

SITE INFORMATION

Closure Report Conoco Federal #001 (12.27.2004) Incident #: NPRS0502344803 Lea County, New Mexico Unit L Sec 17 T18S R32E 32.746666°, -103.7960739°

Crude Oil Release Point of Release: Crude Oil Storage Tank Overflowed Release Date: 12.27.2004 Volume Released: 125 Barrels of Crude Oil Volume Recovered: 110 Barrels of Crude Oil

CARMONA RESOURCES

Prepared for: Chevron U.S.A., Inc. 6301 Deauville Blvd Midland, Texas 79706

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 CONCLUSIONS

FIGURES

FIGURE 2

FIGURE 1 TOPOGRAPHIC

FIGURE 3 SAMPLE LOCATION FIGURE 4A-4B EXCAVATION

APPENDICES

- APPENDIX A TABLES
- APPENDIX B PHOTOS
- APPENDIX C NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

OVERVIEW

May 16, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report Conoco Federal #1 Battery Incident ID: NPRS0502344803 Chevron U.S.A., Inc. Site Location: Unit L, S17, T18S, R30E (Lat 32.746666°, Long -103.7960739°) Lea County, New Mexico

Mr. Bratcher:

On behalf of Chevron U.S.A., Inc. (Chevron), Carmona Resources, LLC has prepared this letter to document site assessment and remediation activities for the Conoco Federal #1 Battery. The site is located at 32.746666°, -103.7960739° within Unit L, S17, T18S, R32E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the information obtained from the NMOCD portal, the release was discovered on December 27, 2004, caused by a crude oil storage tank overflowing releasing approximately one hundred and twenty-five (125) barrels of crude oil of which one hundred and ten (110) barrels of crude oil were recovered. The NMOCD correspondence is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, no known water sources are within a 0.50-mile radius of the location. The nearest identified well is located approximately 0.72 miles Northwest of the site in Unit P, S07, T18S, R32E and was drilled in 1992. The well has a reported depth to groundwater of 430' feet below ground surface (bgs). A copy of the associated Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On April 3, 2025, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release utilizing a hand auger. A total of four (4) soil samples (S-1 through S-4), and six (6) horizontal sample points (H-1 through H-6) were installed to total depths ranging from surface to 5' bgs inside the area of concern. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and Chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Vertical Delineation

Vertical delineation was achieved in all areas for Benzene, total BTEX, TPH, and Chloride concentrations, with the exception of S-4. The area of S-4 was vertically delineated during remediation. Refer to Table 1.

Horizontal Delineation

Horizontal delineation was achieved in all areas for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1.

5.0 Remediation Activities

Between May 12, 2025, and May 15, 2025, Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via NMOCD portal on May 5, 2025, per Subsection D of 19.15.29.12 NMAC. See Appendix C. The area of S-2 was excavated to a depth of 1.5' bgs. And the area of S-4 was excavated to a depth of 7' bgs. A total of four (4) confirmation floor samples were collected (CS-1 through CS-4), and eight (8) sidewall samples (SW-1 through SW-8) were collected every 200 square feet to ensure the proper removal of the contaminated soils. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Cardinal Laboratories in Hobbs, New Mexico. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and Chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figures 4.

All final confirmation samples were below the regulatory requirements for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 2.

Before the excavation was backfilled, a composite sample of the backfill material was collected on May 14, 2025, to ensure the material was clean per NMOCD standards. The backfill material was sourced from the Lealand located at 32.52900°, -103.78344°. Refer to Table 2. Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. Per the client request pea gravel was added to the surface to minimize slips, trips, and falls during normal oilfield operations. Approximately 544 square feet of contamination was remediated, resulting in approximately 132 cubic yards of material excavated and transported offsite for proper disposal.

6.0 Conclusions

Based on the analytical data from the remediation, no further actions are required at the site. Chevron formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Ashton Thielke Environmental Manager

Riley Plogger

Riley Plogger Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

.

APPENDIX A

•

Table 1 Chevron CONOCO FEDERAL #001 (12.27.2004) Lea County, New Mexico

			TPH (mg/kg)			Benzene To	Toluene	Ethlybenzene	Xylene	Total BTEX		
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Chloride (mg/kg)
	4/3/2025	0-1.0	<49.7	65.0	<49.7	65.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	96.6
	"	1.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	52.0
S-1	"	2.0	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	69.0
3-1	"	3.0	<50.5	<50.5	<50.5	<50.5	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	78.8
	"	4.0	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	123
	"	5.0	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	209
	4/3/2025	0-1.0	<49.8	257	<49.8	257	<0.00200	<0.00200	<0.00200	<0.00400	< 0.00400	130
	"	1.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	< 0.00398	94.6
S-2	"	2.0	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00400	< 0.00400	66.0
5-2	"	3.0	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	< 0.00399	142
	"	4.0	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	< 0.00402	140
	"	5.0	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	164
	4/3/2025	0-1.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	103
	"	1.5	<49.7	<49.7	<49.7	<49.7	0.00272	<0.00201	<0.00201	<0.00402	< 0.00402	68.1
S-3	"	2.0	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	< 0.00398	84.3
5-3	"	3.0	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	< 0.00399	< 0.00399	61.4
	"	4.0	<49.8	<49.8	<49.8	<49.8	0.00268	<0.00200	<0.00200	<0.00400	< 0.00400	98.4
	"	5.0	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00396	< 0.00396	107
	4/3/2025	0-1.0	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	420
	"	1.5	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	< 0.00398	214
	"	2.0	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	< 0.00399	< 0.00399	336
S-4	"	3.0	<49.6	<49.6	<49.6	<49.6	<0.00201	<0.00201	<0.00201	< 0.00402	< 0.00402	529
	"	4.0	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00404	< 0.00404	1,050
	"	5.0	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	< 0.00398	850
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(S) Soil Sample

Removed

Table 1 Chevron CONOCO FEDERAL #001 (12.27.2004) Lea County, New Mexico

O survey la UD	Ditt	Denth (50)		TPF	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	Chloride (mg/kg)
H-1	4/3/2025	0-0.5	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	110
H-2	4/3/2025	0-0.5	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	300
H-3	4/3/2025	0-0.5	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	151
H-4	4/3/2025	0-0.5	<50.3	<50.3	<50.3	<50.3	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	108
H-5	4/3/2025	0-0.5	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	65.7
H-6	4/3/2025	0-0.5	<50.1	<50.1	<50.1	<50.1	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	167
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH - Total Petroleum Hydrocarbons

ft - feet

(H) Horizontal Sample

•

Table 2 Chevron CONOCO FEDERAL #001 (12.27.2004) Lea County, New Mexico

Sample ID	Date	Depth (ft)		TPF	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride (mg/kg)
		- I- · · · · ·	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	
CS-1	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	80.0
CS-2	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
CS-3	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	384
CS-4	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
SW-1	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-2	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-3	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-4	5/13/2025	1.5'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
SW-5	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	384
SW-6	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	384
SW-7	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	368
SW-8	5/13/2025	7.0'	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	384
Backfill Data	5/14/2025	-	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	48.0
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg
() Not	Analyzed											

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(CS) Confirmation Sample (SW) Sidewall Sample

APPENDIX B

Chevron U.S.A. Inc.

Photograph No. 1

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description: View Southeast, Well Sign.

Photograph No. 2

Facility:	CONOCO FEDERAL #001
-	(12.27.2004)

County: Lea County, New Mexico

Description: View Southeast, area of S-1

Photograph No. 3

- Facility: CONOCO FEDERAL #001 (12.27.2004)
- County: Lea County, New Mexico

Description: View South, area of S-2

Chevron U.S.A. Inc.

Photograph No. 4

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description: View Southwest, area of S-1

Photograph No. 5

Facility:	CONOCO FEDERAL #001
-	(12.27.2004)

County: Lea County, New Mexico

Description:

View East, area of S-3

Photograph No. 6

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description: View South, area of S-4

Chevron U.S.A. Inc.

SW

Photograph No. 7

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description:

View Southeast, Hydrovac area of CS-1 & CS-2 prior to backfill

NW

N

Photograph No. 8

Facility:	CONOCO FEDERAL #001
-	(12.27.2004)

County: Lea County, New Mexico

Description:

View West, Hydrovac area of CS-1 & CS-2 prior to backfill

N

Photograph No. 9

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description:

View East, Excavated area of CS-3 & CS-4 prior to backfill

Chevron U.S.A. Inc.

Photograph No. 10

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description:

View Southeast, Excavated area of CS-3 & CS-4 prior to backfill

Photograph No. 11

Facility:	CONOCO FEDERAL #001	
-	(12.27.2004)	

County: Lea County, New Mexico

Description:

View Northeast, Excavated area of CS-3 & CS-4 prior to backfill

Photograph No. 12

Facility:	CONOCO FEDERAL #001		
	(12.27.2004)		

County: Lea County, New Mexico

Description:

View Southwest, area backfilled with caliche & #1 pea gravel per Chevron safety protocol.

Chevron U.S.A. Inc.

Photograph No. 13

Facility:	CONOCO FEDERAL #001		
-	(12.27.2004)		

County: Lea County, New Mexico

Description:

View West, area backfilled with caliche & #1 pea gravel per Chevron safety protocol.

Photograph No. 14

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description:

View Northeast, area backfilled with caliche & #1 pea gravel per Chevron safety protocol.

Photograph No. 15

Facility:	CONOCO FEDERAL #001
	(12.27.2004)

County: Lea County, New Mexico

Description:

View West, area backfilled with caliche & #1 pea gravel per Chevron safety protocol.

Chevron U.S.A. Inc.

Photograph No. 16

Facility:	CONOCO FEDERAL #001		
	(12.27.2004)		

County: Lea County, New Mexico

Description:

View Northeast, area backfilled with caliche & #1 pea gravel per Chevron safety protocol.

APPENDIX C

•

1625 N. French Dr., Hobbs, NM 88240 District II Energy M	State of Nev Inerals and				Revi	Form C-141 sed October 10, 2003
1301 W. Grand Avenue, Artesia, NM 88210Oil ConservationDistrict III000 Rio Brazos Road, Aztec, NM 874101220 South St. F1200 S. St. Francis Dr., Santa Fe, NM 87505Santa Fe, NM					Submit 2 Co District O wit	ppies to appropriate ffice in accordance h Rule 116 on back side of form
Release Notifica	tion and	d Corre	ective A	ction		
OPERATOR			Initial Re	<u> </u>	🛛 Final	Report
Name of Company: Chesapeake Energy			Brad Ble	evins		
5014 Carlsbad Highway Hobbs, New Mexic	5014 Carlsbad Highway Hobbs, New Mexico 88240 5		Felephone No. 505.391.1462			
Facility Name Conoco Federal #1 Battery ref.#160004		Facility	Type Dil Storage	e Tank		
Surface Owner: Bureau of Land Managem	ent		al Owner		Lease N	0
	ION OF	RELEA	SE			
UnitSectionTownshipRangeLetter17T18SFeet fLR32ER32E		n/South	Feet from the	East/We	st Line	County: Lea
Latitude: <u>32°44'48</u>			ude: <u>103°</u>	47'44.925'	'W	
Type of Release NATU	RE OF H		<u>SE</u>	Volume R	ecovered	
Crude Oil	125 barr			110 bar		
Source of Release	Date and I			Date and		
Crude Oil Storage Tank Was Immediate Notice Given?	If YES, To	004 @ 10:00:00 AM 12-27-04 @ 1:00 PM				
🛛 Yes 🔲 No 🗋 Not Required	Larry Joh	nson				
By Whom?	Date and I					
Brad Blevins Was a Watercourse Reached?	12-27-04 (acting the '	Watercourse	e.	
Yes No	NA					
If a Watercourse was Impacted, Describe Fully.* NA						
Describe Cause of Problem and Remedial Action			1	1		1
Crude Oil Storage Tank Crude oil storage tank o Near surface saturated soil was scraped up and pl						a to the tank.
Describe Area Affected and Cleanup Action Take			······································			
Total Affected Area=7,545 ft ² (~220' x 80'): 5 soil was disposed of in the Artesia Aeration L						
			oals are: TPH 8015m = 5000 mg/Kg, Benzene =			
10 mg/Kg, and BTEX, i.e., the mass sum of B						
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to NMOCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the NMOCD marked as "Final Report" does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to ground water, surface water, human health or the environment. In addition, NMOCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.						
Signature: Jost Mulus Ell fn & Blevine Printed Name: Brad Blevins			OIL CONSERVATION DIVISION			<u>'ISION</u>
		Appro	Approved by District Supervisor:			
E-mail Address: BBlevins@CHKEnergy.com		Appro	val Date:		Expirati	on Date:
Title: Field Technician		Condi	Conditions of Approval: Attached		d 🔲	
Date: March , 2005 Phone: 505.391.1462					·	

Attach Additional Sheets If Necessary

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 25cof 147

Action 458477

QUESTIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	458477
	Action Type:
	[NOTIFY] Notification Of Sampling (C-141N)

QUESTIONS

Prerequisites	IS		
Incident ID (n#)	nPRS0502344803		
Incident Name	NPRS0502344803 CONOCO FEDERAL #001 @ 30-025-34958		
Incident Type	Oil Release		
Incident Status	Initial C-141 Approved		
Incident Well	[30-025-34958] CONOCO FEDERAL #001		

Location of Release Source

Site Name	CONOCO FEDERAL #001
Date Release Discovered	12/28/2004
Surface Owner	Federal

Sampling Event General Information

Please answer all the questions in this group.			
What is the sampling surface area in square feet	1,200		
What is the estimated number of samples that will be gathered	14		
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/08/2025		
Time sampling will commence	12:00 PM		
Please provide any information necessary for observers to contact samplers	Carmona Resources – 432-813-8988		
Please provide any information necessary for navigation to sampling site	"(32.746666,-103.7960739) Carmona Resources will be onsite to conduct a final composite confirmation sampling. Sampling will begin on 05.08.2025 and is expected to continue until 05.12.2025."		

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

CONDITIONS

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator: C		OGRID:
	CHEVRON U S A INC	4323
	6301 Deauville Blvd	Action Number:
	Midland, TX 79706	458477
		Action Type:
		[NOTIFY] Notification Of Sampling (C-141N)

Created By	Condition	Condition Date
abarnhill	Failure to notify the OCD of sampling events including any changes in date/time per the requirements of 19.15.29.12.D.(1).(a) NMAC, may result in the remediation closure samples not being accepted.	5/5/2025

CONDITIONS

Action 458477

APPENDIX D

Received by OCD: 5/22/2025 7:37:58 AM Nearest water well Chevron USA

A REAL PROPERTY AND A REAL

430' - Drilled 1992

O CONOCO FEDERAL #001 (12.27,2004)

13 - 110

NO. CONTRACTOR OF THE

Google Earth Released to Imaging: 6/4/2025 4:25:51 PM mager® 2025 Allaus

Salle Land

5000 ft

Received by OCD: 5/22/2025 7:37:58 AM LOW KAIST Chevron USA

> **O** CONOCO FEDERAL #001 (12.27.2004)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.)	(R=POD has been replaced, O=orphaned, C=the file is closed)			(quart smalle larges		ł							(meters)		(In feet))
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Distance	Well Depth	Depth Water	
<u>CP 00672</u>		СР	LE		SE	SE	07	18S	32E	612475.0	3624947.0 *	•	1147	524	430	94
<u>CP 01986 POD1</u>		СР	LE	NW	NW	NE	16	18S	32E	615292.4	3624605.5	•	2616	55		
<u>CP 00814 POD1</u>		СР	LE		NE	NE	08	18S	32E	614074.0	3626168.0 *	•	2656	480		
<u>CP 02001 POD1</u>		СР	LE	NE	SW	NW	10	18S	32E	616091.2	3625869.6	•	3874	55		

Average Depth to Water: **430 feet**

Minimum Depth: 430 feet

Maximum Depth: 430 feet

Record Count: 4

UTM Filters (in meters): Easting: 612789.00 Northing: 3623843.00 Radius: 4000

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

New Mexico Office of the State Engineer Point of Diversion Summary

		• •		2=NE 3=SW est to largest	(NAD83 U	(NAD83 UTM in meters)		
	O Number	Q64 Q16	-		0	X	Y	
СР	00672	4	4	07 18S	32E	612475	3624947* 🍯	•
Driller License:	46	Driller Cor	npany	: AB	BOTT E	BROTHERS	S COMPANY	
Driller Name:	ABBOTT, MURI	RELL						
Drill Start Date:	07/17/1992	Drill Finisl	n Date:	0	8/07/199	92 Pl	ug Date:	
Log File Date:	08/12/1992	PCW Rev	Date:			So	ource:	Shallow
Pump Type:		Pipe Disch	arge Si	ze:		Es	timated Yield	:
Casing Size:	5.50	Depth Wel	l:	5	24 feet	De	epth Water:	430 feet
Wat	er Bearing Stratifi	ications:	Тор	Botton	n Desci	ription		
			460	517	7 Sands	stone/Grave	l/Conglomerate	e
x	Casing Perf	orations:	Тор	Botton	ı			
			459	524	1			

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

6/12/24 1:53 PM

POINT OF DIVERSION SUMMARY

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

			and the second se						and the second se				
NO	OSE POD NO. (WELL NO.) WELL TAG ID NO. pod 1							OSE FILE NO(S CP-01986	<u>6).</u>				
1. GENERAL AND WELL LOCATION	WELL OWNE) (James Hawley)-age	ent	1			PHONE (OPTIONAL)					
TO	WELL OWNE							CITY STATE ZIP				ZIP	
WELI	P.O. BOX							Hobbs NM 88241					
AND	WELL		DF	GREES	MINUTES	SECON							
AL	LOCATION (FROM GPS		TITUDE	32 45 11.7		N		* ACCURACY REQUIRED: ONE TENTH OF A SECOND * DATUM REQUIRED: WGS 84					
ENEI		LOI	NGITUDE	103	46	9.3				EDE AVAILADI	F		
1. G	DESCRIPTIO	IN KELATI	W WELL LOCATION TO	J SIREEI ADL	KESS AND COMMON	LANDWI	AKK5 – 1 E.	5 (SECTION, 10	WHSIDIL, KANOD, WH	LKL AVALADI			
	LICENSE NO.		NAME OF LICENSED	DRILLER					NAME OF WELL DR				
	WD-1 DRILLING ST		DRILLING ENDED	DEPTUOEO	James Hawley	<u> </u>	POPE UO	LE DEPTH (FT)	DEPTH WATER FIRS	Enterprises, L			
	1/31/		1/31/24	DEFINOR	55'		BORE HO	55'	DEFIN WATER FIRS	N/A	ED (F1)		
N	COMPLETED	WELL IS:	ARTESIAN *add Centralizer info be						STATIC WATER LEVEL DATE STATIC MEASU IN COMPLETED WELL N/A 2/3/24				
ATIO	DRILLING FLUID: 📝 AIR MUD ADDITIVES – SPECIFY:												
ORM	DRILLING METHOD: 🔽 ROTARY 🗌 HAMMER 🗌 CABLE TOOL 🗌 OTHER – SPECIFY:								CHECK HERE IF PITLESS ADAPTER IS INSTALLED				
SINF	DEPTH (feet bgl) BORE HOLE						ASING	CASING		ASING WALL			
CASING INFORMATION	FROM	то	DIAM (inches)	(include each casing string, and			1	NECTION TYPE ling diameter)	INSIDE DIAM. (inches)		(inches)		
S	0'	55'	4 3/4	no casing left in hole									
2. DRILLING													
DRIL													
2.													
	DEPTH	(feet hal)		LIST ANN	ULAR SEAL MATE	RIAL ANI	O GRAVE	L PACK SIZE-					
AL	DEPTH (feet bgl)BORE HOLEFROMTODIAM. (inches)			RANGE BY INTERVAL *(if using Centralizers for Artesian wells- indicate the spacing belo				spacing below)	AMOUNT (cubic feet)		METHOD OF PLACEMENT		
TERI				N/A				,			t a las le climates e		
MA'									ىلىمادىرا بارغا ئىرا بىرا بىرا بىرا بىرا	110000			
ULAF									OSE OT FER	3 1.2 2024	PM [[]]		
ANNULAR MATERIAL													
3.											and to reduct the second		
FOR	OSE INTERI	NAL USE						W/P 2() WELL RECORD (00/2	(2022)	

FILE NO. CP- 1986- POD 1	POD NO.	1	TRN NO. 755205	
LOCATION Eral 18.32.16.112			WELL TAG ID NO.	PAGE 1 OF 2
-// (,				

•

	DEPTH (1	feet bgl) TO	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	ESTIMATED YIELD FOR WATER- BEARING ZONES (gpm)					
	0'	10'	10'	sand	Y VN						
	10'	15'	5'	caliche	Y VN						
	15'	45'	30'	sandy caliche	Y ✓ N						
	45'	55'	Y ✓ N								
			10'	red sand	Y N						
					Y N						
4. HYDROGEOLOGIC LOG OF WELL					Y N						
DF W					Y N						
090					Y N						
CLC					Y N						
IDO					Y N						
TOT					Y N						
190					Y N						
YDR					Y N						
4. H					Y N						
					Y N						
					Y N						
					Y N						
					Y N						
				·	Y N						
	METHODI			OF WATER DEADING OTHATA	Y N						
				OF WATER-BEARING STRATA:	TOTAL ESTIMATED WELL YIELD (gpm):	0.00					
	PUM	P LA	IR LIFT	BAILER OTHER – SPECIFY: dry hole							
NO	WELL TES			ACH A COPY OF DATA COLLECTED DURING WELL TESTING, INC ME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVE							
VOISIV	MISCELLA	NEOUS INI	FORMATION:	Il was gauged for water on 2/3/24, well was dry, temporary well ca	ain a way normally have	a hala waa					
TEST; RIG SUPER			ba	ckfilled to 10' BGS will drill cuttings, then hydrated bentonite chips	s were poured from 10'	BGS to surface.					
SU											
RIC											
EST;	PRINT NAME(S) OF DRILL RIG SUPERVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONSTRUCTION OTHER THAN LICENSEE:										
5. T	Nathan Sme		KILL KIG SUI LI	visor(s) that i rovided onsite sofervision of well con	STRUCTION OTHER T	IAN LICENSEE.					
	Inathan Sine	leter									
RE	CORRECT	RECORD O	F THE ABOVE I	IES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BEL ESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL R	RECORD WITH THE ST.	ATE ENGINEER					
6. SIGNATURE	AND THE F	CRMIT HO	LDER WITHIN 3	0 DAYS AFTER COMPLETION OF WELL DRILLING:	5E UJI FEB 1.2 202	H HWT . (15)					
GN	6	Mo	. V~	James Hawley	2/9/24						
6. SI	A	Ju									
	. 4	SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAME	DATE						
FOR	R OSE INTER	NALUSE		WR-20 WR	LL RECORD & LOG (Ve	rsion ()9/22/2022)					
	E NO. CP	-1981	2-POD	(POD NO. / TRN NO.	755205	MAN ON ELLEVEL					
LOC	CATION	A 15	3.32.16	WELL TAG ID NO.		PAGE 2 OF 2					
	(1 12									

Received by OCD: 5/22/2025 7:37:58 AM

Mike A. Hamman, P.E. State Engineer

well Office
1900 WEST SECOND STREET
ROSWELL, NM 88201

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Trn Nbr: 755205 File Nbr: CP 01986 Well File Nbr: CP 01986 POD1

Jan. 12, 2024

JAMES HAWLEY COTERRA ENERGY CO. P.O. BOX 3641 HOBBS, NM 88241

Greetings:

The above numbered permit was issued in your name on 01/23/2024.

The Well Record was received in this office on 02/12/2024, stating that it had been completed on 01/31/2024, and was a dry well. The well is to be plugged according to 19.27.4.30 NMAC.

Please note that another well can be drilled under this permit if the well is completed and the well log filed on or before 01/22/2025.

If you have any questions, please feel free to contact us.

Sincerely, hon

Mar'et Thompson (575)622-6521

drywell

FEMA National Flood Hazard Layer (NFHL)

Bureau of Land Management, Texas Parks & Wildlife, Esri, HERE, Garmin, INCREMENT P, Intermap, USGS, METI/NASA, EPA, USDA

FEMA National Flood Hazard Layer (NFHL)

FEMA flood layer

600ft

Maxar | Esri Community Maps Contributors, New Mexico State University, Texas Parks & Wildlife, © OpenStreetMap, Microsoft, Esri, TomTom, Garmin, SafeGraph, GeoTechnologies, Inc, METI/NASA, USGS, EPA, NPS, US Census Bureau, USDA, USFWS
Page 37 of 147

CONOCO FEDERAL #001 (12.28.2004)

3/25/2025

USA Flood Hazard Areas

World_Hillshade

Esri, NASA, NGA, USGS, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community

1% Annual Chance Flood Hazard

.

