y(N)	
Post-Filter Vacuum (InHg)	10.0		Post Air Filter Vacuum (InH		
ifferential Pressure (IWC)	- 13		Exhaust Pressure (IWC)	26	
Exhaust Temperature	80°P		Exhaust Flow Diff. Pressure		
Transfer Pump Pressure			Exhaust Flow on Chart (SCI	EM) 275	
Transfer Pump Totalizer			Exhaust PID (ppm)	61.5	1
		eve evete	M SAMPLING		
SAMPLE ID:		SVESTSIE	SAMPLE TIME		
PID (ppm)	400.3	OXYGEN (%)		CARBON DIOXIDE (%)	Sort APM
				or TVPH (8015), BTEX (8260),	
OPERATING WELLS					
Change in Well Operation:					
VELLHEAD MEASUREME	NTS		*		
WELL ID	VACUUM (IWC)	PID HEADSPACE (PPM)	OXYGEN (vol %)	CARBON DIOXIDE (vol %)	CH4 (vol 9
MVV01	7.0 6.5	42.1	20.9	860	0
MVV06		16.0	107		_
	VA	62 0			0
MW08	9.0	62.9	20.9	720	0
MVV09	6.5	227,5	2 0 .9 20.9	720	0
MW09 MW10	4.0 6.5 4.0 8.5	227,5 Z19.1	2 0 .9 20.9 19.8	720	0
MW10 MW11	6.5	227,5 719.1 114,1	2 0 .9 20.9 19.8 20.9	720 1660 6220	0 % 2
MW09 MW10	6.5 4.0 8.5 9.0 7.0	227,5 Z19.1	2 0 .9 20.9 19.8	720 1660 6220 2100	0
MW09 MW10 MW11 MW13	6.5 4.0 8.5 9.0 7.0 7.0	227,5 Z19.1 114,1 31.6 54.4 176.9	20.9 20.9 19.8 20.9 20.9 20.6 20.9	720 660 6220 2100 1640	0 1 2 0 0
MW10 MW11 MW13 MW14	6.5 4.0 8.5 9.0 7.0	227,5 Z19.1 114,1 31.6 54.4	2 0 .9 20.9 19.8 20.9 20.9 20.6	720 660 6220 2100 1640 2240	0 0 2 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15	6.5 4.0 8.5 9.0 7.0 7.0	227,5 Z19.1 114,1 31.6 54.4 176.9	20.9 20.9 19.8 20.9 20.9 20.6 20.9 19.8	720 660 6220 2100 1640 7240 4220	0 0 2 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16	6.5 9.0 8.5 9.0 7.0 7.0 8.0	227,5 Z19.1 114,1 31.6 54.4 176.9 198.9	20.9 20.9 19.8 20.9 20.9 20.6 20.9	720 660 6220 2100 1640 7240 4220	0 0 2 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?)	6. 5 9.0 8.5 9.0 7.0 7.0 8.0 VACUUM (IHg)	227,5 Z19.1 114,1 31. C 54.4 176.9 198.9	20.9 20.9 19.8 20.9 20.9 20.6 20.9 [17.8]	720 660 6220 2100 1640 7240 4220	0 0 2 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01	6.5 9.0 8.5 9.0 7.0 7.0 8.0 VACUUM (IHg) [0.0 6.0	227,5 Z19.1 114,1 31. C 54.4 176.9 198.9	20.9 20.9 19.8 20.9 20.6 20.6 20.9 19.8	720 660 6220 2100 1640 2240 4220	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01	6.5 4.0 3.5 9.0 7.0 7.0 8.0 VACUUM (IHg) [0.0 6.0 [0.5 6.5	227,5 219.1 114,1 31.C 54.4 176.9 198.9 FLOW (CFM) 45 40 50 40 >6 90	20.9 20.9 19.8 20.9 20.6 20.6 20.9 19.8	720 660 6220 2100 1640 2240 4220	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW00 MW008 MW008	6.5 9.0 8.5 9.0 7.0 7.0 8.0 VACUUM (IHg) [0.0 6.0	227,5 219.1 114.1 31. C 54.4 176.9 198.9 FLOW (CFM) 45 40 50 40 75 90 NA 70	20.9 20.9 19.8 20.9 20.6 20.6 20.9 19.8	720 660 6220 2100 1640 2240 4220	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01 MW08 MW08 MW08	6.5 4.0 8.5 9.0 7.0 7.0 7.0 8.0 TS VACUUM (IHg) 10.0 6.0 10.5 6.5 9.0 5.0 9.5 6.0	227,5 219.1 114.1 31. C 54.4 176.9 198.9 FLOW (CFM) 45 40 50 40 75 90 NA 70	20.9 20.9 19.8 20.9 20.6 20.6 20.9 19.8	720 660 6220 2100 1640 7240 4220	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW00 MW008 MW008 MW009 MW10	0.5 4.0 3.5 9.0 7.0 7.0 7.0 8.0 TS VACUUM (IHg) [0.0 6.0 [0.5 6.5 9.0 5.0 9.5 6.5 9.5 6.0 [0.0 6.5	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.9 19.8 COMMENTS/MAINTENANC 19.8 Cleared/Robust MW04 @ manfo Both yeart and ale MW01,08,14,15	120 1660 6220 2100 1640 2240 4220 FISSUES Id totally flooder and, Sprear for and 16 cleaned	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01 MW08 MW08 MW08	6.5 4.0 3.5 9.0 7.0 7.0 7.0 8.0 TS VACUUM (IHg) [0.0 6.0 [0.5 6.5 9.0 5.0 9.5 6.5 9.5 6.0 [0.0 6.5 [0.0 6.5]0.0 6.5	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.9 19.8 COMMENTS/MAINTENANC 19.8 Cleared/Robust MW04 @ manfo Both yeart and ale MW01,08,14,15	120 1660 6220 2100 1640 2240 4220 FISSUES Id totally flooder and, Sprear for and 16 cleaned	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01 MW008 MW008 MW009 MW10 MW11	6.5 4.0 3.5 9.0 7.0 7.0 7.0 8.0 TS VACUUM (IH9) [0.0 6.0 [0.5 6.5 9.0 5.0 9.5 6.5 9.5 6.0 [0.6 8.0 [0.6 8.0 [0.6 8.0 [0.6 8.0 [0.6 8.0	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.9 19.8 COMMENTS/MAINTENANC 19.8 Cleared/Robust MW04 @ manfo Both yeart and ale MW01,08,14,15	120 1660 6220 2100 1640 2240 4220 FISSUES Id totally flooder and, Sprear for and 16 cleaned	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01 MW00 MW00 MW00 MW00 MW00 MW10 MW11 MW13	6.5 4.0 3.5 9.0 7.0 7.0 8.0 10.0 6.0 10.5 6.5 9.5 6.5 10.0 6.5 10.5 8.0 10.0 6.0	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.9 19.8 COMMENTS/MAINTENANC 19.8 Cleared/Robust MW04 @ manfo Both yeart and ale MW01,08,14,15	120 1660 6220 2100 1640 2240 4220 FISSUES Id totally flooder and, Sprear for and 16 cleaned	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW00 MW00 MW00 MW00 MW00 MW10 MW11 MW11	6.5 4.0 3.5 9.0 7.0 7.0 7.0 8.0 TS VACUUM (IH9) [0.0 6.0 [0.5 6.5 9.0 5.0 9.5 6.5 9.5 6.0 [0.6 8.0 [0.6 8.0 [0.6 8.0 [0.6 8.0 [0.6 8.0	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.9 19.8 COMMENTS/MAINTENANC 19.8 Cleared/Robust MW04 @ manfo Both yeart and ale MW01,08,14,15	120 1660 6220 2100 1640 2240 4220 FISSUES Id totally flooder and, Sprear for and 16 cleaned	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
MW09 MW10 MW11 MW13 MW14 MW15 MW16 MANIFOLD MEASUREMEN WELL ID (Liquids Y/N?) MW01 MW08 MW09 MW09 MW10 MW11 MW11 MW13 MW14 MW15 MW15 MW15	6.5 4.0 3.5 9.0 7.0 7.0 8.0 10.0 6.0 10.5 6.5 9.5 6.5 10.0 6.5 10.5 8.0 10.0 6.0	227,5 219.1 114,1 31.6 54.4 176.9 198.9 FLOW(CFM) 45 40 50 40 75 90 NA 70 PA 75 60 65 50	20.9 20.9 19.8 20.9 20.6 20.6 20.9 19.8	1860 6220 2100 1640 2240 4220 FISSUES	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

