

SITE INFORMATION

Deferral Report Tatanka Federal Com 4H CTB (03.20.2025) Incident ID: NAPP2507941450 Lea County, New Mexico Unit P Sec 11 T26S R35E 32.051152°, -103.331175°

Point of Release: 3" carbon steel nipple on a 3" 90° fitting corroded. Release Date: 03.20.2025 Volume Released: 344 Barrels of Produced Water Volume Recovered: 344 Barrels of Produced Water

Prepared for: Coterra Energy Operating Co. 6001 Deauville Blvd. Suite 300N Midland, Texas 79706

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

> 310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES & DEFERRAL

5.0 CONCLUSIONS

FIGURES

FIGURE 1	OVERVIEW	FIGURE 2	TOPOGRAPHIC
FIGURE 3	SAMPLE LOCATION	FIGURE 4	DEFERRAL AREA

APPENDICES

- APPENDIX B PHOTOS
- APPENDIX C NMOCD CORRESPONDENCE
- APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER
- APPENDIX E LABORATORY REPORTS

April 23, 2025

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Deferral Report Tatanka Federal Com 4H CTB (03.20.2025) Incident ID: NAPP2507941450 Coterra Energy Operating Co. Site Location: Unit P, S11, T26S, R35E (Lat 32.051152°, Long -103.331175°) Lea County, New Mexico

Mr. Bratcher:

On behalf of Coterra Energy Operating Co. (Coterra, formerly known as Franklin Mountain Energy, LLC), Carmona Resources, LLC has prepared this letter to document the site assessment activities for the Tatanka Federal Com 4H CTB release. The site is located at 32.051152°, -103.331175° within Unit P, S11, T26S, R35E, in Lea County, New Mexico (Figures 1 and 2).

1.0 Site Information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on March 20, 2025, due to a three-inch carbon steel nipple on a three-inch 90 ° fitting had corroded. It resulted in approximately three hundred forty-four (344) barrels of produced water being released inside the lined containment, with approximately three hundred forty-four (344) barrels of produced water recovered. The spill boundaries are shown in Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a low karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there are no known water sources within a 0.50-mile radius of the location. The nearest identified well is approximately 1.20 miles East of the site in S13, T26S, R35E, and was drilled in 1986. The well has a reported depth to groundwater of 242.44 feet below the ground surface (ft bgs). A copy of the associated Summary Report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing and remediating the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities & Deferral

Liner Inspection

Before conducting the liner inspection, a crew was onsite to remove all freestanding fluids within the lined facility. On March 24, 2024, a third-party environmental company conducted liner inspection activities to assess the liner's integrity within the lined facility and noted four (4) tears within the liner (identified as BH-1 through BH-4). See Figure 3 for liner tear locations.

Initial Assessment

On April 15, 2025, Carmona Resources, LLC performed site assessment activities to evaluate soil impact stemming from the release. To assess the vertical and horizontal extent, four (4) borehole samples (BH-1 through BH-4) and nine (9) horizontal sample points (H-1 through H-9) were advanced to depths ranging from the surface to 5.0 feet below ground surface (ft bgs) inside and surrounding the lined facility. BH-1 through BH-4 were sampled through the "tears" that were noticed in the liner. Following the sampling through those "tears", patches were installed on the liner to prevent future releases from leaking under the containment. See Figure 3 for the sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and Chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Vertical Delineation

Vertical delineation was achieved in all borehole samples for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1. Sample locations are shown in Figure 3.

Horizontal Delineation

Horizontal delineation was achieved in all samples for Benzene, total BTEX, TPH, and Chloride concentrations. Refer to Table 1. Sample locations are shown in Figure 3.

Deferment

The CTB will be deferred per NMAC 19.15.29.12.C.2. To remove all contaminated material, major facility deconstruction would have to take place. Approximately 2,665 square feet, 201 cubic yards of contamination were left in place under the tank battery. Refer to Table 1 and Figure 4.

5.0 Conclusions

Based on the area, safety, and active facility equipment, Coterra requests to defer the chloride impact within the containment of the CTB. Remediation of the deferred area will be completed during plugging and abandonment activities or when equipment is removed, whichever comes first. If you have any questions regarding this report or need additional information, please contact us at 432-813-1992.

Sincerely, Carmona Resources, LLC

Ashton Thielke Environmental Manager

2 HE

Gilbert Priego Project Manager

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

APPENDIX A

.

Table 1 Coterra Energy Operating Co. Tatanka Federal Com 4H CTB (03.20.2025) Lea County, New Mexico

Commis ID	Dete	Domth (ft)		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
	4/15/2025	0-0.5'	<50.2	<50.2	<50.2	<50.2	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	788
BH-1	"	1.0'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	153
DU-1	"	2.0'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	202
	"	3.0'	<50.3	<50.3	<50.3	<50.3	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	109
	4/15/2025	0-0.5'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	273
	"	1.0'	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	213
BH-2	"	2.0'	<50.4	<50.4	<50.4	<50.4	<0.00202	<0.00202	<0.00202	<0.00403	< 0.00403	117
	"	3.0'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	245
	4/15/2025	0-0.5'	<50.3	<50.3	<50.3	<50.3	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	831
	"	1.0'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	5,850
BH-3	"	2.0'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	347
	"	3.0'	<50.3	<50.3	<50.3	<50.3	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	163
	"	4.0'	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	121
	4/15/2025	0-0.5'	<50.4	<50.4	<50.4	<50.4	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	341
	"	1.0'	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	997
DU 4	"	2.0'	<49.9	<49.9	<49.9	<49.9	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	1,630
BH-4	"	3.0'	<50.3	<50.3	<50.3	<50.3	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	360
	"	4.0'	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	168
	"	5.0'	<50.3	<50.3	<50.3	<50.3	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	150
	ory Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

^A – Table 1 - 19.15.29 NMAC

mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(BH) - Borehole Sample

Deferral Area

Table 1 Coterra Energy Operating Co. Tatanka Federal Com 4H CTB (03.20.2025) Lea County, New Mexico

Occurs to UD	Data	Dentile (ft)		TPH	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	BTEX (mg/kg)	(mg/kg)
H-1	4/15/2025	0-0.5'	<50.2	<50.2	<50.2	<50.2	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	66.8
H-2	4/15/2025	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	51.9
H-3	4/15/2025	0-0.5'	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	107
H-4	4/15/2025	0-0.5'	<50.4	<50.4	<50.4	<50.4	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	87.0
H-5	4/15/2025	0-0.5'	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	76.1
H-6	4/15/2025	0-0.5'	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	81.1
H-7	4/15/2025	0-0.5'	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	76.5
H-8	4/15/2025	0-0.5'	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	62.7
H-9	4/15/2025	0-0.5'	<50.5	<50.5	<50.5	<50.5	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	154
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram

TPH - Total Petroleum Hydrocarbons

ft - feet

(H) - Horizontal Sample

APPENDIX B

PHOTOGRAPHIC LOG

Coterra Energy Operating Co.

Photograph No. 1

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description:

View Northeast, area of BH-1 and BH-2.

Photograph No. 2

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description: View South, area of BH-1.

Photograph No. 3

Facility:	Tatanka Federal Com 4H CTB (03.20.2025)

County: Lea County, New Mexico

Description:

View Northeast, area of BH-2.

PHOTOGRAPHIC LOG

Coterra Energy Operating Co.

Photograph No. 4

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description: View Southeast, area of BH-3.

Photograph No. 5

Facility:	Tatanka Federal Com 4H CTB (03.20.2025)
County:	Lea County, New Mexico

Description:

View West, area of BH-3.

Photograph No. 6

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description:

View Northeast, area of BH-4.

PHOTOGRAPHIC LOG

Coterra Energy Operating Co.

Photograph No. 7

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description:

View Southeast, area of BH-4.

Photograph No. 8

Facility:	Tatanka Federal Com 4H CTB (03.20.2025)	
County:	Lea County, New Mexico	

Description:

View South, area of lined facility.

Photograph No. 9

Facility:	Tatanka Federal Com 4H CTB
	(03.20.2025)

County: Lea County, New Mexico

Description:

View Southwest, area of lined facility.

APPENDIX C

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444202
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

Location of Release Source		
Please answer all the questions in this group.		
Site Name	Tatanka Federal Com 4H CTB	
Date Release Discovered	03/20/2025	
Surface Owner	Federal	

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	Νο
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission. Crude Oil Released (bbls) Details Not answered. Produced Water Released (bbls) Details Cause: Corrosion Fitting Produced Water Released: 344 BBL Recovered: 344 BBL Lost: 0 BBL.	
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	The Lease Operator arrived on location this morning and found fluid accumulated inside the lined containment. Further investigation revealed that a 3" carbon steel nipple on a 3" 90° fitting had corroded. The nipple was on a bypass line on the discharge side of the water transfer pump, which allowed fluids from the water tank to drain into the containment area. An estimated 344 barrels produced water was released into the lined containment. The containment was not equipped with a berm kill switch, and an issue with the facility comm's prevented an alarm from being sent. Vac trucks have recovered all fluids from the lined containment and the containment is scheduled to be washed. A liner inspection will be scheduled in the coming days.

QUESTIONS

Action 444202

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444202
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

QUESTIONS

.

Nature and volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	. gas only) are to be submitted on the C-129 form.

Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	tion immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of

actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see 19.15.29.11(A)(5)(a) NMAC), pl and attach all information needed for closure evaluation in the follow-up C-141 submission.

Page 19eof 126

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

ACKNOWLEDGMENTS

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000 Denver, CO 80206	Action Number: 444202
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

ACKNOWLEDGMENTS

2	I acknowledge that I am authorized to submit notification of a release on behalf of my operator.		
<u>v</u>	I acknowledge that upon submitting this application, I will be creating a new incident file (assigned to my operator) to track the notification(s) and corrective action(s) for a release, pursuant to NMAC 19.15.29.		
V	l acknowledge that creating a new incident file will require my operator to file subsequent submission(s) of form "C-141, Application for administrative approval of a release notification and corrective action", pursuant to NMAC 19.15.29.		
2	I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment.		
2	I acknowledge the fact that the acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment.		
V	I acknowledge the fact that, in addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		

ACKNOWLEDGMENTS

Action 444202

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444202
	Action Type:
	[NOTIFY] Notification Of Release (NOR)

CONDITIONS		
Create By	d Condition	Condition Date
lluig	When submitting future reports regarding this release, please submit the calculations used or specific justification for the volumes reported on the initial C-141.	3/20/2025

CONDITIONS

Action 444202

FRANKLIN MOUNTAIN ENERGY TATANKA FEDERAL COM 4H LEA, NM

FRANKLIN MOUNTAIN ENERGY TATANKA FEDERAL COM 4H LEA, NM

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Page 25cof 126

Action 444295

QUESTIONS

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444295
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Prerequisites	
nAPP2507941450	
NAPP2507941450 TATANKA FEDERAL COM 4H CTB @ 0	
Produced Water Release	
Initial C-141 Received	
N	

Location of Release Source

Please answer all the questions in this group.	
Site Name	Tatanka Federal Com 4H CTB
Date Release Discovered	03/20/2025
Surface Owner	Federal

Incident Details

Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο	

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Fitting Produced Water Released: 344 BBL Recovered: 344 BBL Lost: 0 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	The Lease Operator arrived on location this morning and found fluid accumulated inside the lined containment. Further investigation revealed that a 3" carbon steel nipple on a 3" 90° fitting had corroded. The nipple was on a bypass line on the discharge side of the water transfer pump, which allowed fluids from the water tank to drain into the containment area. An estimated 344 barrels produced water was released into the lined containment. The containment was not equipped with a berm kill switch, and an issue with the facility comm's prevented an alarm from being sent. Vac trucks have recovered all fluids from the lined containment and the containment is scheduled to be washed. A liner inspection will be scheduled in the coming days.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 444295

Page 26cof 126

QUESTIONS (continued)

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444295
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

	Nature and Volume of Release (continued)	
	Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
ſ	Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
	Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
	With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a safety hazard that would result in injury.		
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
	Not answered. ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-un C-141 submission	
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com Date: 03/20/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444295
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.
What method was used to determine the depth to ground water	Not answered.
Did this release impact groundwater or surface water	Not answered.
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Not answered.
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.
An occupied permanent residence, school, hospital, institution, or church	Not answered.
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.
Any other fresh water well or spring	Not answered.
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.
A wetland	Not answered.
A subsurface mine	Not answered.
An (non-karst) unstable area	Not answered.
Categorize the risk of this well / site being in a karst geology	Not answered.
A 100-year floodplain	Not answered.
Did the release impact areas not on an exploration, development, production, or storage site	Not answered.

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

Requesting a remediation plan approval with this submission

No The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

QUESTIONS, Page 3

Action 444295

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:
Franklin Mountain Energy LLC	373910
44 Cook Street, Suite 1000	Action Number:
Denver, CO 80206	444295
	Action Type:
	[C-141] Initial C-141 (C-141-v-Initial)
CONDITIONS	

-	Condition	Condition
By		Date
nvelez	None	3/20/2025

Action 444295

APPENDIX D

Gratanka Federal Com 4H CTB (03.20.2025)

Bee

Fri.

242.44' - Drilled 1986

Google Earth Released to Imaging: 6/30/2025 2:51:16 PM

LegendPage 30 of 126 0.50 Mile Radius1.20 Miles1.49 Miles2.63 Miles2.63 MilesNMSEO Water WellTatanka Federal Com 4H CTB (03.20.2025)USGS Water Well

1 mi

N

205 . 44

Received by OCD: 4/24/2025 9:39:31 AM LOW KAIST

Coterra Energy Operating

Gatanka Federal Com 4H CTB (03.20.2025)

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in (R=POD has the POD suffix indicates been the POD has been replaced, O=orphaned, replaced & а

the POD has been replaced & no longer serves a water right file.)	C=the file is closed)		(quarters are smallest to largest)							(meters) (In feet))				
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Distance	Well Depth		Water Column
<u>J 00005 POD1</u>		J	LE	NE	NE	NE	13	26S	35E	659200.0	3547174.0 *		1655	601	230	371
<u>J 00001</u>	R	J	LE	NW	NW	SW	18	26S	36E	659416.0	3546374.0 *	۲	2092	550	253	297
<u>J 00001 POD3</u>		J	LE	NW	NW	SW	18	26S	36E	659416.0	3546374.0 *	۲	2092	550	253	297
<u>J 00042 POD1</u>		J	LE	SW	NW	SW	18	26S	36E	659506.6	3546134.1	۲	2288	710	270	440
<u>CP 01170 POD1</u>		СР	LE	SW	SW	SW	06	26S	36E	659281.6	3548984.5		2399	500	280	220
<u>CP 01170 POD1</u>	С	СР	LE	SW	SW	SW	06	26S	36E	659281.6	3548984.5		2399	500	280	220
<u>J 00041 POD1</u>		J	LE	NW	NW	NW	19	26N	36E	659404.2	3545621.4		2515		270	
<u>J 00045 POD1</u>	R	J	LE	SE	SW	SW	18	26S	36E	659721.0	3545837.0		2630	730	270	460
<u>CP 01267 POD1</u>		СР	LE	SW	SE	SW	06	26S	36E	659759.1	3548807.1		2660	585	200	385
<u>J 00002 X2</u>		J	LE		SE	SW	18	26S	36E	659929.0	3545879.0 *		2782	650	214	436
<u>J 00063 POD1</u>		J	LE	SE	NW	NW	19	26S	36E	659644.8	3545270.6		2931	705	268	437
<u>J 00002 X3</u>		J	LE	NE	SW	NW	19	26S	36E	659642.9	3545257.4		2939	710	216	494
<u>J 00043 POD1</u>		J	LE	NW	NW	NE	19	26S	36E	660221.2	3545607.4		3173			
<u>C 03795 POD1</u>		С	LE	SE	SE	SW	24	26S	35E	658419.2	3544221.2		3221	496	250	246
<u>J 00001 POD5</u>		J	LE	NE	SE	NW	19	26S	36E	660099.0	3545187.0		3324		260	
<u>J 00001 POD4</u>		J	LE	NW	SW	NE	19	26S	36E	660244.0	3545180.0 *		3441	640	250	390
<u>J 00001 X</u>		J	LE	NW	SW	NE	19	26S	36E	660244.0	3545180.0 *		3441	640	250	390
<u>CP 01263 POD3</u>		СР	LE	SE	NW	SW	06	26S	36E	660038.4	3549729.4		3460	516	240	276
<u>CP 01351 POD1</u>		СР	LE	SE	SE	SE	06	26S	36E	660854.8	3549021.5		3714	600	267	333
<u>CP 01285 POD1</u>		СР	LE	SE	SW	SW	05	26S	36E	661070.4	3548991.0		3894	511	250	261

Average Depth to Water: 251 feet

Minimum Depth: 200 feet

Maximum Depth: 280 feet

Record Count: 20

<u>UTM Filters (in meters):</u> Easting: 657551.00 Northing: 3547323.00 **Radius:** 4000

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

April 21, 2025 07:13 AM MST

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface USGS Water Resources

Data Category: Groundwater New Mexico ✓ GO

Click to hideNews Bulletins

• Explore the NEW USGS National Water Dashboard interactive map to access real-time water data from over 13,500 stations nationwide.

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320245103184201

Minimum number of levels = 1 Save file of selected sites to local disk for future upload

USGS 320245103184201 26S.35E.13.22222

Lea County, New Mexico Latitude 32°02'45", Longitude 103°18'42" NAD27 Land-surface elevation 2,983 feet above NAVD88 The depth of the well is 601 feet below land surface. This well is completed in the Other aquifers (N9999OTHER) national aquifer. This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer. **Output formats**

Table of data Tab-separated data Graph of data Reselect period

Date	Time	? Water- level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
1970-12-02		D	62610		2752.95	NGVD29	1	Z			А
1970-12-02		D	62611		2754.37	NAVD88	1	Z			А
1970-12-02		D	72019	228.63			1	Z			А
1976-01-13		D	62610		2737.18	NGVD29	1	Z			А
1976-01-13		D	62611		2738.60	NAVD88	1	Z			А
1976-01-13		D	72019	244.40			1	Z			A
1981-03-19		D	62610		2739.27	NGVD29	1	Z			А
1981-03-19		D	62611		2740.69	NAVD88	1	Z			А
1981-03-19		D	72019	242.31			1	Z			А
1986-03-07		D	62610		2739.14	NGVD29	1	Z			А
1986-03-07		D	62611		2740.56	NAVD88	1	Z			А
1986-03-07		D	72019	242.44			1	Z			А

Explanation							
Section Code I		Description					
Water-level date-time accuracy	D	Date is accurate to the Day					
Parameter code	62610	Groundwater level above NGVD 1929, feet					
Parameter code	62611	Groundwater level above NAVD 1988, feet					
Parameter code	72019	Depth to water level, feet below land surface					
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988					
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929					
Status	1	Static					
Method of measurement	Z	Other.					
Measuring agency		Not determined					
Source of measurement		Not determined					
Water-level approval status	А	Approved for publication Processing and review completed.					

Questions or Comments Help Data Tips Explanation of terms Subscribe for system changes

Accessibility FOIA Policies and Notices Privacy

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2025-04-21 09:22:29 EDT 0.39 0.28 nadww02

.

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER · .

www.ose.state.nm.us

Ē		POB NUMBER (WELL NUMBER)												
	GENERAL AND WERLLOCATION			1170.	Pod 1	1	<u>LP1170</u> (CP-1194)							
ł	E S	WELL,	OWNER NA	ME(S)		· Expl.	· ·	PHONE	DITIONAL)		21194			
	3	Brod Bockhann PHONE (OPTIONAL) WELLOWNER MAILING ADDRESS 1-575-390.												
		<i>P.</i> /	2. <i>B</i>	54 82	13		•	1-575-390-2076 STATE JAL N. M-885208;						
	ĝſ	V	VRLL	The second second second	DEGREES	MINUTES SP	CONDS	Tal		<u>N. M</u>	8853082			
	3		ATION	LATITUDE	32		7.2 N	* ACCURACY REQUIRED: ONE TENTH OF A SECOND						
	۴L	(FRC	M OPS)	LONGITUDE	03		.3 W		REQUIRED: WOS #4		•			
	8	DESC	UPTION REL	ATING WELL LOCAT	ION TO STREET ADDRI	ESS AND COMMON LANT	MARKS	I						
Γ	Τ	(2.5	ACRE	(IOACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP		NOE			
			1/4	. 14	%	<u> </u>	06	, 1	26		TENET			
(BTTOWAY		UBDAY	ISION NAM	- 2			BER BLOCK NUMBER UN							
8		MOROC	JRAPHIC SU	RVEY			4							
									MAPNUMBER	TR	ACTNUMBER			
	L.	CENSE	NUMBER	NAMB OF LICE	NSED DRILLER	-		C Part 17	NAMEORWEIT	RU & DIG COL (HAN)				
	WO 1682 JOHN NOIVIES									Lound	Colles Co			
-	ORILLING STARTED DRILLING ENDED DEPTH OF COMPLETED WELL (FT) · RORE HOLE DEPTH (PT) DEPTH WATER FIRST ENCOUNT										CITING CL			
ğ	10-21-13 11-11-13 500 500 330									3/3	V			
UMCA.)	COMPLETED WELL IS: ARTESIAN DRY HOLE ASIALLOW (UNCONFINED)									· · ·				
10ž	DR	ILL.INC	FLUID:	AIR	Хміл	ADDITIVES-SPE				<u> 70</u>				
A DRULLING DEPORMATION	DR	DRILLING METHOD: ROTARY HANDLER CABLE TOOL OTHER-SPECIFY:												
สาท			TH (FT)	BORE HOLE	C/	CASING CONNECTION			INSTRE DIA	INSIDE DIA. CASING WALL				
DRU	FR	MOM	10	DIA. (IN)		TERIAL	TYPE (C		CASING (IN)	THICKNESS (L SLOT N) SIZE (N)			
	Р	2	STO	18"	Step/		welo	ed.	12 "	250	10"			
-										[
						** *		<u> </u>	<u> </u>					
		DEPTH (FT) THICKNESS FORMATION DESCRIPTION OF PRINCIPAL WATER-BEARING STRATA												
RATA	FR	OM 0	TO			(INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES)								
ALLIK BEARING STRA		7	495	52		Static water 6001-260								
Ĭ	74		10	- ~~~		- prim	pizz	_fs_ll	plol 325					
3[\checkmark								
	· · :- · ·													
ן אַ				MATE YIELD OF WAT	TER-BEARING STRATA				TOTAL ESTIMATED	WELL YIELD (GPM)				
7	Tast fump 250 Ballo									last 1				
	FOR	OSE	NTERNAL	USE					· · · · · · · · · · · · · · · · · · ·					
Γ		NUM		2117	O (CP-119)	() POD NUMBER	1	auntusti /	TRN NUMBER	D&LOG (Version				
Ī	LOC	ATTO	v E	EX DI		JUS . 36E	1	-3-2	L	<u></u>	5 77 / 10F2			
	· · · · · · · · · · · · · · · · · · ·			the second s	and the second se		- XV							

Released to Imaging: 6/30/2025 2:51:16 PM

.