APPENDIX E

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/9/2025 3:10:17 PM

JOB DESCRIPTION

CONOCO FEDERAL #001 Eddy CO NM

JOB NUMBER

880-56520-1

 T
 3

 T
 6

 T
 6

 R
 1

 ke
 1

 ses
 1

 St
 1

 00
 1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/9/2025 3:10:17 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 41 of 147

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	18
Lab Chronicle	21
Certification Summary	23
Method Summary	24
Sample Summary	25
Chain of Custody	26
Receipt Checklists	27

Contains Free Liquid

Colony Forming Unit Contains No Free Liquid

Detection Limit (DoD/DOE)

Estimated Detection Limit (Dioxin)

Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE)

Method Detection Limit

Minimum Level (Dioxin) Most Probable Number

Method Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Calculated

Negative / Absent

Positive / Present Practical Quantitation Limit

Presumptive

Quality Control

Dilution Factor

Duplicate Error Ratio (normalized absolute difference)

Decision Level Concentration (Radiochemistry)

EPA recommended "Maximum Contaminant Level"

Minimum Detectable Concentration (Radiochemistry)

Not Detected at the reporting limit (or MDL or EDL if shown)

Minimum Detectable Activity (Radiochemistry)

Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

CFL

CFU

CNF DER

Dil Fac

DL, RA, RE, IN

DL

DLC EDL

LOD

LOQ

MCL MDA

MDC

MDL

MPN MQL

ML

NC

ND

NEG

POS

PQL PRES

QC

RER

RPD

TEF

TEQ

TNTC

RL

cerveu by OC	D: 3/22/2023 /.3/.30 AW	ruge 42 0J 1	4/
	Definitions/Glossary		
Client: Carmo	ona Resources	Job ID: 880-56520-1	
Project/Site: (CONOCO FEDERAL #001	SDG: Eddy CO NM	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VO	Α		5
Qualifier	Qualifier Description		
*_	LCS and/or LCSD is outside acceptance limits, low biased.		
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			
Qualifier	Qualifier Description		8
F1	MS and/or MSD recovery exceeds control limits.		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			10
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
 Ø	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		

Job ID: 880-56520-1

Case Narrative

Client: Carmona Resources Project: CONOCO FEDERAL #001 Job ID: 880-56520-1

Eurofins Midland

Job Narrative 880-56520-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/4/2025 1:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -3.0°C.

GC VOA

Method 8021B: Surrogate recovery for the following sample was outside control limits: (CCV 880-106990/20). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-107022 and analytical batch 880-107002 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-107023 and analytical batch 880-107029 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Page 44 of 147

Matrix: Solid

5

Job ID: 880-56520-1 SDG: Eddy CO NM

Lab Sample ID: 880-56520-1

Client Sample ID: H-1 (0-0.5') Date Collected: 04/03/25 00:00

Project/Site: CONOCO FEDERAL #001

Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:41	04/07/25 19:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	124		70 - 130				04/07/25 08:41	04/07/25 19:00	1
1,4-Difluorobenzene (Surr)	91		70 - 130				04/07/25 08:41	04/07/25 19:00	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/07/25 19:00	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/07/25 22:01	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U *-	49.6		mg/Kg		04/07/25 10:01	04/07/25 22:01	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6		mg/Kg		04/07/25 10:01	04/07/25 22:01	1
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 10:01	04/07/25 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	122		70 - 130				04/07/25 10:01	04/07/25 22:01	1
o-Terphenyl (Surr)	121		70 - 130				04/07/25 10:01	04/07/25 22:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	110		10.0		mg/Kg			04/07/25 15:51	1
lient Sample ID: H-2 (0-0.5)						Lab Sam	ple ID: 880-5	6520-2
ate Collected: 04/03/25 00:00								Matri	x: Solid
ate Received: 04/04/25 13:35									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:41	04/07/25 19:20	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:41	04/07/25 19:20	1
Ethylbenzene	< 0.00201	U	0.00201		mg/Kg		04/07/25 08:41	04/07/25 19:20	1
,					3,3				

m,p-Xylenes	<0.00402 U	0.00402	mg/Kg	04/07/25 08:41	04/07/25 19:20	1
o-Xylene	<0.00201 U	0.00201	mg/Kg	04/07/25 08:41	04/07/25 19:20	1
Xylenes, Total	<0.00402 U	0.00402	mg/Kg	04/07/25 08:41	04/07/25 19:20	1
Surrogate	%Recovery Qualif	ïer Limits		Prepared	Analyzed	Dil Fac
Surrogate 4-Bromofluorobenzene (Surr)	%Recovery Qualif	ier <u>Limits</u> 70 - 130		Prepared 04/07/25 08:41	Analyzed 04/07/25 19:20	Dil Fac

Eurofins Midland

Released to Imaging: 6/4/2025 4:25:51 PM

Job ID: 880-56520-1 SDG: Eddy CO NM

Matrix: Solid

5

Client Sample ID: H-2 (0-0.5')

Project/Site: CONOCO FEDERAL #001

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/07/25 19:20	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/07/25 22:17	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		04/07/25 10:01	04/07/25 22:17	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/07/25 10:01	04/07/25 22:17	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/07/25 10:01	04/07/25 22:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	122		70 - 130				04/07/25 10:01	04/07/25 22:17	1
o-Terphenyl (Surr)	122		70 - 130				04/07/25 10:01	04/07/25 22:17	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	300		9.90		mg/Kg			04/07/25 15:59	1

Client Sample ID: H-3 (0-0.5')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35 Lab Sample ID: 880-56520-3 Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 13:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				04/07/25 08:43	04/07/25 13:57	1
1,4-Difluorobenzene (Surr)	99		70 - 130				04/07/25 08:43	04/07/25 13:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 13:57	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/07/25 22:33	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Desult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	Quanner							
Analyte Gasoline Range Organics	49.6		49.6		mg/Kg		04/07/25 10:01	04/07/25 22:33	1
-					mg/Kg		04/07/25 10:01	04/07/25 22:33	1

Eurofins Midland

Page 4

Lab Sample ID: 880-56520-2

C10-C28)

Job ID: 880-56520-1 SDG: Eddy CO NM

Matrix: Solid

5

Lab Sample ID: 880-56520-3

Client Sample ID: H-3 (0-0.5')

Project/Site: CONOCO FEDERAL #001

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 10:01	04/07/25 22:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	126		70 - 130				04/07/25 10:01	04/07/25 22:33	1
o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	• •						04/07/25 10:01	04/07/25 22:33	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl Qualifier		MDL	Unit	D	04/07/25 10:01 Prepared	04/07/25 22:33 Analyzed	1 Dil Fac
	Chromatograp		e	MDL	Unit mg/Kg	<u>D</u>			1 1
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 151		e	MDL		<u> </u>	Prepared	Analyzed	1
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp Result 151		e	MDL		<u> </u>	Prepared	Analyzed 04/07/25 16:21 ple ID: 880-5	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 14:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				04/07/25 08:43	04/07/25 14:18	1
1,4-Difluorobenzene (Surr)	97		70 - 130				04/07/25 08:43	04/07/25 14:18	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg				04/07/25 14:18	1

Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			04/07/25 22:49	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U *-	50.3		mg/Kg		04/07/25 10:01	04/07/25 22:49	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		04/07/25 10:01	04/07/25 22:49	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/07/25 10:01	04/07/25 22:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	111		70 _ 130				04/07/25 10:01	04/07/25 22:49	1
o-Terphenyl (Surr)	108		70 - 130				04/07/25 10:01	04/07/25 22:49	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	108		10.1		mg/Kg			04/07/25 16:29	1

Released to Imaging: 6/4/2025 4:25:51 PM

Client Sample Results

Page 47 of 147

Job ID: 880-56520-1 SDG: Eddy CO NM

Lab Sample ID: 880-56520-5

Client Sample ID: H-5 (0-0.5') Date Collected: 04/03/25 00:00

Project/Site: CONOCO FEDERAL #001

Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
n,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 14:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/07/25 08:43	04/07/25 14:38	1
1,4-Difluorobenzene (Surr)	100		70 - 130				04/07/25 08:43	04/07/25 14:38	1
Method: TAL SOP Total BTEX - To	otal BTEX Cal	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 14:38	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			04/07/25 23:05	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *-	49.9		mg/Kg		04/07/25 10:01	04/07/25 23:05	1
Diesel Range Organics (Over C10-C28)	<49.9	U	49.9		mg/Kg		04/07/25 10:01	04/07/25 23:05	1
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/07/25 10:01	04/07/25 23:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	110		70 - 130				04/07/25 10:01	04/07/25 23:05	1
o-Terphenyl (Surr)	106		70 - 130				04/07/25 10:01	04/07/25 23:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	65.7		10.0		mg/Kg			04/07/25 16:36	1
lient Sample ID: H-6 (0-0.5'))						Lab Sam	ple ID: 880-5	6520-6
								Matri	x: Solid
ate Collected: 04/03/25 00:00									
ate Received: 04/04/25 13:35	Organic Comp	ounds (GC)							
ate Received: 04/04/25 13:35 Method: SW846 8021B - Volatile (<mark>ounds (GC)</mark> Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Collected: 04/03/25 00:00 ate Received: 04/04/25 13:35 Method: SW846 8021B - Volatile (Analyte Benzene				MDL	Unit mg/Kg	<u>D</u>	Prepared 04/07/25 08:43	Analyzed 04/07/25 14:59	Dil Fac
ate Received: 04/04/25 13:35 Method: SW846 8021B - Volatile (Analyte	Result	Qualifier	RL	MDL		<u>D</u>			-

m,p-Xylenes <0.00399 U 0.00399 mg/Kg 04/07/25 08:43 04/07/25 14:59 1 <0.00200 U 0.00200 04/07/25 14:59 o-Xylene mg/Kg 04/07/25 08:43 1 Xylenes, Total <0.00399 U 0.00399 04/07/25 08:43 04/07/25 14:59 mg/Kg 1 %Recovery Qualifier Limits Analyzed Dil Fac Surrogate Prepared 4-Bromofluorobenzene (Surr) 103 70 - 130 04/07/25 08:43 04/07/25 14:59 1 1,4-Difluorobenzene (Surr) 97 70 - 130 04/07/25 08:43 04/07/25 14:59 1

Eurofins Midland

ruge 47 0J

Matrix: Solid

5

Client Sample Results

Job ID: 880-56520-1 SDG: Eddy CO NM

Matrix: Solid

Lab Sample ID: 880-56520-6

Client Sample ID: H-6 (0-0.5')

Project/Site: CONOCO FEDERAL #001

Client: Carmona Resources

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/07/25 14:59	1	
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Total TPH	<50.1	U	50.1		mg/Kg			04/07/25 23:21	1	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics	<50.1	U *-	50.1		mg/Kg		04/07/25 10:01	04/07/25 23:21	1	
(GRO)-C6-C10										1
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		04/07/25 10:01	04/07/25 23:21	1	
C10-C28)										
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		04/07/25 10:01	04/07/25 23:21	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
1-Chlorooctane (Surr)	112		70 - 130				04/07/25 10:01	04/07/25 23:21	1	
p-Terphenyl (Surr)	108		70 - 130				04/07/25 10:01	04/07/25 23:21	1	1
Method: EPA 300.0 - Anions, Ion		-								1
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac	
Chloride	167		10.0		mg/Kg			04/07/25 16:44	1	

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

_				Percent Surrogate Recovery (Acceptance Limits)	4
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-56520-1	H-1 (0-0.5')	124	91		
880-56520-2	H-2 (0-0.5')	122	86		6
880-56520-3	H-3 (0-0.5')	101	99		
880-56520-4	H-4 (0-0.5')	100	97		7
880-56520-5	H-5 (0-0.5')	99	100		
880-56520-6	H-6 (0-0.5')	103	97		8
880-56533-A-1-E MS	Matrix Spike	121	90		
880-56533-A-1-F MSD	Matrix Spike Duplicate	120	93		Q
880-56533-A-6-C MS	Matrix Spike	92	102		3
880-56533-A-6-D MSD	Matrix Spike Duplicate	99	99		10
LCS 880-106994/1-A	Lab Control Sample	116	92		10
LCS 880-106995/1-A	Lab Control Sample	102	99		4.4
LCSD 880-106994/2-A	Lab Control Sample Dup	122	87		
LCSD 880-106995/2-A	Lab Control Sample Dup	99	100		
MB 880-106994/5-A	Method Blank	113	82		
MB 880-106995/5-A	Method Blank	99	91		
Surrogate Legend					13
BFB = 4-Bromofluoroben	izene (Surr)				
DFBZ = 1,4-Difluorobenz	∠ene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 Lab Sample ID **Client Sample ID** (70-130) (70-130) 880-56484-A-6-D MS Matrix Spike 95 105 880-56484-A-6-E MSD Matrix Spike Duplicate 103 115 880-56520-1 H-1 (0-0.5') 122 121 880-56520-2 H-2 (0-0.5') 122 122 880-56520-3 H-3 (0-0.5') 126 127 880-56520-4 H-4 (0-0.5') 111 108 880-56520-5 H-5 (0-0.5') 110 106 880-56520-6 H-6 (0-0.5') 112 108 LCS 880-107022/2-A Lab Control Sample 99 111 LCSD 880-107022/3-A Lab Control Sample Dup 84 91 MB 880-107022/1-A Method Blank 112 116

Surrogate Legend

1CO = 1-Chlorooctane (Surr) OTPH = o-Terphenyl (Surr)

Eurofins Midland

Prep Type: Total/NA

Prep Type: Total/NA

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-106994/5 Matrix: Solid Analysis Batch: 106990							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
Australia	MB			MDI	11		Durant	A	D!!
Analyte	Result		RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:41	04/07/25 11:39	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	113		70 - 130				04/07/25 08:41	04/07/25 11:39	1
1,4-Difluorobenzene (Surr)	82		70 - 130				04/07/25 08:41	04/07/25 11:39	1
Lab Sample ID: LCS 880-106994/	1-A					c	lient Sample I	D: Lab Control	Sample

Lab Sample ID: LCS 880-106994/1-A Matrix: Solid

Analysis Batch: 106990

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09950		mg/Kg		99	70 - 130	·
Toluene	0.100	0.09017		mg/Kg		90	70 - 130	
Ethylbenzene	0.100	0.08511		mg/Kg		85	70 - 130	
m,p-Xylenes	0.200	0.1812		mg/Kg		91	70 - 130	
o-Xylene	0.100	0.08756		mg/Kg		88	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	116		70 - 130
1,4-Difluorobenzene (Surr)	92		70 - 130

Lab Sample ID: LCSD 880-106994/2-A

Matrix: Solid

Analysis Batch: 106990							Prep I	Batch: 1	06994
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09437		mg/Kg		94	70 - 130	5	35
Toluene	0.100	0.09112		mg/Kg		91	70 - 130	1	35
Ethylbenzene	0.100	0.08788		mg/Kg		88	70 - 130	3	35
m,p-Xylenes	0.200	0.1910		mg/Kg		95	70 - 130	5	35
o-Xylene	0.100	0.09228		mg/Kg		92	70 - 130	5	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	122		70 - 130
1,4-Difluorobenzene (Surr)	87		70 - 130

Lab Sample ID: 880-56533-A-1-E MS

Matrix: Solid Analysis Retaby 106000

Analysis Batch: 106	990								Prep	Batch: 106994
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00199	U	0.100	0.1138		mg/Kg		114	70 - 130	
Toluene	<0.00199	U	0.100	0.1007		mg/Kg		101	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: Matrix Spike

Client Sample ID: Method Blank

Job ID: 880-56520-1

SDG: Eddy CO NM

Prep Batch: 106994

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1

SDG: Eddy CO NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-56533-A	-1-E MS										Client S	Sample ID	: Matrix	Spik
Matrix: Solid												Prep ⁻	Type: To	tal/N
Analysis Batch: 106990												Prep	Batch: 1	0699
	Sample S	Samp	ole	Spike	MS	MS						%Rec		
Analyte	Result C	Quali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Ethylbenzene	<0.00199 L	J		0.100	0.09025			mg/Kg			90	70 - 130		
n,p-Xylenes	<0.00398 L	J		0.200	0.1892			mg/Kg			95	70 - 130		
o-Xylene	<0.00199 L	J		0.100	0.09004			mg/Kg			90	70 - 130		
	MS M	ИS												
Surrogate	%Recovery G	Qual	ifier	Limits										
1-Bromofluorobenzene (Surr)	121			70 - 130										
,4-Difluorobenzene (Surr)	90			70 - 130										
.ab Sample ID: 880-56533-A	-1-F MSD								Clier	nt Sa	mple ID:	Matrix S	pike Dur	olicat
Matrix: Solid													Туре: То	
Analysis Batch: 106990													Batch: 1	
	Sample S	Samp	ole	Spike	MSD	MSD)					%Rec		RP
Analyte	Result C	Juali	fier	Added	Result	Qua	lifier	Unit		D	%Rec	Limits	RPD	Lim
Benzene	<pre></pre>	J		0.100	0.1161			mg/Kg			116	70 - 130	2	
oluene	<0.00199 L	J		0.100	0.09727			mg/Kg			97	70 - 130	3	:
thylbenzene	<0.00199 L			0.100	0.08272			mg/Kg			83	70 - 130	9	:
n,p-Xylenes	<0.00398 L			0.200	0.1710			mg/Kg			86	70 - 130	10	;
-Xylene	<0.00199 L			0.100	0.08092			mg/Kg			81	70 - 130	11	
	MSD N	NSD												
Surrogate		Qual	ifier	Limits										
-Bromofluorobenzene (Surr)	120			70 - 130										
,4-Difluorobenzene (Surr)	93			70 - 130										
ab Sample ID: MB 880-1069	995/5-A										Client Sa	mple ID:	Method	Blar
Matrix: Solid													Туре: То	
Analysis Batch: 106989													Batch: 1	
-	n	мв	МВ											
Analyte	Res	ult	Qualifier	RL		MDL	Unit		D	Pr	epared	Analyz	zed	Dil Fa
Senzene	<0.002	200	U	0.00200			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
oluene	<0.002	200	U	0.00200			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
thylbenzene	<0.002	200	U	0.00200			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
n,p-Xylenes	<0.003	399	U	0.00399			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
-Xylene	<0.002	200	U	0.00200			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
ylenes, Total	<0.003	399	U	0.00399			mg/Kg			04/07	7/25 08:43	04/07/25	11:33	
		мв	МВ											
urrogate	%Recove		Qualifier	Limits						Pr	epared	Analy	zed	Dil F
-Bromofluorobenzene (Surr)		99		70 - 130						04/07	7/25 08:43	04/07/25	11:33	
,4-Difluorobenzene (Surr)		91		70 - 130						04/07	7/25 08:43	04/07/25	11:33	
ab Sample ID: LCS 880-106	995/1-A								С	lient	Sample	ID: Lab C	ontrol S	amn
													Type: To	
Atrix: Solid														
/atrix: Solid Analysis Batch: 106989				Spike	LCS	LCS							Batch: 1	

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09756		mg/Kg		98	70 - 130	
Toluene	0.100	0.09728		mg/Kg		97	70 - 130	
Ethylbenzene	0.100	0.09306		mg/Kg		93	70 - 130	
m,p-Xylenes	0.200	0.1863		mg/Kg		93	70 - 130	

Eurofins Midland

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Lab Sample ID: LCS 880-106995/1-A

Matrix: Solid

Job ID: 880-56520-1 SDG: Eddy CO NM

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Analysis Batch: 106989										Batch: 1	06995
			Spike		LCS				%Rec		
Analyte			Added		Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09326		mg/Kg		93	70 - 130		
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	102		70 - 130								
1,4-Difluorobenzene (Surr)	99		70 - 130								
Lab Sample ID: LCSD 880-1	06995/2-A					Clie	nt Sam	nole ID: I	Lab Contro	ol Samol	e Dur
Matrix: Solid										Type: Tot	
Analysis Batch: 106989										Batch: 1	
,			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.09819		mg/Kg		98	70 - 130	1	35
Toluene			0.100	0.09799		mg/Kg		98	70 - 130	1	35
Ethylbenzene			0.100	0.09309		mg/Kg		93	70 - 130	0	35
m,p-Xylenes			0.200	0.1865		mg/Kg		93	70 - 130	0	35
o-Xylene			0.100	0.09348		mg/Kg		93	70 - 130	0	35
0-Xylene			0.100	0.03040		mg/itg		30	70 - 100	0	00
	LCSD	LCSD									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	99		70 - 130								
1,4-Difluorobenzene (Surr)	100		70 - 130								
									Prep	Type: Tot	tal/N/
									Prep	Batch: 1	
Analysis Batch: 106989		Sample	Spike	MS	MS		_		Prep %Rec		
Analysis Batch: 106989 Analyte	Result	Qualifier	Added	Result	MS Qualifier	Unit	D	%Rec	Prep %Rec Limits		
Analysis Batch: 106989 Analyte Benzene	Result <0.00202	Qualifier	Added	Result 0.1014		mg/Kg	D	101	Prep %Rec Limits 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene	Result <0.00202 <0.00202	Qualifier U U	Added 0.100 0.100	Result 0.1014 0.09373		mg/Kg mg/Kg	D	101 94	Prep %Rec Limits 70 - 130 70 - 130		
Matrix: Solid Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene	Result <0.00202	Qualifier U U U	Added 0.100 0.100 0.100	Result 0.1014 0.09373 0.08324		mg/Kg mg/Kg mg/Kg	<u> </u>	101 94 83	Prep %Rec Limits 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m.p-Xylenes		Qualifier U U U U	Added 0.100 0.100 0.100 0.200	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	101 94 83 81	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m.p-Xylenes	Result <0.00202	Qualifier U U U U	Added 0.100 0.100 0.100	Result 0.1014 0.09373 0.08324		mg/Kg mg/Kg mg/Kg	<u>D</u>	101 94 83	Prep %Rec Limits 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes		Qualifier U U U U U U	Added 0.100 0.100 0.100 0.200	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	101 94 83 81	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	Result <0.00202	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.200	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	101 94 83 81	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene	Result <0.00202 <0.00202 <0.00202 <0.00404 <0.00202 MS	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	101 94 83 81	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00202 <0.00202 <0.00202 <0.00404 <0.00202 MS %Recovery	Qualifier U U U U U U U MS	Added 0.100 0.100 0.200 0.100 Limits	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	101 94 83 81	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130		
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	Result <0.00202	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg		101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch: 1	06995
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-4	Result <0.00202	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg		101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch: 1	olicate
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-4 Matrix: Solid	Result <0.00202	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1014 0.09373 0.08324 0.1620		mg/Kg mg/Kg mg/Kg mg/Kg		101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Dike Dup	olicate
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-4 Matrix: Solid	Result <0.00202	Qualifier U U U U U U U MS	Added 0.100 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100	Result 0.1014 0.09373 0.08324 0.1620 0.08043		mg/Kg mg/Kg mg/Kg mg/Kg		101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Batch: 1	olicate tal/NA 06995
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106989	Result <0.00202	Qualifier U U U U U U MS Qualifier	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 Description 70 - 130 70 - 130	Result 0.1014 0.09373 0.08324 0.1620 0.08043	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep Prep	Dike Dup	olicate tal/NA 06995 RPD
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106989 Analyte	Result <0.00202	Qualifier U U U U U MS Qualifier Sample Qualifier	Added 0.100 0.100 0.200 0.100 Limits 70 - 130 70 - 130 Spike	Result 0.1014 0.09373 0.08324 0.1620 0.08043	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	101 94 83 81 80	Prep %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 100 70 - 100	pike Dup Type: Tot Batch: 1	olicate tal/NA 06995 RPE Limi
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-4 Matrix: Solid Analysis Batch: 106989 Analyte Benzene	Result <0.00202	Qualifier U U U U U MS Qualifier U	Added 0.100 0.100 0.200 0.100 <i>Limits</i> 70 - 130 70 - 130 70 - 130	Result 0.1014 0.09373 0.08324 0.1620 0.08043	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	101 94 83 81 80 ample ID	Prep %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 100 70 -	Dike Dup Type: Tot Batch: 1 RPD	olicate tal/NA 06995 RPC Limit 35
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofiluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106989 Analyte Benzene Toluene	Result <0.00202	Qualifier U U U U U U MS Qualifier U U U	Added 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 Description 70 - 130 70 - 130 70 - 130 Spike Added 0.100	Result 0.1014 0.09373 0.08324 0.1620 0.08043	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cl	ient Sa	101 94 83 81 80 ample ID %Rec 93	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 %Rec Limits 70 - 130	pike Dup Type: Tof Batch: 1 <u>RPD</u> 9	olicate tal/NA 06995 RPD Limit 35 35
Analysis Batch: 106989 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate	Result <0.00202	Qualifier U U U U U U U MS Qualifier U U U U	Added 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.100 Limits 70 - 130 70 - 130 Spike Added 0.100 0.100	Result 0.1014 0.09373 0.08324 0.1620 0.08043	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ient Sa	101 94 83 81 80 ample ID 93 92	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 Prep %Rec Limits 70 - 130 70 - 130	pike Dup Type: Tot Batch: 10 	olicate

