

May 21, 2025

New Mexico Oil Conservation Division New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Remediation Work Plan State D A CTB Hilcorp Energy Company NMOCD Incident No: napp2505326850

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Remediation Work Plan* (Work Plan) for a release at the State D A Central Tank Battery (CTB) (Site). The Site is located on New Mexico State Trust Land (STL), managed by the New Mexico State Land Office (NMSLO), in Unit L, Section 16, Township 21 South, Range 37 East, Lea County, New Mexico, (Figure 1). This Work Plan includes a summary of delineation activities performed at the Site and the proposed remediation of impacted soil originating from the release.

SITE BACKGROUND

On February 21, 2025, Hilcorp personnel discovered a release of 165 barrels (bbls) of oil at the Site. Specifically, while conducting a routine Site inspection, Hilcorp personnel observed a visibly impacted area measuring approximately 50 feet by 64 feet inside the secondary containment berm of the tank battery. The release volume was based on the operator's tank-gauging data. Of the released fluids, approximately 160 barrels were recovered via vacuum truck. Additionally, the spilled fluids did not migrate horizontally outside of secondary containment. Hilcorp submitted the *Notification of Release* to the New Mexico Oil Conservation Division (NMOCD) on February 22, 2025, and the Site was assigned the NMOCD Incident Number napp2505326850.

SITE CHARACTERIZATION

As part of the Site investigation, local geology/hydrogeology and nearby sensitive receptors were assessed in accordance with Title 19, Chapter 15, Part 29, Sections 11 and 12 (19.15.29.11 and 12) of the New Mexico Administrative Code (NMAC). This information is further discussed below.

POTENTIAL SENSITIVE RECEPTORS

Potential nearby receptors were assessed through desktop reviews of United States Geological Survey (USGS) topographic maps, Federal Emergency Management Administration (FEMA) Geographic Information System (GIS) maps, New Mexico Office of the State Engineer (NMOSE) database, aerial photographs, and Site-specific observations.

Hilcorp Energy Company Remediation Work Plan State D A CTB

Page 2

The nearest significant watercourse to the Site is a dry wash located approximately 3,345 feet north of the well pad. The nearest fresh water well is USGS permitted well 322814103102601 located approximately 2,215 feet northeast of the Site with a recorded depth to water of 73.07 feet below ground surface (bgs). The closest NMOSE permitted well, CP-00554, is located approximately 4,349 feet southwest of the Site with a recorded depth to water of 70 feet bgs. Lastly, NMOCD remediation site 1R-426-12, located approximately 2,800 feet southwest of the Site, advanced several borings in 2006 to depths up to 60 feet bgs without encountering groundwater. In accordance with 19.15.29.11.A(2) NMAC, the "responsible party must provide a reasonable determination of probable ground water depth using data generated by numeric models, cathodic well lithology, water well data, published information or other tools". Based on the information provided above, the three closest data points to the Site, including one collected within 25 years, are between 2,215 and 4,349 feet from the Site and indicate that groundwater is at least greater than 60 feet below ground surface. Based on these multiple lines of evidence, depth-to-groundwater is reasonably determined to be greater than 50 feet bgs. Documentation supporting this determination are attached as Appendix A.

The Site is greater than 200 feet from any lakebed, sinkhole, or playa lake, and within 300 feet from any wetland (Figure 1). No wellhead protection areas, springs, or domestic/stock wells are located within a ½-mile from the Site (Figure 1). The Site is not within a 100-year floodplain, overlying a subsurface mine, or located within an area underlain by unstable geology. Additionally, the area is designated as low potential karst by the Bureau of Land Management (BLM). Schools, hospitals, institutions, churches, and/or other occupied permanent residence or structures are not located within 300 feet of the Site. A Site receptor map is shown on Figure 1.

SITE CLOSURE CRITERIA

Based on the information presented above and in accordance with the *Table I, Closure Criteria for Soils Impacted by a Release* (19.15.29.12 NMAC), the following Closure Criteria for constituents of concern (COCs) should be applied to the Site:

- Benzene: 10 milligrams per kilogram (mg/kg)
- Benzene, toluene, ethylbenzene, and xylenes (BTEX): 50 mg/kg
- Total petroleum hydrocarbons (TPH) as a combination of gasoline range organics (GRO), diesel range organics (DRO), and motor oil range organics (MRO):

2,500 mg/kg

- TPH as a combination of GRO and DRO: 1,000 mg/kg
- Chloride: 10,000 mg/kg

DELINEATION AND SOIL SAMPLING ACTIVITIES

Upon discovery of the release, Hilcorp retained Ensolum to conduct initial soil sampling activities on March 5, 2025. In total, two surface soil samples were collected from 0.5 feet bgs at locations SS01 and SS02 shown on Figure 2. Additionally, a hand auger was used to advance SS02 to a depth of 9 feet bgs. During delineation activities, Ensolum personnel logged soil lithology and field screened for the presence of volatile organic compounds (VOCs) using a calibrated photoionization detector (PID). Soil descriptions and field screening results were noted in the field book. Soil samples were collected directly into laboratory-provided jars and immediately placed on ice. Samples were submitted to Eurofins Environment Testing (Eurofins) for analysis of BTEX following United States Environmental Protection Agency (EPA) Method 8021B, TPH following Method 8015, and chloride following EPA Method 300.0. Sample results indicated impacted soil above NMOCD Table I Closure Criteria was present within the release area near the ground

Hilcorp Energy Company Remediation Work Plan State D A CTB

Page 3

surface. Soil from sample SS02A, collected at a depth of 9 feet bgs, was compliant with the Table I Closure Criteria.

Based on the initial sampling results, Ensolum conducted additional delineation activities on May 7, 2025. A notification of sampling activities was provided to the NMOCD prior to the delineation work and is attached as Appendix B. Due to a high-pressure gas line containing elevated concentrations of hydrogen sulfide and at the request of the gas utility operator, Ensolum could not advance hand auger borings within 25 feet of the pipeline without hydro-excavating to spot the line. As such, three borings, BH01 through BH03, were collected south, east, and west of the stained surface soil to laterally delineate the release (Figure 2). Samples were field screened and logged in the same manner described above. Two soil samples were collected from each pothole in order to delineate the vertical impacts at the Site and submitted to Eurofins to BTEX, TPH, and chloride. Based on the laboratory analytical results, all COCs were either not detected above laboratory reporting limits or were not detected above the applicable Closure Criteria in any other analyzed samples.

A summary of analytical results is summarized in Table 1 and Figure 2, with complete laboratory reports attached in Appendix C. Photographs taken during delineation activities are also provided in Appendix D. PID field screening results are included in Table 1.

REMEDIATION WORK PLAN

Based on the soil sampling results described above, it is estimated impacted soil is present at the Site between the ground surface to a depth of approximately 7 feet bgs. Analytical results also indicate impacted soil is likely limited to areas within the secondary containment berm with an approximate areal extent of 4,900 square feet or less. Based on these estimates, approximately 1,270 cubic yards of impacted soil are present at the Site. Of note, although a delineation boring could not be advanced on the northern edge of the release, it is assumed that the release stayed within the secondary containment on this portion of the Site based on other delineation data.

Hilcorp proposes to excavate impacted soil at the Site to achieve NMOCD Closure Criteria. Soil will be excavated and transported off-Site for treatment/disposal at an NMOCD approved commercial landfarm. Once field screening indicates impacted soil has been removed, 5-point composite soil samples will be collected at least every 200 square feet from the floor and sidewalls of the excavation. The 5-point composite samples will be collected by placing five equivalent aliquots of soil into a 1-gallon, resealable plastic bag and homogenizing the samples by thoroughly mixing. Based on previous analytical results and no prior Closure Criteria exceedances of chloride, Hilcorp is requesting soil samples only be analyzed for TPH and BTEX during confirmation sampling. Once confirmed impacted soil has been removed, the excavation will be backfilled with clean imported soil and recontoured to match pre-existing conditions at the Site.

CULTURAL RESOURCE SURVEY

Since the release remained on pad, an assessment of cultural properties had already been completed prior to the construction of the well pad and as such, the Cultural Properties Protection Rule (CPP) has been followed. No additional cultural resource surveys were completed in connection with this release.

RECLAMATION PLAN

The release remained on the well pad that is currently in operation for oil and gas production purposes. As such, the release area is not expected to be reclaimed until the oil and gas well is plugged and abandoned (P&A'd) and the well pad is reclaimed. The Reclamation Plan for this release will default to the NMSLO-approved Reclamation Plan for the well pad per 19.2.100.67 NMAC.

Hilcorp Energy Company Remediation Work Plan State D A CTB

SCHEDULE

Hilcorp will complete the excavation and soil sampling activities within 90 days of the date of approval of this Work Plan by the NMSLO AND NMOCD. A *Closure Request* will be submitted within 60 days of receipt of final laboratory analytical results.

We appreciate the opportunity to provide this work plan to the NMSLO and NMOCD. If you should have any questions or comments regarding this document, please contact the undersigned.

Sincerely, Ensolum, LLC

Stuart Hyde, PG (licensed in WA & TX) Senior Managing Geologist (970) 903-1607 shyde@ensolum.com

Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Cc: NMSLO

Attachments:

- Figure 1:Site Receptor MapFigure 2:Soil Sample Location MapTable 1:Soil Sample Analytical ResultsAppendix A:Depth to Water Determination
- Appendix B: Agency Correspondence
- Appendix C: Laboratory Analytical Reports
- Appendix D: Photographic Log

Page 4

FIGURES

Received by OCD: 5/22/2025 12:00:27 AM

Released to Imaging 16/4/2025 1926 1820 ASRI), United States Geologic Survey (USGS), United States Fish and Wildlife Service (USFWS), National Geographic Society, i-cubed

Released to Imaging: 6/4/2025 10:17:02 AM

Sources: Google Earth (2023)

TABLES

	TABLE 1 SOIL SAMPLE ANALYTICAL RESULTS State D A CTB Hilcorp Energy Company Lea County, New Mexico													
Sample Identification														
NMOCD Closure	Criteria for Soils Release	Impacted by a	NE	10	NE	NE	NE	50	NE	NE	NE	1,000	2,500	10,000
SS01	3/5/2025	0.5	>5,000	2.16	31.8	37.8	75.3	147	4,820	8,140	<999	13,000	13,000	12.1
SS02	3/5/2025	0.5	>5,000	<0.497	7.45	8.90	16.0	32.3	1,780	6,370	<996	8,150	8,150	10.4
SS02A	3/5/2025	9.0	326	<0.0992	0.106	0.187	0.846	1.14	<50.5	459	<50.5	459	459	21.2
BH01	5/7/2025	0.5	0.7	<0.00200	<0.00200	< 0.00200	<0.00400	<0.00400	<50.1	<50.1	<50.1	<50.1	<50.1	99.0
BH01A	5/7/2025	5.0	0.2	<0.00200	<0.00200	< 0.00200	<0.00399	< 0.00399	<50.2	<50.2	<50.2	<50.2	<50.2	174
BH02	5/7/2025	0.5	1.9	<0.00201	<0.00201	< 0.00201	<0.00402	<0.00402	<49.7	<49.7	<49.7	<49.7	<49.7	83.4
BH02A	5/7/2025	5.0	3.1	<0.00199	<0.00199	< 0.00199	<0.00398	<0.00398	<49.8	<49.8	<49.8	<49.8	<49.8	101
BH03	5/7/2025	0.5	2.3	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	<49.6	<49.6	<49.6	<49.6	<49.6	98.6
BH03A	5/7/2025	6.0	4.4	<0.00201	<0.00201	<0.00201	< 0.00402	<0.00402	<50.0	<50.0	<50.0	<50.0	<50.0	104

Notes:

bgs: Below ground surface BTEX: Benzene, Toluene, Ethylbenzene, and Xylenes mg/kg: Milligrams per kilogram

NE: Not Established

NMOCD: New Mexico Oil Conservation Division

PID: Photoionization detector

ppm: Parts per million

GRO: Gasoline Range Organics

DRO: Diesel Range Organics

MRO: Motor Oil/Lube Oil Range Organics

TPH: Total Petroleum Hydrocarbon

': Feet

<: Indicates result less than the stated laboratory reporting limit (RL)

Concentrations in **bold** and shaded exceed the New Mexico Oil Conservation Division Table I Closure Criteria for Soils Impacted by a Release

APPENDIX A

Depth to Water Determination

			· · · · · ·		WELL F	NEER OFFICE RECORD AL INFORMA			6 I ⁷ . • •	SAIT	4066 1 FE
	· .		• • •			71日 71日 71日	MAR	15 AM II	59		
A)	Owner of Street or I	well <u>Mil</u> Post Office Ad	Lard Dec	0 Box	409	·····	· · · · ·	Owi	ner's Wel	1 No	
	City and S	tate	Eunice,	New Me	ex. 882	~ 7	4° F	NGINEERO	FFICT		
/e11						STA	いたた	in the N.M. 87	7501		
0,11								•			
	a. <u>NE</u>	. ¼ <u>NE</u> A	¹ /4	¼ of S	ection	16 Towns	ship	21 <u>-</u> S R	ange	37-Е	N.M.P.M
	b. Tract N	lo	of Map No	•	o	ť the		·			
			- C Di - J- Ni-		_	f the				A	
	c. Lot No Subdiv	ision, recorded	d in	Lea	0	County.			La La		
					_		•	. "_		همد مر	
						et, N.M. Coord	inate S	System	,	. <u>_</u>	Zone ir Grant
										:	
B)	Drilling Co	ontractor <u>W</u>	L. Var	Noy		·		License No	WD-	208	
dd	ress	P. Ó. B	ox 7 0i	1 Cente	er N.	M. 88266	<u>,</u> '	· · · · ·		· • •	
									·		den -
								spudder			
lev	ation of lan	d surface or _			a	t well is	· · · · · ·	_ ft. Total dep	th of wel	n <u>80</u>	ŕt
`on	pleted well	ie 🗍 el	hallow	artesian		Depth to	water	upon completi	on of we	n n	∕∩ f+
.011	ipieteu weit	د ليا دا ,		ai testait.		Deptil to	wärói	upon completi	on or we	n <u> </u>	
		· · · · · · · · · · · · · · · · · · ·	T	·····	NCIPAL W	ATER-BEARI	NG ST	RATA	_ 		·
	Depth _i From	n Feet To	Thicknes in Feet	s	Description	n of Water-Bea	ring F	ormation	(Estimated gallons per r	
					• •		`	· · · · · · · · · · · · · · · · · · ·			
	75	. 80	5		tine wa	iter sand	1.	· · ·	·		
							_				•. • •
		,			· _						<u> </u>
				· · · · · · · · · · · · · · · · · · ·	·						
										· · · · · ·	
	ť		₹*. * •	Secti	on 3. REC	ORD OF CASI	NG				•
Ľ	Diameter	Pounds	Threads		1 in Feet	Leng		Tuna of C	<u> </u>	Perfo	rations
	(inches)	per foot	per in.	Тор	Botto	m (fee	t)	Type of S		From	To
	5"	welde	a .	0	. 80	80	כ	none		64.	80
		<u> </u>									
				· · · ·	· .				· · · .		
		,		an a	· · ·		11 m. 11 m.	، بین کو کو ا		:	
			Sect	ion 4 RECO		UDDING AND) CEM	ENTING			
<u> </u>	Depth i	n Feet	Hole		cks	Cubic Feet	<u> </u>			·	· · ·
	From	То	Diameter	of M	Aud.	of Cement				Placement	
						. .		, 			
		· · · · ·	<u> </u>								
					•						• •.
		· · · · ·							•	•	
		·····									
				Secti	ion 5. PLU	GGING RECO	RD				
		ctor				• 				· · ·	· ·
			······				No.	Depth Top	in Feet Bott		ubic Feet Cement
Add	ress						1	<u> </u>			
Add Ylug Date	ress ging Metho e Well Plugg	ed					2				
Add Ylug Date	ress ging Metho	ed		• • •	·• · · · · · ·						•••••••••••••••••••••••••••••••••••••••
Add Ylug Date	ress ging Metho e Well Plugg	ed		gineer Repre	sentative		3				
Add Ylug Date	ress ging Metho e Well Plugg	ed				TE ENGINEER	3 4				· · · · · · · · · · · · · · · · · · ·

\mathcal{N}	1.1.1	
Released to Imaging:	6/4/2025	10:17:02 AM

	in Feet	Thickness in Feet	Color and Type of	Material Encountered	,
From 0	то 5	5	top soil	·····	<u></u>
5	.25	20	caliche		
	65				<u> </u>
25 65		40 10	dry sand firm rock		
75		5	water sand		·····
80			red clay.	· · · · · ·	-
re		•		· · · · · · · · · · · · · · · · · · ·	· · · · ·
- ¹ 0.	1110 And	:		· · ·	
				ار با ۲۰۰۰ میں اور	
•					
	··. · ·				
				· · · · · · · · · · · · · · · · · · ·	·'
· · · · · · · · · · · · · · · · · · ·			- · · · · · · · · · · · · · · · · · · ·		
		-	· · · · · · · · · · · · · · · · · · ·		• • •
	ı <u>.</u>			· · ·	· · · ·
	· · ·				
		·			
			· · · · · · · · · · · · · · · · · · ·		<u>-</u> -
	· · · · · · ·				
				•	
		r		· · · · · · · · · · · · · · · · · · ·	
	,				· · · · · · · · · · · · · · · · · · ·
·		-			·····
•	, <u>, , , , , , , , , , , , , , , , , , </u>			5TA	
, `		Section	7. REMARKS AND ADDITIONAL INFOR		
				R 5 F	
. .	• .	·		1 171	
. ,	· . ·	• • •	· · ·	AM & IS	سير د محمد يرك .
	·		· · · ·	10E 5	
н.		·	· · · ·	- · · · ·	ч - а
					• •
· · ·					
The understa		fian that to the	a hast of his knowledge and belief the fea		
lescribed hole.			e best of his knowledge and belief, the for	· · · · · · · · · · · · · · · · · · ·	or the above
	. '			Elsan Thang	

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, exception 5, shall be answered as completely accurately as possible when any well is drilled, repaired or deepened. When this is used as a plugging record, only Section 1(a) and Section 5 need be completed. of the State Engineer. All sections, exd drilled, repaired or deepened. When this Released to Imaging: 6/4/2025 10:17:02 AM

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Site Information	~	United States	~	GO

Click to hideNews Bulletins

• Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access realtime water data from over 13,500 stations nationwide.

USGS 322814103102601 21S.37E.21.11121

Available data for this site SUMMARY OF ALL AVAILABLE DATA 🗸 GO

Well Site

DESCRIPTION:

Latitude 32°28'14", Longitude 103°10'26" NAD27

Lea County, New Mexico , Hydrologic Unit 13070007

Well depth: not determined.

Land surface altitude: 3,462 feet above NAVD88.

Well completed in "Pecos River Basin alluvial aquifer" (N100PCSRVR) national aquifer.

Well completed in "Alluvium, Bolson Deposits and Other Surface Deposits" (110AVMB) local aquifer

AVAILABLE DATA:

Data Type	Begin Date	End Date	Count
Field groundwater-level measurements	1954-01-10	1954-01-10	1
Revisions	Unavailable (site:0) (timese	eries:0)

OPERATION:

Record for this site is maintained by the USGS New Mexico Water Science Center Email questions about this site to <u>New Mexico Water Science Center Water-Data</u> <u>Inquiries</u>

<u>Questions or Comments</u> <u>Help</u> <u>Data Tips</u> <u>Explanation of terms</u> <u>Subscribe for system changes</u> Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: NWIS Site Information for USA: Site Inventory URL: https://waterdata.usgs.gov/nwis/inventory? site_no=322814103102601&agency_cd=USGS

Page Contact Information: <u>New Mexico Water Data Support Team</u> Page Last Modified: 2025-02-25 14:01:58 EST 0.9 0.9 sdww02

Page 14 of 119

.

Received by OCD: 5/22/2025 12:00:27 AM

1R - 426-12

WORK PLANS

DATE: 5-9-07

Midland, Texas

Highlander Environmental Corp.

2007 MAY 14 AM 10 21 5-9-07

CERTIFIED MAIL RETURN RECIEPT NO. 7004 2510 0001 1869 0927

May 9, 2007

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 South St. Francis Drive Santa Fe, New Mexico 87504

RE: **CORRECTIVE ACTION PLAN (CAP) O-17-1 VENT, BD SWD SYSTEM** UNIT "O", SEC. 17, T21S, R37E Lea County, New Mexico

Mr. Johnson:

RICE Operating Company (ROC) has retained Highlander Environmental Corp. (Highlander) to address potential environmental concerns at the above-referenced site. ROC is the service provider (agent) for the 0-17-1 Vent, BD SWD System (System) and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Environmental projects of this magnitude require System Partner AFE approval and work begins as funds are received. In general, project funding is not forthcoming until NMOCD approves the work plan. Therefore, your timely review of this submission is requested.

For all environmental projects, ROC will choose a path forward that:

- protects public health, •
- provides the greatest net environmental benefit, .
- complies with NMOCD Rules, and
- is supported by good science.

Each site shall have three submissions or a combination of:

- An Investigation and Characterization Plan (ICP) is a proposal for data gathering and 1. site characterization and assessment.
- 2. Upon evaluating the data and results from the ICP, a recommended remedy is submitted in this Corrective Action Plan (CAP).

1910 N. Big Spring

Midland, Texas 79705

(432) 682-4559

S. 198 5.

a all said

3. Finally, after implementing the remedy, a <u>Closure Report</u> with final documentation will be submitted.

1.0 BACKGROUND & PREVIOUS WORK

As part of the ROC Junction Box Upgrade Workplan, starting on March 7, 2003, the junction box was removed and the Site was investigated vertically and horizontally with a backhoe. See site location as shown on Figure 1. The Site was excavated to the approximate dimensions of 27' x 18' x 12'. TPH impact was noted to a depth of at least 12' below ground surface (bgs). Chloride impact was consistent vertically and horizontally, with a bottom hole chloride concentration of 1,740 mg/kg at 12' below ground surface. Regional groundwater information indicates that the depth to groundwater is approximately 70' bgs.

The junction box once contained a vent, but the junction was eliminated and the site was plumbed straight through with new poly pipeline. ROC completed the replacement of the line on August 29, 2003. On September 16, 2003, ROC submitted a Junction Box Disclosure Report to the NMOCD. A copy of the Junction Box Disclosure Report is included in Appendix A.

On August 10, 2006, ROC submitted the ICP to Mr. Wayne Price of the NMOCD-Santa Fe office for review. Mr. Price granted approval of the ICP in a letter dated September 21, 2006.