Received by OCD: 4/15/2025 10:06:04 AM

ENSOLUM

HARE 15 DPE SYSTEM O&M FORM


		O&W FC	JKW		
DATE: _ TIME ONSITE: _	3-11		O&M PERSONNEL: TIME OFFSITE:	B Sinelair	
DPE ALARMS:		KO TANK HIGH LEVEL			
DPE SYSTEM	READING	TIME			
Blower Hours (take photo)	475.10	1271			
Transfer Pump Hours	357.0	126			
Pre-Filter Vacuum (InHg)	8.0				
Post-Filter Vacuum (InHg)					
Differential Pressure (IWC)					
Exhaust Temperature					
Transfer Pump Pressure					
Transfer Pump Totalizer	9994754.62				
		SVE SYSTEM S	SAMPLING		
SAMPLE ID:			SAMPLE TIME:		
PID (ppm)	124.6	OXYGEN (%)		CARBON DIOXIDE (%)	
Analytes:	Sample Weekly through 9/12/2	24, biweekly through 11/12/24, b	imonthly through 8/12/25 for TVF	PH (8015), BTEX (8260), Fixed Gas (CO2 AND O2	2)
OPERATING WELLS					

Change in Well Operation:					
HEAD MEASUREME	ENTS				
WELL ID	VACUUM (IWC)	-DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (
MW01	8.0		48.5		
MW06	7.25		37.4		
MW08	0.0*				
	7.9		41.7		
MW09	2.5		326.3		
MW10	65		104.3		
MW11	8 25				1
MW13	8.5		112.2		1
MW14	7.25		304.7		1
MW15	7.5		150.0		

ANIFOLD MEASUREME	VACUUM (IHg)	FLOW (CFM)
WELL ID	7.75	36
MW01	8.3	24
MW06	6 0×	10*
MW08	9.0	10-100
MW09	7.75	56
MW10	60	40
MW11	8.5	78
MW13	10.5	36
MW14	8.25	41
MW15	6.75	10-100
MW16		

X No pressure in line MW-08

Sample probe

HARE 15 DPE SYSTEM O&M FORM

DATE: TIME ONSITE:	3-31		O&M PERSONNEL TIME OFFSITE	B Sinclai	
DPE ALARMS:		KO TANK HIGH LEVEL			
DPE SYSTEM	READING	TIME			
Blower Hours (take photo)		1458			
Transfer Pump Hours		1120			
Pre-Filter Vacuum (InHg)					
Post-Filter Vacuum (InHg)		75			
Differential Pressure (IWC)					
Exhaust Temperature					
Transfer Pump Pressure					
Transfer Pump Totalizer					
		SVE SYSTE	M SAMPLING		
SAMPLE ID:			SAMPLE TIME:		
PID (ppm)		OXYGEN (%)		CARBON DIOXIDE (%	6)
Analytes:	Sample Weekly through 9/), Fixed Gas (CO2 AND O2)
OPERATING WELLS					
Change in Well					
Operation:					
WELLHEAD MEASUREMEN	TS				
WELL ID	VACUUM (IWC)	DIFF PRESSURE (IWC)	PID HEADSPACE (PPM)	OXYGEN (%)	CARBON DIOXIDE (%)
MW01					
MW06					
MW08					
MW09					
MW10					
MW11					
MW13					
MW14					
MW15					
MW16					
MANIFOLD MEASUREMENT		ELOW/OFM)	COMMENTS/MAINTENANCE	ISSUES	
WELL ID	VACUUM (IHg)	FLOW (CFM)	(1	The second second	
MW01			system	0+4	
MW06					
MW08					
MW09					
MW10		Find a second	Britania Carlo		
MW11	RESTRICT FOR THE SE				
MW13					
MW14					
MW15					
MW16					

APPENDIX B

Project Photographs

PROJECT PHOTOGRAPHS

Hare 15 San Juan County, New Mexico Hilcorp Energy Company

Photograph 1

Runtime meter taken on December 30, 2024 at 11:00 AM Hours = 3,049.5

Photograph 2

Runtime meter taken on March 31, 2025 at 2:58 PM Hours = 4,896.1

PROJECT PHOTOGRAPHS

Hare 15 San Juan County, New Mexico Hilcorp Energy Company

Photograph 3

Runtime meter taken on December 30, 2024 at 11:00 AM Gallons = 38,387.70

Photograph 4

Runtime meter taken on March 31, 2025 at 2:58 PM Gallons = 9,994,754.62

н-в 00383 х106

APPENDIX C

Correspondence

From: <u>Mitch Killough</u>

To: <u>Velez, Nelson, EMNRD; Adeloye, Abiodun A</u>

 Cc:
 Stuart Hyde; Danny Burns; Hannah Mishriki; Brandon Sinclair

 Subject:
 nRM2020945060 - Hare 15 DPE - Downtime Notification

Date: Friday, March 21, 2025 6:54:32 AM

Attachments: Run 306 Enviro SVE Status Environmental Alarm.msg

[**EXTERNAL EMAIL**]

Hi Nelson/Emmanuel.

I am writing to inform you both of on-going downtime that we have been experiencing at the Hare 15 Dual-Phase Extraction (DPE) Unit in San Juan County, NM. On Monday, 3/17/2025 at 4:25 pm (MT), an OFF alarm was sent out via CYGNET alerting Hilcorp that the DPE unit went offline. Upon receiving the alarm, a Hilcorp operator visited the site the same day in order to return the DPE unit back to service. However, upon inspection, the operator determined that the blower had seized up and would not re-start following several attempts. Following recommendations from Enviro-Equipment, Inc., Hilcorp attempted to use a penetrating oil in order to free up the blower in the event that corrosion was the cause. This also proved to be unsuccessful. In order to reduce downtime, our San Juan Equipment team moved forward with locating a like-kind blower replacement. We are anticipating having this new blower early next week, based on input from the vendor. Once the new blower is received and the unit is successfully re-started, I will respond back to this email communication with an update.