	TYPE OF PUMP:	SUBMERSIBLE	☐ JET ☐ NO FUMP-WELL NOT EQUIPPED								
		TURBINE	CYLINDER								
SEAL AND PUMP	•	DEPTH (FT)	BOREHOLE	AMOUNT (CUBIC FT)	METH PLACE						
<pre>X</pre>	ANNULAR	FROM TO	DIA. (IN)		2/2 415	14.30					
EN I	SEAL AND GRAVEL PACK	0 20'	18"	18" Connext 24 40							
S S	ORAYEL FACK					,	•				
	1		[]		1						
	DEPTH (FT)	THICKNESS	<u> </u>	COLOR AND TYPE OF MATERIAL ENCOUNT	ERED	WA3					
	FROM TO	(FT)	(INCL)	BEARING?							
}	011	7.7	Tool			T YES	NO				
		19:	1000	40	· · · · · · · · · · · · · · · · · · ·	T YES	M NO				
}	25 58	33-	Chu			TI YES	MINO				
		15'	Cald			□ YES	DO NO				
	68 73		Salar			🛛 YES	NO NO				
L 13	73 100	[CAY	1		T YES	NO				
LOG'OF WELL	100 190	90.	Grave			[] YES	DI NO				
0	190 205	15	CAY			L YES	DENO				
	205 260	55	GYAD	21		E1YES	DINO				
GEOLOGIC	260 330	70	CIFY		X YES						
1 2	330 420	90	Sach	E. GEADS/		CI YES	DUNO				
8	120 445	25	CIAY	-7	44 00 - 1	LI YES	DENO				
ر» ا	445 473	28	SAUL	stope		DAYES	DNO				
	473 495	22	Grap	<u>l</u>		U YES	E NO				
l	495 500	5	CIRI			TI YES					
			/	·		LI YES	DINO				
				·		U YES	DINO				
				EDED TO FULLY DESCRIBE THE GEOLOGIC	LOG OF THE WELL						
]											
		METHOD: MEALE	R KPUMP	AIRLIFT OTHER-SPECIFY;							
DIEO	WELL TEST	TEST RESULTS - ATTA	CHA COPY OF D	ATA COLLECTED DURING WELL TESTING	INCLUDING START TI DD	ME, END TI	ме, і				
Ţ	AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE THE THE TABLE										
Not	ADENTIONAL STATELOENTS OK EXCLANATIONS STATIC WATER SOULT 28										
7. TEST & ADDITION	Cast Barbar Woll ISAIL Violdark RD (50/1003 100 MUM										
R.	Test Sunt a vell will Vielded - 250 Gallows										
LS 1	alst yum plught will y ter										
1.1	Static water were de										
	THE UNDERSIGNED HEREBY CERTIFIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELLEF, THE FOREGOING IS A TRUE AND CORRECT RECORD OF THE ABOVE DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RECORD WITH THE STATE ENGINEER AND										
ыī	THE UNDERSIGN	ED HERREY CERTIFIES 7	HAT, TO THE BE	STOF HIS OR HER KNOWLEDGE AND BELL THAT HE OR SHE WILL FILE THIS WELL RI	CORD WITH THE STA	TE ENGENI	ier and				
N I	THE PERMIT HOL	DER WITHIN 20 DAYS A	FTER COMPLETE	ON OF WELL DRILLING:							
IN	/	when M	A Aug -	1)-9-17			1				
8. SIGNATERE	·	-0 V V	<u> </u>								
ත්	J	SIGNATURE OF DRUL	ER V	DATE							
			<u></u>								

	WELL RECORD & LOG (Version 5/908)
FOR OSE INTERNAL USE	TRNNUMBER 53358
FILENUMBER CP 1170 (CP-1190) POD NOVMAIN.	
IOCATION FXOL	-3-3 PAGE 2072

STATE OF NEW MEXICO OFFICE OF THE STATE ENGINEER

Scott Verhines, P.E. State Engineer

Devon Energy Scott Gregory, dba: GRR, Inc. 1108 W. Pierce Street Carlsbad, NM 88220 DISTRICT II 1900 WEST SECOND STREET ROSWELL, NEW MEXICO 88201 (575) 622-6521 (575) 623-8559 Fax

December 18, 2013

Greetings:

Returned herewith are three 72-12-1.3 applications received in this office on November 27, 2013. The three temporary permits were to Use Existing Well CP-1194 renumbered as CP-1170 POD1 as the Point of Diversion for oil well drilling purposes. Permit No. CP-1170 POD1 was approved on November 22, 2013, for the appropriation of 300 acre-feet per annum for purposes which include prospecting, mining or drilling operations. Therefore the 72-12-1.3 applications will not be considered until the full duty of the Water Right under OSE File No. CP-1170 POD 1 has been exercised.

If you are aggrieved by this decision and wish an opportunity to present evidence in support of this application, you may appeal the OSE's decision to the district court of the county in which the well is sited.

The filing fee on the above applications became earned upon receipt and cannot be refunded. If you have any questions, please do not hesitate to contact me at (575) 622-6521 ext. 129

Sincerely,

yan bi

Deborah Dunaway Water Rights Division Water Right Allocation Program

cc: Mike Stapleton

Received	bv (ØCD:	4/24/20	25 9:39:3	31 AM 2

ę

STATE ENGINEER OFFICE

NAME AND A

Page 38 of 126

Revised June 1972

SANTA EE

WELL RECORD

a marting

2 109 381

1.

Mah

Section 1. GENERAL INFORMATION

Street or	Post Office Ad	ty of Jal Idress <u>Dra</u> Jal	wer 34()			Owne	r's We	II No. <u>4</u>	······
Well was drilled	l under Permit	No. J-2			and	is locate	ed in the:	•		
							.265 Rar		36E	N.M.P.M.
b. Tract	No	of Map No.	÷	· · · · ·	of the	•	•			
c. Lot No Subdiv	o vision, recorded	of Block No d in	·	<u> </u>	of the County		· · · · ·			
							e System			
i			1 a				License No			
AddressP	O. Box	17728 F	El Paso,	, Texa	s 799	17), 		,	
Drilling Began .	9/4/80	Com	pleted9	/8/80	Тур	e tools .	Rotary	Si	ze of hole	25 ¹ 3in.
Elevation of lar	nd surface or	unknowr	1		at well is <u>u</u>	nkno	WN ft. Total depth	of we	n 710	ft.
Completed well	lis 🗖 🖾 s	n hallow □ a	rtesian.		Depth	to wat	er upon completion	of we	n 216	ft.
		- Sec	tion 2. PRIN	CIPAL W	ATER-BEA	RING	STRATA			
Depth From	in Feet	Thickness in Feet		Descriptio	n of Water-	Bearing	Formation	(Estimated Y allons per n	
227'	531'	3041	Sand			noole	s of Calich		300	•
618'	6961	78'		•	•				120	
		1.0			<u>y a de</u>	reak	s of Calich	e		
	-									
L	,	· ·	Sectio	- - 3 DEC	ORD OF C	SINC	· · · · · · ·	L	<u></u>]
Diameter	Pounds	Threads		in Feet	L	ength	Type of Sho		Perfor	ations
(inches)	per foot	per in.	Тор	Botto	om (feet)			From	<u> </u>
14"I.D	47.36	5/16W	+41	474"	4	70'	NONE		BLA	NK
14"I.D.	47.36	5/16W	4741	700'	2	26!	NONE		4741	700'
14"I.D	47.36	5/16W	7001	710'		10'	Steel Pl	ug	BLAI	NK
Depth	, in Feet	Secti Hole	on 4. RECO	· · · · · · · · · · · · · · · · · · ·	UDDING A Cubic F]
From	То	Diameter	of M	-	of Ceme		Metho	od of I	Placement	
0 '		32"			108		Gravity			
35'	710'	261	18	<u>e</u> :	NONE	• 1 - 1,	To Drill 2	6 <u>"</u> I	Iole	
							8		· · · · ·	
Plugging [:] Contra	i ,	,		n 5. PLU	GGING RE	CORD	JUN 12	STATE		
Address		· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·			No.	Depth in	Feer		bic Feet
Plugging Metho Date Well Plugg Plugging approv	ed				· · · · · · · · · · · · · · · · · · ·	- 1	**	Boit	om of	Cement
		State Eng	ineer Repress	entative		3	ت س	2		
				<u> </u>		4			·	
Date Received	October 2	7, 1980	FOR USE		TE ENGINE		LY FWL		FSI	
File No	2 -X-3						_ Location No26			

ι,

Released to Imaging: 6/30/2025 2:51:16 PM

Received by OCD: 4/24/2025 9:39:31 AM

Page 39 of 126

Depth i	n Feet	Thickness	Section 6. LOG OF HOLE
From	То	in Feet	Color and Type of Material Encountered
	10'	10'	Top Soil
10'	20'	10'	Caliche & Sandy Clay
201	301	10'	Sandy Clay some Caliche
-30'	621	321	Red Sand some Clay little Caliche
62'	831	21'	Light Sand some Clay (Sand Fine)
	•		
83'	2061	123'	Sandy Clay Reddish Brown Color, some Streaks
			of Caliche.
20(1	0071		
2061	2271	21'	Sand, Sandy ClayDrill Fast
227'	2481	21'	Sandy Clay, Streaks of Caliche
2481	531'	2831	Sand, Streaks of Clay & Caliche
531'	618'	871	Caliche (hard) some Streaks of Sand
618 .	6961	78.	Sandy Clay, Streaks of Sand & some Caliche
6961	710'	1141	Red Clay
710'	728'	18'	Hard Red Clay (dry)
	·		
		<u>├</u>	
	· · · · · · · · · · · · · · · · · · ·		
•	·····	{	
			······································
• • •	````	· ·	
	33	u D	
		tu.	
	<u>-</u>		
		NEW NEW	، در ا
		R OSVI	
. 1		STA	

Section 7. REMARKS AND ADDITIONAL INFORMATION

Perforations in Casing .065'---Roscoe Moss Company Gravel 1.5 to 1.7mm with Coefficient 1.1 to 1.3 Furnished by Fountain Sand and Gravel

Gravel Pack from +2' to 710' (96 Cubic Yds.)

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

James '

M Driller

170

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, exposed section 5, shall be answered as completely accurately as possible when any well is acrilled, repaired or deepened. When this toper-is used as a plugging record, only Section 1(a) and Section 5 need be completed. drilled, repaired or deepened. When the Released to Imaging: 6/30/2025 2:51:1

Received by OCD: 4/24/2025 9:39:31 AM

;

Page 40 of 126

---*:*{:

İ

anter and a second			•	·		/
. & partition			ROUTING S	SLIP		
	To: Field	d Supervisor	•	(Basir	a) or (County	y)Jal
	From:			Applic	cant City o	f Jal
	Land Loca	tion		•		
	Field Chee	ck Requested	For the Fol	llowing Rea	isons I	Date: 10-27-80
	Proof of H Declaration Extension Illegal IN Supplement Leakage Te Cementing Reduction Pressure 7	Seneficial (of Time rrigation tal Well (water-oil) from Irr. c Fest	of Works			
	Sec	T	R	Sec	T	
		,		<u> </u>		
			-			
- + -	┝╶┼╶┼	· + + ·	+ -	+ -	+ +	+ $+$ $+$ $+$
	┝╴╶┼╴─┼╴	++	+			+ + + -
 - +- −	+ $+$ $+$	+ +	+ -			+ + + +
		····	-+		· · · · · · · · · · · · · · · · · · ·	
		' 				
			+		++	
- + -	╞╴ _{╃╴╋}	· + + ·	+ -	- + -	- + +	+ $+$ $+$ $+$
· · ·	· · · · · · · · · · · · · · · · · · ·	P <u>ERMIT</u> FC	(plugged-ret)R-Center SW on and see it	āNE≵≕13-2(11ed in perm	itted area
	File No	J-2 - X	3	Locat	ion No. 26	15-13.23
		J-2-X-3	@ 26.36	.19,132	-2 Top	PO 120.3.4

Released to Imaging: 6/30/2025 2:51:16 PM

WR-36

Page 41 of 126

FIELD REPORT FOR CEMENTING OF WELLS

(

	Name of Well
	Driller's Name
	Drilling Method
	CASING DATA: Surfacefeet ofinch. Grade
	Inspected byon
	(Approved)(Rejected)
	Water stringfeet ofinch. Grade
	Inspected byon
	(Approved)(Rejected)
	Oil stringfeet ofinch. Grade
	Inspected byon
	(Approved)(Rejected)
	CEMENTING PROGRAM: Cemented bySupervised by
	Type of shoe usedFloat collar used
	Bottom three joints weldedCement: around shoesks
	around casingsksAdditives
	· · · · · · · · · · · · · · · · · · ·
	around casing
	Size of holeSize of casingsks. of cement required Plug pumped down(a.m.)(p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at feer
- · ·	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee
· · ·	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.)
· · ·	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by
· · ·	Size of hole
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.)
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.) Method used Supervised by REMARKS:
	Size of hole Size of casing sks. of cement required Plug pumped down (a.m.)(p.m.) Cement circulated No. of sacks Temp. survey ran (a.m.)(p.m.) Cement at fee Temp. survey ran (a.m.)(p.m.) Cement at fee Checked for shut off (a.m.) (p.m.) Method used Supervised by Checked for shut off (a.m.) (p.m.) Method used Supervised by REMARKS:

Received by OCD: 4/24/2025 9:39:31 AM

Tatanka Federal Com 4H CTB (03.20.2025)

Tatanka Federal Com 4H CTB (03.20.2025)

NMED Drinking Water Systems

Esri, NASA, NGA, USGS, FEMA, Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, © OpenStreetMap contributors, and the GIS User Community, NM OSE

2 km

New Mexico Oil Conservation Division

0

0.5

APPENDIX E

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/17/2025 4:29:40 PM

JOB DESCRIPTION

Tatanka Federal Com 4H CTB Lea County, New Mexico

JOB NUMBER

880-56945-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/17/2025 4:29:40 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Laboratory Job ID: 880-56945-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	22
QC Sample Results	24
QC Association Summary	30
Lab Chronicle	35
Certification Summary	41
Method Summary	42
Sample Summary	43
Chain of Custody	44
Receipt Checklists	46

2

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
F1	MS and/or MSD recovery exceeds control limits.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	
HPLC/IC		
Qualifier	Qualifier Description	8
U	Indicates the analyte was analyzed for but not detected.	
Glossary		9
Abbreviation	These commonly used abbreviations may or may not be present in this report.	
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	
%R	Percent Recovery	
CFL	Contains Free Liquid	
CFU	Colony Forming Unit	
CNF	Contains No Free Liquid	
DER	Duplicate Error Ratio (normalized absolute difference)	4.0
Dil Fac	Dilution Factor	13
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

 MDL
 Method Detection Limit

 ML
 Minimum Level (Dioxin)

 MPN
 Most Probable Number

MQL	Method Quantitation Limit
NC	Not Calculated
ND	Not Detected at the reporting

 ND
 Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

- POS Positive / Present
- PQL Practical Quantitation Limit
- PRES Presumptive
- QC Quality Control
- RER Relative Error Ratio (Radiochemistry)
- RL Reporting Limit or Requested Limit (Radiochemistry)
- RPD Relative Percent Difference, a measure of the relative difference between two points
- TEF Toxicity Equivalent Factor (Dioxin)
- TEQ Toxicity Equivalent Quotient (Dioxin)
- TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Tatanka Federal Com 4H CTB Job ID: 880-56945-1

Page 49 of 126

Job ID: 880-56945-1

Eurofins Midland

Job Narrative 880-56945-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/15/2025 4:36 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C.

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: BH-1 (0-0.5') (880-56945-1), BH-1 (1.0') (880-56945-2), BH-1 (2.0') (880-56945-3), BH-1 (3.0') (880-56945-4), BH-2 (0-0.5') (880-56945-5), BH-2 (1.0') (880-56945-6), BH-2 (2.0') (880-56945-7), BH-2 (3.0') (880-56945-8), BH-3 (0-0.5') (880-56945-9), BH-3 (1.0') (880-56945-10), BH-3 (2.0') (880-56945-11), BH-3 (3.0') (880-56945-12), BH-3 (4.0') (880-56945-13), BH-4 (0-0.5') (880-56945-14), BH-4 (1.0') (880-56945-15), BH-4 (2.0′) (880-56945-16), BH-4 (3.0′) (880-56945-17), BH-4 (4.0′) (880-56945-18) and BH-4 (5.0′) (880-56945-19).

GC VOA

Method 8021B: The matrix spike (MS) recoveries for preparation batch 880-107795 and analytical batch 880-107885 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: BH-1 (1.0') (880-56945-2), BH-2 (2.0') (880-56945-7), (LCS 880-107817/2-A), (880-56944-A-7-B), (880-56944-A-7-C MS) and (880-56944-A-7-D MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: BH-1 (0-0.5') (880-56945-1). BH-1 (2.0') (880-56945-3), BH-1 (3.0') (880-56945-4), BH-2 (0-0.5') (880-56945-5) and (LCSD 880-107817/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: The method blank for preparation batch 880-107818 and analytical batch 880-107856 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD NM: Surrogate recovery for the following sample was outside control limits: (LCS 880-107818/2-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: BH-3 (0-0.5') (880-56945-9), BH-3 (1.0') (880-56945-10), BH-3 (2.0') (880-56945-11), BH-3 (3.0') (880-56945-12), BH-3 (4.0') (880-56945-13), BH-4 (0-0.5') (880-56945-14), BH-4 (1.0') (880-56945-15), BH-4 (2.0') (880-56945-16), BH-4 (3.0') (880-56945-17), BH-4 (4.0') (880-56945-18), BH-4 (5.0') (880-56945-19), (880-56945-A-9-D MS) and (880-56945-A-9-E MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Case Narrativ	/e
Client: Carmona Resources Project: Tatanka Federal Com 4H CTB	Job ID: 880-56945-1
Job ID: 880-56945-1 (Continued)	Eurofins Midland

Eurofins Midland

Client Sample ID: BH-1 (0-0.5')

Client Sample Results

Page 51 of 126

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-1

Matrix: Solid

5

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:59	04/16/25 16:34	
Toluene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:59	04/16/25 16:34	
Ethylbenzene	<0.00202	U F1	0.00202		mg/Kg		04/15/25 16:59	04/16/25 16:34	
m-Xylene & p-Xylene	<0.00403	U F1	0.00403		mg/Kg		04/15/25 16:59	04/16/25 16:34	•
o-Xylene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:59	04/16/25 16:34	
Xylenes, Total	<0.00403	U F1	0.00403		mg/Kg		04/15/25 16:59	04/16/25 16:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	100		70 - 130				04/15/25 16:59	04/16/25 16:34	
1,4-Difluorobenzene (Surr)	96		70 - 130				04/15/25 16:59	04/16/25 16:34	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			04/16/25 16:34	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.2	U	50.2		mg/Kg			04/16/25 22:01	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.2	U	50.2		mg/Kg		04/16/25 08:26	04/16/25 22:01	
Diesel Range Organics (Over	<50.2	U	50.2		mg/Kg		04/16/25 08:26	04/16/25 22:01	
C10-C28) Dil Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		04/16/25 08:26	04/16/25 22:01	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane		S1+	70 - 130				04/16/25 08:26	04/16/25 22:01	
o-Terphenyl	141	S1+	70 - 130				04/16/25 08:26	04/16/25 22:01	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	788		10.0		mg/Kg			04/16/25 16:51	
lient Sample ID: BH-1 (1.0')							Lab Sam	ple ID: 880-5	6945-2
ate Collected: 04/15/25 00:00 ate Received: 04/15/25 16:36								Matri	x: Soli
Method: SW846 8021B - Volatile		OUNDS (GC) Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:54	
Toluene	<0.00200		0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:54	
Ethylbenzene	<0.00200		0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:54	
n-Xylene & p-Xylene	< 0.00399		0.00399		mg/Kg		04/15/25 16:59	04/16/25 16:54	
-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:54	
ylenes, Total	<0.00200		0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:54	
	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
Surrouale							·		
	00		70 _ 130				()4/15/25 16 54	()4/16/25 16:54	
Surrogate 4-Bromofluorobenzene (Surr) 1,4-Difluorobenzene (Surr)	99 92		70 ₋ 130 70 - 130				04/15/25 16:59 04/15/25 16:59	04/16/25 16:54 04/16/25 16:54	

Matrix: Solid

5

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-2

Client Sample ID: BH-1 (1.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/16/25 16:54	1
Method: SW846 8015 NM - Diesel	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/16/25 22:16	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 22:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 22:16	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130				04/16/25 08:26	04/16/25 22:16	1
o-Terphenyl	130		70 - 130				04/16/25 08:26	04/16/25 22:16	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	153		9.94		mg/Kg			04/16/25 17:07	1

Client Sample ID: BH-1 (2.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Lab Sample ID: 880-56945-3 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 17:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				04/15/25 16:59	04/16/25 17:15	1
1,4-Difluorobenzene (Surr)	94		70 - 130				04/15/25 16:59	04/16/25 17:15	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/16/25 17:15	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/16/25 22:31	1
- Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Result <49.8			MDL	Unit mg/Kg	<u>D</u>	Prepared 04/16/25 08:26	Analyzed 04/16/25 22:31	Dil Fac
Analyte				MDL		D	•		Dil Fac 1

Eurofins Midland

C10-C28)

Matrix: Solid

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-3

Client Sample ID: BH-1 (2.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/16/25 08:26	04/16/25 22:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	136	S1+	70 - 130				04/16/25 08:26	04/16/25 22:31	1
Method: EPA 300.0 - Anions, Ion (Chromatograp						04/16/25 08:26	04/16/25 22:31	1
Method: EPA 300.0 - Anions, Ion (Chromatograp			MDL	Unit	D	04/16/25 08:26 Prepared	04/16/25 22:31 Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion (Analyte	Chromatograp	ohy - Solubl	e	MDL	Unit mg/Kg	<u>D</u>			1 1
Method: EPA 300.0 - Anions, Ion (Analyte Chloride	Chromatograp Result	ohy - Solubl	e	MDL		D	Prepared	Analyzed	1
o-Terphenyl Method: EPA 300.0 - Anions, Ion (Analyte Chloride Client Sample ID: BH-1 (3.0') ate Collected: 04/15/25 00:00	Chromatograp Result	ohy - Solubl	e	MDL		<u>D</u>	Prepared	Analyzed 04/16/25 17:12 ple ID: 880-5	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
Toluene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/15/25 16:59	04/16/25 17:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				04/15/25 16:59	04/16/25 17:35	1
1,4-Difluorobenzene (Surr)	86		70 - 130				04/15/25 16:59	04/16/25 17:35	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/16/25 17:35	1

Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			04/16/25 22:46	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		04/16/25 08:26	04/16/25 22:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		04/16/25 08:26	04/16/25 22:46	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/16/25 08:26	04/16/25 22:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				04/16/25 08:26	04/16/25 22:46	1
o-Terphenyl	133	S1+	70 - 130				04/16/25 08:26	04/16/25 22:46	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	109		9.98		mg/Kg			04/16/25 17:28	1