On October 9 and 10, 2006, Highlander personnel were onsite to oversee the installation of five soil borings (SB-1, SB-2, SB-3, SB-4, and SB-5) within and adjacent to the former junction box location. Soil samples were collected every 5' beginning at a depth of 13 feet bgs within the excavated area and 3 feet bgs outside the excavated area. Samples were collected utilizing a split spoon sampler, and placed into laboratory supplied containers and delivered to the laboratory under chain-of-custody control for chloride analysis by EPA method 300.0 and specific samples for TPH analysis by EPA method 8015 modified. The collected samples were field screened for TPH utilizing a photoionization detector (PID) and for chlorides with a field sampling kit. The split spoons were decontaminated between samples utilizing an alconox and deionization water wash followed by a deionization water rinse. Copies of laboratory analyses and chain-of-custody documentation are included in Appendix B. The soil boring locations are shown on Figure 2. The soil boring logs are included in Appendix C. The results of the sampling are summarized in Table 1.

Referring to Table 1, the TPH concentrations were below the NMOCD guidelines in all samples collected and submitted for analysis. The chloride concentrations showed a marked decrease with depth in each of the five soil borings.

2.0 COLLECTED REGIONAL HYDROGEOLOGIC DATA

Since groundwater was not encountered during drilling of the site, it was not deemed necessary to perform a water well inventory within a ¹/₂ mile radius of the site.

3.0 EVALUATION

When evaluating any proposed remedy or investigative work, ROC will confirm that there is a reasonable relationship between the benefits created by the proposed remedy or assessment and the economic and social costs. In evaluating the documented levels of chlorides within the soil, it was determined that an unconsolidated clay barrier be placed within the impacted zone in order to prevent further vertical migration of the chlorides into the surrounding soils.

4.0 **PROPOSED REMEDY**

Groundwater is 70' bgs and the chlorides and TPH decrease with depth and do not extend beyond 35' bgs. As such, ROC proposes preparation and revegetation of the surface soils in order to provide an infiltration barrier. This may include removal of existing gravel, importation of clean topsoil and reseeding utilizing native vegetation. In addition, the site will be monitored for growth. Based on the visual inspection and subsurface drilling, the area of the former junction box to be revegetated is approximately 37' by 38'.

If you require any additional information or have any questions or comments, please call.

Highlander Environmental Corp.

Jeffrey Kindley, P.G.

Jeffrey Kindley, P.G. Senior Environmental Geologist

cc: ROC Edward Hansen-NMOCD

enclosures: site maps, data tables, lab results, figures

Highlander Environmental Corp.

Released to Imaging: 6/4/2025 10:17:02 AM

Midland, Texas

A CALL STREET

ALL ALL ALL AL

ALL A STRA

المحققة المحققة الم

Strandball

a Black

a state

e Xalan

and the second

State of the

Lind Bearing

2023

ALTER A

10. E. E.

Figures

Received by OCD: 5/22/2025 12:00:27 AM

Released to Imaging: 6/4/2025 10:17:02 AM

A Contraction

An An Million 1 - V jan

Berger Berger

and the second

A BARY MAN

No. of The

N. ASA

militer and

Ru Sarta A.C.

A TAGE CAN

312020615

100 A. 18.18

Sec. 2.3

andre Stade

Bear a

ξ

Tables

P. 30.34

(m/ 23

a feet a

1

Table 1

Rice Operating

BD 0-17-1

Lea County, New Mexico

Sample	Date	Sample	Chlorides	Chlorides	9. – Stationary - The Potter and a stationary - Stationary - Stationary - Stationary		(mg/kg)	
D	Sampled	Depth (ft)	Field (mg/kg)	(mġ/kġ)	66-C12	C12-C28	C-28-C35	Total
SB-1	10/09/06	13-15'	895	978	<10.0	314	56.7	371
SB-1	10/09/06	18-20'	571	. 213	NA	NA	NA	NA
SB-1	10/09/06	23-25'	212	255	NA	NA	NA	NA
SB-1	10/09/06	28-30'	169	NA	NA	NA	ŅA	NA
SB-1	10/09/06	33-35'	226	298	NA	NA	NA	NA
SB-2	10/09/06	13-15'	1,293	638	30.4	553	94.4	678
SB-2	10/09/06	18-20'	995	1,360	<10.0	80	<10.0	80
SB-2	10/09/06	23-25'	210	681	ŇA	NA	. NA	NA
SB-2	10/09/06	28-30'	930	638	NA	NA	NA	NA
SB-2	10/09/06	33-35'	411	362	NA	NA	NA	NA
SB-2	10/09/06	38-40'	621	181	NA	NA	NA	NA
SB-2	10/09/06	43-45'	374	128	NA	NA	NA	NA
SB-2	10/09/06	48-50'	270	95.7	NA	NA	NA	NA
SB-2	10/09/06	53-55'	266	21.3	NA	NA	NA	NA
SB-2	10/09/06	58-60'	239	31.9	ŇA	NA	NA	NA
SB-3	10/09/06	3-5'	274	106	<10.0	13.2	<10.0	13.2
SB-3	10/09/06	8-10'	470	425	NA	NA	NA	NA
SB-3	10/09/06	13-15'	615	596	NA	NA	NA	NA
SB-3	10/09/06	18-20'	488	638	NA	NA	NA	NA
SB-3	10/09/06	23-25'	682	596	NA	NA	NA	NA
SB-3	10/09/06	2,8-30'	441	383	NA	ŇΑ	NA	NA
SB-3	10/09/06	33-35'	276	53.2	NA	NA	NA	NA
SB-3	10/09/06	38-40'	234	42.5	NA	NA	NA	NA
SB-4	10/09/06	3-5'	348	128	<10.0	<10.0	<10.0	<10.0
SB-4	10/09/06	8-10'	556	596	NA	NA	NA	NA
SB-4	10/09/06	13-15'	255	213	NA	NA	NA	NA
SB-4	10/09/06	18-20'	235	42.5	NA	NA	NA	NA
SB-4	10/09/06	23-25'	149	63.8	NA	NA	NA	NA
SB-5	10/09/06	13-15'	834	1,110	<10.0	<10.0	<10.0	<10.0
SB-5	10/09/06	18-20'	406	468	NA	NA	NA	NA
SB-5	10/09/06	23-25'	300	234	NA	NA	NA	NA
 SB-5	10/09/06	28-30'	236	128	NA -	NA	NA	NA
SB-5	10/09/06	33-35'	160 .	31.9	NA	NA	NA	NA

12 Br. B. M. S.

9- 413 ALSO - 2 40

as Port and

1. 25 H. M. S. S.

offer tille

1.1.2.1.2

S. Later L.

388823462 -

145.13. 44

TELES ALTER

3.5 0.3. 20. 44

5 P. 01

ALTER STREET

6+4114 0 0

Appendix A

. . . .

9.4

1 (1) (1) (1)

1.0 - 1.0 - 1.

A.4.5 &

in in a

.

RICE OPERATING COMPANY JUNCTION BOX DISCLOSURE* REPORT

	•				IG COMP/ LOSURE* F					
	,			BOX LOC						
SWD SYSTEM	JUNCTION	UNIT SI	ECTION	TOWNSHIP		COUNTY	BOX	DIMENSIONS	- FEET	
Blinebry-Drinkard	O-17-1 vent	0	17	215	37E	Lea	Length	Width No Box	Depth	
LAND TYPE: B	LM S	TATE	FEE LA	NDOWNER	Millard	Deck Estate	OTHE	R		
Depth to Groun	dwater	70 feet	-	NMOCE	SITE ASSI	ESSMENT	RANKING	SCORE:	10	
Date Started	3/7/20	<u>03</u> C	Date Cor	mpleted	8/29/2003		Witness	1	10	<u>.</u>
Soil Excavated	240	cubic yards	Exc	avation Le	ngth <u>30</u>	Widt	n <u>18</u>	Depth	12	fee
Soil Disposed	0	cubic yards	Of	fsite Facility	n	/a	_ Locatio	n	n/a	
	TICAL RE ocure 5-point of STEX and Chi	composite sa oride laborate	mple of ory test	bottom and results com	4-point con	nposite san sing an app	- nple of side		12 ft bg	<u>6</u>
Sample	Benzene	Toluene		hyl Benzene	Total Xyler		RO	DRO	Chlori	
Location SIDEWALLS	mg/kg <0.025	mg/kg <0.025	<u> </u>		mg/kg 0.281		g/kg 26	mg/kg 1290	mg/k 181	
BOTTOM	<0.025	0.972		4.44	19.42		420	5280	174	
General Description but the junction has be pipeline. The 30 x 18 x Vertically, the 8 ft and	en eliminated ar x 12 ft deep exca	nd the site re-pli avation yielded	umbed stu TPH impa	raight through act to at least 1	with new poly 12 ft deep.	L 	OCATION CHLC	DEPTH		pm
respectively. However	····						Vertical	8	10	000
excavation walls. The							Vertical	12		00
due to the TPH concer discrepancy with the la for further consideratio	ntration and the o b results. The e	color of the soil excavation has t	sample, v	which may acc	ount for the	 fied		PH FIELD TE	<u>. </u>	
							Vertical	4	28	220
ADDIT	IONAL EVA	LUATION	IS <u>HIG</u>	H PRIOR	ITY.		Vertical	8	49	220
						[Vertical	12	35	070
cc: lab results, photos	Y CERTIFY T	HAT THE IN			/E IS TRUE AND BELIE		PLETE TO	THE BEST (OF MY	
DATE	0/46	/2003					Ľ	ristin Farris		
	nistio	1 '	\mathcal{I}	rn	÷.			ject Scientist		<u> </u>
* This site is a		_		ed on a priv	-				deration	

4 . W. +

بالمحمدة المحمدة . محمدية " محمد

anniedro...

a dun de a

An Land

All of mark

and the

an anna an a'

a states

a for the second

in and a line

da unita de de

ALL RATES

Adal a

Appendix B

いたのないの

01-77-02.05

A30.-180

Analytical Report

Prepared for:

Tim Reed Highlander Environmental Corp. 1910 N. Big Spring St. Midland, TX 79705

> Project: Rice/ 0-17-1 Project Number: 2644 Location: None Given

Lab Order Number: 6J13017

Report Date: 10/23/06

1. 1943

مالى."ئۇلۇرد د ••••••••••

203045

Bras Aller

* * * * *

. . .

Highlander Environmental Corp.Project:Rice/0-17-1Fax: (432) 682-39461910 N. Big Spring St.Project Number:2644Midland TX, 79705Project Manager:Tim Reed

ANALYTICAL REPORT FOR SAMPLES

Sample ID	Laboratory ID	Matrix	Date Sampled	Date Received
SB-1 13-15'	6J13017-01	Soil	10/09/06 00:00	10-13-2006 16:2
SB-1 18-20'	6J13017-02	Soil	10/09/06 00:00	10-13-2006 16:2
SB-1 23-25'	6J13017-03	Soil	10/09/06 00:00	10-13-2006 16:2
SB-1 33-35'	6J13017-04	Soil	10/09/06 00:00	10-13-2006 16:2
SB-2 13-15'	6J13017-05	Soil	10/09/06 00:00	10-13-2006 16:2
SB-2 18-20'	6J13017-06	Soil	10/09/06 00:00	10-13-2006 16:2
SB-2 23-25'	6J13017-07	Soil	10/09/06 00:00	10-13-2006 16:2
SB-2 28-30'	6J13017-08	Soil	10/09/06 00:00	10-13-2006 16:2
SB-2 33-35'	6J13017-09	Soil	10/09/06 00:00	10-13-2006 16:
SB-2 38-40'	6J13017-10	Soil	10/09/06 00:00	10-13-2006 16:
SB-2 43-45'	6J13017-11	Soil	10/09/06 00:00	10-13-2006 16:
SB-2 48-50'	6J13017-12	Soil	10/09/06 00:00	10-13-2006 16:
SB-2 53-55'	6J13017-13	Soil	10/09/06 00:00	10-13-2006 16:
SB-2 58-60'	6J13017-14	Soil	10/09/06 00:00	10-13-2006 16:
SB-3 3-5'	6J13017-15	Soil	10/09/06 00:00	10-13-2006 16
SB-3 8-10'	6J13017-16	Soil	10/09/06 00:00	10-13-2006 16
SB-3 13-15'	6J13017-17	Soil	10/09/06 00:00	10-13-2006 16
SB-3 18-20'	6J13017-18	Soil	10/09/06 00:00	10-13-2006 16
SB-3 23-25'	6J13017-19	Soil	10/09/06 00:00	10-13-2006 16
SB-3 28-30'	6J13017-20	Soil	10/09/06 00:00	10-13-2006 16
SB-3 33-35'	6J13017-21	Soil	10/09/06 00:00	10-13-2006 16
SB-3 38-40'	6J13017-22	Soil	10/09/06 00:00	10-13-2006 16
SB-4 3-5'	6J13017-23	Soil	10/09/06 00:00	10-13-2006 16
SB-4 8-10'	6J13017-24	Soil	10/09/06 00:00	10-1 3-2 006 16
SB-4 13-15'	6J13017-25	Soil	10/09/06 00:00	10-13-2006 16
SB-4 18-20'	6J13017-26	Soil	10/09/06 00:00	10-13-2006 16
SB-4 23-25'	6J13017-27	Soil	10/09/06 00:00	10-13-2006 16
SB-5 13-15'	6J13017-28	Soil	10/09/06 00:00	10-13-2006 16
SB-5 18-20'	6J13017-29	Soil	10/09/06 00:00	10-13-2006 16
SB-5 23-25'	6.113017-30	Soil	10/09/06 00:00	10-13-2006 16
SB-5 28-30'	6J13017-31	Soil	10/09/06 00:00	10-13-2006 16
SB-5 32-35'	6J13017-32	Soil	10/09/06 00:00	10-13-2006 16

DD Photosoft

10000

1-4 - 4

0. 10 . 10 . 10 0. 10 . 10 .

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705		Project N	Project: Rice umber: 2644 anager: Tim					Fax: (432) 682-3946
		Or	ganics by	GC					
		Environ	nental La	b of Te	exas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 13-15' (6J13017-01) Soil		1							
Carbon Ranges C6-C12	J [7.69]	10.0	mg/kg dry	1	EJ61502	10/15/06	10/15/06	EPA 8015M	
Carbon Ranges C12-C28	314	10.0	u	"	н	**			
Carbon Ranges C28-C35	56.7	10.0	"	"		"	n	н	
Total Hydrocarbons	371	10.0	н	"	u	n	11	н	
Surrogate: 1-Chlorooctane		89.6 %	70-13	0	"	"	"	"	
Surrogate: 1-Chlorooctadecane		79.4 %	70-13	0	"	n	"	"	
SB-2 13-15' (6J13017-05) Soil									
Carbon Ranges C6-C12	30.4	10.0	mg/kg dry	1 1	EJ61502	10/15/06	10/15/06	EPA 8015M	
Carbon Ranges C12-C28	553	10.0	**	"	и		и	"	
Carbon Ranges C28-C35	94.4	10.0	"	n	"		11	".	
Total Hydrocarbons	678	10.0	**	п	"		"	"	
Surrogate: 1-Chlorooctane		90.8 %	70-12	10	"	"	и	"	
Surrogate: 1-Chlorooctadecane		80.2 %	70-1	0	"	"	л	"	
SB-2 18-20' (6J13017-06) Soil									
Carbon Ranges C6-C12	J [9.93]	10.0	mg/kg dry	I	EJ61502	10/15/06	10/16/06	EPA 8015M	
Carbon Ranges C12-C28	80.0	10.0		"	11	"	н	п	
Carbon Ranges C28-C35	J [9.44]	10.0	н	"	11	"	н	н	
Total Hydrocarbons	80.0	10.0	н	"	11	"	"	п	
Surrogate: 1-Chlorooctane		91.6 %	70-1.	80	"	"	"	"	
Surrogate: 1-Chlorooctadecane		80.2 %	70-1	80	"	"	"	"	
SB-3 3-5' (6J13017-15) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EJ61502	10/15/06	10/16/06	EPA 8015M	
Carbon Ranges C12-C28	13.2	10.0	17	"	"			"	
Carbon Ranges C28-C35	ND	10.0	"	"	"	н	"	"	
Total Hydrocarbons	13.2	10.0	"	55		n	"	u	
Surrogate: 1-Chlorooctane		87.2 %	70-1.	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		80.6 %	70-1.	30	"	"	"	"	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 2 of 13

JE 6 5.

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705		Project N	Project: Rich umber: 264 anager: Tim			Fax: (432) 682-3946		
		Oı	ganics b	y GC					
		Environ	mental L	ab of Te	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-4 3-5' (6J13017-23) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EJ61609	10/16/06	10/17/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	"		"	"	н	"	
Carbon Ranges C28-C35	ND	10.0	"		*	"		11	
Total Hydrocarbons	ND	10.0		н	11	11	"	п	
Surrogate: 1-Chlorooctane		87.8 %	70-1	30	"	n	"	"	
Surrogate: 1-Chlorooctadecane		79.8 %	70-1	30	"	"	"	"	
SB-5 13-15' (6J13017-28) Soil									
Carbon Ranges C6-C12	ND	10.0	mg/kg dry	1	EJ61502	10/15/06	10/16/06	EPA 8015M	
Carbon Ranges C12-C28	ND	10.0	11	"	"	"	n		
Carbon Ranges C28-C35	ND	10.0	н	11	"	"	0	"	
Total Hydrocarbons	ND	10.0	n	n	"	н	u	н	
Surrogate: 1-Chlorooctane		89.4 %	70-1	30	"	"	"	"	
Surrogate: 1-Chlorooctadecane		78.8 %	70-1	30	"	n	"	"	

Environmental Lab of Texas

10

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 3 of 13

19 - 19 - 19 19 - 19 - 19

14. 18

- 00-00-4

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705		Project N	Project: Rice umber: 264 anager: Tim	4				Fax: (432) 6	82-3946
	General Chen	-		-		d Method	S		
		Environ	mental La	ab of Te	xas				
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note
SB-1 13-15' (6J13017-01) Soil			k					······································	A
Chloride	978	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
% Moisture	7.2	0.1	%	1	EJ61601	10/13/06	10/16/06	% calculation	
SB-1 18-20' (6J13017-02) Soil									
Chloride	213	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-1 23-25' (6J13017-03) Soil									
Chloride	255	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-1 33-35' (6J13017-04) Soil									
Chloride	298	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-2 13-15' (6J13017-05) Soil									
Chloride	638	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
% Moisture	10.9	0.1	%	I	EJ61601	10/13/06	10/16/06	% calculation	
SB-2 18-20' (6J13017-06) Soil									
Chloride	1360	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
% Moisture	10.1	0.1	%	l	EJ61601	10/13/06	10/16/06	% calculation	
SB-2 23-25' (6J13017-07) Soil									
Chloride	681	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-2 28-30' (6J13017-08) Soil									
Chloride	638	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-2 33-35' (6J13017-09) Soil									
Chloride	362	20.0	ing/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	
SB-2 38-40' (6J13017-10) Soil									
Chloride	181	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 4 of 13

2.5

1.00 C

A) 1 2

1 - 1 - 1 - 1

1. C.

ار میکرد. مراجع میکرد.

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705	Project: Rice/ 0-17-1 Project Number: 2644 Project Manager: Tim Reed							Fax: (432) 682-3946			
General Chemistry Parameters by EPA / Standard Methods											
Environmental Lab of Texas											
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note		
SB-2 43-45' (6J13017-11) Soil											
Chloride	128	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-2 48-50' (6J13017-12) Soil								·			
Chloride	95.7	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-2 53-55' (6J13017-13) Soil											
Chloride	21.3	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-2 58-60' (6J13017-14) Soil											
Chloride	31.9	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-3 3-5' (6J13017-15) Soil											
Chloride	106	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
% Moisture	3.8	0.1	%	I	EJ61601	10/13/06	10/16/06	% calculation			
SB-3 8-10' (6J13017-16) Soil						. <u>.</u>					
Chloride	425	20.0	mg/kg Wet	2	ÉJ62014	10/20/06	10/22/06	SW 846 9253			
SB-3 13-15' (6J13017-17) Soil											
Chloride	596	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-3 18-20' (6J13017-18) Soil											
Chloride	638	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-3 23-25' (6J13017-19) Soil											
Chloride	596	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			
SB-3 28-30' (6J13017-20) Soil											
Chloride	383	20.0	mg/kg Wet	2	EJ62014	10/20/06	10/22/06	SW 846 9253			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 5 of 13

1. 2. 18 C

1

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705	Project: Rice/ 0-17-1 Project Number: 2644 Project Manager: Tim Reed							Fax: (432) 682-3946			
General Chemistry Parameters by EPA / Standard Methods											
Environmental Lab of Texas											
Australia	Popult	Reporting Limit	Units		<u> </u>						
Analyte SB-3 33-35' (6J13017-21) Soil	Result	Chin	Onits	Dilution	Batch	Prepared	Analyzed	Method	Notes		
Chloride	53.2	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-3-38-40' (6J13017-22) Soil											
Chloride .	42.5	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-4 3-5' (6J13017-23) Soil											
Chloride	128	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
% Moisture	12.0	0.1	%	1	EJ61601	10/13/06	10/16/06	% calculation			
SB-4 8-10' (6J13017-24) Soil				,							
Chloride	596	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-4 13-15' (6J13017-25) Soil											
Chloride	213	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-4 18-20' (6J13017-26) Soil											
Chloride	42.5	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-4 23-25' (6J13017-27) Soil											
Chłoride	63.8	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-5 13-15' (6J13017-28) Soil											
Chloride	1110	20.0	ıng/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
% Moisture	12.1	0.1	%	1	EJ61601	10/13/06	10/16/06	% calculation			
SB-5 18-20' (6J13017-29) Soil											
Chloride	468	20.0	ing/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			
SB-5 23-25' (6J13017-30) Soil											
Chloride	234	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 6 of 13

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705	Project: Rice/ 0-17-1 Project Number: 2644 Project Manager: Tim Reed							Fax: (432) 682-3946		
	General Chen	nistry Para Environn		-		d Method	S			
Analyte	Result	Reporting Limit	Units	Dilution	Batch	Prepared	Analyzed	Method	Note	
B-5 28-30' (6J13017-31) Soil										
Chloride	128	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253		
6B-5 32-35' (6J13017-32) Soil										
	31.9	20.0	mg/kg Wet	2	EJ62015	10/20/06	10/22/06	SW 846 9253		

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 7 of 13
3.0° 6

o and and for

3.45 . Las

- 1 da 6. 5.

1. S. 20. 2.

1 5. Jan .

2.