If either of you have any questions in the meantime, please let me know.

Sincerely,

Mitch Killough

Environmental Specialist Hilcorp Energy Company 1111 Travis Street Houston, TX 77002 713-757-5247 (office) 281-851-2338 (cell) mkillough@hilcorp.com

APPENDIX D

Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 2/19/2025 2:23:40 PM

JOB DESCRIPTION

Hare 15

JOB NUMBER

885-19597-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 2/19/2025 2:23:40 PM

Authorized for release by Michelle Garcia, Project Manager michelle.garcia@et.eurofinsus.com (505)345-3975

Page 2 of 24 2/19/2025

Client: Hilcorp Energy
Laboratory Job ID: 885-19597-1
Project/Site: Hare 15

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Subcontract Data	16
Chain of Custody	23
Receipt Checklists	24

2

3

4

6

8

9

10

12

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
#	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)
MCL	EPA recommended "Maximum Contaminant Level"
MDA	Minimum Detectable Activity (Radiochemistry)
MDC	Minimum Detectable Concentration (Radiochemistry)
MDL	Method Detection Limit

MLMinimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit NC

Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Hilcorp Energy Job ID: 885-19597-1 Project: Hare 15

Job ID: 885-19597-1 **Eurofins Albuquerque**

> Job Narrative 885-19597-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 2/8/2025 8:05 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 15.5°C.

Subcontract Work

Method Fixed Gases: This method was subcontracted to Energy Laboratories, Inc. The subcontract laboratory certification is different from that of the facility issuing the final report. The subcontract report is appended in its entirety.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

Client Sample Results

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Client Sample ID: SVE-1 Lab Sample ID: 885-19597-1 Date Collected: 02/06/25 14:20

Matrix: Air

Date Received: 02/08/25 08:05 Sample Container: Tedlar Bag 1L

Method: SW846 8015M/D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics IC6 -	530		25	ug/l		-	02/17/25 17:30	5

C10]

Surrogate	%Recovery	Qualifier	Limits	Prepared Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		52 - 172	02/17/25 17:3	0 5

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND ND	0.50	ug/L		02/17/25 17:30	5
1,1,1-Trichloroethane	ND	0.50	ug/L		02/17/25 17:30	5
1,1,2,2-Tetrachloroethane	ND	1.0	ug/L		02/17/25 17:30	5
1,1,2-Trichloroethane	ND	0.50	ug/L		02/17/25 17:30	5
1,1-Dichloroethane	ND	0.50	ug/L		02/17/25 17:30	5
1,1-Dichloroethene	ND	0.50	ug/L		02/17/25 17:30	5
1,1-Dichloropropene	ND	0.50	ug/L		02/17/25 17:30	5
1,2,3-Trichlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
1,2,3-Trichloropropane	ND	1.0	ug/L		02/17/25 17:30	5
1,2,4-Trichlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
1,2,4-Trimethylbenzene	0.71	0.50	ug/L		02/17/25 17:30	5
1,2-Dibromo-3-Chloropropane	ND	1.0	ug/L		02/17/25 17:30	5
1,2-Dibromoethane (EDB)	ND	0.50	ug/L		02/17/25 17:30	5
1,2-Dichlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
1,2-Dichloroethane (EDC)	ND	0.50	ug/L		02/17/25 17:30	5
1,2-Dichloropropane	ND	0.50	ug/L		02/17/25 17:30	5
1,3,5-Trimethylbenzene	1.1	0.50	ug/L		02/17/25 17:30	5
1,3-Dichlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
1,3-Dichloropropane	ND	0.50	ug/L		02/17/25 17:30	5
1,4-Dichlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
1-Methylnaphthalene	ND	2.0	ug/L		02/17/25 17:30	5
2,2-Dichloropropane	ND	1.0	ug/L		02/17/25 17:30	5
2-Butanone	ND	5.0	ug/L		02/17/25 17:30	5
2-Chlorotoluene	ND	0.50	ug/L		02/17/25 17:30	5
2-Hexanone	ND	5.0	ug/L		02/17/25 17:30	5
2-Methylnaphthalene	ND	2.0	ug/L		02/17/25 17:30	5
4-Chlorotoluene	ND	0.50	ug/L		02/17/25 17:30	5
4-Isopropyltoluene	ND	0.50	ug/L		02/17/25 17:30	5
4-Methyl-2-pentanone	ND	5.0	ug/L		02/17/25 17:30	5
Acetone	ND	5.0	ug/L		02/17/25 17:30	5
Benzene	0.63	0.50	ug/L		02/17/25 17:30	5
Bromobenzene	ND	0.50	ug/L		02/17/25 17:30	5
Bromodichloromethane	ND	0.50	ug/L		02/17/25 17:30	5
Dibromochloromethane	ND	0.50	ug/L		02/17/25 17:30	5
Bromoform	ND	0.50	ug/L		02/17/25 17:30	5
Bromomethane	ND	1.5	ug/L		02/17/25 17:30	5
Carbon disulfide	ND	5.0	ug/L		02/17/25 17:30	5
Carbon tetrachloride	ND	0.50	ug/L		02/17/25 17:30	5
Chlorobenzene	ND	0.50	ug/L		02/17/25 17:30	5
Chloroethane	ND	1.0	ug/L		02/17/25 17:30	5
Chloroform	ND	0.50	ug/L		02/17/25 17:30	5

Job ID: 885-19597-1

Client: Hilcorp Energy Project/Site: Hare 15

Client Sample ID: SVE-1

Lab Sample ID: 885-19597-1

Matrix: Air

Date Collected: 02/06/25 14:20 Date Received: 02/08/25 08:05 Sample Container: Tedlar Bag 1L

Analyte	Result Qualifier	RL	Unit	D Prepared	Analyzed	Dil Fac
Chloromethane	ND ND	1.5	ug/L		02/17/25 17:30	5
cis-1,2-Dichloroethene	ND	0.50	ug/L		02/17/25 17:30	5
cis-1,3-Dichloropropene	ND	0.50	ug/L		02/17/25 17:30	5
Dibromomethane	ND	0.50	ug/L		02/17/25 17:30	5
Dichlorodifluoromethane	ND	0.50	ug/L		02/17/25 17:30	5
Ethylbenzene	0.59	0.50	ug/L		02/17/25 17:30	5
Hexachlorobutadiene	ND	0.50	ug/L		02/17/25 17:30	5
Isopropylbenzene	ND	0.50	ug/L		02/17/25 17:30	5
Methyl-tert-butyl Ether (MTBE)	ND	0.50	ug/L		02/17/25 17:30	5
Methylene Chloride	ND	1.5	ug/L		02/17/25 17:30	5
n-Butylbenzene	ND	1.5	ug/L		02/17/25 17:30	5
N-Propylbenzene	ND	0.50	ug/L		02/17/25 17:30	5
Naphthalene	ND	1.0	ug/L		02/17/25 17:30	5
sec-Butylbenzene	ND	0.50	ug/L		02/17/25 17:30	5
Styrene	ND	0.50	ug/L		02/17/25 17:30	5
tert-Butylbenzene	ND	0.50	ug/L		02/17/25 17:30	5
Tetrachloroethene (PCE)	ND	0.50	ug/L		02/17/25 17:30	5
Toluene	6.2	0.50	ug/L		02/17/25 17:30	5
trans-1,2-Dichloroethene	ND	0.50	ug/L		02/17/25 17:30	5
trans-1,3-Dichloropropene	ND	0.50	ug/L		02/17/25 17:30	5
Trichloroethene (TCE)	ND	0.50	ug/L		02/17/25 17:30	5
Trichlorofluoromethane	ND	0.50	ug/L		02/17/25 17:30	5
Vinyl chloride	ND	0.50	ug/L		02/17/25 17:30	5
Xylenes, Total	13	0.75	ug/L		02/17/25 17:30	5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	100		70 - 130		02/17/25 17:30	5
Toluene-d8 (Surr)	112		70 - 130		02/17/25 17:30	5
4-Bromofluorobenzene (Surr)	103		70 - 130		02/17/25 17:30	5
Dibromofluoromethane (Surr)	104		70 - 130		02/17/25 17:30	5