Client Sample Results

Page 54 of 126

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-5

Client Sample ID: BH-2 (0-0.5') Date Collected: 04/15/25 00:00

Project/Site: Tatanka Federal Com 4H CTB

Date Received: 04/15/25 16:36

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

Client: Carmona Resources

Barcane -0.00200 U 0.00200 mg/kg Outrids2 fisse Outrids2 fisse <thoutrids2 fisse<="" th=""> Outrids2 fisse<th>Method: SW846 8021B - Volatile Analyte</th><th></th><th>Qualifier</th><th>RL</th><th>MDL</th><th>Unit</th><th>D</th><th>Prepared</th><th>Analyzed</th><th>Dil Fac</th></thoutrids2>	Method: SW846 8021B - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylkenzene -0.00200 U 0.00200 mg/kg 04/16/25 16:50 04/16/25 17:56 mXytene -0.00200 U 0.00400 mg/kg 04/16/25 16:50 04/16/25 17:56 Sytenes, Total -0.00400 U 0.00400 mg/kg 04/16/25 16:56 04/16/25 17:56 Surregate 5/Recovery Qualifier Limits 70.130 04/16/25 16:56 04/16/25 17:56 04/16/25 17:56 Method: TAL SOP Total BTEX - Total BTEX Calculation Result Qualifier RL MDL Unit D Prepared Analyzed 04/16/25 17:56 04/16/25 17:56 04/16/25 17:56 Total BTEX -0.00400 0.00400 mg/kg 04/16/25 17:56 04/16	Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 17:56	1
mylyne & p-Xylene -0,00400 0,00400 mg/kg 04/18/25 16:59 04/18/25 17:56 o-Xylene -0,00200 U 0,00200 mg/kg 04/18/25 16:59 04/18/25 17:56 Surrogate -0,00200 U 0,00200 mg/kg 04/18/25 16:59 04/18/25 17:56 Surrogate -4/8/07/010/0100/0100 101 70 - 130 04/18/25 16:59 04/17/25 16:59 04/17/25 16:59 04/17/25 16:59 04/17/25 16:59 04/17/25 17:56 04/17/25 17:30 04/17/25 17:30 0	Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 17:56	1
c-Xylene <th< td=""><td>Ethylbenzene</td><td><0.00200</td><td>U</td><td>0.00200</td><td></td><td>mg/Kg</td><td></td><td>04/15/25 16:59</td><td>04/16/25 17:56</td><td>1</td></th<>	Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 17:56	1
o-Xymen -40.00200 U 0.00000 mg/kg 0.4/15/25 16:55 0.4/15/25 17:56 Surogate 30.600.00 0.00400 mg/kg 0.4/15/25 16:55 0.4/15/25 17:56 Surogate 36.400.00 0.00400 mg/kg 0.4/15/25 16:59 0.4/15/25 17:56 Acamafue/obsenzene (Surr) 92 70.130 0.4/15/25 16:59 0.4/15/25 17:56 Mathod: Total BTEX Calculation MBL Unit D Prepared Analyzed Dil Fa Total BTEX <0.00400	m-Xylene & p-Xylene	<0.00400	U	0.00400				04/15/25 16:59	04/16/25 17:56	
Xylenes, Total <0.00400 0.00400 mgKg 0.4/15/25 16.59 0.4/15/25 17.56 Surrogate Xecovery Qualifier Limits Prepared Analyzed Dil Fa 4-Bornoutburgbenzene (Surr) 101 70 - 130 Quarifier Analyzed Dil Fa Method: TAL SOP Total BTEX - Total BTEX Calculation Manyte Result Qualifier RL MDL Unit D Prepared Analyzed Out/16/25 17:56 Dil Fa Method: TAL SOP Total BTEX - Total BTEX Calculation MDL Unit D Prepared Analyzed Out/16/25 17:56 Dil Fa Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyzed U = Mangkg MDL Unit D Prepared Analyzed Dil Fa Gendine Range Organics <49.6				0.00200					04/16/25 17:56	1
4-Bromofluorobenzene (Surr) 107 70.130 04/15/25 16.56 04/15/25 16.56 04/15/25 17.56 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 04/15/25 17.56 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 04/16/25 23:00 Method: SW846 80155 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Method: SW846 80155 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Gascline Range Organics (Over <49.6	-									1
4-Bromofluorobenzene (Surr) 107 70.130 04/15/25 16.56 04/15/25 16.56 04/15/25 17.56 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 04/15/25 17.56 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed 04/16/25 23:00 Method: SW846 80155 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Method: SW846 80155 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Gascline Range Organics (Over <49.6	Surrogate	%Recovery	Qualifier	l imits				Prenared	Analyzod	Dil Fac
1.4-Diffluorobenzene (Surr) 92 70.130 04/15/25 16.59 04/15/25 17.56 Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Total BTEX <0.00400			Quanner							1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Tatal BTEX <0.00400										1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Tatal BTEX <0.00400										
Total BTEX Odd/16/25 17:56 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL ML Unit D Prepared Analyzed Dil Fa Total TPH <49.6				DI	MDI	11		Drenered	Analyzad	
Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed DII Fa Total TPH <49.6					WIDL		D	Prepared		
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Total TPH < 49.6	IOTAI BIEX - -	<0.00400	U	0.00400		mg/Kg			04/16/25 17:56	1
Total TPH <48.6 U 49.6 mg/kg O4/16/25 23:00 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Gasoline Range Organics (Over <49.6	Method: SW846 8015 NM - Dies									
Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Mol. Unit D Prepared Analyzed Dil Fa Gasoline Range Organics 448.6 U 49.6 mg/Kg 04/16/25 08:26 04/16/25 23:00 04/16/25 08:26 04/16/25 23:00 04/16/25 08:26 04/16/25 23:00 04/16/25 08:26 04/16/25 23:00 04/16/25 08:26 04/16/25 23:00 04/16/25 08:26 04/16/25 18:30 04/16/25 18:30 04/16/25 18:30 04/16/25 18:30 <t< td=""><td></td><td></td><td></td><td></td><td>MDL</td><td>Unit</td><td> D</td><td>Prepared</td><td>Analyzed</td><td>Dil Fac</td></t<>					MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Gasoline Range Organics <49.6	Total TPH	<49.6	U	49.6		mg/Kg			04/16/25 23:00	1
Gasoline Range Organics <49.6 mg/Kg 04/16/25 08:26 04/16/25 23:00 (GRO)-CR-C10 Diesel Range Organics (Over <49.6	Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
(GRO)-C6-C10 Diesel Range Organics (Over <49.6	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over <49.6 U 49.6 mg/Kg 04/16/25 08:26 04/16/25 23:00 Oil Range Organics (Over C28-C36) <49.6		<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 23:00	1
Oil Range Organics (Over C28-C36) <49.6 mg/Kg 04/16/25 08:26 04/16/25 23:00 Surrogate %Recovery 1-Chlorooctane Qualifier Limits Prepared Analyzed Dil Fa 1-Chlorooctane 134 S1+ 70.130 04/16/25 08:26 04/16/25 23:00 Dil Fa 0-Terphenyl 136 S1+ 70.130 04/16/25 08:26 04/16/25 23:00 Dil Fa Method: EPA 300.0 - Anions, Ion Chromatography - Soluble MDL Unit D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 18:30 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 18:30 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 18:05 Dil Fa Chloride 24/15/25 16:50 04/16/25 18:05 Matrix: Solid Dil Fa Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Mattox: S0846 8021B - Volatile Organic Compounds (GC) </td <td>Diesel Range Organics (Over</td> <td><49.6</td> <td>U</td> <td>49.6</td> <td></td> <td>mg/Kg</td> <td></td> <td>04/16/25 08:26</td> <td>04/16/25 23:00</td> <td>1</td>	Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 23:00	1
Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fa 1-Chiorooctane 134 S1+ 70-130 04/16/25 08:26 04/16/25 23:00 04/16/25 23:00 04/16/25 23:00 04/16/25 23:00 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 04/16/25 17:33 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 17:33 Dil Fa 04/16/25 17:33 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 17:33 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 18:16 Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 18:16 Dil Fa Chloride 20:00 0 0 0 0 0 0 0 0 0 0 0		<49.6	U	49.6		mg/Kg		04/16/25 08:26	04/16/25 23:00	1
1-Chlorooctane 134 \$1+ 70 - 130 04/16/25 08:26 04/16/25 23:00 0-Terphenyl 136 \$1+ 70 - 130 04/16/25 08:26 04/16/25 23:00 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg D Prepared Analyzed Dil Fa Chloride 273 0.0 mg/Kg D Prepared Analyzed Dil Fa Chloride 273 0.0 mg/Kg D Prepared Analyzed Dil Fa Chloride 204/15/25 16:50 04/16/25 18:16 Matrix: Solid Matrix: Solid Dil Fa Chloride 0.00200 U 0.00200 mg/Kg 04/15/25 16:59 04/16/25 18:16 Method: SW846 8021B - Volatile Organic Compounds (GC						0 0				
o-Terphenyl 136 S1+ 70 - 130 04/16/25 08:26 04/16/25 23:00 Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 17:33 Dil Fa Chloride 2415/25 16:36 MDL Unit D Prepared Analyzed Dil Fa Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200 U 0.00200 mg/Kg 04/15/25 16:59 04/16/25 18:16 Di		_ <u> </u>								Dil Fac
Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg 04/16/25 17:33	1-Chlorooctane			70 - 130				04/16/25 08:26	04/16/25 23:00	1
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Chloride 273 10.0 mg/Kg D 04/16/25 17:33 Dil Fa Chloride 273 10.0 mg/Kg Dil Fa 04/16/25 17:33 Dil Fa Chloride 04/15/25 00:00 Dil Fa Dil Fa Dil Fa Dil Fa Method: SW846 8021B - Volatile Organic Compounds (GC) Matrix: Solid Matrix: Solid Dil Fa Benzene <0.00200	o-Terphenyl	136	S1+	70 - 130				04/16/25 08:26	04/16/25 23:00	1
Chloride 273 10.0 mg/Kg 04/16/25 17:33 Client Sample ID: BH-2 (1.0') Lab Sample ID: 880-56945-6 Matrix: Solid Date Collected: 04/15/25 00:00 Matrix: Solid Matrix: Solid Date Received: 04/15/25 16:36 Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Method: EPA 300.0 - Anions, lor	n Chromatograp	hy - Solub	le						
Client Sample ID: BH-2 (1.0') Lab Sample ID: 880-56945-6 Date Collected: 04/15/25 00:00 Matrix: Solid Date Received: 04/15/25 16:36 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Matrix: Solid Matrix: Solid Matrix: Solid Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Chloride	273		10.0		mg/Kg			04/16/25 17:33	1
Date Received: 04/15/25 16:36 Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Client Sample ID: BH-2 (1.0	')						Lab Sam	ple ID: 880-5	6945-6
Method: SW846 8021B - Volatile Organic Computes GC Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Date Collected: 04/15/25 00:00								Matri	ix: Solid
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	Date Received: 04/15/25 16:36									
Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fa Benzene <0.00200	- Method: SW846 8021B - Volatile	organic Comp	ounds (GC)						
Toluene < 0.00200 U 0.00200 mg/Kg 04/15/25 16:59 04/16/25 18:16 Ethylbenzene < 0.00200					MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene<0.00200U0.00200mg/Kg04/15/25 16:5904/16/25 18:16m-Xylene & p-Xylene<0.00401	Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 18:16	1
Ethylbenzene<0.00200U0.00200mg/Kg04/15/25 16:5904/16/25 18:16m-Xylene & p-Xylene<0.00401	Toluene	<0.00200	U	0.00200				04/15/25 16:59	04/16/25 18:16	1
w-Xylene & p-Xylene <0.00401 U 0.00401 mg/Kg 04/15/25 16:59 04/16/25 18:16 o-Xylene <0.00200	Ethylbenzene	<0.00200	U					04/15/25 16:59	04/16/25 18:16	1
o-Xylene <0.00200 U 0.00200 mg/Kg 04/15/25 16:59 04/16/25 18:16 Xylenes, Total <0.00401										
Xylenes, Total <0.00401 U 0.00401 mg/Kg 04/15/25 16:59 04/16/25 18:16										1
	•									1
	Surrogate	a/=	0	Limits				Prepared	Analyzed	Dil Fac

70 - 130

70 - 130

04/16/25 18:16

04/16/25 18:16

04/15/25 16:59

04/15/25 16:59

Matrix: Solid

Page 10 of 46 Released to Imaging: 6/30/2025 2:51:16 PM

100

90

1

1

Matrix: Solid

5

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-6

Client Sample ID: BH-2 (1.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			04/16/25 18:16	
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			04/16/25 23:15	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 23:15	
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 23:15	
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 23:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	125		70 - 130				04/16/25 08:26	04/16/25 23:15	
o-Terphenyl	123		70 - 130				04/16/25 08:26	04/16/25 23:15	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	213		10.0		mg/Kg			04/16/25 17:38	

Client Sample ID: BH-2 (2.0)

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

880-56945ample ID. Matrix: Solid

1

1

1

1

1

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte **Result Qualifier** RL MDL Unit D Prepared Analyzed Dil Fac Benzene <0.00202 U 04/15/25 16:59 04/16/25 18:37 0.00202 mg/Kg Toluene <0.00202 U 0.00202 04/15/25 16:59 04/16/25 18:37 mg/Kg Ethylbenzene <0.00202 U 0.00202 04/15/25 16:59 04/16/25 18:37 mg/Kg m-Xylene & p-Xylene <0.00403 U 0.00403 mg/Kg 04/15/25 16:59 04/16/25 18:37 o-Xylene <0.00202 U 0.00202 mg/Kg 04/15/25 16:59 04/16/25 18:37 1 Xylenes, Total <0.00403 U 0.00403 04/15/25 16:59 04/16/25 18:37 mg/Kg 1 %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 04/15/25 16:59 04/16/25 18:37 4-Bromofluorobenzene (Surr) 108 1 1,4-Difluorobenzene (Surr) 91 70 - 130 04/15/25 16:59 04/16/25 18:37

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			04/16/25 18:37	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			04/16/25 23:30	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	quannor							
-			50.4		mg/Kg		04/16/25 08:26	04/16/25 23:30	1
Gasoline Range Organics					mg/Kg		04/16/25 08:26	04/16/25 23:30	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U			mg/Kg mg/Kg		04/16/25 08:26	04/16/25 23:30 04/16/25 23:30	1

Eurofins Midland

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-7

Client Sample ID: BH-2 (2.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		04/16/25 08:26	04/16/25 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				04/16/25 08:26	04/16/25 23:30	1
	129 Chromatograp	nhv - Solubi	70 <u>-</u> 130				04/16/25 08:26	04/16/25 23:30	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	<mark>bhy - Solubl</mark> Qualifier		MDL	Unit	D	04/16/25 08:26 Prepared	04/16/25 23:30 Analyzed	1 Dil Fac
Method: EPA 300.0 - Anions, Ion Analyte	Chromatograp		e	MDL	Unit mg/Kg	<u>D</u>			1 1
o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte Chloride Client Sample ID: BH-2 (3.0')	Chromatograp Result 117		e	MDL		D	Prepared	Analyzed	1
Method: EPA 300.0 - Anions, Ion Analyte Chloride	Chromatograp Result 117		e	MDL		<u>D</u>	Prepared	Analyzed 04/16/25 17:43 ple ID: 880-5	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 18:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				04/15/25 16:59	04/16/25 18:57	1
1,4-Difluorobenzene (Surr)	91		70 - 130				04/15/25 16:59	04/16/25 18:57	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	0	2	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg				04/16/25 18:57	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.7	U	49.7		mg/Kg			04/16/25 23:59	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 23:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 23:59	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	128		70 - 130				04/16/25 08:26	04/16/25 23:59	1
o-Terphenyl	130		70 - 130				04/16/25 08:26	04/16/25 23:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	245		10.1		mg/Kg			04/16/25 17:48	1

Matrix: Solid

5

Project/Site: Tatanka Federal Com 4H CTB

Client Sample ID: BH-3 (0-0.5')

Date Collected: 04/15/25 00:00

Client: Carmona Resources

Client Sample Results

Page 57 of 126

5

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-9

Matrix: Solid

- Mothod: SW946 9024 P Volatile	Organic Com-	ounds (CC)							
Method: SW846 8021B - Volatile Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	< 0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 19:17	
Toluene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 19:17	
Ethylbenzene	<0.00198		0.00198		mg/Kg		04/15/25 16:59	04/16/25 19:17	
m-Xylene & p-Xylene	<0.00396		0.00396		mg/Kg		04/15/25 16:59	04/16/25 19:17	
o-Xylene	< 0.00198		0.00198		mg/Kg		04/15/25 16:59	04/16/25 19:17	
Xylenes, Total	<0.00396		0.00396		mg/Kg		04/15/25 16:59	04/16/25 19:17	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	106		70 - 130				04/15/25 16:59	04/16/25 19:17	
1,4-Difluorobenzene (Surr)	95		70 - 130				04/15/25 16:59	04/16/25 19:17	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/16/25 19:17	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.3	U	50.3		mg/Kg			04/16/25 20:45	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 20:45	
Diesel Range Organics (Over C10-C28)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 20:45	
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 20:45	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	139	S1+	70 - 130				04/16/25 08:30	04/16/25 20:45	
o-Terphenyl	141	S1+	70 - 130				04/16/25 08:30	04/16/25 20:45	
Method: EPA 300.0 - Anions, Ion		-							
Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Chloride	831		9.94		mg/Kg			04/16/25 17:53	
Client Sample ID: BH-3 (1.0')							Lab Samp	le ID: 880-56	
Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36								Matri	x: Solic
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)							
Analyte		Qualifier	RL	мы	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		04/15/25 16:59	04/16/25 19:38	
Toluene	< 0.00199		0.00199		mg/Kg		04/15/25 16:59	04/16/25 19:38	
Ethylbenzene	< 0.00199		0.00199		mg/Kg		04/15/25 16:59	04/16/25 19:38	
m-Xylene & p-Xylene	<0.00199		0.00398		mg/Kg		04/15/25 16:59	04/16/25 19:38	
o-Xylene	<0.00390		0.00390		mg/Kg		04/15/25 16:59	04/16/25 19:38	
Xylenes, Total	< 0.00398		0.00398		mg/Kg		04/15/25 16:59	04/16/25 19:38	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
	Juncouvery	quannel	2						2a

4-Bromofluorobenzene (Surr)

1,4-Difluorobenzene (Surr)

70 - 130

70 - 130

104

Matrix: Solid

5

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-10

Client Sample ID: BH-3 (1.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/16/25 19:38	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/16/25 21:29	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/16/25 08:30	04/16/25 21:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/16/25 08:30	04/16/25 21:29	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/16/25 08:30	04/16/25 21:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	144	S1+	70 - 130				04/16/25 08:30	04/16/25 21:29	
o-Terphenyl	147	S1+	70 - 130				04/16/25 08:30	04/16/25 21:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5850		99.8		mg/Kg			04/16/25 17:58	10

Client Sample ID: BH-3 (2.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36 Lab Sample ID: 880-56945-11 Matrix: Solid

_ Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				04/15/25 16:59	04/16/25 21:11	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/15/25 16:59	04/16/25 21:11	1

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<0.00401	U	0.00401		mg/Kg			04/16/25 21:11	1
iocol Pongo Organ		20)						
			мы	Unit	п	Broparod	Analyzod	Dil Fac
		49.6		mg/Kg		Fiepaieu	04/16/25 21:46	1
	<0.00401 iesel Range Organ Result	iesel Range Organics (DRO) (C Result Qualifier Qualifier U Qualifier U Qualifier U Qualifier U Qualifier U	<0.00401 U 0.00401 iesel Range Organics (DRO) (GC) Result Qualifier RL	<0.00401 U 0.00401 iesel Range Organics (DRO) (GC) Result Qualifier RL MDL	<0.00401 U 0.00401 mg/Kg iesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit	<pre><0.00401 U 0.00401 mg/Kg iesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit D</pre>	<pre><0.00401 U 0.00401 mg/Kg iesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit D Prepared</pre>	<0.00401

Analyte		Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline	Range Organics	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 21:46	1
(GRO)-C	6-C10									
Diesel Ra	ange Organics (Over	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 21:46	1
C10-C28	3)									

Eurofins Midland

Matrix: Solid

5

12 13

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-11

Client Sample ID: BH-3 (2.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 21:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	132	S1+	70 - 130				04/16/25 08:30	04/16/25 21:46	1
o-Terphenyl	134	S1+	70 - 130				04/16/25 08:30	04/16/25 21:46	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	347		9.92		mg/Kg			04/16/25 19:50	1
Client Sample ID: BH-3 (3.0')							Lab Samp	le ID: 880-56	945-12
ate Collected: 04/15/25 00:00									x: Solid

Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Method: SW846 8021B - Volati	ethod: SW846 8021B - Volatile Organic Compounds (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	< 0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:32	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	101		70 - 130				04/15/25 16:59	04/16/25 21:32	1			
1,4-Difluorobenzene (Surr)	92		70 - 130				04/15/25 16:59	04/16/25 21:32	1			

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	[D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg				04/16/25 21:32	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<50.3	U	50.3		mg/Kg			04/16/25 22:01	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 22:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 22:01	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 22:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				04/16/25 08:30	04/16/25 22:01	1
o-Terphenyl	135	S1+	70 - 130				04/16/25 08:30	04/16/25 22:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	е						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	163		9.94		mg/Kg			04/16/25 20:07	1

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-13

Matrix: Solid

5

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: BH-3 (4.0')

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:52	
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:52	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:52	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:52	
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 21:52	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 21:52	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130				04/15/25 16:59	04/16/25 21:52	1
1,4-Difluorobenzene (Surr)	95		70 - 130				04/15/25 16:59	04/16/25 21:52	1
Method: TAL SOP Total BTEX -	Total BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			04/16/25 21:52	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (G	C)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/16/25 22:16	1
Method: SW846 8015B NM - Die	sel Range Orga	nics (DRO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	-	49.7		mg/Kg		04/16/25 08:30	04/16/25 22:16	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-C28)	<49.7	U	49.7		mg/Kg		04/16/25 08:30	04/16/25 22:16	1
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/16/25 08:30	04/16/25 22:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	134	S1+	70 - 130				04/16/25 08:30	04/16/25 22:16	1
o-Terphenyl	135	S1+	70 - 130				04/16/25 08:30	04/16/25 22:16	1
Method: EPA 300.0 - Anions, Ior	n Chromatograp	hy - Soluble	I.						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	121		9.92		mg/Kg			04/16/25 20:13	1
lient Sample ID: BH-4 (0-0	.5')						Lab Samp	le ID: 880-56	945-14
ate Collected: 04/15/25 00:00								Matri	x: Solid
ate Received: 04/15/25 16:36									
						_	Prepared	Analyzed	Dil Fac
			DI	мпч	Unit	n		Analyzeu	
Analyte	Result	Qualifier	RL	MDL	Unit ma/Ka	D			
Analyte Benzene	Result <0.00202	Qualifier	0.00202	MDL	mg/Kg	<u>D</u>	04/15/25 16:59	04/16/25 22:12	1
Analyte Benzene Toluene	Result <0.00202	Qualifier U U	0.00202	MDL	mg/Kg mg/Kg	<u>D</u>	04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12	1
Analyte Benzene Toluene Ethylbenzene	Result <0.00202 <0.00202 <0.00202	Qualifier U U U	0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12	1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Result <0.00202	Qualifier U U U U	0.00202 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12	1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U U	0.00202 0.00202 0.00202 0.00403 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12	1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00202	Qualifier U U U U U U U	0.00202 0.00202 0.00202 0.00202	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12	1 1 1 1 1
Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate	Result <0.00202	Qualifier U U U U U U U	0.00202 0.00202 0.00202 0.00403 0.00202 0.00403 <i>Limits</i>	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 Prepared	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 Analyzed	1 1 1
Method: SW846 8021B - Volatile Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Xylenes, Total Surrogate 4-Bromofluorobenzene (Surr)	Result <0.00202	Qualifier U U U U U U U U U	0.00202 0.00202 0.00202 0.00403 0.00202 0.00403	MDL	mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59 04/15/25 16:59	04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12 04/16/25 22:12	1 1 1 1 1 1