10 G. 30

0.00 - A

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705		Project Nu	roject: Ric umber: 264 inager: Tim	4					Fax: (432)	682-3946
	0	rganics by		uality Co	ontrol					
		Environn	nental L	ab of Te	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61502 - Solvent Extraction (GC)										
Blank (EJ61502-BLK1)				Prepared &	Analyzed:	10/15/06				
Carbon Ranges C6-C12	ND	10.0	mg/kg wet							
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	45.3		mgʻkg	50.0		90.6	70-130			
Surrogate: 1-Chlorooctadecane	41.1		"	50.0		82.2	70-130			
LCS (EJ61502-BS1)				Prepared &	Analyzed	10/15/06		*		
Carbon Ranges C6-C12	486	10.0	mg/kg wet	500		97.2	75-125			
Carbon Ranges C12-C28	474	10.0	*	500		94.8	75-125			
Carbon Ranges C28-C35	ND	10.0	17	0.00			75-125			
Total Hydrocarbons	960	10.0	**	1000		96.0	75-125			
Surrogate: 1-Chlorooctane	58.0		mg·kg	50.0		116	70-130	· · · · ·		
Surrogate: 1-Chlorooctadecane	43.7		"	50.0		87.4	70-130	•		
Calibration Check (EJ61502-CCV1)				Prepared:	10/15/06 A	nalyzed: 16	0/16/06			
Carbon Ranges C6-C12	203		mg/kg	250		81.2	80-120			
Carbon Ranges C12-C28	237		"	250		94.8	80-120			
Total Hydrocarbons	440		"	500		88.0	80-120			
Surrogate: 1-Chlorooctane	47.8		"	50.0		95.6	70-130			
Surrogate: 1-Chlorooctadecane	38.4		"	50.0		76.8	. 70-130			
Matrix Spike (EJ61502-MS1)	Sou	ırce: 6J13015	-01	Prepared:	10/15/06 A	nalyzed: 1	0/16/06			
Carbon Ranges C6-C12	527	10.0	mg/kg dry	567	ND	92.9	75-125			
Carbon Ranges C12-C28	507	10.0	н	567	ND	89.4	75-125			
Carbon Ranges C28-C35	ND	10.0	н	0.00	ND		75-125			
Total Hydrocarbons	1030	10.0	"	1130	ND	91.2	75-125			
Surrogate: 1-Chlorooctane	56.9		mg kg	50.0		114	70-130			
Surrogate: 1-Chlorooctadecane	43.3		"	50.0		86.6	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 8 of 13

ور اندار میں اور انداز میں

5. · · · · ·

The section

10 E. Barton (1)

Same rates

Services Services

147 '49'CP -

ini Qui ste an -in y gate.

10 - 10 - 10 10 - 10 - 10 10 - 10 - 10

an an

6 9

and and a

Highlander Environmental Corp. 1910 N. Big Spring St. Midland TX, 79705		Project Nu	roject: Rico umber: 264 inager: Tim	4					Fax: (432)	682-3946
	Or	ganics by	GC - Q	uality Co	ontrol					
		Environn	nental La	ab of Tey	kas					
Analyte	Result	Reporting Limit	Units	Spike Level	Source Result	%REC	%REC Limits	RPD	RPD Limit	Notes
Batch EJ61502 - Solvent Extraction (GC)				4						
Matrix Spike Dup (EJ61502-MSD1)	Sou	rce: 6J13015	-01	Prepared: 1	0/15/06 A	nalyzed: 10	/16/06			
Carbon Ranges C6-C12	525	10.0	ing/kg dry	567	ND	92.6	75-125	0.380	20	
Carbon Ranges C12-C28	513	10.0	"	' 567	ND	90.5	75-125	1.18	20	
Carbon Ranges C28-C35	ND	10.0		0.00	ND		75-125		20	
Fotal Hydrocarbons	1040	10.0	н	1130	ND	92.0	75-125	0.966	20	
Surrogate: 1-Chlorooctane	57.1		mg:kg	50.0	·	114	70-130			
Surrogate: 1-C'hlorooctadecane	42.8		"	50.0		85.6	70-130			
Batch EJ61609 - Solvent Extraction (GC) Blank (EJ61609-BLK1)				Prenared	10/16/06 A	nalvzed: 1(
Carbon Ranges C6-C12	ND	10.0	ing/kg wet	ricparcu.	10/10/00 A					
Carbon Ranges C12-C28	ND	10.0	"							
Carbon Ranges C28-C35	ND	10.0	"							
Total Hydrocarbons	ND	10.0								
Surrogate: 1-Chlorooctane	48.3		mg/kg	50.0		96.6	70-130			
Surrogate: 1-Chlorooctadecane	45.0		"	50.0		90.0	70-130			
LCS (EJ61609-BS1)				Prepared:	10/16/06 A	nalyzed: 10)/17/06			
Carbon Ranges C6-C12	469	10.0	mg/kg wet	500		93.8	75-125			
Carbon Ranges C12-C28	452	10.0	"	500		90.4	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00			75-125			
Total Hydrocarbons	921	10.0	"	1000		92. I	75-125			
Surrogate: 1-Chlorooctane	60.5		mg kg	50.0		121	70-130			
Surrogate: 1-Chlorooctadecane	46.4		"	50.0		92.8	70-130			
Calibration Check (EJ61609-CCV1)				Prepared:	10/16/06 A	nalyzed: 10	0/18/06			
Carbon Ranges C6-C12	216		mg/kg	250		86.4	80-120			
Carbon Ranges C12-C28	248		11	250		99.2	80-120			
	464			500		92.8	80-120			
Fotal Hydrocarbons										
Fotal Hydrocarbons Surrogate: 1-Chlorooctane	64.5		"	50.0		129	70-130		· · · ·	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 9 of 13

1 - 101 - 11

Highlander Environmental Corp.Project:Rice/ 0-17-1Fax: (432) 682-39461910 N. Big Spring St.Project Number:2644Midland TX, 79705Project Manager:Tim Reed

Organics by GC - Quality Control

Environmental Lab of Texas

		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes

Batch EJ61609 - Solvent Extraction (GC)

Matrix Spike (EJ61609-MS1)	Sourc	e: 6J16003	-03	Prepared: 1	0/16/06 A	nalyzed: 10)/17/06			
Carbon Ranges C6-C12	511	10.0	mg/kg dry	572	ND	89.3	75-125			
Carbon Ranges C12-C28	504	. 10,0		572	ND	88.1	75-125			
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125			
Total Hydrocarbons	1020	10.0	**	1140	ND	89.5	75-125			
Surrogate: 1-Chlorooctane	56.5		mg/kg	50.0		113	70-130			
Surrogate: 1-Chlorooctadecane	43.8		"	50.0		87.6	70-130			
Matrix Spike Dup (EJ61609-MSD1)	Sourc	e: 6J16003	-03	Prepared: 1	0/16/06 A	nalyzed: 10	0/17/06			
Carbon Ranges C6-C12	511	10.0	mg/kg dry	572	ND	89,3	75-125	0.00	20	÷
Carbon Ranges C12-C28	500	10.0	"	572	ND	87.4	75-125	0.797	20	
Carbon Ranges C28-C35	ND	10.0	"	0.00	ND		75-125		20	
Total Hydrocarbons	1010	10.0	"	1140	ND	88.6	75-125	0.985	20	
Surrogate: 1-Chlorooctane	55.2		mg kg	50.0		110	70-130			
Surrogate: 1-Chlorooctadecane	41.0		"	50.0		82.0	70-130			

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 10 of 13

15-200 C

18.20° 20.18

1.42 A. 22 A

Bradadta

AZ 2440

10 S. C. 20.

بالأسط أمية المحاد

2.4

Ve - 18 ...

Highlander Environmental Corp. 1910 N. Big Spring St.		Project Num		4					Fax: (432)	682-3946
Midland TX, 79705		Project Mana	iger: Tim	Reed						
General Chem	istry Para	ameters by l	EPA / S	Standard	l Meth	ods - Qu	ality Con	trol		
		Environme	ental La	ab of Te	xas					
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EJ61601 - General Preparation (Prep)										
Blank (EJ61601-BLK1)				Prepared:	10/13/06	Analyzed:	10/16/06			
% Solids	100		%							
Duplicate (EJ61601-DUP1)	Sou	irce: 6J13004-0	1	Prepared:	10/13/06	Analyzed:	10/16/06			
% Solids	74.4		%		74.5			0.134	20	
Duplicate (EJ61601-DUP2)	Sou	irce: 6J13017-0	6	Prepared:	10/13/06	Analyzed:	10/16/06			
% Solids	90.4		%		89.9			0.555	20	
Duplicate (EJ61601-DUP3)	Sou	arce: 6J13021-0	5	Prepared:	10/13/06	Analyzed:	10/16/06			
% Solids	89.8		%		90.8			1.11	20	
Duplicate (EJ61601-DUP4)	Sou	urce: 6J14001-0	2	Prepared:	10/13/06	Analyzed:	10/16/06			
% Solids	85.1		%		85.1			0.00	20	
Batch EJ62014 - Water Extraction										
Blank (EJ62014-BLK1)				Prepared:	10/20/06	Analyzed:	10/22/06			
Chloride	ND	20.0 r	ng/kg Wet							
LCS (EJ62014-BS1)				Prepared:	10/20/06	Analyzed:	10/22/06			
Chloride	92.5	5.00 r	ng/kg Wet	100		92.5	80-120			
Matrix Spike (EJ62014-MS1)	So	urce: 6J13017-1	3	Prepared:	10/20/06	Analyzed:	10/22/06			
Chloride	521	20.0 r	ng/kg Wet	500	21.3	99.9	80-120			
Matrix Spike Dup (EJ62014-MSD1)	So	urce: 6J13017-1	3	Prepared:	10/20/06	Analyzed:	10/22/06			
Chloride	532	20.0 1	ng/kg Wet	500	21.3	102	80-120	2.09	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 11 of 13

A. JALSH

Street B

- and the

3.174.4

بر الحالية على

· wine

shibid N

Brack .

Highlander Environmental Corp.		Р	roject: Rice	e/ 0-17-1					Fax: (432)	682-3946
1910 N. Big Spring St.			mber: 264							
Midland TX, 79705			nager: Tim							
General (Chemistry Paran			<u>.</u>	Metho	ds - Qua	lity Cont	rol		
	-	-		ab of Tex						
		Reporting		Spike	Source		%REC		RPD	
Analyte	Result	Limit	Units	Level	Result	%REC	Limits	RPD	Limit	Notes
Batch EJ62014 - Water Extraction					···•					<u> </u>
Reference (EJ62014-SRM1)				Prepared: 1	0/20/06 A	Analyzed: 10	/22/06			
Chloride	51.0		mg/kg	50.0		102	80-120			
Batch EJ62015 - Water Extraction	- 199 V							··		
Blank (EJ62015-BLK1)				Prepared: 1	0/20/06 A	Analyzed: 10	/22/06			
Chloride	ND	20.0	mg/kg Wet							
Shighte										
LCS (EJ62015-BS1)				Prepared: 1	0/20/06 A	Analyzed: 10	/22/06			
	91.5	5.00	ıng/kg Wet	Prepared: 1 100	0/20/06 A	Analyzed: 10 91.5	/22/06 80-120			<u></u>
LCS (EJ62015-BS1)		5,00 e: 6J13017-	0 0	100			80-120			
LCS (EJ62015-BS1)		e: 6J13017-	0 0	100		91.5	80-120			
LCS (EJ62015-BS1) ^{Chloride} Matrix Spike (EJ62015-MS1)	Sourc 638	e: 6J13017-	-23 mg/kg Wet	100 Prepared: 1 500	0/20/06 A 128	91.5 Analyzed: 10	80-120 /22/06 80-120			
LCS (EJ62015-BS1) Chloride Matrix Spike (EJ62015-MS1) Chloride	Sourc 638	e: 6J13017- 20.0 e: 6J13017-	-23 mg/kg Wet	100 Prepared: 1 500	0/20/06 A 128	91.5 Analyzed: 10 102	80-120 /22/06 80-120	1.71	20	
LCS (EJ62015-BS1) Chloride Matrix Spike (EJ62015-MS1) Chloride Matrix Spike Dup (EJ62015-MSD1)	Sourc 638 Sourc	e: 6J13017- 20.0 e: 6J13017-	23 mg/kg Wet	100 Prepared: 1 500 Prepared: 1 500	0/20/06 A 128 0/20/06 A 128	91.5 Analyzed: 10 102 Analyzed: 10	80-120 /22/06 80-120 /22/06 80-120	1.71	20	

Environmental Lab of Texas

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas. Page 12 of 13

	r Environmentał Corp. ig Spring St.	Project: Project Number:	Rice/ 0-17-1 2644	Fax: (432) 682-3940
	X, 79705	Project Manager:	Tim Reed	
		Notes and De	finitions	
J	Detected but below the Reporting Limit	t; therefore, result is an estimated	d concentration (CLP J-Flag).	
DET	Analyte DETECTED			
ND	Analyte NOT DETECTED at or above the re	eporting limit		
NR	Not Reported			
dry	Sample results reported on a dry weight bas	is		
RPD	Relative Percent Difference			
LCS	Laboratory Control Spike			
MS	Matrix Spike			
Dup	Duplicate			

Report Approved By:

Raland K Junits Date:

10/23/2006

Raland K. Tuttle, Lab Manager Celey D. Keene, Lab Director, Org. Tech Director Peggy Allen, QA Officer Jeanne Mc Murrey, Inorg. Tech Director LaTasha Cornish, Chemist Sandra Sanchez, Lab Tech.

This material is intended only for the use of the individual (s) or entity to whom it is addressed, and may contain information that is privileged and confidential.

If you have received this material in error, please notify us immediately at 432-563-1800.

Environmental Lab of Texas

2 . A. A.

The results in this report apply to the samples analyzed in accordance with the samples received in the laboratory. This analytical report must be reproduced in its entirety, with written approval of Environmental Lab of Texas.

Page 13 of 13

0F: 4		Bernod No.			opi	(CP101	(गए) वट: भर्भ 1.152 808	Реай, 809/18 6 р. ТЗЗ, ј Селппе Баѓа Ајрћа Баѓа РЦы (Албез						×			>		Kull, mme: 1800	ARBILL #	OTHER: DE BEENILE DE	RU3H Charges	Authorised' Tea No	
PAGE:	ANALYSIS RE	trale or Specify		વર્ષ	54 1 C2- 1 C2-	580\85 58 58 58 58 58 58 58 58 58 58 58 58 5	9 'YoA 83/0V28 9111470A 839 849 849 849 849 849 849 849 84	bCB, ⁶ 80.80 CC.WE 38.00 CC.WE 38.00 UCD 20.00 LCD 20.00 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>SAMPLED BY: (Print & Sum)</td><td>'EY: (et/of)' BUS</td><td>(HAND DRLIVERED) UPS</td><td>HIGHLANDER CONTACT PERSON:</td><td>Tim Red</td><td></td></td<>											SAMPLED BY: (Print & Sum)	'EY: (et/of)' BUS	(HAND DRLIVERED) UPS	HIGHLANDER CONTACT PERSON:	Tim Red	
	IN RECOID	CORP.			rax (432) 082-3940	R PRESERVATIVE	(N//	BLEX BOSOV NOME HINO3 HINO3 HITLENED (J KITLENED (J					∧ ∧ ∧		× ×	<u>/</u> /			Date: Time:	Date:	Date: Time:	in hel	THE 4:200	REMARKE
J CPORV		ENVIRONMENTAL	m	Texas 79705		STTE HANAGER: Thrn Red d		SAMPLE IDENTIFICATION	(13-15) -	(It-20') -	(23-25)-	1 28-36) 10. 2 20 Al	5	(1_{3-15}) -	([8-20 [']])	(23-25)-	(38-30) -	- 25-52) -	13/0 h RECEIVED BY: (Signature)	RECEIVED BY: (Signature)	RECEIVED BY: (Mgnature)	X RECEIVED BY: (Signature)	279: DATTE: 10/15/010 1	AATTUR: #-Fatar A-ALT SID-5olid
	עכתעראי מו	HIGHLANDER E	1910 N.	ž. Midland,	90 	1 1414-69	PROJECT NAME:	CLEVB COMD WVLLEIX		S.	T RS V	1 28 1	S -	58.1	S 58-3	5 26'32	5 Se-2	S 28-2	ure) Date: <u>()</u> Nme: <u>-1</u>			Entimental Lalia 64	ETATE: TX 2	
A 5 1 5 7 2 5	ALLALVIS	HUJH			ACCF-280 (20F)	CLIENT NAME: Ric Engineume	2	ATE	D BAN	No Michie	Contraction	1.	DQ Notally.	05 totalis	OUP Introposi	OV Interior	OS lologia	W In Isalia	RELINQUISTED BY (Supeture)	RALINQUISHED BY: (Signatura)	REURQUISHED BY: (Signaturo)	RECEIVING LABORATORY:	CITY: D 4240 1 CONTACT:	ONDITION FHEN

ź.

이는 너	d No.)				riolefy)	рн, ТЮЗ 10С. 1 (АЦГ)		>		>								Date: 1010910(* Time: 1800	ARBILL #	OTAER: Results by	EUSH Charges	Authorisad: Yes No
PAGE: 2	ANALYSIS REQUEST or Specify Method	-		·	rea/088	008/07 9/08/07 9/08/08 9/08/08	609, 608/ 609 809/ 609 809/ 809 80.00 60.00 801 801 801 801											60	(117) (117) 1173	edu 🗸	NTACT PEPSON:	
	(Circle			1d -10		ay Dy a	100 4101 400 400 400 400 400 400 400 400 400 400)					<u>.</u>					SARPLED BY: (Print	SAMPLE SHIPPED BY:	HAND DRIJVERED	HIGHLANDER CONTACT PEPSON	Tim Red
							ozos XTTS ozos Zettu														Ī	
in a coop	n Incan	COL) 682-3946	PRESERVATIVE METHOD		NONE ICE HNO3 HCF	< / /							//		>	Date: Time:	Date: Time:	Date: Trme:	Mold -	4728
				(432)	SHERE) ATRELILI 10 ATEMAN			***	- 12,	glank.			-7,812-		، بيسنور .				- 2	in the second se
4	I OI CUSICO	NEGNIJI	ring St.	Fax	IGER: 200.4		SAMPLE IDENTIFICATION				1	-(⁰		~	*	-(5	Ê) ~	RECEIVED BY: (Signatura)	RECEIVED BY: (Signature)	RECEIVED BY: (Signetura)	RECEIVED BY: (Signature)	S .
	anu vnal	ENVEO	. Big Spring	MIQLANQ, ICXAS	SITE MANAGER		SAMPLE I	(0 <u>5</u> -%)	{			(?)- <u>{</u> ; ; ; .	6,6)	(8-10)	(13-É)	(18-20	(52-EL)	10/13 106				21 0 :
			r	MIQLAN		PROJECT NAME: D = 17-	EVES	56'	Sé 2	SR-2	्र इ	50,2	Se-3	58-3	58-3	58-3	58-J	Date:	Date: Date:	Date:	12me: RECEIVING LARORATORY: Erwininnents Latur de Annesses	X X X
	ed ed		-		 	PRC	COME. WVLBIX	- 20	N		N	1 V	1	2	N	N	N				4 Lines	STATE: PHONE:
ł	LIS SIIS	FIGHLANDER		(432) 682-4559	0.080AAG		LIKE B				2	ž.	32				24.	RELINGUISHED EY: (Signature)	RELINGUISHED BY: (Signatura)	RELENQUISHED BY: (Signature)	ORY: Ervi	CUTY: 2 DUAS STATE
][Analysis	and a start	, 4 4	2) 68.	AME	NO. T	DATE	acha hab	missiné.	in balla	to log by	ahahah	Coline 10 G	ice hu	tedat Inte	[[[]]]	int-ohi-			T BY:	ABORAT	22
A	Ant	~4	τ	(43 ₂	CLIENT NAME:	PROJECT NO'	IAB I.D.	27	5	C.	00	14	12	() ()	L.	2	10	unsine Arts	THEINBATT	SHSINDAIT.	CETVING L	CONTACT:

A. S. wildlife

0	NNENTAL CORP.	Fax (432) 682-3946	PRESERVATIVE PRESE	809, E0.9/L P(1900: 133 1600: 133 1600: 133 1602: 9 1602: 9 1602: 9 1602: 9 1602: 9 1603: 9 1604: 9 1605: 9 1605: 9 1605: 9 1605: 9 1605: 9 1605: 9 1605: 9 1605: 9 1605: 9 1607: 9						RECEIVED BY: (Signeture) Date: SAMPLED BY: (Print & Time: Ti	SAMPLY SEEPED SYL/(SLEED)	SEN OBREATING ONVE	RECEIVED BY: (Signature) (2) (10) (10)	
	5			PROJECT NAME: O - 17	ная	6			56-4 (·	Date: 10/1	Date: Firms	Date:		STATE: TX ZIP:

·

.

2 A. A. A.

a to may a

88. P.M.

a Ballar

uar tudos

Bis and the state

Ser of S

San 8.8.5

4 6. WE

Se 8

Carlo States States

29 80°0 8-

p. f. in

a service and the service of the

Public States

がゆきろ

or: 4		('ohr I				व्य दियाद	.086. (111)	,927, 4061 seame sea s sea s s s s s s s s s s s s s s			~					Date: <u>20115106</u> Time: <u>7200</u>	АКВИЛ 🐇	OTHER:	RUEH Charges	Authorized: Yaz No	
PAGE: 4	RE.				_		608/0 T ⁰ A ⁰ T	609, 809, 603, 809 60.W3 201 60.W3 Vol. RCI								Sen)	(Sheile)	San	PERSON:		
P.,	ANAL	rcle or) vg L	vəli vy By s	RCRA Ween RCRP Wolst RCRA Ween								W BY: (Print &	SALPES SHIPHED BY	DELIVERED	HIGHLANDER CONTACT	Thm Puel	
			900)DCL	·a0	M 910	<i>309/</i>	6220 HVH 1441 6220 70192 8050 70202 8050								AMPLED BY	RAMPE	ENNE		F	
Door sol	אבכחות			Fax (432) 682-3946		PRESERVATIVE LETHOD		NONE ICE HNO3 HCT	$ \sqrt{ } $							Date: Time:	Date: Time:	Date:	1020	4:20	SD-Solid D-Other
		CO CO		(432)		SUSAT) OTULLULI IO HIGMON	تسم	مد زر مان		<u> </u>					i			TULE:	
ۍ د د	Unain of Lusiody	RONMENTAL CORP.	Spring St.	79705		AGER: PLA d		DENTFICATION	- (9	- (6	20) - 20) -					RECEIVED BY: (Signature)	RECEIVED BY: (Signatura)	RECEIVED BY: (Signature)	RECEIVED BY: (Signature) $\left(igcap_{\mathrm{O}} ight)$	DATE IN 13/2/0 T	A-Air SII-Sludgo
ŧ.	and U	ENVIRO	N. Big Spri	and, Texas		The KANAGER	5	SAMPLE IDEN	5 (23-35)	5 (28.30)						4:20			14 of T.V.		E XIZZIN
	kequest	HIGHLANDER	1910 N.	Midland,			PROJECT NAME:	MATRIX COMP. ERAB	S 58-5	59.5		-			 	Date:	Date: Time	Dete:	Time: -	STATE: 7X	100
		VILL		с И И И И	6004	in terrance)	TLE								matura)	gnature)	gnature)		5	EN RECET
	Analysis		4	0777 CO7 (CEF)	407) U02-	CLIENT NANE: Rice Engl	цЧ, с	D. DATE	Policipic	an lot		হ যাব		 _		RELINQUISHED BY: (Stenatura)	Raunquished BY: (Signaturo)	PELINQUISHED BY: (Signature)	RECEIVING LABORATORY:	AUDRESSS: CTTT: & & & C CONTACT:	SAMPLE CONDITION THEN RECEIVED.
7	AI				<u>+</u>	CLIEW R	PROJE	LAB I.D. NUMBER	\$£	77	18	2				RINGUI.	in Burns	ELINGUT	ECETVEN	UDHESS	TIN

Received by OCD: 5/22/2025 12:00:27 AM

6.1.1.60 5.467 (344) 5

1. 1.2 Au 1499.

