L48 Spill Volume Estimate Form Received by OCD: 6/10/2025 10:29:19 at My Name & Number: Asio Otis Page 1 of 289 Asset Area: pasture Release Discovery Date & Time: 6/22/2023 Release Type: Produced Water Flex Line rupture on line going to SWD Spill Calculation - Subsurface Spill - Rectangle

Soil Spilled-Fluid Saturation

11.30%

11.30%

11.30%

See reference table below

See reference table below

Estimated volume of each area

(bbl.)

259.391

37.870

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total Volume Release:

Total Estimated

Volume of Spill

(bbl.)

29.311

4.279

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

33.590

Percentage of Oil if

Spilled Fluid is a

Mixture

Total Estimated

Volume of Spilled Oil

(bbl.)

Total Estimated

Volume of Spilled

Liquid other than Oil

(bbl.)

Provide any known details about the event:
193
Was the release on pad or off-pad?

Length

(ft.)

87.0

148.0

0.0

Reteased to Imaging: 7/21/2025 11:07:53 AM

Convert Irregular shape

into a series of

rectangles

Rectangle A Rectangle B

Rectangle C

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Rectangle H

Rectangle I

Has it rained at least a half inch in the last 24 hours?

Width

(ft.)

201.0

69.0

0.0

Depth

(in.)

1.00

0.25

0.00

SITE INFORMATION

Closure Report
Asio Otus CTB (06.22.23)
Incident # NAPP2319138455
Eddy County, New Mexico
Unit O Sec 13 T26S R26E
32.0365°, -104.2439°

Produced Water Release Point of Release: Flex Line Rupture

Release Date: 06.22.23

Volume Released: 33.59 Barrels of Produced Water Volume Recovered: 0 Barrels of Produced Water

CARMONA RESOURCES

Prepared for: Concho Operating, LLC 15 West London Road Loving, New Mexico

Prepared by: Carmona Resources, LLC 310 West Wall Street Suite 500 Midland, Texas 79701

TABLE OF CONTENTS

1.0 SITE INFORMATION AND BACKGROUND

2.0 SITE CHARACTERIZATION AND GROUNDWATER

3.0 NMAC REGULATORY CRITERIA

4.0 SITE ASSESSMENT ACTIVITIES

5.0 REMEDIATION ACTIVITIES

6.0 RECLAMATION ACTIVITIES

7.0 CONCLUSIONS

FIGURES

FIGURE 1 OVERVIEW FIGURE 2 TOPOGRAPHIC

FIGURE 3 SAMPLE LOCATION FIGURE 4 EXCAVATION

FIGURE 5 RECLAMATION

APPENDICES

APPENDIX A TABLES

APPENDIX B PHOTOS

APPENDIX C INITIAL AND FINAL C-141/NMOCD CORRESPONDENCE

APPENDIX D SITE CHARACTERIZATION AND GROUNDWATER

APPENDIX E LABORATORY REPORTS

APPENDIX F SOIL SURVEY AND MAP

310 West Wall Street, Suite 500 Midland TX, 79701 432.813.1992

June 10, 2024

Mike Bratcher District Supervisor Oil Conservation Division, District 2 811 S. First Street Artesia, New Mexico 88210

Re: Closure Report

Asio Otus CTB (06.22.23) Concho Operating, LLC Incident # NAPP2319138455

Site Location: Unit O, S13, T26S, R26E (Lat 32.0365°, Long -104.2439°)

Eddy County, New Mexico

Mr. Bratcher:

On behalf of Concho Operating, LLC (COG), Carmona Resources, LLC has prepared this letter to document site activities for the Asio Otus CTB. The site is located at 32.0365°, -104.2439° within Unit O, S13, T26S, R26E, in Eddy County, New Mexico (Figures 1 and 2).

1.0 Site information and Background

Based on the initial C-141 obtained from the New Mexico Oil Conservation Division (NMOCD), the release was discovered on June 22, 2023, caused by a flex line rupture due to corrosion. It resulted in the release of approximately thirty-three point-five-nine (33.59) barrels of produced water, with zero (0) barrels of produced water recovered. Refer to Figure 3. The initial C-141 form is attached in Appendix C.

2.0 Site Characterization and Groundwater

The site is located within a high karst area. Based on a review of the New Mexico Office of State Engineers and USGS databases, there is no known water source within a 0.50-mile radius of the location. The nearest identified well is located approximately 1.15 miles North of the site in S12, T26S, R27E and was drilled in 2018. The well has a reported depth to groundwater of 12.60 feet below ground surface (ft bgs). A copy of the associated Point of Diversion Summary report is attached in Appendix D.

3.0 NMAC Regulatory Criteria

Per the NMOCD regulatory criteria established in 19.15.29.12 NMAC, the following criteria were utilized in assessing the site.

- Benzene: 10 milligrams per kilogram (mg/kg).
- Benzene, toluene, ethylbenzene, and total xylenes (BTEX): 50 mg/kg.
- TPH: 100 mg/kg (GRO + DRO + MRO).
- Chloride: 600 mg/kg.

4.0 Site Assessment Activities

Initial Assessment

On July 31, 2023, Carmona Resources, LLC performed site assessment activities to evaluate soil impacts stemming from the release. A total of six (6) sample points (S-1 through S-6) and six (6) horizontal samples (H-1 through H-6) were advanced to depths ranging from the surface to 4' bgs within and surrounding the release

310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

area to evaluate the vertical and horizontal extent of contamination. See Figure 3 for the soil sample locations. For chemical analysis, the soil samples were collected and placed directly into laboratory-provided sample containers, stored on ice, and transported under the proper chain-of-custody protocol to Eurofins Laboratories in Midland, Texas. The samples were analyzed for total petroleum hydrocarbons (TPH) by EPA method 8015, modified benzene, toluene, ethylbenzene, and xylenes (BTEX) by EPA Method 8021B, and chloride by EPA method 300.0. The laboratory reports, including analytical methods, results, and chain-of-custody documents, are attached in Appendix E.

Vertical Delineation

Vertical delineation was achieved in all areas except for the areas of S-1, S-2, and S-6; all of which encountered a dense geological formation ranging from 1' to 4' bgs. The area of S-1 showed elevated chloride levels ranging from 2,670 mg/kg to 14,900 mg/kg from surface to 4' bgs. The area of S-2 showed elevated chloride levels ranging from 18,100 mg/kg to 20,700 mg/kg from surface to 3' bgs. The area of S-6 showed elevated total TPH levels ranging from 769 mg/kg to 1,300 mg/kg from surface to 1' bgs. Refer to Table 1.

Horizontal Delineation

The areas of H-1 through H-6 were below the regulatory limits for benzene, total BTEX, TPH, and chloride concentrations. Refer to Table 1.

5.0 Remediation Activities

Carmona Resources personnel were onsite to supervise the remediation activities, collect confirmation samples, and document backfill activities. Before collecting composite confirmation samples, the NMOCD division office was notified via email on October 6, 2023, per Subsection D of 19.15.29.12 NMAC. See Appendix C. A total of thirty-five (35) confirmation floor samples were collected (CS-1 through CS-35), and sixteen (16) sidewall samples (SW-1 through SW-16) were collected every 200 square feet to ensure the proper removal of the contaminated soils. All collected samples were analyzed for TPH analysis by EPA method 8015 modified, BTEX by EPA Method 8021B, and chloride by EPA method 4500. Copies of laboratory analysis and chain-of-custody documentation are included in Appendix E. The excavation depths and confirmation sample locations are shown in Figure 4.

All final confirmation samples were below the reclamation and regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

Once the remediation activities were completed, the excavated areas were backfilled with clean material to surface grade. To ensure that the backfill material was free of any contaminants, a composite sample was collected and sent off to Eurofins Laboratories in Midland, Texas for chemical analysis. The sample was analyzed for TPH by EPA method 8015 modified, BTEX by EPA method 8021B, and chloride by EPA method 300. Refer to Table 2 for the analytical results.

Approximately 879 cubic yards of material were excavated and transported offsite for proper disposal.

As requested by Robert Hamlet, Carmona Resources went back to the location to collect 200 square foot composite confirmation samples from the areas of S-4 and S-5. To further prove the area is clean and below the most stringent threshold established for this site. Please see Appendix C for the email correspondence. Please refer to Figure 4A and Figure 4B for the revised sample location map. All final confirmation samples were below the reclamation and regulatory requirements for TPH, BTEX, and chloride. Refer to Table 2.

6.0 Reclamation Activities

The site was re-seeded via hand broadcasting on October 19, 2023, to help aid the growth process. Topsoil matching the surrounding areas was raked back on top of the seed after being broadcast. See Figure 5 for the reclamation area. The seed mixture used was the BLM Seed Mixture 2. See Appendix F for soil survey and map.

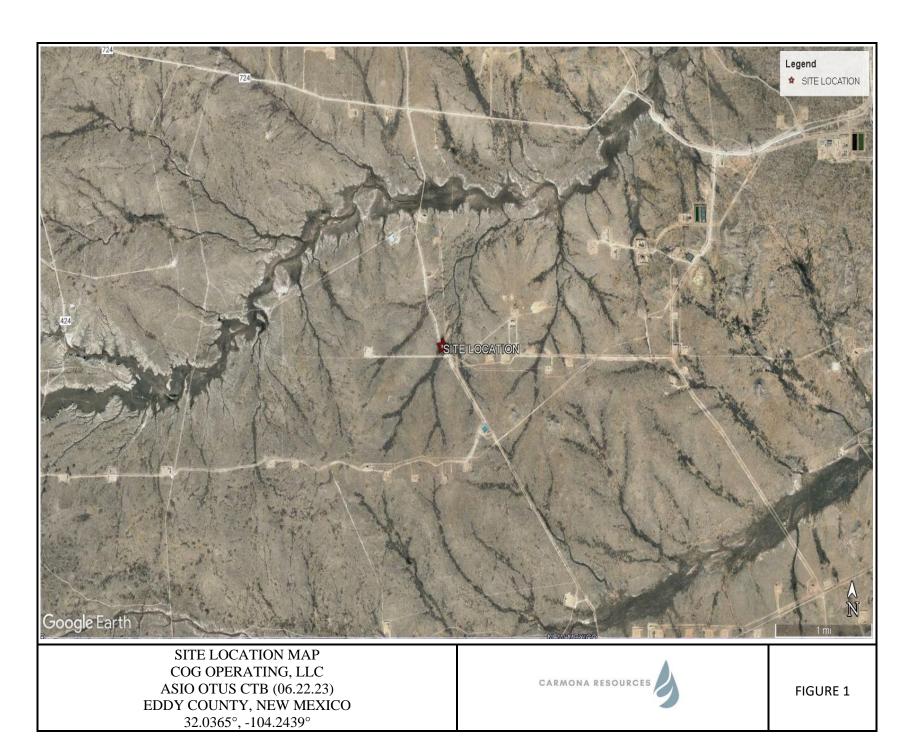
310 West Wall Street, Suite 500 Midland, Texas 79701 432.813.1992

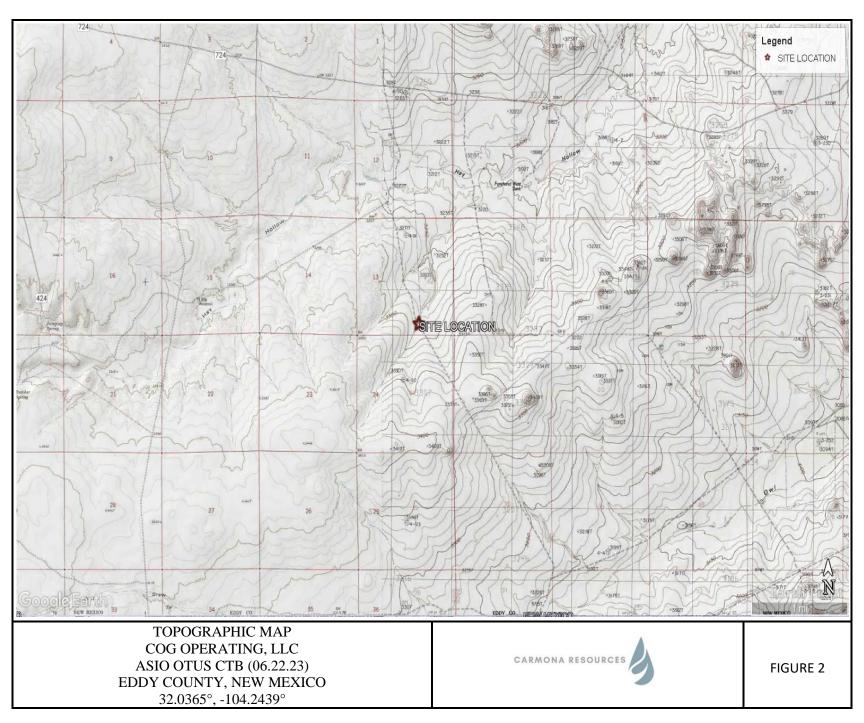
7.0 Conclusions

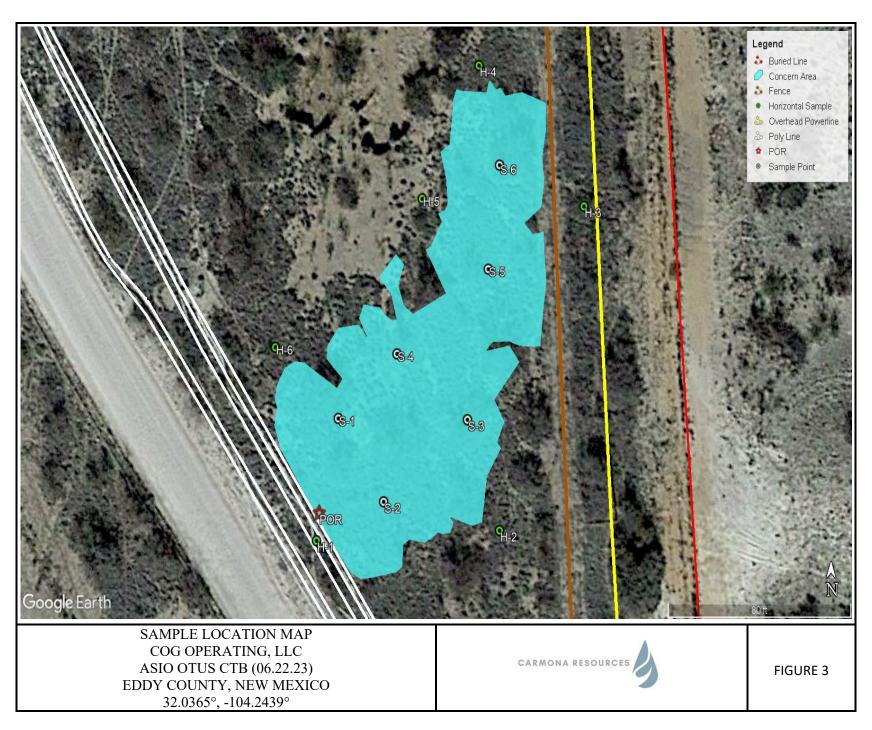
Based on the assessment results and the analytical data, no further actions are required at the site. The final C-141 is attached, and COG formally requests the closure of the spill. If you have any questions regarding this report or need additional information, please get in touch with us at 432-813-1992.

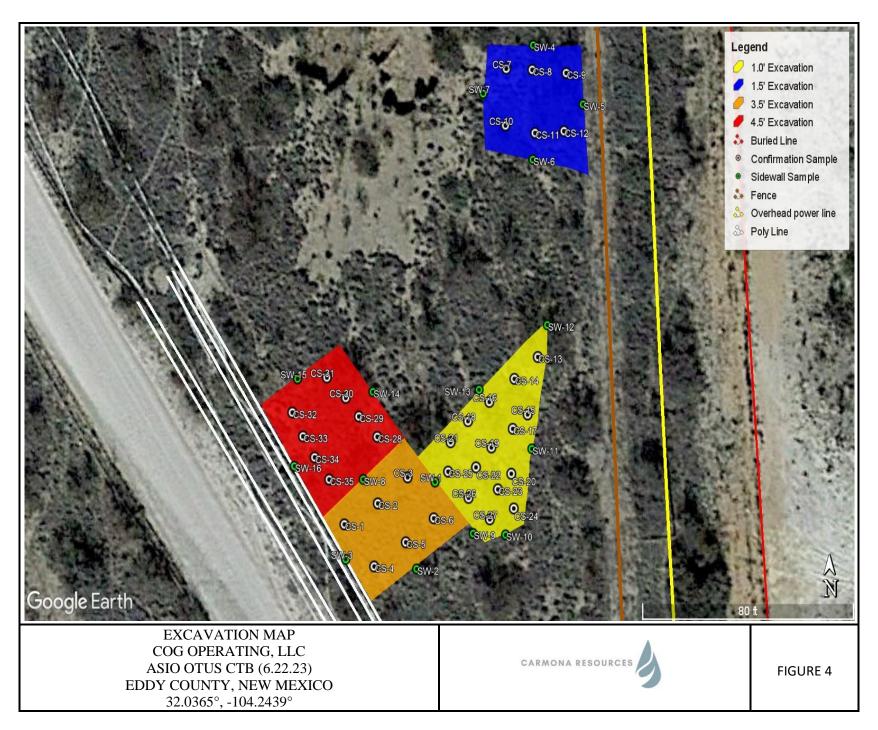
Sincerely,

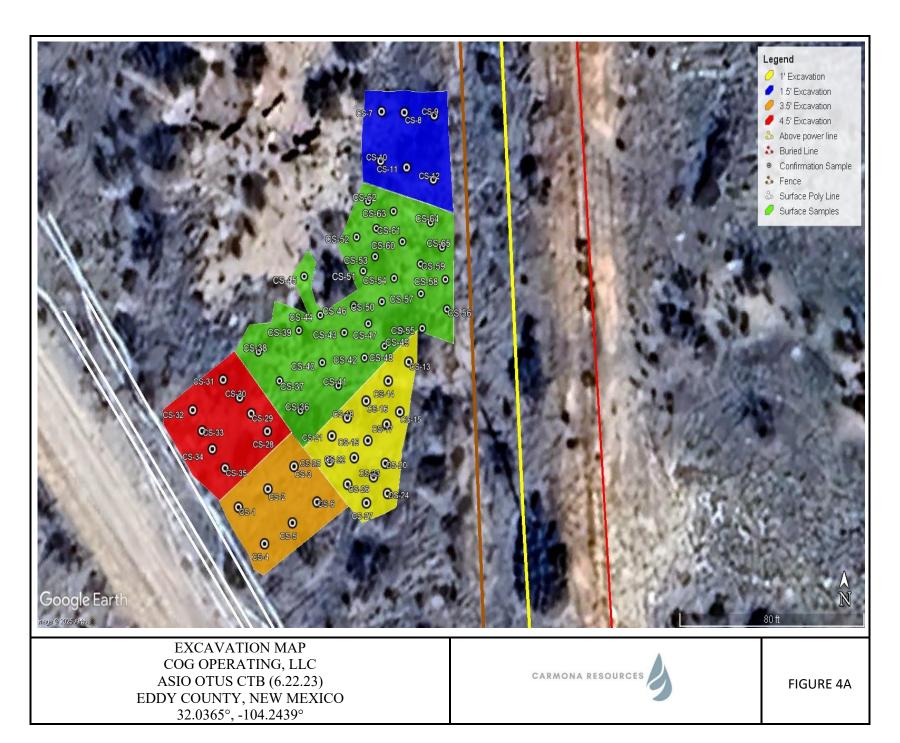
Carmona Resources, LLC

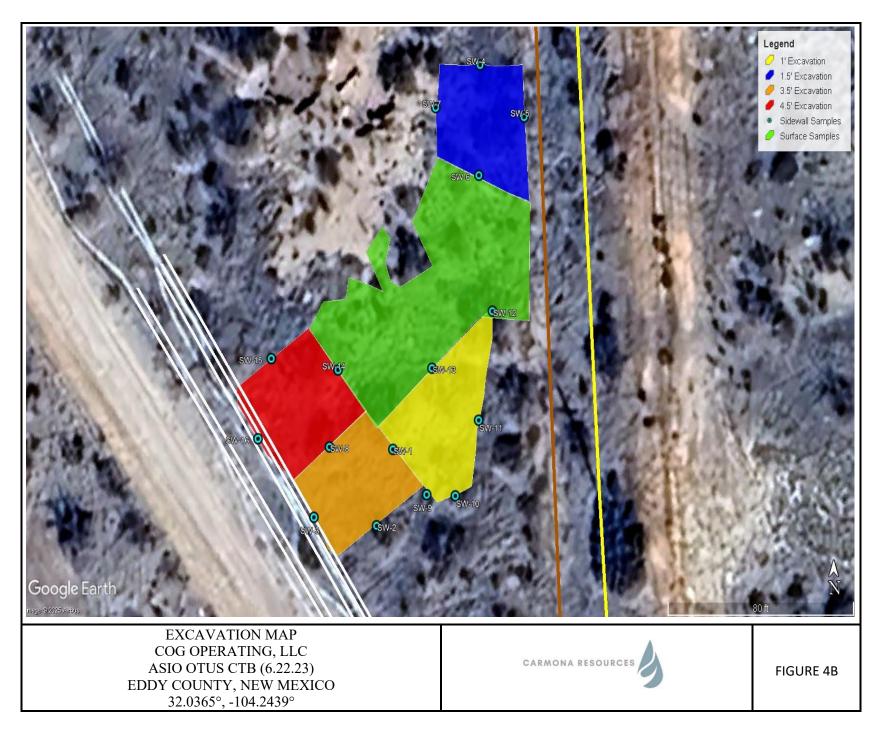

Mike Carmona

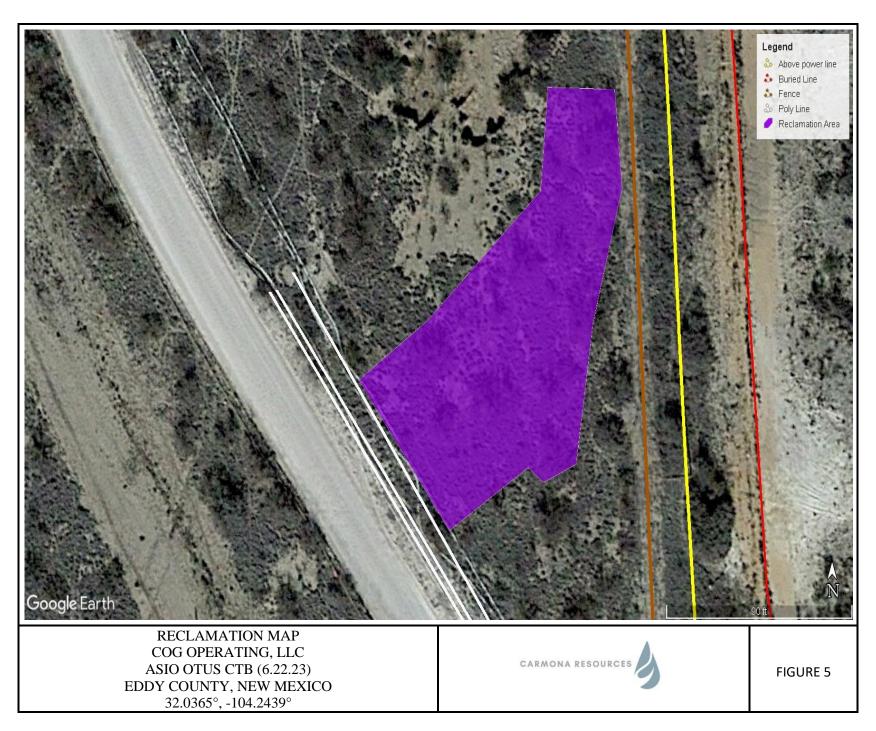

Environmental Manager


Conner Moehring Sr. Project Manager


FIGURES


CARMONA RESOURCES





APPENDIX A

CARMONA RESOURCES

Table 1 **COG Operating** Asio Otus CTB (06.22.23)