Matrix: Solid

5

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Client Sample ID: BH-4 (0-0.5')

Project/Site: Tatanka Federal Com 4H CTB

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			04/16/25 22:12	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			04/16/25 22:31	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		04/16/25 08:30	04/16/25 22:31	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		04/16/25 08:30	04/16/25 22:31	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		04/16/25 08:30	04/16/25 22:31	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	135	S1+	70 - 130				04/16/25 08:30	04/16/25 22:31	1
o-Terphenyl	138	S1+	70 - 130				04/16/25 08:30	04/16/25 22:31	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	341		9.96		mg/Kg			04/16/25 20:19	1

Client Sample ID: BH-4 (1.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36 Lab Sample ID: 880-56945-15 Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 22:33	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				04/15/25 16:59	04/16/25 22:33	1
1,4-Difluorobenzene (Surr)	88		70 - 130				04/15/25 16:59	04/16/25 22:33	1

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier MDL Unit RL D Prepared Analyzed Dil Fac Total BTEX <0.00398 U 0.00398 mg/Kg 04/16/25 22:33 1 Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit D Analyzed Dil Fac Prepared Total TPH <49.8 U 04/16/25 22:46 49.8 mg/Kg 1 Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac <49.8 U 49.8 04/16/25 08:30 04/16/25 22:46 Gasoline Range Organics mg/Kg 1 (GRO)-C6-C10

Eurofins Midland

04/16/25 22:46

04/16/25 08:30

Diesel Range Organics (Over

C10-C28)

49.8

mg/Kg

<49.8 U

Matrix: Solid

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-15

Client Sample ID: BH-4 (1.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

			IND L	Unit	D	Prepared	Analyzed	Dil Fac
<49.8	U	49.8		mg/Kg		04/16/25 08:30	04/16/25 22:46	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
141	S1+	70 - 130				04/16/25 08:30	04/16/25 22:46	1
141	S1+	70 - 130				04/16/25 08:30	04/16/25 22:46	1
Chromatograp	hy - Solubl	e						
Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
997		9.94		mg/Kg			04/16/25 20:25	1
	%Recovery 141 141 Chromatograp Result	Chromatography - Solubl Result Qualifier	%Recovery Qualifier Limits 141 S1+ 70 - 130 141 S1+ 70 - 130 141 S1+ 70 - 130 Chromatography - Soluble Result Qualifier RL	%Recovery 141Qualifier S1+Limits 70 - 130141S1+70 - 130141S1+70 - 130Chromatography - Soluble ResultQualifierRL	%Recovery Qualifier Limits 141 S1+ 70 - 130 141 S1+ 70 - 130 Chromatography - Soluble Result Qualifier Result Qualifier RL MDL	%Recovery Qualifier Limits 141 S1+ 70 - 130 141 S1+ 70 - 130 141 S1+ 70 - 130 Chromatography - Soluble Result Qualifier RL MDL Unit D	%Recovery Qualifier Limits Prepared 141 S1+ 70 - 130 04/16/25 08:30 141 S1+ 70 - 130 04/16/25 08:30 Chromatography - Soluble Result Qualifier RL MDL Unit D Prepared	%Recovery Qualifier Limits Prepared Analyzed 141 51+ 70 - 130 04/16/25 08:30 04/16/25 22:46 141 51+ 70 - 130 04/16/25 08:30 04/16/25 22:46 Chromatography - Soluble Result Qualifier RL MDL Unit D Prepared Analyzed

Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00201	U	0.00201		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
Toluene	<0.00201	U	0.00201		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		04/15/25 16:59	04/16/25 22:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		70 - 130				04/15/25 16:59	04/16/25 22:53	1
1,4-Difluorobenzene (Surr)	89		70 - 130				04/15/25 16:59	04/16/25 22:53	1

1. (00)

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	U	0.00402		mg/Kg			04/16/25 22:53	1

l	Method: SW846 8015 NM - Diesel R	Range Organi	ics (DRO) (GC)						
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.9	U	49.9		mg/Kg			04/16/25 23:00	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/16/25 08:30	04/16/25 23:00	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/16/25 08:30	04/16/25 23:00	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/16/25 08:30	04/16/25 23:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	137	S1+	70 - 130				04/16/25 08:30	04/16/25 23:00	1
o-Terphenyl	137	S1+	70 - 130				04/16/25 08:30	04/16/25 23:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	1630		49.6		mg/Kg			04/17/25 09:08	5

-56945-1 v Mexico

Client Sample Results

Page 63 of 126

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-17

Client Sample ID: BH-4 (3.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 23:14	
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 23:14	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 23:14	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 23:14	
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 23:14	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		04/15/25 16:59	04/16/25 23:14	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)			70 - 130				04/15/25 16:59	04/16/25 23:14	
1,4-Difluorobenzene (Surr)	94		70 - 130				04/15/25 16:59	04/16/25 23:14	
Method: TAL SOP Total BTEX - T	otal BTEX Calo	ulation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			04/16/25 23:14	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<50.3	U	50.3		mg/Kg			04/16/25 23:15	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 23:15	
Diesel Range Organics (Over C10-C28)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 23:15	
Dil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 23:15	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
I-Chlorooctane	133	S1+	70 - 130				04/16/25 08:30	04/16/25 23:15	
p-Terphenyl	133	S1+	70 - 130				04/16/25 08:30	04/16/25 23:15	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solub	le						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Chloride	360		10.0		mg/Kg			04/16/25 20:48	
lient Sample ID: BH-4 (4.0'))						Lab Samp	le ID: 880-56	945-1
ate Collected: 04/15/25 00:00								Matri	x: Soli
ate Received: 04/15/25 16:36									
Method: SW846 8021B - Volatile	• •	•	•	MD	11-14		Duananad	Analyzad	
Analyte		Qualifier		MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199		0.00199		mg/Kg		04/15/25 16:59	04/16/25 23:34	
Toluene	<0.00199		0.00199		mg/Kg		04/15/25 16:59	04/16/25 23:34	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:59	04/16/25 23:34	
n-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/15/25 16:59	04/16/25 23:34	
- Vodene	-0.00400		0.00100		malka		04/46/06 46.60	04/40/05 00:04	

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-18

Client Sample ID: BH-4 (4.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/16/25 23:34	1
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/16/25 23:30	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 23:30	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 23:30	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/16/25 08:30	04/16/25 23:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	132	S1+	70 - 130				04/16/25 08:30	04/16/25 23:30	1
o-Terphenyl	132	S1+	70 - 130				04/16/25 08:30	04/16/25 23:30	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	168		9.96		mg/Kg			04/16/25 20:53	1

Client Sample ID: BH-4 (5.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Lab Sample ID: 880-56945-19 Matrix: Solid

-Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
Toluene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/15/25 16:59	04/16/25 23:54	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		70 - 130				04/15/25 16:59	04/16/25 23:54	1
1,4-Difluorobenzene (Surr)	90		70 - 130				04/15/25 16:59	04/16/25 23:54	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/16/25 23:54	1
Method: SW846 8015 NM - Dies	el Range Organ	ics (DRO) (O	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			04/16/25 23:59	1
Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO)	(GC)						
	Popult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result								
	<50.3		50.3		mg/Kg		04/16/25 08:30	04/16/25 23:59	1
Gasoline Range Organics			50.3		mg/Kg		04/16/25 08:30	04/16/25 23:59	1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over		U	50.3		mg/Kg mg/Kg		04/16/25 08:30	04/16/25 23:59 04/16/25 23:59	1

Eurofins Midland

Client Sample Results

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Client Sample ID: BH-4 (5.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-19

Matrix: Solid

5

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		04/16/25 08:30	04/16/25 23:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	131	S1+	70 - 130				04/16/25 08:30	04/16/25 23:59	1
o-Terphenyl	142	S1+	70 - 130				04/16/25 08:30	04/16/25 23:59	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		9.98		mg/Kg			04/16/25 20:59	1

Eurofins Midland

Surrogate Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		5
880-56945-1	BH-1 (0-0.5')	100	96		
880-56945-1 MS	BH-1 (0-0.5')	110	98		6
880-56945-1 MSD	BH-1 (0-0.5')	103	98		
880-56945-2	BH-1 (1.0')	99	92		
880-56945-3	BH-1 (2.0')	101	94		
880-56945-4	BH-1 (3.0')	103	86		8
880-56945-5	BH-2 (0-0.5')	101	92		
880-56945-6	BH-2 (1.0')	100	90		9
880-56945-7	BH-2 (2.0')	108	91		3
880-56945-8	BH-2 (3.0')	99	91		
880-56945-9	BH-3 (0-0.5')	106	95		
880-56945-10	BH-3 (1.0')	104	92		
880-56945-11	BH-3 (2.0')	105	90		
880-56945-12	BH-3 (3.0')	101	92		
880-56945-13	BH-3 (4.0')	105	95		
880-56945-14	BH-4 (0-0.5')	105	88		
880-56945-15	BH-4 (1.0')	103	88		13
880-56945-16	BH-4 (2.0')	107	89		
880-56945-17	BH-4 (3.0')	101	94		
880-56945-18	BH-4 (4.0')	109	90		
880-56945-19	BH-4 (5.0')	103	90		
LCS 880-107795/1-A	Lab Control Sample	103	96		
LCSD 880-107795/2-A	Lab Control Sample Dup	100	96		
MB 880-107795/5-A	Method Blank	97	89		

Surrogate Legend

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC) Matrix: Solid

				Percent Surrogate
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-56944-A-7-C MS	Matrix Spike	133 S1+	124	
880-56944-A-7-D MSD	Matrix Spike Duplicate	133 S1+	123	
880-56945-1	BH-1 (0-0.5')	140 S1+	141 S1+	
880-56945-2	BH-1 (1.0')	133 S1+	130	
880-56945-3	BH-1 (2.0')	136 S1+	135 S1+	
880-56945-4	BH-1 (3.0')	134 S1+	133 S1+	
880-56945-5	BH-2 (0-0.5')	134 S1+	136 S1+	
880-56945-6	BH-2 (1.0')	125	123	
880-56945-7	BH-2 (2.0')	131 S1+	129	
880-56945-8	BH-2 (3.0')	128	130	
880-56945-9	BH-3 (0-0.5')	139 S1+	141 S1+	
880-56945-9 MS	BH-3 (0-0.5')	145 S1+	139 S1+	
880-56945-9 MSD	BH-3 (0-0.5')	153 S1+	142 S1+	
880-56945-10	BH-3 (1.0')	144 S1+	147 S1+	
880-56945-11	BH-3 (2.0')	132 S1+	134 S1+	

Eurofins Midland

Prep Type: Total/NA

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Prep Type: Total/NA

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued) Matrix: Solid

Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)	
		1CO1	OTPH1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		- 5
880-56945-12	BH-3 (3.0')	134 S1+	135 S1+		
880-56945-13	BH-3 (4.0')	134 S1+	135 S1+		6
880-56945-14	BH-4 (0-0.5')	135 S1+	138 S1+		0
880-56945-15	BH-4 (1.0')	141 S1+	141 S1+		
880-56945-16	BH-4 (2.0')	137 S1+	137 S1+		
880-56945-17	BH-4 (3.0')	133 S1+	133 S1+		
880-56945-18	BH-4 (4.0')	132 S1+	132 S1+		8
880-56945-19	BH-4 (5.0')	131 S1+	142 S1+		
LCS 880-107817/2-A	Lab Control Sample	140 S1+	130		9
LCS 880-107818/2-A	Lab Control Sample	131 S1+	124		
LCSD 880-107817/3-A	Lab Control Sample Dup	140 S1+	133 S1+		
LCSD 880-107818/3-A	Lab Control Sample Dup	116	110		
MB 880-107817/1-A	Method Blank	122	124		
MB 880-107818/1-A	Method Blank	100	102		
Surrogate Legend					
1CO = 1-Chlorooctane					

OTPH = o-Terphenyl

Eurofins Midland

Lab Sample ID: MB 880-107795/5-A

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Analysis Batch: 107885								Prep Type: 1 Prep Batch:	
	МВ	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/15/25 16:59	04/16/25 16:12	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				04/15/25 16:59	04/16/25 16:12	1
1,4-Difluorobenzene (Surr)	89		70 - 130				04/15/25 16:59	04/16/25 16:12	1

Lab Sample ID: LCS 880-107795/1-A Matrix: Solid

Analysis Batch: 107885

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.09372		mg/Kg		94	70 - 130	
Toluene	0.100	0.08751		mg/Kg		88	70 - 130	
Ethylbenzene	0.100	0.08858		mg/Kg		89	70 - 130	
m-Xylene & p-Xylene	0.200	0.1842		mg/Kg		92	70 - 130	
o-Xylene	0.100	0.09379		mg/Kg		94	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	103		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: LCSD 880-107795/2-A

Matrix: Solid

A	nalysis Batch: 107885							Prep l	Batch: 1	07795
		Spike	LCSD	LCSD				%Rec		RPD
A	nalyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Be	enzene	0.100	0.08255		mg/Kg		83	70 - 130	13	35
To	luene	0.100	0.07375		mg/Kg		74	70 - 130	17	35
Et	hylbenzene	0.100	0.07433		mg/Kg		74	70 - 130	17	35
m	-Xylene & p-Xylene	0.200	0.1491		mg/Kg		75	70 - 130	21	35
0-	Xylene	0.100	0.07309		mg/Kg		73	70 - 130	25	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	100		70 - 130
1,4-Difluorobenzene (Surr)	96		70 - 130

Lab Sample ID: 880-56945-1 MS Matrix: Solid

Analysis Bataby 107995

Analysis Batch: 107885									Prep E	Batch: 107795
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.100	0.07601		mg/Kg		76	70 - 130	
Toluene	<0.00202	U	0.100	0.06955		mg/Kg		70	70 - 130	

Eurofins Midland

Prep Type: Total/NA

Client Sample ID: BH-1 (0-0.5')

Client Sample ID: Method Blank

SDG: Lea County, New Mexico

Job ID: 880-56945-1

Prep Type: Total/NA

Prep Batch: 107795

Prep Type: Total/NA

Client Sample ID: Lab Control Sample Dup

13

Released to Imaging: 6/30/2025 2:51:16 PM

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

	1 MS							Client	Sample ID): BH-1 (0-0.5')
Matrix: Solid									Prep 1	Type: To	tal/NA
Analysis Batch: 107885									Prep I	Batch: 1	07795
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	< 0.00202	U F1	0.100	0.06436	F1	mg/Kg		64	70 - 130		
m-Xylene & p-Xylene	<0.00403	U F1	0.200	0.1359	F1	mg/Kg		68	70 - 130		
o-Xylene	<0.00202	U	0.100	0.07017		mg/Kg		70	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)			70 - 130								
1,4-Difluorobenzene (Surr)	98		70 _ 130								
Lab Sample ID: 880-56945-1 Matrix: Solid	1 MSD							Client	Sample ID		
Matrix: Solid		0	Quilles	MOD	MOD			Client	Prep 1 Prep I	: BH-1 (Type: To Batch: 1	tal/NA 07795
Matrix: Solid Analysis Batch: 107885	Sample	Sample	Spike		MSD		_		Prep 1 Prep I %Rec	Type: To Batch: 1	tal/NA 07795 RPD
Matrix: Solid Analysis Batch: 107885 Analyte	Sample Result	Qualifier	Added	Result	MSD Qualifier	Unit	<u>D</u>	%Rec	Prep 1 Prep 1 %Rec Limits	Type: To Batch: 1 	tal/NA 07795 RPD Limit
Matrix: Solid Analysis Batch: 107885 Analyte Benzene	Sample Result <0.00202	Qualifier	Added	Result 0.1020		mg/Kg	D	%Rec	Prep 1 Prep 1 %Rec Limits 70 - 130	Type: To Batch: 1 RPD 29	tal/NA 07795 RPD Limit 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene	Sample Result <0.00202 <0.00202	Qualifier	Added 0.100 0.100	Result 0.1020 0.08764		mg/Kg mg/Kg	<u> </u>	%Rec 102 88	Prep 7 Prep 1 %Rec Limits 70 - 130 70 - 130	Type: To Batch: 1 RPD 29 23	tal/NA 07795 RPD Limit 35 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene	Sample Result <0.00202 <0.00202 <0.00202	Qualifier U U U F1	Added 0.100 0.100 0.100	Result 0.1020 0.08764 0.08634		mg/Kg mg/Kg mg/Kg	<u>D</u>	%Rec 102 88 86	Prep 7 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130	RPD 29 23 29	tal/NA 07795 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403	Qualifier U U U F1 U F1	Added 0.100 0.100 0.100 0.200	Result 0.1020 0.08764 0.08634 0.1764		mg/Kg mg/Kg mg/Kg mg/Kg	D	%Rec 102 88 86 88	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 29 23 29 23 29 26	tal/NA 07795 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00202 <0.00202 <0.00202	Qualifier U U U F1 U F1	Added 0.100 0.100 0.100	Result 0.1020 0.08764 0.08634		mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 102 88 86	Prep 7 Prep 1 %Rec Limits 70 - 130 70 - 130 70 - 130	RPD 29 23 29	tal/NA 07795 RPD Limit 35 35 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene	Sample Result <0.00202 <0.00202 <0.00202 <0.00202 <0.00403	Qualifier U U U F1 U F1	Added 0.100 0.100 0.100 0.200	Result 0.1020 0.08764 0.08634 0.1764		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 102 88 86 88	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 29 23 29 23 29 26	tal/NA 07795 RPD Limit 35 35 35 35
Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Sample Result <0.00202	Qualifier U U U F1 U F1 U SD	Added 0.100 0.100 0.100 0.200	Result 0.1020 0.08764 0.08634 0.1764		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 102 88 86 88	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 29 23 29 23 29 26	tal/NA 07795 RPD Limit 35 35 35 35
Lab Sample ID: 880-56945-1 Matrix: Solid Analysis Batch: 107885 Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene Surrogate 4-Bromofluorobenzene (Surr)	Sample Result <0.00202 <0.00202 <0.00202 <0.00403 <0.00202 <i>MSD</i>	Qualifier U U U F1 U F1 U SD	Added 0.100 0.100 0.100 0.200 0.100	Result 0.1020 0.08764 0.08634 0.1764		mg/Kg mg/Kg mg/Kg mg/Kg	<u> </u>	%Rec 102 88 86 88	Prep 7 Prep 7 %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130	RPD 29 23 29 23 29 26	tal/NA 07795 RPD Limit 35 35 35 35

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-107817/1-A Matrix: Solid Analysis Batch: 107854							Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	otal/NA
Analysis Batch. 107034	МВ	мв						Ртер Басси.	10/01/
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 20:01	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 20:01	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/16/25 08:26	04/16/25 20:01	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130				04/16/25 08:26	04/16/25 20:01	1
o-Terphenyl	124		70 - 130				04/16/25 08:26	04/16/25 20:01	1

Matrix: Solid Analysis Batch: 107854

Analysis Batch: 107854							Prep	Batch: 107817
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	1119		mg/Kg		112	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	1110		mg/Kg		111	70 - 130	
C10-C28)								

Page 69 of 126

Eurofins Midland

Prep Type: Total/NA

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-10 Matrix: Solid	7817/2-A						Client	t Sample	Bron J		
										Type: To Batch: 1	
Analysis Batch: 107854									Fieh	Saten. I	0/01/
	LCS	LCS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	140	S1+	70 - 130								
o-Terphenyl	130		70 - 130								
Lab Sample ID: LCSD 880-1	07817/3-A					Clier	nt San	ple ID:	Lab Contro	ol Sampl	e Dup
Matrix: Solid									Prep 1	Гуре: То	tal/NA
Analysis Batch: 107854										Batch: 1	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limi
Gasoline Range Organics			1000	1087		mg/Kg		109	70 - 130	3	2(
(GRO)-C6-C10						5 5					
Diesel Range Organics (Over			1000	1114		mg/Kg		111	70 - 130	0	20
C10-C28)											
	1.050	LCSD									
Surrogata			Limito								
Surrogate	%Recovery		Limits 70 - 130								
1-Chlorooctane	140										
o-Terphenyl	133	S1+	70 - 130								
Lab Sample ID: 880-56944-A Matrix: Solid Analysis Batch: 107854	A-7-C MS							Client		: Matrix Type: To Batch: 1	tal/NA
· ····· , ··· · ··· · · · · · · · · · · · · · ·	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	•	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.9		995	1033		mg/Kg		104	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	995	921.4		mg/Kg		93	70 - 130		
C10-C28)											
		MS									
0			1								
Surrogate	%Recovery	S1+	Limits								
1-Chlorooctane		57+	70 <u>-</u> 130								
o-Terphenyl	124		70 - 130								
- Lab Sample ID: 880-56944-A	-7-D MSD					CI	ient S	ample II	D: Matrix S	oike Dur	olicate
Matrix: Solid										Type: To	
Analysis Batch: 107854										Batch: 1	
Analysis Baton. 101004	Sample	Sample	Spike	MSD	MSD				%Rec	Jacom	RPD
Analyte	-	Qualifier	Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics				1022		mg/Kg		103	70 - 130	1	20
(GRO)-C6-C10	~49.9	5	330	1022		myrxy		105	10 - 150	1	20
Diesel Range Organics (Over C10-C28)	<49.9	U	995	895.7		mg/Kg		90	70 - 130	3	20
	MSD	MSD									
Surrogate	%Recovery		Limits								