Eurofins Midland

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid												Prep Ty	-	
Analysis Batch: 106989												Prep Ba	atch: 1	0699
	MSD	MSD												
Surrogate	%Recovery	Qua	ifier	Limits										
4-Bromofluorobenzene (Surr)	99			70 - 130										
1,4-Difluorobenzene (Surr)	99			70 - 130										
lethod: 8015B NM - Diese	I Range Or	gar	ics (DR	(GC)										
Lab Sample ID: MB 880-10702	2/1-A										Client Sa	ample ID: M		
Matrix: Solid												Prep Ty	-	
Analysis Batch: 107002												Prep Ba	atch: 1	0702
		MB	MB											
nalyte			Qualifier	RL		MDL	Unit		D	P	repared	Analyze		Dil Fa
Basoline Range Organics	<	50.0	U	50.0			mg/K	g		04/0	7/25 10:01	04/07/25 17	':43	
GRO)-C6-C10 Diesel Range Organics (Over	<	50.0	U	50.0			mg/K	a		04/0	7/25 10:01	04/07/25 17	·43	
C10-C28)		55.0	2	50.0			g/iti	3		54/0		5 101120 11	. 15	
Dil Range Organics (Over C28-C36)	<	50.0	U	50.0			mg/K	g		04/0	7/25 10:01	04/07/25 17	' :43	
		ΜВ	МВ											
urrogate	%Reco		Qualifier	Limits						Р	repared	Analyze	d	Dil Fa
-Chlorooctane (Surr)		112		70 - 130							7/25 10:01	04/07/25 17		
-Terphenyl (Surr)		116		70 - 130						04/0	7/25 10:01	04/07/25 17	7:43	
ab Sample ID: LCS 880-1070	22/2-A								С	lient	Sample	ID: Lab Cor	ntrol S	amp
Aatrix: Solid												Prep Ty		
Analysis Batch: 107002												Prep Ba		
				Spike	LCS	LCS						%Rec		
nalyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	767.6			mg/Kg			77	70 - 130		
GRO)-C6-C10				1000	000.0						04	70 400		
Diesel Range Organics (Over 210-C28)				1000	939.8			mg/Kg			94	70 - 130		
10-020)														
	LCS													
Gurrogate -Chlorooctane (Surr)	%Recovery	Qua	ifier	Limits										
()	99 111			70 ₋ 130 70 - 130										
p-Terphenyl (Surr)	111			70 - 130										
Lab Sample ID: LCSD 880-107	022/3-A							Cli	ent	Sam	ple ID: L	ab Control	Sampl	le Du
Matrix: Solid												Prep Ty		
Analysis Batch: 107002												Prep Ba	atch: 1	0702
				Spike	LCSD							%Rec		RF
nalyte				Added	Result		lifier	Unit		D	%Rec	Limits	RPD	Lin
Gasoline Range Organics GRO)-C6-C10				1000	657.9	*-		mg/Kg			66	70 - 130	15	2
Diesel Range Organics (Over C10-C28)				1000	768.6			mg/Kg			77	70 - 130	20	2
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
1-Chlorooctane (Surr)	84			70 - 130										
- T	~ 1			70 100										

Job ID: 880-56520-1

SDG: Eddy CO NM

o-Terphenyl (Surr)

91

70 - 130

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Job ID: 880-56520-1 SDG: Eddy CO NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-56484-A	-0-D IVIS							Client	Sample ID		
Matrix: Solid										Type: To	
Analysis Batch: 107002	Somolo	Sample	Spike	ме	MS				%Rec	Batch: 1	0/02
Analyte	-	Sample Qualifier	Added	Result		r Unit	D	%Rec	Limits		
Gasoline Range Organics		U *- F1	994	620.1		mg/Kg		62	70 - 130		
(GRO)-C6-C10	~45.5	0 -11	554	020.1		mg/rtg		02	70 - 150		
Diesel Range Organics (Over	<49.9	U	994	790.7		mg/Kg		77	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	95		70 - 130	-							
o-Terphenyl (Surr)	105		70 - 130								
Lab Sample ID: 880-56484-A	-6-E MSD						Client S	ample I	D: Matrix Sp		
Matrix: Solid										Гуре: То	
Analysis Batch: 107002	_	. .	.							Batch: 1	
• • • •	•	Sample	Spike	MSD			-	~ -	%Rec		RP
Analyte		Qualifier	Added		Qualifie		D	%Rec	Limits	RPD	Lim
Gasoline Range Organics (GRO)-C6-C10	<49.9	U *- F1	994	664.3	Fl	mg/Kg		67	70 - 130	7	2
Diesel Range Organics (Over	<49.9	U	994	877.5		mg/Kg		86	70 - 130	10	2
C10-C28)						0.0					
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	103		70 - 130	-							
o-Terphenyl (Surr)	115		70 - 130								
ethod: 300.0 - Anions, I	on Chromat	ography									
Lab Sample ID: MB 880-1070	23/1-A							Client S	Sample ID:	Method	Blan
Matrix: Solid									-	Type: S	
Analysis Batch: 107029										.,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		MB MB									
Analyte	R	esult Qualifie	r	RL	MDL Ur	nit	DI	Prepared	Analyz	ed	Dil Fa
Chloride	<	:10.0 U		10.0	mį	g/Kg			04/07/25	13:22	
											
Lab Sample ID: LCS 880-107	023/2-A						Clien	it Sample	D: Lab Co		
Matrix: Solid									Prep	Type: S	olubi
Analysis Batch: 107029			0		1.00				0/ D = =		
A			Spike		LCS			% Dee	%Rec		
Analyte			Added		Qualifie		D	%Rec	Limits		
Chloride			250	266.1		mg/Kg		106	90 - 110		
Lab Sample ID: LCSD 880-10	7023/3-A					Cli	ent Sar	nple ID:	Lab Contro	ol Samp	le Du
Matrix: Solid								•		Type: S	
Analysis Batch: 107029											
Analysis Batch: 107029			Spike	LCSD	LCSD				%Rec		RP
Analysis Batch: 107029 Analyte			Spike Added		LCSD Qualifie	r Unit	D	%Rec	%Rec Limits	RPD	RP Lim

5 6 7

QC Sample Results

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1 SDG: Eddy CO NM

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 880-5651	7-A-1-C MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid									Prep	Type: Se	oluble
Analysis Batch: 107029											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
	45.3	·	249	352.3	E1	mg/Kg		123	90 - 110		
Chloride	45.7	F1	249	352.5	ΓI	ilig/Kg		125	90 - 110		
		FI	249	352.3	ΓI	0 0	ent Sa): Matrix Sp	oike Dup Type: S	
Lab Sample ID: 880-5651 Matrix: Solid			249 Spike	352.3 MSD		0 0	ent Sa): Matrix Sp		
	I7-A-1-D MSD Sample			MSD		0 0	ent Sa D): Matrix Sp Prep		oluble

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

5 6

Job ID: 880-56520-1 SDG: Eddy CO NM

GC VOA

Analysis Batch: 106989

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	8021B	106995
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	8021B	106995
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	8021B	106995
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	8021B	106995
MB 880-106995/5-A	Method Blank	Total/NA	Solid	8021B	106995
LCS 880-106995/1-A	Lab Control Sample	Total/NA	Solid	8021B	106995
LCSD 880-106995/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	106995
880-56533-A-6-C MS	Matrix Spike	Total/NA	Solid	8021B	106995
880-56533-A-6-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106995

Analysis Batch: 106990

LCSD 880-106995/2-A	Lab Control Sample Dup	Iotal/NA	Solid	8021B	106995	
880-56533-A-6-C MS	Matrix Spike	Total/NA	Solid	8021B	106995	8
880-56533-A-6-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106995	
Analysis Batch: 106990						9
Г						
Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch	110
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	8021B	106994	
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	8021B	106994	44
MB 880-106994/5-A	Method Blank	Total/NA	Solid	8021B	106994	
LCS 880-106994/1-A	Lab Control Sample	Total/NA	Solid	8021B	106994	10
LCSD 880-106994/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	106994	
880-56533-A-1-E MS	Matrix Spike	Total/NA	Solid	8021B	106994	40
880-56533-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106994	13
Prep Batch: 106994						11

Prep Batch: 106994

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	5035	
MB 880-106994/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-106994/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-106994/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56533-A-1-E MS	Matrix Spike	Total/NA	Solid	5035	
880-56533-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 106995

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	5035	
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	5035	
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	5035	
MB 880-106995/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-106995/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-106995/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56533-A-6-C MS	Matrix Spike	Total/NA	Solid	5035	
880-56533-A-6-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 107120

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	

Eurofins Midland

QC Association Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

GC Semi VOA

Analysis Batch: 107002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	107022
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	107022
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	107022
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	107022
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	107022
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	8015B NM	107022
MB 880-107022/1-A	Method Blank	Total/NA	Solid	8015B NM	107022
LCS 880-107022/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107022
LCSD 880-107022/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107022
880-56484-A-6-D MS	Matrix Spike	Total/NA	Solid	8015B NM	107022
880-56484-A-6-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107022

Prep Batch: 107022

IVID 000-10/022/1-A	Method Blank	Total/INA	Solid	IVIN DCI UO	107022	
LCS 880-107022/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107022	8
LCSD 880-107022/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107022	
880-56484-A-6-D MS	Matrix Spike	Total/NA	Solid	8015B NM	107022	9
880-56484-A-6-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107022	
Prep Batch: 107022						10
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	44
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep		
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep		12
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep		
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep		40
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep		13
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep		
MB 880-107022/1-A	Method Blank	Total/NA	Solid	8015NM Prep		14
LCS 880-107022/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-107022/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-56484-A-6-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep		
880-56484-A-6-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep		

Analysis Batch: 107154

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-56520-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-56520-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-56520-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-56520-5	H-5 (0-0.5')	Total/NA	Solid	8015 NM	
880-56520-6	H-6 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 107023

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-56520-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-56520-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-56520-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-56520-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	
880-56520-6	H-6 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-107023/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-107023/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-107023/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-56517-A-1-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-56517-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Page 57 of 147

QC Association Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1 SDG: Eddy CO NM

HPLC/IC

Analysis Batch: 107029

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56520-1	H-1 (0-0.5')	Soluble	Solid	300.0	107023
880-56520-2	H-2 (0-0.5')	Soluble	Solid	300.0	107023
880-56520-3	H-3 (0-0.5')	Soluble	Solid	300.0	107023
880-56520-4	H-4 (0-0.5')	Soluble	Solid	300.0	107023
880-56520-5	H-5 (0-0.5')	Soluble	Solid	300.0	107023
880-56520-6	H-6 (0-0.5')	Soluble	Solid	300.0	107023
MB 880-107023/1-A	Method Blank	Soluble	Solid	300.0	107023
LCS 880-107023/2-A	Lab Control Sample	Soluble	Solid	300.0	107023
LCSD 880-107023/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	107023
880-56517-A-1-C MS	Matrix Spike	Soluble	Solid	300.0	107023
880-56517-A-1-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	107023

5 6 7

Eurofins Midland

Project/Site: CONOCO FEDERAL #001

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Batch

Client Sample ID: H-2 (0-0.5')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: H-1 (0-0.5') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client: Carmona Resources

Initial

Amount

5.01 g

5 mL

10.09 g

1 uL

5.00 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

Number

106994

106990

107120

107154

107022

107002

107023

107029

Batch

Job ID: 880-56520-1 SDG: Eddy CO NM

Lab Sample ID: 880-56520-1

Analyst

AA

EL

AJ

AJ

FC

TKC

SA

СН

Prepared

or Analyzed

04/07/25 08:41

04/07/25 19:00

04/07/25 19:00

04/07/25 22:01

04/07/25 10:01

04/07/25 22:01

04/07/25 10:29

04/07/25 15:51

Prepared

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 880-56520-2 Matrix: Solid

Lab Sample ID: 880-56520-3

Lab Sample ID: 880-56520-4

rix: 50110

Batch		Dil	Initial	Final
Method	Run	Factor	Amount	Amount

Dil

1

1

1

1

1

Factor

Run

Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106994	04/07/25 08:41	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106990	04/07/25 19:20	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107120	04/07/25 19:20	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107154	04/07/25 22:17	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/07/25 22:17	ткс	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	107023	04/07/25 10:29	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107029	04/07/25 15:59	CH	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 13:57	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107120	04/07/25 13:57	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107154	04/07/25 22:33	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/07/25 22:33	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	107023	04/07/25 10:29	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107029	04/07/25 16:21	СН	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 14:18	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107120	04/07/25 14:18	AJ	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/4/2025 4:25:51 PM

Project/Site: CONOCO FEDERAL #001

Client Sample ID: H-4 (0-0.5')

Job ID: 880-56520-1 SDG: Eddy CO NM

Lab Sample ID: 880-56520-4

Lab Sample ID: 880-56520-5

Matrix: Solid

Matrix: Solid

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107154	04/07/25 22:49	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/07/25 22:49	ТКС	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	107023	04/07/25 10:29	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107029	04/07/25 16:29	СН	EET MID

Client Sample ID: H-5 (0-0.5') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 14:38	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107120	04/07/25 14:38	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107154	04/07/25 23:05	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/07/25 23:05	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	107023	04/07/25 10:29	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107029	04/07/25 16:36	СН	EET MID

Client Sample ID: H-6 (0-0.5') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Batch Batch Dil Initial Final Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Total/NA Prep 5035 5.01 g 5 mL 106995 04/07/25 08:43 AA Total/NA 8021B 5 mL 5 mL 106989 04/07/25 14:59 EL Analysis 1 Total/NA Total BTEX Analysis 1 107120 04/07/25 14:59 AJ Total/NA Analysis 8015 NM 107154 04/07/25 23:21 AJ 1 107022 04/07/25 10:01 FC Prep 8015NM Prep 9.98 g 10 mL

Total/NA EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 107002 04/07/25 23:21 ткс EET MID 1 Soluble Leach DI Leach 4.99 g 50 mL 107023 04/07/25 10:29 SA EET MID Soluble Analysis 300.0 50 mL 50 mL 107029 04/07/25 16:44 СН EET MID 1

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Lab Sample ID: 880-56520-6

Matrix: Solid

Lab

EET MID

EET MID

EET MID EET MID Accreditation/Certification Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1 SDG: Eddy CO NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

uthority	Progra	am	Identification Number	Expiration Date		
exas	NELA	כ	T104704400	06-30-25		
The following analy	es are included in this report bu	t the laboratory is not certif	fied by the governing authority. This list	governing authority. This list may include analyt		
for which the agenc	does not offer certification.		, , , , , ,			
for which the agenc Analysis Method		Matrix	Analyte			
for which the agenc	does not offer certification.		, , , , , ,			

Eurofins Midland

Page 61 of 147

10

Method Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1 SDG: Eddy CO NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency		
	"Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third E = TestAmerica Laboratories, Standard Operating Procedure	dition, November 1986 And Its Updates.	
Laboratory Re			
EET MID =	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440	J	

Laboratory References:

Eurofins Midland

Released to Imaging: 6/4/2025 4:25:51 PM

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56520-1 SDG: Eddy CO NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-56520-1	H-1 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56520-2	H-2 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56520-3	H-3 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56520-4	H-4 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56520-5	H-5 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56520-6	H-6 (0-0.5')	Solid	04/03/25 00:00	04/04/25 13:35

4/9/2025

14

Job Number: 880-56520-1 SDG Number: Eddy CO NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56520 List Number: 1

Creator: Lee, Randell

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ashton Thielke Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/9/2025 4:28:52 PM

JOB DESCRIPTION

CONOCO FEDERAL #001 Eddy Co NM

JOB NUMBER

880-56526-1

 Image: Control of the second state of the second state

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/9/2025 4:28:52 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Page 68 of 147

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	24
QC Sample Results	26
QC Association Summary	34
Lab Chronicle	40
Certification Summary	48
Method Summary	49
Sample Summary	50
Chain of Custody	51
	54

Page 69 of 147

	Definitions/Glossary		
Client: Carmor	na Resources	Job ID: 880-56526-1	
Project/Site: C	ONOCO FEDERAL #001	SDG: Eddy Co NM	
Qualifiers			3
GC VOA			
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		
GC Semi VOA			5
Qualifier	Qualifier Description		
*_	LCS and/or LCSD is outside acceptance limits, low biased.		
F1	MS and/or MSD recovery exceeds control limits.		
S1+	Surrogate recovery exceeds control limits, high biased.		
U	Indicates the analyte was analyzed for but not detected.		
HPLC/IC			8
Qualifier	Qualifier Description		
U	Indicates the analyte was analyzed for but not detected.		9
Glossary			4
Abbreviation	These commonly used abbreviations may or may not be present in this report.		
¢.	Listed under the "D" column to designate that the result is reported on a dry weight basis		
%R	Percent Recovery		
CFL	Contains Free Liquid		
CFU	Colony Forming Unit		
CNF	Contains No Free Liquid		
DER	Duplicate Error Ratio (normalized absolute difference)		
Dil Fac	Dilution Factor		
DL	Detection Limit (DoD/DOE)		
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample		
DLC	Decision Level Concentration (Radiochemistry)		
EDL	Estimated Detection Limit (Dioxin)		
LOD	Limit of Detection (DoD/DOE)		
LOQ	Limit of Quantitation (DoD/DOE)		
MCL	EPA recommended "Maximum Contaminant Level"		
MDA	Minimum Detectable Activity (Radiochemistry)		
MDC	Minimum Detectable Concentration (Radiochemistry)		
	Method Detection Limit		
MDL			

Minimum Level (Dioxin)

Most Probable Number

Not Calculated

Negative / Absent

Positive / Present

Presumptive

Quality Control

Method Quantitation Limit

Practical Quantitation Limit

Relative Error Ratio (Radiochemistry)

Toxicity Equivalent Factor (Dioxin)

Too Numerous To Count

Toxicity Equivalent Quotient (Dioxin)

Reporting Limit or Requested Limit (Radiochemistry)

Relative Percent Difference, a measure of the relative difference between two points

Not Detected at the reporting limit (or MDL or EDL if shown)

ML

MPN

MQL

NC

ND

NEG POS

PQL

PRES

QC

RER

RPD TEF

TEQ

TNTC

RL

Case Narrative

Client: Carmona Resources Project: CONOCO FEDERAL #001 Job ID: 880-56526-1

Job ID: 880-56526-1

Eurofins Midland

Page 70 of 147

Job Narrative 880-56526-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/4/2025 1:35 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -3.0°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-107022 and analytical batch 880-107002 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: S-1 (3.0') (880-56526-4). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-107025/2-A). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland

Project/Site: CONOCO FEDERAL #001

Client Sample ID: S-1 (0-1.0')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Client: Carmona Resources

Client Sample Results

Page 71 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-1

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		04/07/25 08:43	04/07/25 16:21	
Toluene	<0.00202	U	0.00202		mg/Kg		04/07/25 08:43	04/07/25 16:21	
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		04/07/25 08:43	04/07/25 16:21	
m,p-Xylenes	<0.00404	U	0.00404		mg/Kg		04/07/25 08:43	04/07/25 16:21	
p-Xylene	<0.00202	U	0.00202		mg/Kg		04/07/25 08:43	04/07/25 16:21	
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		04/07/25 08:43	04/07/25 16:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				04/07/25 08:43	04/07/25 16:21	
1,4-Difluorobenzene (Surr)	97		70 - 130				04/07/25 08:43	04/07/25 16:21	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00404	U	0.00404		mg/Kg			04/07/25 16:21	
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (O	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	65.0		49.7		mg/Kg			04/07/25 23:38	
Method: SW846 8015B NM - Dies Analyte	Result	Qualifier		MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.7	U *-	49.7		mg/Kg		04/07/25 10:01	04/07/25 23:38	
GRO)-C6-C10			40.7				04/07/05 40.04	04/07/05 00 00	
Diesel Range Organics (Over C10-C28)	65.0		49.7		mg/Kg		04/07/25 10:01	04/07/25 23:38	
Dil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/07/25 10:01	04/07/25 23:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)			70 - 130				04/07/25 10:01	04/07/25 23:38	
p-Terphenyl (Surr)	122		70 - 130				04/07/25 10:01	04/07/25 23:38	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	96.6		9.94		mg/Kg			04/07/25 16:03	
lient Sample ID: S-1 (1.5')							Lab Sam	ple ID: 880-5	6526-2
ate Collected: 04/03/25 00:00								Matri	x: Solie
ate Received: 04/04/25 13:35									
Method: SW846 8021B - Volatile	• •		-			-	. .		
Method: SW846 8021B - Volatile Analyte	Result	Qualifier		MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
	• •	Qualifier	RL 0.00199 0.00199	MDL	<mark>Unit</mark> mg/Kg mg/Kg	<u>D</u>	Prepared 04/07/25 08:43 04/07/25 08:43	Analyzed 04/07/25 16:42 04/07/25 16:42	Dil Fa

04/07/25 16:42

04/07/25 16:42

04/07/25 16:42

04/07/25 16:42

Analyzed

04/07/25 16:42

04/07/25 16:42

Ethylbenzene

m,p-Xylenes

Xylenes, Total

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

o-Xylene

Surrogate

0.00199

0.00398

0.00199

0.00398

Limits

70 - 130

70 - 130

mg/Kg

mg/Kg

mg/Kg

mg/Kg

04/07/25 08:43

04/07/25 08:43

04/07/25 08:43

04/07/25 08:43

Prepared

04/07/25 08:43

04/07/25 08:43

<0.00199 U

<0.00398 U

<0.00199 U

<0.00398 U

%Recovery Qualifier

100

99

1

1

1

1

1

1

Dil Fac

Project/Site: CONOCO FEDERAL #001

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

Matrix: Solid

5

Lab Sample ID: 880-56526-2

Client Sample ID: S-1 (1.5')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 16:42	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/07/25 23:54	1
Method: SW846 8015B NM - Diese	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U *-	50.0		mg/Kg		04/07/25 10:01	04/07/25 23:54	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/07/25 10:01	04/07/25 23:54	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/07/25 10:01	04/07/25 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	118		70 - 130				04/07/25 10:01	04/07/25 23:54	1
o-Terphenyl (Surr)	118		70 - 130				04/07/25 10:01	04/07/25 23:54	1
Method: EPA 300.0 - Anions, Ion (Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	52.0		9.92		mg/Kg			04/07/25 16:09	1

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/07/25 08:43	04/07/25 17:02	1
1,4-Difluorobenzene (Surr)	99		70 - 130				04/07/25 08:43	04/07/25 17:02	1

Method: TAL SOP Total BTEX -	Total BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/07/25 17:02	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/08/25 00:11	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U *-	49.8		mg/Kg		04/07/25 10:01	04/08/25 00:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		04/07/25 10:01	04/08/25 00:11	1
C10-C28)									

Eurofins Midland
Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

Lab Sample ID: 880-56526-3

Client Sample ID: S-1 (2.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/07/25 10:01	04/08/25 00:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	119		70 - 130				04/07/25 10:01	04/08/25 00:11	1
o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion C	114 Chromatograp	ohy - Solubl	70 - 130 e				04/07/25 10:01	04/08/25 00:11	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	<mark>ohy - Solubl</mark> Qualifier		MDL	Unit	D	04/07/25 10:01 Prepared	04/08/25 00:11 Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion C Analyte	hromatograp		e	MDL	Unit mg/Kg	<u>D</u>			1 1
Method: EPA 300.0 - Anions, Ion C Analyte Chloride	hromatograp		e	MDL		D	Prepared	Analyzed	1
	hromatograp		e	MDL		<u>D</u>	Prepared	Analyzed 04/07/25 16:26 ple ID: 880-5	1

Wethou. 30040 0021D - Volati	ne organic comp								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:43	04/07/25 17:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				04/07/25 08:43	04/07/25 17:23	1
1,4-Difluorobenzene (Surr)	98		70 - 130				04/07/25 08:43	04/07/25 17:23	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402	mg/Kg			04/07/25 17:23	1

Method: SW846 8015 NM - Diesel R	Range Organi	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.5	U	50.5		mg/Kg			04/08/25 00:27	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U *-	50.5		mg/Kg		04/07/25 10:01	04/08/25 00:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.5	U	50.5		mg/Kg		04/07/25 10:01	04/08/25 00:27	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		04/07/25 10:01	04/08/25 00:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	134	S1+	70 _ 130				04/07/25 10:01	04/08/25 00:27	1
o-Terphenyl (Surr)	133	S1+	70 - 130				04/07/25 10:01	04/08/25 00:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	78.8		9.98		mg/Kg			04/07/25 16:32	1

Client Sample Results

Page 74 of 147

5

Job ID: 880-56526-1 SDG: Eddy Co NM

Client Sample ID: S-1 (4.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Client: Carmona Resources