Eddy County, New Mexico

Comple ID	Dete	Donath (f4)		TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
	7/31/2023	0-0.5	<50.2	<50.2	<50.2	<50.2	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	14,900
	1	1.0	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	11,700
S-1	1	1.5	<49.6	<49.6	<49.6	<49.6	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	6,620
3-1	1	2.0	<49.7	<49.7	<49.7	<49.7	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	6,570
	1	3.0	<49.6	<49.6	<49.6	<49.6	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	2,670
	'	4.0	<50.5	<50.5	<50.5	<50.5	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	3,630
	7/31/2023	0-0.5	<50.2	<50.2	<50.2	<50.2	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	20,700
	'	1.0	<50.1	<50.1	<50.1	<50.1	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	19,100
S-2	-	1.5	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	19,400
	'	2.0	<49.6	<49.6	<49.6	<49.6	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	18,100
	'	3.0	<50.5	<50.5	<50.5	<50.5	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	19,900
S-3	7/31/2023	0-0.5	<50.2	<50.2	<50.2	<50.2	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	12,200
3-3	'	1.0	<50.3	<50.3	<50.3	<50.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	88.4
S-4	7/31/2023	0-0.5	<49.6	<49.6	<49.6	<49.6	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	33.3
3-4	1	1.0	<50.0	<50.0	<50.0	<50.0	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	75.8
	7/31/2023	0-0.5	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	23.9
S-5	'	1.0	<49.7	<49.7	<49.7	<49.7	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	76.8
	1	1.5	<49.5	<49.5	<49.5	<49.5	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	32.3
6.0	7/31/2023	0-0.5	<50.4	769	<50.4	769	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	23.7
S-6	1	1.0	<50.2	1,300	<50.2	1,300	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	33.2
Regulator				100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg		
/ \ N. (Analyzed								_			

(-) Not Analyzed

^A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram
TPH- Total Petroleum Hydrocarbons
ft-feet
(S) Sample Point

Removed

Table 1 COG Operating Asio Otus CTB (06.22.23) Eddy County, New Mexico

2 1 12	Complete Day 1			TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
H-1	7/31/2023	0-0.5	<50.5	53.6	<50.5	53.6	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	127
H-2	7/31/2023	0-0.5	<50.0	50.0	<50.0	50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	63.5
H-3	7/31/2023	0-0.5	<50.4	59.1	<50.4	59.1	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	233
H-4	7/31/2023	0-0.5	<50.5	<50.5	<50.5	<50.5	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	35.3
H-5	7/31/2023	0-0.5	<49.6	55.5	<49.6	55.5	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	26.8
H-6	7/31/2023	0-0.5	<49.9	50.7	<49.9	50.7	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	118
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(H) Horizontal Sample

Table 2
COG Operating
Asio Otus CTB (06.22.23)
Eddy County, New Mexico

Comple ID	Date	Donth (ft)		TPH (mg/kg)			Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-1	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-2	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-3	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-4	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-5	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-6	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-7	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-8	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-9	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-10	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-11	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-12	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-13	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-14	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-15	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-16	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC
mg/kg - milligram per kilogram
TPH- Total Petroleum Hydrocarbons
ft-feet
(CS) Confirmation Sample

Table 2
COG Operating
Asio Otus CTB (06.22.23)
Eddy County, New Mexico

Comple ID	Doto	Donth (ft)		ТРН	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-17	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-18	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	16.0
CS-19	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-20	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-21	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-22	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-23	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-24	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-25	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-26	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
CS-27	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-28	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-29	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-30	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-31	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-32	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-33	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-34	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
CS-35	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
Regulator	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(CS) Confirmation Sample

Table 2
COG Operating
Asio Otus CTB (06.22.23)
Eddy County, New Mexico

Comple ID	Date	Donth (ft)		ТРН	(mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-36	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	418
CS-37	12/12/2024	Surface	<49.7	<49.7	<49.7	<49.7	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	387
CS-38	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	71.7
CS-39	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	64.9
CS-40	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	94.2
CS-41	12/12/2024	Surface	<49.7	<49.7	<49.7	<49.7	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	123
CS-42	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	369
CS-43	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	369
CS-44	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	331
CS-45	12/12/2024	Surface	<49.7	<49.7	<49.7	<49.7	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	293
CS-46	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	257
CS-47	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00200	<0.00200	<0.00200	<0.00400	<0.00400	397
CS-48	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	158
CS-49	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	101
CS-50	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00201	<0.00201	<0.00201	<0.00402	<0.00402	101
CS-51	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00202	<0.00202	<0.00202	<0.00404	<0.00404	465
CS-52	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	241
CS-53	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	155
CS-54	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	140
Regulato	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet

(CS) Confirmation Sample

Table 2
COG Operating
Asio Otus CTB (06.22.23)
Eddy County, New Mexico

O-marks ID	Dete	D 41- (54)		TPH	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
CS-55	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	197
CS-56	12/12/2024	Surface	<49.7	56.9	<49.7	56.9	<0.00200	<0.00200	<0.00200	<0.00399	<0.00399	364
CS-57	12/12/2024	Surface	<49.8	81.3	<49.8	81.3	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	365
CS-58	12/12/2024	Surface	<49.8	89.4	<49.8	89.4	<0.00198	<0.00198	<0.00198	<0.00397	<0.00397	530
CS-59	12/12/2024	Surface	<49.8	54.0	<49.8	54.0	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	152
CS-60	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	146
CS-61	12/12/2024	Surface	<49.9	<49.9	<49.9	<49.9	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	150
CS-62	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00199	<0.00199	<0.00199	<0.00398	<0.00398	192
CS-63	12/12/2024	Surface	<50.1	<50.1	<50.1	<50.1	<0.00202	<0.00202	<0.00202	<0.00403	<0.00403	150
CS-64	12/12/2024	Surface	<49.8	<49.8	<49.8	<49.8	<0.00200	<0.00200	<0.00200	<0.00401	<0.00401	201
CS-65	12/12/2024	Surface	<50.0	<50.0	<50.0	<50.0	<0.00198	<0.00198	<0.00198	<0.00396	<0.00396	157
	ory Criteria A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram TPH- Total Petroleum Hydrocarbons ft-feet (CS) Confirmation Sample

Table 2 **COG Operating** Asio Otus CTB (06.22.23) **Eddy County, New Mexico**

Commis ID	Doto	Danth (ff)		ТРН	l (mg/kg)		Benzene	Toluene	Ethlybenzene	Xylene	Total BTEX	Chloride
Sample ID	Date	Depth (ft)	GRO	DRO	MRO	Total	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
SW-1	10/11/2023	2.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-2	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-3	10/11/2023	3.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-4	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-5	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-6	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-7	10/11/2023	1.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-8	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-9	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-10	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-11	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-12	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-13	10/11/2023	1.0	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	32.0
SW-14	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-15	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
SW-16	10/12/2023	4.5	<10.0	<10.0	<10.0	<10.0	<0.050	<0.050	<0.050	<0.150	<0.300	<16.0
Backfill Material	5/22/2024	-	<49.6	<49.6	<49.6	<49.6	<0.00198	<0.00198	<0.00198	<0.00198	<0.00396	208
	ry Criteria ^A					100 mg/kg	10 mg/kg				50 mg/kg	600 mg/kg

(-) Not Analyzed

A – Table 1 - 19.15.29 NMAC mg/kg - milligram per kilogram
TPH- Total Petroleum Hydrocarbons
ft-feet

(SW) Sidewall Sample

APPENDIX B

CARMONA RESOURCES

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 1

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View Northwest, area of sample points CS-1 through CS-6.

Photograph No. 2

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View North, area of sample points CS-7 through CS-12.

Photograph No. 3

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View Southwest, area of sample points CS-13 through CS-27

PHOTOGRAPHIC LOG

Concho Operating, LLC

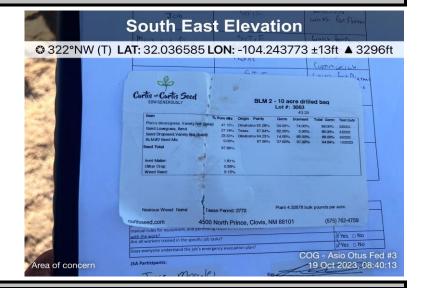
Photograph No. 4

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View North, area of sample points CS-28 through CS-35.



Photograph No. 5

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:Seed Mixture Tag.

Photograph No. 6

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View West, hand broadcasting of seed mixture.

PHOTOGRAPHIC LOG

Concho Operating, LLC

Photograph No. 7

Facility: Asio Otus CTB (06.22.23)

County: Eddy County, New Mexico

Description:

View Northeast, area of Confirmation Samples (36 - 65).

APPENDIX C

CARMONA RESOURCES

District I 1625 N. French Dr., Hobbs, NM 88240 District II 811 S. First St., Artesia, NM 88210 District III 1000 Rio Brazos Road, Aztec, NM 87410 1220 S. St. Francis Dr., Santa Fe, NM 87505

State of New Mexico Energy Minerals and Natural Resources Department

Oil Conservation Division 1220 South St. Francis Dr. Santa Fe, NM 87505

Form C-141 Revised August 24, 2018 Submit to appropriate OCD District office

Incident ID	
District RP	
Facility ID	
Application ID	

Release Notification

Responsible Party

Responsible l	Party			OGRID	OGRID						
Contact Nam	e			Contact T	elephone						
Contact emai	1			Incident #	Incident # (assigned by OCD)						
Contact maili	ng address			<u> </u>							
			Location	of Release S	ource						
Latitude				Longitude							
(NAD 83 in decimal degrees to 5 decimal places)											
Site Name				Site Type							
Date Release	Discovered			API# (if ap	plicable)						
Unit Letter	Section	Township	Range	Cou	nty						
Surface Owner	Surface Owner: State Federal Tribal Private (Name: Nature and Volume of Release										
Crude Oil		Volume Release		calculations of specific		ne volumes provided below) overed (bbls)					
Produced	Water	Volume Release	d (bbls)		Volume Rec	overed (bbls)					
		Is the concentrate produced water	ion of dissolved c	hloride in the	Yes 1	No					
Condensat	te	Volume Release			Volume Rec	overed (bbls)					
Natural G	as	Volume Release	d (Mcf)		Volume Rec	overed (Mcf)					
Other (des	scribe)	Volume/Weight	Released (provide	e units)	Volume/Wei	ight Recovered (provide units)					
Cause of Rele	ease										

Received by OCD: 6/10/2025 10:29:19 AM State of New Mexico
Page 2 Oil Conservation Division

Pa	ge	29	eoJ	2	89	
----	----	----	-----	---	----	--

Incident ID	
District RP	
Facility ID	
Application ID	

Was this a major release as defined by 19.15.29.7(A) NMAC? ☐ Yes ☐ No	If YES, for what reason(s) does the	responsible party consider this a major release?
If YES, was immediate no	otice given to the OCD? By whom?	To whom? When and by what means (phone, email, etc)?
11 1 20, 1100 11111001110 11	one greate at a a 2. Zy maan	(prono, chain, cu).
	Initi	al Response
The responsible p	party must undertake the following actions im	nediately unless they could create a safety hazard that would result in injury
The source of the rele	ease has been stopped.	
☐ The impacted area ha	s been secured to protect human heal	th and the environment.
Released materials ha	we been contained via the use of bern	ns or dikes, absorbent pads, or other containment devices.
☐ All free liquids and re	ecoverable materials have been remove	ved and managed appropriately.
has begun, please attach	a narrative of actions to date. If ren	ence remediation immediately after discovery of a release. If remediation nedial efforts have been successfully completed or if the release occurred AC), please attach all information needed for closure evaluation.
regulations all operators are public health or the environr failed to adequately investig	required to report and/or file certain releatment. The acceptance of a C-141 report bate and remediate contamination that pos	to the best of my knowledge and understand that pursuant to OCD rules and use notifications and perform corrective actions for releases which may endanger by the OCD does not relieve the operator of liability should their operations have a threat to groundwater, surface water, human health or the environment. In ator of responsibility for compliance with any other federal, state, or local laws
Printed Name		Title:
Signature:	tan gopange	Date:
email:		Telephone:
OCD Only		
Received by: Shelly Wel	ls	Date: 7/10/2023

Received by OCD: 6/10/2025 10:29:19 AM Form C-141 State of New Mexico Page 3 Oil Conservation Division

	Page 30 of 28	
Incident ID		
District RP		
Facility ID		
Application ID		

Site Assessment/Characterization

 $This information \ must \ be \ provided \ to \ the \ appropriate \ district \ of fice \ no \ later \ than \ 90 \ days \ after \ the \ release \ discovery \ date.$

What is the shallowest depth to groundwater beneath the area affected by the release?	(ft bgs)	
Did this release impact groundwater or surface water?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of a continuously flowing watercourse or any other significant watercourse?	☐ Yes ☐ No	
Are the lateral extents of the release within 200 feet of any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of an occupied permanent residence, school, hospital, institution, or church?	☐ Yes ☐ No	
Are the lateral extents of the release within 500 horizontal feet of a spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	☐ Yes ☐ No	
Are the lateral extents of the release within 1000 feet of any other fresh water well or spring?	☐ Yes ☐ No	
Are the lateral extents of the release within incorporated municipal boundaries or within a defined municipal fresh water well field?	☐ Yes ☐ No	
Are the lateral extents of the release within 300 feet of a wetland?	☐ Yes ☐ No	
Are the lateral extents of the release overlying a subsurface mine?	☐ Yes ☐ No	
Are the lateral extents of the release overlying an unstable area such as karst geology?	☐ Yes ☐ No	
Are the lateral extents of the release within a 100-year floodplain?	☐ Yes ☐ No	
Did the release impact areas not on an exploration, development, production, or storage site?	☐ Yes ☐ No	
Attach a comprehensive report (electronic submittals in .pdf format are preferred) demonstrating the lateral and ver contamination associated with the release have been determined. Refer to 19.15.29.11 NMAC for specifics.	tical extents of soil	
Characterization Report Checklist: Each of the following items must be included in the report.		
Scaled site map showing impacted area, surface features, subsurface features, delineation points, and monitoring wells. Field data Data table of soil contaminant concentration data Depth to water determination Determination of water sources and significant watercourses within ⅓-mile of the lateral extents of the release Boring or excavation logs Photographs including date and GIS information Topographic/Aerial maps Laboratory data including chain of custody		

If the site characterization report does not include completed efforts at remediation of the release, the report must include a proposed remediation plan. That plan must include the estimated volume of material to be remediated, the proposed remediation technique, proposed sampling plan and methods, anticipated timelines for beginning and completing the remediation. The closure criteria for a release are contained in Table 1 of 19.15.29.12 NMAC, however, use of the table is modified by site- and release-specific parameters.

Received by OCD: 6/10/2025 10:29:19 AM Form C-141 State of New Mexico Page 4 Oil Conservation Division

	Page 31 of 28	89
Incident ID		
District RP		

Facility ID
Application ID

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.		
Printed Name:	Title:	
Signature:	Date:	
email:	Telephone:	
OCD Only		
Received by:	Date:	

Received by OCD: 6/10/2025 10:29:19 AM Form C-141 State of New Mexico Page 6 Oil Conservation Division

Incident ID
District RP
Facility ID

Application ID

Closure

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (electronic submittals in .pdf format are preferred) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

Closure Report Attachment Checklist: Each of the following items must be included in the closure report.

A scaled site and sampling diagram as described in 19.15.29.11 NMAC		
Photographs of the remediated site prior to backfill or photos of the liner integrity if applicable (Note: appropriate OCD District office must be notified 2 days prior to liner inspection)		
☐ Laboratory analyses of final sampling (Note: appropriate ODG	C District office must be notified 2 days prior to final sampling)	
☐ Description of remediation activities		
and regulations all operators are required to report and/or file certain may endanger public health or the environment. The acceptance of	nditions. The responsible party acknowledges they must substantially nditions that existed prior to the release or their final land use in CD when reclamation and re-vegetation are complete.	
Signature:	Date:	
email:	Telephone:	
OCD Only		
OCD Only Received by:	Date:	
Received by: Closure approval by the OCD does not relieve the responsible party	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible	
Received by: Closure approval by the OCD does not relieve the responsible party remediate contamination that poses a threat to groundwater, surface	of liability should their operations have failed to adequately investigate and water, human health, or the environment nor does not relieve the responsible or regulations.	

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

Total Volume Release:

0.000

0.000

0.000

0.000

0.000

0.000

0.000

0.000

33.590

11.30%

Rectangle C

Rectangle D

Rectangle E

Rectangle F

Rectangle G

Rectangle H

Rectangle I

0.0

Released to Imaging: 7/21/2025 11:07:53 AM

0.0

0.00

District I
1625 N. French Dr., Hobbs, NM 88240
Phone: (575) 393-6161 Fax: (575) 393-0720

District II 811 S. First St., Artesia, NM 88210 Phone:(575) 748-1283 Fax:(575) 748-9720

District III 1000 Rio Brazos Rd., Aztec, NM 87410 Phone:(505) 334-6178 Fax:(505) 334-6170

1220 S. St Francis Dr., Santa Fe, NM 87505 Phone:(505) 476-3470 Fax:(505) 476-3462

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Action 237898

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	237898
	Action Type:
	[C-141] Release Corrective Action (C-141)

CONDITIONS

Created By		Condition Date
scwells	None	7/10/2023

From: Wells, Shelly, EMNRD

Sent: Tuesday, October 10, 2023 9:25 AM

To: Conner Moehring; Hamlet, Robert, EMNRD; Bratcher, Michael, EMNRD

Cc: Mike Carmona; Devin Dominguez; Clint Merritt; Jacqui. Harris@conocophillips.com; Esparza, Brittany

Subject: RE: [EXTERNAL] COG - Asio Otis Fed #3 (06.22.23) - Sampling Notification

Hi Conner.

The OCD has received your notification. Include a copy of this and all notifications in the remedial and/or closure reports to ensure the notifications are documented in the project file.

Thank you,

Shelly

Shelly Wells * Environmental Specialist-Advanced Environmental Bureau EMNRD-Oil Conservation Division 1220 S. St. Francis Drive|Santa Fe, NM 87505 (505)469-7520|Shelly.Wells@emnrd.nm.gov http://www.emnrd.state.nm.us/OCD/

From: Conner Moehring < Cmoehring@carmonaresources.com>

Sent: Friday, October 6, 2023 5:05 PM

To: Enviro, OCD, EMNRD < OCD. Enviro@emnrd.nm.gov>

Cc: Mike Carmona < Mcarmona@carmonaresources.com>; Devin Dominguez

<Ddominguez@carmonaresources.com>; Clint Merritt < MerrittC@carmonaresources.com>;
Jacqui.Harris@conocophillips.com; Esparza, Brittany < Brittany. Esparza@conocophillips.com>

Subject: [EXTERNAL] COG - Asio Otis Fed #3 (06.22.23) - Sampling Notification

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Good Afternoon,

This email is a notification for confirmation sampling for the COG – Asio Otis Fed #3 ($\underline{06.22}.23$). Sampling is scheduled to begin on Wednesday, October 11^{th} , around 10:30 a.m. Mountain Time. Carmona Resources personnel will be on-site to collect the confirmation samples.

COG Operating – Asio Otis Fed #3 (06.22.23) Sec 13 T26S R27E Unit O 32.036620, -104.243892

Eddy County, New Mexico

Please call if you have any questions.

Conner R. Moehring
310 West Wall Street, Suite 500
Midland Texas, 79701
M: 432-813-6823
Cmoehring@carmonaresources.com

Conner Moehring

From: Harris, Jacqui < Jacqui.Harris@conocophillips.com>

Sent: Wednesday, November 20, 2024 9:34 AM

To: Mike Carmona; Conner Moehring

Subject: FW: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Update...

From: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Sent: Wednesday, November 20, 2024 8:03 AM

To: Harris, Jacqui < Jacqui. Harris@conocophillips.com>

Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>; Fejervary Morena, Gustavo A <G.Fejervary@conocophillips.com>; Wells, Shelly, EMNRD <Shelly.Wells@emnrd.nm.gov>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Jacqui,

I think we have went over this in previous emails. If you have a site map with delineation sample points, that's fine and it can be included in the Closure Report. The final site map that includes your final confirmation closure samples needs to include all 200 ft2 sample locations on that particular map. It shouldn't be a hybrid map with delineation samples points in some areas and confirmation sample points in others. The entire area within the release area needs to include final confirmation sample locations every 200 ft2.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau

Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave. | Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Sent: Tuesday, November 19, 2024 2:17 PM

To: Hamlet, Robert, EMNRD < Robert.Hamlet@emnrd.nm.gov>

Cc: Bratcher, Michael, EMNRD < <u>mike.bratcher@emnrd.nm.gov</u>>; Fejervary Morena, Gustavo A < <u>G.Fejervary@conocophillips.com</u>>; Wells, Shelly, EMNRD < <u>Shelly.Wells@emnrd.nm.gov</u>>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Hi Robert,

I hope this message finds you well. I wanted to follow up on the email I sent on Nov.8, 2024 regarding clarification on your suggestions for future closures . I understand you might be busy, but I would appreciate it if you could take a moment to review it and get back to me at your earliest convenience.

Jacqui Harris | Sr. Environmental Engineer | ConocoPhillips

| C: 575-496-0780 | 1401 Commerce Drive, Carlsbad, New Mexico

From: Harris, Jacqui

Sent: Friday, November 8, 2024 12:08 PM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov >

Cc: Bratcher, Michael, EMNRD < <u>mike.bratcher@emnrd.nm.gov</u>>; Fejervary Morena, Gustavo A < <u>G.Fejervary@conocophillips.com</u>>; Wells, Shelly, EMNRD < <u>Shelly.Wells@emnrd.nm.gov</u>>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Robert,

Thank you for your response. I was referring to the same rules when I mentioned that all closure requirements under 19.15.29.12 NMAC have been met. It seems there might be a misunderstanding between initial samples (taken to assess the area) and closure samples (taken to verify that contaminants have been removed). The areas you are requesting additional sampling on are part of the initial assessment. They were not portrayed as, nor intended to be closure samples. They were included in the map and tables to provide a complete data set and justify the remediation locations.