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Eurofins Midland

133 S1+

123

1-Chlorooctane

o-Terphenyl

70 - 130

70 - 130

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-107818 Matrix: Solid	8/1 -A									С	lient Sa	mple ID: M Prep Ty		
Analysis Batch: 107856												Prep B		
Analysis Batch. 107000		мв	MB									Перв	aton.	
Analyte	R		Qualifier	RL		MDL	Unit		D	Pro	pared	Analyze	he	Dil Fa
Gasoline Range Organics		50.0		50.0			mg/Kg				25 08:30	04/16/25 2		Dirit
GRO)-C6-C10		.00.0	0	00.0			iiig/itg			04/10/2	20 00.00	04/10/20 2	.0.01	
Diesel Range Organics (Over	<	50.0	U	50.0			mg/Kg		(04/16/2	25 08:30	04/16/25 2	20:01	
C10-C28)														
Dil Range Organics (Over C28-C36)	<	50.0	U	50.0			mg/Kg		(04/16/2	25 08:30	04/16/25 2	20:01	
		MB	МВ											
Surrogate	%Reco		Qualifier	Limits						Pro	pared	Analyze	ad	Dil Fa
I-Chlorooctane		100	Quanner	70 - 130					_		25 08:30	04/16/25 2		Dirt
p-Terphenyl		102		70 - 130							25 08:30	04/16/25 2		
reipiienyi		102		70 - 750						01/10/1	20 00.00	04/10/20 2	0.07	
Lab Sample ID: LCS 880-10781	18/2-A								Cli	ent S	ample I	D: Lab Co	ontrol S	Sampl
Matrix: Solid												Prep Ty		
Analysis Batch: 107856												Prep B		
-				Spike	LCS	LCS						%Rec		
Analyte				Added	Result	Qual	ifier	Unit		D	%Rec	Limits		
Gasoline Range Organics				1000	944.8			mg/Kg			94	70 - 130		
GRO)-C6-C10														
Diesel Range Organics (Over				1000	1090			mg/Kg			109	70 - 130		
C10-C28)														
	LCS	LCS												
Surrogate	%Recovery		ifier	Limits										
1-Chlorooctane	131	S1+		70 - 130										
o-Terphenyl	124			70 - 130										
Lab Sample ID: LCSD 880-107	818/3-A							Cli	ent S	Samp	le ID: La	ab Control	l Samp	
Matrix: Solid														
Analysis Batch: 107856												Prep Ty	ype: To	
												Prep Ty Prep B		otal/N
Analuta				Spike	LCSD	LCSI	D							otal/N
Analyte				Spike Added	LCSD Result			Unit		<u>D</u>	%Rec	Prep B		otal/N 10781
Gasoline Range Organics				•				Unit mg/Kg		<u>D</u>	%Rec	Prep B %Rec	Batch:	otal/N 10781 RP
Gasoline Range Organics GRO)-C6-C10				Added	Result 867.6			mg/Kg		<u>D</u>	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over				Added	Result					<u>D</u>		Prep B %Rec Limits	Batch:	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	LCSD	LCS		Added	Result 867.6			mg/Kg		<u>D</u> _	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	LCSD %Recovery			Added	Result 867.6			mg/Kg		<u>D</u>	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane				Added	Result 867.6			mg/Kg		<u>D</u>	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane	%Recovery			Added 1000 1000 <i>Limits</i>	Result 867.6			mg/Kg		<u>D</u>	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane	%Recovery 116			Added 1000 1000 <i>Limits</i> 70 - 130	Result 867.6			mg/Kg		<u>D</u>	87	Prep B %Rec Limits 70 - 130	Batch: 7	otal/N 10781 RP Lim 2
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate -Chlorooctane D-Terphenyl	%Recovery 116 110			Added 1000 1000 <i>Limits</i> 70 - 130	Result 867.6			mg/Kg			87	Prep B %Rec Limits 70 - 130	Batch: 1 RPD 9 8	otal/N 10781 RF
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane D-Terphenyl Lab Sample ID: 880-56945-9 M	%Recovery 116 110			Added 1000 1000 <i>Limits</i> 70 - 130	Result 867.6			mg/Kg			87	Prep B %Rec Limits 70 - 130 70 - 130	Batch: 9 9 8	otal/N 10781 RP <u>Lim</u> 2 (0-0.5
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-56945-9 M Matrix: Solid	%Recovery 116 110			Added 1000 1000 <i>Limits</i> 70 - 130	Result 867.6			mg/Kg			87	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5)
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-56945-9 M Matrix: Solid	%Recovery 116 110	Qual	ifier	Added 1000 1000 <i>Limits</i> 70 - 130	Result 867.6 1004			mg/Kg			87	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5)
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate I-Chlorooctane D-Terphenyl Lab Sample ID: 880-56945-9 M Matrix: Solid Analysis Batch: 107856	%Recovery 116 110	Qual	ifier	Added 1000 1000 <u>Limits</u> 70 - 130 70 - 130	Result 867.6 1004	Qual	ifier	mg/Kg			87	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 Sample ID: Prep Ty Prep B	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5)
Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: 880-56945-9 M Matrix: Solid Analysis Batch: 107856 Analyte	%Recovery 116 110 S Sample	Qual Sam Qual	ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike	Result 867.6 1004 MS	Qual	ifier	mg/Kg			87 100 Client S	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - Prep T Prep T Prep B %Rec	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5)
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate	%Recovery 116 110 S Sample Result	Qual Sam Qual	ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 867.6 1004 MS Result	Qual	ifier	mg/Kg mg/Kg Unit			87 100 Client S	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5)
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Surrogate 1-Chlorooctane 2-Terphenyl Lab Sample ID: 880-56945-9 M Matrix: Solid Analysis Batch: 107856 Analyte Gasoline Range Organics	%Recovery 116 110 S Sample Result	Qual Sam Qual U	ifier	Added 1000 1000 <i>Limits</i> 70 - 130 70 - 130 Spike Added	Result 867.6 1004 MS Result	Qual	ifier	mg/Kg mg/Kg Unit			87 100 Client S	Prep B %Rec Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 190 70	Batch: RPD 9 8 8 8 8 8 9 8 9 8 8 9 8 8 8 8 8 8 8 8 8 8 8 8 8	(0-0.5 (0-0.5 (0-0.5

Lab Sample ID: 880-56945-9 MS

Lab Sample ID: 880-56945-9 MSD

Analysis Batch: 107856

Analysis Batch: 107856

Gasoline Range Organics

Matrix: Solid

Surrogate

o-Terphenyl

Analyte

1-Chlorooctane

Matrix: Solid

(GRO)-C6-C10

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS %Recovery Qualifier

145 S1+

139 S1+

Sample Sample

<50.3 U

Result Qualifier

Limits

70 - 130

70 - 130

Spike

Added

1000

MSD MSD

1065

Result Qualifier

Unit

mg/Kg

D

%Rec

106

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Client Sample ID: BH-3 (0-0.5')

Client Sample ID: BH-3 (0-0.5')

%Rec

Limits

70 - 130

Prep Type: Total/NA

Prep Batch: 107818

Prep Type: Total/NA

Prep Batch: 107818

RPD

2

RPD

Limit

20

7

(GIVO)-CO-C IO											
Diesel Range Organics (Over	<50.3	U	1000	1081		mg/Kg		106	70 - 130	4	2
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane	153	S1+	70 - 130	-							
o-Terphenyl	142	S1+	70 - 130								
lethod: 300.0 - Anions, I	on Chromat	ography									
Lab Sample ID: 880-56945-1	MS							Client	t Sample ID): BH-1 (0-0.5
Matrix: Solid										Type: S	
Analysis Batch: 107869											
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Resul	t Qualifier	Unit	0) %Rec	Limits		
Chloride	788		251	1027	,	mg/Kg		95	90 - 110		
Matrix: Solid Analysis Batch: 107869										Type: S	
	•	Sample	Spike		MSD				%Rec		RP
Analyte		Qualifier	Added		Qualifier	Unit			Limits	RPD	Lim
Chloride	788		251	1027	·	mg/Kg		95	90 _ 110	0	2
Lab Sample ID: MB 880-1078	889/1-A							Client S	Sample ID:	Method	Blan
Matrix: Solid									Prep	Type: S	olub
Analysis Batch: 107893											
		MB MB									
Analyte	R	esult Qualifier		RL	MDL Unit		D	Prepared	Analyz	zed	Dil Fa
Chloride		<10.0 U		10.0	mg/k	(g			04/16/25	19:33	
Lab Sample ID: LCS 880-107	889/2-A						Clie	nt Sample	e ID: Lab C	ontrol S	ampl
Matrix: Solid								•		Type: S	
Analysis Batch: 107893											
-			Spike	LCS	LCS				%Rec		
							_				

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride		267.0		mg/Kg		107	90 - 110	

Eurofins Midland
Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCSD 880-107889/3 Matrix: Solid	3-A					Clie	nt Sam	ple ID:	Lab Contro Prep	ol Sample Type: Se	
Analysis Batch: 107893			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added		Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride			250	268.2		mg/Kg		107	90 - 110	0	20
_ Lab Sample ID: 880-56945-11 MS								Clie	nt Sample	ID: BH-3	3 (2.0')
Matrix: Solid										Type: So	· · · ·
Analysis Batch: 107893											
-	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	347		248	583.7		mg/Kg		95	90 - 110		
_ Lab Sample ID: 880-56945-11 MSD								Clie	nt Sample	ID: BH-3	3 (2.0')
Matrix: Solid										Type: So	
Analysis Batch: 107893											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	347		248	586.6		mg/Kg		96	90 - 110	0	20

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB Job ID: 880-56945-1 SDG: Lea County, New Mexico

GC VOA

Prep Batch: 107795

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Total/NA	Solid	5035	
880-56945-2	BH-1 (1.0')	Total/NA	Solid	5035	
880-56945-3	BH-1 (2.0')	Total/NA	Solid	5035	
880-56945-4	BH-1 (3.0')	Total/NA	Solid	5035	
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	5035	
880-56945-6	BH-2 (1.0')	Total/NA	Solid	5035	
880-56945-7	BH-2 (2.0')	Total/NA	Solid	5035	
880-56945-8	BH-2 (3.0')	Total/NA	Solid	5035	
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	5035	
880-56945-10	BH-3 (1.0')	Total/NA	Solid	5035	
880-56945-11	BH-3 (2.0')	Total/NA	Solid	5035	
880-56945-12	BH-3 (3.0')	Total/NA	Solid	5035	
880-56945-13	BH-3 (4.0')	Total/NA	Solid	5035	
880-56945-14	BH-4 (0-0.5')	Total/NA	Solid	5035	
880-56945-15	BH-4 (1.0')	Total/NA	Solid	5035	
880-56945-16	BH-4 (2.0')	Total/NA	Solid	5035	
880-56945-17	BH-4 (3.0')	Total/NA	Solid	5035	
880-56945-18	BH-4 (4.0')	Total/NA	Solid	5035	1
880-56945-19	BH-4 (5.0')	Total/NA	Solid	5035	
MB 880-107795/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-107795/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-107795/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56945-1 MS	BH-1 (0-0.5')	Total/NA	Solid	5035	
880-56945-1 MSD	BH-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 107885

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Total/NA	Solid	8021B	107795
880-56945-2	BH-1 (1.0')	Total/NA	Solid	8021B	107795
880-56945-3	BH-1 (2.0')	Total/NA	Solid	8021B	107795
880-56945-4	BH-1 (3.0')	Total/NA	Solid	8021B	107795
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	8021B	107795
880-56945-6	BH-2 (1.0')	Total/NA	Solid	8021B	107795
880-56945-7	BH-2 (2.0')	Total/NA	Solid	8021B	107795
880-56945-8	BH-2 (3.0')	Total/NA	Solid	8021B	107795
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	8021B	107795
880-56945-10	BH-3 (1.0')	Total/NA	Solid	8021B	107795
880-56945-11	BH-3 (2.0')	Total/NA	Solid	8021B	107795
880-56945-12	BH-3 (3.0')	Total/NA	Solid	8021B	107795
880-56945-13	BH-3 (4.0')	Total/NA	Solid	8021B	107795
880-56945-14	BH-4 (0-0.5')	Total/NA	Solid	8021B	107795
880-56945-15	BH-4 (1.0')	Total/NA	Solid	8021B	107795
880-56945-16	BH-4 (2.0')	Total/NA	Solid	8021B	107795
880-56945-17	BH-4 (3.0')	Total/NA	Solid	8021B	107795
880-56945-18	BH-4 (4.0')	Total/NA	Solid	8021B	107795
880-56945-19	BH-4 (5.0')	Total/NA	Solid	8021B	107795
MB 880-107795/5-A	Method Blank	Total/NA	Solid	8021B	107795
LCS 880-107795/1-A	Lab Control Sample	Total/NA	Solid	8021B	107795
LCSD 880-107795/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	107795
880-56945-1 MS	BH-1 (0-0.5')	Total/NA	Solid	8021B	107795
880-56945-1 MSD	BH-1 (0-0.5')	Total/NA	Solid	8021B	107795

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB Job ID: 880-56945-1 SDG: Lea County, New Mexico

GC VOA

Analysis Batch: 107957

ab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
80-56945-1	BH-1 (0-0.5')	Total/NA	Solid	Total BTEX	
380-56945-2	BH-1 (1.0')	Total/NA	Solid	Total BTEX	
880-56945-3	BH-1 (2.0')	Total/NA	Solid	Total BTEX	
880-56945-4	BH-1 (3.0')	Total/NA	Solid	Total BTEX	
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56945-6	BH-2 (1.0')	Total/NA	Solid	Total BTEX	
880-56945-7	BH-2 (2.0')	Total/NA	Solid	Total BTEX	
880-56945-8	BH-2 (3.0')	Total/NA	Solid	Total BTEX	
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56945-10	BH-3 (1.0')	Total/NA	Solid	Total BTEX	
380-56945-11	BH-3 (2.0')	Total/NA	Solid	Total BTEX	
880-56945-12	BH-3 (3.0')	Total/NA	Solid	Total BTEX	
380-56945-13	BH-3 (4.0')	Total/NA	Solid	Total BTEX	
380-56945-14	BH-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56945-15	BH-4 (1.0')	Total/NA	Solid	Total BTEX	
880-56945-16	BH-4 (2.0')	Total/NA	Solid	Total BTEX	
880-56945-17	BH-4 (3.0')	Total/NA	Solid	Total BTEX	
880-56945-18	BH-4 (4.0')	Total/NA	Solid	Total BTEX	
880-56945-19	BH-4 (5.0')	Total/NA	Solid	Total BTEX	

Prep Batch: 107817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56945-2	BH-1 (1.0')	Total/NA	Solid	8015NM Prep	
880-56945-3	BH-1 (2.0')	Total/NA	Solid	8015NM Prep	
880-56945-4	BH-1 (3.0')	Total/NA	Solid	8015NM Prep	
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56945-6	BH-2 (1.0')	Total/NA	Solid	8015NM Prep	
880-56945-7	BH-2 (2.0')	Total/NA	Solid	8015NM Prep	
880-56945-8	BH-2 (3.0')	Total/NA	Solid	8015NM Prep	
MB 880-107817/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-107817/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107817/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56944-A-7-C MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-56944-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 107818

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56945-10	BH-3 (1.0')	Total/NA	Solid	8015NM Prep	
880-56945-11	BH-3 (2.0')	Total/NA	Solid	8015NM Prep	
880-56945-12	BH-3 (3.0')	Total/NA	Solid	8015NM Prep	
880-56945-13	BH-3 (4.0')	Total/NA	Solid	8015NM Prep	
880-56945-14	BH-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56945-15	BH-4 (1.0')	Total/NA	Solid	8015NM Prep	
880-56945-16	BH-4 (2.0')	Total/NA	Solid	8015NM Prep	
880-56945-17	BH-4 (3.0')	Total/NA	Solid	8015NM Prep	
880-56945-18	BH-4 (4.0')	Total/NA	Solid	8015NM Prep	
880-56945-19	BH-4 (5.0')	Total/NA	Solid	8015NM Prep	

GC Semi VOA (Continued)

Prep Batch: 107818 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-107818/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-107818/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107818/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56945-9 MS	BH-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56945-9 MSD	BH-3 (0-0.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 107854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch	F
880-56945-1	BH-1 (0-0.5')	Total/NA	Solid	8015B NM	107817	
880-56945-2	BH-1 (1.0')	Total/NA	Solid	8015B NM	107817	
880-56945-3	BH-1 (2.0')	Total/NA	Solid	8015B NM	107817	
880-56945-4	BH-1 (3.0')	Total/NA	Solid	8015B NM	107817	
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	8015B NM	107817	
880-56945-6	BH-2 (1.0')	Total/NA	Solid	8015B NM	107817	
880-56945-7	BH-2 (2.0')	Total/NA	Solid	8015B NM	107817	
880-56945-8	BH-2 (3.0')	Total/NA	Solid	8015B NM	107817	
MB 880-107817/1-A	Method Blank	Total/NA	Solid	8015B NM	107817	
LCS 880-107817/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107817	
LCSD 880-107817/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107817	
880-56944-A-7-C MS	Matrix Spike	Total/NA	Solid	8015B NM	107817	
880-56944-A-7-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107817	

Analysis Batch: 107856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	8015B NM	107818
880-56945-10	BH-3 (1.0')	Total/NA	Solid	8015B NM	107818
880-56945-11	BH-3 (2.0')	Total/NA	Solid	8015B NM	107818
880-56945-12	BH-3 (3.0')	Total/NA	Solid	8015B NM	107818
880-56945-13	BH-3 (4.0')	Total/NA	Solid	8015B NM	107818
880-56945-14	BH-4 (0-0.5')	Total/NA	Solid	8015B NM	107818
880-56945-15	BH-4 (1.0')	Total/NA	Solid	8015B NM	107818
880-56945-16	BH-4 (2.0')	Total/NA	Solid	8015B NM	107818
880-56945-17	BH-4 (3.0')	Total/NA	Solid	8015B NM	107818
880-56945-18	BH-4 (4.0')	Total/NA	Solid	8015B NM	107818
880-56945-19	BH-4 (5.0')	Total/NA	Solid	8015B NM	107818
MB 880-107818/1-A	Method Blank	Total/NA	Solid	8015B NM	107818
LCS 880-107818/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107818
LCSD 880-107818/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107818
880-56945-9 MS	BH-3 (0-0.5')	Total/NA	Solid	8015B NM	107818
880-56945-9 MSD	BH-3 (0-0.5')	Total/NA	Solid	8015B NM	107818

Analysis Batch: 107952

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-56945-2	BH-1 (1.0')	Total/NA	Solid	8015 NM	
880-56945-3	BH-1 (2.0')	Total/NA	Solid	8015 NM	
880-56945-4	BH-1 (3.0')	Total/NA	Solid	8015 NM	
880-56945-5	BH-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-56945-6	BH-2 (1.0')	Total/NA	Solid	8015 NM	
880-56945-7	BH-2 (2.0')	Total/NA	Solid	8015 NM	
880-56945-8	BH-2 (3.0')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 76 of 126

Job ID: 880-56945-1 SDG: Lea County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 107952 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-9	BH-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-56945-10	BH-3 (1.0')	Total/NA	Solid	8015 NM	
880-56945-11	BH-3 (2.0')	Total/NA	Solid	8015 NM	
880-56945-12	BH-3 (3.0')	Total/NA	Solid	8015 NM	
880-56945-13	BH-3 (4.0')	Total/NA	Solid	8015 NM	
880-56945-14	BH-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-56945-15	BH-4 (1.0')	Total/NA	Solid	8015 NM	
880-56945-16	BH-4 (2.0')	Total/NA	Solid	8015 NM	
880-56945-17	BH-4 (3.0')	Total/NA	Solid	8015 NM	
880-56945-18	BH-4 (4.0')	Total/NA	Solid	8015 NM	
880-56945-19	BH-4 (5.0')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 107847

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-2	BH-1 (1.0')	Soluble	Solid	DI Leach	
880-56945-3	BH-1 (2.0')	Soluble	Solid	DI Leach	
880-56945-4	BH-1 (3.0')	Soluble	Solid	DI Leach	
880-56945-5	BH-2 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-6	BH-2 (1.0')	Soluble	Solid	DI Leach	
880-56945-7	BH-2 (2.0')	Soluble	Solid	DI Leach	
880-56945-8	BH-2 (3.0')	Soluble	Solid	DI Leach	
880-56945-9	BH-3 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-10	BH-3 (1.0')	Soluble	Solid	DI Leach	
880-56945-1 MS	BH-1 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-1 MSD	BH-1 (0-0.5')	Soluble	Solid	DI Leach	

Analysis Batch: 107869

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56945-1	BH-1 (0-0.5')	Soluble	Solid	300.0	107847
880-56945-2	BH-1 (1.0')	Soluble	Solid	300.0	107847
880-56945-3	BH-1 (2.0')	Soluble	Solid	300.0	107847
880-56945-4	BH-1 (3.0')	Soluble	Solid	300.0	107847
880-56945-5	BH-2 (0-0.5')	Soluble	Solid	300.0	107847
880-56945-6	BH-2 (1.0')	Soluble	Solid	300.0	107847
880-56945-7	BH-2 (2.0')	Soluble	Solid	300.0	107847
880-56945-8	BH-2 (3.0')	Soluble	Solid	300.0	107847
880-56945-9	BH-3 (0-0.5')	Soluble	Solid	300.0	107847
880-56945-10	BH-3 (1.0')	Soluble	Solid	300.0	107847
880-56945-1 MS	BH-1 (0-0.5')	Soluble	Solid	300.0	107847
880-56945-1 MSD	BH-1 (0-0.5')	Soluble	Solid	300.0	107847

Leach Batch: 107889

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56945-11	BH-3 (2.0')	Soluble	Solid	DI Leach	
880-56945-12	BH-3 (3.0')	Soluble	Solid	DI Leach	
880-56945-13	BH-3 (4.0')	Soluble	Solid	DI Leach	
880-56945-14	BH-4 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-15	BH-4 (1.0')	Soluble	Solid	DI Leach	

5

8

Job ID: 880-56945-1

SDG: Lea County, New Mexico

Prep Type

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Soluble

Prep Type

Soluble

Matrix

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Solid

Matrix

Solid

Client Sample ID

BH-4 (2.0')

BH-4 (3.0')

BH-4 (4.0')

BH-4 (5.0')

BH-3 (2.0')

BH-3 (2.0')

BH-3 (2.0')

BH-3 (3.0')

BH-3 (4.0')

BH-4 (1.0')

BH-4 (2.0')

BH-4 (3.0')

BH-4 (4.0')

BH-4 (5.0')

BH-3 (2.0')

BH-3 (2.0')

Method Blank

Lab Control Sample

Lab Control Sample Dup

BH-4 (0-0.5')

Client Sample ID

Method Blank

Lab Control Sample

Lab Control Sample Dup

HPLC/IC (Continued)

Lab Sample ID

880-56945-16

880-56945-17

880-56945-18

880-56945-19

MB 880-107889/1-A

LCS 880-107889/2-A

880-56945-11 MS

Lab Sample ID

880-56945-11

880-56945-12

880-56945-13

880-56945-14

880-56945-15

880-56945-16

880-56945-17

880-56945-18

880-56945-19

MB 880-107889/1-A

LCS 880-107889/2-A

880-56945-11 MS

880-56945-11 MSD

LCSD 880-107889/3-A

880-56945-11 MSD

LCSD 880-107889/3-A

Analysis Batch: 107893

Leach Batch: 107889 (Continued)

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Method

DI Leach

Method

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

300.0

Page 78 of 126 5

Prep Batch

Prep Batch

107889

107889

107889

107889

107889

107889

107889

107889

107889

107889

107889

107889

107889

107889

8
9

Client Sample ID: BH-1 (0-0.5')

5 6

9

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-1 Matrix: Solid

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 16:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 16:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:01	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 22:01	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:51	СН	EET MID

Lab Sample ID: 880-56945-2

Lab Sample ID: 880-56945-3

Lab Sample ID: 880-56945-4

Matrix: Solid

Matrix: Solid

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 16:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 16:54	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 22:16	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:07	СН	EET MID

Client Sample ID: BH-1 (2.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 17:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 17:15	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:31	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 22:31	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:12	СН	EET MID

Client Sample ID: BH-1 (3.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 17:35	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 17:35	SM	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: BH-1 (1.0')

Released to Imaging: 6/30/2025 2:51:16 PM

Client Sample ID: BH-1 (3.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:46	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 22:46	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:28	СН	EET MID

Client Sample ID: BH-2 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 17:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 17:56	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 23:00	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:33	СН	EET MID

Client Sample ID: BH-2 (1.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 18:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 18:16	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:15	SM	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 23:15	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:38	CH	EET MID

Client Sample ID: BH-2 (2.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 18:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 18:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:30	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 23:30	TKC	EET MID

Eurofins Midland

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-4 Matrix: Solid

Lab Sample ID: 880-56945-5

5 9

Lab Sample ID: 880-56945-6

Lab Sample ID: 880-56945-7

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

Matrix: Solid

9

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-7

Lab Sample ID: 880-56945-8

Lab Sample ID: 880-56945-9

Client Sample ID: BH-2 (2.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:43	СН	EET MID