STREET, ST.

128.8.X.18.

16 and 5 Art

Let "a Be

3. 30 15 4.

C.MARKE

188₁₀, ABC

لا ملا مي دهوه

\$

A. . . 80 8.

و الانتخاطين

Page 46 of 119

Received by OCD: 5/22/2025 12:00:27 AM

Environmental Lab of Texas Variance/ Corrective Action Report- Sample Log-In

	Highlander	
Client:		
Date/ Time:	<u> </u>	
.ab ID # :	105130	_
nitials:	U/	_

Sample Receipt Checklist

l.				Client	Initials
¥1	Temperature of container/ cooler?	Yes	No	3.0 °C	
<u>#2</u>	Shipping container in good condition?	(TE9	No		
<u>#3</u>	Custody Seals intact on shipping container/ cooler?	Yes	No	Not Present	
#4	Custody Seals intact on sample bottles/ container?	Yes	No	Not Present]
#5	Chain of Custody present?	Tes	No		
#5 #6	Sample instructions complete of Chain of Custody?	XES .	No		
#7	Chain of Custody signed when relinquished/ received?	tes	No		
#8	Chain of Custody agrees with sample label(s)?	(es	No	ID written on Cont./ Lid	
#9 #10	Container label(s) legible and intact?	Kes	No	Not Applicable	
#10	Sample matrix/ properties agree with Chain of Custody?	Jos	No		
#11	Containers supplied by ELOT?	Yes	No		
#12	Samples in proper container/ bottle?	(Fes	No	See Below	
#13	Samples properly preserved?	des	No	See Below	
#14	Sample bottles intact?	Yeş	No		
#15	Preservations documented on Chain of Custody?	Yes	No		
#16	Containers documented on Chain of Custody?	Xes	No		
#17	Sufficient sample amount for indicated test(s)?	Yes	No	See Below	
#18	All samples received within sufficient hold time?	Yes	No	See Below	
#19	VOC samples have zero headspace?	Yes	No	Not Applicable	

Variance Documentation

Contact:		Contacted by:	Date/ Time:
Regarding:			
Corrective Action Taker	1:	· · · · · · · · · · · · · · · · · · ·	
Check all that Apply:		See attached e-mail/ fax Client understands and would Cooling process had begun s	•

12.97 7 9.10

時期時間

A CONTRACT

An and the

1000

An and a

L'M L.B.

Alter all and

Ten-star and

5 H 23 K 2

120.000

In an an

Appendix C

a hallow

.

39.48 T.18

2.2348.4

1

and the second

S. 6.5

3. m. -

r st. Batt.

a) definition of

Charles &

SAMPLE LOG

Boring/Well:	SB-1
Project Number:	2644
Client:	Rice Engineering
Site Location:	BD 0-17-1
Location:	Lea County, New Mexico
Total Depth	35
Date Installed:	10/09/06

DEPTH (in feet)	ΟνΜ	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
13-15	25	895	Tan calcareous sand with slight hydrocarbon odor
18-20	0	571	Tan calcareous fine grain sand
23-25	0	212	Tan calcareous fine grain sand
28-30	0	169	Tan calcareous fine grain sand
33-35	0	226	Tan calcareous fine grain sand

Boring completed at 35 feet bgs

10 . 1

ALLE THE

新40-3-543bic

30⁰⁰78'8', 1

برجافا فيتحصب

2 8 . 2 . 2 .

الحرائينية."

. 8 2 20 A.

and milde

SAMPLE LOG

Boring/Well:	SB-2
Project Number:	2644
Client:	Rice Engineering
Site Location:	BD 0-17-1
Location:	Lea County, New Mexico
Total Depth	60
Date Installed:	10/09/06

	DEPTH (in feet)	OVM	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
	13-15	28	1293	Tan calcareous sand with slight hydrocarbon odor
ł	18-20	25	995	Tan calcareous fine grain sand
	23-25	10	210	Tan calcareous fine grain sand
	28-30	2	930	Tan calcareous fine grain sand
	33-35	0	411	Tan calcareous fine grain sand
	38-40	0	621	Tan calcareous fine grain sand
	43-45	0	374	Tan calcareous fine grain sand
	48-50	0	270	Tan calcareous fine grain sand
	53-55	0	266	Tan calcareous fine grain sand
	58-60	0	239	Tan calcareous fine grain sand

Boring completed at 60 feet bgs

5.8 S. 0

and more

1-2-860-1

attan 382 taa

a. S. Auden

ند م^ر د م

والاعد العلا

وويد المعلام

1 m 2

- dates

1. 1 mar

"au Teir

SAMPLE LOG

Boring/Well:	SB-3
Project Number:	2644
Client:	Rice Engineering
Site Location:	BD 0-17-1
Location:	Lea County, New Mexico
Total Depth	40
Date Installed:	10/09/06

DEPTH (in feet)	OVM	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
3-5	2	274	Brown fine grain sand
8-10	0	470	Dark brown clayey sand
13-15	0	615	Dark brown clayey sand
18-20	0	488	Dark brown clayey sand
23-25	0	682	Tan calcareous fine grain sand
28-30	0	441	Tan calcareous fine grain sand
33-35	0	276	Tan calcareous fine grain sand
38-40	0	234	Tan calcareous fine grain sand

Boring completed at 40 feet bgs

" Bart

. . . .

to neto - -

San Lingard

ar Las .

1 . 2 . 2 . N . 2.

B. v R h. F.

1. A.

Sec. Sec.

in the state

the state

SAMPLE LOG

Boring/Well:	SB-4
Project Number:	2644
Client:	Rice Engineering
Site Location:	BD 0-17-1
Location:	Lea County, New Mexico
Total Depth	25
Date Installed:	10/10/06

DEPTH (in feet)	ονΜ	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
3-5	2	348	Tan clayey fine grain sand with no odor or staining
8-10	2	556	Tan calcareous fine grain sand with no odor or staining
13-15	2	255	Tan calcareous fine grain sand with no odor or staining
18-20	2	235	Tan calcareous fine grain sand with no odor or staining
23-25	0	149	Tan calcareous fine grain sand with no odor or staining

Boring completed at 25 feet bgs

" And the sea" o

· 道部 · 陈治

6.5.3

16 32

1012-002-00 S

844 18 x 3-9,

124-20-5

hand ditte for a

10 - 2 - - Sta

.स...टी _{मा} खेरी.

NASAL.

toani. Bhe

St. Land St.

SAMPLE LOG

Boring/Well:	SB-5
Project Number:	2644
Client:	Rice Engineering
Site Location:	BD 0-17-1
Location:	Lea County, New Mexico
Total Depth	35
Date Installed:	10/10/06

DEPTH (in feet)	ΟνΜ	CHLORIDES (in mg/Kg)	SAMPLE DESCRIPTION
13-15	2	834	Tan/brown calcareous fine grain sand with no odor or staining
18-20	2	406	Tan calcareous fine grain sand with no odor or staining
23-25	0	300	Tan calcareous fine grain sand with no odor or staining
28-30	0	236	Tan calcareous fine grain sand with no odor or staining
33-35	0	149	Tan calcareous fine grain sand with no odor or staining

Boring completed at 35 feet bgs

APPENDIX B

Agency Correspondence

From:	SLO Spills
To:	Stuart Hyde; SLO Spills
Cc:	Billy Ginn; Devin Hencmann; Fatima Smith
Subject:	RE: (Notice of Spill) Hilcorp Energy Company - Facility ID fAPP2224169341 - 2/21/2025
Date:	Wednesday, February 26, 2025 9:11:48 AM
Attachments:	image006.png
	image010.png
	image012.png
	image002.png

You don't often get email from spills@nmslo.gov. Learn why this is important

[**EXTERNAL EMAIL**]

Thank you for notifying the NMSLO Environmental Compliance Office (ECO) of the incident or release noted in the subject line above and the potential impact to State Trust Land. Once the release is stopped and contained, your cooperation in completing the subsequent remediation tasks is appreciated:

- 1. Identify compliance requirements for the Cultural Properties Protection (CPP) Rule.
- 2. Identify avoidance, minimization, or mitigation measures for impact to any biologically sensitive areas.
- 3. Apply for a Right of Entry (ROE) for Remediation if any part of the remediation occurs off of the active lease of the responsible party. A site delineation plan and reclamation plan are required for the ROE application. (https://www.nmstatelands.org/resources/forms-and-applications/)
- 4. If the remediation closure report is not submitted within 90 days of discovery of the release, a site delineation plan must be submitted to <u>eco@nmslo.gov</u> for review and approval. (If delineation and remediation happen concurrently, a remediation plan must be submitted to <u>eco@nmslo.gov</u> in place of a site delineation plan.)
- 5. Subsequent reports that must be submitted to ECO include:
 - remediation plan;
 - reclamation plan, if applicable; or
 - remediation with reclamation plan;
 - remediation closure report; or
 - remediation closure report with reclamation activities report;
 - reclamation activities report;
 - final reclamation report, if applicable.

SAMPLING NOTIFICATIONS

Written notification of the confirmation sampling event must be submitted to ECO a minimum of two (2) business days before the sampling event, or as directed by ECO. Please submit notifications to eco@nmslo.gov with the subject line as follows: (*Sampling Notification*) *Company-Location Name* (*API/Incident #)-Date of Incident*.

NMSLO RESOURCES

 RIGHT OF ENTRY FORMS: Rights of Way Forms -<u>https://www.nmstatelands.org/resources/forms-and-applications/</u>

- ECO GUIDANCE DOCUMENTS: Environmental Compliance Office https://www.nmstatelands.org/resources/forms-and-applications/ (PENDING)
- LEASE STATUS MAP: https://mapservice.nmstatelands.org/LandStatus/
- NMSLO OIL & GAS MANUAL: <u>https://www.nmstatelands.org/wp-content/uploads/2023/07/Oil-and-Gas-Manual-2023-_WEB.pdf</u>
- NMSLO LEASE SEARCH: https://secure.slo.state.nm.us/Applications/SLOConnect/

CULTURAL PROPERTIES PROTECTION RULE (19.2.24 NMAC) FOR REMEDIATION AND RECLAMATION ACTIVITIES

- **A.** As soon as possible, when a new release or damage occurs on STL, contact a Cultural Resource Consultant who will:
 - 1. Conduct an Archaeological Records Management System (ARMS) review to determine if any known cultural properties have been previously identified within the remediation area and if the area has been surveyed for cultural resources.
 - 2. Advise as to whether an archaeological monitor should be present during initial containment activities and subsequent remediation efforts.
 - 3. Advise as to whether a full cultural properties survey will be required after containment and before full remediation.
- **B.** A list of cultural resource consultants permitted to conduct work on state lands is maintained here: <u>https://www.nhistoricpreservation.org/programs/permits.html</u>.
- **C.** To learn more about NMSLO's Cultural Properties Protection Rule visit: <u>https://www.nmstatelands.org/divisions/cultural-resources-office/culturalproperties/</u>. CRO can be contacted via email at <u>croinfo@nmslo.gov</u> or call 505-827-5781.

BIOLOGICAL COMPLIANCE & REPORTING

ECO recommends utilizing the resources below to determine if the site activities are occurring in a sensitive or restricted area. Also, when additional assistance is needed, ECO recommends consulting with a qualified third-party biologist for evaluation of potential impacts to threatened, endangered, and sensitive wildlife and plant species, environmentally sensitive areas, surface waters, cave and karst features, and sensitive soils before conducting remediation and reclamation activities.

BIOLOGICAL COMPLIANCE RESOURCES

- New Mexico State Land Office Land Status Map https://mapservice.nmstatelands.org/LandStatus
- U.S. Fish and Wildlife Services Information for Planning and Consultation:

https://ipac.ecosphere.fws.gov/

- BISON-M database: <u>https://bison-m.org/</u>
- New Mexico Department of Game and Fish Environmental Review Tool (ERT): <u>https://nmert.org/content/map</u>
- Open Enviro Map Wetlands: <u>https://gis.web.env.nm.gov/oem/?map=wetlands</u>

Thank you for working with ECO, and your efforts to protect State Trust Land.

Environmental Compliance Office Surface Resources Division

eco@nmslo.gov nmstatelands.org

.....

CONFIDENTIALITY NOTICE - This e-mail transmission, including all documents, files, or previous e-mail messages attached hereto, may contain confidential and/or legally privileged information. If you are not the intended recipient, or a person responsible for delivering it to the intended recipient, you are hereby notified that you must not read this transmission and that any disclosure, copying, printing, distribution, or use of any of the information contained in and/or attached to this transmission is STRICTLY PROHIBITED. If you have received this transmission in error, please immediately notify the sender and delete the original transmission and its attachments without reading or saving in any manner. Thank you.

From: Stuart Hyde <shyde@ensolum.com>
Sent: Saturday, February 22, 2025 7:38 AM
To: SLO Spills <spills@nmslo.gov>
Cc: Billy Ginn <William.Ginn@hilcorp.com>; Devin Hencmann <dhencmann@ensolum.com>; Fatima
Smith <fsmith@ensolum.com>
Subject: [EXTERNAL] (Notice of Spill) Hilcorp Energy Company - Facility ID fAPP2224169341 - 2/21/2025

On behalf of Hilcorp Energy Company, we are reporting the release of 165 barrels of crude oil, of which 160 barrels were recovered, at the State D A CTB site, facility ID fAPP2224169341, Lea County, NM. Attached is the Notification of Release submitted to the NMOCD.

Stuart Hyde, PG (Licensed in WA/TX) Senior Managing Geologist 970-903-1607 Ensolum, LLC in f X

"If you want to go fast, go alone. If you want to go far, go together." - African Proverb

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us>
Sent: Saturday, February 22, 2025 7:28 AM
To: Stuart Hyde <<u>shyde@ensolum.com</u>>
Subject: The Oil Conservation Division (OCD) has accepted the application, Application ID: 434359

[**EXTERNAL EMAIL**]

To whom it may concern (c/o Stuart Hyde for HILCORP ENERGY COMPANY),

The OCD has accepted the submitted *Notification of a release* (NOR), for incident ID (n#) nAPP2505326850, with the following conditions:

When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.

Please reference nAPP2505326850, on all subsequent C-141 submissions and communications regarding the remediation of this release.

NOTE: As of December 2019, NMOCD has discontinued the use of the "RP" number. If you have any questions regarding this application, or don't know why you have received this email, please contact us.

ocd.enviro@state.nm.us

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

From:	OCDOnline@state.nm.us
To:	Fatima Smith
Subject:	The Oil Conservation Division (OCD) has accepted the application, Application ID: 458475
Date:	Monday, May 5, 2025 10:44:06 AM

[**EXTERNAL EMAIL**]

To whom it may concern (c/o Fatima Smith for HILCORP ENERGY COMPANY),

The OCD has received the submitted *Notification for (Final) Sampling of a Release* (C-141N), for incident ID (n#) nAPP2505326850.

The sampling event is expected to take place:

When: 05/07/2025 @ 09:00 **Where:** K-16-21S-37E 0 FNL 0 FEL (32.476833,-103.172027)

Additional Information: Contact PM Fatima Smith, 575-725-1196

Additional Instructions: State D A CTB, coordinates 32.476589, -103.172363

This notification is to alert OCD of sampling that will occur on Wednesday 5/7/2025 through Thursday 5/8/2025.

An OCD representative may be available onsite at the date and time reported. In the absence or presence of an OCD representative, sampling pursuant to 19.15.29.12.D NMAC is required. Sampling must be performed following an approved sampling plan or pursuant to 19.15.29.12.D.(1).(c) NMAC. Should there be a change in the scheduled date and time of the sampling event, then another notification should be resubmitted through OCD permitting as soon as possible.

• Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.

If you have any questions regarding this application, or don't know why you have received this email, please contact us.

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX C

Laboratory Analytical Reports

Received by OCD: 5/22/2025 12:00:27 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Devin Hencmann Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 3/10/2025 2:03:46 PM

JOB DESCRIPTION

State D A CTB 07A1988176

JOB NUMBER

890-7774-1

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 3/10/2025 2:03:46 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

SDG: 07A1988176

Page 63 of 119

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	9
QC Sample Results	10
QC Association Summary	16
Lab Chronicle	18
Certification Summary	19
Method Summary	20
Sample Summary	21
Chain of Custody	22
Receipt Checklists	24

Job ID: 890-7774-1	
△ D A CTB SDG: 07A1988176	
	3
·	
ndicates the analyte was analyzed for but not detected.	5
Qualifier Description	
Surrogate recovery exceeds control limits, high biased.	
ndicates the analyte was analyzed for but not detected.	
Qualifier Description	8
/IS and/or MSD recovery exceeds control limits.	
ndicates the analyte was analyzed for but not detected.	9
	10
These commonly used abbreviations may or may not be present in this report.	
isted under the "D" column to designate that the result is reported on a dry weight basis	
Percent Recovery	
Contains Free Liquid	
Colony Forming Unit	
Contains No Free Liquid	19
Duplicate Error Ratio (normalized absolute difference)	
Dilution Factor	
Decision Level Concentration (Radiochemistry)	
.imit of Detection (DoD/DOE)	
	e D A CTB SDG: 07A1988176 Cualifier Description Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. Cualifier Description Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description MS and/or MSD recovery exceeds control limits. Indicates the analyte was analyzed for but not detected. Cualifier Description Cuter the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Contains Free Liquid Colon Free Liquid Cuter the "D" column to designate that the result is reported on a dry weight basis Percent Recovery Cuter the applicate Error Ratio (normalized absolute difference) Dilution Factor Detection Limit (DoD/DOE) Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample Decision Level Concentration (Radiochemistry) Estimated Detection Limit (DoD/DOE) Limit of Detection Limit (DoD/DOE)

Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit Not Calculated NC

LOQ

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL PRES Presumptive

QC Quality Control RER Relative Error Ratio (Radiochemistry) RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Eurofins Carlsbad

Case Narrative

Job ID: 890-7774-1

Client: Ensolum Project: State D A CTB

Job ID: 890-7774-1

Eurofins Carlsbad

Job Narrative 890-7774-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 3/5/2025 4:41 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 5.8°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: SS01 (890-7774-1), SS02 (890-7774-2) and SS02A (890-7774-3).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: SS01 (890-7774-1). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: SS01 (890-7774-1) and SS02 (890-7774-2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-104808 and analytical batch 880-104836 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 65 of 119

Eurofins Carlsbad

Client Sample Results

Page 66 of 119

Job ID: 890-7774-1 SDG: 07A1988176

Matrix: Solid

5

Lab Sample ID: 890-7774-1

Client Sample ID: SS01 Date Collected: 03/05/25 10:53

Project/Site: State D A CTB

Client: Ensolum

Date Received: 03/05/25 16:41

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	2.16		0.495	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
Toluene	31.8		0.495	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
Ethylbenzene	37.8		0.495	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
m-Xylene & p-Xylene	52.7		0.990	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
o-Xylene	22.6		0.495	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
Xylenes, Total	75.3		0.990	mg/Kg		03/07/25 12:21	03/09/25 10:56	250
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	147	S1+	70 - 130			03/07/25 12:21	03/09/25 10:56	250
1,4-Difluorobenzene (Surr)	89		70 - 130			03/07/25 12:21	03/09/25 10:56	250
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	147		0.990	mg/Kg			03/09/25 10:56	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (G	C)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Fotal TPH	13000		999	mg/Kg			03/07/25 02:37	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	4820		999	mg/Kg		03/06/25 19:57	03/07/25 02:37	20
Diesel Range Organics (Over C10-C28)	8140		999	mg/Kg		03/06/25 19:57	03/07/25 02:37	20
Oil Range Organics (Over C28-C36)	<999	U	999	mg/Kg		03/06/25 19:57	03/07/25 02:37	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	237	S1+	70 - 130			03/06/25 19:57	03/07/25 02:37	20
o-Terphenyl	265	S1+	70 - 130			03/06/25 19:57	03/07/25 02:37	20
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	12.1		9.92	mg/Kg			03/10/25 11:46	1
lient Sample ID: SS02						Lab Sar	nple ID: 890-	7774-2
ate Collected: 03/05/25 10:55							Matri	x: Solic
ate Received: 03/05/25 16:41								
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.497	U	0.497	mg/Kg		03/07/25 12:21	03/09/25 11:17	250
Toluene	7.45		0.497	mg/Kg		03/07/25 12:21	03/09/25 11:17	25

m-Xylene & p-Xylene	12.2	0.994	mg/Kg	03/07/25 12:21	03/09/25 11:17	250
o-Xylene	3.77	0.497	mg/Kg	03/07/25 12:21	03/09/25 11:17	250
Xylenes, Total	16.0	0.994	mg/Kg	03/07/25 12:21	03/09/25 11:17	250
Surrogate	%Recovery Qualifier	Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Qualifier	Limits		Prepared 03/07/25 12:21	Analyzed 03/09/25 11:17	Dil Fac 250

0.497

mg/Kg

03/07/25 12:21

8.90

Eurofins Carlsbad

03/09/25 11:17

Released to Imaging: 6/4/2025 10:17:02 AM

Ethylbenzene

250

Client Sample Results

Job ID: 890-7774-1 SDG: 07A1988176

Matrix: Solid

5

Lab Sample ID: 890-7774-2

Client Sample ID: SS02 Date Collected: 03/05/25 10:55

Date Colle	ected: 03/	05/25 10:55
Date Rece	eived: 03/	05/25 16:41

Project/Site: State D A CTB

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	32.3		0.994	mg/Kg			03/09/25 11:17	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	8150		996	mg/Kg			03/07/25 02:52	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	1780		996	mg/Kg		03/06/25 19:57	03/07/25 02:52	20
(GRO)-C6-C10								
Diesel Range Organics (Over	6370		996	mg/Kg		03/06/25 19:57	03/07/25 02:52	20
C10-C28)								
Oil Range Organics (Over C28-C36)	<996	U	996	mg/Kg		03/06/25 19:57	03/07/25 02:52	20
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	155	S1+	70 - 130			03/06/25 19:57	03/07/25 02:52	20
o-Terphenyl	224	S1+	70 - 130			03/06/25 19:57	03/07/25 02:52	20
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	• • •	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	10.4		10.0	mg/Kg			03/10/25 11:53	1