I have a couple of questions for clarification:

- 1. Am I correct in understanding that the NMOCD does not require a complete data set (including initial samples) in the closure report documents?
- 2. If initial samples are included in the closure documents (even if they are contaminant-free), does the NMOCD require additional samples to be collected every 200 sq ft of contaminant-free soil?

Thank you for your assistance.

Jacqui Harris | Sr. Environmental Engineer | ConocoPhillips

| C: 575-496-0780 | 1401 Commerce Drive, Carlsbad, New Mexico

From: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Sent: Friday, November 8, 2024 11:13 AM

To: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Cc: Bratcher, Michael, EMNRD <<u>mike.bratcher@emnrd.nm.gov</u>>; Fejervary Morena, Gustavo A <<u>G.Fejervary@conocophillips.com</u>>; Wells, Shelly, EMNRD <<u>Shelly.Wells@emnrd.nm.gov</u>>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Jacqui,

The OCD Spill Rule discusses it in 19.15.29.12D(1)(c) REMEDIATION AND CLOSURE:

(c) Alternately, without division approval, the responsible party may elect to perform a composite and grab sample plan of the remediated area where each composite sample is not representative of more than 200 square feet.

Also, it is discussed in the "Clarification Document" that was placed on the OCD website:

VII. CLOSURE SAMPLING PLANS:

If a responsible party wishes to remediate a spill within 90 days of its discovery without submitting a remediation plan, the closure samples must reflect the gathering of composites representative of no more than 200 square feet per composite sample per 19.15.29.12(D)(1)(c) NMAC. Alternative sampling plans will only be allowed with written permission from the OCD. In accordance with 19.15.29.12(D)(1)(b) NMAC, there are no listed standards as to what a responsible party can base an alternative sampling plan upon. Therefore, the OCD may request justifications or methods used in constructing the plan such that an appropriate decision can be made. OCD staff can provide verbal approval, but it must be followed up in writing such as an email.

If an operator/environmental consultant outlines an "Area of Concern" on their site map, that area needs to be thoroughly vetted and confirmation closure samples need to be gathered in that "Area of Concern."

Please let me know if you have any further questions.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave.| Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Harris, Jacqui < Jacqui. Harris@conocophillips.com>

Sent: Thursday, November 7, 2024 4:30 PM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Cc: Bratcher, Michael, EMNRD < <u>mike.bratcher@emnrd.nm.gov</u>>; Fejervary Morena, Gustavo A < <u>G.Fejervary@conocophillips.com</u>>; Wells, Shelly, EMNRD < <u>Shelly.Wells@emnrd.nm.gov</u>>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Robert,

I hope this message finds you well.

Concerning "area of concern" this is a way to label the release area and any potentially impacted area. If data is collected in the field or it's evaluated, we believe it needs to be on the report to ensure transparency and thoroughness. While I understand that you may have a different perspective on the labeling of the "area of concern," it is important to note that all closure requirements have been satisfied according to the written rule. Our data and samples substantiate this compliance.

I am writing to confirm that all closure requirements under 19.15.29.12 NMAC have been met. The areas you are requesting additional samples from (S-4 & S-5) have been thoroughly assessed and delineated, and the analytical results indicate no impact. These areas were included in the assessment to ensure a comprehensive evaluation.

The remediated area has been confirmed with samples, including sidewalls of the areas bordering areas S-4 and S-5, all of which meet the NMOCD closure criteria.

Could you please advise where in the rule it specifies the need for additional sampling of an area that has already been demonstrated to be contaminant-free?

Thank you for your attention to this matter.

Best regards,

Jacqui Harris | Sr. Environmental Engineer | ConocoPhillips | C: 575-496-0780 | 1401 Commerce Drive, Carlsbad, New Mexico

From: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Sent: Tuesday, October 29, 2024 2:40 PM

To: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Cc: Bratcher, Michael, EMNRD < <u>mike.bratcher@emnrd.nm.gov</u>>; Fejervary Morena, Gustavo A < <u>G.Fejervary@conocophillips.com</u>>; Wells, Shelly, EMNRD < <u>Shelly.Wells@emnrd.nm.gov</u>>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Jacqui,

We won't be able to approve this incident until 5-point confirmation samples are conducted in the delineation sample areas of S-4 and S-5. These samples must be no larger than 200 ft2 and must meet closure criteria standards. The sample locations must be included on your final confirmation sampling site map for verification. In the future, if you have no reason to believe that the release entered a certain area, leave these areas out of the "Concern Area" and off of your site map. Otherwise, you will need to do 200 ft2 confirmation samples within that entire boundary of the "Concern Area." Validation sample points outside of the "Area of Concern" would probably be your best approach if you are fairly certain the release didn't enter that area, but you still want to validate that. That way you're not locked into doing 200 ft2 confirmation samples in that particular area.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau

EMNRD - Oil Conservation Division

506 W. Texas Ave.| Artesia, NM 88210

575.909.0302 | robert.hamlet@state.nm.us

http://www.emnrd.state.nm.us/OCD/

From: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Sent: Tuesday, October 29, 2024 1:30 PM

To: Hamlet, Robert, EMNRD < Robert. Hamlet@emnrd.nm.gov>

Cc: Bratcher, Michael, EMNRD < mike.bratcher@emnrd.nm.gov >; Fejervary Morena, Gustavo A

<G.Fejervary@conocophillips.com>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Robert,

Just following up on this. Should we resubmit this one?

Jacqui Harris | Sr. Environmental Engineer | ConocoPhillips

| C: 575-496-0780 | 1401 Commerce Drive, Carlsbad, New Mexico

From: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Sent: Tuesday, October 22, 2024 2:07 PM

To: Hamlet, Robert, EMNRD < <u>Robert.Hamlet@emnrd.nm.gov</u>> **Cc:** Bratcher, Michael, EMNRD < mike.bratcher@emnrd.nm.gov>

Subject: Re: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

There does appear to be a discrepancy between the remediated area map and the sample map. If we correct the map and resubmit will that suffice? The analytical data shows no impact and the excavation is guided by field screening and supported by confirmation samples all shown in the report.

Jacqui

Get Outlook for iOS

From: Hamlet, Robert, EMNRD < Robert.Hamlet@emnrd.nm.gov>

Sent: Tuesday, October 22, 2024 1:56:54 PM

To: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>>

Cc: Bratcher, Michael, EMNRD <mike.bratcher@emnrd.nm.gov>

Subject: RE: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Jacqui,

The entire release area on the site map defined as "Release Area," "Area of Concern," or "Concern Area" needs to be fully investigated. 5-point confirmation samples need to be collected every 200 ft2 throughout the entire release area and not just at delineation sample point locations that show contaminants over closure criteria standards.

Regards,

Robert Hamlet • Environmental Specialist - Advanced Environmental Bureau
EMNRD - Oil Conservation Division
506 W. Texas Ave.| Artesia, NM 88210
575.909.0302 | robert.hamlet@state.nm.us
http://www.emnrd.state.nm.us/OCD/

From: Harris, Jacqui < Jacqui. Harris@conocophillips.com>

Sent: Tuesday, October 22, 2024 1:27 PM

To: Hamlet, Robert, EMNRD < Robert.Hamlet@emnrd.nm.gov>

Subject: [EXTERNAL] RE: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

CAUTION: This email originated outside of our organization. Exercise caution prior to clicking on links or opening attachments.

Robert,

I need some assistance in understanding the below denial for Incident ID# napp2319138455. You referred to sample areas S-4 and S-5. These were initial sample areas that both came back below reclamation standards. These areas weren't remediated (and didn't need to be per the spill rule) and therefore confirmation samples were not collected in that area. I have attached the closure report for your reference if needed. Please advise on how we need to proceed with this.

Jacqui Harris | Sr. Environmental Engineer | ConocoPhillips

| C: 575-496-0780 | 1401 Commerce Drive, Carlsbad, New Mexico

From: Esparza, Brittany < Brittany.Esparza@conocophillips.com>

Sent: Monday, October 21, 2024 10:08 AM

To: Harris, Jacqui < <u>Jacqui.Harris@conocophillips.com</u>> Subject: NMOCD DENIAL - Asio Otus CTB (6/22/2023)

Jacqui, please see below for the Denial.

Thank you,

Brittany N. Esparza

Brittany N. Esparza | Environmental Technician, Permian | ConocoPhillips

O: 432-221-0398 | C: 432-349-1911 | 1CC-331 Midland, Texas

From: OCDOnline@state.nm.us <OCDOnline@state.nm.us>

Sent: Friday, October 18, 2024 3:23 PM

To: Esparza, Brittany <Brittany.Esparza@conocophillips.com>

Subject: [EXTERNAL] The Oil Conservation Division (OCD) has rejected the application, Application ID: 385100

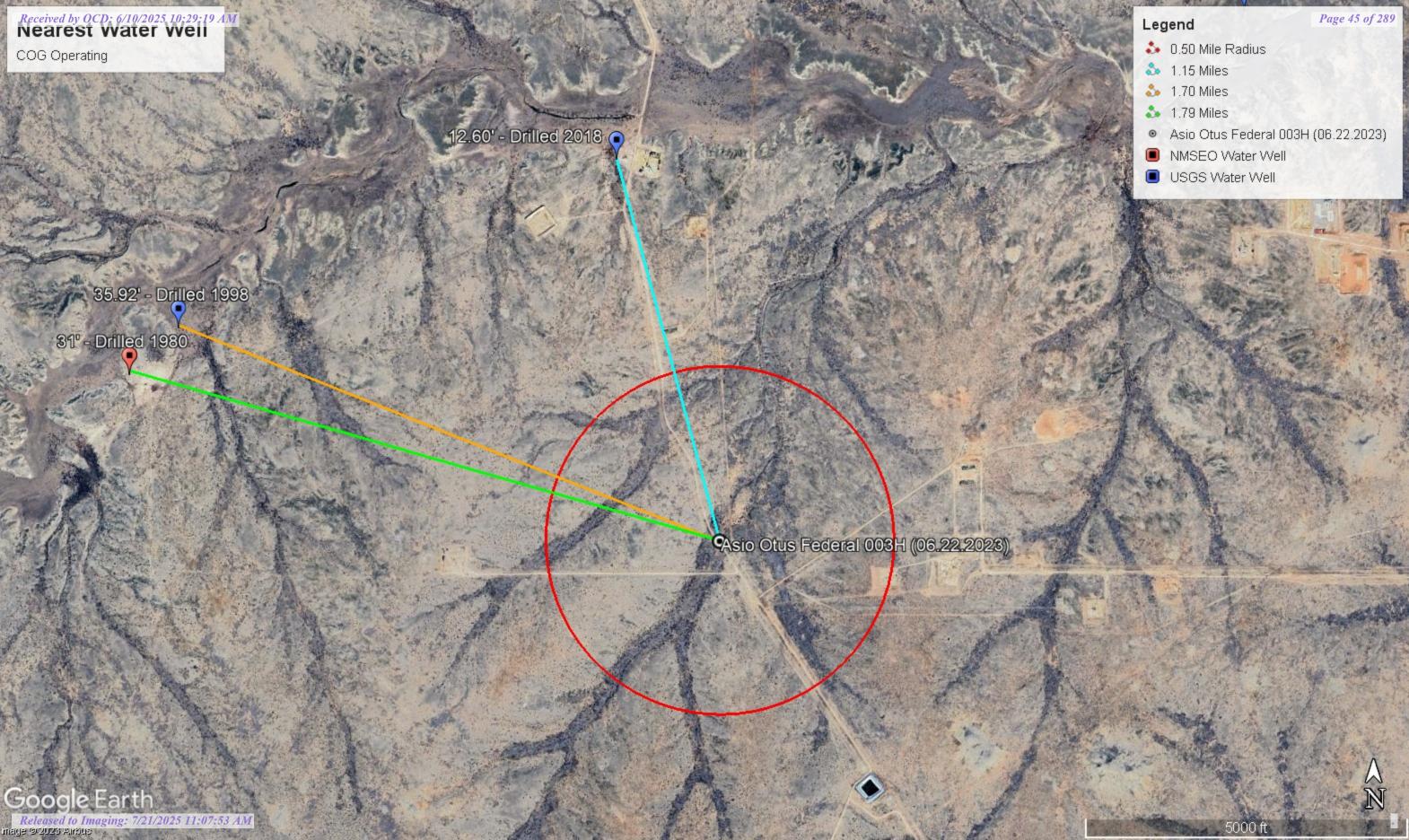
CAUTION: This email originated from outside of the organization. Do not click links or open attachments unless you recognize the sender and know the content is safe.

To whom it may concern (c/o Brittany Esparza for COG OPERATING LLC).

The OCD has rejected the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2319138455, for the following reasons:

 The Remediation Closure Report is Denied. The Remediation Closure Report includes an inadequate number of floor samples in the delineation sample areas of S-4 and S-5. Please collect confirmation samples, representing no more than 200 ft2. All off pad areas must meet reclamation standards set forth in the OCD Spill Rule. The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 385100.

Please review and make the required correction(s) prior to resubmitting.


If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

Thank you,
Robert Hamlet
575-748-1283
Robert.Hamlet@emnrd.nm.gov

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

APPENDIX D

CARMONA RESOURCES

New Mexico Office of the State Engineer Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file.) (R=POD has been replaced, O=orphaned, C=the file is

closed)

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

(In feet)

	POD Sub-		Q (Q Q							Depth	Depth	Water
POD Number	Code basin	County	64 1	6 4	Sec	Tws	Rng	Х	Υ	Distance	Well	Water (Column
C 04269 POD1	CUB	ED	4	2 3	18	26S	27E	572620	3545176 🌕	1303	105		
<u>C 02438</u>	CUB	ED	4	2 3	12	26S	26E	571015	3546705* 🌍	1996	30		
C 02218	CUB	ED	4	1 4	07	26S	27E	573039	3546725* 🌍	2577	35		
C 01887	С	ED	4	4 2	15	26S	26E	568614	3545497* 🌍	2876	53	31	22
C 02439	CUB	ED	2	4 2	15	26S	26E	568614	3545697* 🌍	2935	30		

Average Depth to Water: 31 feet

Minimum Depth: 31 feet

Maximum Depth: 31 feet

Record Count: 5

UTMNAD83 Radius Search (in meters):

Easting (X): 571390 Northing (Y): 3544744 Radius: 4000

*UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Page 1 of 1

WATER COLUMN/ AVERAGE DEPTH TO WATER

6/29/23 10:38 AM

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 320320104145101

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320320104145101 26S.26E.12.34120

Eddy County, New Mexico

Table of data

Tab-separated data

Latitude 32°03'09.7", Longitude 104°14'56.7" NAD83

Land-surface elevation 3,230.90 feet above NGVD29

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

<u>eselect pe</u>	riod										
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measu agenc	_	? Source measur
1978-01-2	5	D	62610		3217.55	NGVD29	1		Z		
1978-01-2		D	62611		3219.22	NAVD88	1		Z		
1978-01-2		D	72019	13.35			1		Z		
1992-11-1		D	62610		3218.87	NGVD29	1		S		
.992-11-1		D	62611		3220.54	NAVD88	1		S		
992-11-1	8	D	72019	12.03			1		S		
.998-01-1	3	D	62610		3215.24	NGVD29	1		S		
998-01-1	3	D	62611		3216.91	NAVD88	1		S		
.998-01-1	3	D	72019	15.66			1		S		
003-01-2	8	D	62610		3214.44	NGVD29	1		S	USGS	
2003-01-2	8	D	62611		3216.11	NAVD88	1		S	USGS	
2003-01-2	8	D	72019	16.46			1		S	USGS	
013-01-0	9 22:10 UTC	m	62610		3213.80	NGVD29	1		S	USGS	
2013-01-0	9 22:10 UTC	m	62611		3215.47	NAVD88	1		S	USGS	
2013-01-0	9 22:10 UTC	m	72019	17.10			1		S	USGS	

Date	Time	? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum		erenced tical um	?
2018-02-15 22:14 UT	C m	62610	3218.30	NGVD29	1	S	USGS	
2018-02-15 22:14 UT	C m	62611	3219.97	NAVD88	1	S	USGS	
2018-02-15 22:14 UT	C m	72019	12.60		1	S	USGS	

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	Α	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals <u>Help</u> **Data Tips Explanation of terms** Subscribe for system changes **News**

Privacy Accessibility FOIA Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey. Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-29 12:40:17 EDT

0.29 0.25 nadww01

USGS Home Contact USGS Search USGS

National Water Information System: Web Interface

USGS Water Resources

Data Category:		Geographic Area:		
Groundwater	~	New Mexico	~	GO

Click to hideNews Bulletins

- Explore the NEW <u>USGS National Water Dashboard</u> interactive map to access real-time water data from over 13,500 stations nationwide.
- Full News

Groundwater levels for New Mexico

Click to hide state-specific text

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs

site_no list =

320244104161501

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 320244104161501 26S.26E.15.24444

Eddy County, New Mexico

Latitude 32°02'44", Longitude 104°16'15" NAD27

Land-surface elevation 3,280 feet above NAVD88

The depth of the well is 53 feet below land surface.

This well is completed in the Other aguifers (N9999OTHER) national aguifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Tab-separated data	Tab-se	parated	data
--------------------	--------	---------	------

Graph of data

Table of data

eselect perio	o <u>d</u>									
Date	Time	? Water- level date- time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical datum	? Status	? Method of measurement	? Measuring agency	? Source measu
1983-08-24		D	62610		3246.37	NGVD29	1	2	7	
1983-08-24		D	62611		3248.04	NAVD88	1	2	Z	
1983-08-24		D	72019	31.96			1	2	7	
1987-10-08		D	62610		3248.64	NGVD29	1	Ž	Z	
1987-10-08		D	62611		3250.31	NAVD88	1	2	Z	
1987-10-08		D	72019	29.69			1	- 2	Z	
1992-11-18		D	62610		3246.72	NGVD29	1	9	5	
1992-11-18		D	62611		3248.39	NAVD88	1	S	5	
1992-11-18		D	72019	31.61			1	S	5	
1998-01-08		D	62610		3242.41	NGVD29	1	S	5	
1998-01-08		D	62611		3244.08	NAVD88	1	9	5	
1998-01-08		D	72019	35.92			1	9	5	

Explanation

Section	Code	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Source of measurement		Not determined
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Automated retrievals <u>Help</u> Data Tips **Explanation of terms** Subscribe for system changes **News**

Accessibility FOIA Privacy Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey Title: Groundwater for New Mexico: Water Levels

URL: https://nwis.waterdata.usgs.gov/nm/nwis/gwlevels?

Page Contact Information: <u>New Mexico Water Data Maintainer</u> Page Last Modified: 2023-06-29 12:41:15 EDT

0.28 0.24 nadww01

New Mexico Office of the State Engineer

Point of Diversion Summary

(quarters are 1=NW 2=NE 3=SW 4=SE)

(quarters are smallest to largest)

(NAD83 UTM in meters)

Well Tag **POD Number**

Q64 Q16 Q4 Sec Tws Rng

C 01887

15 26S 568614 3545497*

Driller License:

817

Driller Company: WEST, BILLY GEORGE

Driller Name: Drill Start Date: GEORGE WEST

05/09/1980

6.00

03/26/1980 **Drill Finish Date:** 04/27/1980 **Plug Date:**

Shallow

Log File Date:

PCW Rcv Date:

Depth Well:

Source:

Pump Type: Casing Size: Pipe Discharge Size:

53 feet

Estimated Yield: 12 GPM Depth Water:

31 feet

Water Bearing Stratifications:

Bottom Description Top

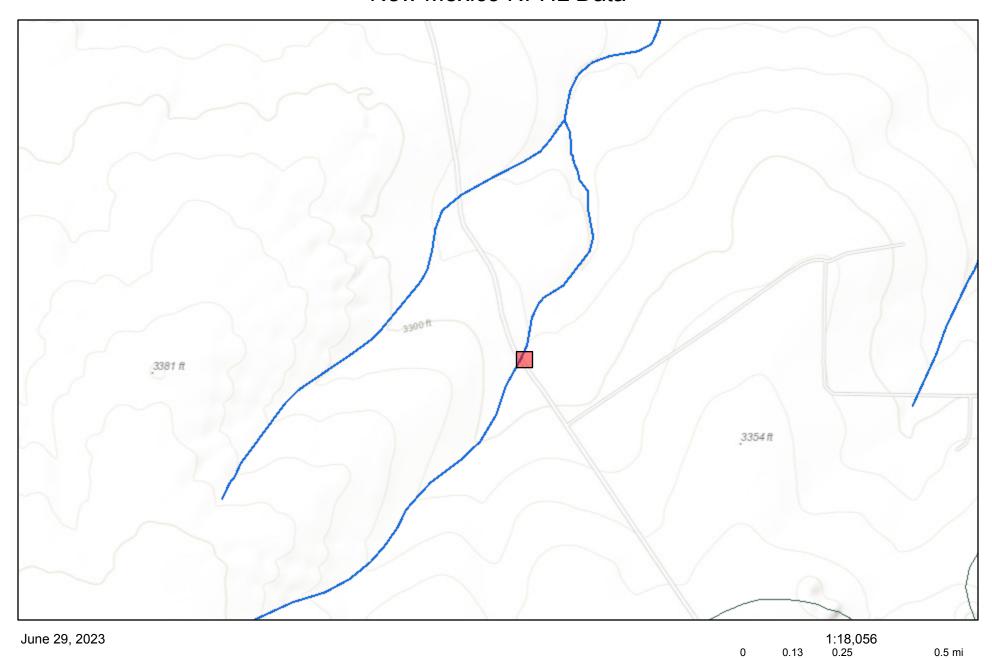
42

45 Sandstone/Gravel/Conglomerate

Casing Perforations:

Bottom Top 53

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.


6/29/23 10:38 AM

POINT OF DIVERSION SUMMARY

⁴⁰

^{*}UTM location was derived from PLSS - see Help

New Mexico NFHL Data

FEMA, Sources: Esri, HERE, Garmin, Intermap, increment P Corp., GEBCO, USGS, FAO, NPS, NRCAN, GeoBase, IGN, Kadaster NL, Ordnance Survey,

0.2

0.4

0.8 km

APPENDIX E

CARMONA RESOURCES

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500

Midland, Texas 79701

Generated 8/8/2023 11:33:30 AM

JOB DESCRIPTION

Asio Otis Fed #3 (6.22.23) SDG NUMBER Eddy County, New Mexico

JOB NUMBER

880-31669-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/8/2023 11:33:30 AM

Authorized for release by Jessica Kramer, Project Manager <u>Jessica.Kramer@et.eurofinsus.com</u> (432)704-5440 1

5

4

5

0

8

1 4

12

14

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) Laboratory Job ID: 880-31669-1 SDG: Eddy County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	21
QC Sample Results	23
QC Association Summary	28
Lab Chronicle	33
Certification Summary	40
Method Summary	41
Sample Summary	42
Chain of Custody	43
Receipt Chacklists	44

2

3

4

6

8

9

11

40

14

Definitions/Glossary

Job ID: 880-31669-1 Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** F1

MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier **Qualifier Description**

F1 MS and/or MSD recovery exceeds control limits.