Eurofins Albuquerque

2

3

5

7

9

1 1

QC Sample Results

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Lab Sample ID: MB 885-20915/5

Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Air

Analysis Batch: 20915

	INID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics [C6 - C10]	ND		5.0	ua/l			02/17/25 15:53	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 52 - 172 02/17/25 15:53 4-Bromofluorobenzene (Surr) 95

Lab Sample ID: LCS 885-20915/4 **Client Sample ID: Lab Control Sample** Prep Type: Total/NA

Matrix: Air

Analysis Batch: 20915

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits 500 482 ug/L 96 70 - 130 Gasoline Range Organics [C6 -

Method: 8015M/D - Nonhalogenated Organics using GC/MS -Modified (Gasoline Range Organics)

C10]

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 52 - 172 103

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-20919/5 Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Air

Analysis Batch: 20919

Released to Imaging: 4/17/2025 2:36:38 PM

	MB I	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
1,1,1,2-Tetrachloroethane	ND		0.10	ug/L			02/17/25 15:53	1
1,1,1-Trichloroethane	ND		0.10	ug/L			02/17/25 15:53	1
1,1,2,2-Tetrachloroethane	ND		0.20	ug/L			02/17/25 15:53	1
1,1,2-Trichloroethane	ND		0.10	ug/L			02/17/25 15:53	1
1,1-Dichloroethane	ND		0.10	ug/L			02/17/25 15:53	1
1,1-Dichloroethene	ND		0.10	ug/L			02/17/25 15:53	1
1,1-Dichloropropene	ND		0.10	ug/L			02/17/25 15:53	1
1,2,3-Trichlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,2,3-Trichloropropane	ND		0.20	ug/L			02/17/25 15:53	1
1,2,4-Trichlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,2,4-Trimethylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,2-Dibromo-3-Chloropropane	ND		0.20	ug/L			02/17/25 15:53	1
1,2-Dibromoethane (EDB)	ND		0.10	ug/L			02/17/25 15:53	1
1,2-Dichlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,2-Dichloroethane (EDC)	ND		0.10	ug/L			02/17/25 15:53	1
1,2-Dichloropropane	ND		0.10	ug/L			02/17/25 15:53	1
1,3,5-Trimethylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,3-Dichlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
1,3-Dichloropropane	ND		0.10	ug/L			02/17/25 15:53	1
1,4-Dichlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
1-Methylnaphthalene	ND		0.40	ug/L			02/17/25 15:53	1
2,2-Dichloropropane	ND		0.20	ug/L			02/17/25 15:53	1
2-Butanone	ND		1.0	ug/L			02/17/25 15:53	1
2-Chlorotoluene	ND		0.10	ug/L			02/17/25 15:53	1
2-Hexanone	ND		1.0	ug/L			02/17/25 15:53	1

QC Sample Results

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-20919/5 Matrix: Air

Analysis Batch: 20919

Client Sample ID: Method Blank

Prep Type: Total/NA

		MB						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
2-Methylnaphthalene	ND		0.40	ug/L			02/17/25 15:53	1
4-Chlorotoluene	ND		0.10	ug/L			02/17/25 15:53	1
4-Isopropyltoluene	ND		0.10	ug/L			02/17/25 15:53	1
4-Methyl-2-pentanone	ND		1.0	ug/L			02/17/25 15:53	1
Acetone	ND		1.0	ug/L			02/17/25 15:53	1
Benzene	ND		0.10	ug/L			02/17/25 15:53	1
Bromobenzene	ND		0.10	ug/L			02/17/25 15:53	1
Bromodichloromethane	ND		0.10	ug/L			02/17/25 15:53	1
Dibromochloromethane	ND		0.10	ug/L			02/17/25 15:53	1
Bromoform	ND		0.10	ug/L			02/17/25 15:53	1
Bromomethane	ND		0.30	ug/L			02/17/25 15:53	1
Carbon disulfide	ND		1.0	ug/L			02/17/25 15:53	1
Carbon tetrachloride	ND		0.10	ug/L			02/17/25 15:53	1
Chlorobenzene	ND		0.10	ug/L			02/17/25 15:53	1
Chloroethane	ND		0.20	ug/L			02/17/25 15:53	1
Chloroform	ND		0.10	ug/L			02/17/25 15:53	1
Chloromethane	ND		0.30	ug/L			02/17/25 15:53	1
cis-1,2-Dichloroethene	ND		0.10	ug/L			02/17/25 15:53	1
cis-1,3-Dichloropropene	ND		0.10	ug/L			02/17/25 15:53	1
Dibromomethane	ND		0.10	ug/L			02/17/25 15:53	1
Dichlorodifluoromethane	ND		0.10	ug/L			02/17/25 15:53	1
Ethylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
Hexachlorobutadiene	ND		0.10	ug/L			02/17/25 15:53	1
Isopropylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
Methyl-tert-butyl Ether (MTBE)	ND		0.10	ug/L			02/17/25 15:53	1
Methylene Chloride	ND		0.30	ug/L			02/17/25 15:53	1
n-Butylbenzene	ND		0.30	ug/L			02/17/25 15:53	1
N-Propylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
Naphthalene	ND		0.20	ug/L			02/17/25 15:53	1
sec-Butylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
Styrene	ND		0.10	ug/L			02/17/25 15:53	1
tert-Butylbenzene	ND		0.10	ug/L			02/17/25 15:53	1
Tetrachloroethene (PCE)	ND		0.10	ug/L			02/17/25 15:53	1
Toluene	ND		0.10	ug/L			02/17/25 15:53	1
trans-1,2-Dichloroethene	ND		0.10	ug/L			02/17/25 15:53	1
trans-1,3-Dichloropropene	ND		0.10	ug/L			02/17/25 15:53	1
Trichloroethene (TCE)	ND		0.10	ug/L			02/17/25 15:53	1
Trichlorofluoromethane	ND		0.10	ug/L			02/17/25 15:53	1
Vinyl chloride	ND		0.10	ug/L			02/17/25 15:53	· · · · · · · · · · · · · · · · · · ·
Xylenes, Total	ND		0.15	ug/L			02/17/25 15:53	1
7,7101100, 10tal	ND		0.10	ug/L			02/11/20 10:00	
	МВ	MB						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	104		70 - 130		02/17/25 15:53	1
Toluene-d8 (Surr)	97		70 - 130		02/17/25 15:53	1
4-Bromofluorobenzene (Surr)	95		70 - 130		02/17/25 15:53	1
Dibromofluoromethane (Surr)	106		70 - 130		02/17/25 15:53	1