Client Sample ID: SS02A

Date Collected: 03/05/25 11:55 Date Received: 03/05/25 16:41

Lab Sample ID: 890-7774-3 Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.0992	U	0.0992	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
Toluene	0.106		0.0992	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
Ethylbenzene	0.187		0.0992	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
m-Xylene & p-Xylene	0.461		0.198	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
o-Xylene	0.385		0.0992	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
Xylenes, Total	0.846		0.198	mg/Kg		03/07/25 12:21	03/09/25 11:37	50
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130			03/07/25 12:21	03/09/25 11:37	50
1,4-Difluorobenzene (Surr)	79		70 - 130			03/07/25 12:21	03/09/25 11:37	50

Method: TAL SOP Total BTEX - Tot	al BTEX Calculation									
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Total BTEX	1.14	0.198	mg/Kg			03/09/25 11:37	1			
Method: SW846 8015 NM - Diesel I	Range Organics (DRO) ((GC)								

	unge ergan		·)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	459		50.5	mg/Kg			03/07/25 12:00	1
Method: SW846 8015B NM - Diese	Range Orga	nics (DRO) (G	iC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		03/07/25 11:57	03/07/25 12:00	1
(GRO)-C6-C10								
Diesel Range Organics (Over	459		50.5	mg/Kg		03/07/25 11:57	03/07/25 12:00	1
C10-C28)								

Eurofins Carlsbad

Client Sample Results

Client: Ensolum Project/Site: State D A CTB

Client Sample ID: SS02A

Date Collected: 03/05/25 11:55 Date Received: 03/05/25 16:41

Job ID: 890-7774-1
SDG: 07A1988176

Lab Sample ID: 890-7774-3

Matrix: Solid

5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		03/07/25 11:57	03/07/25 12:00	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane			70 - 130			03/07/25 11:57	03/07/25 12:00	
o-Terphenyl	114		70 - 130			03/07/25 11:57	03/07/25 12:00	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	21.2		10.1	mg/Kg			03/10/25 11:59	

Eurofins Carlsbad

000 7774 4

Page 69 of 119

Job ID: 890-7774-1 SDG: 07A1988176

Prep Type: Total/NA

Prep Type: Total/NA

13

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		E
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-55325-A-1-B MS	Matrix Spike	93	106		
880-55325-A-1-C MSD	Matrix Spike Duplicate	104	102		6
890-7774-1	SS01	147 S1+	89		
890-7774-2	SS02	88	88		
890-7774-3	SS02A	103	79		
LCS 880-104764/1-A	Lab Control Sample	97	103		8
LCSD 880-104764/2-A	Lab Control Sample Dup	105	103		
MB 880-104764/5-A	Method Blank	91	89		Q
MB 880-104801/5-A	Method Blank	91	90		9
Surrogate Legend					

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				Percent Se
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-55308-A-1-F MS	Matrix Spike	92	85	
880-55308-A-1-G MSD	Matrix Spike Duplicate	95	89	
890-7774-1	SS01	237 S1+	265 S1+	
890-7774-2	SS02	155 S1+	224 S1+	
890-7774-3	SS02A	117	114	
890-7778-A-26-B MS	Matrix Spike	103	100	
890-7778-A-26-C MSD	Matrix Spike Duplicate	114	100	
LCS 880-104677/2-A	Lab Control Sample	122	109	
LCS 880-104680/2-A	Lab Control Sample	79	82	
LCSD 880-104677/3-A	Lab Control Sample Dup	125	111	
LCSD 880-104680/3-A	Lab Control Sample Dup	77	79	
MB 880-104677/1-A	Method Blank	91	83	
MB 880-104680/1-A	Method Blank	107	98	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-104764/5-A Matrix: Solid Analysis Batch: 104646						Client Sa	mple ID: Metho Prep Type: ⁻ Prep Batch:	Fotal/NA
	МВ	МВ						
Analyte	Result	Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/07/25 12:21	03/09/25 08:11	1
	МВ	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			03/07/25 12:21	03/09/25 08:11	1
1,4-Difluorobenzene (Surr)	89		70 - 130			03/07/25 12:21	03/09/25 08:11	1
_ Lab Sample ID: LCS 880-104764/1-A					c	lient Sample I	D: Lab Control	Sample
Matrix: Solid						-	Prep Type: 7	Total/NA
Analysis Batch: 104646							Prep Batch:	
•								

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1110		mg/Kg		111	70 - 130	
Toluene	0.100	0.1133		mg/Kg		113	70 - 130	
Ethylbenzene	0.100	0.1090		mg/Kg		109	70 - 130	
m-Xylene & p-Xylene	0.200	0.1964		mg/Kg		98	70 - 130	
o-Xylene	0.100	0.1059		mg/Kg		106	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: LCSD 880-104764/2-A

Matrix: Solid

						Prep Batch: 104764				
Spike	LCSD	LCSD				%Rec		RPD		
Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit		
0.100	0.1113		mg/Kg		111	70 - 130	0	35		
0.100	0.1193		mg/Kg		119	70 - 130	5	35		
0.100	0.1134		mg/Kg		113	70 - 130	4	35		
0.200	0.2012		mg/Kg		101	70 - 130	2	35		
0.100	0.1090		mg/Kg		109	70 - 130	3	35		
	Added 0.100 0.100 0.100 0.100 0.200	Added Result 0.100 0.1113 0.100 0.1193 0.100 0.1134 0.200 0.2012	Added Result Qualifier 0.100 0.1113 0.101 0.1113 0.100 0.1193 0.101 0.1134 0.200 0.2012 0.2012 0.2012	Added Result Qualifier Unit 0.100 0.1113 mg/Kg 0.100 0.1193 mg/Kg 0.100 0.1134 mg/Kg 0.200 0.2012 mg/Kg	Added Result Qualifier Unit D 0.100 0.1113 mg/Kg mg/Kg 0.100 0.1193 mg/Kg 0.100 0.1134 mg/Kg 0.200 0.2012 mg/Kg	Added Result Qualifier Unit D %Rec 0.100 0.1113 mg/Kg 111 0.100 0.1193 mg/Kg 119 0.100 0.1134 mg/Kg 113 0.200 0.2012 mg/Kg 101	Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits 0.100 0.1113 mg/Kg 111 70 - 130 0.100 0.1193 mg/Kg 119 70 - 130 0.100 0.1134 mg/Kg 113 70 - 130 0.200 0.2012 mg/Kg 101 70 - 130	Spike LCSD LCSD %Rec Added Result Qualifier Unit D %Rec Limits RPD 0.100 0.1113 mg/Kg 111 70 - 130 0 0.100 0.1193 mg/Kg 119 70 - 130 5 0.100 0.1134 mg/Kg 113 70 - 130 4 0.200 0.2012 mg/Kg 101 70 - 130 2		

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Lab Sample ID: 880-55325-A-1-B MS

Matrix: Solid

Analysis Batch: 104646									Prep	Batch: 104	764
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Benzene	<0.00200	U	0.100	0.1119		mg/Kg		112	70 - 130		
Toluene	<0.00200	U	0.100	0.1041		mg/Kg		104	70 - 130		

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

5 6 7 Lab Sample ID: 880-55325-A-1-B MS

QC Sample Results

MS MS

0.09236

0.1610

0.08366

Result Qualifier

Unit

mg/Kg

mg/Kg

mg/Kg

Spike

Added

0.100

0.200

0.100

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: State D A CTB

Analysis Batch: 104646

Matrix: Solid

Analyte

o-Xylene

Surrogate

Ethylbenzene

m-Xylene & p-Xylene

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Sample Sample

<0.00200

<0.00399 U

<0.00200 U

%Recovery

Result Qualifier

U

MS MS

93

106

Qualifier

MB MB

Job ID: 890-7774-1 SDG: 07A1988176

7

12 13

Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

%Rec

Limits

70 - 130

70 - 130

70 - 130

%Rec

92

81

84

D

Matrix: Solid Analysis Batch: 104646

Lab Sample ID: 880-55325-A-1-C MSD

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Analysis Batch: 104646					Prep Batch: 10476							
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00200	U	0.100	0.1048		mg/Kg		105	70 - 130	6	35	
Toluene	<0.00200	U	0.100	0.1092		mg/Kg		109	70 - 130	5	35	
Ethylbenzene	<0.00200	U	0.100	0.1003		mg/Kg		100	70 - 130	8	35	
m-Xylene & p-Xylene	<0.00399	U	0.200	0.1798		mg/Kg		90	70 - 130	11	35	÷
o-Xylene	<0.00200	U	0.100	0.09123		mg/Kg		91	70 - 130	9	35	
	MSD	MSD										

	MSD	MSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: MB 880-104801/5-A Matrix: Solid Analysis Batch: 104646

Client Sample ID: Method Blank
Prep Type: Total/NA
Prep Batch: 104801

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
Toluene	<0.00200	U	0.00200	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		03/08/25 10:49	03/08/25 20:11	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130			03/08/25 10:49	03/08/25 20:11	1
1,4-Difluorobenzene (Surr)	90		70 - 130			03/08/25 10:49	03/08/25 20:11	1

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-104677/1-A Matrix: Solid Analysis Batch: 104594			Client Sample ID: Method Blank Prep Type: Total/NA Prep Batch: 104677							
1	IB MB									
Analyte Res	ult Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac			
Gasoline Range Organics <50	.0 U	50.0	mg/Kg		03/06/25 19:56	03/07/25 00:03	1			
(GRO)-C6-C10										

Eurofins Carlsbad

Client Sample ID: Matrix Spike Prep Type: Total/NA Prep Batch: 104764

QC Sample Results

Job ID: 890-7774-1 SDG: 07A1988176

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-10467	7/1 -A								Client Sa	ample ID: Me		
Matrix: Solid										Ргер Тур	be: To	otal/N/
Analysis Batch: 104594										Prep Ba	tch:	0467
		MB MB										
Analyte		sult Qualifier			Unit		D		repared	Analyzed		Dil Fa
Diesel Range Organics (Over	<5	50.0 U	50.0		mg/K	g		03/0	6/25 19:56	03/07/25 00:	03	
C10-C28) Dil Range Organics (Over C28-C36)	- 6	50.0 U	50.0		ma/k	'a		02/0	6/25 19:56	03/07/25 00:	02	
Sil Range Organics (Over C28-C30)		0.0 0	50.0		mg/k	.y		03/0	0/25 19.50	03/07/23 00.	.03	
		MB MB										
Surrogate	%Recov	very Qualifier	Limits					Р	repared	Analyzed	1	Dil Fa
1-Chlorooctane		91	70 - 130					03/0	6/25 19:56	03/07/25 00:	:03	
p-Terphenyl		83	70 - 130					03/0	6/25 19:56	03/07/25 00:	:03	
							~		0			
ab Sample ID: LCS 880-1046	(// 2-A						C	lient	Sample	ID: Lab Con		
Matrix: Solid										Prep Typ		
Analysis Batch: 104594			• "							Prep Ba	tch:	0467
			Spike		LCS			-	~ -	%Rec		
Analyte			Added		Qualifier	Unit		<u>D</u>	%Rec	Limits		
Gasoline Range Organics GRO)-C6-C10			1000	1121		mg/Kg			112	70 - 130		
Diesel Range Organics (Over 210-C28)			1000	1159		mg/Kg			116	70 - 130		
	LCS	LCS										
Surrogate		Qualifier	Limits									
	122		70 - 130									
p-Terphenyl	109		70 - 130									
Matrix: Solid Analysis Batch: 104594			Spike	LCSD	LCSD					Prep Typ Prep Ba %Rec		
Analyte			Added		Qualifier	Unit		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics			1000	1223		mg/Kg		-	122	70 - 130	9	2
GRO)-C6-C10						00						
Diesel Range Organics (Over			1000	1189		mg/Kg			119	70 - 130	2	2
C10-C28)												
	LCSD											
Surrogate		Qualifier	Limits									
1-Chlorooctane	125		70 - 130									
p-Terphenyl	111		70 - 130									
Lab Sample ID: 880-55308-A-1	-F MS								Client S	Sample ID: N	/latrix	Spik
Matrix: Solid	-									Prep Typ		
Analysis Batch: 104594										Prep Ba		
	Sample	Sample	Spike	MS	MS					%Rec		
Analyte	-	Qualifier	Added		Qualifier	Unit		D	%Rec	Limits		
Gasoline Range Organics	<50.0		994	795.9		mg/Kg		. <u> </u>	80	70 - 130		
(GRO)-C6-C10						<i></i>						
Diesel Range Organics (Over C10-C28)	<50.0	U	994	773.8		mg/Kg			78	70 - 130		
	MS	MS										
Surrogate	%Recovery	Qualifier	Limits									
1-Chlorooctane	92		70 - 130									

Eurofins Carlsbad

85

o-Terphenyl

70 - 130
Lab Sample ID: 880-55308-A-1-G MSD

Lab Sample ID: MB 880-104680/1-A

QC Sample Results

MSD MSD

814.1

806.7

Result Qualifier

Unit

mg/Kg

mg/Kg

D

Prepared

03/06/25 19:57

03/06/25 19:57

Unit

mg/Kg

mg/Kg

Spike

Added

994

994

Limits

70 - 130

70 - 130

Client: Ensolum Project/Site: State D A CTB

Analysis Batch: 104594

Gasoline Range Organics

Diesel Range Organics (Over

Analysis Batch: 104612

Gasoline Range Organics

Diesel Range Organics (Over

Matrix: Solid

(GRO)-C6-C10

Analyte

C10-C28)

Surrogate

o-Terphenyl

Analyte

C10-C28)

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Sample Sample

<50.0 U

<50.0 U

95

89

%Recovery

MSD MSD

Qualifier

MB MB

<50.0 U

<50.0 U

Result Qualifier

Result Qualifier

Client Sample ID: M

D

	SDG: 0	7A198	88176	2
				3
ample ID:	Matrix Spik Prep Typ			4
	Prep Bat	tch: 1		5
~ -	%Rec		RPD	Э
<u>%Rec</u>	Limits	RPD	Limit	6
82	70 - 130	2	20	0
81	70 - 130	4	20	7
				8
				9
Client Sa	mple ID: Me			10
	Prep Typ Prep Bat			11
repared	Analyzed		Dil Fac	12
6/25 19:57	03/07/25 01:	15	1	
6/25 19:57	03/07/25 01:	15	1	13
6/25 19:57	03/07/25 01:	15	1	14
repared	Analyzed		Dil Fac	
6/25 19:57	03/07/25 01:	15	1	
6/25 19:57	03/07/25 01:	15	1	
t Sample	ID: Lab Cont Prep Typ Prep Bat	e: To	tal/NA	
0/ D	%Rec			
%Rec	Limits			

Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/K	g	03/0	6/25 19:57	03/07/25 01:15	1
	МВ	МВ								
Surrogate	%Recovery	Qualifier	Limits				P	repared	Analyzed	Dil Fac
1-Chlorooctane	107		70 - 130				03/0	6/25 19:57	03/07/25 01:15	1
o-Terphenyl	98		70 - 130				03/0	6/25 19:57	03/07/25 01:15	1
							Client	Sample	ID: Lab Control	Sample
Matrix: Solid									Prep Type: ⁻	Fotal/NA
Analysis Batch: 104612									Prep Batch:	104680
-			Spike	LCS	LCS				%Rec	
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics			1000	1076	-	mg/Kg		108	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over			1000	1072		mg/Kg		107	70 - 130	
C10-C28)										
	LCS LCS									

RL

50.0

50.0

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	79		70 - 130
o-Terphenyl	82		70 - 130

Lab Sample ID: LCSD 880-104680/3-A Matrix: Solid Analysis Batch: 104612				Clier	nt Sarr	ple ID:		ol Sampl Type: To Batch: 1	tal/NA
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	1000	1032		mg/Kg		103	70 - 130	4	20
(GRO)-C6-C10									
Diesel Range Organics (Over	1000	1001		mg/Kg		100	70 - 130	7	20
C10-C28)									

Eurofins Carlsbad

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

5

7

Lab Sample ID: LCSD 880-1	04680/3-A					Clie	ent Sam	ple ID:	Lab Contro		
Matrix: Solid									Prep T	ype: To	tal/N/
Analysis Batch: 104612									Prep E	Batch: 1	0468
	LCSD										
Surrogate	%Recovery		Limits								
1-Chlorooctane		quanter	70 - 130								
o-Terphenyl	79		70 - 130 70 - 130								
											_
Lab Sample ID: 890-7778-A	-26-B MS							Client	Sample ID		
Matrix: Solid										ype: To	
Analysis Batch: 104612										Batch: 1	0468
	-	Sample	Spike	MS	MS		_		%Rec		
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	995	759.5		mg/Kg		76	70 - 130		
Diesel Range Organics (Over	<49.9	U	995	719.4		mg/Kg		72	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	103		70 - 130								
o-Terphenyl	100		70 - 130								
Lab Sample ID: 890-7778-A	26-C MSD						liont Sa	molo IF): Matrix Sp	oiko Duu	licat
Matrix: Solid	20-0 1100									ype: To	
Analysis Batch: 104612										Batch: 1	
,, ,	Sample	Sample	Spike	MSD	MSD				%Rec		RPI
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics	<49.9		995	733.2		mg/Kg		74	70 - 130	4	2
(GRO)-C6-C10											
Discol Demons Own 1 (O						ma/ka		70	70 - 130	4	2
Diesei Range Organics (Over	<49.9	U	995	692.4		mg/Kg		10		4	2
	<49.9	U	995	692.4		ilig/itg		10	10 - 100	4	2
		U MSD	995	692.4		ing/kg		10		4	2
C10-C28)			995 Limits	692.4		iiig/itg		10		4	2
C10-C28) Surrogate	MSD	MSD		692.4		nig/rtg		70		4	2
C10-C28) Surrogate 1-Chlorooctane	MSD %Recovery	MSD	Limits	692.4		nigrog		70		4	2
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	MSD 	MSD Qualifier	Limits 70 - 130	692.4		ilig/kg				4	2
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl	MSD 	MSD Qualifier	Limits 70 - 130	692.4							
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Lab Sample ID: MB 880-104	MSD %Recovery 114 100 Ion Chromat	MSD Qualifier	Limits 70 - 130	692.4					ample ID:	Method	Blan
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Lab Sample ID: MB 880-104	MSD %Recovery 114 100 Ion Chromat	MSD Qualifier	Limits 70 - 130	692.4					ample ID:		Blanl
C10-C28) Surrogate 1-Chlorooctane o-Terphenyl lethod: 300.0 - Anions, Lab Sample ID: MB 880-104 Matrix: Solid	MSD %Recovery 114 100 Ion Chromat	MSD Qualifier	Limits 70 - 130	692.4					ample ID:	Method	Blanl
Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane o-Terphenyl Iethod: 300.0 - Anions, Lab Sample ID: MB 880-104 Matrix: Solid Analysis Batch: 104836	MSD %Recovery 114 100 Ion Chromat	MSD Qualifier	Limits 70 - 130	692.4			D P		ample ID:	Method	Blanl

Client Sample ID: Lab Control Sample Prep Type: Soluble

03/10/25 08:55

Analysis Batch: 104836							
	Spil	e LCS	LCS			%Rec	
Analyte	Adde	d Result	Qualifier Ur	nit D	%Rec	Limits	
Chloride	25	0 255.0	m	g/Kg	102	90 - 110	

10.0

mg/Kg

<10.0 U

Eurofins Carlsbad

Lab Sample ID: LCS 880-104808/2-A

Chloride

Matrix: Solid

Client: Ensolum

Project/Site: State D A CTB

Job ID: 890-7774-1 SDG: 07A1988176

Method: 300.0 - Anions, Ion Chromatography (Continued)

_ Lab Sample ID: LCSD 880-104808/3-						Clie	nt Sam	nle ID:	Lab Contro	l Samni	
Matrix: Solid	^					Oller	in Jan	ipie ib.		Type: Se	
Analysis Batch: 104836									iiop	.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	orabio
· ······			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	248.3		mg/Kg		99	90 - 110	3	20
- Lab Sample ID: 880-55382-A-5-B MS	5							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: So	oluble
Analysis Batch: 104836											
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	2590	F1	2500	5649	F1	mg/Kg		122	90 _ 110		
_ Lab Sample ID: 880-55382-A-5-C MS	SD					CI	ient Sa	ample IC): Matrix S	oike Dup	olicate
Matrix: Solid										Type: So	
Analysis Batch: 104836											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	2590	F1	2500	5671	F1	mg/Kg		123	90 - 110	0	20

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: State D A CTB

5

8 9

Job ID: 890-7774-1 SDG: 07A1988176

5035

5035

5035

GC VOA

Analysis Batch: 104646

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7774-1	SS01	Total/NA	Solid	8021B	104764
390-7774-2	SS02	Total/NA	Solid	8021B	104764
390-7774-3	SS02A	Total/NA	Solid	8021B	104764
MB 880-104764/5-A	Method Blank	Total/NA	Solid	8021B	104764
//B 880-104801/5-A	Method Blank	Total/NA	Solid	8021B	104801
CS 880-104764/1-A	Lab Control Sample	Total/NA	Solid	8021B	104764
CSD 880-104764/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	104764
80-55325-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	104764
380-55325-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	104764
rep Batch: 104764					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
390-7774-1	SS01	Total/NA	Solid	5035	
390-7774-2	SS02	Total/NA	Solid	5035	
390-7774-3	SS02A	Total/NA	Solid	5035	
/IB 880-104764/5-A	Method Blank	Total/NA	Solid	5035	
_CS 880-104764/1-A	Lab Control Sample	Total/NA	Solid	5035	

880-55325-A-1-C MSD Prep Batch: 104801

LCSD 880-104764/2-A

880-55325-A-1-B MS

Lab Control Sample Dup

Matrix Spike Duplicate

Matrix Spike

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
MB 880-104801/5-A	Method Blank	Total/NA	Solid	5035	

Total/NA

Total/NA

Total/NA

Solid

Solid

Solid

Analysis Batch: 104899

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7774-1	SS01	Total/NA	Solid	Total BTEX	
890-7774-2	SS02	Total/NA	Solid	Total BTEX	
890-7774-3	SS02A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 104594

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7774-1	SS01	Total/NA	Solid	8015B NM	104677
890-7774-2	SS02	Total/NA	Solid	8015B NM	104677
MB 880-104677/1-A	Method Blank	Total/NA	Solid	8015B NM	104677
LCS 880-104677/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	104677
LCSD 880-104677/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	104677
880-55308-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	104677
880-55308-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	104677

Analysis Batch: 104612

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7774-3	SS02A	Total/NA	Solid	8015B NM	104680
MB 880-104680/1-A	Method Blank	Total/NA	Solid	8015B NM	104680
LCS 880-104680/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	104680
LCSD 880-104680/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	104680
890-7778-A-26-B MS	Matrix Spike	Total/NA	Solid	8015B NM	104680
890-7778-A-26-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	104680