	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:43	04/07/25 17:43	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				04/07/25 08:43	04/07/25 17:43	1
1,4-Difluorobenzene (Surr)	98		70 - 130				04/07/25 08:43	04/07/25 17:43	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 17:43	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.9	U	49.9		mg/Kg			04/07/25 20:24	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 20:24	
GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 20:24	
C10-C28) Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 20:24	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
-		Quanner	70 - 130				04/07/25 11:09	04/07/25 20:24	Diria
1-Chlorooctane (Surr)			70 - 130 70 - 130				04/07/25 11:09	04/07/25 20:24	
	125						0	0 // 0 // 20 20:21	
p-Terphenyl (Surr)	125								
o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	Chromatograp			MDL	Unit	D	Prepared	Analyzed	Dil Fa
o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp	<mark>Dhy - Soluble</mark> Qualifier	RL	MDL	Unit mg/Kg	D	Prepared	Analyzed 04/07/25 16:38	Dil Fac
o- <i>Terphenyl (Surr)</i> Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result		RL	MDL		<u>D</u>		04/07/25 16:38	· · · ·
o- <i>Terphenyl (Surr)</i> Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: S-1 (5.0')	Chromatograp Result		RL	MDL		<u>D</u>		04/07/25 16:38 ple ID: 880-5	6526-6
o- <i>Terphenyl (Surr)</i> Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: S-1 (5.0') ate Collected: 04/03/25 00:00	Chromatograp Result		RL	MDL		<u> </u>		04/07/25 16:38 ple ID: 880-5	
1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride lient Sample ID: S-1 (5.0') ate Collected: 04/03/25 00:00 ate Received: 04/04/25 13:35 Method: SW846 8021B - Volatile	Chromatograp Result 123	Qualifier	RL	MDL		<u>D</u>		04/07/25 16:38 ple ID: 880-5	6526-6

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 18:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				04/07/25 08:43	04/07/25 18:03	1
1,4-Difluorobenzene (Surr)	95		70 - 130				04/07/25 08:43	04/07/25 18:03	1

Eurofins Midland

Lab Sample ID: 880-56526-5 Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

5

Lab Sample ID: 880-56526-6

Client Sample ID: S-1 (5.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/07/25 18:03	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/07/25 21:11	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:11	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	118		70 - 130				04/07/25 11:09	04/07/25 21:11	1
o-Terphenyl (Surr)	121		70 - 130				04/07/25 11:09	04/07/25 21:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	209		9.94		mg/Kg			04/07/25 16:44	1
Client Sample ID: S-2 (0-1.0)							Lab Sam	ple ID: 880-5	6526 7

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 04/07/25 08:43 04/07/25 18:24 mg/Kg 1 Toluene <0.00200 U 0.00200 04/07/25 08:43 04/07/25 18:24 mg/Kg 1 Ethylbenzene <0.00200 U 0.00200 04/07/25 08:43 04/07/25 18:24 mg/Kg 1 m,p-Xylenes <0.00400 U 0.00400 mg/Kg 04/07/25 08:43 04/07/25 18:24 1 o-Xylene <0.00200 U 0.00200 mg/Kg 04/07/25 08:43 04/07/25 18:24 1 Xylenes, Total <0.00400 U 0.00400 04/07/25 08:43 04/07/25 18:24 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 04/07/25 08:43 04/07/25 18:24 4-Bromofluorobenzene (Surr) 96 1 1,4-Difluorobenzene (Surr) 97 70 - 130 04/07/25 08:43 04/07/25 18:24 1

Method: TAL SOP Total BTEX - 1	Fotal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			04/07/25 18:24	1
– Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	257		49.8		mg/Kg			04/07/25 21:25	1
- Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/07/25 21:25	1
(GRO)-C6-C10									
Diesel Range Organics (Over	257		49.8		mg/Kg		04/07/25 11:09	04/07/25 21:25	1
C10-C28)									

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

Matrix: Solid

5

12 13

Lab Sample ID: 880-56526-7

Client Sample ID: S-2 (0-1.0')

Project/Site: CONOCO FEDERAL #001

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/07/25 21:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	121		70 - 130				04/07/25 11:09	04/07/25 21:25	1
o-Terphenyl (Surr)	127		70 - 130				04/07/25 11:09	04/07/25 21:25	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	130		9.92		mg/Kg			04/07/25 16:50	1

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
Toluene	<0.00199	U	0.00199	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
Ethylbenzene	<0.00199	U	0.00199	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
m,p-Xylenes	<0.00398	U	0.00398	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
o-Xylene	<0.00199	U	0.00199	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
Xylenes, Total	<0.00398	U	0.00398	mg/Kg		04/07/25 08:43	04/07/25 18:44	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130			04/07/25 08:43	04/07/25 18:44	1
1,4-Difluorobenzene (Surr)	98		70 - 130			04/07/25 08:43	04/07/25 18:44	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		04/07/25 18:44	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<50.0	U	50.0		mg/Kg			04/07/25 21:41	1	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 21:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 21:41	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 21:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	117		70 - 130				04/07/25 11:09	04/07/25 21:41	1
o-Terphenyl (Surr)	119		70 - 130				04/07/25 11:09	04/07/25 21:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	94.6		10.1		mg/Kg			04/07/25 16:55	1

Client Sample Results

Page 77 of 147

5

Job ID: 880-56526-1 SDG: Eddy Co NM

Client Sample ID: S-2 (2.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
n,p-Xylenes	<0.00400	U	0.00400		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/07/25 08:43	04/07/25 19:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				04/07/25 08:43	04/07/25 19:05	1
1,4-Difluorobenzene (Surr)	98		70 - 130				04/07/25 08:43	04/07/25 19:05	1
Method: TAL SOP Total BTEX - T	otal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			04/07/25 19:05	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/07/25 21:55	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:55	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:55	
Dil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 21:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)			70 - 130				04/07/25 11:09	04/07/25 21:55	
o-Terphenyl (Surr)	122		70 - 130				04/07/25 11:09	04/07/25 21:55	
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	66.0		9.94		mg/Kg			04/07/25 17:13	1
lient Sample ID: S-2 (3.0')							Lab Samp	le ID: 880-56	526-10
ate Collected: 04/03/25 00:00								Matri	x: Solic
ate Received: 04/04/25 13:35									
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 19:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				04/07/25 08:43	04/07/25 19:25	1
1,4-Difluorobenzene (Surr)	94		70 - 130				04/07/25 08:43	04/07/25 19:25	1

Eurofins Midland

Lab Sample ID: 880-56526-9

Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

5

Client Sample ID: S-2 (3.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/07/25 19:25	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/07/25 22:11	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/07/25 22:11	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/07/25 22:11	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/07/25 22:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	113		70 - 130				04/07/25 11:09	04/07/25 22:11	1
o-Terphenyl (Surr)	116		70 - 130				04/07/25 11:09	04/07/25 22:11	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	le						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	142		9.92		mg/Kg			04/07/25 17:18	1

Client Sample ID: S-2 (4.0')

Date Collected: 04/03/25 00:00

Lab Sample ID: 880-56526-11 Matrix: Solid

Date Received: 04/04/25 13:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 14:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				04/07/25 08:45	04/07/25 14:05	1
1,4-Difluorobenzene (Surr)	95		70 - 130				04/07/25 08:45	04/07/25 14:05	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/07/25 14:05	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/07/25 22:25	1
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 22:25	1
(GRO)-C6-C10									
(GRO)-C6-C10 Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 22:25	1

Eurofins Midland

Lab Sample ID: 880-56526-10

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-11

Client Sample ID: S-2 (4.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/07/25 22:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130				04/07/25 11:09	04/07/25 22:25	1
o-Terphenyl (Surr)	119		70 - 130				04/07/25 11:09	04/07/25 22:25	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		9.96		mg/Kg			04/07/25 17:36	1
							Lab Samp		526 12
Client Sample ID: S-2 (5.0')							Lan Samp	le ID: 880-56	320-12

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volatile Organic Compounds (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Benzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 14:26	1	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac	
4-Bromofluorobenzene (Surr)	102		70 - 130				04/07/25 08:45	04/07/25 14:26	1	
1,4-Difluorobenzene (Surr)	95		70 - 130				04/07/25 08:45	04/07/25 14:26	1	

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL U	Jnit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398	r	ng/Kg				04/07/25 14:26	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)											
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<49.7	U	49.7		mg/Kg			04/07/25 22:42	1	

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 22:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 22:42	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 22:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	116		70 - 130				04/07/25 11:09	04/07/25 22:42	1
o-Terphenyl (Surr)	119		70 - 130				04/07/25 11:09	04/07/25 22:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	164		9.94		mg/Kg			04/07/25 17:41	1

Eurofins Midland

Matrix: Solid

5

Client Sample Results

Page 80 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-13

Client Sample ID: S-3 (0-1.0') Date Collected: 04/03/25 00:00

Project/Site: CONOCO FEDERAL #001

Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
n,p-Xylenes	<0.00400	U	0.00400		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
Kylenes, Total	<0.00400	U	0.00400		mg/Kg		04/07/25 08:45	04/07/25 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		70 - 130				04/07/25 08:45	04/07/25 14:46	1
1,4-Difluorobenzene (Surr)	91		70 - 130				04/07/25 08:45	04/07/25 14:46	1
Method: TAL SOP Total BTEX - T	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			04/07/25 14:46	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Maiyte	Regult	Quanner	1.6						
Total TPH	<49.9	U	49.9		mg/Kg			04/07/25 22:56	
otal TPH Method: SW846 8015B NM - Dies	<49.9 sel Range Orga	U	49.9			D	Prepared	04/07/25 22:56 Analyzed	
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	<49.9 sel Range Orga	U nics (DRO) Qualifier	49.9 (GC)		mg/Kg	D			Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	<49.9 sel Range Orga Result	U nics (DRO) Qualifier U	49.9 (GC) RL		mg/Kg Unit	D	Prepared	Analyzed	Dil Fac
otal TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	<49.9 sel Range Orga Result <49.9	U nics (DRO) Qualifier U	49.9 (GC) RL 49.9		mg/Kg Unit mg/Kg	D	Prepared 04/07/25 11:09	Analyzed 04/07/25 22:56	Dil Fac
otal TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36)	<49.9 sel Range Orga Result <49.9 <49.9	U nics (DRO) Qualifier U U U	49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	D	Prepared 04/07/25 11:09 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56	Dil Fa
otal TPH Method: SW846 8015B NM - Dies Analyte Basoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate	<49.9 sel Range Orga Result <49.9 <49.9 <49.9	U nics (DRO) Qualifier U U U	49.9 (GC) 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg	D	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr)	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery	U nics (DRO) Qualifier U U U	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg	<u>D</u>	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 Analyzed	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate I-Chlorooctane (Surr) D-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <249.9 %Recovery 120 126 Chromatograp	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl	49.9 (GC) 49.9 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 Analyzed 04/07/25 22:56 04/07/25 22:56	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate M-Chlorooctane (Surr) D-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 120 126 Chromatograp Result	U nics (DRO) Qualifier U U U Qualifier	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	D	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 <i>Analyzed</i> 04/07/25 22:56	Dil Fac 1 1 1 1 1 Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate I-Chlorooctane (Surr) D-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 <249.9 %Recovery 120 126 Chromatograp	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl	49.9 (GC) 49.9 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 Analyzed 04/07/25 22:56 04/07/25 22:56	Dil Fac
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate -Chlorooctane (Surr) -Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte Chloride Lient Sample ID: S-3 (1.5')	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 120 126 Chromatograp Result	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 17:47 le ID: 880-56	Dil Fau Dil Fau Dil Fau
Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate (-Chlorooctane (Surr) D-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	<49.9 sel Range Orga Result <49.9 <49.9 <49.9 <49.9 %Recovery 120 126 Chromatograp Result	U nics (DRO) Qualifier U U Qualifier Ohy - Solubl	49.9 (GC) <u>RL</u> 49.9 49.9 49.9 <u>Limits</u> 70 - 130 70 - 130 70 - 130 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09	Analyzed 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 22:56 04/07/25 17:47 le ID: 880-56	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	0.00272		0.00201		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 15:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				04/07/25 08:45	04/07/25 15:07	1
1,4-Difluorobenzene (Surr)	93		70 - 130				04/07/25 08:45	04/07/25 15:07	1

Eurofins Midland

rage 80 of

Matrix: Solid

5

Released to Imaging: 6/4/2025 4:25:51 PM

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-14

Client Sample ID: S-3 (1.5')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/07/25 15:07	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/07/25 23:12	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 23:12	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 23:12	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/07/25 11:09	04/07/25 23:12	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	114		70 - 130				04/07/25 11:09	04/07/25 23:12	1
o-Terphenyl (Surr)	115		70 - 130				04/07/25 11:09	04/07/25 23:12	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	68.1		9.92		mg/Kg			04/07/25 17:53	1

Client Sample ID: S-3 (2.0')

Date Collected: 04/03/25 00:00

C10-C28)

Lab Sample ID: 880-56526-15 Matrix: Solid

Date Received: 04/04/25 13:35

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 16:40	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)			70 - 130				04/07/25 08:45	04/07/25 16:40	1
1,4-Difluorobenzene (Surr)	78		70 _ 130				04/07/25 08:45	04/07/25 16:40	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 16:40	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/07/25 23:42	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte									
Analyte Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 23:42	1
		U	49.6		mg/Kg		04/07/25 11:09	04/07/25 23:42	1

Eurofins Midland

Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-15

Client Sample ID: S-3 (2.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/07/25 23:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	113		70 - 130				04/07/25 11:09	04/07/25 23:42	1
o-Terphenyl (Surr)	115		70 - 130				04/07/25 11:09	04/07/25 23:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	84.3		9.96		mg/Kg			04/07/25 17:59	1

Client Sample ID: S-3 (3.0')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:45	04/07/25 17:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				04/07/25 08:45	04/07/25 17:00	1
1,4-Difluorobenzene (Surr)	93		70 - 130				04/07/25 08:45	04/07/25 17:00	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg	_		04/07/25 17:00	1

Method: SW846 8015 NM - Diesel R	Range Organi	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			04/07/25 23:56	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 23:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 23:56	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/07/25 23:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	113		70 - 130				04/07/25 11:09	04/07/25 23:56	1
o-Terphenyl (Surr)	115		70 - 130				04/07/25 11:09	04/07/25 23:56	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	61.4		9.98		mg/Kg			04/07/25 18:04	1

Matrix: Solid

Matrix: Solid

5

12 13

Released to Imaging: 6/4/2025 4:25:51 PM

Client Sample Results

Page 83 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-17

Client Sample ID: S-3 (4.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	0.00268		0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:21	
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:21	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:21	
n,p-Xylenes	<0.00400	U	0.00400		mg/Kg		04/07/25 08:45	04/07/25 17:21	
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 17:21	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/07/25 08:45	04/07/25 17:21	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	99		70 - 130				04/07/25 08:45	04/07/25 17:21	
1,4-Difluorobenzene (Surr)	97		70 - 130				04/07/25 08:45	04/07/25 17:21	
Method: TAL SOP Total BTEX - T									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00400	U	0.00400		mg/Kg			04/07/25 17:21	
Method: SW846 8015 NM - Diese					11	-	Durant	Amelianad	
Analyte Total TPH	Kesult <49.8	Qualifier		MDL	mg/Kg	D	Prepared	Analyzed 04/08/25 00:12	Dil Fa
	Result	Qualifier		MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Analyte Gasoline Range Organics	Result <49.8	-	RL	MDL	Unit mg/Kg	<u> </u>	Prepared 04/07/25 11:09	Analyzed 04/08/25 00:12	Dil Fa
(GRO)-C6-C10 Diesel Range Organics (Over	<49.8		49.8		mg/Kg		04/07/25 11:09	04/08/25 00:12	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/08/25 00:12	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	114		70 - 130				04/07/25 11:09	04/08/25 00:12	
p-Terphenyl (Surr)	117		70 - 130				04/07/25 11:09	04/08/25 00:12	
Method: EPA 300.0 - Anions, Ion	• •	-							
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Chloride	98.4		10.1		mg/Kg			04/07/25 18:10	
lient Sample ID: S-3 (5.0')							Lab Samp	le ID: 880-56	
ate Collected: 04/03/25 00:00 ate Received: 04/04/25 13:35								Matri	x: Soli
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00198	U	0.00198		ma/Ka		04/07/25 08:45	04/07/25 17:41	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
Toluene	<0.00198	U	0.00198		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
m,p-Xylenes	<0.00396	U	0.00396		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/07/25 08:45	04/07/25 17:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				04/07/25 08:45	04/07/25 17:41	1
1,4-Difluorobenzene (Surr)	84		70 - 130				04/07/25 08:45	04/07/25 17:41	1

Eurofins Midland

Matrix: Solid

Client Sample Results

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

5

Lab Sample ID: 880-56526-18

Client Sample ID: S-3 (5.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/07/25 17:41	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			04/08/25 00:26	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/08/25 00:26	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/08/25 00:26	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/07/25 11:09	04/08/25 00:26	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	117		70 - 130				04/07/25 11:09	04/08/25 00:26	
o-Terphenyl (Surr)	121		70 - 130				04/07/25 11:09	04/08/25 00:26	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	107		9.92		mg/Kg			04/07/25 16:04	
lient Sample ID: S-4 (0-1.0')	1						Lab Samp	le ID: 880-56	526-19
ate Collected: 04/03/25 00:00									x: Solie

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 18:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	108		70 - 130				04/07/25 08:45	04/07/25 18:01	1
1,4-Difluorobenzene (Surr)	94		70 - 130				04/07/25 08:45	04/07/25 18:01	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00402	U	0.00402		mg/Kg			04/07/25 18:01	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/08/25 00:41	1
Method: SW846 8015B NM - Diesel	Range Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 00:41	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 00:41	1
C10-C28)									

Job ID: 880-56526-1 SDG: Eddy Co NM

Matrix: Solid

5

12 13

Lab Sample ID: 880-56526-19

Client Sample ID: S-4 (0-1.0')

Project/Site: CONOCO FEDERAL #001

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 00:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)			70 - 130				04/07/25 11:09	04/08/25 00:41	1
o-Terphenyl (Surr)	122		70 - 130				04/07/25 11:09	04/08/25 00:41	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	420		10.0		mg/Kg			04/07/25 16:26	1
Client Sample ID: S-4 (1.5')							Lab Samp	le ID: 880-56	526-20
Date Collected: 04/03/25 00:00									x: Solid

Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 18:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/07/25 08:45	04/07/25 18:22	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/07/25 08:45	04/07/25 18:22	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/07/25 18:22	1

Method: SW846 8015 NM - Diesel R	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/08/25 00:55	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/08/25 00:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/08/25 00:55	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/07/25 11:09	04/08/25 00:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	114		70 - 130				04/07/25 11:09	04/08/25 00:55	1
o-Terphenyl (Surr)	113		70 - 130				04/07/25 11:09	04/08/25 00:55	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	214		9.96		mg/Kg			04/07/25 16:33	1

Client Sample Results

Page 86 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-21

Client Sample ID: S-4 (2.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 18:42	
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 18:42	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 18:42	
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:45	04/07/25 18:42	
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:45	04/07/25 18:42	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:45	04/07/25 18:42	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130				04/07/25 08:45	04/07/25 18:42	
1,4-Difluorobenzene (Surr)	83		70 - 130				04/07/25 08:45	04/07/25 18:42	1
Method: TAL SOP Total BTEX - T									
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/07/25 18:42	-
Mathadi OWOAC OOAE NM Disas	Range Organ	ics (DRO) (GC)						
Analyte Fotal TPH	Result <50.0	Qualifier U	RL 50.0	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 04/08/25 01:10	
Analyte Total TPH Method: SW846 8015B NM - Dies	Result <50.0	Qualifier			mg/Kg			04/08/25 01:10	
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier	50.0	MDL	mg/Kg Unit	<u>D</u>	Prepared	04/08/25 01:10 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <50.0	Qualifier U nics (DRO) Qualifier	50.0 (GC) RL		mg/Kg			04/08/25 01:10	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <50.0 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	50.0 (GC) RL		mg/Kg Unit		Prepared	04/08/25 01:10 Analyzed	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Orga Result Sel Range Orga Result <50.0	Qualifier U nics (DRO) Qualifier U U	(GC) (BC) <u>RL</u> 50.0		mg/Kg Unit mg/Kg		Prepared 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <50.0	Qualifier U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/07/25 11:09 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <50.0	Qualifier U nics (DRO) Qualifier U U U	(GC) RL 50.0 50.0 50.0		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr)	Result <50.0	Qualifier U nics (DRO) Qualifier U U U	50.0 (GC) RL 50.0 50.0 50.0 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	Result <50.0	Qualifier U Qualifier U U Qualifier O Qualifier	(GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10	Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result <50.0	Qualifier U nics (DRO) Qualifier U U U Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL		mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit		Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 Analyzed Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion Analyte	Result <50.0	Qualifier U Qualifier U U Qualifier O Qualifier	(GC) RL 50.0 50.0 50.0 <u>Limits</u> 70 - 130 70 - 130 e	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg	D	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 Prepared 04/07/25 11:09 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10	Dil Fa Dil Fa
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr) Method: EPA 300.0 - Anions, Ion	Result <50.0	Qualifier U Qualifier U U Qualifier O Qualifier	50.0 RL 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 50.0 6 RL	MDL	mg/Kg Unit mg/Kg mg/Kg mg/Kg Unit	D	Prepared 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09 04/07/25 11:09	04/08/25 01:10 Analyzed 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 04/08/25 01:10 10 Analyzed 04/07/25 16:40 le ID: 880-56	Dil Fa Dil Fa

Method: 500846 8021B - Volat	lie Organic Comp	ounas (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
m,p-Xylenes	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/07/25 08:45	04/07/25 19:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				04/07/25 08:45	04/07/25 19:03	1
1,4-Difluorobenzene (Surr)	96		70 - 130				04/07/25 08:45	04/07/25 19:03	1

Eurofins Midland

Matrix: Solid

5

Released to Imaging: 6/4/2025 4:25:51 PM

Client Sample Results

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-22

Client Sample ID: S-4 (3.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/07/25 19:03	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/08/25 01:23	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:23	
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:23	
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane (Surr)	117		70 - 130				04/07/25 11:09	04/08/25 01:23	
o-Terphenyl (Surr)	119		70 - 130				04/07/25 11:09	04/08/25 01:23	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	529		9.92		mg/Kg			04/07/25 16:47	

Client Sample ID: S-4 (4.0')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 04/07/25 08:45 04/07/25 19:23 0.00202 mg/Kg 1 Toluene <0.00202 U 0.00202 04/07/25 08:45 04/07/25 19:23 mg/Kg 1 Ethylbenzene <0.00202 U 0.00202 04/07/25 08:45 04/07/25 19:23 mg/Kg 1 m,p-Xylenes <0.00404 U 0.00404 mg/Kg 04/07/25 08:45 04/07/25 19:23 1 o-Xylene <0.00202 U 0.00202 mg/Kg 04/07/25 08:45 04/07/25 19:23 1 Xylenes, Total <0.00404 U 0.00404 04/07/25 08:45 04/07/25 19:23 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 04/07/25 08:45 04/07/25 19:23 4-Bromofluorobenzene (Surr) 110 1 1,4-Difluorobenzene (Surr) 96 70 - 130 04/07/25 08:45 04/07/25 19:23 1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			04/07/25 19:23	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (C	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/08/25 01:38	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result			MDL	Unit mg/Kg	<u>D</u>	Prepared 04/07/25 11:09	Analyzed 04/08/25 01:38	Dil Fac
Analyte Gasoline Range Organics				MDL		D			Dil Fac 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U		MDL		<u> </u>			Dil Fac 1

Eurofins Midland

Matrix: Solid

Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Client Sample ID: S-4 (4.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/07/25 11:09	04/08/25 01:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	118		70 - 130				04/07/25 11:09	04/08/25 01:38	1
o-Terphenyl (Surr)	119		70 - 130				04/07/25 11:09	04/08/25 01:38	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1050		10.1		mg/Kg			04/07/25 17:09	1

Client Sample ID: S-4 (5.0')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
m,p-Xylenes	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/07/25 08:45	04/07/25 19:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	106		70 - 130				04/07/25 08:45	04/07/25 19:44	1
1,4-Difluorobenzene (Surr)	93		70 - 130				04/07/25 08:45	04/07/25 19:44	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg	_		04/07/25 19:44	1

Method: SW846 8015 NM - Diesel F	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/08/25 01:51	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:51	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:51	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/07/25 11:09	04/08/25 01:51	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane (Surr)	123		70 - 130				04/07/25 11:09	04/08/25 01:51	1
o-Terphenyl (Surr)	125		70 - 130				04/07/25 11:09	04/08/25 01:51	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	850		9.94		mg/Kg			04/07/25 17:16	1

Lab Sample ID: 880-56526-23 Matrix: Solid

Matrix: Solid

5

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

		BFB1	DFBZ1
Lab Sample ID	Client Sample ID	(70-130)	(70-130)
880-56526-1	S-1 (0-1.0')	111	97
880-56526-2	S-1 (1.5')	100	99
880-56526-3	S-1 (2.0')	99	99
880-56526-4	S-1 (3.0')	102	98
880-56526-5	S-1 (4.0')	97	98
880-56526-6	S-1 (5.0')	101	95
880-56526-7	S-2 (0-1.0')	96	97
880-56526-8	S-2 (1.5')	110	98
880-56526-9	S-2 (2.0')	98	98
880-56526-10	S-2 (3.0')	105	94
880-56526-11	S-2 (4.0')	107	95
880-56526-12	S-2 (5.0')	102	95
880-56526-13	S-3 (0-1.0')	102	91
880-56526-14	S-3 (1.5')	100	93
880-56526-15	S-3 (2.0')	117	78
880-56526-16	S-3 (3.0')	89	93
880-56526-17	S-3 (4.0')	99	97
880-56526-18	S-3 (5.0')	104	84
880-56526-19	S-4 (0-1.0')	108	94
880-56526-20	S-4 (1.5')	99	90
880-56526-21	S-4 (2.0')	96	83
880-56526-22	S-4 (3.0')	104	96
880-56526-23	S-4 (4.0')	110	96
880-56526-24	S-4 (5.0')	106	90 93
880-56533-A-6-C MS	Matrix Spike	92	102
880-56533-A-6-D MSD	Matrix Spike	99	99
880-56533-A-0-D MSD	Matrix Spike Duplicate	99 101	99 106
880-56533-A-11-D MSD			
	Matrix Spike Duplicate	103	107
LCS 880-106995/1-A	Lab Control Sample	102	99
LCS 880-106996/1-A	Lab Control Sample	83	103
LCSD 880-106995/2-A	Lab Control Sample Dup	99	100
LCSD 880-106996/2-A	Lab Control Sample Dup	104	107
MB 880-106995/5-A	Method Blank	99	91

Surrogate Legend

MB 880-106996/5-A

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Method Blank

Matrix: Solid

				Percent Surrogate Recovery (A
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-56484-A-6-D MS	Matrix Spike	95	105	
880-56484-A-6-E MSD	Matrix Spike Duplicate	103	115	
880-56526-1	S-1 (0-1.0')	119	122	
880-56526-2	S-1 (1.5')	118	118	
880-56526-3	S-1 (2.0')	119	114	

74

91

Job ID: 880-56526-1 SDG: Eddy Co NM

Prep Type: Total/NA

Percent Surrogate Recovery (Acceptance Limits)

Eurofins Midland

4/9/2025

. . . .