U Indicates the analyte was analyzed for but not detected.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

¤ Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit Contains No Free Liquid **CNF**

Duplicate Error Ratio (normalized absolute difference) DER

Dil Fac **Dilution Factor**

Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) Limit of Quantitation (DoD/DOE) LOQ

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL ML Minimum Level (Dioxin)

MPN Most Probable Number MOI Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

Practical Quantitation Limit PQL

PRES Presumptive **Quality Control** QC

Relative Error Ratio (Radiochemistry) **RER**

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) **TEQ**

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Job ID: 880-31669-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-31669-1

Receipt

The samples were received on 8/3/2023 4:09 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: S-1 (0-0.5') (880-31669-1), S-1 (1.0') (880-31669-2), S-1 (1.5') (880-31669-3), S-1 (2.0') (880-31669-4), S-1 (3.0') (880-31669-5), S-1 (4.0') (880-31669-6), S-2 (0-0.5') (880-31669-7), S-2 (1.0') (880-31669-8), S-2 (1.5') (880-31669-9), S-2 (2.0') (880-31669-10), S-2 (3.0') (880-31669-11), S-3 (0-0.5') (880-31669-12), S-3 (1.0') (880-31669-13), S-4 (0-0.5') (880-31669-14), S-4 (1.0') (880-31669-15), S-5 (0-0.5') (880-31669-16), S-5 (1.0') (880-31669-17), S-5 (1.5') (880-31669-18), S-6 (0-0.5') (880-31669-19) and S-6 (1.0') (880-31669-20).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59295 recovered above the upper control limit for m-Xylene & p-Xylene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59295/2).

Method 8021B: The matrix spike duplicate (MSD) recoveries for preparation batch 880-59352 and analytical batch 880-59295 were outside control limits. Non-homogeneity is suspected because the associated laboratory control sample (LCS) recovery was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-59355 and analytical batch 880-59413 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: S-1 (0-0.5') (880-31669-1), S-1 (1.0') (880-31669-2), S-1 (1.5') (880-31669-3), S-1 (2.0') (880-31669-4), S-1 (3.0') (880-31669-5), S-1 (4.0') (880-31669-6), S-2 (0-0.5') (880-31669-7), S-2 (1.0') (880-31669-8), S-2 (1.5') (880-31669-9), S-2 (2.0') (880-31669-10), S-2 (3.0') (880-31669-11), S-3 (0-0.5') (880-31669-12), S-3 (1.0') (880-31669-13), S-4 (0-0.5') (880-31669-14), S-4 (1.0') (880-31669-15), S-5 (0-0.5') (880-31669-16), S-5 (1.0') (880-31669-17), S-5 (1.5') (880-31669-18), S-6 (0-0.5') (880-31669-19), S-6 (1.0') (880-31669-20), (CCV 880-59413/31), (CCV 880-59413/47), (CCV 880-59413/58), (LCS 880-59355/2-A), (LCSD 880-59355/3-A), (880-31669-A-1-F MS) and (880-31669-A-1-G MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-59355 and analytical batch 880-59413 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Method 300 ORGFM 28D: The matrix spike / matrix spike duplicate (MS/MSD) recoveries and precision for preparation batch 880-59303 and 880-59303 and analytical batch 880-59358 were outside control limits. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample / laboratory sample control duplicate (LCS/LCSD) precision was within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Midland 8/8/2023

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: S-1 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-1

Matrix: Solid

Job ID: 880-31669-1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
Ethylbenzene	<0.00202	U F1	0.00202		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 02:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				08/04/23 14:47	08/05/23 02:32	1
1,4-Difluorobenzene (Surr)	96		70 - 130				08/04/23 14:47	08/05/23 02:32	1
Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation							
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM - Diese	el Range Organ			MDL	mg/Kg		Prepared		
	el Range Organ	ics (DRO) (GC)	MDL		<u>D</u>	Prepared	08/07/23 17:07 Analyzed 08/08/23 12:09	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	Range Organ Result <50.2	ics (DRO) (Control of the Control of	GC) RL 50.2	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	Range Organ Result <50.2 sel Range Organ	ics (DRO) (Control of the Control of	GC) RL 50.2	MDL	Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	Range Organ Result <50.2 sel Range Organ	ics (DRO) ((Qualifier U unics (DRO) Qualifier	RL 50.2		Unit mg/Kg		<u> </u>	Analyzed 08/08/23 12:09	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10	Result sel Range Organ Result <50.2 sel Range Organ Result <50.2	ics (DRO) ((Qualifier U unics (DRO) Qualifier U	GC) RL 50.2 (GC) RL 50.2		Unit mg/Kg		Prepared 08/04/23 15:46	Analyzed 08/08/23 12:09 Analyzed 08/07/23 20:25	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Range Organ Result <50.2 sel Range Orga Result	ics (DRO) ((Qualifier U unics (DRO) Qualifier U	GC) RL 50.2 (GC) RL		Unit mg/Kg		Prepared	Analyzed 08/08/23 12:09 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <pre></pre> <pre> Sel Range Organ Result </pre> <pre></pre>	ics (DRO) ((Qualifier U unics (DRO) Qualifier U U F1	GC) RL 50.2 (GC) RL 50.2 50.2		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46	Analyzed 08/08/23 12:09 Analyzed 08/07/23 20:25 08/07/23 20:25	Dil Face
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result sel Range Organ Result <50.2 sel Range Organ Result <50.2	ics (DRO) ((Qualifier U unics (DRO) Qualifier U U F1	GC) RL 50.2 (GC) RL 50.2		Unit mg/Kg Unit mg/Kg		Prepared 08/04/23 15:46	Analyzed 08/08/23 12:09 Analyzed 08/07/23 20:25	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <pre></pre> <pre> Sel Range Organ Result </pre> <pre></pre>	ics (DRO) ((Qualifier U unics (DRO) Qualifier U U F1	GC) RL 50.2 (GC) RL 50.2 50.2		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46	Analyzed 08/08/23 12:09 Analyzed 08/07/23 20:25 08/07/23 20:25	Dil Face
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	sel Range Organ Result <50.2 sel Range Orga Result <50.2 <50.2 <50.2	ics (DRO) ((Qualifier U unics (DRO) Qualifier U U F1	GC) RL 50.2 (GC) RL 50.2 50.2 50.2		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46 08/04/23 15:46	Analyzed 08/08/23 12:09 Analyzed 08/07/23 20:25 08/07/23 20:25	Dil Fac

Client Sample ID: S-1 (1.0') Lab Sample ID: 880-31669-2 Date Collected: 07/31/23 00:00

RL

101

MDL Unit

mg/Kg

D

Prepared

Result Qualifier

14900

Date Received: 08/03/23 16:09

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 02:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130				08/04/23 14:47	08/05/23 02:53	1
1.4-Difluorobenzene (Surr)	102		70 - 130				08/04/23 14:47	08/05/23 02:53	1

Eurofins Midland

Matrix: Solid

Dil Fac

Analyzed

08/05/23 04:39

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: S-1 (1.0')

Date Collected: 07/31/23 00:00

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-2

Matrix: Solid

Date Received: 08/03/23 16:09
Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Total BTEX <0.00402 U 0.00402 mg/Kg 08/07/23 17:07

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Result Qualifier **MDL** Unit RL D Prepared Analyzed Dil Fac Total TPH <49.8 U 49.8 08/08/23 12:09 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

RL Result Qualifier MDL Unit D Dil Fac Analyte Prepared Analyzed <49.8 U 49.8 08/04/23 15:46 08/07/23 21:34 Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 49.8 mg/Kg 08/04/23 15:46 08/07/23 21:34 C10-C28) <49.8 U 49.8 08/04/23 15:46 08/07/23 21:34 Oll Range Organics (Over C28-C36) mg/Kg

%Recovery Qualifier Limits Prepared Analyzed Dil Fac Surrogate 1-Chlorooctane 181 S1+ 70 - 130 08/04/23 15:46 08/07/23 21:34 171 S1+ 70 - 130 08/04/23 15:46 08/07/23 21:34 o-Terphenyl

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac Chloride 11700 100 mg/Kg 08/05/23 04:44 20

Client Sample ID: S-1 (1.5') Lab Sample ID: 880-31669-3

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 03:13	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 03:13	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 03:13	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/04/23 14:47	08/05/23 03:13	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 03:13	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/04/23 14:47	08/05/23 03:13	1

%Recovery Qualifier Limits Dil Fac Surrogate Prepared Analyzed 70 - 130 08/04/23 14:47 08/05/23 03:13 4-Bromofluorobenzene (Surr) 81 101 1,4-Difluorobenzene (Surr) 70 - 130 08/04/23 14:47 08/05/23 03:13

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte Result Qualifier MDL Unit RL D Dil Fac Prepared Analyzed Total BTEX <0.00404 U 0.00404 08/07/23 17:07 mg/Kg

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte Result Qualifier RL MDL Dil Fac Unit D Prepared Analyzed <49.6 U Total TPH 49.6 08/08/23 12:09 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

Released to Imaging: 7/21/2025 11:07:53 AM

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/07/23 21:56	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/07/23 21:56	1

C10-C28)

Eurofins Midland

Matrix: Solid

Client Sample ID: S-1 (1.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-3

Matrix: Solid

Job ID: 880-31669-1

Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/07/23 21:56	1
%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
185	S1+	70 - 130				08/04/23 15:46	08/07/23 21:56	1
174	S1+	70 - 130				08/04/23 15:46	08/07/23 21:56	1
	<49.6 %Recovery 185	<49.6 U	<49.6	<49.6	<49.6	<49.6	<49.6 U 49.6 mg/Kg 08/04/23 15:46 %Recovery Qualifier Limits Prepared 185 S1+ 70 - 130 08/04/23 15:46	<49.6 U 49.6 mg/Kg 08/04/23 15:46 08/07/23 21:56 %Recovery Qualifier Limits Prepared Analyzed 185 S1+ 70 - 130 08/04/23 15:46 08/07/23 21:56

Method: EPA 300.0 - An	nions, Ion Chromatography - Soluble		
Analyte	Result Qualifier	RL	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6620	F1	50.5		mg/Kg			08/05/23 04:49	10

Client Sample ID: S-1 (2.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-4

Matrix: Solid

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		08/04/23 14:47	08/05/23 03:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				08/04/23 14:47	08/05/23 03:34	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/04/23 14:47	08/05/23 03:34	1

Method: TAL	SOP Total BTEX -	Total BTEX Calcu	lation

Analyte	Result	Qualifier	RL	MDL	Unit	I	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401		mg/Kg				08/07/23 17:07	1

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7	mg/Kg			08/08/23 12:09	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

		,	'						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		08/04/23 15:46	08/07/23 22:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		08/04/23 15:46	08/07/23 22:18	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		08/04/23 15:46	08/07/23 22:18	1
Currente	9/ D anassams	Ouglities.	l impida				Duamanad	Amalumad	Dil 5

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	180	S1+	70 - 130	08/04/23 15:46	08/07/23 22:18	1
o-Terphenyl	171	S1+	70 - 130	08/04/23 15:46	08/07/23 22:18	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6570		50.4		mg/Kg			08/05/23 05:04	10

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Job ID: 880-31669-1

Lab Sample ID: 880-31669-5

Client Sample ID: S-1 (3.0')	Lab Sample ID: 880-31669-5
Date Collected: 07/31/23 00:00	Matrix: Solid
Date Received: 08/03/23 16:09	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 03:54	
Toluene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 03:54	
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 03:54	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 03:54	
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 03:54	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 03:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	92		70 - 130				08/04/23 14:47	08/05/23 03:54	
1,4-Difluorobenzene (Surr)	102		70 - 130				08/04/23 14:47	08/05/23 03:54	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/07/23 17:07	
Method: SW846 8015 NM - Diese Analyte	Result	Qualifier	RL	MDL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fa
Total TPH			49.6	MIDL	mg/Kg		Prepared	08/08/23 12:09	DII Fac
- -									
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/07/23 22:39	
(GRO)-C6-C10	<49.6		49.6		m = 11/ =		08/04/23 15:46	08/07/23 22:39	
Diesel Range Organics (Over C10-C28)	<49.0	U	49.0		mg/Kg		06/04/23 15:46	06/07/23 22:39	
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/07/23 22:39	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
		04:	70 - 130				08/04/23 15:46	08/07/23 22:39	
1-Chlorooctane	204	S1+	70 - 130						
1-Chlorooctane o-Terphenyl		S1+ S1+	70 - 130				08/04/23 15:46	08/07/23 22:39	
o-Terphenyl	194	S1+	70 - 130				08/04/23 15:46	08/07/23 22:39	
1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	194 Chromatograp	S1+	70 - 130	MDL	Unit	D	08/04/23 15:46 Prepared	08/07/23 22:39 Analyzed	

Client Sample ID: S-1 (4.0') Lab Sample ID: 880-31669-6 Date Collected: 07/31/23 00:00 Matrix: Solid

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 04:14	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		70 - 130				08/04/23 14:47	08/05/23 04:14	1
1,4-Difluorobenzene (Surr)	110		70 - 130				08/04/23 14:47	08/05/23 04:14	1

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-6

Matrix: Solid

Client Sample ID: S-1 (4.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Method: TAL SOP Total BTEX - Total B	TEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM - Diesel Rang	e Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method: SW846 8015B NM - Dies	al Banga Orga	nico (DBO)	(CC)					
Analyte		Qualifier	(GC)	MDL Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		08/04/23 15:46	08/07/23 23:01	
(GRO)-C6-C10								
Diesel Range Organics (Over	<50.5	U	50.5	mg/Kg		08/04/23 15:46	08/07/23 23:01	
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg		08/04/23 15:46	08/07/23 23:01	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
1-Chlorooctane	180	S1+	70 - 130			08/04/23 15:46	08/07/23 23:01	
o-Terphenyl	170	S1+	70 - 130			08/04/23 15:46	08/07/23 23:01	

Client Sample ID: S-2 (0-0.5')

Date Collected: 07/31/23 00:00

Lab Sample ID: 880-31669-7

Matrix: Solid

RL

25.0

MDL Unit

mg/Kg

D

Prepared

Analyzed

08/05/23 05:24

Dil Fac

Result Qualifier

3630

Date Received: 08/03/23 16:09

Analyte

Chloride

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 04:35	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/04/23 14:47	08/05/23 04:35	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX			70 - 130				08/04/23 14:47	08/05/23 04:35	·
Method: TAL SOP Total BTEX	- Total BTEX Cald	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	08/04/23 14:47 Prepared	Analyzed	Dil Fac
	- Total BTEX Calc Result <0.00402	Qualifier U	RL 0.00402	MDL	Unit mg/Kg	<u>D</u>			
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <	Qualifier U	RL 0.00402			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies	- Total BTEX Calc Result <	Qualifier U ics (DRO) (Qualifier	RL 0.00402		mg/Kg		Prepared	Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die: Analyte	- Total BTEX Calc Result <	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 GC) RL 50.2		mg/Kg		Prepared	Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die: Analyte Total TPH	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.2	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 GC) RL 50.2	MDL	mg/Kg		Prepared	Analyzed 08/07/23 17:07	
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Dies	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.2	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00402 GC) RL 50.2	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/07/23 17:07 Analyzed 08/08/23 12:09	Dil Fac

Date Received: 08/03/23 16:09

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Client Sample ID: S-2 (0-0.5') Date Collected: 07/31/23 00:00

Lab Sample ID: 880-31669-7

Matrix: Solid

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/07/23 23:23	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	156	S1+	70 - 130				08/04/23 15:46	08/07/23 23:23	1
o-Terphenyl	145	S1+	70 - 130				08/04/23 15:46	08/07/23 23:23	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	20700		101		mg/Kg			08/05/23 05:29	20

Client Sample ID: S-2 (1.0')

Lab Sample ID: 880-31669-8

Matrix: Solid

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		08/04/23 14:47	08/05/23 04:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				08/04/23 14:47	08/05/23 04:55	1
1,4-Difluorobenzene (Surr)	112		70 - 130				08/04/23 14:47	08/05/23 04:55	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			08/07/23 17:07	1

	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<50.1	U	50.1	mg/Kg			08/08/23 12:09	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.1	U	50.1		mg/Kg		08/04/23 15:46	08/07/23 23:45	1
Diesel Range Organics (Over C10-C28)	<50.1	U	50.1		mg/Kg		08/04/23 15:46	08/07/23 23:45	1
Oll Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		08/04/23 15:46	08/07/23 23:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	187	S1+	70 - 130				08/04/23 15:46	08/07/23 23:45	1
o-Terphenyl	178	S1+	70 - 130				08/04/23 15:46	08/07/23 23:45	1

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	19100	100	mg/Kg			08/05/23 05:34	20

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-9

Matrix: Solid

Client Sample ID: S-2 (1.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 05:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				08/04/23 14:47	08/05/23 05:16	1
1,4-Difluorobenzene (Surr)	102		70 - 130				08/04/23 14:47	08/05/23 05:16	1
Method: TAL SOP Total BTEX -	Total BTEX Cale	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			08/07/23 17:07	1
- Method: SW846 8015 NM - Dies	ol Bango Organ	ice (DBO) (GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH									טווו מכ
-	<49.9	U	49.9		mg/Kg			08/08/23 12:09	1
- -					mg/Kg				1
: Method: SW846 8015B NM - Die	esel Range Orga			MDL	mg/Kg Unit		Prepared		Dil Fac
Method: SW846 8015B NM - Die Analyte	esel Range Orga	nics (DRO)	(GC)	MDL		<u>D</u>	Prepared 08/04/23 15:46	08/08/23 12:09	1
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	esel Range Orga Result	nics (DRO) Qualifier	(GC)	MDL	Unit	<u>D</u>	<u>.</u>	08/08/23 12:09 Analyzed	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	esel Range Orga Result	nics (DRO) Qualifier	(GC)	MDL	Unit	<u>D</u>	<u>.</u>	08/08/23 12:09 Analyzed	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	esel Range Orga Result <49.9	nics (DRO) Qualifier U	(GC) RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	esel Range Orga Result <49.9	nics (DRO) Qualifier U	(GC) RL 49.9	MDL	Unit mg/Kg	<u>D</u>	08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	esel Range Orga Result <49.9	Qualifier U Qualifier	(GC) RL 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	nics (DRO) Qualifier U U	(GC) RL 49.9 49.9 49.9	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06 08/08/23 00:06	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U Qualifier	(GC) RL 49.9 49.9 49.9 Limits	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06 08/08/23 00:06 Analyzed	Dil Face
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate	Result	Qualifier U Qualifier U Qualifier S1+ S1+	(GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06 08/08/23 00:06 Analyzed 08/08/23 00:06	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U Qualifier U Qualifier S1+ S1+	(GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		Unit mg/Kg mg/Kg	<u>D</u>	08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 00:06 08/08/23 00:06 08/08/23 00:06 Analyzed 08/08/23 00:06	Dil Fac

Client Sample ID: S-2 (2.0') Lab Sample ID: 880-31669-10 Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		08/04/23 14:47	08/05/23 05:36	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				08/04/23 14:47	08/05/23 05:36	1
1,4-Difluorobenzene (Surr)	104		70 - 130				08/04/23 14:47	08/05/23 05:36	1

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: S-2 (2.0') Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-10

Matrix: Solid

Method: TAL SOP Total BT	EX - Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM -	Diesel Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

1	08/08/23 12:09		mg/Kg		49.6	U	<49.6	Iotal IPH -
					(GC)	nics (DRO) (I Range Orga	- Method: SW846 8015B NM - Diese
Dil Fac	Analyzed	Prepared	Unit D	MDL	RL	Qualifier	Result	Analyte
1	08/08/23 00:28	08/04/23 15:46	mg/Kg		49.6	U	<49.6	Gasoline Range Organics
								(GRO)-C6-C10
1	08/08/23 00:28	08/04/23 15:46	mg/Kg		49.6	U	<49.6	Diesel Range Organics (Over
								C10-C28)
1	08/08/23 00:28	08/04/23 15:46	mg/Kg		49.6	U	<49.6	Oll Range Organics (Over C28-C36)
Dil Fac	Analyzed	Prepared			Limits	Qualifier	%Recovery	Surrogate
1	08/08/23 00:28	08/04/23 15:46			70 - 130	S1+	187	1-Chlorooctane
1	08/08/23 00:28	08/04/23 15:46			70 - 130	S1+	177	o-Terphenyl
:28	Analyzed 08/08/23 00.	Prepared 08/04/23 15:46	mg/Kg		Limits 70 - 130	Qualifier S1+	%Recovery	Surrogate 1-Chlorooctane

Method: EPA 300.0 - Anions, Ion Cl							
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	18100	99.2	mg/Kg			08/05/23 05:44	20

Client Sample ID: S-2 (3.0') Lab Sample ID: 880-31669-11 Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 07:26	
Toluene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 07:26	•
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 07:26	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 07:26	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 07:26	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 07:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	76		70 - 130				08/04/23 14:47	08/05/23 07:26	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX -			70 - 130				08/04/23 14:47	08/05/23 07:26	
Method: TAL SOP Total BTEX - Analyte	· Total BTEX Cald	Qualifier	70 - 130 RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	08/04/23 14:47 Prepared	08/05/23 07:26 Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX	Total BTEX Calc Result <0.00398	Qualifier U	RL 0.00398	MDL	Unit mg/Kg	<u>D</u>		Analyzed	
-	Total BTEX Calc Result www.esel-no.00398 sel Range Organ	Qualifier U	RL 0.00398			<u>D</u>		Analyzed	
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies	Total BTEX Calc Result www.esel-no.00398 sel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg	=	Prepared	Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	rotal BTEX Calc Result <0.00398 sel Range Organ Result <50.5	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.5		mg/Kg	=	Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Dies	Total BTEX Calc Result <0.00398 sel Range Organ Result <50.5 esel Range Organ	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.5	MDL	mg/Kg	=	Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX - Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	Total BTEX Calc Result <0.00398 sel Range Organ Result <50.5 esel Range Organ	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 50.5	MDL	mg/Kg Unit mg/Kg		Prepared Prepared	Analyzed 08/07/23 17:07 Analyzed 08/08/23 12:09	Dil Fac

Client: Carmona Resources Job ID: 880-31669-1 SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: S-2 (3.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-11

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.5	U	50.5		mg/Kg		08/04/23 15:46	08/08/23 01:11	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	182	S1+	70 - 130				08/04/23 15:46	08/08/23 01:11	1
o-Terphenyl	172	S1+	70 - 130				08/04/23 15:46	08/08/23 01:11	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 19900 251 08/05/23 05:49 Chloride mg/Kg

Client Sample ID: S-3 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-12

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 07:47	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130				08/04/23 14:47	08/05/23 07:47	1
1,4-Difluorobenzene (Surr)	110		70 - 130				08/04/23 14:47	08/05/23 07:47	1