Eurofins Carlsbad

QC Association Summary

Client: Ensolum Project/Site: State D A CTB

Prep Batch: 104677

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7774-1	SS01	Total/NA	Solid	8015NM Prep	
890-7774-2	SS02	Total/NA	Solid	8015NM Prep	
MB 880-104677/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
_CS 880-104677/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
CSD 880-104677/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-55308-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
380-55308-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	
	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
ab Sample ID	Client Sample ID SS02A	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
ep Batch: 104680 .ab Sample ID .990-7774-3 //B 880-104680/1-A					Prep Batch
.ab Sample ID 90-7774-3 /IB 880-104680/1-A	SS02A	Total/NA	Solid	8015NM Prep	Prep Batch
ab Sample ID 90-7774-3 /IB 880-104680/1-A CS 880-104680/2-A	SS02A Method Blank	Total/NA Total/NA	Solid Solid	8015NM Prep 8015NM Prep	Prep Batch
-ab Sample ID 390-7774-3	SS02A Method Blank Lab Control Sample	Total/NA Total/NA Total/NA	Solid Solid Solid	8015NM Prep 8015NM Prep 8015NM Prep	Prep Batch

Analysis Batch: 104723

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-7774-1	SS01	Total/NA	Solid	8015 NM		
890-7774-2	SS02	Total/NA	Solid	8015 NM		
890-7774-3	SS02A	Total/NA	Solid	8015 NM		

HPLC/IC

Leach Batch: 104808

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7774-1	SS01	Soluble	Solid	DI Leach	
890-7774-2	SS02	Soluble	Solid	DI Leach	
890-7774-3	SS02A	Soluble	Solid	DI Leach	
MB 880-104808/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-104808/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-104808/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-55382-A-5-B MS	Matrix Spike	Soluble	Solid	DI Leach	
880-55382-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 104836

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-7774-1	SS01	Soluble	Solid	300.0	104808
890-7774-2	SS02	Soluble	Solid	300.0	104808
890-7774-3	SS02A	Soluble	Solid	300.0	104808
MB 880-104808/1-A	Method Blank	Soluble	Solid	300.0	104808
LCS 880-104808/2-A	Lab Control Sample	Soluble	Solid	300.0	104808
LCSD 880-104808/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	104808
880-55382-A-5-B MS	Matrix Spike	Soluble	Solid	300.0	104808
880-55382-A-5-C MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	104808

Page 77 of 119

Job ID: 890-7774-1 SDG: 07A1988176

5

9

Job ID: 890-7774-1 SDG: 07A1988176

Lab Sample ID: 890-7774-1 Matrix: Solid

Lab Sample ID: 890-7774-2

Lab Sample ID: 890-7774-3

Matrix: Solid

Matrix: Solid

Date Collected: 03/05/25 10:53 Date Received: 03/05/25 16:41

Project/Site: State D A CTB

Client Sample ID: SS01

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	104764	03/07/25 12:21	MNR	EET MID
Total/NA	Analysis	8021B		250	5 mL	5 mL	104646	03/09/25 10:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			104899	03/09/25 10:56	AJ	EET MID
Total/NA	Analysis	8015 NM		1			104723	03/07/25 02:37	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	104677	03/06/25 19:57	EL	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	104594	03/07/25 02:37	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	104808	03/09/25 09:08	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	104836	03/10/25 11:46	СН	EET MID

Client Sample ID: SS02

Date Collected: 03/05/25 10:55

Date Received: 03/05/25 16:41

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	104764	03/07/25 12:21	MNR	EET MID
Total/NA	Analysis	8021B		250	5 mL	5 mL	104646	03/09/25 11:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			104899	03/09/25 11:17	AJ	EET MID
Total/NA	Analysis	8015 NM		1			104723	03/07/25 02:52	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	104677	03/06/25 19:57	EL	EET MID
Total/NA	Analysis	8015B NM		20	1 uL	1 uL	104594	03/07/25 02:52	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	104808	03/09/25 09:08	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	104836	03/10/25 11:53	СН	EET MID

Client Sample ID: SS02A Date Collected: 03/05/25 11:55

Date Received: 03/05/25 16:41

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	104764	03/07/25 12:21	MNR	EET MID
Total/NA	Analysis	8021B		50	5 mL	5 mL	104646	03/09/25 11:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			104899	03/09/25 11:37	AJ	EET MID
Total/NA	Analysis	8015 NM		1			104723	03/07/25 12:00	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	104680	03/07/25 11:57	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	104612	03/07/25 12:00	ТКС	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	104808	03/09/25 09:08	SMC	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	104836	03/10/25 11:59	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Ensolum Project/Site: State D A CTB

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date
exas	NELAP	•	T104704400	06-30-25
for which the agency do	bes not offer certification.	·	ied by the governing authority. This lis	t may include analytes
• •		the laboratory is not certif	ied by the governing authority. This list	t may include analytes
for which the agency do	bes not offer certification.	·		t may include analytes

10

Job ID: 890-7774-1

SDG: 07A1988176

Eurofins Carlsbad

Client: Ensolum Project/Site: State D A CTB Job ID: 890-7774-1 SDG: 07A1988176

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency		
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ed = TestAmerica Laboratories, Standard Operating Procedure	ition, November 1986 And its Updates.	
Laboratory R			
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Sample Summary

Client: Ensolum Project/Site: State D A CTB Job ID: 890-7774-1 SDG: 07A1988176

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
890-7774-1	SS01	Solid	03/05/25 10:53	03/05/25 16:41
890-7774-2	SS02	Solid	03/05/25 10:55	03/05/25 16:41
890-7774-3	SS02A	Solid	03/05/25 11:55	03/05/25 16:41

		4				- mon-		that has a
		2	1. VI VE		and and	en l		202
Received by: (Signature) Date/Time		Relinquished by: (Signature)	Date/Time	ature)	Received by: (Signature)	Rece	y: (Signature)	Relinquished by: (Signature)
enforced unless previously negotiated.	will be enforced unles	Xenco, but not analyzed. These terms will be	of Eurofins Xenco. A minimum charge of \$85.00 will be applied to each project and a charge of \$5 for each sample submitted to Eurofins Xenco, but not ar	harge of \$5 for each sai	each project and a	will be applied to	nimum charge of \$85.00	rofins Xenco. A mi
rms and conditions s beyond the control	nd subcontractors. It assigns standard terms and conditions ant if such losses are due to circumstances beyond the contro		Notice: Signature of this document and relinquishment of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates of samples constitutes a valid purchase order from client company to Eurofins Xenco, its affiliates of samples and shall not assume any responsibility for any losses or expenses incurred by the client company to Eurofins Xenco, its affiliates of samples and shall not assume any responsibility for any losses or expenses incurred by the client company to Eurofins Xenco, its affiliates of samples and shall not assume any responsibility for any losses or expenses incurred by the client company to Eurofins Xenco, its affiliates of the client company to Eurofine Xenco, its affiliates of the context of	purchase order from clie ume any responsibility fo	constitutes a valid	the cost of samples	document and relinquis	e: Signature of this vice. Eurofins Xer
Hg: 1631 / 245.1 / 7470 / 7471	u Pb Mn Mo Ni Se Ag TI U	d Cr Co Cu Pb Mn Mo	A Sb As Ba Be Cd Cr Co C	TCLP / SPLP 6010: BRCRA	TCLP / S	analyzed	Circle Method(s) and Metal(s) to be analyzed	le Method(s) a
	Mg Mn Mo Ni K Se	Cd Ca Cr Co Cu Fe Pb	Al Sb As Ba Be B	8RCRA 13PPM Texas 11 A	8RCRA 13P	20:	010 200.8 / 6020:	Total 200.7 / 6010
						-		
			_		1	_		
			_			1		
			N N	9'G	125 1125	5011 3.5.25	A	2055
			N N N	0.5 (3	25 1055	811 352		2055
			K A X	0.5 0	1	-		1055
				- Comp	4			
Sample Comments			Cont Chi TPH BT		Time	Matrix Date		Sample Identification
NaUH+Ascorbic Acid: SAPC			lori 1 EX	5.C	Corrected Temperature:	Correcte		Total Containers:
Zn Acetate+NaOH: Zn				60	Temperature Reading:	K/A Tempera	als: Yes No	Sample Custody Seals:
Na ₂ S ₂ O ₃ : NaSO ₃			-		Correction Factor:	N/A) Correction		Cooler Custody Seals:
NaHSO4: NABIS			EP.	TN record 7	Thermometer ID:	No Thermor	(Yeas	Samples Received Intact:
H ₃ PO ₄ : HP			43	(Yes No	No Wet Ice:	Ves	IPT Temp Blank:	SAMPLE RECEIPT
H ₂ SO ₄ : H ₂ NaOH: Na			_	the lab, if received by 4:3upm	the lab, if re	}-		PO#:
				TAT starts the day received by	TAT starts th	LEXICY	JOSHUN LEXE	Sampler's Name:
Cool: Cool MeOH: Me					GIN Due Date:	0-103172361	32,4765720	Project Location:
None: NO DI Water: H ₂ O			Code (200 (-Car)		Routine	5176	07A 1988176	Project Number:
Preservative Codes	UEST	ANALYSIS REQUEST		Turn Around	Hun	DACTB	State D	Project Name:
	Deliverables: E	an@ensolum.com	Censolum.com.kthomason@ensolum	Thomas	1196 Email:	575 725 11	337 257 8307	Phone:
800-7774 Chain of Custody	Reporting: Levi	NOTIX VI VI	Above	City, State ZIP:		1220	Carlsbad, NM 88220	City, State ZIP:
	State of Proje		-	Address:		arks Hwy	3122 National Parks Hwy	Address:
	Program: UST		+1.1Cor P	Company Name:			Ensolum LLC	Company Name:
		(MM) (P)	114	Bill to: (if different)	2 Simith	er Fatimon	Tacoma Morrissey	Project Manager:
www.xenco.com Page of			6 V) - Cr			- P	4	
		ock, TX (806) 794-1296 ad, NM (575) 988-3199	EL Paso, TX (915) 585-3443, Lubbock, TX (806) 794-1296 Hobbs, NM (575) 392-7550, Carlsbad, NM (575) 988-3199	EL Paso, Hobbs, N		Xenco	Xei	
Work Order No:	٤	as, TX (214) 902-0300 onio, TX (210) 509-3334	Houston, TX (281) 240-4200, Dallas, TX (214) 902-0300 Midland, TX (432) 704-5440, San Antonio, TX (210) 509-3334	Midland, T)	Testing	Environment Testing		

3/10/2025

6

Page 82 of 119

Received by OCD: 5/22/2025 12:00:27 AM

Eurofins Carlsbad 1089 N Canal St. Carlsbad, NM 88220 Phone: 575-988-3199 Fax: 575-988-3199	0	Chain of Custody Record	of Cus	tody F	Rec	or	<u>u</u>						Sector.									1	🔅 eurofins	ura	ofi	ns		E	IVIT	ino.	me	int	T	es	Environment Testing
Client Information (Sub Contract Lab)	Sampler: N/A			Lab PM: Kramel	Lab PM: Kramer, Jessica	lessi	8				- 1			Carri	Carrier Tracking No(s): N/A	acki	N DL	(s)c				<u>@ 0</u>	COC No: 890-4694.1	1 69	4.										
	Phone: N/A			E-Mail: Jessic	E-Mail: Jessica.Kramer@et.eurofinsus.com	rame	®e	eu	rofin	ISUS.	com			Stat	State of Origin: New Mexico	exic Xic	0 -					ק ק	Page: Page 1 of 1	-	Ĭ1										
Company: Eurofins Environment Testing South Centr					Accre	Accreditations Required (See note): NELAP - Texas	Tex:	aguire	ed (Se	e no	e);			[<u>ल</u> ्ल ह	Job #: 890-7774-1	11	1										
Address: 1211 W. Florida Ave,	Due Date Requested: 3/11/2025	÷								A	nalysis Requested	ŝi	ĝ	ue	ŧ I	<u>۳</u>							Preservation Codes:	ĩ	tion	ត្ត	ge	<u> %</u>							
City: Midland	TAT Requested (days):	ys): N/A																			1	1.00													
State, Zip: TX, 79701						трн															1224														
Phone: 432-704-5440(Tel)	PO #)	D) Full			le								_				-30														
Email: N/A	WO #					_				EX	_	_					_				8														
Project Name: state D A CTB	Project #: 89000102									OD) B											tainer														
Site: N/A	SSOW#							D/D/ /		Calc (N	v										of cor		Other: N/A												
			Sample Type	Matrix (w=water, S=colid	Filtered	MOD_NM/8	MOD_Calc		DRGFM_28	8/5035FP_0	BTEX_GC										Number														
Sample Identification - Client ID (Lab ID)	Sample Date	Time	(G=grab)	BT=Tissue, A=Air	Fiel				-	8021	Tota					-					Tot			Sp	eci.	all	ns	E.	E.	19	A/s	lot l	e		Special Instructions/Note:
	X	X	Preserva	Preservation Code:	X			-					13		1	-			-		X	P				M	V	11	A	11	III	11		1	
SS01 (890-7774-1)	3/5/25	10:53 Mountain	G	Solid		×	×		×	×	×					_																			
SS02 (890-7774-2)	3/5/25	10:55 Mountain	G	Solid		×		×	×	×	×											-													
SS02A (890-7774-3)	3/5/25	11:55 Mountain	G	Solid		×		×	- ×	×	_ ×							_			-														
									_												10 1000													1	
																					2012	Constant of the												1	
																					663 690														
laboratory does not currently maintain accreditation in the State of Origin listed above for analysis/test/matrix being analyzed, the samples must be shipped back to the Eurofins Environment Testing South Central, LLC laboratory or other instructions will be provided. Any changes to accreditation status should be brought to Eurofins Environment Testing South Central, LLC attention immediately. If all requested accreditations are current to date, return the signed Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC.	sted above for analysis/tests/r uth Central, LLC attention imr	matrix being an mediately. If al	nalyzed, the sa Il requested au	amples must b ccreditations a	e shipp re curre	nt to d	ate, n	he Eu	the s	igned	Chai	n of C	usto	Jy att	estin	g to	said	comp	lianc	e to	uro	fins	Envi	ronn	nent	Tes	sting	1 So	ut i	Cei	ntra	al, L	LLC	68	wronment Testing South Central, LLC laboratory or other instructions will be provided. Any changes ad Chain of Custody attesting to said compliance to Eurofins Environment Testing South Central, LLC
Possible Hazard Identification Unconfirmed						Sample Disposal (A	Retu	le Disposal (A Retum To Clien	ro C		fee may be assessed if samples	-Jay		assessed if san Disposal By Lab	ise(BV	san	ple		∐°	Arc	are retained longer	7 0	nge.	ŝ	than	1	1 month) Mon	nth) Months	10 4	Ň				.,
Deliverable Requested: I, II, III, IV, Other (specify)	Primary Deliverable Rank: 2	ble Rank: 2			0	Special Instructions/QC Requirements:	al Ins	struc	tions	Ő	Red	quire	mer	ts:		1														1	1				
Empty-Kit Relinquished by:		Date:			Time:										Me	pod	of St	Method of Shipment:	â																
Refinuished by:	Date/Time:	163	0 9	Company Company		20 20	Received by: Received by:	d by	h		N	NX	NK	N	10			Date/Time	Date/Time:	22		30	1	2	2	0	-	ទី ទី	Company	Ϋ́Υ Ϋ́Γ					
Relinquished by:	Date/Time:			Company		Re	Received by:	d by:										Date/Time:	îme									S S	Company	Ţ		1 1		1	
Custody Seals Intact: Custody Seal No.: ∆ Yes ∆ No						- 8	Cooler Temperature(s)	emp	eratur	-	°C and Other Remarks:	0 [±]	er Re	nark														1				1			
																												•		;				۱	

Ver: 10/10/2024

5

14

Job Number: 890-7774-1 SDG Number: 07A1988176

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 7774 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 7774 List Number: 2 Creator: Laing, Edmundo

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Job Number: 890-7774-1 SDG Number: 07A1988176

List Source: Eurofins Midland List Creation: 03/06/25 08:45 PM

Received by OCD: 5/22/2025 12:00:27 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Fatima Smith Ensolum 601 N. Marienfeld St. Suite 400 Midland, Texas 79701 Generated 5/9/2025 1:44:16 PM

JOB DESCRIPTION

State D A CTB 07A1988176

JOB NUMBER

890-8134-1

FOR Smith solum eld St. e 400 79701 5 6

Eurofins Carlsbad 1089 N Canal St. Carlsbad NM 88220

See page two for job notes and contact information

Eurofins Carlsbad

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 5/9/2025 1:44:16 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Carlsbad is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 88 of 119

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	18
Certification Summary	20
Method Summary	21
Sample Summary	22
Chain of Custody	23
Receipt Checklists	24

Definitions/Glossary

Client: Ensolum Project/Site: State D A CTB Job ID: 890-8134-1

Project/Site: Sta	ate D A CTB	SDG: 07A1988176	
Qualifiers			3
GC VOA Qualifier	Qualifier Description		4
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		8
Glossary			
Abbreviation	These commonly used abbreviations may or may not be present in this report.		9
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		4.0
DL	Detection Limit (DoD/DOE)		13
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
MDL	Method Detection Limit		
ML	Minimum Level (Dioxin)		
MPN	Most Probable Number		
MQL	Method Quantitation Limit		
NC	Not Calculated		
ND	Not Detected at the reporting limit (or MDL or EDL if shown)		
NEG	Negative / Absent		
POS	Positive / Present		
PQL	Practical Quantitation Limit		
PRES	Presumptive		
QC	Quality Control		

TEQ Toxicity Equivalent Quotient (Dioxin)

Relative Percent Difference, a measure of the relative difference between two points

Reporting Limit or Requested Limit (Radiochemistry)

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

TNTC Too Numerous To Count

RER

RPD

TEF

RL

Case Narrative

Job ID: 890-8134-1

Client: Ensolum Project: State D A CTB

Job ID: 890-8134-1

Eurofins Carlsbad

Job Narrative 890-8134-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 5/7/2025 3:11 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.8°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH01 (890-8134-1), BH01A (890-8134-2), BH02 (890-8134-3), BH02A (890-8134-4), BH03 (890-8134-5) and BH03A (890-8134-6).

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-109696/20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The surrogate recovery for the blank associated with preparation batch 880-109662 and analytical batch 880-109714 was outside the upper control limits.

Method 8015MOD_NM: The method blank for preparation batch 880-109662 and analytical batch 880-109714 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Page 90 of 119

Eurofins Carlsbad

Job ID: 890-8134-1 SDG: 07A1988176

Client Sample ID: BH01

Date Collected: 05/07/25 09:58 Date Received: 05/07/25 15:11

Project/Site: State D A CTB

Sample Depth: 0.5

Client: Ensolum

Lab Sample ID: 890-8134-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
Kylenes, Total	<0.00400	U	0.00400	mg/Kg		05/07/25 15:35	05/08/25 18:03	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	118		70 - 130			05/07/25 15:35	05/08/25 18:03	1
1,4-Difluorobenzene (Surr)	84		70 - 130			05/07/25 15:35	05/08/25 18:03	1
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400	mg/Kg			05/08/25 18:03	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Fotal TPH	<50.1	U	50.1	mg/Kg			05/08/25 23:11	1
Mathadi SW046 90455 NM Dia								
Method: SW846 8015B NM - Dies Analyte		Qualifier	(GC) RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1	mg/Kg		05/07/25 14:33	05/08/25 23:11	1
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.1	U	50.1	mg/Kg		05/07/25 14:33	05/08/25 23:11	1
C10-C28) Oil Range Organics (Over C28-C36)	<50.1	U	50.1	mg/Kg		05/07/25 14:33	05/08/25 23:11	1
		0				00,01,20 1100	00,00,20 20111	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	96		70 - 130			05/07/25 14:33	05/08/25 23:11	1
o-Terphenyl	87		70 - 130			05/07/25 14:33	05/08/25 23:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	99.0		9.96	mg/Kg			05/08/25 13:01	1
lient Sample ID: BH01A						Lab Sar	nple ID: 890-	8134-2
ate Collected: 05/07/25 10:52							Matri	x: Solid
ate Received: 05/07/25 15:11								
ample Depth: 5								
Method: SW846 8021B - Volatile	Organic Comp	ounde (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200		0.00200	mg/Kg	— -	05/07/25 15:35	05/08/25 18:23	1
	0.00200	-	0.00200			10.00	10,00,10 10.20	
Toluene	<0 00200	U	0.00200	ma/Ka		05/07/25 15:35	05/08/25 18:23	1
Toluene Ethylbenzene	<0.00200 <0.00200		0.00200	mg/Kg mg/Kg		05/07/25 15:35 05/07/25 15:35	05/08/25 18:23 05/08/25 18:23	

0.00200 Ethylbenzene <0.00200 U mg/Kg 05/07/25 15:35 05/08/25 18:23 1 m-Xylene & p-Xylene <0.00399 U 0.00399 mg/Kg 05/07/25 15:35 05/08/25 18:23 1 o-Xylene <0.00200 U 0.00200 05/07/25 15:35 05/08/25 18:23 mg/Kg 1 Xylenes, Total <0.00399 U 0.00399 mg/Kg 05/07/25 15:35 05/08/25 18:23 1 Surrogate %Recovery Qualifier Limits Prepared Dil Fac Analyzed 4-Bromofluorobenzene (Surr) 118 70 - 130 05/07/25 15:35 05/08/25 18:23 1

Eurofins Carlsbad

Client Sample Results

Job ID: 890-8134-1 SDG: 07A1988176

Lab Sample ID: 890-8134-2

Lab Sample ID: 890-8134-3

Matrix: Solid

Client Sample ID: BH01A

Date Collected: 05/07/25 10:52 Date Received: 05/07/25 15:11

Project/Site: State D A CTB

Sample Depth: 5

Client: Ensolum

Method: SW846 8021B - Vol	atile Organic Compounds	(GC) (Continued)

Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1,4-Difluorobenzene (Surr)	84		70 - 130			05/07/25 15:35	05/08/25 18:23	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399	mg/Kg			05/08/25 18:23	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
	<50.2		50.2	mg/Kg			05/08/25 23:26	-
Total TPH : - Method: SW846 8015B NM - Dies				ing/itg			00,00,20 20.20	
				ing/itg			00,00,20 20.20	
: Method: SW846 8015B NM - Dies	sel Range Orga Result	nics (DRO) Qualifier	(GC)	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	sel Range Orga	nics (DRO) Qualifier	(GC)		<u>D</u>	Prepared 05/07/25 14:33		Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Orga Result <50.2	nics (DRO) Qualifier U	(GC) <u>RL</u> 50.2	Unit mg/Kg	<u>D</u>	05/07/25 14:33	Analyzed 05/08/25 23:26	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result	nics (DRO) Qualifier U	(GC)	Unit	<u> </u>	·	Analyzed	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result <50.2 <50.2	nics (DRO) Qualifier U	(GC) <u>RL</u> 50.2 50.2	Unit mg/Kg mg/Kg	<u>D</u>	05/07/25 14:33 05/07/25 14:33	Analyzed 05/08/25 23:26 05/08/25 23:26	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result <50.2	nics (DRO) Qualifier U	(GC) <u>RL</u> 50.2	Unit mg/Kg	<u>D</u>	05/07/25 14:33	Analyzed 05/08/25 23:26	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	sel Range Orga Result <50.2 <50.2	nics (DRO) Qualifier U U	(GC) <u>RL</u> 50.2 50.2	Unit mg/Kg mg/Kg	<u>D</u>	05/07/25 14:33 05/07/25 14:33	Analyzed 05/08/25 23:26 05/08/25 23:26	Dil Fa
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	sel Range Orga <u>Result</u> <50.2 <50.2 <50.2	nics (DRO) Qualifier U U	(GC) <u>RL</u> 50.2 50.2 50.2	Unit mg/Kg mg/Kg	<u>D</u>	05/07/25 14:33 05/07/25 14:33 05/07/25 14:33	Analyzed 05/08/25 23:26 05/08/25 23:26 05/08/25 23:26	