Prep Type: Total/NA

Job ID: 880-56526-1 SDG: Eddy Co NM

Prep Type: Total/NA

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid

Percent Surrogate Recovery (Acceptance Limits) 1CO1 OTPH1 (70-130) Lab Sample ID **Client Sample ID** (70-130) 880-56526-4 S-1 (3.0') 134 S1+ 133 S1+ 880-56526-5 S-1 (4.0') 122 125 6 880-56526-5 MS S-1 (4.0') 127 122 880-56526-5 MSD S-1 (4.0') 129 125 880-56526-6 S-1 (5.0') 118 121 880-56526-7 S-2 (0-1.0') 121 127 880-56526-8 S-2 (1.5') 117 119 880-56526-9 S-2 (2.0') 117 122 880-56526-10 S-2 (3.0') 113 116 880-56526-11 S-2 (4.0') 117 119 880-56526-12 S-2 (5.0') 116 119 880-56526-13 120 126 S-3 (0-1.0') 880-56526-14 S-3 (1.5') 114 115 880-56526-15 S-3 (2.0') 113 115 880-56526-16 S-3 (3.0') 113 115 880-56526-17 S-3 (4.0') 114 117 880-56526-18 117 S-3 (5.0') 121 880-56526-19 S-4 (0-1.0') 117 122 S-4 (1.5') 880-56526-20 113 114 880-56526-21 S-4 (2.0') 115 117 880-56526-22 S-4 (3.0') 117 119 880-56526-23 119 S-4 (4.0') 118 880-56526-24 S-4 (5.0') 123 125 LCS 880-107022/2-A Lab Control Sample 99 111 LCS 880-107025/2-A Lab Control Sample 134 S1+ 134 S1+ LCSD 880-107022/3-A Lab Control Sample Dup 91 84 LCSD 880-107025/3-A Lab Control Sample Dup 128 126 MB 880-107022/1-A Method Blank 112 116 MB 880-107025/1-A Method Blank 107 114

Surrogate Legend

1CO = 1-Chlorooctane (Surr)

OTPH = o-Terphenyl (Surr)

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-10699 Matrix: Solid								mple ID: Metho Prep Type: 1	
Analysis Batch: 106989								Prep Batch:	
-	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
m,p-Xylenes	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		04/07/25 08:43	04/07/25 11:33	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/07/25 08:43	04/07/25 11:33	1
1,4-Difluorobenzene (Surr)	91		70 - 130				04/07/25 08:43	04/07/25 11:33	1

Matrix: Solid Analysis Batch: 106989

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.09756		mg/Kg		98	70 - 130
Toluene	0.100	0.09728		mg/Kg		97	70 - 130
Ethylbenzene	0.100	0.09306		mg/Kg		93	70 - 130
m,p-Xylenes	0.200	0.1863		mg/Kg		93	70 - 130
o-Xylene	0.100	0.09326		mg/Kg		93	70 - 130

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: LCSD 880-106995/2-A

Matrix: Solid

Analysis Batch: 106989							Prep I	Batch: 1	06995
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.09819		mg/Kg		98	70 - 130	1	35
Toluene	0.100	0.09799		mg/Kg		98	70 - 130	1	35
Ethylbenzene	0.100	0.09309		mg/Kg		93	70 - 130	0	35
m,p-Xylenes	0.200	0.1865		mg/Kg		93	70 - 130	0	35
o-Xylene	0.100	0.09348		mg/Kg		93	70 - 130	0	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-56533-A-6-C MS

Matrix: Solid alvoia Pataby 106090

Analysis Batch: 106989									Prep	Batch: 106995
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.1014		mg/Kg		101	70 - 130	
Toluene	<0.00202	U	0.100	0.09373		mg/Kg		94	70 - 130	

urofins Midland

Prep Type: Total/NA

Job ID: 880-56526-1

SDG: Eddy Co NM

5 6 7

13

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

Prep Batch: 106995

Eurofins	Mid

Client Sample ID: Matrix Spike

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56526-1 SDG: Eddy Co NM

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-56533-A	-6-C MS							Client S	Sample ID: Matr	ix Spike
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 106989									Prep Batch	: 106995
	Sample Sa	mple	Spike	MS	MS				%Rec	
Analyte	Result Qu	Jalifier	Added	Result	Qualifier	Unit	0) %Rec	Limits	
Ethylbenzene	<0.00202 U		0.100	0.08324		mg/Kg		83	70 - 130	
m,p-Xylenes	<0.00404 U		0.200	0.1620		mg/Kg		81	70 - 130	
o-Xylene	<0.00202 U		0.100	0.08043		mg/Kg		80	70 - 130	
	MS MS	s								
Surrogate	%Recovery Qu	ualifier	Limits							
4-Bromofluorobenzene (Surr)	92		70 - 130							
1,4-Difluorobenzene (Surr)	102		70 - 130							
Lab Sample ID: 880-56533-A	-6-D MSD						Client	Sample ID:	Matrix Spike D	uplicate
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 106989									Prep Batch	: 106995
-	Sample Sa	Imple	Spike	MSD	MSD				%Rec	RPD
Analyte	Result Qu	ualifier	Added	Result	Qualifier	Unit	0) %Rec	Limits RP	D Limit
Benzene	<0.00202 U		0.100	0.09253		mg/Kg		93	70 - 130	9 35
Toluene	<0.00202 U		0.100	0.09219		mg/Kg		92	70 - 130	2 35
Ethylbenzene	<0.00202 U		0.100	0.08692		mg/Kg		87	70 - 130	4 35
m,p-Xylenes	<0.00404 U		0.200	0.1713		mg/Kg		86	70 - 130	6 35
o-Xylene	<0.00202 U		0.100	0.08425		mg/Kg		84	70 - 130	5 35
	MSD MS	SD								
Surrogate	%Recovery Qu	ualifier	Limits							
4-Bromofluorobenzene (Surr)	99		70 - 130							
1,4-Difluorobenzene (Surr)	99		70 - 130							
Lab Sample ID: MB 880-1069)96/5-A							Client Sa	mple ID: Metho	d Blank
Matrix: Solid									Prep Type:	Total/NA
Analysis Batch: 106991									Prep Batch	: 106996
	М	B MB								
Analyte	Resu	It Qualifier	RL		MDL Unit		D	Prepared	Analyzed	Dil Fac
	< 0.0020	0 U	0.00200		mg/Kg	1	04	/07/25 08:45	04/07/25 11:41	1
Benzene	0.0020							/07/25 08:45	04/07/25 11:41	1
	<0.0020	0 U	0.00200		mg/Kg	1	04			
Toluene			0.00200 0.00200		mg/Kg mg/Kg			4/07/25 08:45	04/07/25 11:41	1
Benzene Toluene Ethylbenzene m,p-Xylenes	<0.0020	0 U				1	04		04/07/25 11:41 04/07/25 11:41	1
Toluene Ethylbenzene	<0.0020 <0.0020	10 U 19 U	0.00200		mg/Kg	 	04 04	/07/25 08:45		[.]
Toluene Ethylbenzene m,p-Xylenes o-Xylene	<0.0020 <0.0020 <0.0039	0 U 19 U 10 U	0.00200 0.00399		mg/Kg mg/Kg)))	04 04 04	4/07/25 08:45 4/07/25 08:45	04/07/25 11:41	[.]
Toluene Ethylbenzene n,p-Xylenes p-Xylene	<0.0020 <0.0020 <0.0039 <0.0020 <0.0039	0 U 19 U 10 U	0.00200 0.00399 0.00200		mg/Kg mg/Kg mg/Kg)))	04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41	1 1
Toluene Ethylbenzene m,p-Xylenes	<0.0020 <0.0020 <0.0039 <0.0020 <0.0039	0 U 9 U 0 U 9 U B MB	0.00200 0.00399 0.00200		mg/Kg mg/Kg mg/Kg)))	04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41	1 1
Toluene Ethylbenzene m.p-Xylenes o-Xylene Xylenes, Total	<0.0020 <0.0020 <0.0039 <0.0020 <0.0039 <i>M</i> %Recover	0 U 9 U 0 U 9 U B MB	0.00200 0.00399 0.00200 0.00399		mg/Kg mg/Kg mg/Kg)))	04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41 04/07/25 11:41	1 1 1
Toluene Ethylbenzene m.p-Xylenes o-Xylene Xylenes, Total Surrogate	<0.0020 <0.0020 <0.0039 <0.0039 <0.0039 M %Recover 9	0 U 9 U 0 U 9 U B MB 7 <u>Qualifier</u>	0.00200 0.00399 0.00200 0.00399 Limits		mg/Kg mg/Kg mg/Kg)))	04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41 04/07/25 11:41 Analyzed	1 1 1 <i>Dil Fac</i>
Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	<0.0020 <0.0020 <0.0039 <0.0020 <0.0039 <i>M</i> <i>%Recover</i> 9 7	0 U 19 U 10 U 19 U 19 U 19 U 10 B MB 11 Qualifier	0.00200 0.00399 0.00200 0.00399 <u>Limits</u> 70 - 130		mg/Kg mg/Kg mg/Kg)))	04 04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41 04/07/25 11:41 Analyzed 04/07/25 11:41	1 1
Toluene Ethylbenzene m,p-Xylenes o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	<0.0020 <0.0020 <0.0039 <0.0020 <0.0039 <i>M</i> <i>%Recover</i> 9 7	0 U 19 U 10 U 19 U 19 U 19 U 10 B MB 11 Qualifier	0.00200 0.00399 0.00200 0.00399 <u>Limits</u> 70 - 130		mg/Kg mg/Kg mg/Kg)))	04 04 04 04	4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45 4/07/25 08:45	04/07/25 11:41 04/07/25 11:41 04/07/25 11:41 Analyzed 04/07/25 11:41 04/07/25 11:41	1 1 1 1 1 <i>Dil Fac</i> 1 1 Sample

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	0.100	0.1114		mg/Kg		111	70 - 130
Toluene	0.100	0.09969		mg/Kg		100	70 - 130
Ethylbenzene	0.100	0.1043		mg/Kg		104	70 - 130
m,p-Xylenes	0.200	0.1955		mg/Kg		98	70 - 130

Eurofins Midland

Released to Imaging: 6/4/2025 4:25:51 PM

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Lab Sample ID: LCS 880-106996/1-A

Job ID: 880-56526-1 SDG: Eddy Co NM

Client Sample ID: Lab Control Sample

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

									D	Domas Tak	tal/NA
Matrix: Solid									Prep	Type: To	
Analysis Batch: 106991									Prep I	Batch: 1	06996
			Spike	LCS	LCS				%Rec		
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits		
o-Xylene			0.100	0.09405		mg/Kg		94	70 - 130		
• • •	LCS										
Surrogate		Qualifier	Limits								
4-Bromofluorobenzene (Surr)	83		70 - 130								
1,4-Difluorobenzene (Surr)	103		70 - 130								
Lab Sample ID: LCSD 880-1)6996/2-A					Clier	nt Sam	nple ID: I	Lab Contro	ol Sampl	e Dur
Matrix: Solid										· Fype: Tot	
Analysis Batch: 106991										Batch: 1	
			Spike	LCSD	LCSD				%Rec		RPI
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Benzene			0.100	0.1228		mg/Kg		123	70 - 130	10	35
Toluene			0.100	0.1150		mg/Kg		115	70 - 130	14	3
Ethylbenzene			0.100	0.1187		mg/Kg		119	70 - 130	13	3
m,p-Xylenes			0.200	0.2268		mg/Kg		113	70 - 130	15	3
o-Xylene			0.100	0.1071		mg/Kg		107	70 - 130	13	3
						5.5					5
		LCSD									
Surrogate	%Recovery	Qualifier	Limits								
-		-									
-	104		70 - 130								
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A	107		70 - 130 70 - 130					Client	Sample ID Prep 1	: Matrix Type: Tot	
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid	107 -11-C MS		70 - 130					Client	Prep 1 Prep I		tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991	107 -11-C MS Sample	Sample	70 ₋ 130 Spike	MS	MS				Prep 1 Prep 1 %Rec	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte	107 -11-C MS Sample Result	Qualifier	70 - 130 Spike Added	Result	MS Qualifier	Unit	<u>D</u>	%Rec	Prep 1 Prep 1 %Rec Limits	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene	107 -11-C MS Sample - <u>Result</u> <0.00201	Qualifier	70 - 130 Spike Added 0.100	Result 0.1178		mg/Kg	D	%Rec 118	Prep 7 Prep 7 %Rec Limits 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene	-11-C MS - Sample - Result <0.00201 <0.00201	Qualifier U U	Spike Added 0.100 0.100	Result 0.1178 0.1030		mg/Kg mg/Kg	D	%Rec 118 103	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene	-11-C MS -11-C MS 	Qualifier U U U	Spike Added 0.100 0.100 0.100	Result 0.1178 0.1030 0.1040		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 118 103 104	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00402	Qualifier U U U U	Spike Added 0.100 0.100 0.100 0.200	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 118 103 104 98	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	-11-C MS -11-C MS 	Qualifier U U U U	Spike Added 0.100 0.100 0.100	Result 0.1178 0.1030 0.1040		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 118 103 104	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00402	Qualifier U U U U U U	Spike Added 0.100 0.100 0.100 0.200	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 118 103 104 98	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.200	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 118 103 104 98	Prep 1 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene	-11-C MS -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MS	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.200 0.100	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 118 103 104 98	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate	-11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MS %Recovery	Qualifier U U U U U U MS	70 - 130 Spike Added 0.100 0.100 0.200 0.100 Limits	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 118 103 104 98	Prep Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: To	tal/NA
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MS %Recovery 101 106	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.100 Limits 70 - 130	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 118 103 104 98 95	Prep %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Type: Tot Batch: 1	tal/NA 06996
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MS %Recovery 101 106	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.100 Limits 70 - 130	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 118 103 104 98 95	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9 0 - 130	Type: Tot Batch: 1	licate
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00402 <0.00201 MS %Recovery 101 106	Qualifier U U U U U U MS	Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.200 0.100 Limits 70 - 130	Result 0.1178 0.1030 0.1040 0.1957		mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 118 103 104 98 95	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9: Matrix Sp Prep 7	Type: Tot Batch: 1	licate
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 MS <u>%Recovery</u> 101 106 -11-D MSD	Qualifier U U U U U MS Qualifier	Spike Added 0.100	Result 0.1178 0.1030 0.1040 0.1957 0.09523	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg		%Rec 118 103 104 98 95	Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9 • Matrix Sp Prep 7 Prep 1	Type: Tot Batch: 1	olicate tal/NA 06996
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991	-11-C MS -11-C MS Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 MS %Recovery 101 106 -11-D MSD Sample	Qualifier UUUUUUUUUUUUUUUUUUUSSAMS Qualifier	70 - 130 Spike Added 0.100 0.100 0.200 0.100 Limits 70 - 130 70 - 130 70 - 130	Result 0.1178 0.1030 0.1040 0.1957 0.09523 MSD	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	%Rec 118 103 104 98 95	Prep 7 %Rec Limits 70 - 130 70 - 190 70 - 130 70 - 190 70 - 190	Dike Dup Fype: Tot Batch: 1	olicate tal/NA 06996 RPE
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte	107 -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 MS %Recovery 101 106 -11-D MSD Sample Result	Qualifier U U U U U MS Qualifier Sample Qualifier	70 - 130 Spike Added 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 0.200 0.100 Description Description Spike Added	Result 0.1178 0.1030 0.1040 0.1957 0.09523	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli		%Rec 118 103 104 98 95	Prep 7 %Rec Limits 70 - 130 70 - 190 70 -	Dike Dup Dike Dup Dype: Tot Batch: 1	llicate tal/NA tal/NA 06996 RPC Limi
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene	-11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 MS %Recovery 101 106 -11-D MSD Sample Result <0.00201	Qualifier U U U U U MS Qualifier U	70 - 130 Spike Added 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 D.100 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1178 0.1030 0.1040 0.1957 0.09523 MSD Result 0.11757	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	%Rec 118 103 104 98 95 95 ample ID %Rec 116	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9 %Rec Limits 70 - 130 70 - 130	Dike Dup Fype: Tot Satch: 1 Dike Dup Fype: Tot Batch: 1 <u>RPD</u> 2	licate tal/NA 06990 second tal/NA 06990 RPC Limi 38
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene	-11-C MS -11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 MS %Recovery 101 106 -11-D MSD Sample Result <0.00201 <0.00201 <0.00201 <0.00201	Qualifier U U U U U U MS Qualifier U U U	70 - 130 Spike Added 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 0.100 D.100 Spike Added 0.100 0.100	Result 0.1178 0.1030 0.1040 0.1957 0.09523 MSD Result 0.1157 0.1157 0.1157	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg	ent Sa	%Rec 118 103 104 98 95 95 ample IC %Rec 116 104	Prep 7 %Rec Limits 70 - 130 70 - 130 %Rec Limits 70 - 130 70 - 130 70 - 130	Dike Dup Fype: Tot Dike Dup Type: Tot Batch: 1 2 1	olicate tal/NA 06996 set tal/NA 06996 RPE Limi 35 35
4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr) Lab Sample ID: 880-56533-A Matrix: Solid Analysis Batch: 106991 Analyte Benzene Toluene Ethylbenzene m,p-Xylenes o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	-11-C MS Sample Result <0.00201 <0.00201 <0.00201 <0.00201 <0.00201 MS %Recovery 101 106 -11-D MSD Sample Result <0.00201	Qualifier U U U U U U U MS Qualifier U U U U	70 - 130 Spike Added 0.100 0.100 0.100 0.100 0.200 0.100 0.200 0.100 0.200 0.100 D.100 Limits 70 - 130 70 - 130 Spike Added 0.100	Result 0.1178 0.1030 0.1040 0.1957 0.09523 MSD Result 0.11757	Qualifier	mg/Kg mg/Kg mg/Kg mg/Kg Cli	ent Sa	%Rec 118 103 104 98 95 95 ample ID %Rec 116	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 9 %Rec Limits 70 - 130 70 - 130	Dike Dup Fype: Tot Satch: 1 Dike Dup Fype: Tot Batch: 1 <u>RPD</u> 2	licate

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-56533-A-1 Matrix: Solid	1-D MSD							•	Clie	nt Sa	ample ID:	Matrix Spi Prep Ty		
Analysis Batch: 106991												Prep Ba	atch: 1	06996
	MSD	MSD)											
Surrogate	%Recovery	Qua	lifier	Limits										
4-Bromofluorobenzene (Surr)	103			70 - 130										
1,4-Difluorobenzene (Surr)	107			70 - 130										
lethod: 8015B NM - Diese	I Range Or	gar	nics (DR	O) (GC)										
Lab Sample ID: MB 880-10702	2/1-A										Client Sa	mple ID: M	ethod	Blank
Matrix: Solid												Prep Ty	pe: To	tal/NA
Analysis Batch: 107002												Prep Ba	atch: 1	07022
		MB	MB											
Analyte	Re	esult	Qualifier	RL		MDL	Unit		D	Р	repared	Analyze	d	Dil Fac
Gasoline Range Organics	<	50.0	U	50.0			mg/K	g		04/0	7/25 10:01	04/07/25 17	':43	1
(GRO)-C6-C10										.		0.4/0=/==		
Diesel Range Organics (Over C10-C28)	<	50.0	U	50.0			mg/K	g		04/0	07/25 10:01	04/07/25 17	':43	1
Oil Range Organics (Over C28-C36)	<	50.0	U	50.0			mg/K	g		04/0	7/25 10:01	04/07/25 17	':43	1
		MВ	МВ											
Surrogate	%Reco	very	Qualifier	Limits						P	repared	Analyze	d	Dil Fac
1-Chlorooctane (Surr)		112		70 - 130						04/0	7/25 10:01	04/07/25 1	7:43	1
o-Terphenyl (Surr)		116		70 - 130						04/0	07/25 10:01	04/07/25 17	7:43	1
Lab Sample ID: LCS 880-1070	22/2-A								С	lient	Sample	ID: Lab Coi	ntrol S	ample
Matrix: Solid												Prep Ty	pe: To	tal/NA
Analysis Batch: 107002												Prep Ba	atch: 1	07022
				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qua	lifier	Unit		D	%Rec	Limits		
Gasoline Range Organics (GRO)-C6-C10				1000	767.6			mg/Kg			77	70 - 130		
Diesel Range Organics (Over C10-C28)				1000	939.8			mg/Kg			94	70 - 130		
	LCS	LCS												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane (Surr)	99			70 - 130										
o-Terphenyl (Surr)	111			70 - 130										
Lab Sample ID: LCSD 880-107	022/3-A							Cli	ent	San	nple ID: L	ab Control	Samp	le Dup
Matrix: Solid												Prep Ty	pe: To	tal/NA
Analysis Batch: 107002												Prep Ba	atch: 1	07022
				Spike	LCSD							%Rec		RPD
Analyte				Added	Result		lifier	Unit		D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10				1000	657.9	*-		mg/Kg			66	70 - 130	15	20
Diesel Range Organics (Over C10-C28)				1000	768.6			mg/Kg			77	70 - 130	20	20
	LCSD	LCS	D											
Surrogate	%Recovery			Limits										
1-Chlorooctane (Surr)	84			70 - 130										

Job ID: 880-56526-1

SDG: Eddy Co NM

o-Terphenyl (Surr)