Method: TAL SOP Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00396	U	0.00396		mg/Kg			08/07/23 17:07	1

Method: SW846 8015 NM - Diesel Range	e Organ	ics (DRO) (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.2	U	50.2		mg/Kg			08/08/23 12:09	1
Method: SW846 8015B NM - Diesel Ran	ge Orga	nics (DRO) (G	C)						

Method: SW846 8015B NM - Diese	I Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/08/23 01:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/08/23 01:32	1
C10-C28)									
OII Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/08/23 01:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	172	S1+	70 - 130				08/04/23 15:46	08/08/23 01:32	1
o-Terphenyl	160	S1+	70 - 130				08/04/23 15:46	08/08/23 01:32	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Chloride	12200	101	mg/Kg			08/05/23 05:54	20		

Eurofins Midland

8/8/2023

Job ID: 880-31669-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-13

Client Sample ID: S-3 (1.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Matrix: Solid

Method: SW846 8021B - Volatile	Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 08:07	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				08/04/23 14:47	08/05/23 08:07	1
1,4-Difluorobenzene (Surr)	108		70 - 130				08/04/23 14:47	08/05/23 08:07	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.3	U	50.3		mg/Kg			08/08/23 12:09	1
- Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.3	U	50.3		mg/Kg		08/04/23 15:46	08/08/23 01:55	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.3	U	50.3		mg/Kg		08/04/23 15:46	08/08/23 01:55	1
C10-C28)	.50.0		50.0		0.4		00/04/00 45 40	00/00/00 04 55	
Oll Range Organics (Over C28-C36)	<50.3	U	50.3		mg/Kg		08/04/23 15:46	08/08/23 01:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	176	S1+	70 - 130				08/04/23 15:46	08/08/23 01:55	1
o-Terphenyl	162	S1+	70 - 130				08/04/23 15:46	08/08/23 01:55	1

Client Sample ID: S-4 (0-0.5') Lab Sample ID: 880-31669-14 Date Collected: 07/31/23 00:00 **Matrix: Solid**

RL

5.01

MDL Unit

mg/Kg

D

Prepared

Analyzed

08/07/23 19:26

Dil Fac

Date Received: 08/03/23 16:09

Analyte

Chloride

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

88.4

Method: SW846 8021B - Volatile Organic Compounds (GC) Dil Fac Analyte Result Qualifier MDL Unit D RLPrepared Analyzed Benzene <0.00198 U 0.00198 mg/Kg 08/04/23 14:47 08/05/23 08:28 Toluene <0.00198 U 0.00198 mg/Kg 08/04/23 14:47 08/05/23 08:28 Ethylbenzene <0.00198 U 0.00198 mg/Kg 08/04/23 14:47 08/05/23 08:28 m-Xylene & p-Xylene <0.00397 U 0.00397 mg/Kg 08/04/23 14:47 08/05/23 08:28 o-Xylene <0.00198 U 0.00198 mg/Kg 08/04/23 14:47 08/05/23 08:28 <0.00397 U 0.00397 08/05/23 08:28 Xylenes, Total mg/Kg 08/04/23 14:47 Qualifier Limits Surrogate %Recovery Prepared Analyzed Dil Fac 83 70 - 130 08/04/23 14:47 4-Bromofluorobenzene (Surr) 08/05/23 08:28 1,4-Difluorobenzene (Surr) 102 70 - 130 08/04/23 14:47 08/05/23 08:28

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Client Sample ID: S-4 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09 Lab Sample ID: 880-31669-14

Matrix: Solid

Method: TAL SOP Total BTEX - Tot	tal BTEX Cal	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM - Diesel I	Range Organ	ics (DRO) (C	GC)						

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)									
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac		
Total TPH	<49.6 U	49.6	mg/Kg			08/08/23 12:09	1		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/08/23 02:16	1
Diesel Range Organics (Over C10-C28)	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/08/23 02:16	1
OII Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/04/23 15:46	08/08/23 02:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	206	S1+	70 - 130				08/04/23 15:46	08/08/23 02:16	1
o-Terphenvl	191	S1+	70 - 130				08/04/23 15:46	08/08/23 02:16	1

Method: EPA 300.0 - Anions, Ion Ch	romatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	33.3		4.98		mg/Kg			08/07/23 19:47	1

Client Sample ID: S-4 (1.0') Lab Sample ID: 880-31669-15 Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 08:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		70 - 130				08/04/23 14:47	08/05/23 08:48	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX	- Total BTEX Cald	culation	70 - 130				08/04/23 14:47	08/05/23 08:48	•
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	08/04/23 14:47 Prepared	Analyzed	Dil Fac
Method: TAL SOP Total BTEX	- Total BTEX Calc Result <0.00402	Qualifier U	RL 0.00402	MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00402 sel Range Organ	Qualifier U	RL 0.00402			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00402 sel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00402		mg/Kg		Prepared	Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 ——————————————————————————————————		mg/Kg		Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00402 ——————————————————————————————————	MDL	mg/Kg		Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00402 sel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00402 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/07/23 17:07 Analyzed 08/08/23 12:09	Dil Fac

Client: Carmona Resources Job ID: 880-31669-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: S-4 (1.0')

Lab Sample ID: 880-31669-15

Matrix: Solid

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Method: SW846 8015B NM - D	iesel Range Organics (DRO)	(GC) (Continued)

	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/04/23 15:46	08/08/23 02:38	1
	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
	1-Chlorooctane	195	S1+	70 - 130				08/04/23 15:46	08/08/23 02:38	1
Į	o-Terphenyl	183	S1+	70 - 130				08/04/23 15:46	08/08/23 02:38	1

Method: EPA 300.0 - Anions, Ion C	hromatography - So	luble					
Analyte	Result Qualifier	r RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	75.8	4.97	mg/K	g		08/07/23 19:54	1

Client Sample ID: S-5 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09 Lab Sample ID: 880-31669-16

Matrix: Solid

Method: SW846 8021B - Volat	ile Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/04/23 14:47	08/05/23 09:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	104		70 - 130				08/04/23 14:47	08/05/23 09:08	1
1 4-Diffuorohenzene (Surr)	gg		70 130				08/04/23 14:47	08/05/23 09:08	1

•	•		•	•	
4-Bromofluorobenzene (Surr)	104	70 - 130	08/04/23 14:47	08/05/23 09:08	1
1,4-Difluorobenzene (Surr)	99	70 - 130	08/04/23 14:47	08/05/23 09:08	1
Г., <u> </u>					

Welliou. IAL SOF Total BILA - To	tal BILA Calc	Julation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg		_	08/07/23 17:07	1

	Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Į	Total TPH	<49.8	U	49.8		mg/Kg			08/08/23 12:09	1

Total TPH	<49.8 U	49.8	mg/Kg	08/08/23 12:09 1
Method: SW846 8015B NM - Diese	I Range Organics (DRO)	(GC)		

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		08/04/23 15:46	08/08/23 02:59	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		08/04/23 15:46	08/08/23 02:59	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		08/04/23 15:46	08/08/23 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	183	S1+	70 - 130	08/04/23 15:46	08/08/23 02:59	1
o-Terphenyl	173	S1+	70 - 130	08/04/23 15:46	08/08/23 02:59	1

Method: EPA 300.0 - Anions, Ion Chromatog	raphy - Soluble
---	-----------------

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	23.9	5.02	mg/Kg			08/07/23 20:01	1

Eurofins Midland

8/8/2023

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-17

Matrix: Solid

Client Sample ID: S-5 (1.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
Toluene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
Ethylbenzene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/23 14:47	08/05/23 09:29	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	87		70 - 130				08/04/23 14:47	08/05/23 09:29	
1,4-Difluorobenzene (Surr)	101		70 - 130				08/04/23 14:47	08/05/23 09:29	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			08/07/23 17:07	1
wiethou. 344040 outs MM - Dies			•						
Analyte	Result	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	Prepared	Analyzed 08/08/23 12:09	Dil Fac
Analyte Total TPH	Result <49.7	Qualifier U	RL 49.7	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 08/08/23 12:09	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die	Result <49.7	Qualifier U	RL 49.7		mg/Kg		<u> </u>	08/08/23 12:09	1
Analyte Total TPH Method: SW846 8015B NM - Die Analyte	Result <49.7 esel Range Orga	Qualifier Unics (DRO) Qualifier	(GC)		mg/Kg	<u>D</u>	Prepared	08/08/23 12:09 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	Result <49.7	Qualifier Unics (DRO) Qualifier	RL 49.7		mg/Kg		<u> </u>	08/08/23 12:09	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.7 esel Range Orga Result <49.7	Qualifier U nics (DRO) Qualifier U	(GC) RL 49.7		mg/Kg Unit mg/Kg		Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.7 esel Range Orga	Qualifier U nics (DRO) Qualifier U	(GC)		mg/Kg		Prepared	08/08/23 12:09 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.7 esel Range Orga Result <49.7	Qualifier U nics (DRO) Qualifier U	(GC) RL 49.7		mg/Kg Unit mg/Kg		Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.7 esel Range Orga Result <49.7 <49.7	Qualifier U nics (DRO) Qualifier U	RL 49.7 (GC) RL 49.7 49.7		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20 08/08/23 03:20	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result	Qualifier U nics (DRO) Qualifier U U	RL 49.7 (GC) RL 49.7 49.7 49.7		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20 08/08/23 03:20 08/08/23 03:20	Dil Face
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result <49.7	Qualifier U nics (DRO) Qualifier U U Qualifier	RL 49.7		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared	08/08/23 12:09 Analyzed 08/08/23 03:20 08/08/23 03:20 08/08/23 03:20 Analyzed	Dil Fac
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oll Range Organics (Over C28-C36)	Result <49.7	Qualifier U nics (DRO) Qualifier U U Qualifier S1+ S1+	RL 49.7 (GC) RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20 08/08/23 03:20 08/08/23 03:20 Analyzed 08/08/23 03:20	Dil Face 1 1 1 Dil Face
Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) OII Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result	Qualifier U nics (DRO) Qualifier U U Qualifier S1+ S1+	RL 49.7 (GC) RL 49.7 49.7 49.7 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 08/04/23 15:46 08/04/23 15:46 08/04/23 15:46 Prepared 08/04/23 15:46	08/08/23 12:09 Analyzed 08/08/23 03:20 08/08/23 03:20 08/08/23 03:20 Analyzed 08/08/23 03:20	1 1 Dil Fac

Client Sample ID: S-5 (1.5') Lab Sample ID: 880-31669-18 Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/04/23 14:47	08/05/23 09:49	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				08/04/23 14:47	08/05/23 09:49	1
1,4-Difluorobenzene (Surr)	107		70 - 130				08/04/23 14:47	08/05/23 09:49	1

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

Client Sample ID: S-5 (1.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-18

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			08/07/23 17:07	1
Method: SW846 8015 NM - Diese	l Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.5	U	49.5		mg/Kg			08/08/23 12:09	1
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.5	U	49.5		mg/Kg		08/04/23 15:46	08/08/23 03:42	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.5	U	49.5		mg/Kg		08/04/23 15:46	08/08/23 03:42	1
C10-C28)									
OII Range Organics (Over C28-C36)	<49.5	U	49.5		mg/Kg		08/04/23 15:46	08/08/23 03:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	173	S1+	70 - 130				08/04/23 15:46	08/08/23 03:42	1
o-Terphenyl	161	S1+	70 - 130				08/04/23 15:46	08/08/23 03:42	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	32.3		5.04		mg/Kg			08/07/23 20:28	1

Client Sample ID: S-6 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample	ID: 880-31669-19	
------------	------------------	--

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
Toluene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 10:10	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				08/04/23 14:47	08/05/23 10:10	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte		culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	08/04/23 14:47 Prepared	08/05/23 10:10 Analyzed	
		culation	70 - 130				08/04/23 14:47	08/05/23 10:10	1
	- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>	08/04/23 14:47 Prepared		Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00402	Qualifier U	RL 0.00402	MDL		<u> </u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00402 sel Range Organ	Qualifier U	RL 0.00402	MDL MDL	mg/Kg	D		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies	- Total BTEX Calc Result <0.00402 sel Range Organ	Qualifier U	RL 0.00402		mg/Kg		Prepared	Analyzed 08/07/23 17:07	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte	rotal BTEX Calc Result <0.00402 sel Range Organ Result 769	Qualifier U ics (DRO) (Qualifier	RL 0.00402 GC) RL 50.4		mg/Kg		Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH	- Total BTEX Calc Result <0.00402 sel Range Organ Result 769 esel Range Orga	Qualifier U ics (DRO) (Qualifier	RL 0.00402 GC) RL 50.4		mg/Kg Unit mg/Kg		Prepared	Analyzed 08/07/23 17:07 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Dies Analyte Total TPH Method: SW846 8015B NM - Diese	- Total BTEX Calc Result <0.00402 sel Range Organ Result 769 esel Range Orga	Qualifier U ics (DRO) (Qualifier nics (DRO) Qualifier	RL 0.00402 GC) RL 50.4 (GC)	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/07/23 17:07 Analyzed 08/08/23 12:09	Dil Fac

Onem Gampie

Client: Carmona Resources

Job ID: 880-31669-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Client Sample ID: S-6 (0-0.5')

Lab Sample ID: 880-31669-19

Date Collected: 07/31/23 00:00 Matrix: Solid
Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		08/04/23 15:46	08/08/23 04:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	197	S1+	70 - 130				08/04/23 15:46	08/08/23 04:04	1
o-Terphenyl	179	S1+	70 ₋ 130				08/04/23 15:46	08/08/23 04:04	1

AnalyteResult ChlorideQualifierRL MDL Unit mg/KgD Prepared Manalyzed Dil Fac Del Manalyzed Dil Fac Del

Client Sample ID: S-6 (1.0')

Date Collected: 07/31/23 00:00

Lab Sample ID: 880-31669-20

Matrix: Solid

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:30	-
Toluene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:30	
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:30	
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 10:30	
o-Xylene	<0.00201	U	0.00201		mg/Kg		08/04/23 14:47	08/05/23 10:30	
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		08/04/23 14:47	08/05/23 10:30	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	91		70 - 130				08/04/23 14:47	08/05/23 10:30	
1,4-Difluorobenzene (Surr)	110		70 - 130				08/04/23 14:47	08/05/23 10:30	
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00402	U	0.00402		mg/Kg			08/07/23 17:07	
Analyte Total TPH	Result	Qualifier		MDL	Unit mg/Kg	D	Prepared	Analyzed 08/08/23 12:09	Dil Fa
					99				
Method: SW846 8015B NM - Dies			• •	MDI	1114	_	Bd	A	D!! E-
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/08/23 04:25	
Diesel Range Organics (Over	1300		50.2		mg/Kg		08/04/23 15:46	08/08/23 04:25	
C10-C28)	1000		00.2		9/119		00,0 1,20 10110	00/00/20 0 1.20	
Oll Range Organics (Over C28-C36)	<50.2	U	50.2		mg/Kg		08/04/23 15:46	08/08/23 04:25	
		0	Limits				Prepared	Analyzed	Dil Fa
Surrogate	%Recovery	Qualifier							DII Fa
Surrogate 1-Chlorooctane		S1+	70 - 130				08/04/23 15:46	08/08/23 04:25	
	188		70 - 130 70 - 130				08/04/23 15:46 08/04/23 15:46	08/08/23 04:25 08/08/23 04:25	
1-Chlorooctane	188 164	S1+ S1+	70 - 130						
1-Chlorooctane o-Terphenyl	188 164 Chromatograp	S1+ S1+	70 - 130	MDL	Unit	D			Dil Fa

Eurofins Midland

2

3

4

0

8

9

11

13

Surrogate Summary

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance I
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31669-1	S-1 (0-0.5')	86	96	
880-31669-1 MS	S-1 (0-0.5')	94	104	
880-31669-1 MSD	S-1 (0-0.5')	90	108	
880-31669-2	S-1 (1.0')	85	102	
380-31669-3	S-1 (1.5')	81	101	
380-31669-4	S-1 (2.0')	90	108	
80-31669-5	S-1 (3.0')	92	102	
380-31669-6	S-1 (4.0')	101	110	
380-31669-7	S-2 (0-0.5')	92	103	
380-31669-8	S-2 (1.0')	93	112	
80-31669-9	S-2 (1.5')	92	102	
80-31669-10	S-2 (2.0')	89	104	
880-31669-11	S-2 (3.0')	76	97	
880-31669-12	S-3 (0-0.5')	90	110	
80-31669-13	S-3 (1.0')	99	108	
80-31669-14	S-4 (0-0.5')	83	102	
880-31669-15	S-4 (1.0')	87	114	
80-31669-16	S-5 (0-0.5')	104	99	
380-31669-17	S-5 (1.0')	87	101	
880-31669-18	S-5 (1.5')	97	107	
80-31669-19	S-6 (0-0.5')	95	103	
80-31669-20	S-6 (1.0')	91	110	
.CS 880-59352/1-A	Lab Control Sample	100	102	
CSD 880-59352/2-A	Lab Control Sample Dup	98	102	
MB 880-59187/5-A	Method Blank	105	121	
1B 880-59352/5-A	Method Blank	105	125	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

			Percent	t Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31669-1	S-1 (0-0.5')	185 S1+	176 S1+	
880-31669-1 MS	S-1 (0-0.5')	172 S1+	141 S1+	
880-31669-1 MSD	S-1 (0-0.5')	170 S1+	136 S1+	
880-31669-2	S-1 (1.0')	181 S1+	171 S1+	
880-31669-3	S-1 (1.5')	185 S1+	174 S1+	
880-31669-4	S-1 (2.0')	180 S1+	171 S1+	
880-31669-5	S-1 (3.0')	204 S1+	194 S1+	
880-31669-6	S-1 (4.0')	180 S1+	170 S1+	
880-31669-7	S-2 (0-0.5')	156 S1+	145 S1+	
880-31669-8	S-2 (1.0')	187 S1+	178 S1+	
880-31669-9	S-2 (1.5')	184 S1+	173 S1+	
880-31669-10	S-2 (2.0')	187 S1+	177 S1+	
880-31669-11	S-2 (3.0')	182 S1+	172 S1+	

Surrogate Summary

Client: Carmona Resources

Job ID: 880-31669-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31669-12	S-3 (0-0.5')	172 S1+	160 S1+	
880-31669-13	S-3 (1.0')	176 S1+	162 S1+	
880-31669-14	S-4 (0-0.5')	206 S1+	191 S1+	
880-31669-15	S-4 (1.0')	195 S1+	183 S1+	
880-31669-16	S-5 (0-0.5')	183 S1+	173 S1+	
880-31669-17	S-5 (1.0')	170 S1+	160 S1+	
880-31669-18	S-5 (1.5')	173 S1+	161 S1+	
880-31669-19	S-6 (0-0.5')	197 S1+	179 S1+	
880-31669-20	S-6 (1.0')	188 S1+	164 S1+	
LCS 880-59355/2-A	Lab Control Sample	181 S1+	164 S1+	
LCSD 880-59355/3-A	Lab Control Sample Dup	187 S1+	172 S1+	
MB 880-59355/1-A	Method Blank	159 S1+	154 S1+	

1CO = 1-Chlorooctane OTPH = o-Terphenyl

Eurofins Midland

2

3

5

16

11

13

Client: Carmona Resources Job ID: 880-31669-1 SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-59187/5-A **Matrix: Solid**

Analysis Batch: 59295

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59187

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/03/23 09:27	08/04/23 14:25	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/03/23 09:27	08/04/23 14:25	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/03/23 09:27	08/04/23 14:25	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/03/23 09:27	08/04/23 14:25	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/03/23 09:27	08/04/23 14:25	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/03/23 09:27	08/04/23 14:25	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	105		70 - 130	08/03/23 09:27	08/04/23 14:25	1
1,4-Difluorobenzene (Surr)	121		70 - 130	08/03/23 09:27	08/04/23 14:25	1

Lab Sample ID: MB 880-59352/5-A

Matrix: Solid

Analysis Batch: 59295

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 59352

	IVID	IVID							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 02:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 02:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 02:03	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/04/23 14:47	08/05/23 02:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:47	08/05/23 02:03	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/04/23 14:47	08/05/23 02:03	1

мв мв

	Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
	4-Bromofluorobenzene (Surr)	105		70 - 130	08/04/23 14:47	08/05/23 02:03	1
١	1,4-Difluorobenzene (Surr)	125		70 - 130	08/04/23 14:47	08/05/23 02:03	1

Lab Sample ID: LCS 880-59352/1-A

Matrix: Solid

Analysis Batch: 59295

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 59352

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1004		mg/Kg		100	70 - 130	
Toluene	0.100	0.1086		mg/Kg		109	70 - 130	
Ethylbenzene	0.100	0.09932		mg/Kg		99	70 - 130	
m-Xylene & p-Xylene	0.200	0.2215		mg/Kg		111	70 - 130	
o-Xylene	0.100	0.1077		mg/Kg		108	70 - 130	

LCS LCS

Surrogate	%Recovery Qualific	er Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1.4-Difluorobenzene (Surr)	102	70 - 130

Lab Sample ID: LCSD 880-59352/2-A

Matrix: Solid

Analysis Batch: 59295

Client Sample ID:	Lab Control Sample Dup
	Dren Times Tetal/NA

Prep Type: Total/NA

Prep Batch: 59352

	Spike	LCSD LCSD				%Rec		RPD
Analyte	Added	Result Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1098	mg/Kg		110	70 - 130	9	35

Eurofins Midland

Page 23 of 44

Client: Carmona Resources Job ID: 880-31669-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-59352/2-A

Matrix: Solid Analysis Batch: 59295 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 59352

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit %Rec Limits **RPD** Limit Toluene 0.100 0.1116 112 70 - 130 mg/Kg 3 Ethylbenzene 0.100 0.1013 mg/Kg 101 70 - 130 0.200 70 - 130 m-Xylene & p-Xylene 0.2306 mg/Kg 115 o-Xylene 0.100 0.1117 mg/Kg 112 70 - 130

35 35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	98		70 - 130
1,4-Difluorobenzene (Surr)	102		70 - 130

Lab Sample ID: 880-31669-1 MS Client Sample ID: S-1 (0-0.5')

Matrix: Solid

Analysis Batch: 59295

Prep Type: Total/NA

Prep Batch: 59352

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00202	U	0.0996	0.09161		mg/Kg		92	70 - 130	
Toluene	<0.00202	U	0.0996	0.08289		mg/Kg		83	70 - 130	
Ethylbenzene	<0.00202	U F1	0.0996	0.06928		mg/Kg		70	70 - 130	
m-Xylene & p-Xylene	<0.00403	U	0.199	0.1587		mg/Kg		80	70 - 130	
o-Xylene	<0.00202	U	0.0996	0.07704		mg/Kg		77	70 - 130	

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	94	70 - 130
1,4-Difluorobenzene (Surr)	104	70 - 130