QC Sample Results

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: LCS 885-20919/4

Client Sample ID: Lab Control Sample

Matrix: Air

Prep Type: Total/NA

Analysis Batch: 20919

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.1	19.5		ug/L		97	70 - 130	
Benzene	20.1	20.4		ug/L		101	70 - 130	
Chlorobenzene	20.1	19.7		ug/L		98	70 - 130	
Toluene	20.2	19.4		ug/L		96	70 - 130	
Trichloroethene (TCE)	20.2	19.8		ug/L		98	70 - 130	

LCS LCS

		_00	
Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	104		70 - 130
Toluene-d8 (Surr)	98		70 - 130
4-Bromofluorobenzene (Surr)	97		70 - 130
Dibromofluoromethane (Surr)	106		70 - 130

QC Association Summary

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

GC/MS VOA

Analysis Batch: 20915

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-19597-1	SVE-1	Total/NA	Air	8015M/D	
MB 885-20915/5	Method Blank	Total/NA	Air	8015M/D	
LCS 885-20915/4	Lab Control Sample	Total/NA	Air	8015M/D	

Analysis Batch: 20919

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-19597-1	SVE-1	Total/NA	Air	8260B	<u> </u>
MB 885-20919/5	Method Blank	Total/NA	Air	8260B	
LCS 885-20919/4	Lab Control Sample	Total/NA	Air	8260B	

7

8

9

11

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Client Sample ID: SVE-1 Lab Sample ID: 885-19597-1 Date Collected: 02/06/25 14:20

Matrix: Air

Date Received: 02/08/25 08:05

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8015M/D		5	20915	СМ	EET ALB	02/17/25 17:30
Total/NA	Analysis	8260B		5	20919	CM	EET ALB	02/17/25 17:30

Laboratory References:

= , 1120 South 27th Street, Billings, MT 59101, TEL (406)252-6325

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

AuthorityProgramNew MexicoState		am	Identification Number	Expiration Date
			NM9425, NM0901	02-26-25
0 ,	are included in this report, bu	ut the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015M/D		Air	Gasoline Range Organics	[C6 - C10]
00000		Α.	444071 11 11	

Analysis Method	Prep Method	Matrix	Analyte
8015M/D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene
8260B		Air	1-Methylnaphthalene
8260B		Air	2,2-Dichloropropane
8260B		Air	2-Butanone
8260B		Air	2-Chlorotoluene
8260B		Air	2-Hexanone
8260B		Air	2-Methylnaphthalene
8260B		Air	4-Chlorotoluene
8260B		Air	4-Isopropyltoluene
8260B		Air	4-Methyl-2-pentanone
8260B		Air	Acetone
8260B		Air	Benzene
8260B		Air	Bromobenzene
8260B		Air	Bromodichloromethane
8260B		Air	Bromoform
8260B		Air	Bromomethane
8260B		Air	Carbon disulfide
8260B		Air	Carbon tetrachloride
8260B		Air	Chlorobenzene
8260B		Air	Chloroethane
8260B		Air	Chloroform
8260B		Air	Chloromethane
8260B		Air	cis-1,2-Dichloroethene
8260B		Air	cis-1,3-Dichloropropene
8260B		Air	Dibromochloromethane

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Prog	ram	Identification Number	Expiration Date
• .		ut the laboratory is not certif	ied by the governing authority. This li	st may include analytes
• ,	oes not offer certification.			
Analysis Method	Prep Method	Matrix	Analyte	
8260B		Air	Dibromomethane	
8260B		Air	Dichlorodifluoromethane	
8260B		Air	Ethylbenzene	
8260B		Air	Hexachlorobutadiene	
8260B		Air	Isopropylbenzene	
8260B		Air	Methylene Chloride	
8260B		Air	Methyl-tert-butyl Ether (N	ITBE)
8260B		Air	Naphthalene	
8260B		Air	n-Butylbenzene	
8260B		Air	N-Propylbenzene	
8260B		Air	sec-Butylbenzene	
8260B		Air	Styrene	
8260B		Air	tert-Butylbenzene	
8260B		Air	Tetrachloroethene (PCE)	
8260B		Air	Toluene	
8260B		Air	trans-1,2-Dichloroethene	
8260B		Air	trans-1,3-Dichloropropen	e
8260B		Air	Trichloroethene (TCE)	
8260B		Air	Trichlorofluoromethane	
8260B		Air	Vinyl chloride	
8260B		Air	Xylenes, Total	
egon	NEL <i>A</i>	ΛP	NM100001	02-25-25

The following analytes are included in this report, but the laboratory is not certified by the governing authority. This list may include analytes for which the agency does not offer certification.

Analysis Method	Prep Method	Matrix	Analyte
8015M/D		Air	Gasoline Range Organics [C6 - C10]
8260B		Air	1,1,1,2-Tetrachloroethane
8260B		Air	1,1,1-Trichloroethane
8260B		Air	1,1,2,2-Tetrachloroethane
8260B		Air	1,1,2-Trichloroethane
8260B		Air	1,1-Dichloroethane
8260B		Air	1,1-Dichloroethene
8260B		Air	1,1-Dichloropropene
8260B		Air	1,2,3-Trichlorobenzene
8260B		Air	1,2,3-Trichloropropane
8260B		Air	1,2,4-Trichlorobenzene
8260B		Air	1,2,4-Trimethylbenzene
8260B		Air	1,2-Dibromo-3-Chloropropane
8260B		Air	1,2-Dibromoethane (EDB)
8260B		Air	1,2-Dichlorobenzene
8260B		Air	1,2-Dichloroethane (EDC)
8260B		Air	1,2-Dichloropropane
8260B		Air	1,3,5-Trimethylbenzene
8260B		Air	1,3-Dichlorobenzene
8260B		Air	1,3-Dichloropropane
8260B		Air	1,4-Dichlorobenzene