Method: EPA 300.0 - Anions, Ion C	hromatography - So	luble					
Analyte	Result Qualifier	r RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	174	9.92	mg/Kg			05/08/25 13:08	1

Client Sample ID: BH02

Date Collected: 05/07/25 10:08 Date Received: 05/07/25 15:11 Sample Depth: 0.5

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Benzene <0.00201 U 0.00201 mg/Kg 05/07/25 15:35 05/08/25 18:44 Toluene <0.00201 U 0.00201 05/07/25 15:35 05/08/25 18:44 mg/Kg 1 Ethylbenzene <0.00201 U 0.00201 mg/Kg 05/07/25 15:35 05/08/25 18:44 0.00402 05/07/25 15:35 05/08/25 18:44 m-Xylene & p-Xylene <0.00402 U mg/Kg 1 o-Xylene <0.00201 U 0.00201 mg/Kg 05/07/25 15:35 05/08/25 18:44 1 Xylenes, Total <0.00402 U 0.00402 mg/Kg 05/07/25 15:35 05/08/25 18:44 1 %Recovery Qualifier Limits Dil Fac Surrogate Prepared Analvzed 109 70 - 130 05/07/25 15:35 4-Bromofluorobenzene (Surr) 05/08/25 18:44 1 1,4-Difluorobenzene (Surr) 86 70 - 130 05/07/25 15:35 05/08/25 18:44 1 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte **Result Qualifier** RL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00402 U 0.00402 05/08/25 18:44 mg/Kg 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac Total TPH <49.7 U 49.7 mg/Kg 05/08/25 23:42 1

Eurofins Carlsbad

Page 92 of 119

Matrix: Solid

Client Sample Results

Job ID: 890-8134-1 SDG: 07A1988176

Matrix: Solid

Lab Sample ID: 890-8134-3

Lab Sample ID: 890-8134-4

Matrix: Solid

Client Sample ID: BH02

Project/Site: State D A CTB

Date Collected: 05/07/25 10:08 Date Received: 05/07/25 15:11

Sample Depth: 0.5

Client: Ensolum

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.7	U	49.7	mg/Kg		05/07/25 14:33	05/08/25 23:42	
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7	mg/Kg		05/07/25 14:33	05/08/25 23:42	
Oil Range Organics (Over C28-C36)	<49.7	U	49.7	mg/Kg		05/07/25 14:33	05/08/25 23:42	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	77		70 - 130			05/07/25 14:33	05/08/25 23:42	
o-Terphenyl	73		70 - 130			05/07/25 14:33	05/08/25 23:42	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	83.4	9.94	mg/Kg			05/08/25 13:15	1

Client Sample ID: BH02A

Date Collected: 05/07/25 11:01 Date Received: 05/07/25 15:11

Sample Depth: 5

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
Toluene	<0.00199	U	0.00199	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
m-Xylene & p-Xylene	<0.00398	U	0.00398	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		05/07/25 15:35	05/08/25 19:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130			05/07/25 15:35	05/08/25 19:04	1
1,4-Difluorobenzene (Surr)	83		70 - 130			05/07/25 15:35	05/08/25 19:04	1
Method: SW846 8015 NM - Diese	• •							
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/Kg			05/08/25 23:56	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8	mg/Kg		05/07/25 14:33	05/08/25 23:56	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8	mg/Kg		05/07/25 14:33	05/08/25 23:56	1
Oil Range Organics (Over C28-C36)	<49.8	U	49.8	mg/Kg		05/07/25 14:33	05/08/25 23:56	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

05/08/25 23:56

05/07/25 14:33

o-Terphenyl

70 - 130

78

nromatograp Result 101	<mark>ohy - Solubl</mark> Qualifier	<mark>e</mark> 	<u>Unit</u>	<u>D</u>	Lab San		1988176
Result	-	RL		<u>D</u>		nple ID: 890-I Matri	8134-4
Result	-	RL		<u>D</u>		Matri	
Result	-	RL		D		Matri	
Result	-	RL		D	Prepared		
Result	-	RL		D	Prepared		
Result	-	RL		D	Prepared		
Result	-	RL		D	Prepared		
	Qualifier			D	Prepared		
101		9.90	ma/Ka			Analyzed	Dil Fac
			iiig/itg			05/08/25 13:23	1
					Lab San	nple ID: 890-6	8134-5
						Matri	x: Solid
ganic Comp			11-14	_	Description	A	D!! 5
	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
							1
							1
							1
<0.00396	U	0.00396	mg/Kg		05/07/25 15:35	05/06/25 19:25	1
%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
115		70 - 130			05/07/25 15:35	05/08/25 19:25	1
83		70 - 130			05/07/25 15:35	05/08/25 19:25	1
		ы	11-14		Dremered	Analyzad	
					Prepared		Dil Fac
<0.00396	0	0.00396	mg/Kg			05/08/25 19:25	1
ange Organ	ics (DRO) (GC)					
		RL	Unit	D	Prepared	Analyzed	Dil Fac
<49.6	U	49.6	mg/Kg			05/09/25 00:27	1
Range Orga	nics (DRO)	(GC)					
		RL	Unit	D	Prepared	Analyzed	Dil Fac
<49.6	U	49.6	mg/Kg		05/07/25 14:33	05/09/25 00:27	1
<10.6		40.6	malKa		05/07/25 14:22	05/00/25 00:27	1
~49.0	0	49.0	iiig/itg		05/07/25 14:55	03/09/23 00.27	I
<49.6	U	49.6	mg/Kg		05/07/25 14:33	05/09/25 00:27	1
	Qualifier	Limits			Prepared	Analyzed	Dil Fac
84		70 - 130			05/07/25 14:33	05/09/25 00:27	1
75		70 - 130			05/07/25 14:33	05/09/25 00:27	1
romatograr							
	Qualifier	RL	Unit	D	Dava 1	.	
neauii					Prepared	Analyzed	Dil Fac
	 <0.00198 <0.00198 <0.00198 <0.00396 <0.00396 %Recovery 115 83 al BTEX Calc Result <0.00396 ange Organ Result <49.6 <49.6	<0.00198		< 0.00198 U 0.00198 mg/Kg < 0.00198 U 0.00198 mg/Kg < 0.00198 U 0.00198 mg/Kg < 0.00396 U 0.00396	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $

Job ID: 890-8134-1 SDG: 07A1988176

Client Sample ID: BH03A

Date Collected: 05/07/25 11:14 Date Received: 05/07/25 15:11

Project/Site: State D A CTB

Sample Depth: 6

Client: Ensolum

Lab Sample ID: 890-8134-6

Matrix: Solid

Method: SW846 8021B - Volatile Orga	nic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
Toluene	<0.00201	U	0.00201	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
Ethylbenzene	<0.00201	U	0.00201	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
m-Xylene & p-Xylene	<0.00402	U	0.00402	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
o-Xylene	<0.00201	U	0.00201	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
Xylenes, Total	<0.00402	U	0.00402	mg/Kg		05/07/25 15:35	05/08/25 19:45	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	115		70 - 130			05/07/25 15:35	05/08/25 19:45	1
1,4-Difluorobenzene (Surr)	84		70 - 130			05/07/25 15:35	05/08/25 19:45	1
Method: TAL SOP Total BTEX - Total I Analyte		Qualifier	RL	Unit	D	Prepared	Analyzod	Dil Fac
	<0.00402		0.00402	mg/Kg		Fiepaieu	Analyzed 05/08/25 19:45	
	<u>~0.0040</u> 2	0	0.00402	ilig/rxy			00/00/20 19.40	1
Method: SW846 8015 NM - Diesel Ran	ige Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	mg/Kg			05/09/25 00:43	1
	0		(00)					
Method: SW846 8015B NM - Diesel Ra	• •		• •	Unit	~	Bronorod	Applyzod	Dil Eco
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/09/25 00:43	1
Diesel Range Organics (Over	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/09/25 00:43	1
C10-C28)				5 5				
C10-C28) Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/09/25 00:43	1
Oil Range Organics (Over C28-C36)								
Oil Range Organics (Over C28-C36) Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	%Recovery 88	Qualifier	Limits 70 - 130			Prepared	Analyzed	
Oil Range Organics (Over C28-C36) Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	<u>%Recovery</u> 88 79	Qualifier	Limits 70 - 130 70 - 130			Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 88 79 pmatograp	Qualifier	Limits 70 - 130 70 - 130		D	Prepared	Analyzed	Dil Fac

Eurofins Carlsbad

5/9/2025

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) BFB1 DFBZ1 Client Sample ID (70-130) (70-130) Lab Sample ID 880-57839-A-1-B MS Matrix Spike 122 85 880-57839-A-1-C MSD Matrix Spike Duplicate 117 89 890-8134-1 BH01 118 84 BH01A 890-8134-2 118 84 890-8134-3 BH02 109 86 BH02A 890-8134-4 119 83 890-8134-5 BH03 115 83 890-8134-6 BH03A 84 115 LCS 880-109665/1-A Lab Control Sample 110 87 LCSD 880-109665/2-A Lab Control Sample Dup 115 86 MB 880-109665/5-A Method Blank 117 81 Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

		1CO1	OTPH1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-57839-A-8-B MS	Matrix Spike	99	87
880-57839-A-8-C MSD	Matrix Spike Duplicate	97	84
890-8134-1	BH01	96	87
890-8134-2	BH01A	91	81
890-8134-3	BH02	77	73
890-8134-4	BH02A	87	78
890-8134-5	BH03	84	75
890-8134-6	BH03A	88	79
LCS 880-109662/2-A	Lab Control Sample	96	82
LCSD 880-109662/3-A	Lab Control Sample Dup	100	84
MB 880-109662/1-A	Method Blank	139 S1+	126
0			

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Page 96 of 119

Job ID: 890-8134-1 SDG: 07A1988176

Prep Type: Total/NA

Prep Type: Total/NA

Lab Sample ID: MB 880-109665/5-A

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid							Prep Type: 1	
Analysis Batch: 109696	МВ	МВ					Prep Batch:	109665
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
Toluene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
Ethylbenzene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
m-Xylene & p-Xylene	<0.00400	U	0.00400	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
o-Xylene	<0.00200	U	0.00200	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
Xylenes, Total	<0.00400	U	0.00400	mg/Kg		05/07/25 15:35	05/08/25 11:28	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	117		70 - 130			05/07/25 15:35	05/08/25 11:28	1
1,4-Difluorobenzene (Surr)	81		70 - 130			05/07/25 15:35	05/08/25 11:28	1

Lab Sample ID: LCS 880-109665/1-A Matrix: Solid

Analysis Batch: 109696

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.07001		mg/Kg		70	70 - 130
Toluene	0.100	0.07894		mg/Kg		79	70 - 130
Ethylbenzene	0.100	0.08151		mg/Kg		82	70 - 130
m-Xylene & p-Xylene	0.200	0.1683		mg/Kg		84	70 - 130
o-Xylene	0.100	0.08077		mg/Kg		81	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	110		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

Lab Sample ID: LCSD 880-109665/2-A

Matrix: Solid Inche Detel

Analysis Batch: 109696							Prep I	Batch: 1	09665
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.07664		mg/Kg		77	70 - 130	9	35
Toluene	0.100	0.07897		mg/Kg		79	70 - 130	0	35
Ethylbenzene	0.100	0.08169		mg/Kg		82	70 - 130	0	35
m-Xylene & p-Xylene	0.200	0.1703		mg/Kg		85	70 - 130	1	35
o-Xylene	0.100	0.08185		mg/Kg		82	70 - 130	1	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	86		70 - 130

Lab Sample ID: 880-57839-A-1-B MS

Matrix: Solid alvaia Bataby 100606

Analysis Batch: 109696									Prep	Batch: 109665
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.100	0.08902		mg/Kg		89	70 - 130	
Toluene	<0.00200	U	0.100	0.1008		mg/Kg		101	70 - 130	

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Matrix Spike

13

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Job ID: 890-8134-1 SDG: 07A1988176

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-57839-A	-1-B MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep 7	Type: To	tal/NA
Analysis Batch: 109696									Prep I	Batch: 1	09665
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	< 0.00200	U	0.100	0.1066		mg/Kg		107	70 - 130		
m-Xylene & p-Xylene	<0.00400	U	0.200	0.2140		mg/Kg		107	70 - 130		
o-Xylene	<0.00200	U	0.100	0.1001		mg/Kg		100	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	122		70 - 130								
1,4-Difluorobenzene (Surr)	85		70 - 130								
Lab Sample ID: 880-57839-A Matrix: Solid	A-1-C MSD					CI	ient Sa	ample IC		Type: To	tal/NA
Matrix: Solid						CI	ient Sa	ample IC	Prep 1 Prep I		tal/NA 09665
Matrix: Solid Analysis Batch: 109696	Sample	Sample	Spike		MSD			·	Prep 1 Prep I %Rec	Type: To Batch: 1	tal/NA 09665 RPD
Matrix: Solid Analysis Batch: 109696 Analyte	Sample Result	Qualifier	Added	Result	MSD Qualifier	Unit	ient Sa	%Rec	Prep I Prep I %Rec Limits	Type: To Batch: 1	tal/NA 09665 RPD Limit
Matrix: Solid Analysis Batch: 109696 Analyte Benzene	Sample 	Qualifier	Added	Result 0.09384		_ <mark>Unit</mark> mg/Kg		%Rec 94	Prep 1 Prep 1 %Rec Limits 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene	Sample Result <0.00200 <0.00200	Qualifier U U	Added	Result 0.09384 0.1044		Unit		%Rec 94 104	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130	Type: To Batch: 1	tal/NA 09665 RPD Limit 35 35
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene	Sample 	Qualifier U U	Added	Result 0.09384		_ <mark>Unit</mark> mg/Kg		%Rec 94	Prep 1 Prep 1 %Rec Limits 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit 35 35
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00200 <0.00200	Qualifier U U U	Added	Result 0.09384 0.1044		<mark>Unit</mark> mg/Kg		%Rec 94 104	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 109696 Analyte	Sample Result <0.00200 <0.00200 <0.00200	Qualifier U U U U	Added 0.100 0.100 0.100	Result 0.09384 0.1044 0.1077		_ <mark>Unit</mark> mg/Kg mg/Kg mg/Kg		%Rec 94 104 108	Prep 7 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 	tal/NA
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00400 <0.00200	Qualifier U U U U U U	Added 0.100 0.100 0.100 0.200	Result 0.09384 0.1044 0.1077 0.2233		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 94 104 108 112	Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00400 <0.00200	Qualifier U U U U U U MSD	Added 0.100 0.100 0.100 0.200	Result 0.09384 0.1044 0.1077 0.2233		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 94 104 108 112	Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 109696 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00200 <0.00200 <0.00200 <0.00400 <0.00200 <i>MSD</i>	Qualifier U U U U U U MSD	Added 0.100 0.100 0.100 0.200 0.100	Result 0.09384 0.1044 0.1077 0.2233		Unit mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 94 104 108 112	Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To Batch: 1 	tal/NA 09665 RPD Limit 35 35 35

Lab Sample ID: MB 880-109662/1-A Matrix: Solid Analysis Batch: 109714

	МВ	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/08/25 20:25	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/08/25 20:25	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		05/07/25 14:33	05/08/25 20:25	1
	MB	МВ						
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac

1-Chlorooctane	139	S1+	70 - 130
o-Terphenyl	126		70 - 130

Lab Sample ID: LCS 880-109662/2-A Matrix: Solid

Analysis Batch: 109714							Prep B	atch: 109662
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	883.8		mg/Kg		88	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	891.7		mg/Kg		89	70 - 130	
C10-C28)								

Eurofins Carlsbad

Prep Type: Total/NA

Client Sample ID: Method Blank

05/07/25 14:33 05/08/25 20:25

05/08/25 20:25

Client Sample ID: Lab Control Sample

05/07/25 14:33

Prep Type: Total/NA

Prep Batch: 109662

1

QC Sample Results

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-109	9662/2-A						Client	Sample	ID: Lab C		
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 109714									Prep l	Batch: 1	09662
	1.05	LCS									
Surrogate			Limits								
1-Chlorooctane	% <i>Recovery</i> 	Quanner	70 - 130								
	82		70 - 130 70 - 130								
o-Terphenyl	02		70 - 130								
Lab Sample ID: LCSD 880-1	09662/3-4					Clie	nt San		Lab Contro	l Samni	
Matrix: Solid	00002/0-A					Oner		ipic ib.		Type: To	
Analysis Batch: 109714										Batch: 1	
Analysis Datch. 103714			Spike		LCSD				%Rec	Daten. i	RPI
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	929.6	Quanner	mg/Kg		93	70 - 130	5	2
(GRO)-C6-C10			1000	929.0		ilig/Kg		93	70 - 130	5	20
Diesel Range Organics (Over			1000	919.2		mg/Kg		92	70 - 130	3	20
C10-C28)											
	(
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	100		70 - 130								
o-Terphenyl	84		70 - 130								
Analysis Batch: 109714	Sample	Sample	Spike	MS	MS				Prep %Rec	Batch: 1	0966
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	998	1197		mg/Kg		120	70 - 130		
Diesel Range Organics (Over	<50.1	U	998	1102		mg/Kg		108	70 - 130		
C10-C28)		C							10 - 100		
,											
_		MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	99		70 - 130								
o-Terphenyl	87		70 - 130								
Lab Sample ID: 880-57839-A						CI	iont S	amplo IF): Matrix S	aiko Dur	alicate
Matrix: Solid							ient O			лке Бир Гуре: То	
Analysis Batch: 109714										Batch: 1	
Analysis Batch. 103714	Sample	Sample	Spike	MSD	MSD				%Rec	Daten. i	RPD
Analyte		Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics				1154		mg/Kg		116	70 - 130	4	2(
(GRO)-C6-C10	-00.1	2	000	1104				110	10-100	т	20
Diesel Range Organics (Over	<50.1	U	998	1103		mg/Kg		108	70 - 130	0	20
C10-C28)											
C10-C28)	Men	MSD									
		MSD Qualifier	Limits								
C10-C28) Surrogate 1-Chlorooctane	MSD %Recovery 	Qualifier	Limits 70 - 130								

Client: Ensolum

Project/Site: State D A CTB

QC Sample Results

Job ID: 890-8134-1 SDG: 07A1988176

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-109694/1-A Matrix: Solid										Client	Sample ID		
											Pre	o Type: S	oluble
Analysis Batch: 109704		мв	мр										
Analysis		MB	мв Qualifier		RL		Uni		D	Dueneued	Amal	um e el	Dil Fac
Analyte Chloride		<10.0			10.0		mg	-	<u> </u>	Prepared	Anal		
-		<10.0	0		10.0		mg	/Ky			03/06/23	5 10.04	I
Lab Sample ID: LCS 880-109694/2-/	4								Clie	nt Samp	le ID: Lab (Control S	ample
Matrix: Solid												o Type: S	
Analysis Batch: 109704													
-				Spike		LCS	LCS				%Rec		
Analyte				Added		Result	Qualifier	Unit	[0 %Rec	Limits		
Chloride				250		264.0		mg/Kg		106	90 - 110		
Lab Sample ID: LCSD 880-109694/3	- A							CI	ient Sa	mnle ID	: Lab Conti	ol Samp	le Dun
Matrix: Solid												o Type: S	
Analysis Batch: 109704												.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
· · · · · · · · · · · · · · · · · · ·				Spike		LCSD	LCSD				%Rec		RPD
Analyte				Added		Result	Qualifier	Unit	[0 %Rec	Limits	RPD	Limit
Chloride				250		259.7		mg/Kg		104	90 - 110	2	20
- Lab Sample ID: 880-57839-A-11-D N	IS									Clier	nt Sample I	D: Matrix	Spike
Matrix: Solid												o Type: S	
Analysis Batch: 109704													
-	Sample	Samp	ole	Spike		MS	MS				%Rec		
Analyte	Result	Quali	ifier	Added		Result	Qualifier	Unit	[0 %Rec	Limits		
Chloride	100			252		339.1		mg/Kg		95	90 - 110		
- Lab Sample ID: 880-57839-A-11-E N	ISD								Client	Sample	ID: Matrix S	Spike Du	olicate
												o Type: S	
Matrix: Solid												2 1000	
Matrix: Solid Analysis Batch: 109704	Sample	Samp	ole	Spike		MSD	MSD				%Rec		RPD
	Sample Result			Spike Added			MSD Qualifier	Unit	ſ) %Rec	%Rec Limits	RPD	RPD Limit

Eurofins Carlsbad

Page 15 of 25

QC Association Summary

Client: Ensolum Project/Site: State D A CTB

5

Job ID: 890-8134-1 SDG: 07A1988176

GC VOA

Prep Batch: 109665

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8134-1	BH01	Total/NA	Solid	5035	
890-8134-2	BH01A	Total/NA	Solid	5035	
890-8134-3	BH02	Total/NA	Solid	5035	
890-8134-4	BH02A	Total/NA	Solid	5035	
890-8134-5	BH03	Total/NA	Solid	5035	
890-8134-6	BH03A	Total/NA	Solid	5035	
MB 880-109665/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-109665/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-109665/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-57839-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-57839-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 109696

IVID 000-109000/0-A	Method Blank	Total/INA	Solid	5035		
LCS 880-109665/1-A	Lab Control Sample	Total/NA	Solid	5035		8
LCSD 880-109665/2-A	Lab Control Sample Dup	Total/NA	Solid	5035		
880-57839-A-1-B MS	Matrix Spike	Total/NA	Solid	5035		9
880-57839-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035		
Analysis Batch: 10969	6					10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	11
890-8134-1	BH01	Total/NA	Solid	8021B	109665	
890-8134-2	BH01A	Total/NA	Solid	8021B	109665	12
890-8134-3	BH02	Total/NA	Solid	8021B	109665	
890-8134-4	BH02A	Total/NA	Solid	8021B	109665	4.2
890-8134-5	BH03	Total/NA	Solid	8021B	109665	13
890-8134-6	BH03A	Total/NA	Solid	8021B	109665	
MB 880-109665/5-A	Method Blank	Total/NA	Solid	8021B	109665	14
LCS 880-109665/1-A	Lab Control Sample	Total/NA	Solid	8021B	109665	
LCSD 880-109665/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	109665	
880-57839-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	109665	
880-57839-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	109665	