Lab Sample ID: 880-31669-1 MSD **Client Sample ID: S-1 (0-0.5')**

Matrix: Solid

Analysis Batch: 59295

Prep Type: Total/NA Prep Batch: 59352

7											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00202	U	0.0998	0.08606		mg/Kg		86	70 - 130	6	35
Toluene	<0.00202	U	0.0998	0.07723		mg/Kg		77	70 - 130	7	35
Ethylbenzene	<0.00202	U F1	0.0998	0.06104	F1	mg/Kg		61	70 - 130	13	35
m-Xylene & p-Xylene	<0.00403	U	0.200	0.1461		mg/Kg		73	70 - 130	8	35
o-Xylene	<0.00202	U	0.0998	0.07256		mg/Kg		72	70 - 130	6	35

MSD MSD

Surrogate	%Recovery	Quaimer	Limits
4-Bromofluorobenzene (Surr)	90		70 - 130
1,4-Difluorobenzene (Surr)	108		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-59355/1-A

Matrix: Solid

Analysis Batch: 59413

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 59355

мв мв Result Qualifier MDL Unit Prepared Gasoline Range Organics <50.0 U 50.0 08/04/23 15:46 08/07/23 19:19 mg/Kg (GRO)-C6-C10

Client: Carmona Resources

Job ID: 880-31669-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-59355/1-A **Matrix: Solid**

Analysis Batch: 59413

Diesel Range Organics (Over

Analyte

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 59355

MB MB Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac <50.0 U 50.0 08/04/23 15:46 08/07/23 19:19 mg/Kg

C10-C28) 50.0 08/07/23 19:19 Oll Range Organics (Over C28-C36) <50.0 U 08/04/23 15:46 mg/Kg

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 159 S1+ 70 - 130 08/04/23 15:46 08/07/23 19:19 70 - 130 08/04/23 15:46 08/07/23 19:19 o-Terphenyl 154 S1+

Lab Sample ID: LCS 880-59355/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 59413

Prep Type: Total/NA

Prep Batch: 59355

LCS LCS Spike Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 1038 104 70 - 130 mg/Kg (GRO)-C6-C10 1000 1006 Diesel Range Organics (Over 101 70 - 130mg/Kg C10-C28)

LCS LCS

Qualifier Surrogate %Recovery Limits 1-Chlorooctane S1+ 70 - 130 181 70 - 130 o-Terphenyl 164 S1+

Lab Sample ID: LCSD 880-59355/3-A

Matrix: Solid

Analysis Batch: 59413

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 59355

Spike LCSD LCSD %Rec **RPD** Result Qualifier Limits RPD Limit Analyte Added Unit D %Rec Gasoline Range Organics 1000 995.6 100 70 - 130 20 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 964.3 mg/Kg 96 70 - 130 4 20 C10-C28)

LCSD LCSD Surrogate %Recovery Qualifier Limits

1-Chlorooctane 187 S1+ 70 - 130 o-Terphenyl 172 S1+ 70 - 130

Lab Sample ID: 880-31669-1 MS

Matrix: Solid

Analysis Batch: 59413

Client Sample ID: S-1 (0-0.5')

Prep Type: Total/NA

Prep Batch: 59355

MS MS %Rec Sample Sample Spike Result Qualifier Added Qualifier Analyte Result Unit %Rec Limits <50.2 U 1010 Gasoline Range Organics 1176 113 70 - 130mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <50.2 UF1 1010 1845 F1 mg/Kg 181 70 - 130

C10-C28)

MS MS Surrogate %Recovery Qualifier Limits 172 S1+ 70 - 130 1-Chlorooctane 70 - 130 141 S1+ o-Terphenyl

Client: Carmona Resources Job ID: 880-31669-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-31669-1 MSD **Client Sample ID: S-1 (0-0.5')**

Matrix: Solid

Analysis Batch: 59413

Prep Type: Total/NA

Prep Batch: 59355

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.2	U	1010	1165		mg/Kg		111	70 - 130	1	20
Diesel Range Organics (Over	<50.2	U F1	1010	1788	F1	mg/Kg		175	70 - 130	3	20

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits		
1-Chlorooctane	170	S1+	70 - 130		
o-Terphenyl	136	S1+	70 - 130		

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-59303/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

мв мв

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00 U	5.00	mg/Kg			08/05/23 03:25	1

Lab Sample ID: LCS 880-59303/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	242.6		mg/Kg		97	90 - 110	

Lab Sample ID: LCSD 880-59303/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

	Spike	LCSD	LCSD				%Rec		RPD	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Chloride	250	243 1		ma/Ka		97	90 - 110		20	

Lab Sample ID: 880-31669-3 MS Client Sample ID: S-1 (1.5') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	6620	F1	2530	9431	F1	ma/Ka		111	90 110	

Lab Sample ID: 880-31669-3 MSD Client Sample ID: S-1 (1.5')

Matrix: Solid

Analysis Batch: 59358

Allalysis Datell. 00000											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	6620	F1	2530	9438	F1	ma/Ka		111	90 - 110		20

Eurofins Midland

Prep Type: Soluble

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: MB 880-59302/1-A

Matrix: Solid

Analysis Batch: 59511

Analyte

Chloride

Client Sample ID: Method Blank **Prep Type: Soluble**

мв мв Dil Fac Result Qualifier RL MDL Unit D Prepared Analyzed <5.00 U 5.00 mg/Kg 08/07/23 19:06

Lab Sample ID: LCS 880-59302/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 59511

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 241.6 mg/Kg 97 90 - 110

Lab Sample ID: LCSD 880-59302/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 59511

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit D %Rec Limits **RPD** Limit Chloride 250 241.4 mg/Kg 90 - 110

Lab Sample ID: 880-31669-13 MS Client Sample ID: S-3 (1.0') **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59511

Spike MS MS Sample Sample %Rec Analyte Result Qualifier Added Qualifier Unit %Rec Result Limits Chloride 88.4 251 324.6 90 - 110 mg/Kg

Lab Sample ID: 880-31669-13 MSD Client Sample ID: S-3 (1.0') **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 59511

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 251 88.4 324.9 mg/Kg 94 90 - 110 0 20

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 59187

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-59187/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 59295

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-2	S-1 (1.0')	Total/NA	Solid	8021B	59352
880-31669-3	S-1 (1.5')	Total/NA	Solid	8021B	59352
880-31669-4	S-1 (2.0')	Total/NA	Solid	8021B	59352
880-31669-5	S-1 (3.0')	Total/NA	Solid	8021B	59352
880-31669-6	S-1 (4.0')	Total/NA	Solid	8021B	59352
880-31669-7	S-2 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-8	S-2 (1.0')	Total/NA	Solid	8021B	59352
880-31669-9	S-2 (1.5')	Total/NA	Solid	8021B	59352
880-31669-10	S-2 (2.0')	Total/NA	Solid	8021B	59352
880-31669-11	S-2 (3.0')	Total/NA	Solid	8021B	59352
880-31669-12	S-3 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-13	S-3 (1.0')	Total/NA	Solid	8021B	59352
880-31669-14	S-4 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-15	S-4 (1.0')	Total/NA	Solid	8021B	59352
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-17	S-5 (1.0')	Total/NA	Solid	8021B	59352
880-31669-18	S-5 (1.5')	Total/NA	Solid	8021B	59352
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-20	S-6 (1.0')	Total/NA	Solid	8021B	59352
MB 880-59187/5-A	Method Blank	Total/NA	Solid	8021B	59187
MB 880-59352/5-A	Method Blank	Total/NA	Solid	8021B	59352
LCS 880-59352/1-A	Lab Control Sample	Total/NA	Solid	8021B	59352
LCSD 880-59352/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	59352
880-31669-1 MS	S-1 (0-0.5')	Total/NA	Solid	8021B	59352
880-31669-1 MSD	S-1 (0-0.5')	Total/NA	Solid	8021B	59352

Prep Batch: 59352

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
380-31669-1	S-1 (0-0.5')	Total/NA	Solid	5035	
380-31669-2	S-1 (1.0')	Total/NA	Solid	5035	
880-31669-3	S-1 (1.5')	Total/NA	Solid	5035	
380-31669-4	S-1 (2.0')	Total/NA	Solid	5035	
380-31669-5	S-1 (3.0')	Total/NA	Solid	5035	
380-31669-6	S-1 (4.0')	Total/NA	Solid	5035	
380-31669-7	S-2 (0-0.5')	Total/NA	Solid	5035	
380-31669-8	S-2 (1.0')	Total/NA	Solid	5035	
380-31669-9	S-2 (1.5')	Total/NA	Solid	5035	
380-31669-10	S-2 (2.0')	Total/NA	Solid	5035	
380-31669-11	S-2 (3.0')	Total/NA	Solid	5035	
380-31669-12	S-3 (0-0.5')	Total/NA	Solid	5035	
380-31669-13	S-3 (1.0')	Total/NA	Solid	5035	
380-31669-14	S-4 (0-0.5')	Total/NA	Solid	5035	
380-31669-15	S-4 (1.0')	Total/NA	Solid	5035	
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	5035	
80-31669-17	S-5 (1.0')	Total/NA	Solid	5035	
380-31669-18	S-5 (1.5')	Total/NA	Solid	5035	

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

2

3

А

8

3

13

14

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

GC VOA (Continued)

Prep Batch: 59352 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	5035	
880-31669-20	S-6 (1.0')	Total/NA	Solid	5035	
MB 880-59352/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-59352/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-59352/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31669-1 MS	S-1 (0-0.5')	Total/NA	Solid	5035	
880-31669-1 MSD	S-1 (0-0.5')	Total/NA	Solid	5035	

Analysis Batch: 59566

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-2	S-1 (1.0')	Total/NA	Solid	Total BTEX	
880-31669-3	S-1 (1.5')	Total/NA	Solid	Total BTEX	
880-31669-4	S-1 (2.0')	Total/NA	Solid	Total BTEX	
880-31669-5	S-1 (3.0')	Total/NA	Solid	Total BTEX	
880-31669-6	S-1 (4.0')	Total/NA	Solid	Total BTEX	
880-31669-7	S-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-8	S-2 (1.0')	Total/NA	Solid	Total BTEX	
880-31669-9	S-2 (1.5')	Total/NA	Solid	Total BTEX	
880-31669-10	S-2 (2.0')	Total/NA	Solid	Total BTEX	
880-31669-11	S-2 (3.0')	Total/NA	Solid	Total BTEX	
880-31669-12	S-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-13	S-3 (1.0')	Total/NA	Solid	Total BTEX	
880-31669-14	S-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-15	S-4 (1.0')	Total/NA	Solid	Total BTEX	
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-17	S-5 (1.0')	Total/NA	Solid	Total BTEX	
880-31669-18	S-5 (1.5')	Total/NA	Solid	Total BTEX	
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31669-20	S-6 (1.0')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 59355

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-2	S-1 (1.0')	Total/NA	Solid	8015NM Prep	
880-31669-3	S-1 (1.5')	Total/NA	Solid	8015NM Prep	
880-31669-4	S-1 (2.0')	Total/NA	Solid	8015NM Prep	
880-31669-5	S-1 (3.0')	Total/NA	Solid	8015NM Prep	
880-31669-6	S-1 (4.0')	Total/NA	Solid	8015NM Prep	
880-31669-7	S-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-8	S-2 (1.0')	Total/NA	Solid	8015NM Prep	
880-31669-9	S-2 (1.5')	Total/NA	Solid	8015NM Prep	
880-31669-10	S-2 (2.0')	Total/NA	Solid	8015NM Prep	
880-31669-11	S-2 (3.0')	Total/NA	Solid	8015NM Prep	
880-31669-12	S-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-13	S-3 (1.0')	Total/NA	Solid	8015NM Prep	
880-31669-14	S-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-15	S-4 (1.0')	Total/NA	Solid	8015NM Prep	
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	8015NM Prep	

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

GC Semi VOA (Continued)

Prep Batch: 59355 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-17	S-5 (1.0')	Total/NA	Solid	8015NM Prep	
880-31669-18	S-5 (1.5')	Total/NA	Solid	8015NM Prep	
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-20	S-6 (1.0')	Total/NA	Solid	8015NM Prep	
MB 880-59355/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-59355/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-59355/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-31669-1 MS	S-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31669-1 MSD	S-1 (0-0.5')	Total/NA	Solid	8015NM Prep	

Analysis Batch: 59413

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-2	S-1 (1.0')	Total/NA	Solid	8015B NM	59355
880-31669-3	S-1 (1.5')	Total/NA	Solid	8015B NM	59355
880-31669-4	S-1 (2.0')	Total/NA	Solid	8015B NM	59355
880-31669-5	S-1 (3.0')	Total/NA	Solid	8015B NM	59355
880-31669-6	S-1 (4.0')	Total/NA	Solid	8015B NM	59355
880-31669-7	S-2 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-8	S-2 (1.0')	Total/NA	Solid	8015B NM	59355
880-31669-9	S-2 (1.5')	Total/NA	Solid	8015B NM	59355
880-31669-10	S-2 (2.0')	Total/NA	Solid	8015B NM	59355
880-31669-11	S-2 (3.0')	Total/NA	Solid	8015B NM	59355
880-31669-12	S-3 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-13	S-3 (1.0')	Total/NA	Solid	8015B NM	59355
880-31669-14	S-4 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-15	S-4 (1.0')	Total/NA	Solid	8015B NM	59355
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-17	S-5 (1.0')	Total/NA	Solid	8015B NM	59355
880-31669-18	S-5 (1.5')	Total/NA	Solid	8015B NM	59355
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-20	S-6 (1.0')	Total/NA	Solid	8015B NM	59355
MB 880-59355/1-A	Method Blank	Total/NA	Solid	8015B NM	59355
LCS 880-59355/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	59355
LCSD 880-59355/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	59355
880-31669-1 MS	S-1 (0-0.5')	Total/NA	Solid	8015B NM	59355
880-31669-1 MSD	S-1 (0-0.5')	Total/NA	Solid	8015B NM	59355

Analysis Batch: 59634

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-2	S-1 (1.0')	Total/NA	Solid	8015 NM	
880-31669-3	S-1 (1.5')	Total/NA	Solid	8015 NM	
880-31669-4	S-1 (2.0')	Total/NA	Solid	8015 NM	
880-31669-5	S-1 (3.0')	Total/NA	Solid	8015 NM	
880-31669-6	S-1 (4.0')	Total/NA	Solid	8015 NM	
880-31669-7	S-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-8	S-2 (1.0')	Total/NA	Solid	8015 NM	
880-31669-9	S-2 (1.5')	Total/NA	Solid	8015 NM	
880-31669-10	S-2 (2.0')	Total/NA	Solid	8015 NM	
880-31669-11	S-2 (3.0')	Total/NA	Solid	8015 NM	

Eurofins Midland

1

5

5

8

9

11

13

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 59634 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-12	S-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-13	S-3 (1.0')	Total/NA	Solid	8015 NM	
880-31669-14	S-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-15	S-4 (1.0')	Total/NA	Solid	8015 NM	
880-31669-16	S-5 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-17	S-5 (1.0')	Total/NA	Solid	8015 NM	
880-31669-18	S-5 (1.5')	Total/NA	Solid	8015 NM	
880-31669-19	S-6 (0-0.5')	Total/NA	Solid	8015 NM	
880-31669-20	S-6 (1.0')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 59302

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-13	S-3 (1.0')	Soluble	Solid	DI Leach	_
880-31669-14	S-4 (0-0.5')	Soluble	Solid	DI Leach	
880-31669-15	S-4 (1.0')	Soluble	Solid	DI Leach	
880-31669-16	S-5 (0-0.5')	Soluble	Solid	DI Leach	
880-31669-17	S-5 (1.0')	Soluble	Solid	DI Leach	
880-31669-18	S-5 (1.5')	Soluble	Solid	DI Leach	
880-31669-19	S-6 (0-0.5')	Soluble	Solid	DI Leach	
880-31669-20	S-6 (1.0')	Soluble	Solid	DI Leach	
MB 880-59302/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-59302/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-59302/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-31669-13 MS	S-3 (1.0')	Soluble	Solid	DI Leach	
880-31669-13 MSD	S-3 (1.0')	Soluble	Solid	DI Leach	

Leach Batch: 59303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-31669-1	S-1 (0-0.5')	Soluble	Solid	DI Leach	
880-31669-2	S-1 (1.0')	Soluble	Solid	DI Leach	
880-31669-3	S-1 (1.5')	Soluble	Solid	DI Leach	
880-31669-4	S-1 (2.0')	Soluble	Solid	DI Leach	
880-31669-5	S-1 (3.0')	Soluble	Solid	DI Leach	
880-31669-6	S-1 (4.0')	Soluble	Solid	DI Leach	
880-31669-7	S-2 (0-0.5')	Soluble	Solid	DI Leach	
880-31669-8	S-2 (1.0')	Soluble	Solid	DI Leach	
880-31669-9	S-2 (1.5')	Soluble	Solid	DI Leach	
880-31669-10	S-2 (2.0')	Soluble	Solid	DI Leach	
880-31669-11	S-2 (3.0')	Soluble	Solid	DI Leach	
880-31669-12	S-3 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-59303/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-59303/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-59303/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-31669-3 MS	S-1 (1.5')	Soluble	Solid	DI Leach	
880-31669-3 MSD	S-1 (1.5')	Soluble	Solid	DI Leach	

Analysis Batch: 59358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-1	S-1 (0-0.5')	Soluble	Solid	300.0	59303

Eurofins Midland

Page 31 of 44

8/8/2023

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

HPLC/IC (Continued)

Analysis Batch: 59358 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-2	S-1 (1.0')	Soluble	Solid	300.0	59303
880-31669-3	S-1 (1.5')	Soluble	Solid	300.0	59303
880-31669-4	S-1 (2.0')	Soluble	Solid	300.0	59303
880-31669-5	S-1 (3.0')	Soluble	Solid	300.0	59303
880-31669-6	S-1 (4.0')	Soluble	Solid	300.0	59303
880-31669-7	S-2 (0-0.5')	Soluble	Solid	300.0	59303
880-31669-8	S-2 (1.0')	Soluble	Solid	300.0	59303
880-31669-9	S-2 (1.5')	Soluble	Solid	300.0	59303
880-31669-10	S-2 (2.0')	Soluble	Solid	300.0	59303
880-31669-11	S-2 (3.0')	Soluble	Solid	300.0	59303
880-31669-12	S-3 (0-0.5')	Soluble	Solid	300.0	59303
MB 880-59303/1-A	Method Blank	Soluble	Solid	300.0	59303
LCS 880-59303/2-A	Lab Control Sample	Soluble	Solid	300.0	59303
LCSD 880-59303/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	59303
880-31669-3 MS	S-1 (1.5')	Soluble	Solid	300.0	59303
880-31669-3 MSD	S-1 (1.5')	Soluble	Solid	300.0	59303

Analysis Batch: 59511

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31669-13	S-3 (1.0')	Soluble	Solid	300.0	59302
880-31669-14	S-4 (0-0.5')	Soluble	Solid	300.0	59302
880-31669-15	S-4 (1.0')	Soluble	Solid	300.0	59302
880-31669-16	S-5 (0-0.5')	Soluble	Solid	300.0	59302
880-31669-17	S-5 (1.0')	Soluble	Solid	300.0	59302
880-31669-18	S-5 (1.5')	Soluble	Solid	300.0	59302
880-31669-19	S-6 (0-0.5')	Soluble	Solid	300.0	59302
880-31669-20	S-6 (1.0')	Soluble	Solid	300.0	59302
MB 880-59302/1-A	Method Blank	Soluble	Solid	300.0	59302
LCS 880-59302/2-A	Lab Control Sample	Soluble	Solid	300.0	59302
LCSD 880-59302/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	59302
880-31669-13 MS	S-3 (1.0')	Soluble	Solid	300.0	59302
880-31669-13 MSD	S-3 (1.0')	Soluble	Solid	300.0	59302

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-1

Matrix: Solid

Client Sample ID: S-1 (0-0.5') Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 02:32	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.96 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 20:25	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 04:39	CH	EET MID

Client Sample ID: S-1 (1.0')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-2 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 02:53	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 21:34	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 04:44	CH	EET MID

Client Sample ID: S-1 (1.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 03:13	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 21:56	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		10			59358	08/05/23 04:49	CH	EET MID

Client Sample ID: S-1 (2.0')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 8	80-31669-4
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 03:34	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-4

Matrix: Solid

Client Sample ID: S-1 (2.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.07 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 22:18	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		10			59358	08/05/23 05:04	CH	EET MID

Client Sample ID: S-1 (3.0')

Date Collected: 07/31/23 00:00

Lab Sample ID: 880-31669-5

Matrix: Solid

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 03:54	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 22:39	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		5			59358	08/05/23 05:09	CH	EET MID

Client Sample ID: S-1 (4.0')

Date Collected: 07/31/23 00:00

Lab Sample ID: 880-31669-6

Matrix: Solid

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 04:14	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 23:01	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		5			59358	08/05/23 05:24	CH	EET MID

Client Sample ID: S-2 (0-0.5')

Lab Sample ID: 880-31669-7

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Released to Imaging: 7/21/2025 11:07:53 AM

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 04:35	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	9.96 g 1 uL	10 mL 1 uL	59355 59413	08/04/23 15:46 08/07/23 23:23	TKC SM	EET MID EET MID

Eurofins Midland

Page 34 of 44

2

3

6

8

10

12

14

Matrix: Solid

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-7

Lab Sample ID: 880-31669-9

Matrix: Solid

Client Sample ID: S-2 (0-0.5') Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.95 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 05:29	CH	EET MID

Client Sample ID: S-2 (1.0') Lab Sample ID: 880-31669-8

Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 04:55	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.98 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/07/23 23:45	SM	EET MID
Soluble	Leach	DI Leach			5 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 05:34	CH	EET MID

Client Sample ID: S-2 (1.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 05:16	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 00:06	SM	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 05:39	CH	EET MID

Client Sample ID: S-2 (2.0') Lab Sample ID: 880-31669-10

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 05:36	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 00:28	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		20			59358	08/05/23 05:44	CH	EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-11

Matrix: Solid

Client Sample ID: S-2 (3.0') Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 07:26	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 01:11	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		50			59358	08/05/23 05:49	CH	EET MID

Client Sample ID: S-3 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab	Sampl	le ID:	880-31	669-12	
-----	-------	--------	--------	--------	--

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 5.05 g Total/NA 5 mL 59352 08/04/23 14:47 EL EET MID Total/NA 8021B **EET MID** Analysis 1 5 mL 5 mL 59295 08/05/23 07:47 SM Total/NA Total BTEX 59566 08/07/23 17:07 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 59634 08/08/23 12:09 SM **EET MID** Total/NA 8015NM Prep 59355 Prep 9.96 g 10 mL 08/04/23 15:46 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 59413 08/08/23 01:32 SM **EET MID** Soluble 59303 08/04/23 13:22 Leach DI Leach 4.95 g 50 mL KS **EET MID** Soluble Analysis 300.0 20 59358 08/05/23 05:54 СН **EET MID**