Client Sample ID: BH-2 (3.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 18:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 18:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:59	SM	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 23:59	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:48	СН	EET MID

Client Sample ID: BH-3 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 19:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 19:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 20:45	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 20:45	ТКС	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 17:53	СН	EET MID

Client Sample ID: BH-3 (1.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Lab Sample ID: 880-56945-10 Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab 5035 Total/NA Prep 5.03 g 5 mL 107795 04/15/25 16:59 MNR EET MID Total/NA Analysis 8021B 1 5 mL 5 mL 107885 04/16/25 19:38 MNR EET MID Total/NA Total BTEX 107957 04/16/25 19:38 SM EET MID Analysis 1 Total/NA Analysis 8015 NM 1 107952 04/16/25 21:29 SM EET MID 10.06 g Total/NA 107818 FC Prep 8015NM Prep 10 mL 04/16/25 08:30 EET MID Total/NA Analysis 8015B NM 1 1 uL 1 uL 107856 04/16/25 21:29 TKC EET MID Soluble Leach DI Leach 50 mL 107847 04/16/25 10:00 SA EET MID 5.01 g Soluble Analysis 300.0 10 107869 04/16/25 17:58 СН EET MID

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-11

Matrix: Solid

5 6

9

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: BH-3 (2.0')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 21:11	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 21:11	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 21:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 21:46	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 19:50	СН	EET MID

Lab Sample ID: 880-56945-12

Lab Sample ID: 880-56945-13

Lab Sample ID: 880-56945-14

Matrix: Solid

Matrix: Solid

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: BH-3 (3.0')

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 21:32	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 21:32	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:01	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 22:01	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:07	СН	EET MID

Client Sample ID: BH-3 (4.0') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 21:52	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 21:52	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:16	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 22:16	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:13	СН	EET MID

Client Sample ID: BH-4 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 22:12	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 22:12	SM	EET MID

Eurofins Midland

Matrix: Solid

Client Sample ID: BH-4 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:31	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 22:31	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:19	СН	EET MID

Client Sample ID: BH-4 (1.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 22:33	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 22:33	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 22:46	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 22:46	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:25	CH	EET MID

Client Sample ID: BH-4 (2.0')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 22:53	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 22:53	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 23:00	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		5			107893	04/17/25 09:08	CH	EET MID

Client Sample ID: BH-4 (3.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 23:14	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 23:14	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:15	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.94 g 1 uL	10 mL 1 uL	107818 107856	04/16/25 08:30 04/16/25 23:15	FC TKC	EET MID EET MID

Eurofins Midland

Matrix: Solid

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-14 Matrix: Solid

Lab Sample ID: 880-56945-15

> 11 12 13

Lab Sample ID: 880-56945-16

Lab Sample ID: 880-56945-17

Matrix: Solid

Matrix: Solid

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56945-17

Lab Sample ID: 880-56945-19

Matrix: Solid

Matrix: Solid

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: BH-4 (3.0')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.00 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:48	СН	EET MID

Client Sample ID: BH-4 (4.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 23:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 23:34	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 23:30	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:53	СН	EET MID

Client Sample ID: BH-4 (5.0') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107795	04/15/25 16:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107885	04/16/25 23:54	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107957	04/16/25 23:54	SM	EET MID
Total/NA	Analysis	8015 NM		1			107952	04/16/25 23:59	SM	EET MID
Total/NA	Prep	8015NM Prep			9.95 g	10 mL	107818	04/16/25 08:30	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 23:59	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107889	04/16/25 14:12	SA	EET MID
Soluble	Analysis	300.0		1			107893	04/16/25 20:59	СН	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Lab Sample ID: 880-56945-18 Matrix: Solid

9

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB Job ID: 880-56945-1 SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Progra	ım	Identification Number	Expiration Date	
as	NELAP	ر	T104704400	06-30-25	
The following analytes	are included in this report, bu	It the laboratory is not certi	ified by the governing authority. This lis	st may include analytes	
• •	loes not offer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (O)ver C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics	, (GRO)-C6-C10	
8015B NM	8015NM Prep	Solid	Oil Range Organics (Over	r C28-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Job ID: 880-56945-1 SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

0040	Method Description	Protocol	Laboratory
3021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
3015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
3015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
3015NM Prep	Microextraction	SW846	EET MID
OI Leach	Deionized Water Leaching Procedure	ASTM	EET MID
Protocol Refe	rences:		
ASTM = A	STM International		

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56945-1

SDG: Lea	County	, New Mexico	

880-56945-2 BH-1 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-3 BH-1 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-4 BH-1 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-5 BH-2 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-6 BH-2 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0')	Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-56945-3 BH-1 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-4 BH-1 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-5 BH-2 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-6 BH-2 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0')	880-56945-1	BH-1 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-4 BH-1 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-5 BH-2 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-6 BH-2 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0')<	880-56945-2	BH-1 (1.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-5 BH-2 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-6 BH-2 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0'	880-56945-3	BH-1 (2.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-6 BH-2 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-7 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') <td>880-56945-4</td> <td>BH-1 (3.0')</td> <td>Solid</td> <td>04/15/25 00:00</td> <td>04/15/25 16:36</td>	880-56945-4	BH-1 (3.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-7 BH-2 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 <td>880-56945-5</td> <td>BH-2 (0-0.5')</td> <td>Solid</td> <td>04/15/25 00:00</td> <td>04/15/25 16:36</td>	880-56945-5	BH-2 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-8 BH-2 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0')	880-56945-6	BH-2 (1.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-9 BH-3 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-7	BH-2 (2.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-10 BH-3 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-11 BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-8	BH-2 (3.0')	Solid	04/15/25 00:00	04/15/25 16:36
BH-3 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-9	BH-3 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-12 BH-3 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-13 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-10	BH-3 (1.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-13 BH-3 (4.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-11	BH-3 (2.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-14 BH-4 (0-0.5') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-12	BH-3 (3.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-15 BH-4 (1.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-13	BH-3 (4.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-16 BH-4 (2.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-14	BH-4 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-17 BH-4 (3.0') Solid 04/15/25 00:00 04/15/25 16:36 880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-15	BH-4 (1.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-18 BH-4 (4.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-16	BH-4 (2.0')	Solid	04/15/25 00:00	04/15/25 16:36
	880-56945-17	BH-4 (3.0')	Solid	04/15/25 00:00	04/15/25 16:36
880-56945-19 BH-4 (5.0') Solid 04/15/25 00:00 04/15/25 16:36	880-56945-18	BH-4 (4.0')	Solid	04/15/25 00:00	04/15/25 16:36
	880-56945-19	BH-4 (5.0')	Solid	04/15/25 00:00	04/15/25 16:36

Chain of Custody

Project Manager:	Ashto	on Thielke				Bill to: (if a	different)		Laci L	uig								Wo	ork Or	rder (Comments	
Company Name:	Carm	iona Reso	urces			Company	Name:		Cimar	ex Ene	ergy					Program	: UST/P	ѕт []РІ	RP [}rowr	nfields R C	perfund
Address:	310 V	W Wall St	Ste 500			Address:			600 N	Marie	nfield S	t, Suite 6	00			State of F						
City, State ZIP:	Midla	nd, TX 79	701			City, Stat	e ZIP:		Midlar	nd, TX	79701								ei III	⊡st.		Level IV
Phone:	432-8	313-8988			Emai	I: laci.luig(@coterra	a.com &	ashtor	n.thiell	ke@cc	terra.co	m			Deliverab	les: ED	D	F	ADaP	T Othe	r:
Project Name:		Tatanka	Federal Com	4H CTB	Tur	n Around							ANA	LYSIS	REQU	EST					Preserv	ative Codes
Project Number:	2		2700		Routine	🗸 Rusł	n	Pres. Code													None: NO	DI Water: H
Project Location		Lea	County, New M	Aexico	Due Date:	72	hr.				_									[Cool: Cool	MeOH: Me
Sampler's Name:			GPJ/JM							ARO										1	HCL: HC	HNO3: HN
PO #:								S.		+										1	H ₂ S0 ₄ : H ₂	NaOH: Na
SAMPLE RECI	EIPT	Jen	Blank:	YES NO	Wet Ice:	Yes	No	nete	œ	DRC	300.0					-				\square	H ₃ PO ₄ : HP	
Received Intact:			No	Thermometer ID):	TI	755	Parameters	BTEX 8021B	TPH 8015M (GRO + DRO + MRO)	de 3									рюн	NaHSO₄: NAB	
Cooler Custody Se	als:	Yes	NO N/A	Correction Factor	or:		~~	a a	TEX	GF	Chloride									1 [±]	Na ₂ S ₂ O ₃ : NaS	
Sample Custody Se	eals:	Yes	No N/A	Temperature Re		4	. 4		•	15M	Ċ									i –	Zn Acetate+Na	
Total Containers:	_			Corrected Temp	erature:	4	.5			H 80									1	1	NaOH+Ascorb	bic Acid: SAPC
Sample Id	entificat	ion	Date	Time	Soil	Water	Grab/ Comp	# of Cont		TP											Sample	Comments
BH-1	(0-0.5')		4/15/2025		Х		G	1	Х	Х	Х											
BH-1	(1.0')		4/15/2025		X		G	1	X	Х	Х			_								
BH-1	(2.0')		4/15/2025		X		G	1	X	X	Х											
BH-1	(3.0')		4/15/2025		Х		G	1	X	Х	Х						_					
BH-2	(0-0.5')		4/15/2025		Х		G	1	X	Х	Х											
BH-2	! (1.0')		4/15/2025		X		G	1	X	Х	Х											
BH-2	2 (2.0')		4/15/2025		Х		G	1	X	X	Х											
BH-2	(3.0')		4/15/2025		X		G	1	Х	Х	Х											
BH-3	(0-0.5')		4/15/2025		Х		G	1	X	Х	Х											
BH-3	3 (1.0')		4/15/2025		х		G	1	X	Х	Х											
Comments:																						
			Relinquished	by: (Signature)					Date/	Time					Recei	ived by: (Signat	ure)				Date/Time
/	~	2		>										_	A	1					41	5/25 11
	-			-									1		M	<u> </u>						1 10
								-						-	-11							

Page 88 of 126

Received by OCD: 4/24/2025 9:39:31 AM

Chain of Custody

Work Order No: _____

Project Manager:	Ashto	n Thielke				Bill to: (if a	different)		Laci L	uig									Worl	(Orde	r Comm	ients	
Company Name:	Carmo	ona Reso	urces			Company	Name:		Cima	rex En	ergy					Progr	am: U	ST/PS1		Dro'	wnfields	RC	perfund
Address:	310 W	/ Wall St	Ste 500			Address:			600 N	Marie	nfield S	St, Suite 6	600			State	of Pro	ject:					
City, State ZIP:	Midlar	nd, TX 79	701			City, State	e ZIP:		Midla	nd, TX	79701					Repor	rting:Le	evel II	Level I	II 🗋 S	ST/UST	RRP	Level IV
Phone:	432-8	13-8988			Email	laci.luig(@coterra	.com &	ashto	n.thiel	ke@co	oterra.co	m			Delive	erables	EDD		ADa		Other	
Project Name:		Tatanka	Federal Com	4H CTB	Turn	Around					-		AN	ALYS	IS REC	QUEST					1	reserv	ative Codes
Project Number:			2700		Routine	🗸 Rush	1	Pres. Code													None:	NO	DI Water: H
Project Location		Lea C	ounty, New M	<i>A</i> exico	Due Date:	72	hr.														Cool:	Cool	MeOH: Me
Sampler's Name:			GPJ/JM							ARO											HCL:	нс	HNO3: HN
PO #:							_	S		+											H ₂ S0₄	: H ₂	NaOH: Na
SAMPLE REC	EIPT	Tem	p Blank:	Yes No	Wet Ice:	Yes	No	Parameters	a di	DRO	300.0					-				_	H₃PO,	₄: HP	
Received Intact:		Ye	s No	Thermometer I	D:			aran	802	o to	de 3(рюн	NaHS	O₄: NABI	S
Cooler Custody Se	als:	Yes	No N/A	Correction Fact	tor:			à	BTEX 8021B	(GR	Chloride									Ĭ	Na ₂ S ₂	O3: NaSO	D ₃
Sample Custody S	eals:	Yes	No N/A	Temperature R				-	•	15M	ວ້										Zn Ac	etate+Na	OH: Zn
Total Containers:				Corrected Tem	perature:					TPH 8015M (GRO + DRO + MRO)											NaOH	+Ascorbi	c Acid: SAPC
Sample Id	entificatio	on	Date	Time	Soil	Water	Grab/ Comp	# of Cont		TPI											1	Sample	Comments
BH-3	3 (2.0')		4/15/2025		X		G	1	X	X	X									-			
BH-3	3 (3.0')		4/15/2025		X		G	1	X	X	Х												
BH-3	8 (4.0')		4/15/2025		X		G	1	X	X	Х												
BH-4	(0-0.5')		4/15/2025		×		G	1	Х	X	Х												
BH-4	(1.0')		4/15/2025		Х		G	1	X	X	Х												
BH-4	(2.0')		4/15/2025		×		G	1	Х	X	Х												
	(3.0')		4/15/2025		×		G	1	X	X	Х												
BH-4	(4.0')		4/15/2025		X		G	1	Х	Х	Х				_								
• BH-4	(5.0')		4/15/2025		X		G	1	X	X	Х			_		_							
Comments:				1	1	<u> </u>			<u> </u>	1	1	<u> </u>							<u> </u>				
	3.		Relinquished b	oy: (Signature)					Date/	Time					Rec	ceived b	y: (Sig	gnature	2)			4	Date/Time
													_		-			-					
												I			4								

Released to Imaging: 6/30/2025 2:51:16 PM

14

Job Number: 880-56945-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56945 List Number: 1

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

iring zero headspace have no headspace or bubble is <6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring Carmona Resources 310 W Wall St Ste 500 Midland, Texas 79701 Generated 4/17/2025 12:28:30 PM

JOB DESCRIPTION

Tatanka Federal Com 4H CTB Lea County, New Mexico

JOB NUMBER

880-56944-1

ËOL

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

AMER

Generated 4/17/2025 12:28:30 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Laboratory Job ID: 880-56944-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
	5
	6
Surrogate Summary	13
QC Sample Results	14
	19
	22
Certification Summary	25
-	26
	27
	28
	29
•	

2

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB Page 94 of 126

Job ID: 880-56944-1
SDG: Lea County, New Mexico

Qualifiers

Qualifiers		3
GC VOA		
Qualifier	Qualifier Description	
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	5
GC Semi VOA	κ	
Qualifier	Qualifier Description	6
S1+	Surrogate recovery exceeds control limits, high biased.	
U	Indicates the analyte was analyzed for but not detected.	7
Glossary		0
Abbreviation	These commonly used abbreviations may or may not be present in this report.	0
¢	Listed under the "D" column to designate that the result is reported on a dry weight basis	9
%R	Percent Recovery	
CFL	Contains Free Liquid	10
CFU	Colony Forming Unit	10
CNF	Contains No Free Liquid	4.4
DER	Duplicate Error Ratio (normalized absolute difference)	
Dil Fac	Dilution Factor	10
DL	Detection Limit (DoD/DOE)	
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample	
DLC	Decision Level Concentration (Radiochemistry)	13
EDL	Estimated Detection Limit (Dioxin)	
LOD	Limit of Detection (DoD/DOE)	
LOQ	Limit of Quantitation (DoD/DOE)	
MCL	EPA recommended "Maximum Contaminant Level"	

EPA recommended "Maximum Contaminant Level" MCL

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

ML Minimum Level (Dioxin) MPN

Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

Negative / Absent NEG POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive

QC Quality Control

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)

Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Project: Tatanka Federal Com 4H CTB Job ID: 880-56944-1

Job ID: 880-56944-1

Eurofins Midland

Page 95 of 126

6944-1

Job Narrative 880-56944-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 4/15/2025 4:36 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 4.5°C.

GC VOA

Method 8021B: The surrogate recovery for the blank associated with preparation batch 880-107789 and analytical batch 880-107888 was outside the upper control limits.

Method 8021B: Surrogate recovery for the following samples were outside control limits: H-5 (0-0.5') (880-56944-5), H-6 (0-0.5') (880-56944-6), H-7 (0-0.5') (880-56944-7), H-8 (0-0.5') (880-56944-8), H-9 (0-0.5') (880-56944-9) and (CCV 880-107888/2). Evidence of matrix interference is present; therefore, re-extraction and/or re-analysis was not performed.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-7 (0-0.5') (880-56944-7), (LCS 880-107817/2-A), (880-56944-A-7-C MS) and (880-56944-A-7-D MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-9 (0-0.5') (880-56944-9) and (LCSD 880-107817/3-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: The method blank for preparation batch 880-107816 and analytical batch 880-107856 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCS 880-107816/2-A) and (880-56915-A-21-A). Evidence of matrix interferences is not obvious.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: (LCSD 880-107816/3-A), (880-56915-A-21-B MS) and (880-56915-A-21-C MSD). Evidence of matrix interferences is not obvious.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-1

Matrix: Solid

5

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: H-1 (0-0.5')

Client: Carmona Resources

Analyte	Organic Comp Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00202		0.00202		mg/Kg		04/15/25 16:54	04/16/25 17:55	
Toluene	<0.00202		0.00202		mg/Kg		04/15/25 16:54	04/16/25 17:55	
Ethylbenzene	<0.00202		0.00202		mg/Kg		04/15/25 16:54	04/16/25 17:55	
m-Xylene & p-Xylene	< 0.00403		0.00403		mg/Kg		04/15/25 16:54	04/16/25 17:55	
o-Xylene Xylenes, Total	<0.00202 <0.00403		0.00202 0.00403		mg/Kg mg/Kg		04/15/25 16:54 04/15/25 16:54	04/16/25 17:55 04/16/25 17:55	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)		Quanner	70 - 130				04/15/25 16:54	04/16/25 17:55	Dirra
1.4-Difluorobenzene (Surr)	113		70 - 130				04/15/25 16:54	04/16/25 17:55	
	110		10 - 100				04/13/23 10.34	04/10/20 11:00	
Method: TAL SOP Total BTEX - 1			Ы	MDI	11		Draward	Analyzad	
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00403	U	0.00403		mg/Kg			04/16/25 17:55	
Method: SW846 8015 NM - Diese					11	_	D	A	F
Analyte		Qualifier	RL	MDL		D	Prepared	Analyzed	Dil Fa
Total TPH	<50.2	U	50.2		mg/Kg			04/16/25 17:30	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics GRO)-C6-C10	<50.2	U	50.2		mg/Kg		04/16/25 08:21	04/16/25 17:30	
Diesel Range Organics (Over C10-C28)	<50.2	U	50.2		mg/Kg		04/16/25 08:21	04/16/25 17:30	
Dil Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		04/16/25 08:21	04/16/25 17:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	124		70 - 130				04/16/25 08:21	04/16/25 17:30	
p-Terphenyl	124		70 - 130				04/16/25 08:21	04/16/25 17:30	
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Soluble)						
		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Analyte	Result							04/16/25 14:51	
-	Result 66.8		10.1		mg/Kg			04/10/25 14.51	
Analyte Chloride ilient Sample ID: H-2 (0-0.5'	66.8				mg/Kg		Lab Sam	ple ID: 880-5	6944-2
Chloride lient Sample ID: H-2 (0-0.5 ate Collected: 04/15/25 00:00	66.8				mg/Kg		Lab Sam	ple ID: 880-5	6944-2 x: Solic
Chloride lient Sample ID: H-2 (0-0.5 ate Collected: 04/15/25 00:00	66.8				mg/Kg		Lab Sam	ple ID: 880-5	
Chloride lient Sample ID: H-2 (0-0.5 ate Collected: 04/15/25 00:00 ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile	66.8		10.1	MDI				ple ID: 880-5 Matri	x: Solid
Chloride lient Sample ID: H-2 (0-0.5 ate Collected: 04/15/25 00:00 ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile Analyte	66.8) Organic Comp Result	Qualifier	10.1	MDL	Unit	D	Prepared	ple ID: 880-5 Matri Analyzed	x: Solic
Chloride lient Sample ID: H-2 (0-0.5 ate Collected: 04/15/25 00:00 ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile Analyte Benzene	66.8 () Organic Comp Result								

Matrix: Solid

5

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-2

Client Sample ID: H-2 (0-0.5') Date Collected: 04/15/25 00:00

Project/Site: Tatanka Federal Com 4H CTB

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			04/16/25 18:15	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/16/25 17:45	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 17:45	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 17:45	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 17:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	125		70 - 130				04/16/25 08:21	04/16/25 17:45	1
o-Terphenyl	125		70 - 130				04/16/25 08:21	04/16/25 17:45	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	51.9		9.92		mg/Kg			04/16/25 14:56	1

Client Sample ID: H-3 (0-0.5')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

80-56944-3 Matrix: Solid

1

1

1

1

1

1

1

1

Method: SW846 8021B - Volatile Organic Compounds (GC) MDL Unit Analyte **Result Qualifier** RL D Prepared Analyzed Dil Fac Benzene <0.00199 U 0.00199 04/15/25 16:54 04/16/25 18:36 mg/Kg Toluene <0.00199 U 0.00199 04/15/25 16:54 04/16/25 18:36 mg/Kg Ethylbenzene <0.00199 U 0.00199 04/15/25 16:54 04/16/25 18:36 mg/Kg m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 04/15/25 16:54 04/16/25 18:36 o-Xylene <0.00199 U 0.00199 mg/Kg 04/15/25 16:54 04/16/25 18:36 <0.00398 U Xylenes, Total 0.00398 04/15/25 16:54 04/16/25 18:36 mg/Kg %Recovery Qualifier Limits Prepared Dil Fac Surrogate Analyzed 70 - 130 04/15/25 16:54 04/16/25 18:36 4-Bromofluorobenzene (Surr) 119 1,4-Difluorobenzene (Surr) 108 70 - 130 04/15/25 16:54 04/16/25 18:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/16/25 18:36	
Method: SW846 8015 NM - Dies	sel Range Organ	ics (DRO) (G	SC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/16/25 18:00	,
Method: SW846 8015B NM - Di	esel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
			49.6		mg/Kg		04/16/25 08:21	04/16/25 18:00	
Gasoline Range Organics	<49.6	0	45.0						
0 0	<49.6	U	43.0						
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	<49.6 <49.6		49.6		mg/Kg		04/16/25 08:21	04/16/25 18:00	1

Matrix: Solid

5

12 13

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-3

Client Sample ID: H-3 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/16/25 08:21	04/16/25 18:00	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	124		70 - 130				04/16/25 08:21	04/16/25 18:00	1
o-Terphenyl	126		70 - 130				04/16/25 08:21	04/16/25 18:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	107		9.98		mg/Kg			04/16/25 15:01	1
Client Sample ID: H-4 (0-0.5))						Lab Sam	ple ID: 880-5	6944-4
Date Collected: 04/15/25 00:00	·							•	x: Solid

Date Received: 04/15/25 16:36

Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
Toluene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/15/25 16:54	04/16/25 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	125		70 - 130				04/15/25 16:54	04/16/25 18:56	1
1,4-Difluorobenzene (Surr)	105		70 - 130				04/15/25 16:54	04/16/25 18:56	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			04/16/25 18:56	1