91

70 - 130

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56526-1 SDG: Eddy Co NM

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Calid	5-D MS										onem c	Sample ID		
Matrix: Solid													Type: To	
Analysis Batch: 107002	Commis	C		Califo	ме	MS						%Rec	Batch: 1	10/02
Analyte	Sample Result		-	Spike Added	Result		lifior	Unit		D	%Rec	%Rec		
Gasoline Range Organics	<49.9			994	620.1		liller	mg/Kg		<u> </u>	62	70 - 130		
(GRO)-C6-C10	~49.9	0 -	ГІ	994	020.1	ΓI		mg/Kg			02	70 - 130		
Diesel Range Organics (Over	<49.9	U		994	790.7			mg/Kg			77	70 - 130		
C10-C28)	ИС	мs												
Sumo moto			lifian	Limits										
Surrogate 1-Chlorooctane (Surr)	%Recovery 95	Qua	imer	70 - 130										
()														
o-Terphenyl (Surr)	105			70 - 130										
Lab Sample ID: 880-56484-A-6	S-F MSD								Clien	t Sa	mple ID:	Matrix S	nike Du	nlica
Matrix: Solid													Гуре: То	
Analysis Batch: 107002													Batch: 1	
Analysis Baton. 101002	Sample	Sam	ple	Spike	MSD	MSD	,					%Rec	Batom	RI
Analyte	Result		•	Added	Result			Unit		D	%Rec	Limits	RPD	Lir
Gasoline Range Organics	<49.9			994	664.3			mg/Kg		-	67	70 - 130	7	
(GRO)-C6-C10	10.0			201	001.0						5,	100	,	
Diesel Range Organics (Over	<49.9	U		994	877.5			mg/Kg			86	70 - 130	10	
C10-C28)														
	MSD	MSE												
Surrogate	%Recovery	Qua	lifier	Limits										
1-Chlorooctane (Surr)	103			70 - 130										
o-Terphenyl (Surr)	115			70 - 130										
Lab Sample ID: MR 990 10702														
Lab Sample ID: MB 880-10702	5/1-A										Oliant Ca		Mathaal	Dies
Matrix: Calid											Client Sa	mple ID:		
											Client Sa	Prep 1	Type: To	otal/N
		мр	MD								Client Sa	Prep 1		otal/N
Analysis Batch: 107009			MB			MDI	Unit		D			Prep 1 Prep 1	Type: To Batch: 1	otal/N 10702
Analysis Batch: 107009 Analyte	R	esult	Qualifier		<u>:L</u>	MDL			D	Pr	epared	Prep Prep Analyz	Type: To Batch: 1	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics	R		Qualifier	F 50		MDL	Unit mg/Kg		<u>D</u>	Pr		Prep 1 Prep 1	Type: To Batch: 1	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	R	esult	Qualifier U		.0	MDL			<u>D</u> -	Pr 04/07	epared	Prep Prep Analyz	Type: To Batch: 1 zed 19:41	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	R	esult 50.0	Qualifier U U	50	.0	MDL	mg/Kg mg/Kg		<u>D</u>	Pr 04/07	epared 7/25 11:09 7/25 11:09	Prep 7 Prep 7 Analyz 04/07/25 04/07/25	Type: To Batch: 1 zed 19:41 19:41	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	R	esult 50.0	Qualifier U U	50	.0	MDL	mg/Kg		<u>D</u>	Pr 04/07	epared 7/25 11:09	Prep Prep Analyz 04/07/25	Type: To Batch: 1 zed 19:41 19:41	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	R	esult 50.0 50.0 50.0 50.0 MB	Qualifier U U U MB	50	.0	MDL	mg/Kg mg/Kg		<u>D</u> _	Pr 04/07	epared 7/25 11:09 7/25 11:09	Prep 7 Prep 7 Analyz 04/07/25 04/07/25	Type: To Batch: 1 zed 19:41 19:41	otal/N 10702
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	R	esult 50.0 50.0 50.0 MB overy	Qualifier U U U MB	50 50 50 <i>Limits</i>	0	MDL	mg/Kg mg/Kg		<u>D</u>	Pr 04/03 04/03 04/03 Pr	repared 7/25 11:09 7/25 11:09 7/25 11:09 repared	Prep Prep Analyz 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25	Type: To Batch: 1 2ed 19:41 19:41 19:41 19:41	Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	R	esult 50.0 50.0 50.0 50.0 MB	Qualifier U U U MB	50 50 50	0	MDL	mg/Kg mg/Kg		<u>D</u>	Pr 04/03 04/03 04/03 Pr	epared 7/25 11:09 7/25 11:09 7/25 11:09	Analyz 04/07/25 04/07/25	Type: To Batch: 1 2ed 19:41 19:41 19:41 19:41	Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr)	R	esult 50.0 50.0 50.0 MB overy	Qualifier U U U MB	50 50 50 <i>Limits</i>	0 .0 .0	MDL	mg/Kg mg/Kg		<u>D</u> -	Pr 04/07 04/07 04/07 Pr 04/07	repared 7/25 11:09 7/25 11:09 7/25 11:09 repared	Prep Prep Analyz 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25	Type: To Batch: 1 red 19:41 19:41 19:41 19:41 red 19:41	otal/N
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) p-Terphenyl (Surr)	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB		0 .0 .0	MDL	mg/Kg mg/Kg			Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09	Analyz 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25	Type: To Batch: 1 19:41 19:41 19:41 19:41 19:41 19:41	Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB		0 .0 .0	MDL	mg/Kg mg/Kg			Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09	Prep 1 Prep 1 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25	Type: To Batch: 1 red 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41	Dil F Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB		0 .0 .0	MDL	mg/Kg mg/Kg			Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09	Analyz 04/07/25 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07	Type: To Batch: 1 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 -	Dill F Dill F Dill F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50 50 50 <u>Limits</u> 70 - 130 70 - 130	0 0 0		mg/Kg mg/Kg			Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09	Analyz 04/07/25 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 <	Type: To Batch: 1 red 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41 19:41	Dil F Dil F Dil F
Matrix: Solid Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid Analysis Batch: 107009	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB		0 0 0	MDL	mg/Kg mg/Kg			Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09 7/25 11:09	Analyz 04/07/25 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07 05/07	Type: To Batch: 1 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 -	Dill F Dill F Dill F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid Analysis Batch: 107009 Analyte	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50 50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 Spike Added	0 .0 .0 	LCS Qual	mg/Kg mg/Kg mg/Kg	Unit		Pr 04/07 04/07 04/07 <i>Pr</i> 04/07 04/07	epared 7/25 11:09 7/25 11:09 7/25 11:09 epared 7/25 11:09 Sample %Rec	Analyz 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 UD: Lab Col Prep I %Rec Limits	Type: To Batch: 1 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 -	Dil F Dil F Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid Analysis Batch: 107009 Analyte Gasoline Range Organics	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50 50 50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130	0 0 0 	LCS Qual	mg/Kg mg/Kg mg/Kg			Pr 04/01 04/01 04/01 <i>Pr</i> 04/0 04/0 04/0 ient	epared 7/25 11:09 7/25 11:09 7/25 11:09 repared 7/25 11:09 7/25 11:09 Sample	Prep Prep Analyz 04/07/25	Type: To Batch: 1 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 -	Dil F Dil F Dil F
Analysis Batch: 107009 Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane (Surr) o-Terphenyl (Surr) Lab Sample ID: LCS 880-10702 Matrix: Solid Analysis Batch: 107009 Analyte	R 	esult 50.0 50.0 50.0 MB overy 107	Qualifier U U U MB	50 50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 Spike Added	0 .0 .0 	LCS Qua	mg/Kg mg/Kg mg/Kg	Unit		Pr 04/01 04/01 04/01 <i>Pr</i> 04/0 04/0 04/0 ient	epared 7/25 11:09 7/25 11:09 7/25 11:09 epared 7/25 11:09 Sample %Rec	Analyz 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 04/07/25 UD: Lab Col Prep I %Rec Limits	Type: To Batch: 1 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 - 19:41 -	Dil F Dil F Dil F

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-10702 Matrix: Solid	25/2-A						Client	Sample	ID: Lab Co Prep 1	ontrol Sa Type: Tot	
Analysis Batch: 107009										Batch: 1	
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)		S1+	70 - 130								
o-Terphenyl (Surr)	134	S1+	70 - 130								
Lab Sample ID: LCSD 880-1070)25/3-A					Clie	nt Sam	ple ID:	Lab Contro	ol Sample	e Dup
Matrix: Solid								· · · ·		ype: Tot	
Analysis Batch: 107009										Batch: 1	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	1015		mg/Kg		101	70 - 130	5	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1108		mg/Kg		111	70 - 130	4	20
C10-C28)	1000	LCSD									
Surrogata			Limits								
Surrogate	%Recovery	Quaimer									
1-Chlorooctane (Surr)	128		70 - 130								
o-Terphenyl (Surr)	126		70 - 130								
Lab Sample ID: 880-56526-5 M	S							CI	ient Sampl	e ID: S-1	(4.0')
Matrix: Solid									Prep 1	Type: Tot	al/NA
Analysis Batch: 107009										Batch: 1	
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9	U	995	909.1		mg/Kg		91	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over C10-C28)	<49.9	U	995	981.8		mg/Kg		99	70 - 130		
		MC									
Summamoto		MS	Lincita								
Surrogate	%Recovery	Qualifier									
1-Chlorooctane (Surr)	127										
o-Terphenyl (Surr)	122		70 - 130								
Lab Sample ID: 880-56526-5 M	SD							CI	ient Sampl	e ID: S-1	(4.0')
Matrix: Solid									Prep 1	Type: Tot	al/NA
Analysis Batch: 107009									Prep I	Batch: 1	07025
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte		Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	995	886.8		mg/Kg	_	89	70 - 130	2	20
Diesel Range Organics (Over	<49.9	U	995	994.5		mg/Kg		100	70 - 130	1	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane (Surr)	129		70 - 130								
o-Terphenyl (Surr)	125		70 _ 130								

Job ID: 880-56526-1 SDG: Eddy Co NM

QC Sample Results

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56526-1 SDG: Eddy Co NM

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-107024/1- Matrix: Solid	A										Client S	Sample ID: N Prep 1	/lethod Гуре: S	
Analysis Batch: 107039		MD												
Analyte	R	MB	MB Qualifier		RL		MDL Unit		D	P	repared	Analyze	he	Dil Fac
Chloride		<10.0			10.0		mg/K	q	<u> </u>		eparea	04/07/25 1		1
-							0	0						
Lab Sample ID: LCS 880-107024/2	2-A								Cli	ent	Sample	ID: Lab Co		
Matrix: Solid												Prep 1	Гуре: S	oluble
Analysis Batch: 107039				Calles		1.00	LCS					%Rec		
Analyte				Spike Added			Qualifier	Unit		D	%Rec	Limits		
Chloride				250		241.0		mg/Kg		-	96	90 - 110		
I								0 0						
Lab Sample ID: LCSD 880-107024	/ 3-A							Cli	ent S	Sam	ple ID: I	Lab Control	Samp	le Dup
Matrix: Solid												Prep 1	Гуре: S	oluble
Analysis Batch: 107039														
Apoluto				Spike Added			LCSD Qualifier	Unit		D	%Rec	%Rec Limits	RPD	RPD
Analyte Chloride				250		241.4	Qualifier	mg/Kg		<u> </u>	97 %	90 - 110	0	
-				250		241.4		mg/rtg			51	90 - 110	0	20
Lab Sample ID: 880-56526-8 MS											Cli	ient Sample	ID: S-	2 (1.5')
Matrix: Solid												Prep 1	Гуре: S	oluble
Analysis Batch: 107039														
	Sample			Spike		MS	MS					%Rec		
Analyte Chloride	Result 94.6	Quali	fier	Added 253		Result 340.6	Qualifier	mg/Kg		D		Limits 90 - 110		
Matrix: Solid Analysis Batch: 107039	Sample	Samp	ole	Spike		MSD	MSD					Prep 1 %Rec	Гуре: S	oluble RPD
Analyte	Result	Quali	fier	Added		Result	Qualifier	Unit		D	%Rec	Limits	RPD	Limit
Chloride	94.6			253		340.8		mg/Kg		_	97	90 - 110	0	20
-														
-	^										Client S	ample ID: N	Inthod	Plank
_ Lab Sample ID: MB 880-107028/1-	A										Client S	Sample ID: N Prop 1		
Lab Sample ID: MB 880-107028/1- Matrix: Solid	A										Client S		/lethod Гуре: S	
_ Lab Sample ID: MB 880-107028/1-	A	МВ	мв								Client S			
Lab Sample ID: MB 880-107028/1- Matrix: Solid			MB Qualifier		RL		MDL Unit		D		Client S		Гуре: S	
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040	R		Qualifier		RL 10.0		MDL Unit mg/K	g	<u>D</u>			Prep 1	Type: S	oluble
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride	R	Result	Qualifier					a 		P	repared	Prep 1 Analyze 04/07/25 1	Гуре: S ed 5:42 -	Dil Fac
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2	R	Result	Qualifier					g		P	repared	Prep 1 	Fype: S ed 5:42 -	Dil Fac 1 Sample
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid	R	Result	Qualifier					a 		P	repared	Prep 1 	Гуре: S ed 5:42 -	Dil Fac 1 Sample
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2	R	Result	Qualifier					<u>g</u>		P	repared	Prep 1 	Fype: S ed 5:42 -	Dil Fac 1 Sample
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid	R	Result	Qualifier	Spike Added		LCS	mg/K	g Unit		P	repared	Prep 1 	Fype: S ed 5:42 -	Dil Fac 1 Sample
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040	R	Result	Qualifier	-		LCS	LCS	-		P	repared Sample	Analyze 04/07/25 1 e ID: Lab Co Prep 1 %Rec	Fype: S ed 5:42 -	Dil Fac 1 Sample
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040 Analyte Chloride	2-A	Result	Qualifier	Added		LCS Result	LCS	Unit mg/Kg	Cli	Pient	s Sample Sample <u>%Rec</u> 98	Analyze 04/07/25 1 e ID: Lab Co Prep 1 %Rec Limits 90 - 110	Type: S ad 5:42 - ontrol S Type: S	Dil Fac 1 Sample Soluble
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCSD 880-107028	2-A	Result	Qualifier	Added		LCS Result	LCS	Unit mg/Kg	Cli	Pient	s Sample Sample <u>%Rec</u> 98	Analyze 04/07/25 1 PID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	Fype: S ad 5:42 - ontrol S Fype: S	Dil Fac 1 Sample Soluble
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCSD 880-107028 Matrix: Solid	2-A	Result	Qualifier	Added		LCS Result	LCS	Unit mg/Kg	Cli	Pient	s Sample Sample <u>%Rec</u> 98	Analyze 04/07/25 1 PID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	Type: S ad 5:42 - ontrol S Type: S	Dil Fac 1 Sample Soluble
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCSD 880-107028	2-A	Result	Qualifier	Added 250		LCS Result 244.8	LCS	Unit mg/Kg	Cli	Pient	s Sample Sample <u>%Rec</u> 98	Analyze 04/07/25 1 PID: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control	Fype: S ad 5:42 - ontrol S Fype: S	Dil Fac 1 Sample Soluble
Lab Sample ID: MB 880-107028/1- Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCS 880-107028/2 Matrix: Solid Analysis Batch: 107040 Analyte Chloride Lab Sample ID: LCSD 880-107028 Matrix: Solid	2-A	Result	Qualifier	Added		LCS Result 244.8	LCS Qualifier	Unit mg/Kg	Cli	Pient	s Sample Sample <u>%Rec</u> 98	Analyze 04/07/25 1 D: Lab Co Prep 1 %Rec Limits 90 - 110 Lab Control Prep 1	Fype: S ad 5:42 - ontrol S Fype: S	Dil Fac 1 Sample Soluble

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56526-1 SDG: Eddy Co NM

Method: 300.0 - Anions, Ion Chromatography

							Cli				
	•	Spike						%Rec			
	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits			
107		248	365.3		mg/Kg		104	90 - 110			
							Cli	ient Sampl	e ID: S-3	(5.0')	5
								Prep	Type: So	oluble	
Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
107		248	362.7		mg/Kg		103	90 - 110	1	20	
											ļ
											i
	Result 107 Sample Result	Sample Sample Result Qualifier	Result Qualifier Added 107 248 Sample Sample Result Qualifier Added	ResultQualifierAddedResult107248365.3SampleSampleSpikeMSDResultQualifierAddedResult	ResultQualifierAddedResultQualifier107248365.3	ResultQualifierAddedResultQualifierUnit107248365.3mg/KgSampleSampleSpikeMSDMSDResultQualifierAddedResultQualifierUnit	ResultQualifierAddedResultQualifierUnitD107248365.3365.3mg/Kg107SampleSampleSpikeMSDMSDResultQualifierAddedResultQualifierUnitD	Sample ResultSample QualifierSpike AddedMS ResultMS QualifierUnit mg/KgD %Rec 104107248365.341010%Rec mg/Kg104107248365.341040104107248365.341040%Rec108248365.34104010410955555104SampleSampleSpikeMSDMSD104ResultQualifierAddedResultQualifierUnitD%Rec	Sample Sample Spike MS MS MS D %Rec Result Qualifier Added Result Qualifier Unit D %Rec Limits 107 248 365.3 Qualifier Unit D %Rec Limits 107 248 365.3 Qualifier Unit D %Rec Limits Sample Sample Sample Spike MSD MSD Kec Value Sample Sample Spike MSD MSD %Rec Value Value Sample Qualifier Added Result Qualifier Unit D %Rec Limits	Sample Sample Spike MS MS MS Prep Type: Set Result Qualifier Added Result Qualifier Unit D %Rec Limits Prep Type: Set 107 248 365.3 mg/Kg D %Rec Limits Prep Type: Set Sample Sample Sample Spike MSD MSD %Rec Sample Sample Spike MSD MSD %Rec MSE Result Qualifier Unit D %Rec MSE MSE	Result Qualifier Added Result Qualifier Unit D %Rec Limits D 0.7 Limits D 107 248 365.3 365.3 mg/Kg D 104 90 - 110 00 - 110

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

5

Job ID: 880-56526-1 SDG: Eddy Co NM

GC VOA

Analysis Batch: 106989

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	8021B	106995
880-56526-2	S-1 (1.5')	Total/NA	Solid	8021B	106995
880-56526-3	S-1 (2.0')	Total/NA	Solid	8021B	106995
880-56526-4	S-1 (3.0')	Total/NA	Solid	8021B	106995
880-56526-5	S-1 (4.0')	Total/NA	Solid	8021B	106995
880-56526-6	S-1 (5.0')	Total/NA	Solid	8021B	106995
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	8021B	106995
880-56526-8	S-2 (1.5')	Total/NA	Solid	8021B	106995
880-56526-9	S-2 (2.0')	Total/NA	Solid	8021B	106995
880-56526-10	S-2 (3.0')	Total/NA	Solid	8021B	106995
MB 880-106995/5-A	Method Blank	Total/NA	Solid	8021B	106995
LCS 880-106995/1-A	Lab Control Sample	Total/NA	Solid	8021B	106995
LCSD 880-106995/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	106995
880-56533-A-6-C MS	Matrix Spike	Total/NA	Solid	8021B	106995
880-56533-A-6-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106995

Analysis Batch: 106991

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-11	S-2 (4.0')	Total/NA	Solid	8021B	106996
880-56526-12	S-2 (5.0')	Total/NA	Solid	8021B	106996
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	8021B	106996
880-56526-14	S-3 (1.5')	Total/NA	Solid	8021B	106996
880-56526-15	S-3 (2.0')	Total/NA	Solid	8021B	106996
880-56526-16	S-3 (3.0')	Total/NA	Solid	8021B	106996
880-56526-17	S-3 (4.0')	Total/NA	Solid	8021B	106996
880-56526-18	S-3 (5.0')	Total/NA	Solid	8021B	106996
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	8021B	106996
880-56526-20	S-4 (1.5')	Total/NA	Solid	8021B	106996
880-56526-21	S-4 (2.0')	Total/NA	Solid	8021B	106996
880-56526-22	S-4 (3.0')	Total/NA	Solid	8021B	106996
880-56526-23	S-4 (4.0')	Total/NA	Solid	8021B	106996
880-56526-24	S-4 (5.0')	Total/NA	Solid	8021B	106996
MB 880-106996/5-A	Method Blank	Total/NA	Solid	8021B	106996
LCS 880-106996/1-A	Lab Control Sample	Total/NA	Solid	8021B	106996
LCSD 880-106996/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	106996
880-56533-A-11-C MS	Matrix Spike	Total/NA	Solid	8021B	106996
880-56533-A-11-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	106996

Prep Batch: 106995

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	5035	
880-56526-2	S-1 (1.5')	Total/NA	Solid	5035	
880-56526-3	S-1 (2.0')	Total/NA	Solid	5035	
880-56526-4	S-1 (3.0')	Total/NA	Solid	5035	
880-56526-5	S-1 (4.0')	Total/NA	Solid	5035	
880-56526-6	S-1 (5.0')	Total/NA	Solid	5035	
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	5035	
880-56526-8	S-2 (1.5')	Total/NA	Solid	5035	
880-56526-9	S-2 (2.0')	Total/NA	Solid	5035	
880-56526-10	S-2 (3.0')	Total/NA	Solid	5035	
MB 880-106995/5-A	Method Blank	Total/NA	Solid	5035	

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

GC VOA (Continued)

Prep Batch: 106995 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-106995/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-106995/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56533-A-6-C MS	Matrix Spike	Total/NA	Solid	5035	
880-56533-A-6-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	
Prep Batch: 106996					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-11	S-2 (4.0')	Total/NA	Solid	5035	
880-56526-12	S-2 (5.0')	Total/NA	Solid	5035	
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	5035	
880-56526-14	S-3 (1.5')	Total/NA	Solid	5035	
880-56526-15	S-3 (2.0')	Total/NA	Solid	5035	
880-56526-16	S-3 (3.0')	Total/NA	Solid	5035	
880-56526-17	S-3 (4.0')	Total/NA	Solid	5035	
880-56526-18	S-3 (5.0')	Total/NA	Solid	5035	
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	5035	
880-56526-20	S-4 (1.5')	Total/NA	Solid	5035	
880-56526-21	S-4 (2.0')	Total/NA	Solid	5035	
880-56526-22	S-4 (3.0')	Total/NA	Solid	5035	
880-56526-23	S-4 (4.0')	Total/NA	Solid	5035	
880-56526-24	S-4 (5.0')	Total/NA	Solid	5035	
MB 880-106996/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-106996/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-106996/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56533-A-11-C MS	Matrix Spike	Total/NA	Solid	5035	
880-56533-A-11-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 107126

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	Total BTEX	
880-56526-2	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-56526-3	S-1 (2.0')	Total/NA	Solid	Total BTEX	
880-56526-4	S-1 (3.0')	Total/NA	Solid	Total BTEX	
880-56526-5	S-1 (4.0')	Total/NA	Solid	Total BTEX	
880-56526-6	S-1 (5.0')	Total/NA	Solid	Total BTEX	
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	Total BTEX	
880-56526-8	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-56526-9	S-2 (2.0')	Total/NA	Solid	Total BTEX	
880-56526-10	S-2 (3.0')	Total/NA	Solid	Total BTEX	
880-56526-11	S-2 (4.0')	Total/NA	Solid	Total BTEX	
880-56526-12	S-2 (5.0')	Total/NA	Solid	Total BTEX	
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	Total BTEX	
880-56526-14	S-3 (1.5')	Total/NA	Solid	Total BTEX	
880-56526-15	S-3 (2.0')	Total/NA	Solid	Total BTEX	
880-56526-16	S-3 (3.0')	Total/NA	Solid	Total BTEX	
880-56526-17	S-3 (4.0')	Total/NA	Solid	Total BTEX	
880-56526-18	S-3 (5.0')	Total/NA	Solid	Total BTEX	
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	Total BTEX	
880-56526-20	S-4 (1.5')	Total/NA	Solid	Total BTEX	
880-56526-21	S-4 (2.0')	Total/NA	Solid	Total BTEX	
880-56526-22	S-4 (3.0')	Total/NA	Solid	Total BTEX	

Eurofins Midland

Page 100 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

GC VOA (Continued)

Analysis Batch: 107126 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-23	S-4 (4.0')	Total/NA	Solid	Total BTEX	
880-56526-24	S-4 (5.0')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Analysis Batch: 107002

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	8015B NM	107022
880-56526-2	S-1 (1.5')	Total/NA	Solid	8015B NM	107022
880-56526-3	S-1 (2.0')	Total/NA	Solid	8015B NM	107022
880-56526-4	S-1 (3.0')	Total/NA	Solid	8015B NM	107022
MB 880-107022/1-A	Method Blank	Total/NA	Solid	8015B NM	107022
LCS 880-107022/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107022
LCSD 880-107022/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107022
880-56484-A-6-D MS	Matrix Spike	Total/NA	Solid	8015B NM	107022
880-56484-A-6-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107022