Eurofins Albuquerque

3

6

8

10

11

1/2

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-19597-1

Project/Site: Hare 15

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

ority	Progr	am	Identification Number Expiration	Date
The following analytes are i		ut the laboratory is not certif	ied by the governing authority. This list may include a	analyte
Analysis Method	Prep Method	Matrix	Analyte	
8260B	_ Top Moulou	Air	1-Methylnaphthalene	
8260B		Air	2,2-Dichloropropane	
8260B		Air	2-Butanone	
8260B		Air	2-Chlorotoluene	
8260B		Air	2-Hexanone	
8260B		Air	2-Methylnaphthalene	
8260B		Air	4-Chlorotoluene	
8260B		Air	4-Isopropyltoluene	
8260B		Air	4-Methyl-2-pentanone	
8260B		Air	Acetone	
8260B		Air	Benzene	
8260B		Air	Bromobenzene	
8260B		Air	Bromodichloromethane	
8260B		Air	Bromoform	
8260B		Air	Bromomethane	
8260B		Air	Carbon disulfide	
8260B		Air	Carbon tetrachloride	
8260B		Air	Chlorobenzene	
8260B		Air	Chloroethane	
8260B		Air	Chloroform	
8260B		Air	Chloromethane	
8260B		Air	cis-1,2-Dichloroethene	
8260B		Air	cis-1,3-Dichloropropene	
8260B		Air	Dibromochloromethane	
8260B		Air	Dibromomethane	
8260B		Air	Dichlorodifluoromethane	
8260B		Air	Ethylbenzene	
8260B		Air	Hexachlorobutadiene	
8260B		Air	Isopropylbenzene	
8260B		Air	Methylene Chloride	
8260B		Air	Methyl-tert-butyl Ether (MTBE)	
8260B		Air	Naphthalene	
8260B		Air	n-Butylbenzene	
8260B		Air	N-Propylbenzene	
8260B		Air	sec-Butylbenzene	
8260B		Air	Styrene	
8260B		Air	tert-Butylbenzene	
8260B		Air	Tetrachloroethene (PCE)	
8260B		Air	Toluene	
8260B		Air	trans-1,2-Dichloroethene	
8260B		Air	trans-1,3-Dichloropropene	
8260B		Air	Trichloroethene (TCE)	
8260B		Air	Trichlorofluoromethane	
8260B		Air	Vinyl chloride	
8260B		Air	Xylenes, Total	

Eurofins Albuquerque

2

3

4

6

8

9

11

Trust our People. Trust our Data. www.energylab.com Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

ANALYTICAL SUMMARY REPORT

February 13, 2025

Eurofins TestAmerica - Albuquerque 4901 Hawkins St NE Ste D Albuquerque, NM 87109-4372

Work Order: B25020520 Quote ID: B15626

Project Name: 88501698, Hare 15

Energy Laboratories Inc Billings MT received the following 1 sample for Eurofins TestAmerica - Albuquerque on 2/11/2025 for analysis.

Lab ID	Client Sample ID	Collect Date Receive Date	Matri x	Test
B25020520-001	SVE-1 (885-19597-1)	02/06/25 14:20 02/11/25	Air	Air Correction Calculations Appearance and Comments Calculated Properties GPM @ std cond,/1000 cu. ft., moist. Free Natural Gas Analysis Specific Gravity @ 60/60

The analyses presented in this report were performed by Energy Laboratories, Inc., 1120 So. 27th Street, Billings, MT 59101, unless otherwise noted. Any exceptions or problems with the analyses are noted in the report package. Any issues encountered during sample receipt are documented in the Work Order Receipt Checklist.

The results as reported relate only to the item(s) submitted for testing. This report shall be used or copied only in its entirety. Energy Laboratories, Inc. is not responsible for the consequences arising from the use of a partial report.

Energy Laboratories, Inc. verifies the reported results for the analysis has been technically reviewed and approved for release.

If you have any questions regarding these test results, please contact your Project Manager.

2

2

3

4

5

9

10

11

Billings, MT **406.252.6325** • Casper, WY **307.235.0515** Gillette, WY **307.686.7175** • Helena, MT **406.442.0711**

LABORATORY ANALYTICAL REPORT

Prepared by Billings, MT Branch

Client: Eurofins TestAmerica - Albuquerque

 Project:
 88501698, Hare 15

 Lab ID:
 B25020520-001

 Client Sample ID:
 SVE-1 (885-19597-1)

Report Date: 02/13/25 **Collection Date:** 02/06/25 14:20 **DateReceived:** 02/11/25

Matrix: Air

02/12/25 10:50 / jrj

Analyses	Result	Units	Qualifiers	RL	MCL/ QCL	Method	Analysis Date / By
GAS CHROMATOGRAPHY ANALYSIS	_			0.04		004 0004 40	00/40/05 40 50 /::
Oxygen		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Nitrogen		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Carbon Dioxide		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Hydrogen Sulfide		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Methane		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Ethane		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Propane		Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Isobutane	<0.01	Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
n-Butane	<0.01	Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Isopentane	<0.01	Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
n-Pentane	<0.01	Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Hexanes plus	0.01	Mol %		0.01		GPA 2261-13	02/12/25 10:50 / jrj
Propane	< 0.001	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
Isobutane	< 0.001	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
n-Butane	< 0.001	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
Isopentane	< 0.001	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
n-Pentane	< 0.001	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
Hexanes plus	0.004	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
GPM Total	0.004	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
GPM Pentanes plus	0.004	gpm		0.001		GPA 2261-13	02/12/25 10:50 / jrj
CALCULATED PROPERTIES							
Gross BTU per cu ft @ Std Cond. (HHV)	ND			1		GPA 2261-13	02/12/25 10:50 / jrj
Net BTU per cu ft @ std cond. (LHV)	ND			1		GPA 2261-13	02/12/25 10:50 / jrj
Pseudo-critical Pressure, psia	546			1		GPA 2261-13	02/12/25 10:50 / jrj
Pseudo-critical Temperature, deg R	239			1		GPA 2261-13	02/12/25 10:50 / jrj
Specific Gravity @ 60/60F	0.999			0.001		D3588-81	02/12/25 10:50 / jrj
Air, % - The analysis was not corrected for air.	100.31			0.01		GPA 2261-13	02/12/25 10:50 / jrj

COMMENTS

- BTU, GPM, and specific gravity are corrected for deviation from ideal gas behavior.

- GPM = gallons of liquid at standard conditions per 1000 cu. ft. of moisture free gas @ standard conditions.

- To convert BTU to a water-saturated basis @ standard conditions, multiply by 0.9825.

- Standard conditions: 60 F & 14.73 psi on a dry basis.

Report RL - Analyte Reporting Limit MCL - Maximum Contaminant Level

Definitions: QCL - Quality Control Limit ND - Not detected at the Reporting Limit (RL)

Trust our People. Trust our Data.