Method: SW846 8015 NM - Diesel R	ange Organi	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.4	U	50.4		mg/Kg			04/16/25 18:15	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.4	U	50.4		mg/Kg		04/16/25 08:21	04/16/25 18:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.4	U	50.4		mg/Kg		04/16/25 08:21	04/16/25 18:15	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		04/16/25 08:21	04/16/25 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	119		70 - 130				04/16/25 08:21	04/16/25 18:15	1
o-Terphenyl	122		70 - 130				04/16/25 08:21	04/16/25 18:15	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	87.0		10.0		mg/Kg			04/16/25 15:06	1

Client: Carmona Resources

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-5

Matrix: Solid

5

Date Collected: 04/15/25 00:00	
Date Received: 04/15/25 16:36	
Method: SW846 8021B - Volatile Org	anic Compounds (GC)
Analyte	Result Qualifier

Project/Site: Tatanka Federal Com 4H CTB

Client Sample ID: H-5 (0-0.5')

Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/15/25 16:54	04/16/25 19:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	144	S1+	70 - 130				04/15/25 16:54	04/16/25 19:17	1
1,4-Difluorobenzene (Surr)	127		70 - 130				04/15/25 16:54	04/16/25 19:17	1
Method: TAL SOP Total BTEX - Tot	tal BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			04/16/25 19:17	1
Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			04/16/25 18:30	1
Method: SW846 8015B NM - Diese	I Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 18:30	1
(GRO)-C6-C10	- 40.0		40.0				04/40/05 00:04	04/40/05 40:00	4
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 18:30	1
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		04/16/25 08:21	04/16/25 18:30	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				04/16/25 08:21	04/16/25 18:30	1
o-Terphenyl	122		70 - 130				04/16/25 08:21	04/16/25 18:30	1
Method: EPA 300.0 - Anions, Ion C	hromatograp	ohy - Soluble	e						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	76.1		9.94		mg/Kg			04/16/25 16:26	1
lient Sample ID: H-6 (0-0.5')							Lab Sam	ple ID: 880-5	6944-6
ate Oallestade 04/45/05 00:00								Matri	x: Solid
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O						_			
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte Benzene	Colored Colore	Qualifier U	0.00200	MDL	mg/Kg	<u>D</u>	04/15/25 16:54	04/16/25 19:37	-
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte Benzene	Result	Qualifier U		MDL		<u>D</u>	04/15/25 16:54 04/15/25 16:54	04/16/25 19:37 04/16/25 19:37	-
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte Benzene Toluene	Colored Colore	Qualifier U U	0.00200	MDL	mg/Kg	<u> </u>	04/15/25 16:54	04/16/25 19:37	1
ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene	Result <0.00200 <0.00200	Qualifier U U U	0.00200	MDL	mg/Kg mg/Kg	<u>D</u>	04/15/25 16:54 04/15/25 16:54	04/16/25 19:37 04/16/25 19:37	1
ate Collected: 04/15/25 00:00 ate Received: 04/15/25 16:36 Method: SW846 8021B - Volatile O Analyte Benzene Toluene Ethylbenzene m-Xylene & p-Xylene o-Xylene	Result <0.00200	Qualifier U U U U	0.00200 0.00200 0.00200	MDL	mg/Kg mg/Kg mg/Kg	<u> </u>	04/15/25 16:54 04/15/25 16:54 04/15/25 16:54	04/16/25 19:37 04/16/25 19:37 04/16/25 19:37	1

Matrix: Solid

Matrix: Solid

5

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-6

Client Sample ID: H-6 (0-0.5') Date Collected: 04/15/25 00:00

Project/Site: Tatanka Federal Com 4H CTB

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			04/16/25 19:37	1
Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			04/16/25 18:45	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		04/16/25 08:21	04/16/25 18:45	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		04/16/25 08:21	04/16/25 18:45	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		04/16/25 08:21	04/16/25 18:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	120		70 - 130				04/16/25 08:21	04/16/25 18:45	1
o-Terphenyl	122		70 - 130				04/16/25 08:21	04/16/25 18:45	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	81.1		9.92		mg/Kg			04/16/25 16:31	1

Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
Toluene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		04/15/25 16:54	04/16/25 19:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	132	S1+	70 - 130				04/15/25 16:54	04/16/25 19:57	1
1,4-Difluorobenzene (Surr)	107		70 - 130				04/15/25 16:54	04/16/25 19:57	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			04/16/25 19:57	1
	sel Range Organ	ics (DRO) (G	iC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			04/16/25 20:45	1
Method: SW846 8015B NM - Di Analyte	• •	nics (DRO) (Qualifier	(GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		04/16/25 08:26	04/16/25 20:45	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		04/16/25 08:26	04/16/25 20:45	1
C10-C28)									

Eurofins Midland

Released to Imaging: 6/30/2025 2:51:16 PM

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-7

Lab Sample ID: 880-56944-8

Client Sample ID: H-7 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		04/16/25 08:26	04/16/25 20:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	133	S1+	70 - 130				04/16/25 08:26	04/16/25 20:45	1
o-Terphenyl	129		70 - 130				04/16/25 08:26	04/16/25 20:45	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	76.5		10.1		mg/Kg			04/16/25 16:36	1

Client Sample ID: H-8 (0-0.5')

Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	< 0.00199	U	0.00199		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
Toluene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		04/15/25 16:54	04/16/25 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	134	S1+	70 - 130				04/15/25 16:54	04/16/25 20:18	1
1,4-Difluorobenzene (Surr)	119		70 - 130				04/15/25 16:54	04/16/25 20:18	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			04/16/25 20:18	1

Method: SW846 8015 NM - Diesel R	ange Organ	ics (DRO) (O	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			04/16/25 21:29	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 21:29	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 21:29	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		04/16/25 08:26	04/16/25 21:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	130		70 - 130				04/16/25 08:26	04/16/25 21:29	1
o-Terphenyl	126		70 - 130				04/16/25 08:26	04/16/25 21:29	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	62.7		10.0		mg/Kg			04/16/25 16:41	1

Matrix: Solid

Matrix: Solid

5

12 13

Client Sample Results

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-9

Matrix: Solid

5

Client Sample ID: H-9 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
Toluene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		04/15/25 16:54	04/16/25 20:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	137	S1+	70 - 130				04/15/25 16:54	04/16/25 20:38	1
1,4-Difluorobenzene (Surr)	119		70 - 130				04/15/25 16:54	04/16/25 20:38	1
Method: TAL SOP Total BTEX -	Total BTEX Calo	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00396	U	0.00396		mg/Kg			04/16/25 20:38	1
vietnou: Sw646 6015 NW - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier		MDL		D	Prepared	Analyzed	Dil Fac
Analyte	• •	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 04/16/25 21:46	Dil Fac
Analyte Fotal TPH	Result <50.5	Qualifier U		MDL		<u>D</u>	Prepared		
Analyte ^{Fotal TPH} Method: SW846 8015B NM - Die	Result <50.5	Qualifier U		MDL	mg/Kg	<u>D</u> 	Prepared Prepared		
Analyte Fotal TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <50.5	Qualifier U nics (DRO) Qualifier	RL 50.5		mg/Kg		<u>.</u>	04/16/25 21:46	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over	Result <50.5 sel Range Orga Result	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg Unit		Prepared	04/16/25 21:46 Analyzed	1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result Sel Range Orga Result <	Qualifier U nics (DRO) Qualifier U U	RL 50.5 (GC) RL 50.5		mg/Kg Unit mg/Kg		Prepared 04/16/25 08:26	04/16/25 21:46 Analyzed 04/16/25 21:46	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36)	Result <50.5 sel Range Orga Result <50.5 <50.5	Qualifier U nics (DRO) Qualifier U U	RL 50.5 (GC) RL 50.5 50.5		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/16/25 08:26 04/16/25 08:26	04/16/25 21:46 Analyzed 04/16/25 21:46 04/16/25 21:46	1 Dil Fac 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Dil Range Organics (Over C28-C36) Surrogate	Result <50.5 sel Range Orga Result <50.5 <50.5 <50.5	Qualifier U nics (DRO) Qualifier U U U	RL 50.5 (GC) RL 50.5 50.5 50.5		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26	04/16/25 21:46 Analyzed 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46	1 Dil Fac 1 1 1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <50.5	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 50.5 (GC) RL 50.5 50.5 50.5 50.5 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 Prepared	04/16/25 21:46 Analyzed 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46 Analyzed	1 Dil Fac 1 1 1 Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane p-Terphenyl	Result <50.5	Qualifier U nics (DRO) Qualifier U U U U Qualifier S1+ S1+	RL 50.5 (GC) RL 50.5 50.5 50.5 50.5 50.5 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg		Prepared 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 Prepared 04/16/25 08:26	O4/16/25 21:46 Analyzed 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46	1 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ior Analyte	Result <50.5	Qualifier U nics (DRO) Qualifier U U U U Qualifier S1+ S1+	RL 50.5 (GC) RL 50.5 50.5 50.5 50.5 50.5 70.130 70.130 70.130		mg/Kg Unit mg/Kg mg/Kg mg/Kg		Prepared 04/16/25 08:26 04/16/25 08:26 04/16/25 08:26 Prepared 04/16/25 08:26	O4/16/25 21:46 Analyzed 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46 04/16/25 21:46	1 Dil Fac 1 1 1 1 1 <i>Dil Fac</i> 1

Eurofins Midland

Released to Imaging: 6/30/2025 2:51:16 PM

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Method: 8021B - Volatile Organic Compounds (GC) Matrix: Solid

				Percent Surrogate Recovery (Acceptance Limits)	
		BFB1	DFBZ1		
Lab Sample ID	Client Sample ID	(70-130)	(70-130)		
880-56944-1	H-1 (0-0.5')	108	113		
880-56944-1 MS	H-1 (0-0.5')	121	104		
880-56944-1 MSD	H-1 (0-0.5')	119	109		- 2
880-56944-2	H-2 (0-0.5')	116	110		
880-56944-3	H-3 (0-0.5')	119	108		
880-56944-4	H-4 (0-0.5')	125	105		
880-56944-5	H-5 (0-0.5')	144 S1+	127		
880-56944-6	H-6 (0-0.5')	131 S1+	116		
880-56944-7	H-7 (0-0.5')	132 S1+	107		
880-56944-8	H-8 (0-0.5')	134 S1+	119		
880-56944-9	H-9 (0-0.5')	137 S1+	119		
LCS 880-107789/1-A	Lab Control Sample	112	107		
LCSD 880-107789/2-A	Lab Control Sample Dup	112	106		
MB 880-107789/5-A	Method Blank	218 S1+	127		
Surrogate Legend					
BFB = 4-Bromofluorober	nzene (Surr)				
DFBZ = 1,4-Difluorobenz	zene (Surr)				

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid

				P
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-56915-A-21-B MS	Matrix Spike	134 S1+	128	_
880-56915-A-21-C MSD	Matrix Spike Duplicate	134 S1+	127	
880-56944-1	H-1 (0-0.5')	124	124	
880-56944-2	H-2 (0-0.5')	125	125	
880-56944-3	H-3 (0-0.5')	124	126	
880-56944-4	H-4 (0-0.5')	119	122	
880-56944-5	H-5 (0-0.5')	120	122	
880-56944-6	H-6 (0-0.5')	120	122	
880-56944-7	H-7 (0-0.5')	133 S1+	129	
880-56944-7 MS	H-7 (0-0.5')	133 S1+	124	
880-56944-7 MSD	H-7 (0-0.5')	133 S1+	123	
880-56944-8	H-8 (0-0.5')	130	126	
880-56944-9	H-9 (0-0.5')	133 S1+	132 S1+	
LCS 880-107816/2-A	Lab Control Sample	136 S1+	133 S1+	
LCS 880-107817/2-A	Lab Control Sample	140 S1+	130	
LCSD 880-107816/3-A	Lab Control Sample Dup	132 S1+	125	
LCSD 880-107817/3-A	Lab Control Sample Dup	140 S1+	133 S1+	
MB 880-107816/1-A	Method Blank	115	120	
MB 880-107817/1-A	Method Blank	122	124	

Surrogate Legend

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Prep Type: Total/NA

Prep Type: Total/NA

Page 103 of 126

Lab Sample ID: MB 880-107789/5-A

QC Sample Results

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid								Prep Type: 1	otal/NA
Analysis Batch: 107888								Prep Batch:	107789
	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
Toluene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		04/15/25 16:54	04/16/25 17:26	1
	МВ	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	218	S1+	70 - 130				04/15/25 16:54	04/16/25 17:26	1
1,4-Difluorobenzene (Surr)	127		70 - 130				04/15/25 16:54	04/16/25 17:26	1

Lab Sample ID: LCS 880-107789/1-A Matrix: Solid

Analysis Batch: 107888

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1008		mg/Kg		101	70 - 130	
Toluene	0.100	0.1009		mg/Kg		101	70 - 130	
Ethylbenzene	0.100	0.09693		mg/Kg		97	70 - 130	
m-Xylene & p-Xylene	0.200	0.1975		mg/Kg		99	70 - 130	
o-Xylene	0.100	0.09741		mg/Kg		97	70 - 130	

	LCS	LCS	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	112		70 - 130
1,4-Difluorobenzene (Surr)	107		70 - 130

Lab Sample ID: LCSD 880-107789/2-A

Matrix: Solid

Analysis Batch: 107888							Prep l	Batch: 1	07789
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1104		mg/Kg		110	70 - 130	9	35
Toluene	0.100	0.09471		mg/Kg		95	70 - 130	6	35
Ethylbenzene	0.100	0.1085		mg/Kg		108	70 - 130	11	35
m-Xylene & p-Xylene	0.200	0.2093		mg/Kg		105	70 - 130	6	35
o-Xylene	0.100	0.09955		mg/Kg		100	70 - 130	2	35

	LCSD	LCSD	
Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)			70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Lab Sample ID: 880-56944-1 MS Matrix: Solid

Analysis Bataby 107999

Analysis Batch: 107888									Prep	Batch: 107789
	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	< 0.00202	U	0.100	0.09559		mg/Kg		96	70 - 130	
Toluene	<0.00202	U	0.100	0.08117		mg/Kg		81	70 - 130	

Eurofins Midland

Client Sample ID: H-1 (0-0.5')

Prep Type: Total/NA

SDG: Lea County, New Mexico

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 107789

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Page 105 of 126

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-56944-1 MS	5							Clie	nt Sample	ID: H-1 ((0-0.5')
Matrix: Solid										Гуре: То	
Analysis Batch: 107888									Prep	Batch: 1	07789
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Ethylbenzene	<0.00202	U	0.100	0.09283		mg/Kg		93	70 - 130		
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1923		mg/Kg		96	70 - 130		
o-Xylene	<0.00202	U	0.100	0.09549		mg/Kg		95	70 - 130		
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
4-Bromofluorobenzene (Surr)	121		70 - 130								
1,4-Difluorobenzene (Surr)	104		70 - 130								
Lab Sample ID: 880-56944-1 MS	2D							Clie	nt Sample	ю∙н_1 ((0-0 5')
Matrix: Solid								onei		Type: To	
Analysis Batch: 107888										Batch: 1	
· ·····	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U	0.100	0.1010		mg/Kg		101	70 - 130	5	35
Toluene	<0.00202	U	0.100	0.09103		mg/Kg		91	70 - 130	11	35
Ethylbenzene	<0.00202	U	0.100	0.09301		mg/Kg		93	70 - 130	0	35
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1951		mg/Kg		98	70 - 130	1	35
o-Xylene	<0.00202	U	0.100	0.09796		mg/Kg		98	70 - 130	3	35
	MSD	MSD									
Surrogate	%Recovery	Qualifier	Limits								
	119		70 - 130								
4-Bromofluorobenzene (Surr)	119										

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-107816/ Matrix: Solid Analysis Batch: 107856	1-A						Client Sa	mple ID: Metho Prep Type: 1 Prep Batch:	Total/NA
	MB	МВ							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		04/16/25 08:21	04/16/25 06:24	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		04/16/25 08:21	04/16/25 06:24	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		04/16/25 08:21	04/16/25 06:24	1
	MB	МВ							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	115		70 - 130				04/16/25 08:21	04/16/25 06:24	1
o-Terphenyl	120		70 - 130				04/16/25 08:21	04/16/25 06:24	1
Lab Sample ID: LCS 880-107816	/ 2-A					c	lient Sample I	D: Lab Control	Sample

Matrix: Solid Prep Type: Total/NA Analysis Batch: 107856 Prep Batch: 107816 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits D Gasoline Range Organics 1000 983.8 98 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 1109 mg/Kg 111 70 - 130 C10-C28)

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCS 880-1078 Matrix: Solid Analysis Batch: 107856	316/2-A						Client	Sample		ontrol Sa Type: Tot Batch: 10	al/NA
	(00										
Summa mada	LCS % December 1		Limita								
Surrogate 1-Chlorooctane	%Recovery	S1+	Limits 70 - 130								
		S1+	70 - 130 70 - 130								
o-Terphenyl	155	31+	70 - 730								
Lab Sample ID: LCSD 880-10	7816/3-A					Clie	nt Sam	nple ID:	Lab Contro	ol Sample	e Dup
Matrix: Solid										Type: Tot	-
Analysis Batch: 107856										Batch: 1	
			Spike	LCSD	LCSD				%Rec		RPD
Analyte			Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics			1000	915.0		mg/Kg		92	70 - 130	7	20
(GRO)-C6-C10											
Diesel Range Organics (Over			1000	1036		mg/Kg		104	70 - 130	7	20
C10-C28)											
	LCSD	LCSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		S1+	70 - 130								
o-Terphenyl	125		70 - 130								
Lab Sample ID: 880-56915-A-	21-B MS							Client	Sample ID	: Matrix	Spike
Matrix: Solid										Type: Tot	
Analysis Batch: 107856										Batch: 1	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Gasoline Range Organics	<49.7	U	999	960.0		mg/Kg		96	70 - 130		
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.7	U	999	984.5		mg/Kg		99	70 - 130		
C10-C28)											
	MS	MS									
Surrogate	%Recovery	Qualifier	Limits								
1-Chlorooctane		S1+	70 - 130								
o-Terphenyl	128		70 - 130								
Lab Sample ID: 880-56915-A-	21-C MSD					CI	ient Sa	ample IC): Matrix S	oike Dup	licate
Matrix: Solid										Type: Tot	
Analysis Batch: 107856										Batch: 1	
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.7	U	999	960.2		mg/Kg		96	70 - 130	0	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.7	U	999	993.4		mg/Kg		99	70 - 130	1	20
C10-C28)											
	MSD	MSD									
Surrogate	%Recovery		Limits								
1-Chlorooctane		S1+	70 - 130								
o-Terphenyl	127		70 - 130								

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

	50).0).0)	LCS	mg/Kg mg/Kg mg/Kg		04/11 04/11 04/11 04/11 04/1 04/1	repared 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 Sample	Prep Ty Prep Ba 04/16/25 20 04/16/25 20 04	atch: 1 1 1 1 1 1 1 1 1 1 1 1	Dil Fa Dil Fa
Qualifier U U MB Qualifier 	50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LCS	mg/Kg mg/Kg mg/Kg		04/11 04/11 04/11 04/11 04/1 04/1	6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26	Analyzed 04/16/25 20 04/16/25 20 04/16/25 20 04/16/25 20 04/16/25 20 04/16/25 20 D: Lab Cor Prep Ty	a ::01 ::01 ::01 a ::01 ::01 ::01 ::01 :	Dil Fa
Qualifier U U MB Qualifier 	50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LCS	mg/Kg mg/Kg mg/Kg		04/11 04/11 04/11 04/11 04/1 04/1	6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 04/16/25 20 <i>Analyze</i> 04/16/25 20 04/16/25 20 04/16/25 20 D: Lab Cor Prep Ty	1:01 1:01 1:01 1:01 1:01 1:01 1:01 1:01	Dil Fa
U U MB Qualifier 	50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	0.0 0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LCS	mg/Kg mg/Kg mg/Kg		04/11 04/11 04/11 04/11 04/1 04/1	6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 04/16/25 20 <i>Analyze</i> 04/16/25 20 04/16/25 20 04/16/25 20 D: Lab Cor Prep Ty	1:01 1:01 1:01 1:01 1:01 1:01 1:01 1:01	Dil Fa
U MB Qualifier	50 50 <u>Limits</u> 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	0.0 0.0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	LCS	mg/Kg mg/Kg		04/11 04/11 PI 04/1 04/1	5/25 08:26 5/25 08:26 repared 6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 <u>Analyze</u> 04/16/25 20 04/16/25 20 D: Lab Cor Prep Ty	:01 :01 <u>d</u> 0:01 0:01 0:01 0:01 0:01	Dil Fa
U MB Qualifier	50 <u>Limits</u> 70 - 130 70 - 130 Spike Added 1000	0.0)) Result 1119	LCS	mg/Kg		04/10 Pi 04/1 04/1	6/25 08:26 repared 6/25 08:26 6/25 08:26	04/16/25 20 <u>Analyze</u> 04/16/25 20 04/16/25 20 04/16/25 20 ID: Lab Cor Prep Ty	2:01 <u>d</u> 2:01 2:01 2:01 2:01 2:01	Dil Fa
MB Qualifier 	Limits 70 - 130 70 - 130 Spike Added 1000)) LCS Result 1119	LCS			P 04/1 04/1	r epared 6/25 08:26 6/25 08:26	Analyze 04/16/25 20 04/16/25 20 04/16/25 20 ID: Lab Cor Prep Ty	<u>d</u>):01):01 htrol S pe: To	Dil Fa Sampl
Qualifier	70 - 130 70 - 130 70 - 130 Spike Added 1000	LCS Result 1119		fier Ur		04/1 04/1	6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 ID: Lab Cor Prep Ty	0:01 0:01 htrol S pe: To	Sampl
lifier L	70 - 130 70 - 130 70 - 130 Spike Added 1000	LCS Result 1119		fier Ur		04/1 04/1	6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 ID: Lab Cor Prep Ty	0:01 0:01 htrol S pe: To	Sampl
lifier L	70 - 130 Spike Added 1000	LCS Result 1119		fier Ur		04/1 04/1	6/25 08:26 6/25 08:26	04/16/25 20 04/16/25 20 ID: Lab Cor Prep Ty	0:01 0:01 htrol S pe: To	Sampl
lifier L	Spike Added 1000	LCS Result 1119		fier Ur				ID: Lab Cor Prep Ty	ntrol S pe: To	
lifier L	Added 1000	Result 1119		fier U		Client	Sample	Prep Ty	pe: To	
lifier L	Added 1000	Result 1119		fier Ur		onone	Cumpic	Prep Ty	pe: To	
lifier L	Added 1000	Result 1119		fier Ur	.,				-	Junit.
lifier L	Added 1000	Result 1119		fier Ur	.,				tch	10791
lifier L	Added 1000	Result 1119		fier Ur				%Rec	aten.	10/01
lifier L	1000	1119	Quain			D	9/ Dag			
lifier L						D	%Rec	Limits		
lifier L	1000	1110		m	g/Kg		112	70 - 130		
lifier L				m	g/Kg		111	70 - 130		
7	Limits									
,	70 - 130									
7	70 - 130									
					Clie	nt Sam	ple ID: La	ab Control	Samp	le Du
								Prep Ty	pe: To	otal/N
								Prep Ba	atch:	10781
	Spike	LCSD	LCSD	I.				%Rec		RP
	Added	Result	Qualif	fier Ur	nit	D	%Rec	Limits	RPD	Lim
	1000	1087		m	g/Kg		109	70 - 130	3	2
	1000	1114		m	g/Kg		111	70 - 130	0	2
D										
lifier L	Limits									
	7	Added	Added Result 1000 1087 1000 1114 er Limits 70 - 130	Added Result Quality 1000 1087 1087 1000 1114 1000 1114 er Limits 70 - 130 1000	Added Result Qualifier Un 1000 1087 m 1000 1114 m 2r Limits 70 - 130	Spike LCSD LCSD Added Result Qualifier Unit 1000 1087 mg/Kg 1000 1114 mg/Kg er Limits 70 - 130	Spike LCSD LCSD Added Result Qualifier Unit D 1000 1087 mg/Kg 1000 1114 mg/Kg	Spike LCSD LCSD Added Result Qualifier Unit D %Rec 1000 1087 mg/Kg 109 109 1000 1114 mg/Kg 111 er Limits 70 - 130 70 - 130	Spike LCSD LCSD Wrep Back Added Result Qualifier Unit D %Rec Limits 1000 1087 mg/Kg 109 70 - 130 70 - 130 1000 1114 mg/Kg 111 70 - 130 er Limits 70 - 130 70 - 130 70 - 130 70 - 130 70 - 130	Added Result Qualifier Unit D %Rec Limits RPD 1000 1087 mg/Kg 109 70 - 130 3 1000 1114 mg/Kg 111 70 - 130 0 er Limits 70 - 130 Control Contro <thcontrol< th=""> Control <thc< td=""></thc<></thcontrol<>