Analysis Batch: 107009

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-5	S-1 (4.0')	Total/NA	Solid	8015B NM	107025
880-56526-6	S-1 (5.0')	Total/NA	Solid	8015B NM	107025
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	8015B NM	107025
880-56526-8	S-2 (1.5')	Total/NA	Solid	8015B NM	107025
880-56526-9	S-2 (2.0')	Total/NA	Solid	8015B NM	107025
880-56526-10	S-2 (3.0')	Total/NA	Solid	8015B NM	107025
880-56526-11	S-2 (4.0')	Total/NA	Solid	8015B NM	107025
880-56526-12	S-2 (5.0')	Total/NA	Solid	8015B NM	107025
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	8015B NM	107025
880-56526-14	S-3 (1.5')	Total/NA	Solid	8015B NM	107025
880-56526-15	S-3 (2.0')	Total/NA	Solid	8015B NM	107025
880-56526-16	S-3 (3.0')	Total/NA	Solid	8015B NM	107025
880-56526-17	S-3 (4.0')	Total/NA	Solid	8015B NM	107025
880-56526-18	S-3 (5.0')	Total/NA	Solid	8015B NM	107025
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	8015B NM	107025
880-56526-20	S-4 (1.5')	Total/NA	Solid	8015B NM	107025
880-56526-21	S-4 (2.0')	Total/NA	Solid	8015B NM	107025
880-56526-22	S-4 (3.0')	Total/NA	Solid	8015B NM	107025
880-56526-23	S-4 (4.0')	Total/NA	Solid	8015B NM	107025
880-56526-24	S-4 (5.0')	Total/NA	Solid	8015B NM	107025
MB 880-107025/1-A	Method Blank	Total/NA	Solid	8015B NM	107025
LCS 880-107025/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107025
LCSD 880-107025/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107025
880-56526-5 MS	S-1 (4.0')	Total/NA	Solid	8015B NM	107025
880-56526-5 MSD	S-1 (4.0')	Total/NA	Solid	8015B NM	107025

Prep Batch: 107022

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	8015NM Prep	
880-56526-2	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-56526-3	S-1 (2.0')	Total/NA	Solid	8015NM Prep	
880-56526-4	S-1 (3.0')	Total/NA	Solid	8015NM Prep	

Page 101 of 147

8

Job ID: 880-56526-1 SDG: Eddy Co NM

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

GC Semi VOA (Continued)

Prep Batch: 107022 (Continued)

Lab Sample ID MB 880-107022/1-A	Client Sample ID Method Blank	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
LCS 880-107022/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107022/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56484-A-6-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-56484-A-6-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 107025

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	8
880-56526-5	S-1 (4.0')	Total/NA	Solid	8015NM Prep		
880-56526-6	S-1 (5.0')	Total/NA	Solid	8015NM Prep		9
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	8015NM Prep		
880-56526-8	S-2 (1.5')	Total/NA	Solid	8015NM Prep		
880-56526-9	S-2 (2.0')	Total/NA	Solid	8015NM Prep		
880-56526-10	S-2 (3.0')	Total/NA	Solid	8015NM Prep		
880-56526-11	S-2 (4.0')	Total/NA	Solid	8015NM Prep		
880-56526-12	S-2 (5.0')	Total/NA	Solid	8015NM Prep		
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	8015NM Prep		
880-56526-14	S-3 (1.5')	Total/NA	Solid	8015NM Prep		
880-56526-15	S-3 (2.0')	Total/NA	Solid	8015NM Prep		
880-56526-16	S-3 (3.0')	Total/NA	Solid	8015NM Prep		
880-56526-17	S-3 (4.0')	Total/NA	Solid	8015NM Prep		
880-56526-18	S-3 (5.0')	Total/NA	Solid	8015NM Prep		
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	8015NM Prep		
880-56526-20	S-4 (1.5')	Total/NA	Solid	8015NM Prep		
880-56526-21	S-4 (2.0')	Total/NA	Solid	8015NM Prep		
880-56526-22	S-4 (3.0')	Total/NA	Solid	8015NM Prep		
880-56526-23	S-4 (4.0')	Total/NA	Solid	8015NM Prep		
880-56526-24	S-4 (5.0')	Total/NA	Solid	8015NM Prep		
MB 880-107025/1-A	Method Blank	Total/NA	Solid	8015NM Prep		
LCS 880-107025/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep		
LCSD 880-107025/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep		
880-56526-5 MS	S-1 (4.0')	Total/NA	Solid	8015NM Prep		
880-56526-5 MSD	S-1 (4.0')	Total/NA	Solid	8015NM Prep		

Analysis Batch: 107155

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Total/NA	Solid	8015 NM	
880-56526-2	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-56526-3	S-1 (2.0')	Total/NA	Solid	8015 NM	
880-56526-4	S-1 (3.0')	Total/NA	Solid	8015 NM	
880-56526-5	S-1 (4.0')	Total/NA	Solid	8015 NM	
880-56526-6	S-1 (5.0')	Total/NA	Solid	8015 NM	
880-56526-7	S-2 (0-1.0')	Total/NA	Solid	8015 NM	
880-56526-8	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-56526-9	S-2 (2.0')	Total/NA	Solid	8015 NM	
880-56526-10	S-2 (3.0')	Total/NA	Solid	8015 NM	
880-56526-11	S-2 (4.0')	Total/NA	Solid	8015 NM	
880-56526-12	S-2 (5.0')	Total/NA	Solid	8015 NM	
880-56526-13	S-3 (0-1.0')	Total/NA	Solid	8015 NM	
880-56526-14	S-3 (1.5')	Total/NA	Solid	8015 NM	
880-56526-15	S-3 (2.0')	Total/NA	Solid	8015 NM	

Eurofins Midland

5

Job ID: 880-56526-1

SDG: Eddy Co NM

Page 37 of 54

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

GC Semi VOA (Continued)

Analysis Batch: 107155 (Continued)

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-16	S-3 (3.0')	Total/NA	Solid	8015 NM	
880-56526-17	S-3 (4.0')	Total/NA	Solid	8015 NM	
880-56526-18	S-3 (5.0')	Total/NA	Solid	8015 NM	
880-56526-19	S-4 (0-1.0')	Total/NA	Solid	8015 NM	
880-56526-20	S-4 (1.5')	Total/NA	Solid	8015 NM	
880-56526-21	S-4 (2.0')	Total/NA	Solid	8015 NM	
880-56526-22	S-4 (3.0')	Total/NA	Solid	8015 NM	
880-56526-23	S-4 (4.0')	Total/NA	Solid	8015 NM	
880-56526-24	S-4 (5.0')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 107024

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Soluble	Solid	DI Leach	
880-56526-2	S-1 (1.5')	Soluble	Solid	DI Leach	
880-56526-3	S-1 (2.0')	Soluble	Solid	DI Leach	
880-56526-4	S-1 (3.0')	Soluble	Solid	DI Leach	
880-56526-5	S-1 (4.0')	Soluble	Solid	DI Leach	
880-56526-6	S-1 (5.0')	Soluble	Solid	DI Leach	
880-56526-7	S-2 (0-1.0')	Soluble	Solid	DI Leach	
880-56526-8	S-2 (1.5')	Soluble	Solid	DI Leach	
880-56526-9	S-2 (2.0')	Soluble	Solid	DI Leach	
880-56526-10	S-2 (3.0')	Soluble	Solid	DI Leach	
880-56526-11	S-2 (4.0')	Soluble	Solid	DI Leach	
880-56526-12	S-2 (5.0')	Soluble	Solid	DI Leach	
880-56526-13	S-3 (0-1.0')	Soluble	Solid	DI Leach	
880-56526-14	S-3 (1.5')	Soluble	Solid	DI Leach	
880-56526-15	S-3 (2.0')	Soluble	Solid	DI Leach	
880-56526-16	S-3 (3.0')	Soluble	Solid	DI Leach	
880-56526-17	S-3 (4.0')	Soluble	Solid	DI Leach	
MB 880-107024/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-107024/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-107024/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-56526-8 MS	S-2 (1.5')	Soluble	Solid	DI Leach	
880-56526-8 MSD	S-2 (1.5')	Soluble	Solid	DI Leach	

Leach Batch: 107028

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56526-18	S-3 (5.0')	Soluble	Solid	DI Leach	
880-56526-19	S-4 (0-1.0')	Soluble	Solid	DI Leach	
880-56526-20	S-4 (1.5')	Soluble	Solid	DI Leach	
880-56526-21	S-4 (2.0')	Soluble	Solid	DI Leach	
880-56526-22	S-4 (3.0')	Soluble	Solid	DI Leach	
880-56526-23	S-4 (4.0')	Soluble	Solid	DI Leach	
880-56526-24	S-4 (5.0')	Soluble	Solid	DI Leach	
MB 880-107028/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-107028/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-107028/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-56526-18 MS	S-3 (5.0')	Soluble	Solid	DI Leach	
880-56526-18 MSD	S-3 (5.0')	Soluble	Solid	DI Leach	

SDG: Eddy Co NM

5

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Page 104 of 147

Job ID: 880-56526-1 SDG: Eddy Co NM

HPLC/IC

Analysis Batch: 107039

nalysis Batch: 107039	3				
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-1	S-1 (0-1.0')	Soluble	Solid	300.0	107024
880-56526-2	S-1 (1.5')	Soluble	Solid	300.0	107024
880-56526-3	S-1 (2.0')	Soluble	Solid	300.0	107024
880-56526-4	S-1 (3.0')	Soluble	Solid	300.0	107024
880-56526-5	S-1 (4.0')	Soluble	Solid	300.0	107024
880-56526-6	S-1 (5.0')	Soluble	Solid	300.0	107024
880-56526-7	S-2 (0-1.0')	Soluble	Solid	300.0	107024
880-56526-8	S-2 (1.5')	Soluble	Solid	300.0	107024
880-56526-9	S-2 (2.0')	Soluble	Solid	300.0	107024
880-56526-10	S-2 (3.0')	Soluble	Solid	300.0	107024
880-56526-11	S-2 (4.0')	Soluble	Solid	300.0	107024
880-56526-12	S-2 (5.0')	Soluble	Solid	300.0	107024
880-56526-13	S-3 (0-1.0')	Soluble	Solid	300.0	107024
880-56526-14	S-3 (1.5')	Soluble	Solid	300.0	107024
880-56526-15	S-3 (2.0')	Soluble	Solid	300.0	107024
880-56526-16	S-3 (3.0')	Soluble	Solid	300.0	107024
880-56526-17	S-3 (4.0')	Soluble	Solid	300.0	107024
MB 880-107024/1-A	Method Blank	Soluble	Solid	300.0	107024
LCS 880-107024/2-A	Lab Control Sample	Soluble	Solid	300.0	107024
LCSD 880-107024/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	107024
880-56526-8 MS	S-2 (1.5')	Soluble	Solid	300.0	107024
880-56526-8 MSD	S-2 (1.5')	Soluble	Solid	300.0	107024

Analysis Batch: 107040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56526-18	S-3 (5.0')	Soluble	Solid	300.0	107028
880-56526-19	S-4 (0-1.0')	Soluble	Solid	300.0	107028
880-56526-20	S-4 (1.5')	Soluble	Solid	300.0	107028
880-56526-21	S-4 (2.0')	Soluble	Solid	300.0	107028
880-56526-22	S-4 (3.0')	Soluble	Solid	300.0	107028
880-56526-23	S-4 (4.0')	Soluble	Solid	300.0	107028
880-56526-24	S-4 (5.0')	Soluble	Solid	300.0	107028
MB 880-107028/1-A	Method Blank	Soluble	Solid	300.0	107028
LCS 880-107028/2-A	Lab Control Sample	Soluble	Solid	300.0	107028
LCSD 880-107028/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	107028
880-56526-18 MS	S-3 (5.0')	Soluble	Solid	300.0	107028
880-56526-18 MSD	S-3 (5.0')	Soluble	Solid	300.0	107028

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: S-1 (0-1.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client: Carmona Resources

Initial

Amount

4.95 g

5 mL

10.06 g

1 uL

5.03 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

Number

106995

106989

107126

107155

107022

107002

107024

107039

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-1

Analyst

AA

EL

AJ

AJ

FC

TKC

SA

СН

Prepared

or Analyzed

04/07/25 08:43

04/07/25 16:21

04/07/25 16:21

04/07/25 23:38

04/07/25 10:01

04/07/25 23:38

04/07/25 10:31

04/07/25 16:03

Matrix: Solid

Lab

EET MID

Matrix: Solid

Lab Sample ID: 880-56526-2 Matrix: Solid

Lab Sample ID: 880-56526-3

Lab Sample ID: 880-56526-4

trix: 5010

2	
d	
_	13

Client Sample ID: S-1 (1.5') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 16:42	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 16:42	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 23:54	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/07/25 23:54	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:09	СН	EET MID

Client Sample ID: S-1 (2.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 17:02	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:02	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/08/25 00:11	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:26	СН	EET MID

Client Sample ID: S-1 (3.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 17:23	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:23	AJ	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/4/2025 4:25:51 PM

Client Sample ID: S-1 (3.0')

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-4 Matrix: Solid

Lab Sample ID: 880-56526-5

Lab Sample ID: 880-56526-6

Lab Sample ID: 880-56526-7

Matrix: Solid

Matrix: Solid

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:27	AJ	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	107022	04/07/25 10:01	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107002	04/08/25 00:27	ТКС	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:32	СН	EET MID

Client Sample ID: S-1 (4.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 17:43	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:43	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 20:24	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 20:24	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:38	СН	EET MID

Client Sample ID: S-1 (5.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 18:03	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 18:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 21:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 21:11	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:44	СН	EET MID

Client Sample ID: S-2 (0-1.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 18:24	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 18:24	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 21:25	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 21:25	TKC	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/4/2025 4:25:51 PM

Client Sample ID: S-2 (0-1.0')

Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Client: Carmona Resources

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-7 Matrix: Solid

Lab Sample ID: 880-56526-8

Lab Sample ID: 880-56526-9

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.04 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:50	СН	EET MID

Client Sample ID: S-2 (1.5') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 18:44	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 18:44	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 21:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 21:41	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 16:55	СН	EET MID

Client Sample ID: S-2 (2.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Ba	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 19:05	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 19:05	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 21:55	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 21:55	ТКС	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:13	СН	EET MID

Client Sample ID: S-2 (3.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Lab Sample ID: 880-56526-10 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	106995	04/07/25 08:43	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106989	04/07/25 19:25	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 19:25	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 22:11	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 22:11	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:18	CH	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-11

Matrix: Solid

5 6

9

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client Sample ID: S-2 (4.0')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 14:05	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 14:05	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 22:25	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 22:25	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:36	СН	EET MID

Lab Sample ID: 880-56526-12 Matrix: Solid

Lab Sample ID: 880-56526-13

Lab Sample ID: 880-56526-14

Matrix: Solid

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client Sample ID: S-2 (5.0')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 14:26	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 14:26	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 22:42	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 22:42	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:41	СН	EET MID

Client Sample ID: S-3 (0-1.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 14:46	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 14:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 22:56	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 22:56	TKC	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:47	СН	EET MID

Client Sample ID: S-3 (1.5') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 15:07	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 15:07	AJ	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/4/2025 4:25:51 PM
Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-14

Lab Sample ID: 880-56526-15

Lab Sample ID: 880-56526-16

Lab Sample ID: 880-56526-17

Matrix: Solid

Matrix: Solid

Matrix: Solid

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client Sample ID: S-3 (1.5')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107155	04/07/25 23:12	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 23:12	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:53	СН	EET MID

Client Sample ID: S-3 (2.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 16:40	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 16:40	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 23:42	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 23:42	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 17:59	СН	EET MID

Client Sample ID: S-3 (3.0')

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 17:00	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:00	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/07/25 23:56	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/07/25 23:56	ткс	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 18:04	СН	EET MID

Client Sample ID: S-3 (4.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 17:21	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:21	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:12	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 00:12	ткс	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: S-3 (4.0')

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-17

Lab Sample ID: 880-56526-18

Lab Sample ID: 880-56526-19

Matrix: Solid

Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	107024	04/07/25 10:31	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107039	04/07/25 18:10	СН	EET MID

Client Sample ID: S-3 (5.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 17:41	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 17:41	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:26	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 00:26	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 16:04	СН	EET MID

Client Sample ID: S-4 (0-1.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 18:01	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 18:01	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 00:41	ТКС	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 16:26	СН	EET MID

Client Sample ID: S-4 (1.5') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Lab Sample ID: 880-56526-20 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 18:22	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 18:22	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 00:55	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 00:55	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 16:33	СН	EET MID

Eurofins Midland

Matrix: Solid

Batch

Туре

Prep

Analysis

Analysis

Analysis

Analysis

Analysis

Leach

Prep

Batch

Method

5035

8021B

Total BTEX

8015NM Prep

8015B NM

DI Leach

300.0

8015 NM

Client Sample ID: S-4 (2.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

Prep Type

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Total/NA

Soluble

Soluble

Client: Carmona Resources

Initial

Amount

5.01 g

5 mL

10.00 g

1 uL

5.01 g

50 mL

Final

Amount

5 mL

5 mL

10 mL

1 uL

50 mL

50 mL

Batch

Number

106996

106991

107126

107155

107025

107009

107028

107040

Dil

1

1

1

1

1

Factor

Run

Job ID: 880-56526-1 SDG: Eddy Co NM

Lab Sample ID: 880-56526-21

Analyst

AA

EL

AJ

AJ

FC

TKC

SA

СН

Prepared

or Analyzed

04/07/25 08:45

04/07/25 18:42

04/07/25 18:42

04/08/25 01:10

04/07/25 11:09

04/08/25 01:10

04/07/25 11:56

04/07/25 16:40

Matrix: Solid

Lab

EET MID

Matrix: Solid

9

Lab Sample ID: 880-56526-22 Matrix: Solid

Lab Sample ID: 880-56526-23

Lab Sample ID: 880-56526-24

Client Sample ID: S-4 (3.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 19:03	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 19:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 01:23	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 01:23	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 16:47	СН	EET MID

Client Sample ID: S-4 (4.0') Date Collected: 04/03/25 00:00

Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 19:23	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 19:23	AJ	EET MID
Total/NA	Analysis	8015 NM		1			107155	04/08/25 01:38	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 01:38	ТКС	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 17:09	СН	EET MID

Client Sample ID: S-4 (5.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	106996	04/07/25 08:45	AA	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	106991	04/07/25 19:44	EL	EET MID
Total/NA	Analysis	Total BTEX		1			107126	04/07/25 19:44	AJ	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/4/2025 4:25:51 PM

Job ID: 880-56526-1 SDG: Eddy Co NM

Client Sample ID: S-4 (5.0') Date Collected: 04/03/25 00:00 Date Received: 04/04/25 13:35

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107155	04/08/25 01:51	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107025	04/07/25 11:09	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107009	04/08/25 01:51	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107028	04/07/25 11:56	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	107040	04/07/25 17:16	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Lab Sample ID: 880-56526-24 Matrix: Solid

Job ID: 880-56526-1 SDG: Eddy Co NM

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELAI	P	T104704400	06-30-25
The following analyte	es are included in this report, bu	it the laboratory is not certif	fied by the governing authority. This list	t mav include analvtes
for which the agency	does not offer certification.	,	, , , , , ,	, ,
for which the agency Analysis Method	1 ,	Matrix	Analyte	, , , , , , , , , , , , , , , , , , ,
for which the agency	does not offer certification.	,	, , , , , ,	

Eurofins Midland

Method Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001 Job ID: 880-56526-1 SDG: Eddy Co NM

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
EPA = US	STM International Environmental Protection Agency		
SW846 = '	'Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Editi	on, November 1986 And Its Updates.	
TAL SOP :	= TestAmerica Laboratories, Standard Operating Procedure		
Laboratory Re			
EET MID -	= Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440		

Laboratory References:

Eurofins Midland

Released to Imaging: 6/4/2025 4:25:51 PM

Sample Summary

Client: Carmona Resources Project/Site: CONOCO FEDERAL #001

Job ID:	880-	5652	6-1

SDG: Eddy Co NM

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-56526-1	S-1 (0-1.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-2	S-1 (1.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-3	S-1 (2.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-4	S-1 (3.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-5	S-1 (4.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-6	S-1 (5.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-7	S-2 (0-1.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-8	S-2 (1.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-9	S-2 (2.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-10	S-2 (3.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-11	S-2 (4.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-12	S-2 (5.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-13	S-3 (0-1.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-14	S-3 (1.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-15	S-3 (2.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-16	S-3 (3.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-17	S-3 (4.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-18	S-3 (5.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-19	S-4 (0-1.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-20	S-4 (1.5')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-21	S-4 (2.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-22	S-4 (3.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-23	S-4 (4.0')	Solid	04/03/25 00:00	04/04/25 13:35
880-56526-24	S-4 (5.0')	Solid	04/03/25 00:00	04/04/25 13:35

	-		
1	τ	3	
	č	5	
	ŝ,	5	
	U	D	
	2	3	
1		5	
	-	1	
	4	-	
	C	5	
	c	2	
	-	-	
	C	۵	
	C	2	
1		2	

Work Order No:

Received b	y OCD:	5/22/2025	7:37:58 AM
------------	--------	-----------	------------

Project Manager: Ashton	Ashton Thielke				Bill to: (if different)	ifferent)		Carmona Resources	esources			Work Orde	Work Order Comments	ß
Company Name: Carmo	Carmona Resources	s			Company Name:	Name:					Progr	Program: UST/PST DRP Brownfields RRC	ownfields	JRRC Duperfund
Address: 310 W	310 West Wall Ste. 500	500			Address:						State	State of Project:		
City, State ZIP: Midlan	Midland, TX 79701				City, State ZIP:	: ZIP:					Repor	Reporting:Level II Cevel III CST/UST		🛛 rrp 🛛 Level IV
Phone: 432-81	432-813-8988			Email:	Email: ThielkeA@Carmonaresources.com	@Carmo	naresou	ces.com			Delive	Deliverables: EDD	ADaPT	Other:
Project Name: C	CONOCO FEDERAL #001	DERAL #0	01	Turn	Turn Around					ANALYS	ANALYSIS REQUEST		Pre	Preservative Codes
Project Number:	2410	0		✓ Routine	Rush		Pres. Code						None: NO	DI Water: H ₂ O
Project Location	Eddy Co, NM	o, NM		Due Date:	Normal	nal							Cool: Cool	
Sampler's Name:	GPJ	ſ		TAT starts the day received by the	day received	d by the		(O3I					HCL: HC	HNO3: HN
PO #:				lab, if recei	ived by 4:30	md	sı	N + 1					H2S04: H2	NaOH: Na
SAMPLE RECEIPT	Temp Blank:		Yes No	Wet Ice:	Yes	No	iətər		0.0				H ₃ PO ₄ : HP	д
Received Intact:	Yes N	No	Thermometer ID:	ter ID:			nsıı)6 3(D NaHSO4: NABIS	NABIS
Cooler Custody Seals:	0	N/A 0	Correction Factor:	Factor:			۶d	тех ав)	lorid				Na2S2O3: NaSO3	NaSO ₃
Sample Custody Seals:	Yes No	N/A	Temperatu	Temperature Reading:					чэ				Zn Aceta	Zn Acetate+NaOH: Zn
Total Containers:			Corrected	Corrected Temperature:			3	108					NaOH+A	NaOH+Ascorbic Acid: SAPC
Sample Identification		Date	Time	Soil	Water	Grab/	# of Cont	НЧТ					Sai	Sample Comments
S-2 (4.0')	4/	4/3/2025	T	×		υ	-	×	×					
S-2 (5.0')	4/	4/3/2025		×		υ	-	××	×					
S-3 (0-1.0')	4/	4/3/2025		×		υ	-	××	×					
S-3 (1.5')	4/;	4/3/2025		×		υ	-	×	×					
S-3 (2.0')	4/;	4/3/2025		×		υ	-	××	×					
S-3 (3.0')	4/:	4/3/2025		×		υ	+	××	×					
S-3 (4.0')	4/;	4/3/2025		×		υ	+	××	×					
S-3 (5.0')	4/;	4/3/2025		×		υ	-	×	×					
S-4 (0-1.0')	4/.	4/3/2025		×		ს	-	××	×					
S-4 (1.5')	4/.	4/3/2025		×		υ	-	×	×					
			Please s	Please send results to cr	to cmoet	1ring@c	armonar	esource	S.com an	moehring@carmonaresources.com and mcarmona@carmonaresources.com	Irmonaresou	rces.com		
Relinquished by: (Signature)	ature)		Received	Received by: (Signature)	re)		, Di	Date/Time	-	Relinquished by: (Signature)	(Signature)	Received by: (Signature)	ature)	Date/Time
	n		A				2411	18	352					
			7				-		4					
5			,						9					
										1				Revised Date USU12020 Rev. 2020.