Analysis Batch: 109851

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-8134-1	BH01	Total/NA	Solid	Total BTEX	
890-8134-2	BH01A	Total/NA	Solid	Total BTEX	
890-8134-3	BH02	Total/NA	Solid	Total BTEX	
890-8134-4	BH02A	Total/NA	Solid	Total BTEX	
890-8134-5	BH03	Total/NA	Solid	Total BTEX	
890-8134-6	BH03A	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 109662

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8134-1	BH01	Total/NA	Solid	8015NM Prep	
890-8134-2	BH01A	Total/NA	Solid	8015NM Prep	
890-8134-3	BH02	Total/NA	Solid	8015NM Prep	
890-8134-4	BH02A	Total/NA	Solid	8015NM Prep	
890-8134-5	BH03	Total/NA	Solid	8015NM Prep	
890-8134-6	BH03A	Total/NA	Solid	8015NM Prep	
MB 880-109662/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-109662/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-109662/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-57839-A-8-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-57839-A-8-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Ensolum Project/Site: State D A CTB

Job ID: 890-8134-1 SDG: 07A1988176

GC Semi VOA

Analysis Batch: 109714

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	
890-8134-1	BH01	Total/NA	Solid	8015B NM	109662	
890-8134-2	BH01A	Total/NA	Solid	8015B NM	109662	5
890-8134-3	BH02	Total/NA	Solid	8015B NM	109662	
890-8134-4	BH02A	Total/NA	Solid	8015B NM	109662	
890-8134-5	BH03	Total/NA	Solid	8015B NM	109662	
890-8134-6	BH03A	Total/NA	Solid	8015B NM	109662	
MB 880-109662/1-A	Method Blank	Total/NA	Solid	8015B NM	109662	
LCS 880-109662/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	109662	8
LCSD 880-109662/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	109662	
880-57839-A-8-B MS	Matrix Spike	Total/NA	Solid	8015B NM	109662	9
880-57839-A-8-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	109662	
– Analysis Batch: 109813	k					

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	
890-8134-1	BH01	Total/NA	Solid	8015 NM		
890-8134-2	BH01A	Total/NA	Solid	8015 NM		
890-8134-3	BH02	Total/NA	Solid	8015 NM		
890-8134-4	BH02A	Total/NA	Solid	8015 NM		
890-8134-5	BH03	Total/NA	Solid	8015 NM		
890-8134-6	BH03A	Total/NA	Solid	8015 NM		

HPLC/IC

Leach Batch: 109694

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-8134-1	BH01	Soluble	Solid	DI Leach	
890-8134-2	BH01A	Soluble	Solid	DI Leach	
890-8134-3	BH02	Soluble	Solid	DI Leach	
890-8134-4	BH02A	Soluble	Solid	DI Leach	
890-8134-5	BH03	Soluble	Solid	DI Leach	
890-8134-6	BH03A	Soluble	Solid	DI Leach	
MB 880-109694/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-109694/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-109694/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-57839-A-11-D MS	Matrix Spike	Soluble	Solid	DI Leach	
880-57839-A-11-E MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 109704

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
890-8134-1	BH01	Soluble	Solid	300.0	109694
890-8134-2	BH01A	Soluble	Solid	300.0	109694
890-8134-3	BH02	Soluble	Solid	300.0	109694
890-8134-4	BH02A	Soluble	Solid	300.0	109694
890-8134-5	BH03	Soluble	Solid	300.0	109694
890-8134-6	BH03A	Soluble	Solid	300.0	109694
MB 880-109694/1-A	Method Blank	Soluble	Solid	300.0	109694
LCS 880-109694/2-A	Lab Control Sample	Soluble	Solid	300.0	109694
LCSD 880-109694/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	109694
880-57839-A-11-D MS	Matrix Spike	Soluble	Solid	300.0	109694
880-57839-A-11-E MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	109694

Eurofins Carlsbad

Page 102 of 119

5

9

Job ID: 890-8134-1 SDG: 07A1988176

Lab Sample ID: 890-8134-1 Matrix: Solid

Lab Sample ID: 890-8134-2

Lab Sample ID: 890-8134-3

Lab Sample ID: 890-8134-4

Matrix: Solid

Matrix: Solid

Date Collected: 05/07/25 09:58 Date Received: 05/07/25 15:11

Client Sample ID: BH01

Project/Site: State D A CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 18:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 18:03	SM	EET MID
Total/NA	Analysis	8015 NM		1			109813	05/08/25 23:11	SM	EET MID
Total/NA	Prep	8015NM Prep			9.99 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/08/25 23:11	ткс	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:01	СН	EET MID

Client Sample ID: BH01A

Date Collected: 05/07/25 10:52 Date Received: 05/07/25 15:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 18:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 18:23	SM	EET MID
Total/NA	Analysis	8015 NM		1			109813	05/08/25 23:26	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/08/25 23:26	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:08	СН	EET MID

Client Sample ID: BH02

Date Collected: 05/07/25 10:08

Date Received: 05/07/25 15:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 18:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 18:44	SM	EET MID
Total/NA	Analysis	8015 NM		1			109813	05/08/25 23:42	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/08/25 23:42	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:15	CH	EET MID

Client Sample ID: BH02A Date Collected: 05/07/25 11:01 Date Received: 05/07/25 15:11

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 19:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 19:04	SM	EET MID

Eurofins Carlsbad

Matrix: Solid

Released to Imaging: 6/4/2025 10:17:02 AM

Job ID: 890-8134-1 SDG: 07A1988176

Lab Sample ID: 890-8134-4 Matrix: Solid

Lab Sample ID: 890-8134-5

Matrix: Solid

Date Collected: 05/07/25 11:01 Date Received: 05/07/25 15:11

Client Sample ID: BH02A

Project/Site: State D A CTB

Client: Ensolum

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			109813	05/08/25 23:56	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/08/25 23:56	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:23	СН	EET MID

Lab Chronicle

Client Sample ID: BH03 Date Collected: 05/07/25 10:21

Date Received: 05/07/25 15:11

-	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 19:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 19:25	SM	EET MID
Total/NA	Analysis	8015 NM		1			109813	05/09/25 00:27	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/09/25 00:27	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:30	СН	EET MID

Client Sample ID: BH03A

Date Collected: 05/07/25 11:14 Date Received: 05/07/25 15:11

Lab Sample ID:	890-8134-6

Matrix:	Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	109665	05/07/25 15:35	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	109696	05/08/25 19:45	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			109851	05/08/25 19:45	SM	EET MID
Total/NA	Analysis	8015 NM		1			109813	05/09/25 00:43	SM	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	109662	05/07/25 14:33	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	109714	05/09/25 00:43	ТКС	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	109694	05/08/25 07:51	SA	EET MID
Soluble	Analysis	300.0		1			109704	05/08/25 13:38	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Carlsbad

5

Accreditation/Certification Summary

Client: Ensolum Project/Site: State D A CTB

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	m	Identification Number	Expiration Date		
exas	NELAP		T104704400	06-30-25		
				nay include analytes		
for which the agency do	bes not offer certification.		ied by the governing authority. This lis	t may include analytes		
• ,		the laboratory is not certif	ied by the governing authority. This lis Analyte	t may include analytes		
for which the agency do	bes not offer certification.			t may include analytes		

10

Job ID: 890-8134-1

SDG: 07A1988176

Eurofins Carlsbad

Method Summary

Client: Ensolum Project/Site: State D A CTB Job ID: 890-8134-1 SDG: 07A1988176

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	erences:		
ASTM = A	STM International		
EPA = US	Environmental Protection Agency		
SW846 =	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Ec	lition, November 1986 And Its Updates.	
TAL SOP	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory R	eferences:		
EET MID	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Eurofins Carlsbad

Released to Imaging: 6/4/2025 10:17:02 AM

Sample Summary

Client: Ensolum Project/Site: State D A CTB

b Sample ID	Client Sample ID	Matrix	Collected	Received	Depth	
0-8134-1	BH01	Solid	05/07/25 09:58	05/07/25 15:11	0.5	
0-8134-2	BH01A	Solid	05/07/25 10:52	05/07/25 15:11	5	
0-8134-3	BH02	Solid	05/07/25 10:08	05/07/25 15:11	0.5	
0-8134-4	BH02A	Solid	05/07/25 11:01	05/07/25 15:11	5	
0-8134-5	BH03	Solid	05/07/25 10:21	05/07/25 15:11	0.5	
0-8134-6	BH03A	Solid	05/07/25 11:14	05/07/25 15:11	6	
						j

Environment Testing Midda tr (H327964 sec) as around Tr (H327964 sec) and about Tr (H3279764 sec) and about Tr (H3279764 sec) and about Tr (H3279764 sec	Indiand, TV (43) 704 5460, San Annone, TV (210) 599 334 In the part TV (313 585-3461, Luberov, TV (210) 599 319 Hebb, NV (273) 392 7550, Carbbad, NV (275) 598 319 Hebb, NV (273) 392 7550, Carbbad, NV (275) 598 319 The part TV (313 795 3461, Luberov, TV (300) 794 3461 A Company, Name HitloC (1 / H HT): Bitly Cirin, Bitly Cirin, Bitly Cirin, C	Environment Testing Made Tr 002 Diseases Sale All andres Trans services Made Tr 002 Diseases Sale All andres Trans services Made Tr 002 Diseases Made Tr 002 Diseases Attrion Shifth Compary Name Bills to Sale entropy Bills to Sale ent	3 - 1922-	Relinquished by: (Signature)	Notice: Signature of this document of service. Eurofins Xenco will be lia of Eurofins Xenco. A minimum char	Total 200.7 / 6010 Circle Method(s) and /		BH03A	BH03	BitozA	Bltoa	BHb1A	BHol	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Samples Received Intact:	SAMPLE RECEIPT		Sampler's Name: Md		ber:	Name:	5	e ZIP:	Address: 3122	51.	Project Manager: F 0			
Malandi TX (432) 704-540, San Amonio, TX (210) 509-334 E Pasa, TX (415) 883-344, Lubock, TX (400) 598-349, Lubock, TX (400) 598-139, Lubock, Lubock, Lubock, TX (400) 598-139, Lubock, Lubock, TX (400) 598-139, Lubock, Lubock, TX (400) 598-139, Lubock, Lubock, Lubock, TX (400) 598-139, Lubock, Lubock, TX (400) 598-139, Lubock, Lubock, Lubock, Lubock, Lubock, Lubock, Lubock, TX (400) 598-139, Lubock, Luboc		Bio-81 34 Chain e Work Order co T/PST PRP Brow EDD Level III PRP Brow ADap Se Ag SiO2 Na Sr Hg: 1631 / 245.1 /		nature)	and relinquishment of sa ble only for the cost of s ge of \$85.00 will be appl	200.8 / 6020: Metal(s) to be a	 	S	5	5	5	5	5			No	No	(V) NO	Temp Blank:		No Sarkis	11/222-10	A 1989 76	DA	5-725-11	bad,	Nat	Solum illi	í I		-	
Midland, TX (432) 704 5440, San Antonio, TX (210) 509 3334 EL Paso. TX (210) 509 3334 EL Paso. TX (210) 509 3334 Lew NM (575) 982-7550. Carisbad. MM (575) 982-7150 Email: Company Name: H: LCOC (P / A HY): Bit (H GinA) Link City, State ZIP: Antonio Email: Company Name H: LCOC (P / A HY): Bit (H GinA) Multiple Risk Cost Cost Ope Date: S/H/32 Reading: Annu (S15) Reading: Time Die Date: S/H/32 Reading: Annu (S15) Reading: Annu (S15) Time Die Date: S/H (23) Reading: Annu (S15) Reading: Reading: Annu (S15) Time Die Date: S/H (23) Reading: R		Bio-81 34 Chain e Work Order co T/PST PRP Brow EDD Level III PRP Brow ADap Se Ag SiO2 Na Sr Hg: 1631 / 245.1 /	Elih	Received b	imples constitutes a v amples and shall not ied to each project a			•					5/7/25		Corrected Te	Temperature	Correction Fa	Thermomete	Nes No					CTB	96	04688	Yarks		•		nment Tes	
Million (ITX (432) 704-5440, San Antonio, TX (210) 509-3334 Illion (If different) Intro, (If different) His Date ZIP: Intro, (If different) Annaty Signa Colspan="2">Annaty Signa Colspan="2" Annaty Si		Bio-81 34 Chain d Work Order Loi Tripst PRP Brow EDD Level III PR EDD ADap Se Ag SiO2 Na Sr Hg: 1631 / 245.1 /		y: (Signature)	ralid purchase order assume any respons nd a charge of \$5 for	RCRA 13PPN TCLP/SPL		hill		1101		1052							Wet Ice:	the lab, if receiv	TAT starts the da		Routine	Turn Ar		0		C	B		ting	
Parameters Alison Antonio, TX (210) 509-3334 (1915) 585-3443, Lubbock, TX (806) 794-1296 Alison Antonio, TX (210) 509-3334 Alison Antonio, TX (210) 509-3334 Alison Antonio, TX (200) 794-1296 Alison Antonio, TX (210) 509-3334 Alison Antonio, TX (210) 509-3334 Alison Antonio, TX (210) 794-24 Alison Antonio, TX (210, TC) Alison Antonio, TX (210, TC) <th colsp<="" td=""><td></td><td>Bigo-81 34 Chain o Work Order Log rt/PST PRP Brow EDD Level III PR Brow EDD ADap For a SiO2 Na Sr Hg: 1631 / 245.1 / Hg: 1631</td><td></td><td></td><td>from client company to Ibility for any losses or e each sample submitted</td><td>1 Texas 11 Al .P 6010 : 8RCR/</td><td></td><td>Ì</td><td>0</td><td></td><td>)</td><td>5161</td><td></td><td>Grab/ Comp</td><td>8.8</td><td>25.0</td><td></td><td></td><td></td><td></td><td>y received by</td><td>`</td><td>sh</td><td>ound</td><td>5 mith Censu</td><td>ity, State ZIP:</td><td>ddress:</td><td>ompany Name:</td><td>ll to: (if different)</td><td>Hobbs, N</td><td>Midland, TX <u>EL Paso, T</u></td></th>	<td></td> <td>Bigo-81 34 Chain o Work Order Log rt/PST PRP Brow EDD Level III PR Brow EDD ADap For a SiO2 Na Sr Hg: 1631 / 245.1 / Hg: 1631</td> <td></td> <td></td> <td>from client company to Ibility for any losses or e each sample submitted</td> <td>1 Texas 11 Al .P 6010 : 8RCR/</td> <td></td> <td>Ì</td> <td>0</td> <td></td> <td>)</td> <td>5161</td> <td></td> <td>Grab/ Comp</td> <td>8.8</td> <td>25.0</td> <td></td> <td></td> <td></td> <td></td> <td>y received by</td> <td>`</td> <td>sh</td> <td>ound</td> <td>5 mith Censu</td> <td>ity, State ZIP:</td> <td>ddress:</td> <td>ompany Name:</td> <td>ll to: (if different)</td> <td>Hobbs, N</td> <td>Midland, TX <u>EL Paso, T</u></td>		Bigo-81 34 Chain o Work Order Log rt/PST PRP Brow EDD Level III PR Brow EDD ADap For a SiO2 Na Sr Hg: 1631 / 245.1 / Hg: 1631			from client company to Ibility for any losses or e each sample submitted	1 Texas 11 Al .P 6010 : 8RCR/		Ì	0)	5161		Grab/ Comp	8.8	25.0					y received by	`	sh	ound	5 mith Censu	ity, State ZIP:	ddress:	ompany Name:	ll to: (if different)	Hobbs, N	Midland, TX <u>EL Paso, T</u>
A, NM (575) 988-3199 ad, NM (575) 988-3199 ANALYSIS REQU ANALYSIS REQU ANALYS		Bio-81 34 Chain o Work Order co Tripst PRP Brow EDD Level III PRD ADap Se Ag SiO2 Na Sr Hg: 1631 / 245.1 / Hg: 1631 / 245.1 /	11 5/2	Date/Time	surofins Xenco, its affiliates a penses incurred by the clier to Eurofins Xenco, but not a	Sb As Ba Be B (Sb As Ba Be Cc		<		V V V	1 V V	~~~~	V V V	BT	Pt)			heter	5			icel Lool		shum loom/ ms al			Hilcoff		1 (575) 392-7550, Carlsb:	(432) 704-5440, San Ant ((915) 585-3443, Lubbo	
		B90-81 34 Chain o Work Order Loi T/PST PRP Brow EDD Level III PRD ADap Se Ag SiO2 Na Sr Hg: 1631 / 245.1 / Hg: 1631 / 245.1 /	0 4 0	Relinquished by: (Signat	and subcontractors. It assigns standard ter nt if such losses are due to circumstances be analyzed. These terms will be enforced unle	Cd Ca Cr Co Cu Fe Pb My d Cr Co Cu Pb Mn Mo Ni									<i>n</i>		96	3							Kis Censolum, Lorn			/A the Billy Ginn		ad, NM (575) 988-3199	conio, TX (210) 509-3334 ck, TX (806) 794-1296	

5/9/2025

Page 108 of 119

Job Number: 890-8134-1 SDG Number: 07A1988176

List Source: Eurofins Carlsbad

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 8134 List Number: 1 Creator: Lopez, Abraham

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	N/A	Refer to Job Narrative for details.
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Login Sample Receipt Checklist

Client: Ensolum

Login Number: 8134 List Number: 2 Creator: Laing, Edmundo

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

14

Job Number: 890-8134-1 SDG Number: 07A1988176

List Source: Eurofins Midland List Creation: 05/08/25 07:26 AM

APPENDIX D

Photographic Log

Released to Imaging: 6/4/2025 10:17:02 AM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 113 of 119

QUESTIONS

Action 465997

QUESTIONS		
Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	465997	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	

QUESTIONS

Prerequisites	
nAPP2505326850	
NAPP2505326850 STATE D A CTB @ 0	
Oil Release	
Remediation Plan Received	
[fAPP2224169341] State D A	

Location of Release Source

Please answer all the questions in this group.	
--	--

Site Name	State D A CTB
Date Release Discovered	02/21/2025
Surface Owner	State

Incident Details

Please answer all the questions in this group.		
Incident Type	Oil Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Cause: Corrosion | Other (Specify) | Crude Oil | Released: 165 BBL | Recovered: 160 BBL | Crude Oil Released (bbls) Details Lost: 5 BBL Produced Water Released (bbls) Details Not answered. Is the concentration of chloride in the produced water >10,000 mg/l No Condensate Released (bbls) Details Not answered. Natural Gas Vented (Mcf) Details Not answered. Natural Gas Flared (Mcf) Details Not answered. Other Released Details Not answered. Are there additional details for the questions above (i.e. any answer containing Release from circulating line from the above ground tank. Other, Specify, Unknown, and/or Fire, or any negative lost amounts)

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 114 of 119

QUESTIONS, Page 2

Action 465997

QUESTIONS (continued)		
Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street	Action Number:	
Houston, TX 77002	465997	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	

QUESTIONS

	Nature and Volume of Release (continued)		
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.	
	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes	
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.			

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
	NA ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of	
Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 05/21/2025	

HILCORP ENERGY COMPANY

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Operator

QUESTIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

1111 Travis Street

Houston, TX 77002

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

OGRID:

Action Number:

Action Type:

372171

465997

[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

Page 115 of 119

QUESTIONS, Page 3

Action 465997

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
What is the shallowest depth to groundwater beneath the area affected by t release in feet below ground surface (ft bgs)	he Between 51 and 75 (ft.)	
What method was used to determine the depth to ground water	Attached Document	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the r	elease and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Between ½ and 1 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-wate	er mark) Between ½ and 1 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Between ½ and 1 (mi.)	
A spring or a private domestic fresh water well used by less than five house for domestic or stock watering purposes	Between ½ and 1 (mi.)	
Any other fresh water well or spring	Between ½ and 1 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well	field Between ½ and 1 (mi.)	
A wetland	Between ½ and 1 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, productic storage site	n, or No	
Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be prov	ided to the appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contained	mination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each	n, in milligrams per kilograms.)	
Chloride (EPA 300.0 or SM4500 Cl B)	174	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	13000	
GRO+DRO (EPA SW-846 Method 8015M)	13000	
BTEX (EPA SW-846 Method 8021B or 8260B)	147	
Benzene (EPA SW-846 Method 8021B or 8260B)	2.2	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date will the remediation commence	07/01/2025	
On what date will (or did) the final sampling or liner inspection occur	07/15/2025	
On what date will (or was) the remediation complete(d)	07/15/2025	
What is the estimated surface area (in square feet) that will be reclaimed	0	
What is the estimated volume (in cubic yards) that will be reclaimed	0	
What is the estimated surface area (in square feet) that will be remediated	4900	
What is the estimated volume (in cubic yards) that will be remediated	1270	
	on at the time of submission and may (be) change(d) over time as more remediation efforts are completed.	
The OCD recognizes that proposed remediation measures may have to be minimally adjust	sted in accordance with the physical realities encountered during remediation. If the responsible party has any need to	
significantly deviate from the remediation plan proposed, then it should consult with the d	ivision to determine if another remediation plan submission is required.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 1	116	of	119
--------	-----	----	-----

QUESTIONS, Page 4

Action 465997

QUESTI	DNS (continued)	
Operator:	OGRID:	
HILCORP ENERGY COMPANY	372171	
1111 Travis Street Houston, TX 77002	Action Number: 465997	
	Action Type:	
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.	
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:	
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	SUNDANCE PARABO [fEEM0112334085]	
OR which OCD approved well (API) will be used for off-site disposal Not answered.		
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	orts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required ses which may endanger public health or the environment. The acceptance of a C-141 report by dequately investigate and remediate contamination that pose a threat to groundwater, surface does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Stuart Hyde Title: Senior Geologist Email: shyde@ensolum.com Date: 05/21/2025	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 465997

QUESTIONS (continued)		
Operator: HILCORP ENERGY COMPANY 1111 Travis Street Houston, TX 77002	OGRID: 372171	
	Action Number: 465997	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		

Deferral	Requests	Only

Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.				
Requesting a deferral of the remediation closure due date with the approval of this submission	No			

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Page 118 of 119

A

Action 465997

 QUESTIONS (continued)

 Operator:
 OGRID:

 1111 Travis Street
 372171

 Houston, TX 77002
 Action Number:

 Action Type:
 [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	458475
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/07/2025
What was the (estimated) number of samples that were to be gathered	25
What was the sampling surface area in square feet	2960

Remediation Closure Request

 Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.

 Requesting a remediation closure approval with this submission
 No

Released to Imaging: 6/4/2025 10:17:02 AM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS	
	~ ~

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	465997
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

COND	TIONS	
Create By	d Condition	Condition Date
nvel	The remediation plan is approved as written. Hilcorp has 90-days (September 2, 2025) to submit to OCD its appropriate or final remediation closure report.	6/4/2025

CONDITIONS

Page 119 of 119

Action 465997