0.80

Mol %

www.energylab.com

1

2

2

3

6

9

11

QA/QC Summary Report

Prepared by Billings, MT Branch

Lab ID: B25020523-001ADUP 12 Sample Duplicate Run: GC7890_250212A 02/12/2 Oxygen 21.8 Mol % 0.01 3.2 20 Nitrogen 78.1 Mol % 0.01 0.9 20 Carbon Dioxide 0.07 Mol % 0.01 13 20 Hydrogen Sulfide <0.01 Mol % 0.01 20 Methane <0.01 Mol % 0.01 20 Ethane <0.01 Mol % 0.01 20 Propane <0.01 Mol % 0.01 20 Isobutane <0.01 Mol % 0.01 20 n-Butane <0.01 Mol % 0.01 20 Isopentane <0.01 Mol % 0.01 20 n-Pentane <0.01 Mol % 0.01 20 Hexanes plus <0.01 Mol % 0.01 20	Work (Order: B25020520							Repo	ort Date	: 02/13/25	
Carbon Discription 12 Sample Duplicate Run: GC7890_250212A 02/12/12 02/12/1	Analyte		Count	Result	Units	RL	%REC	Low Limit	High Limit	RPD	RPDLimit	Qual
Oxygen 21.8 Mol % 0.01 3.2 20 Nitrogen 78.1 Mol % 0.01 0.9 20 Carbon Dioxide 0.07 Mol % 0.01 13 20 Hydrogen Sulfide <0.01	Method:	GPA 2261-13									Batch	: R436745
Nitrogen 78.1 Mol % 0.01 0.9 20 Carbon Dioxide 0.07 Mol % 0.01 13 20 Mol Methane 0.01 Mol % 0.01 20 Ethane 0.01 Mol % 0.01 20 Ethane 0.001 Mol % 0.01 20 Ethane 0.001 Mol % 0.01 20 Elsobutane 0.001 Mol % 0.01 20 Elsopentane 0.001 Mol % 0.01 20 Tol 30 Elsopentane 0.001 Mol % 0.01 100 Tol 30 Elsopen	Lab ID:	B25020523-001ADUP	12 Sa	mple Duplic	ate			Run: GC78	90_250212A		02/12	2/25 13:16
Carbon Dioxide 0.07 Mol % 0.01 13 20 Hydrogen Sulfide <0.01	Oxygen			21.8	Mol %	0.01				3.2	20	
Hydrogen Sulfide	Nitrogen			78.1	Mol %	0.01				0.9	20	
Methane <0.01	Carbon D	Dioxide		0.07	Mol %	0.01				13	20	
Ethane	Hydroger	n Sulfide		<0.01	Mol %	0.01					20	
Propane	Methane			<0.01	Mol %	0.01					20	
Isobutane	Ethane			<0.01	Mol %	0.01					20	
n-Butane	Propane			<0.01	Mol %	0.01					20	
Isopentane	Isobutan	е		<0.01	Mol %	0.01					20	
n-Pentane <0.01 Mol % 0.01 20 Hexanes plus <0.01 Mol % 0.01 Run: GC7890_250212A 02/12/ Lab ID: LCS021225 11 Laboratory Control Sample Run: GC7890_250212A 02/12/ Oxygen 0.62 Mol % 0.01 124 70 130 Nitrogen 6.10 Mol % 0.01 102 70 130 Carbon Dioxide 0.98 Mol % 0.01 99 70 130 Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	n-Butane	•		<0.01	Mol %	0.01					20	
Hexanes plus	Isopenta	ne		<0.01	Mol %	0.01					20	
Lab ID: LCS021225 11 Laboratory Control Sample Run: GC7890_250212A 02/12/2 Oxygen 0.62 Mol % 0.01 124 70 130 Nitrogen 6.10 Mol % 0.01 102 70 130 Carbon Dioxide 0.98 Mol % 0.01 99 70 130 Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	n-Pentan	ne		<0.01	Mol %	0.01					20	
Oxygen 0.62 Mol % 0.01 124 70 130 Nitrogen 6.10 Mol % 0.01 102 70 130 Carbon Dioxide 0.98 Mol % 0.01 99 70 130 Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Hexanes	plus		<0.01	Mol %	0.01					20	
Nitrogen 6.10 Mol % 0.01 102 70 130 Carbon Dioxide 0.98 Mol % 0.01 99 70 130 Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Lab ID:	LCS021225	11 La	boratory Co	ntrol Sample			Run: GC78	90_250212A		02/12	2/25 03:01
Carbon Dioxide 0.98 Mol % 0.01 99 70 130 Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Oxygen			0.62	Mol %	0.01	124	70	130			
Methane 74.7 Mol % 0.01 100 70 130 Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Nitrogen			6.10	Mol %	0.01	102	70	130			
Ethane 6.01 Mol % 0.01 100 70 130 Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Carbon D	Dioxide		0.98	Mol %	0.01	99	70	130			
Propane 5.03 Mol % 0.01 102 70 130 Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Methane			74.7	Mol %	0.01	100	70	130			
Isobutane 1.75 Mol % 0.01 87 70 130 n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Ethane			6.01	Mol %	0.01	100	70	130			
n-Butane 1.99 Mol % 0.01 99 70 130 Isopentane 1.00 Mol % 0.01 100 70 130	Propane			5.03	Mol %	0.01	102	70	130			
Isopentane 1.00 Mol % 0.01 100 70 130	Isobutan	е		1.75	Mol %	0.01	87	70	130			
·	n-Butane	•		1.99	Mol %	0.01	99	70	130			
n-Pentane 1.01 Mol % 0.01 101 70 130	Isopenta	ne		1.00	Mol %	0.01	100	70	130			
	n-Pentan	ne		1.01	Mol %	0.01	101	70	130			

0.01

100

Qualifiers:

Hexanes plus

RL - Analyte Reporting Limit

ND - Not detected at the Reporting Limit (RL)

70

Billings, MT 406.252.6325 • Casper, WY 307.235.0515 Gillette, WY 307.686.7175 • Helena, MT 406.442.0711

Work Order Receipt Checklist

Eurofins TestAmerica - Albuquerque B25020520

Login completed by: (Crystal M. Jones		Date F	Received: 2/11/2025
Reviewed by:	leprowse		Rec	eived by: KLP
Reviewed Date: 2	2/12/2025		Carri	ier name: FedEx NDA
Shipping container/cooler in go	ood condition?	Yes √	No 🗌	Not Present
Custody seals intact on all ship	oping container(s)/cooler(s)?	Yes	No 🗹	Not Present
Custody seals intact on all san	nple bottles?	Yes	No 🗌	Not Present ✓
Chain of custody present?		Yes 🗸	No 🗌	
Chain of custody signed when	relinquished and received?	Yes 🗸	No 🗌	
Chain of custody agrees with s	sample labels?	Yes 🗸	No 🗌	
Samples in proper container/b	ottle?	Yes 🗸	No 🗌	
Sample containers intact?		Yes 🗸	No 🗌	
Sufficient sample volume for in	ndicated test?	Yes 🗸	No 🗌	
All samples received within ho (Exclude analyses that are cor such as pH, DO, Res Cl, Sulfi	sidered field parameters	Yes 🔽	No 🗌	
Temp Blank received in all ship	oping container(s)/cooler(s)?	Yes	No 🗹	Not Applicable
Container/Temp Blank tempera	ature:	7.0°C No Ice		
Containers requiring zero head bubble that is <6mm (1/4").	lspace have no headspace or	Yes	No 🗌	No VOA vials submitted
Water - pH acceptable upon re	eceipt?	Yes []	No 🗌	Not Applicable 🗸

Standard Reporting Procedures:

Lab measurement of analytes considered field parameters that require analysis within 15 minutes of sampling such as pH, Dissolved Oxygen and Residual Chlorine, are qualified as being analyzed outside of recommended holding time.

Solid/soil samples are reported on a wet weight basis (as received) unless specifically indicated. If moisture corrected, data units are typically noted as –dry. For agricultural and mining soil parameters/characteristics, all samples are dried and ground prior to sample analysis.

The reference date for Radon analysis is the sample collection date. The reference date for all other Radiochemical analyses is the analysis date. Radiochemical precision results represent a 2-sigma Total Measurement Uncertainty.

For methods that require zero headspace or require preservation check at the time of analysis due to potential interference, the pH is verified at analysis. Nonconforming sample pH is documented as part of the analysis and included in the sample analysis comments.

Trip Blanks and/or Blind Duplicate samples are assigned the earliest collection time for the associated requested analysis in order to evaluate the holding time unless specifically indicated.