Released to Imaging: 6/30/2025 2:51:16 PM

Lab Sample ID: 880-56944-7 MS

Analysis Batch: 107854

Matrix: Solid

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Page 108 of 126

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Client Sample ID: H-7 (0-0.5')

Prep Type: Total/NA

1 2 3 4 5 6 7 8 9 10 11 12

Client Sample ID: H-7 (0-0.5') Prep Type: Total/NA

Prep Type: Total/NA Prep Batch: 107817

-			
	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	133	S1+	70 _ 130
o-Terphenyl	124		70 _ 130

Lab Sample ID: 880-56944-7 MSD Matrix: Solid

Analysis Batch: 107854									Prep I	Batch: 1	07817
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	<49.9	U	995	1022		mg/Kg		103	70 - 130	1	20
(GRO)-C6-C10											
Diesel Range Organics (Over	<49.9	U	995	895.7		mg/Kg		90	70 - 130	3	20
C10-C28)											
	MSD	MSD									
Surrogate %	Recovery	Qualifier	Limits								
1-Chlorooctane	133	S1+	70 - 130								
o-Terphenyl	123		70 - 130								

Method:	300.0 -	Anions,	lon	Chromatography
---------	---------	---------	-----	----------------

Lab Sample ID: 880-56945-A-1- Matrix: Solid Analysis Batch: 107869	G MS							Client	Sample ID Prep	: Matrix Type: S	
	Sample	Sample	Spike	MS	MS				%Rec		
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits		
Chloride	788		251	1027		mg/Kg		95	90 - 110		
- Lab Sample ID: 880-56945-A-1-	H MSD					Cli	ent Sa	ample ID	: Matrix Sp	oike Dup	licate
Matrix: Solid									Prep	Type: S	oluble
Analysis Batch: 107869											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	788		251	1027		mg/Kg		95	90 - 110	0	20
QC Association Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB Job ID: 880-56944-1 SDG: Lea County, New Mexico

GC VOA

Prep Batch: 107789

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	5035	
880-56944-5	H-5 (0-0.5')	Total/NA	Solid	5035	
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	5035	
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	5035	
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	5035	
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	5035	
MB 880-107789/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-107789/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-107789/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-56944-1 MS	H-1 (0-0.5')	Total/NA	Solid	5035	
880-56944-1 MSD	H-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 107888

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-5	H-5 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	8021B	107789
MB 880-107789/5-A	Method Blank	Total/NA	Solid	8021B	107789
LCS 880-107789/1-A	Lab Control Sample	Total/NA	Solid	8021B	107789
LCSD 880-107789/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	107789
880-56944-1 MS	H-1 (0-0.5')	Total/NA	Solid	8021B	107789
880-56944-1 MSD	H-1 (0-0.5')	Total/NA	Solid	8021B	107789

Analysis Batch: 107961

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	Total BTEX	
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 107816

Lab Sample ID 880-56944-1	Client Sample ID H-1 (0-0.5')	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	

Eurofins Midland

Page 109 of 126

5

QC Association Summary

GC Semi VOA (Continued)

Prep Batch: 107816 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-107816/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-107816/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107816/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56915-A-21-B MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-56915-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 107817

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-107817/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-107817/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-107817/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-56944-7 MS	H-7 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-56944-7 MSD	H-7 (0-0.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 107854

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	8015B NM	107817
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	8015B NM	107817
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	8015B NM	107817
MB 880-107817/1-A	Method Blank	Total/NA	Solid	8015B NM	107817
LCS 880-107817/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107817
LCSD 880-107817/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107817
880-56944-7 MS	H-7 (0-0.5')	Total/NA	Solid	8015B NM	107817
880-56944-7 MSD	H-7 (0-0.5')	Total/NA	Solid	8015B NM	107817

Analysis Batch: 107856

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	107816
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	107816
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	107816
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	107816
880-56944-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	107816
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	8015B NM	107816
MB 880-107816/1-A	Method Blank	Total/NA	Solid	8015B NM	107816
LCS 880-107816/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	107816
LCSD 880-107816/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	107816
880-56915-A-21-B MS	Matrix Spike	Total/NA	Solid	8015B NM	107816
880-56915-A-21-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	107816

Analysis Batch: 107951

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	

Eurofins Midland

Page 110 of 126

Job ID: 880-56944-1 SDG: Lea County, New Mexico

QC Association Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

GC Semi VOA (Continued)

Analysis Batch: 107951 (Continued)

Lab Sample ID 880-56944-5	Client Sample ID H-5 (0-0.5')	Prep Type Total/NA	Matrix Solid	Method 8015 NM	Prep Batch
880-56944-6	H-6 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-7	H-7 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-8	H-8 (0-0.5')	Total/NA	Solid	8015 NM	
880-56944-9	H-9 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 107847

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-6	H-6 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-7	H-7 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-8	H-8 (0-0.5')	Soluble	Solid	DI Leach	
880-56944-9	H-9 (0-0.5')	Soluble	Solid	DI Leach	
880-56945-A-1-G MS	Matrix Spike	Soluble	Solid	DI Leach	
880-56945-A-1-H MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 107869

Lab Sample ID	Client Sample ID	Ргер Туре	Matrix	Method	Prep Batch
880-56944-1	H-1 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-2	H-2 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-3	H-3 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-4	H-4 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-5	H-5 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-6	H-6 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-7	H-7 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-8	H-8 (0-0.5')	Soluble	Solid	300.0	107847
880-56944-9	H-9 (0-0.5')	Soluble	Solid	300.0	107847
880-56945-A-1-G MS	Matrix Spike	Soluble	Solid	300.0	107847
880-56945-A-1-H MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	107847

Page 111 of 126

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Project/Site: Tatanka Federal Com 4H CTB

Client Sample ID: H-1 (0-0.5')

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-1 Matrix: Solid

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 17:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 17:55	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 17:30	SM	EET MID
Total/NA	Prep	8015NM Prep			9.97 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 17:30	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 14:51	СН	EET MID

Lab Sample ID: 880-56944-2

Lab Sample ID: 880-56944-3

Lab Sample ID: 880-56944-4

Matrix: Solid

Matrix: Solid

5 6

9

Client Sample ID: H-2 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 18:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 18:15	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 17:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 17:45	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 14:56	СН	EET MID

Client Sample ID: H-3 (0-0.5') Date Collected: 04/15/25 00:00

Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 18:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 18:36	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 18:00	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 18:00	ткс	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 15:01	CH	EET MID

Client Sample ID: H-4 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 18:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 18:56	SM	EET MID

Eurofins Midland

Matrix: Solid

Released to Imaging: 6/30/2025 2:51:16 PM

Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-4 Matrix: Solid

Lab Sample ID: 880-56944-5

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Client Sample ID: H-4 (0-0.5')

Client: Carmona Resources

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			107951	04/16/25 18:15	SM	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 18:15	ТКС	EET MID
Soluble	Leach	DI Leach			5.00 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 15:06	СН	EET MID

Client Sample ID: H-5 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 19:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 19:17	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 18:30	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 18:30	TKC	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:26	СН	EET MID

Client Sample ID: H-6 (0-0.5')

Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 19:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 19:37	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 18:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	107816	04/16/25 08:21	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107856	04/16/25 18:45	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:31	СН	EET MID

Client Sample ID: H-7 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 19:57	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 19:57	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 20:45	SM	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 20:45	ткс	EET MID

Eurofins Midland

Matrix: Solid

Lab Sample ID: 880-56944-6

Lab Sample ID: 880-56944-7

Matrix: Solid

Matrix: Solid

Client: Carmona Resources

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-56944-8

Lab Sample ID: 880-56944-9

Client Sample ID: H-7 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

Project/Site: Tatanka Federal Com 4H CTB

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:36	СН	EET MID

Client Sample ID: H-8 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 20:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 20:18	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 21:29	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 21:29	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:41	СН	EET MID

Client Sample ID: H-9 (0-0.5') Date Collected: 04/15/25 00:00 Date Received: 04/15/25 16:36

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Ргер Туре	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	107789	04/15/25 16:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	107888	04/16/25 20:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			107961	04/16/25 20:38	SM	EET MID
Total/NA	Analysis	8015 NM		1			107951	04/16/25 21:46	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	107817	04/16/25 08:26	FC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	107854	04/16/25 21:46	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	107847	04/16/25 10:00	SA	EET MID
Soluble	Analysis	300.0		1			107869	04/16/25 16:46	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Lab Sample ID: 880-56944-7 Matrix: Solid

9

Matrix: Solid

Matrix: Solid

Accreditation/Certification Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

hority	Progra	am	Identification Number	Expiration Date	
as	NELAF	2	T104704400	06-30-25	
The following analytes	are included in this report. bu	ut the laboratory is not certif	fied by the governing authority. This lis	st may include analytes	
• •	oes not offer certification.				
Analysis Method	Prep Method	Matrix	Analyte		
300.0		Solid	Chloride		
8015 NM		Solid	Total TPH		
8015B NM	8015NM Prep	Solid	Diesel Range Organics (O)ver C10-C28)	
8015B NM	8015NM Prep	Solid	Gasoline Range Organics	(GRO)-C6-C10	
8015B NM	8015NM Prep	Solid	Oil Range Organics (Over	C28-C36)	
8021B	5035	Solid	Benzene		
8021B	5035	Solid	Ethylbenzene		
8021B	5035	Solid	m-Xylene & p-Xylene		
8021B	5035	Solid	o-Xylene		
8021B	5035	Solid	Toluene		
8021B	5035	Solid	Xylenes, Total		
Total BTEX		Solid	Total BTEX		

Job ID: 880-56944-1 SDG: Lea County, New Mexico

Method Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56944-1 SDG: Lea County, New Mexico

lethod	Method Description	Protocol	Laboratory
021B	Volatile Organic Compounds (GC)	SW846	EET MID
otal BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
00.0	Anions, Ion Chromatography	EPA	EET MID
035	Closed System Purge and Trap	SW846	EET MID
015NM Prep	Microextraction	SW846	EET MID
I Leach	Deionized Water Leaching Procedure	ASTM	EET MID

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources Project/Site: Tatanka Federal Com 4H CTB

Job ID: 880-56944-1 SDG: Lea County, New Mexico

ab Sample ID	Client Sample ID	Matrix	Collected	Received	
30-56944-1	H-1 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-2	H-2 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-3	H-3 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-4	H-4 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-5	H-5 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-6	H-6 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-7	H-7 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-8	H-8 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	
30-56944-9	H-9 (0-0.5')	Solid	04/15/25 00:00	04/15/25 16:36	

Project Manager:	Ashton Thielke Bill to: (if different) Laci Luig] [W	ork O	rder	Comments							
ompany Name:	Carmona Res	ources			Company Name:			Cima	ex Ene	ergy						Progra	am: US	ST/PS	Т	RP [row	nfieldstRC	
ddress:	310 W Wall St Ste 500 Address:					600 N Marienfield St, Suite 600								State	of Proj	ect:							
City, State ZIP:	Midland, TX 7	9701			City, State ZIP:			Midla	nd, TX	79701]	Report	ting:Le	vel II	Lev	el III	⊡st	r/ust DRRP	Level IV
Phone:	432-813-8988			Email:	Email: laci.luig@coten		a.com &	ashtor	n.thiel	ke@co	terra.co	om] [Delive	rables:	EDD			ADaP	Other:	
roject Name:	Tatank	a Federal Com	4H CTB	Turn	Around			ANALYSIS R						EQUEST Preservative Codes									
Project Number:		2700		Routine	✓ Rush	ı	Pres. Code																DI Water: H ₂ C
Project Location	Lea	County, New M	/exico	Due Date:	72	hr.																1	MeOH: Me
Sampler's Name:		GPJ/JM							+ DRO + MRO)	1		-											HNO3: HN
0 #:			E				<u>د</u>		≥ +													H₂S0₄: H₂	NaOH: Na
AMPLE RECE	IPT Te	mp Blank:	Yes No	Wet Ice:	Ves) No	Parameters	₽	DRG	300.0												H₃PO₄: HP	
eceived Intact:	()	es No	Thermometer ID	:	H	RR	aran	BTEX 8021B	¢	de 30											рон	NaHSO₄: NABIS	
ooler Custody Seal	ls: Yes	NO NA	Correction Facto	r:		7	ă.	TEX	GR (Chloride											Ť	Na ₂ S ₂ O ₃ : NaSO ₃ Zn Acetate+NaOH: Zn	
ample Custody Sea	als: Yes	No N/A	Temperature Re		4	·Ce			15M	5													
otal Containers:			Corrected Temp	erature:	14	<u> </u>			TPH 8015M (GRO				1									NaOH+Ascorbic A	Acid: SAPC
Sample Ider	ntification	Date	Time	Soil	Water	Grab/ Comp	# of Cont		ΤÞ													Sample Co	omments
H-1 (0-	-0.5')	4/15/2025		Х		G	1	X	х	X													
H-2 (0-	-0.5')	4/15/2025		Х		G	1	X	X	X													
H-3 (0-	-0.5')	4/15/2025		Х		G	1	X	Х	X													
H-4 (0-	-0.5')	4/15/2025		Х		G	1	X	Х	X													
H-5 (0-	-0.5')	4/15/2025		Х		G	. 1	X	Х	X													
H-6 (0-	-0.5')	4/15/2025		Х		G	1	X	Х	X													
H-7 (0-	-0.5')	4/15/2025		Х		G	1	X	Х	X													
H-8 (0-	-0.5')	4/15/2025		Х		G	1	X	X	X													
	-0.5')	4/15/2025		X		G	1	X	X	X			_									L	
H-9 (0-																							

13

Received by OCD: 4/24/2025 9:39:31 AM

Page 118 of 126

Released to Imaging: 6/30/2025 2:51:16 PM

4/17/2025

Job Number: 880-56944-1

List Source: Eurofins Midland

SDG Number: Lea County, New Mexico

Login Sample Receipt Checklist

Client: Carmona Resources

Login Number: 56944 List Number: 1

<6mm (1/4").

Creator: Vasquez, Julisa

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Page 120 of 126

QUESTIONS

Action 455239

	QUESTIONS
Operator:	OGRID:
Coterra Energy Operating F LLC	373910
6001 Deauville Blvd.	Action Number:
Midland, TX 79706	455239
	Action Type: [C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2507941450
Incident Name	NAPP2507941450 TATANKA FEDERAL COM 4H CTB @ 0
Incident Type	Produced Water Release
Incident Status	Deferral Request Received

Location of Release Source

Please answer all the questions in this group.					
Site Name	Tatanka Federal Com 4H CTB				
Date Release Discovered	03/20/2025				
Surface Owner	Federal				

Incident Details

Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	Νο

Nature and Volume of Release

Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.

Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Fitting Produced Water Released: 344 BBL Recovered: 344 BBL Lost: 0 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	The Lease Operator arrived on location this morning and found fluid accumulated inside the lined containment. Further investigation revealed that a 3" carbon steel nipple on a 3" 90° fitting had corroded. The nipple was on a bypass line on the discharge side of the water transfer pump, which allowed fluids from the water tank to drain into the containment area. An estimated 344 barrels produced water was released into the lined containment. The containment was not equipped with a berm kill switch, and an issue with the facility comm's prevented an alarm from being sent. Vac trucks have recovered all fluids from the lined containment and the containment is scheduled to be washed. A liner inspection will be scheduled in the coming days.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 455239

Page 121 of 126

QUESTIONS (continued)

Operator:		OGRID:
Cot	terra Energy Operating F LLC	373910
600	01 Deauville Blvd.	Action Number:
Mid	dland, TX 79706	455239
		Action Type:
		[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e	e. gas only) are to be submitted on the C-129 form.

Initial Response		
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.	
The source of the release has been stopped	True	
The impacted area has been secured to protect human health and the environment	True	
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True	
All free liquids and recoverable materials have been removed and managed appropriately	True	
If all the actions described above have not been undertaken, explain why	Not answered.	
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.		
to report and/or file certain release notifications and perform corrective actions for releat the OCD does not relieve the operator of liability should their operations have failed to a	showledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or	
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com Date: 04/24/2025	

New Mexico	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS (continued)

Operator:	OGRID:
Coterra Energy Operating F LLC	373910
6001 Deauville Blvd.	Action Number:
Midland, TX 79706	455239
	Action Type:
	[C-141] Deferral Request C-141 (C-141-v-Deferral)

QUESTIONS

Site Characterization

Please answer all the questions in this group (only required when seeking remediation plan approval and beyond). This information must be provided to the appropriate district office no later than 90 days after the release discovery date.

What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 100 and 500 (ft.)	
What method was used to determine the depth to ground water	NM OSE iWaters Database Search	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Greater than 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between 1 and 5 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1 and 5 (mi.)	
A wetland	Between 200 and 300 (ft.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan

Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.			
Requesting a remediation p	blan approval with this submission	Yes	
Attach a comprehensive report der	nonstrating the lateral and vertical extents of soil contamination	n associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.	
Have the lateral and vertical	extents of contamination been fully delineated	Yes	
Was this release entirely co	ntained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)			
Chloride	(EPA 300.0 or SM4500 CI B)	5850	
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	0	
GRO+DRO	(EPA SW-846 Method 8015M)	0	
BTEX	(EPA SW-846 Method 8021B or 8260B)	0	
Benzene	(EPA SW-846 Method 8021B or 8260B)	0	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.			
On what estimated date wil	I the remediation commence	01/01/2030	
On what date will (or did) th	e final sampling or liner inspection occur	01/01/2030	
On what date will (or was) t	he remediation complete(d)	01/15/2030	
What is the estimated surfa	ce area (in square feet) that will be reclaimed	2665	
What is the estimated volum	ne (in cubic yards) that will be reclaimed	201	
What is the estimated surfa	ce area (in square feet) that will be remediated	2665	
What is the estimated volum	ne (in cubic yards) that will be remediated	201	
		time of submission and may (be) change(d) over time as more remediation efforts are completed.	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Action 455239

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Page 123 of 126

Action 455239

QUESTIONS (continued)		
Operator:	OGRID:	
Coterra Energy Operating F LLC	373910	
6001 Deauville Blvd.	Action Number:	
Midland, TX 79706	455239	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

QUESTIONS

Remediation Plan (continued)

Please answer all the questions that apply or are indicated. This information must be provided to the	appropriate district office no later than 90 days after the release discovery date.
This remediation will (or is expected to) utilize the following processes to remediate	/ reduce contaminants:
(Select all answers below that apply.)	
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes
Which OCD approved facility will be used for off-site disposal	LEA LAND LANDFILL [fEEM0112342028]
OR which OCD approved well (API) will be used for off-site disposal	Not answered.
OR is the off-site disposal site, to be used, out-of-state	Not answered.
OR is the off-site disposal site, to be used, an NMED facility	Not answered.
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.
(In Situ) Soil Vapor Extraction	Not answered.
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.
OTHER (Non-listed remedial process)	Not answered.
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed ef which includes the anticipated timelines for beginning and completing the remediation.	forts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,
to report and/or file certain release notifications and perform corrective actions for relea the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com

Date: 04/24/2025 The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

Action Type:

[C-141] Deferral Request C-141 (C-141-v-Deferral)

Page 124 of 126

QUESTIONS, Page 5

Action 455239

QUESTIONS (continued)	
Coterra Energy Operating F LLC	OGRID: 373910
6001 Deauville Blvd. Midland, TX 79706	Action Number: 455239

QUESTIONS

Operator:

Deferral Requests Only		
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of	f the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Is the remaining contamination in areas immediately under or around production equipment where remediation could cause a major facility deconstruction	Yes	
Please list or describe the production equipment and how (re)moving the equipment would cause major facility deconstruction	During the liner inspection, holes were noticed in multiple spots throughout the containment. A site assessment was conducted through the holes with hand augers to collect soil samples below the containment. The area was vertically and horizontally delineated to the best of our ability. The liner has since been repaired. Remediation of the contamination under the containment would require the entire tank battery facility to be deconstructed.	
What is the remaining surface area (in square feet) that will still need to be remediated if a deferral is granted	2665	
What is the remaining volume (in cubic yards) that will still need to be remediated if a deferral is granted	201	
Per Paragraph (2) of Subsection C of 19.15.29.12 NMAC if contamination is located in areas immediately under or around production equipment such as production tanks, wellheads and pipelines where remediation could cause a major facility deconstruction, the remediation, restoration and reclamation may be deferred with division written approval until the equipment is removed during other operations, or when the well or facility is plugged or abandoned, whichever comes first.		
Enter the facility ID (f#) on which this deferral should be granted	Not answered.	
Enter the well API (30-) on which this deferral should be granted	30-025-44570 TATANKA FEDERAL COM #004H	
Contamination does not cause an imminent risk to human health, the environment, or groundwater	True	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
I hereby agree and sign off to the above statement	Name: Laci Luig Title: ES&H Specialist Email: DL_PermianEnvironmental@coterra.com Date: 04/24/2025	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources **Oil Conservation Division** 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 455239

Page 125 of 126

QUESTIONS (continued)		
Operator: Coterra Energy Operating F LLC	OGRID: 373910	
6001 Deauville Blvd. Midland, TX 79706	Action Number: 455239	
	Action Type: [C-141] Deferral Request C-141 (C-141-v-Deferral)	
QUESTIONS		

Sampling Event Information

Last sampling notification (C-141N) recorded

{Unavailable.}

Remediation Closure Request

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.			
Requesting a remediation closure approval with this submission	No		

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Operator:	OGRID:	
Coterra Energy Operating F LLC	373910	
6001 Deauville Blvd.	Action Number:	
Midland, TX 79706	455239	
	Action Type:	
	[C-141] Deferral Request C-141 (C-141-v-Deferral)	

CONDITIONS		
Created By	Condition	Condition Date
nvelez	Deferral is approved. Remediation Due date will be left open until the site has been plugged and abandoned or a major facility deconstruction takes place.	6/30/2025

CONDITIONS

Page 126 of 126

Action 455239