Page 117 of 147

1	ζ	3	
	ς	D	
1	ţ	2	
	2	ŝ	
7	1	5	
2	7	1	
1	2	5	
	2		
1	5		
	¢	0	
	C	1	
		1	

Page3 of3	Comments	Infields RRC Uperfund			other:	Preservative Codes	None: NO DI Water: H ₂ O	Cool: Cool MeOH: Me		H DO HD NAUN. NA	NaHSO4: NABIS	Na ₂ S ₂ O ₃ : NaSO ₃	Zn Acetate+NaOH: Zn	NaOH+Ascorbic Acid: SAPC	Comple Comments											ure) Date/Time			Revised Date 05012020 Rev. 2020 1	Revised Date USU12020 Kev. 2020.1
	Work Order Comments	Program: UST/PST DPRP Brownfields DRC	State of Project:	Reporting:Level II 🗌 Level III 🛛 🖓	ables: EDD D ADaPT D							он												_	ces.com	Received by: (Signature)				
		Progra	State o	Report	Deliverables:	ANALYSIS REQUEST																			Please send results to cmoehring@carmonaresources.com and mcarmona@carmonaresources.com	Relinquished by: (Signature)				
	Carmona Resources				ources.com				оям	+ 08	= 300 9 + C	อยอ) Mö	9108	НЧТ		X X X	X X X	X X X	× × ×					aresources.com and	Date/Time Re	as 1335 2	-	<u>9</u>	
	()	e:			armonareso		Pres. Code		ē	ers	em	вч			-	np Cont	1	1	1	-	_	+			g@carmon	-	NH	-	_	
	Bill to: (if different)	Company Name:	Address:	City, State ZIP:	Email: ThielkeA@Carmonaresources.com	Turn Around	Rush	Normal	ay received by t	Voc No					Grab/	Comp	g	ອ	9	υ		-			o cmoehring	(e)				
		0	/		Email:	Turn	J Routine	Due Date:	TAT starts the day received by the lab if received by 4:30nm	_	ete	Correction Factor:	Temperature Reading:	Corrected Temperature:	i	100	×	×	×	×					e send results t	Received by: (Signature)				
		S	500			DERAL #001	0	o, NM	7	Voc No		IA	N/A Tempera		- T		4/3/2025	4/3/2025	4/3/2025	4/3/2025		+			Please	Receiv	2	7	•	
	Ashton Thielke	Carmona Resources	310 West Wall Ste. 500	Midland, TX 79701	432-813-8988	CONOCO FEDERAL #001	2410	Eddy Co, NM	GPJ	Tomn Blank	Yes No	Yes No	Yes No													Signature)	47			
	Project Manager: As	Company Name: Ca		City, State ZIP: Mi		Project Name:	Project Number:	Project Location	Sampler's Name:	SAMDI E RECEIDT	Received Intact:	Cooler Custody Seals:	Sample Custody Seals:	Total Containers:	Comula Identification		S-4 (2.0')	S-4 (3.0')	S-4 (4.0')	S-4 (5.0')						Relinquished by: (Signature)			5	

Page 118 of 147

Job Number: 880-56526-1 SDG Number: Eddy Co NM

List Source: Eurofins Midland

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56526 List Number: 1

Creator: Lee, Randell

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").

May 14, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: CONOCO FEDERAL #001

Enclosed are the results of analyses for samples received by the laboratory on 05/13/25 12:22.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keine

Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	05/13/2025	Sampling Date:	05/13/2025
Reported:	05/14/2025	Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001	Sampling Condition:	Cool & Intact
Project Number:	2410	Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM		

Sample ID: CS - 1 (1.5') (H252846-01)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	107 :	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	80.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2025	ND	204	102	200	1.95	
DRO >C10-C28*	<10.0	10.0	05/13/2025	ND	198	99.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	05/13/2025	ND					
Surrogate: 1-Chlorooctane	89.0	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	88.2	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

EDDY CO, NM

Analytical Results For:

	CARMONA F	RESOURCES	
	ASHTON TH	IIELKE	
	310 W WAL	L ST, SUITE 500	
	MIDLAND T	X, 79701	
	Fax To:		
Received:	05/13/2025	Sampling Date:	05/13/2025
Reported:	05/14/2025	Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001	Sampling Condition:	Cool & Intact
Project Number:	2410	Sample Received By:	Tamara Oldaker

Sample ID: CS - 2 (1.5') (H252846-02)

Project Location:

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2025	ND	204	102	200	1.95	
DRO >C10-C28*	<10.0	10.0	05/13/2025	ND	198	99.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	05/13/2025	ND					
Surrogate: 1-Chlorooctane	85.0	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	82.3	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:		
Received: Reported:	05/13/2025 05/14/2025		Sampling Date: Sampling Type:	05/13/2025 Soil
Project Name: Project Number: Project Location:	CONOCO FEDERAL # 2410 EDDY CO, NM	4001	Sampling Condition: Sample Received By:	Cool & Intact Tamara Oldaker

Sample ID: CS - 3 (7.0') (H252846-03)

BTEX 8021B	mg	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2025	ND	204	102	200	1.95	
DRO >C10-C28*	<10.0	10.0	05/13/2025	ND	198	99.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	05/13/2025	ND					
Surrogate: 1-Chlorooctane	80.3	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	78.6	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

	CARMONA RESOURG ASHTON THIELKE 310 W WALL ST, SU MIDLAND TX, 79701 Fax To:	JITE 500	
Received: Reported: Project Name: Project Number: Project Location:	05/13/2025 05/14/2025 CONOCO FEDERAL #001 2410 EDDY CO, NM	Sampling Date: Sampling Type: Sampling Condition: Sample Received By:	05/13/2025 Soil Cool & Intact Tamara Oldaker

Sample ID: CS - 4 (7.0') (H252846-04)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	′kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/13/2025	ND	204	102	200	1.95	
DRO >C10-C28*	<10.0	10.0	05/13/2025	ND	198	99.1	200	3.07	
EXT DRO >C28-C36	<10.0	10.0	05/13/2025	ND					
Surrogate: 1-Chlorooctane	81.3	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	78.7	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	CARMONA RESOUR ASHTON THIELKE 310 W WALL ST, SL MIDLAND TX, 7970 Fax To:	JITE 500	
Received: Reported:	05/13/2025 05/14/2025 CONOCO EEDEDAL #001	Sampling Date: Sampling Type:	05/13/2025 Soil Cool & Intact
Project Name: Project Number: Project Location:	CONOCO FEDERAL #001 2410 EDDY CO, NM	Sampling Condition: Sample Received By:	Cool & Intact Tamara Oldaker

Sample ID: SW - 1 (1.5') (H252846-05)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	85.0	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	80.8	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	ASH 310 MIL	RMONA RESOURCES HTON THIELKE WWALL ST, SUITE 500 DLAND TX, 79701 To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001	L	Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 2 (1.5') (H252846-06)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	82.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	77.3	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	AS 31 MI	ARMONA RESOURCES SHTON THIELKE .0 W WALL ST, SUITE 500 IDLAND TX, 79701 IX To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001	1	Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 3 (1.5') (H252846-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	89.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	84.5	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:		
Received: Reported:	05/13/2025 05/14/2025		Sampling Date: Sampling Type:	05/13/2025 Soil
Project Name: Project Number: Project Location:	CONOCO FEDERAL # 2410 EDDY CO, NM	4001	Sampling Condition: Sample Received By:	Cool & Intact Tamara Oldaker

Sample ID: SW - 4 (1.5') (H252846-08)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifie
Benzene*	<0.050	0.050	05/13/2025	ND	1.82	91.0	2.00	5.50	
Toluene*	<0.050	0.050	05/13/2025	ND	2.04	102	2.00	4.12	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.13	106	2.00	1.55	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.48	108	6.00	0.0682	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	86.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	82.1	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

		CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #	001	Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 5 (7.0') (H252846-09)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.75	87.4	2.00	5.30	
Toluene*	<0.050	0.050	05/13/2025	ND	2.02	101	2.00	3.71	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.15	108	2.00	3.23	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.47	108	6.00	3.41	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	89.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	85.1	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

		CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #0	001	Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 6 (7.0') (H252846-10)

BTEX 8021B	mg	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/13/2025	ND	1.75	87.4	2.00	5.30	
Toluene*	<0.050	0.050	05/13/2025	ND	2.02	101	2.00	3.71	
Ethylbenzene*	<0.050	0.050	05/13/2025	ND	2.15	108	2.00	3.23	
Total Xylenes*	<0.150	0.150	05/13/2025	ND	6.47	108	6.00	3.41	
Total BTEX	<0.300	0.300	05/13/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: KH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	05/13/2025	ND	400	100	400	7.69	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	89.3	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	85.0	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	AS 31 MI	ARMONA RESOURCES SHTON THIELKE LO W WALL ST, SUITE 500 IDLAND TX, 79701 AX To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #00	1	Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 7 (7.0') (H252846-11)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/14/2025	ND	1.75	87.4	2.00	5.30	
Toluene*	<0.050	0.050	05/14/2025	ND	2.02	101	2.00	3.71	
Ethylbenzene*	<0.050	0.050	05/14/2025	ND	2.15	108	2.00	3.23	
Total Xylenes*	<0.150	0.150	05/14/2025	ND	6.47	108	6.00	3.41	
Total BTEX	<0.300	0.300	05/14/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	05/14/2025	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	85.8	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	84.0	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celez D. Keine

Celey D. Keene, Lab Director/Quality Manager

	ASH 310	MONA RESOURCES TON THIELKE W WALL ST, SUITE 500 LAND TX, 79701 To:		
Received:	05/13/2025		Sampling Date:	05/13/2025
Reported:	05/14/2025		Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001		Sampling Condition:	Cool & Intact
Project Number:	2410		Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM			

Sample ID: SW - 8 (7.0') (H252846-12)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/14/2025	ND	1.75	87.4	2.00	5.30	
Toluene*	<0.050	0.050	05/14/2025	ND	2.02	101	2.00	3.71	
Ethylbenzene*	<0.050	0.050	05/14/2025	ND	2.15	108	2.00	3.23	
Total Xylenes*	<0.150	0.150	05/14/2025	ND	6.47	108	6.00	3.41	
Total BTEX	<0.300	0.300	05/14/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	384	16.0	05/14/2025	ND	416	104	400	3.92	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/14/2025	ND	214	107	200	0.326	
DRO >C10-C28*	<10.0	10.0	05/14/2025	ND	202	101	200	0.605	
EXT DRO >C28-C36	<10.0	10.0	05/14/2025	ND					
Surrogate: 1-Chlorooctane	88.9	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	84.5	% 40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Celeg D. Keine

Celey D. Keene, Lab Director/Quality Manager

ULL Date/Time Relinquished
Please send results to cmoehring@carmonaresources.com and mcarmona
1 X X
C 1 X X X
C 1 X X X
C 1 X X X
C 1 X X X
C 1 X X X
C 1 X X X
C 1 X X X
C 1 X X X
Water Grab/ # of P
Н 80
B
TEX
802 O +
DRO
24 hr.
Code Code
Turn Around
ThielkeA@Carmonaresources.com
City, State ZIP:
Address:
Company Name:
Bill to: (if different) Carmona Resources

Page 15 of 16

Work Order No: Hasas

Chain of Custody

													ã	1				100				-	-	-	-	-		1	~ 1	2	0	T
3	1 And	Relinquished by: (Signature)											SW-8 (7.0')	SW-7 (7.0)	2	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	Ony, Owner Lin .	e ZIP-			Project Manager:
	ſ	y: (Signature)											(7.0')	(7.0')		ntification		Yes	Yes	Yes				Edd		CONOCO	432-813-8988		Midland, TX 79701	310 West Wall Ste. 500	Carmona Resources	Ashton Thielke
	M	/											5/13/2025	5/13/2025		Date	1	NO NIA	NO NIA	No	Temp Blank:		JDC	Eddy Co, NM	2410	CONOCO FEDERAL #001			01	Ste. 500	Irces	
	MON	Received			Please s											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No Wet Ice:			D	-	001						
	MIL	Received by: (Signature			end results								>	< >	<	Soil	emperature:	e Reading:	actor:	er ID:	Wet Ice:	lab, it rece	TAT starts the	Due Date:	Routine	Turn	CINdii.	E mail.				
1	W Contraction	nite) / /			Please send results to cmoehring@carmonaresources.com and mcarmona											Water c	5.7	5.4	tui	04/4	Yes No	ived by 4.3upm	TAT starts the day received by the	24 hr.	I Rush	Turn Around		ThielkeAm	City, State ZIP:	Address:	Company Name:	Bill to: (if different)
	S				ring@car	-	-	-					C	+	1	Grab/ # Comp Cc	h 1	0	<u>, </u>	Para	P	-	y the		Code	0	Calificitat	Carmonar	P:		Ime:	ent)
	13-20	Date			monares	-	-	-					>	+	1 X	# of Cont		E		X 80					de ?	•		PSUILLES				Carm
	1	Date/Time			ources								>	< >	×	тр	H 80)15M	I (G	RO -	DR	0 + I	MRO))			10010	com				Carmona Resources
4	222				.com a		+	-					>	< >	×			С	hlo	ride	45 00				-							ources
		Relinq			nd mca	\vdash	-	+	-	\vdash	\vdash	$\left \right $	+	+	-										+							
		Relinquished			rmona		t														1					ANAL						
		by: (Signature)			@carmonaresources.com								_	-											-	SISA						
		nature)			onares		+	+	+	\vdash	\vdash		+	+	_										+	YSIS REQUEST		Deli	Rep	Stat	Pro	
\vdash	+				ources	$\left \right $	+	+	+	\vdash	\vdash		+	+	-										\dagger	T		Deliverables: EDD	Reporting:Level II Level III	State of Project:	Program: UST/PST PRP	
		Rece			.com		T																					EDD	evel II	oject:	ST/PST	
		Received by: (Signature)					-	-			-			_	_										+	_			Level	,	PRP	Work
		: (Sign:				\parallel	+	+	1	-	╞		-	+	_				_	HOL					+	-		ADa				Order
		ature)														Sam	NACHTAS			NarSoo- NaSO-	1	112004-112		Cool: Cool	None: NO	Prese	,	ADaPT 0			rownfields	Work Order Comments
		Date/Time														Sample Comments		ZIT ACEIAIETINAON. ZIT	LNAOH- 7n	aSO,	ADIC		NaOH- Na	MeOH: Me	. UI Wat	Preservative Lodes		Other:			₹C {_perfund	
		ime														nts	-					INC		Me	UI Water: H ₂ U	sat					und	
1	1	1000423	111			11						1		1													_	-	_	_	_	_

Chain of Custody

Work Order No: Has 284

0

Page 16 of 16

May 16, 2025

ASHTON THIELKE CARMONA RESOURCES 310 W WALL ST, SUITE 500 MIDLAND, TX 79701

RE: CONOCO FEDERAL #001

Enclosed are the results of analyses for samples received by the laboratory on 05/14/25 14:07.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/qa/lab_accred_certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2	Haloacetic Acids (HAA-5)
Method EPA 524.2	Total Trihalomethanes (TTHM)
Method EPA 524.4	Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Whe Singh

Mike Snyder For Celey D. Keene Lab Director/Quality Manager

CARMONA RESOURCES ASHTON THIELKE 310 W WALL ST, SUITE 500 MIDLAND TX, 79701 Fax To:

Received:	05/14/2025	Sampling Date:	05/14/2025
Reported:	05/16/2025	Sampling Type:	Soil
Project Name:	CONOCO FEDERAL #001	Sampling Condition:	Cool & Intact
Project Number:	2410	Sample Received By:	Tamara Oldaker
Project Location:	EDDY CO, NM		

Sample ID: BACKFILL SAMPLE (H252896-01)

BTEX 8021B	mg/	′kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	05/16/2025	ND	1.90	94.8	2.00	4.17	
Toluene*	<0.050	0.050	05/16/2025	ND	1.97	98.4	2.00	4.97	
Ethylbenzene*	<0.050	0.050	05/16/2025	ND	1.94	97.0	2.00	5.21	
Total Xylenes*	<0.150	0.150	05/16/2025	ND	5.98	99.7	6.00	4.78	
Total BTEX	<0.300	0.300	05/16/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	115 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	′kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	05/15/2025	ND	416	104	400	3.92	
TPH 8015M	mg/	′kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	05/15/2025	ND	178	88.9	200	6.62	
DRO >C10-C28*	<10.0	10.0	05/15/2025	ND	172	85.8	200	7.07	
EXT DRO >C28-C36	<10.0	10.0	05/15/2025	ND					
Surrogate: 1-Chlorooctane	94.6	% 44.4-14	5						
Surrogate: 1-Chlorooctadecane	100	40.6-15	3						

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Notes and Definitions

QR-03	The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch accepted based on LCS and/or LCSD recovery and/or RPD values.
QM-07	The spike recovery was outside acceptance limits for the MS and/or MSD. The batch was accepted based on acceptable LCS recovery.
ND	Analyte NOT DETECTED at or above the reporting limit
RPD	Relative Percent Difference
**	Samples not received at proper temperature of 6°C or below.
***	Insufficient time to reach temperature.
-	Chloride by SM4500CI-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories

*=Accredited Analyte

Mite Sugar

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Received	by 0	CD - S	/22/26	25	7:3	7;58	AM	1	ГТ	-		-					_												Pag
-	Long by lo	Relinquished by: 10						-	1.0			Rackfill Ca	Sample Identification	I otal Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO#	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:	Address:	Company Name:	Project Manager:	
	(ainipiidini)											mplo	ification		Yes	Yes					Ed		CONOCO	432-813-8988	Midland, TX 79701	310 West Wall Ste. 500	Carmona Resources	Ashton Thielke	
	Re			P							5/14/2025		Date	0	NIA	No NIA	ō	10		RP	Eddy Co, NM	2410	CONOCO FEDERAL #001		9701	II Ste. 500	ources	æ	
the CC	Received by: (Signature)			Please send results to cmoehring@carmonaresources com and more					-				Time S	Corrected Temperature:	Temperature Reading:	Correction Factor:		Yes No We		TAT	Due Date:		001						
Carry	gnature)			sults to cm							×				ading:	-	t l	Wet Ice:	ab, if received	starts the day		Routine	Turn Ar	Email: Th	Ci	Ac	C	B	
				10ehring@c			3				Comp	Comp	Water Grab/	2.71	3.42	40.35		Yes No	lab, if received by 4:30pm	received by the	Normal	Rush 4 10	Turn Around	ThielkeA@Carmonaresources.com	City, State ZIP:	Address:	Company Name	Bill to: (if different)	
2-41-0				armonare							-		# of			Par	rarn	eters		-	Code	Pres.	*	rmonareso			ë	•	
shi/s	Date/Time			SOURCAS						-	×		трн а	8015	BTE	_			MR	0)	+	_		JICES. COL				Carmona Resources	
6 4 2					_	_					×	_		(Chlo	ride	430	00						3				Resource	
	Relinquished by: (Signature)								$\left \right $	+	$\left \right $	-							_		+						6	P	
	hed by: (Tona@ca		-																	ANAL							
	Signatur		nona@carmonaresources.com					-			-									_	-	ANALYSIS REQUEST							
	e)		esource		-							_					ł					QUEST		Delive	State	Progr			
	Received by: (Signature)		is.com													_									State of Project:	Program: UST/PST PRP	×		Work
	Signatur						-		-	$\left \right $	+				но	LD							AD				Work Order Comments		Work Order No:
	e)											'n	NaOH+	Zn Ace			H ₃ PO ₄ : HP	H ₂ SO ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	-	ADaPT 🗆	LPST/UST		ownfield	er Comn		No:
	Da										ampio o	ample	+Ascorbic	Zn Acetate+NaOH: Zn	Na2S2O3: NaSO3	NaHSO4: NABIS	HP	H ₂	E C	Cool	NO	reserva	Other:	TRRP		Brownfields RRC	nents	Page	- 125
	Date/Time												NaOH+Ascorbic Acid: SAPC)H: Zn	ω			NaOH: Na	HNO ² : HN	MDOH-	DI Water H-O	Preservative Codes				uperfund		1 of	286
											8		c					Na		Mo	H-D	es				rfund		 	240

Page 139 of 147

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 140 of 147

QUESTIONS

Action 466167

QUESTION	NS
Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

nPRS0502344803
NPRS0502344803 CONOCO FEDERAL #001 @ 30-025-34958
Oil Release
Remediation Closure Report Received
[30-025-34958] CONOCO FEDERAL #001

Location of Release Source

Please answer all the	questions in this group.
-----------------------	--------------------------

Site Name	CONOCO FEDERAL #001							
Date Release Discovered	12/28/2004							
Surface Owner	Federal							

Incident Details

Please answer all the questions in this group.								
Incident Type	Oil Release							
Did this release result in a fire or is the result of a fire	No							
Did this release result in any injuries	No							
Has this release reached or does it have a reasonable probability of reaching a watercourse	No							
Has this release endangered or does it have a reasonable probability of endangering public health	Νο							
Has this release substantially damaged or will it substantially damage property or the environment	Νο							
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No							

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Cause: Human Error Production Tank Crude Oil Released: 100 BBL Recovered: 0 BBL Lost: 100 BBL.	
Produced Water Released (bbls) Details	Not answered.	
Is the concentration of chloride in the produced water >10,000 mg/l	Not answered.	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

Action Type:

Page 141 of 147

QUESTIONS, Page 2

Action 466167

QUESTIONS (continued)	
CHEVRON U S A INC	OGRID: 4323
6301 Deauville Blvd Midland, TX 79706	Action Number: 466167

QUESTIONS

Operator:

No, according to supplied volumes this does not appear to be a "gas only" report.	
Yes	
From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.	
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.	

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
actions to date in the follow-up C-141 submission. If remedial efforts have been successfully complete	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of	
Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure e	valuation in the follow-up C-141 submission.	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com Date: 05/22/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:	
A continuously flowing watercourse or any other significant watercourse Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between ½ and 1 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between ½ and 1 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Greater than 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Greater than 5 (mi.)
Categorize the risk of this well / site being in a karst geology	Low
A 100-year floodplain	Greater than 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination as	sociated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each, in millig	rams per kilograms.)
Chloride (EPA 300.0 or SM4500 Cl B)	1050
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	257
GRO+DRO (EPA SW-846 Method 8015M)	257
BTEX (EPA SW-846 Method 8021B or 8260B)	0
Benzene (EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efi which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
On what estimated date will the remediation commence	05/12/2025
On what date will (or did) the final sampling or liner inspection occur	05/12/2025
On what date will (or was) the remediation complete(d)	05/15/2025
What is the estimated surface area (in square feet) that will be reclaimed	544
What is the estimated volume (in cubic yards) that will be reclaimed	0
What is the estimated surface area (in square feet) that will be remediated	544
What is the estimated volume (in cubic yards) that will be remediated	132
These estimated dates and measurements are recognized to be the best guess or calculation at the tir	ne of submission and may (be) change(d) over time as more remediation efforts are completed.

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 6/4/2025 4:25:51 PM

QUESTIONS, Page 3

Action 466167

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page	143	of	147

QUESTIONS, Page 4

Action 466167

QUESTIONS (continued)	
Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)

Remediation Plan (continued)	
Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process) Not answered.	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	nowledge and understand that pursuant to OCD rules and regulations all operators are required uses which may endanger public health or the environment. The acceptance of a C-141 report by idequately investigate and remediate contamination that pose a threat to groundwater, surface to does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Amy Barnhill Title: Waste & Water Specialist Email: ABarnhill@chevron.com

Date: 05/22/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 466167

Page 144 of 147

QUESTIONS (continued)	
Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTION	s
----------	---

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	Νο

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	458477
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	05/08/2025
What was the (estimated) number of samples that were to be gathered	14
What was the sampling surface area in square feet	1200

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all r	remediation steps have been completed.
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	544
What was the total volume (cubic yards) remediated	132
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	"Site assessment completed and excavated areas that exceeded set in Table 1 of NMAC 19.15.29.12/13. Backfilled with clean backfill(lab confirmed). Per Chevron safety requirments, added pea gravel to the surface to reduce the possibility of slips trips and falls. Will reclaim/reseed the entire pad during P/A activities".
	closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of
o report and/or file certain release notifications and perform corrective actions for relea he OCD does not relieve the operator of liability should their operations have failed to vater, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface rt does not relieve the operator of responsibility for compliance with any other federal, state, or tially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete.
	Name: Amy Barnhill

	Date: 05/22/2025
I hereby agree and sign off to the above statement	Title: Waste & Water Specialist Email: ABarnhill@chevron.com
	Name. Any Damini

Action 466167

Page 145 of 147

Released to Imaging: 6/4/2025 4:25:51 PM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:	
CHEVRON U S A INC	4323	
6301 Deauville Blvd	Action Number:	
Midland, TX 79706	466167	
	Action Type:	
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)	
OUESTIONS		

QUESTIONS

Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a reclamation approval with this submission	No	

QUESTIONS, Page 7

Action 466167

Page 146 of 147

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources D. . . ~ ~ 41.0 Santa Fe, NM 87505

Oil Conservation Division	
1220 S. St Francis Dr.	

CONDITIONS

Operator:	OGRID:
CHEVRON U S A INC	4323
6301 Deauville Blvd	Action Number:
Midland, TX 79706	466167
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Created By	Condition	Condition Date
scwells	Remediation closure approved. Operator failed to provide proper Sampling Notification pursuant to 19.15.29.12.D.(1).(a) NMAC. Failure to provide proper sampling notice is a compliance issue and the OCD may pursue compliance actions pursuant to 19.15.5 NMAC. Operator shall ensure future compliance with 19.15.29.12.D.(1).(a) NMAC.	6/4/2025

Action 466167