Contact and Corrective Action Comments:

A custody seal was present on the shipping container, but was not signed and dated. CMJ 02/11/25

Trust our People. Trust our Data.

www.energylab.com

А

6

8

10

12

Laboratory Certifications and Accreditations

Current certificates are available at www.energylab.com website:

	Agency	Number					
	Alaska	17-023					
	California	3087					
	Colorado	MT00005					
	Department of Defense (DoD)/ISO17025	ADE-2588					
Billings, MT	Florida (Primary NELAP)	E87668					
	Idaho	MT00005					
d	Louisiana	05079					
ANAB	Montana	CERT0044					
ANSI Vational Ascreditation Board	Nebraska	NE-OS-13-04					
FESTING LABORATORY	Nevada	NV-C24-00250					
a scene	North Dakota	R-007					
1	National Radon Proficiency	109383-RMP					
TNI	Oregon	4184					
AGDE NICH.	South Dakota	ARSD 74:04:07					
	Texas	TX-C24-00302					
	US EPA Region VIII	Reciprocal					
	USDA Soil Permit	P330-20-00170					
	Washington	C1039					
	Alaska	20-006					
	California	3021					
	Colorado	WY00002					
	Florida (Primary NELAP)	E87641					
	Idaho	WY00002					
	Louisiana	05083					
asper, WY	Montana	CERTO002					
De ACCES	Nebraska	NE-OS-08-04					
	Nevada	NV-C24-00245					
TO SOUNT ON	North Dakota	R-125					
	Oregon	WY200001					
	South Dakota	WY00002					
	Texas	T104704181-23-21					
	US EPA Region VIII	WY00002					
	USNRC License	49-26846-01					
	Washington	C1012					
illette, WY	US EPA Region VIII	WY00006					
100	Colorado	MT00945					
lelena, MT	Montana	CERT0079					
G CALLAN	Nevada	NV-C24-00119					
	US EPA Region VIII	Reciprocal					
	USDA Soil Permit	P330-20-00090					

Eurofins Albuquerque

4901 Hawkins NE

Albuquerque, NM 87109

Chain of Custody Record

ı	200
ı	
ı	600 PMC
ı	.7-4

eurofins

Environment Testing

Phone: 505-345-3975 Fax: 505-345-4107												Ľ							
Client Information (Sub Contract Lab)	Sampler: N/A				Lab PM: Garcia, Michelle					Carrier Tracking No(s): N/A					OC No: 85-3840.1				
Client Contact: Shipping/Receiving	Phone: N/A									State of Origin: New Mexico				age: age 1 of 1					
Company: Energy Laboratories, Inc.							ns Requi			/lexico					Jo	ob #: 85-19597-1			
Address: 1120 South 27th Street,	Due Date Request 2/17/2025	ted:			NELAP - Oregon; State - New Mexico Analysis Requested								reservation Co	odes:					
City:	TAT Requested (c					1			Allalys	is Re	queste	ŧa	TT						
Billings State, Zip: MT, 59101		N/A	1								-								
Phone: 406-252-6325(Tel)	PO #: N/A																		
Email: N/A	WO #: N/A				- × (2)	se													
Project Name: Hare 15	Project #:				(Yes							1			ainers				
Site: N/A	SSOW#:				D (Ye		SD (Yes		S Fix								Other:		
N/A	N/A					ases		N.							O NA	A			
Sample Identification - Client ID (Lab ID)	Sample Date	Sample Time	Sample Type (C=comp, G=grab)	Matrix (W=water, S=solid, O=waste/oil, BT-Tissue, A=Ali	Field Filtera	JB (Fixed									Total Numb	Special I	nstructions/Not		
		>><		tion Code:	XX	1					MINE				X				
SVE-1 (885-19597-1)	2/6/25	14:20 Mountain	G	Air		х									1 Se	ee Attached Ins	tructions		
											Li				Ē	32502	0520		
lote: Since laboratory accreditations are subject to change, Eurofins Env aboratory does not currently maintain accreditation in the State of Origin ccreditation status should be brought to Eurofins Environment Testing S	isted above for analysis/fest	s/matrix being	analyzed the	talum salames	he chinne	an har	to the	Eurofine	Environm	ont Tord	lina Cauth	Canten	I II C lab			and an experience of the first	Committee of the commit		
Possible Hazard Identification																onger than 1			
Inconfirmed					I		Return T				Disposal				chive F		Months		
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Delivera	able Rank: 2	!		Sp	ecial	Instruc	ctions/0	C Requ										
Empty Kit Relinquished by:		Date:			Time:						Me	thod of	Shipment	:					
telinquished by: The Delette	Date/Time: 2000	5 13	315	Company		Rece	eived by:						Date/Tin	ne:			Company		
Relinquished 🕪:	Date/Time:			Company		Rece	eived by:						Date/Tin	ne:			Company		
Relinquished by:	Date/Time:			Company		Rece	eived by:	Volso	PF1-	R -	Kyol emarks:	- 3	Date/Tin	10:		1445	Company		
Custody Seals Intact: Custody Seal No.: Δ Yes Δ No						Cool	er Temp	erature(s) °C and	Other Re	emarks:	The state of the s	227	1-25		1793	EG		

2

3

4

5

7

8

9

10

a a

46

12

```
Method Comments
Fixed Gases
 Preservative
None
                                                                                   Method Description
SUB (Fixed Gases)/ Fixed Gases
                                                                Subcontract Method Instructions
Sample IDs Method Method

1 SUBCONTRACT SUB (1
Container Type
Tedlar Bag 1L
Count
```

Page 7 of 7 2/19/2025

ICOC No: 885-3840 Containers

~
9
2
6
~
_
~
• •
4
/
-
S
ζ.
12
9
N 3
2.40
5
9
6
9
\sim
4
K.
-
b-
~
-

Chain-of-Custody Record Client: H; learp Mailing Address:	Turn-Around Time: Standard □ Rush Project Name: Project #:	HALL ENVIRONMENTAL ANALYSIS LABOR www.hallenvironmental.com 4901 Hawkins NE - Albuquerque, NM 87109 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request							
email or Fax#: branden. Sinclair Chilcorp. Com QA/QC Package. Standard Level 4 (Full Validation) Accreditation: Az Compliance NELAC Other EDD (Type)	Project Manager: Mitch Killough Sampler: Brandon Sinclair On Ice: Yes Manager Wood Cooler Temp(including cF): \5.4+0.1>15.5 (°C) Container Type And # Type	### HALL ENVIRONMENTAL The Bold Pesticides/8082 PCB's 8081 Parks by 8310 or 8270SIMS PARk							
Page 23 of 24 Page Name Matrix Sample Name	2 Tedlar								
Date Time Relinquished by Date Time Relinquished by Date Time Relinquished by If necessary, samples submitted to Hall Environmental may be subcompleted.	Received by Via Date Time SCH COURIER 2/4/15 0805	Remarks: s possibility Any sub-contracted data will be clearly notated on the analytical report.							

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-19597-1

Login Number: 19597 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Creator. McQuiston, Steven		
Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	False	Thermal preservation not required.
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 452199

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	452199
	Action Type:
	[REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Crea By	Condition	Condition Date
nve	1. Continue O&M & sampling as stated in report. 2. Submit next quarterly report by July 15, 2025.	4/17/2025