Client Sample ID: S-3 (1.0')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Samp	le ID:	880-31669	9-13
----------	--------	-----------	------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 08:07	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.94 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 01:55	SM	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 19:26	CH	EET MID

Client Sample ID: S-4 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample	ID: 880-31669-14
------------	------------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 08:28	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-31669-14

Client Sample ID: S-4 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 02:16	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 19:47	CH	EET MID

Client Sample ID: S-4 (1.0') Lab Sample ID: 880-31669-15

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 5035 Total/NA Prep 4.97 g 5 mL 59352 08/04/23 14:47 EL **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 59295 08/05/23 08:48 SM EET MID 1 Total/NA Total BTEX 59566 **EET MID** Analysis 1 08/07/23 17:07 SM Total/NA Analysis 8015 NM 59634 08/08/23 12:09 SM **EET MID** Total/NA Prep 8015NM Prep 10.01 g 10 mL 59355 08/04/23 15:46 TKC **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 59413 08/08/23 02:38 SM **EET MID** Soluble Leach DI Leach 5.03 g 50 mL 59302 08/04/23 09:36 KS **EET MID** 08/07/23 19:54 Soluble Analysis 300.0 1 59511 СН **EET MID**

Client Sample ID: S-5 (0-0.5') Lab Sample ID: 880-31669-16 Date Collected: 07/31/23 00:00 **Matrix: Solid**

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 09:08	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 02:59	SM	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 20:01	CH	EET MID

Client Sample ID: S-5 (1.0') Lab Sample ID: 880-31669-17

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 09:29	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.07 g 1 uL	10 mL 1 uL	59355 59413	08/04/23 15:46 08/08/23 03:20	TKC SM	EET MID EET MID

Eurofins Midland

Matrix: Solid

Matrix: Solid

Released to Imaging: 7/21/2025 11:07:53 AM

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Client Sample ID: S-5 (1.0')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31669-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			5.05 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 20:07	CH	EET MID

Client Sample ID: S-5 (1.5') Lab Sample ID: 880-31669-18

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 09:49	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			10.10 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 03:42	SM	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 20:28	CH	EET MID

Lab Sample ID: 880-31669-19 **Client Sample ID: S-6 (0-0.5')**

Date Collected: 07/31/23 00:00

Matrix: Solid

Date Received: 08/03/23 16:09

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	59352	08/04/23 14:47	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59295	08/05/23 10:10	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59566	08/07/23 17:07	SM	EET MID
Total/NA	Analysis	8015 NM		1			59634	08/08/23 12:09	SM	EET MID
Total/NA	Prep	8015NM Prep			9.92 g	10 mL	59355	08/04/23 15:46	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59413	08/08/23 04:04	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	59302	08/04/23 09:36	KS	EET MID
Soluble	Analysis	300.0		1			59511	08/07/23 20:35	CH	EET MID

Client Sample ID: S-6 (1.0') Lab Sample ID: 880-31669-20

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Batch Dil Initial Final Batch Batch Prepared Prep Type Method Run Factor Amount Amount Number or Analyzed Analyst Type Lab 5035 59352 Total/NA Prep 4.97 g 5 mL 08/04/23 14:47 EL **EET MID** Total/NA Analysis 8021B 1 5 mL 5 mL 59295 08/05/23 10:30 SM **EET MID** Total/NA Total BTEX 08/07/23 17:07 Analysis 59566 SM EET MID 1 Total/NA Analysis 8015 NM 59634 08/08/23 12:09 SM **EET MID** Total/NA 59355 TKC Prep 8015NM Prep 9.96 q 10 mL 08/04/23 15:46 **EET MID** Total/NA Analysis 8015B NM 1 uL 1 uL 59413 08/08/23 04:25 SM **EET MID** Soluble DI Leach 5.02 g 50 mL 59302 08/04/23 09:36 KS **EET MID** Leach Soluble Analysis 300.0 59511 08/07/23 20:42 CH **EET MID**

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1 SDG: Eddy County, New Mexico

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-31669-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority Fexas		ogram	Identification Number	Expiration Date
		ELAP	T104704400-23-26	06-30-24
The following analytes	are included in this report, bu	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytes for w
the agency does not of	• '		od by the governing datherty. The list his	ay molade analytes for w
the agency does not of Analysis Method	• '	Matrix	Analyte	ay molade analytes for w
0 ,	fer certification.	•	, , ,	

3

4

6

8

10

12

13

114

Method Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31669-1

SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-31669-1	S-1 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-2	S-1 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-3	S-1 (1.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-4	S-1 (2.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-5	S-1 (3.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-6	S-1 (4.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-7	S-2 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-8	S-2 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-9	S-2 (1.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-10	S-2 (2.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-11	S-2 (3.0')	Solid	07/31/23 00:00	08/03/23 16:09
380-31669-12	S-3 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-13	S-3 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-14	S-4 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-15	S-4 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-16	S-5 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-17	S-5 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-18	S-5 (1.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-19	S-6 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31669-20	S-6 (1.0')	Solid	07/31/23 00:00	08/03/23 16:09

Project Manager Company Name:

Conner Moehring
Carmona Resources
310 W Wall St Ste 500

Bill to (if different)
Company Name:

Carmona Resources

State of Project:

Program: UST/PST _PRP __brownfields __kRC

perfund

Work Order Comments

Page

<u>Q</u>

•	
gr.	

432-813-6823 Asio Otis Fed #3 (6.22.23)	22.23)	Email	Email mcarmona@carmonaresources.com	armonare	sources	s.com					Deliverables, EDD	Jes. Et) 	Deliverables EDD ADaPT	г	Other [
13-6823 Asio Otis Fed #3 (6	.22.23)	Email	mcarmona@ca	armonare T	sources	com.				 	Deliverat)les. EC	5 —	ADapt		ther
Asio Otis Fed #3 (6	22.23)	Turn		1	1								[, 10 !!	١	
		111111	lurn Around					>	NALYS	ANALYSIS REQUEST	EST				Pres	Preservative Codes
2073		Routine	☑ Rush	Pres.							_	-	\exists	-	None NO	DI Water H ₂ O
Eddy County, New Mexico		Due Date	72 Hrs			4	1		-	$\frac{1}{2}$	\dashv	+	1	1	<u>5</u>	MACH MA
MM				1		RO)									HCI HC	NH CON
) })	s		+ M									H, SO. H.	en HOen
Temp Blank:		Wet Ice	VI	eter	В	RO	0.0								H-BO HB	
(Yes) No	Thermometer ID		` -'	ram	3021	1+0	30								Name Of N	ABIC
- 4	Correction Factor	7	727	Pa	EX 8	GRO	orid								Na COA W	osel Osel
ŏ	Temperature Rea	ading	-1.3		вт	SM (Chle								Zn Acetate	+NaOu Zn
	Corrected Tempe	rature:	7).(0	lI		801									NaOH+Asc	NaOH+Ascorbic Acid SAPC
Sample Identification Date	Time	Soil	Water Comm			ТРН									Sam	Sample Comments
7/31/2023		×	6	_	×	×	×	1	4		1	\dashv				
7/31/2023		×	G	_	×	×	×		\dashv		_	\dashv				
7/31/2023		×	G	_	×	×	×		4		\dashv	-				
7/31/2023		×	G	-	×	×	×	1	-		\dashv	\dashv				
7/31/2023		×	6	_	×	×	×		\dashv			+				
7/31/2023		×	G	-3	×	×	×				_	+	1			
7/31/2023		×	6	1	×	×	×		_		-					
7/31/2023		×	G	_	×	×	×		_		4	-				
7/31/2023		×	G	1	×	×	×		_			1				
7/31/2023		×	G	_	×	×	×		Н			H				
ke Carmona / Mcarmo	ona@carmonare	esources.com	and Conner N	Noehring	/ Cmoe	hring	@carmor	aresour	ces.cor	3						
Relinquished I	oy (Signature)				Date/T	ime			.	Recei	ved by	(Signat	ure)	,		Date/Time
				6813	183						1	N				
						,	?			'						
				ł	-	0	2									
	Temp Blank: (es) No Yes No NA Yes No NA Yes No NA 1/31/2023 7/31/2023	Temp Blank: Yes No Yes No Thermometer ID Yes No NA Temperature Res Corrected Tempe 7/31/2023 7/3	Temp Blank: Yes No Wet Ice Yes No WA Thermometer ID Yes No WA Temperature Reading Corrected Temperature: 7/31/2023 X 7/31/202	Tena Blank:	Temps Blank: Yes No Wet Ice Yes No Thermometer ID Yes No NA Temperature Reading -1. 2	Tempa Blank: Yes No Wet Ice Parameters Wet Ice No Yes No Wet Ice Parameters Wet Ice Parameters Wet Ice Parameters Pa	Tempa Blank: Yes No Wet Ice Ces No Thermometer ID Yes No NA Temperature:	Temp Blank: Yes (No	Temp Blank: Yes No Wet Ice (es) No Thermometer ID Yes No Thermometer ID Yes No Thermometer ID Yes No Thermometer ID Thermometer ID Yes No No Thermometer ID Thermometer	Temps Blank: Yes No Wel Ice We	Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Concentrations Carmona Carmona Carmona Mcarmona@carmonaresources.com Carmona / Mcarmonaresources.com Carmona / Carmona / Mcarmonaresources.com Carmona / Car	Received by	Received by		Received by (Signature)	Received by (Signature)

880-31669 Chain of Custody

Login Sample Receipt Checklist

Client: Carmona Resources Job Number: 880-31669-1

SDG Number: Eddy County, New Mexico

Login Number: 31669 List Source: Eurofins Midland

List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

<6mm (1/4").

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mike Carmona Carmona Resources 310 W Wall St Ste 500

Midland, Texas 79701

Generated 8/8/2023 11:36:04 AM

JOB DESCRIPTION

Asio Otis Fed #3 (6.22.23) SDG NUMBER Lea County, New Mexico

JOB NUMBER

880-31668-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 8/8/2023 11:36:04 AM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies Page 2 of 25

8/8/2023

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) Laboratory Job ID: 880-31668-1 SDG: Lea County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	11
QC Sample Results	12
QC Association Summary	16
Lab Chronicle	19
Certification Summary	21
Method Summary	22
Sample Summary	23
Chain of Custody	24
Receipt Checklists	25

2

3

4

6

8

10

12

13

14

Definitions/Glossary

Client: Carmona Resources Job ID: 880-31668-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Lea County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description** MS and/or MSD recovery exceeds control limits. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
*1	LCS/LCSD RPD exceeds control limits.
F1	MS and/or MSD recovery exceeds control limits.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.
HDI C/IC	

HPLC/IC

Qualifier	Qualifier Description
U	Indicates the analyte was analyzed for but not detected.

Glossarv

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
n	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit** PQL

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Job ID: 880-31668-1

Laboratory: Eurofins Midland

Narrative

Job Narrative 880-31668-1

Receipt

The samples were received on 8/3/2023 4:09 PM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -1.6°C

Receipt Exceptions

The following samples were received and analyzed from an unpreserved bulk soil jar: H-1 (0-0.5') (880-31668-1), H-2 (0-0.5') (880-31668-2), H-3 (0-0.5') (880-31668-3), H-4 (0-0.5') (880-31668-4), H-5 (0-0.5') (880-31668-5) and H-6 (0-0.5') (880-31668-6).

GC VOA

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59296 recovered below the lower control limit for Benzene. An acceptable CCV was ran within the 12 hour window, therefore the data has been qualified and reported. The associated sample is impacted: (CCV 880-59296/33).

Method 8021B: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-59350 and analytical batch 880-59296 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8021B: The continuing calibration verification (CCV) associated with batch 880-59296 recovered above the upper control limit for Toluene. The samples associated with this CCV were non-detects for the affected analytes; therefore, the data have been reported. The associated sample is impacted: (CCV 880-59296/64).

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC Semi VOA

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-59359 and analytical batch 880-59411 was outside the upper control limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: H-3 (0-0.5') (880-31668-3), (CCV 880-59411/47), (CCV 880-59411/58), (LCSD 880-59359/3-A) and (880-31666-A-2-C). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: The RPD of the laboratory control sample (LCS) and laboratory control sample duplicate (LCSD) for preparation batch 880-59359 and analytical batch 880-59411 recovered outside control limits for the following analytes: Diesel Range Organics (Over C10-C28).

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-59359 and analytical batch 880-59411 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: H-1 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

SDG: Lea County, New Mexico

Lab Sample ID: 880-31668-1

Matrix: Solid

Job ID: 880-31668-1

Method: SW846 8021B - Volatile Organic Compounds (GC)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/04/23 14:26	08/05/23 16:42	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorohenzene (Surr)	93		70 130				08/04/23 14:26	08/05/23 16:42	

Surrogate	%Recovery Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93	70 - 130	08/04/23 14:26	08/05/23 16:42	1
1,4-Difluorobenzene (Surr)	112	70 - 130	08/04/23 14:26	08/05/23 16:42	1

Method: TAL SOP Total BTEX - Total BTEX Calculation

Analyte	Result	Qualifier	RL	MDL	Unit	D)	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg				08/07/23 16:13	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)

Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	53.6	50.5	mg/Kg			08/08/23 12:15	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)

		(=:::=)	()					
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.5	U	50.5	mg/Kg		08/04/23 16:02	08/08/23 02:38	1
(GRO)-C6-C10								
Diesel Range Organics (Over	53.6	*1	50.5	mg/Kg	9	08/04/23 16:02	08/08/23 02:38	1
C10-C28)								
Oll Range Organics (Over C28-C36)	<50.5	U	50.5	mg/Kg	9	08/04/23 16:02	08/08/23 02:38	1
Surrogato	%Pecovery	Qualifier	l imite			Propared	Analyzod	Dil Eac

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130	08/04/23 16:02	08/08/23 02:38	1
o-Terphenyl	112		70 - 130	08/04/23 16:02	08/08/23 02:38	1

	Wethou: EPA 300.0	- Anions, ion	Chromatogi	ap	ny	- Soluble
ı			_		_	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	127		25.3		mg/Kg			08/05/23 04:00	5

Client Sample ID: H-2 (0-0.5')

Lab Sample ID: 880-31668-2 Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

114

Method: SW846 8021B - Volatile Organic Compounds	(GC)
— · · · · · · · · · · · · · · · · · · ·	

Welliou. 344046 60216 - Volat	ne Organic Comp	ounus (GC)	,						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/04/23 14:26	08/05/23 17:02	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				08/04/23 14:26	08/05/23 17:02	

Eurofins Midland

08/05/23 17:02

08/04/23 14:26

Matrix: Solid

70 - 130

1,4-Difluorobenzene (Surr)

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: H-2 (0-0.5')

Job ID: 880-31668-1 SDG: Lea County, New Mexico

Lab Sample ID: 880-31668-2

Matrix: Solid

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Method: TAL SOP Total BTEX - To	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			08/07/23 16:13	1
– Method: SW846 8015 NM - Diesel	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	50.0		50.0		mg/Kg			08/08/23 12:15	1
Method: SW846 8015B NM - Dies Analyte		nics (DRO) Qualifier	(GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0		50.0		mg/Kg		08/04/23 16:02	08/08/23 02:59	1
Diesel Range Organics (Over C10-C28)	50.0	*1	50.0		mg/Kg		08/04/23 16:02	08/08/23 02:59	1
OII Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/04/23 16:02	08/08/23 02:59	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130				08/04/23 16:02	08/08/23 02:59	1
o-Terphenyl	110		70 - 130				08/04/23 16:02	08/08/23 02:59	1

Analyte	Result Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	63.5	5.03		mg/Kg			08/05/23 04:05	1
Client Sample ID: H-3 (0-0.5')						Lab Sam	nple ID: 880-3	1668-

Released to Imaging: 7/21/2025 11:07:53 AM

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:26	08/05/23 17:23	
Toluene	< 0.00199	U	0.00199		mg/Kg		08/04/23 14:26	08/05/23 17:23	
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:26	08/05/23 17:23	
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		08/04/23 14:26	08/05/23 17:23	
o-Xylene	<0.00199	U	0.00199		mg/Kg		08/04/23 14:26	08/05/23 17:23	
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		08/04/23 14:26	08/05/23 17:23	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	89		70 - 130				08/04/23 14:26	08/05/23 17:23	
								00/05/00 17 00	
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX			70 - 130				08/04/23 14:26	08/05/23 17:23	
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	Qualifier	70 - 130 RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	08/04/23 14:26 Prepared	Analyzed 08/07/23 16:13	Dil Fac
	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398			<u>D</u>		Analyzed	
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398		mg/Kg		Prepared	Analyzed 08/07/23 16:13	Dil Fa
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00398 esel Range Organ Result 59.1	Qualifier U ics (DRO) (Qualifier	RL 0.00398 GC) RL 50.4		mg/Kg		Prepared	Analyzed 08/07/23 16:13 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00398 esel Range Organ Result 59.1 diesel Range Orga	Qualifier U ics (DRO) (Qualifier	RL 0.00398 GC) RL 50.4	MDL	mg/Kg		Prepared	Analyzed 08/07/23 16:13 Analyzed	Dil Fa
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00398 esel Range Organ Result 59.1 diesel Range Orga	Qualifier U ics (DRO) (Qualifier unics (DRO) Qualifier	RL 0.00398 GC) RL 50.4	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 08/07/23 16:13 Analyzed 08/08/23 12:15	Dil Fa

Eurofins Midland

Matrix: Solid

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Client Sample ID: H-3 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31668-3

Matrix: Solid

Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continue	ed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oll Range Organics (Over C28-C36)	<50.4	U	50.4		mg/Kg		08/04/23 16:02	08/08/23 03:20	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	139	S1+	70 - 130				08/04/23 16:02	08/08/23 03:20	1
o-Terphenyl	149	S1+	70 - 130				08/04/23 16:02	08/08/23 03:20	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed 25.0 08/05/23 04:10 233 Chloride mg/Kg

Client Sample ID: H-4 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 880-31668-4

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00200 U 0.00200 08/04/23 14:26 08/05/23 17:44 mg/Kg Toluene <0.00200 U 0.00200 08/04/23 14:26 08/05/23 17:44 mg/Kg Ethylbenzene <0.00200 U 0.00200 08/04/23 14:26 08/05/23 17:44 mg/Kg m-Xylene & p-Xylene 08/04/23 14:26 08/05/23 17:44 <0.00399 U 0.00399 mg/Kg o-Xylene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 17:44 <0.00399 U Xylenes, Total 0.00399 mg/Kg 08/04/23 14:26 08/05/23 17:44 %Recovery Limits Surrogate Qualifier Prepared Analyzed Dil Fac 70 - 130 08/04/23 14:26 4-Bromofluorobenzene (Surr) 94 08/05/23 17:44 1,4-Difluorobenzene (Surr) 70 - 130 114 08/04/23 14:26 08/05/23 17:44

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00399 U 0.00399 mg/Kg 08/07/23 16:13

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier MDL RL Unit D Prepared Analyzed Dil Fac Total TPH <50.5 U 50.5 08/08/23 12:15 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.5 U 50.5 08/04/23 16:02 08/08/23 03:42 mg/Kg (GRO)-C6-C10 50.5 08/04/23 16:02 08/08/23 03:42 Diesel Range Organics (Over <50.5 U *1 mg/Kg OII Range Organics (Over C28-C36) <50.5 U 50.5 mg/Kg 08/04/23 16:02 08/08/23 03:42 %Recovery Surrogate Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 104 70 - 130 08/04/23 16:02 08/08/23 03:42 08/04/23 16:02 08/08/23 03:42 o-Terphenyl 113 70 - 130

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier MDL Dil Fac RL Unit Prepared Analyzed Chloride 4.96 08/05/23 04:25 35.3 mg/Kg

Client Sample ID: H-5 (0-0.5') Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Client: Carmona Resources

Analyte

Total TPH

Project/Site: Asio Otis Fed #3 (6.22.23)

Result Qualifier

55.5

SDG: Lea County, New Mexico

Job ID: 880-31668-1

Lab	Sample	ID: 880-31668-5)
		Matrix: Solid	ı

Analyzed

08/08/23 12:15

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
Toluene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		08/04/23 14:26	08/05/23 18:05	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		70 - 130				08/04/23 14:26	08/05/23 18:05	1
1,4-Difluorobenzene (Surr)	115		70 - 130				08/04/23 14:26	08/05/23 18:05	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			08/07/23 16:13	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.6	U	49.6		mg/Kg		08/04/23 16:02	08/08/23 04:04	
(GRO)-C6-C10									
Diesel Range Organics (Over	55.5	*1	49.6		mg/Kg		08/04/23 16:02	08/08/23 04:04	
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		08/04/23 16:02	08/08/23 04:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	85		70 - 130				08/04/23 16:02	08/08/23 04:04	
o-Terphenyl	95		70 - 130				08/04/23 16:02	08/08/23 04:04	

RL

49.6

MDL Unit

mg/Kg

Prepared

Analyte	Result (Qualifier	KL	MDL	Unit	U	Prepa	irea	Analyzea	DII Fac	
Chloride	26.8		4.96		mg/Kg				08/05/23 04:30	1	
Client Sample ID: H-6 (0-0.5')							Lab	Samp	ole ID: 880-3	1668-6	

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Client Sample ID: H-6 (0-0.5)	Lab Sample ID: 080-31006-6
Date Collected: 07/31/23 00:00	Matrix: Solid
Date Received: 08/03/23 16:09	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
Toluene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		08/04/23 14:26	08/05/23 18:26	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86		70 - 130				08/04/23 14:26	08/05/23 18:26	1
1,4-Difluorobenzene (Surr)	114		70 - 130				08/04/23 14:26	08/05/23 18:26	1

Eurofins Midland

Dil Fac

Client Sample ID: H-6 (0-0.5')

Date Collected: 07/31/23 00:00

Analyte

Total BTEX

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Result Qualifier

<0.00396 U

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Analyzed

08/07/23 16:13

Lab Sample ID: 880-31668-6

Prepared

Matrix: Solid

Dil Fac

Date Received: 08/03/23 16:09									
Method: TAL SOP Total BTEX - Total BTEX Calculation									

RL

MDL Unit

mg/Kg

Method: SW846 8015 NM - Diesel I	Range Organics (DRO) (GC)						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac

0.00396

	"	0	, B1			_			D.: -
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	50.7		49.9		mg/Kg			08/08/23 12:15	1
					0 0				
Г., .,									
Method: SW846 8015B NM - Diesel	i Range Orga	nics (DRO) (G	iC)						
Analyto	Pocult	Qualifier	DI	MDI	Unit	n	Dropored	Analyzad	Dil Eco

method. 500000 for this - bleser range organics (bito) (50)									
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		08/04/23 16:02	08/08/23 04:25	1
(GRO)-C6-C10									
Diesel Range Organics (Over	50.7	*1	49.9		mg/Kg		08/04/23 16:02	08/08/23 04:25	1
C10-C28)									
Oll Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		08/04/23 16:02	08/08/23 04:25	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac

Mothod: EDA 200.0	Aniona Ion Chromatography	Calubia			
o-Terphenyl	126	70 - 130	08/04/23 16:02	08/08/23 04:25	1
1-Chlorooctane	114	70 - 130	08/04/23 16:02	08/08/23 04:25	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Chloride	118		24.9		mg/Kg			08/05/23 04:35	5

Surrogate Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

		BFB1	DFBZ1	Percent Surrogate Recovery (Acceptance Limits)
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-31305-A-21-C MS	Matrix Spike	99	97	
880-31305-A-21-D MSD	Matrix Spike Duplicate	99	100	
880-31668-1	H-1 (0-0.5')	93	112	
880-31668-2	H-2 (0-0.5')	89	114	
880-31668-3	H-3 (0-0.5')	89	113	
880-31668-4	H-4 (0-0.5')	94	114	
880-31668-5	H-5 (0-0.5')	89	115	
880-31668-6	H-6 (0-0.5')	86	114	
LCS 880-59350/1-A	Lab Control Sample	110	101	
LCSD 880-59350/2-A	Lab Control Sample Dup	94	100	
MB 880-59346/5-A	Method Blank	84	88	
MB 880-59350/5-A	Method Blank	85	90	

DFBZ = 1,4-Difluorobenzene (Surr)

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

4004 07714	
1CO1 OTPH1	
Lab Sample ID Client Sample ID (70-130) (70-130)	
880-31666-A-2-D MS Matrix Spike 120 119	
880-31666-A-2-E MSD Matrix Spike Duplicate 117 120	
880-31668-1 H-1 (0-0.5') 104 112	
880-31668-2 H-2 (0-0.5') 102 110	
880-31668-3 H-3 (0-0.5') 139 S1+ 149 S1+	
880-31668-4 H-4 (0-0.5') 104 113	
880-31668-5 H-5 (0-0.5') 85 95	
880-31668-6 H-6 (0-0.5') 114 126	
LCS 880-59359/2-A Lab Control Sample 91 108	
LCSD 880-59359/3-A Lab Control Sample Dup 117 137 S1+	
MB 880-59359/1-A Method Blank 122 143 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-59346/5-A

Matrix: Solid

Analysis Batch: 59296

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59346

ME	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		08/04/23 13:45	08/04/23 23:23	1
Toluene	<0.00200	U	0.00200		mg/Kg		08/04/23 13:45	08/04/23 23:23	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/23 13:45	08/04/23 23:23	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/04/23 13:45	08/04/23 23:23	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/23 13:45	08/04/23 23:23	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/04/23 13:45	08/04/23 23:23	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	84		70 - 130	08/04/23 13:45	08/04/23 23:23	1
1,4-Difluorobenzene (Surr)	88		70 - 130	08/04/23 13:45	08/04/23 23:23	1

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59350

Matrix: Solid

Analysis Batch: 59296

Lab Sample ID: MB 880-59350/5-A

Toluene < 0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02 Ethylbenzene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 08/04/23 14:26 08/05/23 10:02 o-Xylene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02		III.D	IVID							
Toluene < 0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02 Ethylbenzene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02 m-Xylene & p-Xylene <0.00400 U 0.00400 mg/Kg 08/04/23 14:26 08/05/23 10:02 o-Xylene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Ethylbenzene <0.00200	Benzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:26	08/05/23 10:02	1
m-Xylene & p-Xylene	Toluene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:26	08/05/23 10:02	1
o-Xylene <0.00200 U 0.00200 mg/Kg 08/04/23 14:26 08/05/23 10:02	Ethylbenzene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:26	08/05/23 10:02	1
,	m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		08/04/23 14:26	08/05/23 10:02	1
Xylenes, Total <0.00400 U 0.00400 mg/Kg 08/04/23 14:26 08/05/23 10:02	o-Xylene	<0.00200	U	0.00200		mg/Kg		08/04/23 14:26	08/05/23 10:02	1
	Xylenes, Total	<0.00400	U	0.00400		mg/Kg		08/04/23 14:26	08/05/23 10:02	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	85		70 - 130	08/04/23 14	:26 08/05/23 10:02	1
1,4-Difluorobenzene (Surr)	90		70 - 130	08/04/23 14	:26 08/05/23 10:02	1

Lab Sample ID: LCS 880-59350/1-A

Matrix: Solid

Analyte

Benzene

Analysis Batch: 59296

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 59350

Spike LCS LCS %Rec Added Result Qualifier Unit %Rec Limits 0.100 0.1018 mg/Kg 102 70 - 130

Toluene 0.100 0.1209 mg/Kg 121 70 - 130 Ethylbenzene 0.100 0.1056 mg/Kg 106 70 - 130 0.200 m-Xylene & p-Xylene 0.2045 mg/Kg 102 70 - 130 0.100 0.1049 105 70 - 130 o-Xylene mg/Kg

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	110	70 _ 130
1.4-Difluorobenzene (Surr)	101	70 - 130

Lab Sample ID: LCSD 880-59350/2-A

Matrix: Solid

Analysis Batch: 59296

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 59350 RPD

Spike LCSD LCSD %Rec Result Qualifier Analyte Added Unit %Rec Limits **RPD** Limit Benzene 0.100 0.08796 mg/Kg 88 70 - 130 15

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

QC Sample Results

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1 SDG: Lea County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-59350/2-A **Matrix: Solid**

Analysis Batch: 59296

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 59350

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.09858		mg/Kg		99	70 - 130	20	35
Ethylbenzene	0.100	0.08246		mg/Kg		82	70 - 130	25	35
m-Xylene & p-Xylene	0.200	0.1572		mg/Kg		79	70 - 130	26	35
o-Xylene	0.100	0.08079		mg/Kg		81	70 - 130	26	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	94		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Lab Sample ID: 880-31305-A-21-C MS

Matrix: Solid Analysis Batch: 59296

Client Sample ID: Matrix Spike Prep Type: Total/NA

Prep Batch: 59350

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	<0.00200	U F1	0.0996	0.06537	F1	mg/Kg		66	70 - 130
Toluene	<0.00200	U	0.0996	0.07343		mg/Kg		74	70 - 130
Ethylbenzene	<0.00200	U F1	0.0996	0.06585	F1	mg/Kg		66	70 - 130
m-Xylene & p-Xylene	<0.00399	U F1	0.199	0.1248	F1	mg/Kg		63	70 - 130
o-Xylene	< 0.00200	U F1	0.0996	0.06244	F1	mg/Kg		63	70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	99	70 - 130
1,4-Difluorobenzene (Surr)	97	70 - 130

Lab Sample ID: 880-31305-A-21-D MSD

Matrix: Solid

Analysis Batch: 59296

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 59350

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U F1	0.101	0.07193		mg/Kg		71	70 - 130	10	35
Toluene	<0.00200	U	0.101	0.07918		mg/Kg		79	70 - 130	8	35
Ethylbenzene	<0.00200	U F1	0.101	0.06939	F1	mg/Kg		69	70 - 130	5	35
m-Xylene & p-Xylene	<0.00399	U F1	0.202	0.1309	F1	mg/Kg		65	70 - 130	5	35
o-Xylene	<0.00200	U F1	0.101	0.06524	F1	mg/Kg		65	70 - 130	4	35

MSD MSD

Surrogate	76Kecovery	Qualifier	LIIIIII
4-Bromofluorobenzene (Surr)	99		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-59359/1-A

Matrix: Solid

Analysis Batch: 59411

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 59359

мв мв Result Qualifier MDL Unit Prepared <50.0 U 50.0 mg/Kg 08/04/23 16:02 08/07/23 19:19 Gasoline Range Organics

(GRO)-C6-C10

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-59359/1-A

Lab Sample ID: LCS 880-59359/2-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 59411

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 59359

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		08/04/23 16:02	08/07/23 19:19	1
Oll Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		08/04/23 16:02	08/07/23 19:19	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	122		70 - 130	08/04/23 16:02	08/07/23 19:19	1
o-Terphenyl	143	S1+	70 - 130	08/04/23 16:02	08/07/23 19:19	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 59359

Analysis Batch: 59411 LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 1071 107 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 854.8 mg/Kg 85 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	91		70 - 130
o-Terphenyl	108		70 - 130

Lab Sample ID: LCSD 880-59359/3-A

Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 59411 Prep Batch: 59359 Spike LCSD LCSD

%Rec RPD

	Opi	ic LOOD	LOOD				/01 1CC		I CI D	
Analyte	Add	ed Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Gasoline Range Organics		880.8		mg/Kg		88	70 - 130	19	20	
(GRO)-C6-C10										
Diesel Range Organics (Over	10	00 1089	*1	mg/Kg		109	70 - 130	24	20	
C10-C28)										

LCSD LCSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 117 70 - 130 o-Terphenyl 137 S1+ 70 - 130

Lab Sample ID: 880-31666-A-2-D MS

Matrix: Solid

Analysis Batch: 59411

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 59359

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics (GRO)-C6-C10	67.8		999	1028		mg/Kg		96	70 - 130
Diesel Range Organics (Over	1170	*1 F1	999	1692	F1	mg/Kg		52	70 - 130

C10-C28)

	MS	MS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	120		70 - 130
o-Terphenvl	119		70 - 130

Client: Carmona Resources Job ID: 880-31668-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Lea County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: 880-31666-A-2-E MSD

Matrix: Solid

Analysis Batch: 59411

Client Sample ID: Matrix Spike Duplicate

Client Sample ID: Lab Control Sample Dup

Prep Type: Soluble

Prep Type: Soluble

Prep Type: Soluble

Client Sample ID: Matrix Spike

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 59359

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	67.8		999	991.5		mg/Kg		92	70 - 130	4	20
(GRO)-C6-C10											
Diesel Range Organics (Over	1170	*1 F1	999	1685	F1	mg/Kg		51	70 - 130	0	20
040,000)											

C10-C28)

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	117		70 - 130
o-Terphenyl	120		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-59303/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	<5.00	U	5.00		mg/Kg			08/05/23 03:25	1

Lab Sample ID: LCS 880-59303/2-A **Client Sample ID: Lab Control Sample Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 59358

		Spike	LCS	LCS				%Rec	
Analyte		Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	 	250	242.6		mg/Kg		97	90 - 110	

Lab Sample ID: LCSD 880-59303/3-A

Matrix: Solid

Analysis Batch: 59358

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	243 1		ma/Ka		97	90 - 110		20

Lab Sample ID: 880-31667-A-5-C MS

Matrix: Solid

Analysis Batch: 59358

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	489		251	718.3		ma/Ka		92	90 - 110	

Lab Sample ID: 880-31667-A-5-D MSD

Matrix: Solid

Analysis Batch: 59358

Allalysis Datell. 33330											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	489		251	718.7		mg/Kg		92	90 - 110		20

QC Association Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

GC VOA

Analysis Batch: 59296

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	8021B	59350
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	8021B	59350
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	8021B	59350
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	8021B	59350
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	8021B	59350
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	8021B	59350
MB 880-59346/5-A	Method Blank	Total/NA	Solid	8021B	59346
MB 880-59350/5-A	Method Blank	Total/NA	Solid	8021B	59350
LCS 880-59350/1-A	Lab Control Sample	Total/NA	Solid	8021B	59350
LCSD 880-59350/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	59350
880-31305-A-21-C MS	Matrix Spike	Total/NA	Solid	8021B	59350
880-31305-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	59350

Prep Batch: 59346

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-59346/5-A	Method Blank	Total/NA	Solid	5035	

Prep Batch: 59350

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	5035	
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	5035	
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	5035	
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	5035	
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	5035	
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	5035	
MB 880-59350/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-59350/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-59350/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-31305-A-21-C MS	Matrix Spike	Total/NA	Solid	5035	
880-31305-A-21-D MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 59557

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	Total BTEX	
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 59359

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	8015NM Prep	
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	8015NM Prep	
MB 880-59359/1-A	Method Blank	Total/NA	Solid	8015NM Prep	

QC Association Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

GC Semi VOA (Continued)

Prep Batch: 59359 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCS 880-59359/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-59359/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-31666-A-2-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-31666-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 59411

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	8015B NM	59359
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	8015B NM	59359
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	8015B NM	59359
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	8015B NM	59359
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	8015B NM	59359
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	8015B NM	59359
MB 880-59359/1-A	Method Blank	Total/NA	Solid	8015B NM	59359
LCS 880-59359/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	59359
LCSD 880-59359/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	59359
880-31666-A-2-D MS	Matrix Spike	Total/NA	Solid	8015B NM	59359
880-31666-A-2-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	59359

Analysis Batch: 59640

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Total/NA	Solid	8015 NM	
880-31668-2	H-2 (0-0.5')	Total/NA	Solid	8015 NM	
880-31668-3	H-3 (0-0.5')	Total/NA	Solid	8015 NM	
880-31668-4	H-4 (0-0.5')	Total/NA	Solid	8015 NM	
880-31668-5	H-5 (0-0.5')	Total/NA	Solid	8015 NM	
880-31668-6	H-6 (0-0.5')	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 59303

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-31668-1	H-1 (0-0.5')	Soluble	Solid	DI Leach	
880-31668-2	H-2 (0-0.5')	Soluble	Solid	DI Leach	
880-31668-3	H-3 (0-0.5')	Soluble	Solid	DI Leach	
880-31668-4	H-4 (0-0.5')	Soluble	Solid	DI Leach	
880-31668-5	H-5 (0-0.5')	Soluble	Solid	DI Leach	
880-31668-6	H-6 (0-0.5')	Soluble	Solid	DI Leach	
MB 880-59303/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-59303/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-59303/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-31667-A-5-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-31667-A-5-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 59358

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-1	H-1 (0-0.5')	Soluble	Solid	300.0	59303
880-31668-2	H-2 (0-0.5')	Soluble	Solid	300.0	59303
880-31668-3	H-3 (0-0.5')	Soluble	Solid	300.0	59303
880-31668-4	H-4 (0-0.5')	Soluble	Solid	300.0	59303
880-31668-5	H-5 (0-0.5')	Soluble	Solid	300.0	59303

Eurofins Midland

Page 17 of 25

QC Association Summary

Client: Carmona Resources

Job ID: 880-31668-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Lea County, New Mexico

HPLC/IC (Continued)

Analysis Batch: 59358 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-31668-6	H-6 (0-0.5')	Soluble	Solid	300.0	59303
MB 880-59303/1-A	Method Blank	Soluble	Solid	300.0	59303
LCS 880-59303/2-A	Lab Control Sample	Soluble	Solid	300.0	59303
LCSD 880-59303/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	59303
880-31667-A-5-C MS	Matrix Spike	Soluble	Solid	300.0	59303
880-31667-A-5-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	59303

4

4

5

7

9

11

12

14

SDG: Lea County, New Mexico

Job ID: 880-31668-1

Client Sample ID: H-1 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

Lab Sample ID: 880-31668-1

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	59350	08/04/23 14:26	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59296	08/05/23 16:42	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59557	08/07/23 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			59640	08/08/23 12:15	SM	EET MID
Total/NA	Prep	8015NM Prep			9.90 g	10 mL	59359	08/04/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59411	08/08/23 02:38	SM	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		5			59358	08/05/23 04:00	CH	EET MID

Client Sample ID: H-2 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 880-31668-2

Matrix: Solid

Batch Dil Initial Final Batch Batch Prepared Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Analyst Lab Prep 5035 Total/NA 5.05 g 5 mL 59350 08/04/23 14:26 EL EET MID Total/NA 8021B 08/05/23 17:02 **EET MID** Analysis 1 5 mL 5 mL 59296 SM Total/NA Total BTEX 59557 08/07/23 16:13 SM Analysis **EET MID** 1 Total/NA Analysis 8015 NM 59640 08/08/23 12:15 SM **EET MID** Total/NA 59359 Prep 8015NM Prep 10.00 g 10 mL 08/04/23 16:02 TKC EET MID Total/NA Analysis 8015B NM 1 uL 1 uL 59411 08/08/23 02:59 SM **EET MID** Soluble Leach DI Leach 4.97 g 50 mL 59303 08/04/23 13:22 KS EET MID Soluble Analysis 300.0 59358 08/05/23 04:05 СН **EET MID**

Client Sample ID: H-3 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID: 880-31668-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.03 g	5 mL	59350	08/04/23 14:26	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59296	08/05/23 17:23	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59557	08/07/23 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			59640	08/08/23 12:15	SM	EET MID
Total/NA	Prep	8015NM Prep			9.93 g	10 mL	59359	08/04/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59411	08/08/23 03:20	SM	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		5			59358	08/05/23 04:10	CH	EET MID

Client Sample ID: H-4 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

Lab Sample ID:	880-31668-4
	Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	59350	08/04/23 14:26	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59296	08/05/23 17:44	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59557	08/07/23 16:13	SM	EET MID

Lab Chronicle

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Lea County, New Mexico

Job ID: 880-31668-1

Lab Sample ID: 880-31668-4

Lab Sample ID: 880-31668-5

Lab Sample ID: 880-31668-6

Matrix: Solid

Matrix: Solid

Matrix: Solid

Client Sample ID: H-4 (0-0.5')

Date Collected: 07/31/23 00:00 Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			59640	08/08/23 12:15	SM	EET MID
Total/NA	Prep	8015NM Prep			9.91 g	10 mL	59359	08/04/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59411	08/08/23 03:42	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		1			59358	08/05/23 04:25	CH	EET MID

Client Sample ID: H-5 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	59350	08/04/23 14:26	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59296	08/05/23 18:05	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59557	08/07/23 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			59640	08/08/23 12:15	SM	EET MID
Total/NA	Prep	8015NM Prep			10.08 g	10 mL	59359	08/04/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59411	08/08/23 04:04	SM	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		1			59358	08/05/23 04:30	CH	EET MID

Client Sample ID: H-6 (0-0.5')

Date Collected: 07/31/23 00:00

Date Received: 08/03/23 16:09

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	59350	08/04/23 14:26	EL	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	59296	08/05/23 18:26	SM	EET MID
Total/NA	Analysis	Total BTEX		1			59557	08/07/23 16:13	SM	EET MID
Total/NA	Analysis	8015 NM		1			59640	08/08/23 12:15	SM	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	59359	08/04/23 16:02	TKC	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	59411	08/08/23 04:25	SM	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	59303	08/04/23 13:22	KS	EET MID
Soluble	Analysis	300.0		5			59358	08/05/23 04:35	CH	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Page 20 of 25 Released to Imaging: 7/21/2025 11:07:53 AM

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-31668-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Lea County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Pr	ogram	Identification Number	Expiration Date 06-30-24	
Texas	NE	ELAP	T104704400-23-26		
The following analytes	are included in this report hi	it the laboratory is not certifi	ed by the governing authority. This list ma	av include analytee for	
the agency does not of	• •	it the laboratory is not certifi	ed by the governing authority. This list his	ay ilicidde allaiytes for	
0 ,	• •	Matrix	Analyte	ay include analytes for	
the agency does not of	fer certification.	•	, , ,	ay include analytes for	

4

7

10

12

4 /

Method Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1 SDG: Lea County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

Sample Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-31668-1

SDG: Lea County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-31668-1	H-1 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31668-2	H-2 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31668-3	H-3 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31668-4	H-4 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31668-5	H-5 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09
880-31668-6	H-6 (0-0.5')	Solid	07/31/23 00:00	08/03/23 16:09

4

5

7

8

4.6

11

16

14

		0	

4	
Н	-

Attro	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com		H-6 (0-0 5')	H-5 (0-0.5')	H-4 (0-0.5')	H-3 (0-0 5')	H-2 (0-0.5')	H-1 (0-0.5')	Sample Identification	Total Containers	Sample Custody Seals. Yes	Cooler Custody Seals Yes	Received Intact:	SAMPLE RECEIPT Ter	PO#		Project Location Eddy	Project Number	Project Name Asio (Phone. 432-813-6823	City, State ZIP Midland, TX 79701	Address 310 W Wall St Ste 500	Company Name: Carmona Resources	Project Manager Conner Moehring
Relinquished by [.] (Signature)	ona / Mcarmona@		7/31/2023	7/31/2023	7/31/2023	7/31/2023	7/31/2023	7/31/2023	Date	Com	No MA Tem	No MA Com	(es No Ther	emp Blank:		MM	Eddy County, New Mexico	2073	Asio Otis Fed #3 (6.22.23)		9701	Ste 500	ources	ing
ignature))carmonaresou								Пте	Corrected Temperature:	Temperature Reading	Correction Factor	Thermometer ID:	Yes No) V)				3)					
	rces.com and C		×	×	×	×	×	×	Soil Water		-		4	Wet ice:			Due Date 7	Routine 🖸 Rush	Turn Around	Email mcarn	City, S	Address	Compa	Bill to:
02/312	onner Moehrin		G 1	G 1	G 1	G 1	G 1	G 1	Grab/ # of Comp Cont	Ś	į,	P	ram	No neter	's		72 Hrs	ush Code		mcarmona@carmonaresources.com	City, State ZIP	iș,	Company Name	Bill to: (if different)
Date/Time	g / Cmoeh		×	×	×	×	×	×					802							esources,c	-		-	Carmona
2 *	ring@carm		×	×	×	×	×	×					le 30	0.0	+ 1VI	KU)				iom				Carmona Resources
	onaresource																-		ANA					
Reg	woo'se	+			1			_											ALYSIS REQUEST					
Received by (Signature)																			QUEST	Deliverables. EDD	Reporting:Level II Level III ST/UST	State of Project:	Program: UST/PST PRP rownfields RC	Work
									Samp	NaOH+Asco	Zn Acetate+NaOH Zn	Na ₂ S ₂ O ₃ NaSO ₃	NaHSO, NABIS	H,PO, HP	H,S0, H,	HCL HC	Capi	None: NO	Prese	ADaPT 🗆 Ot	III ST/UST RRP	!	☐rownfields ☐kF	Work Order Comments
Date/Time									Sample Comments	NaOH+Ascorbic Acid SAPC	NaOH Zn	aSO ₃	ABIS		NaOH Na	NA COL	MODE MA	DI Water H ₂ O	Preservative Codes	Other	RP □LevelIV □	!	રે	_1 of1_

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-31668-1

SDG Number: Lea County, New Mexico

List Source: Eurofins Midland

Login Number: 31668 List Number: 1

Creator: Rodriguez, Leticia

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is	N/A	

2

3

4

6

_

11

46

14

<6mm (1/4").

October 17, 2023

CONNER MOEHRING
CARMONA RESOURCES
310 W WALL ST SUITE 415
MIDLAND, TX 79701

RE: ASIO OTIS FED #3 (6.22.23)

Enclosed are the results of analyses for samples received by the laboratory on 10/13/23 17:05.

Cardinal Laboratories is accredited through Texas NELAP under certificate number T104704398-22-15. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Celey D. Keene

Accreditation applies to public drinking water matrices.

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 1 (3.5') (H235615-01)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	Analyzed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	79.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name:

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073 Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 2 (3.5') (H235615-02)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.1	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	78.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name: Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: CS - 3 (3.5') (H235615-03)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	3.64	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	79.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	77.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023
Sampling Type: Soil

Project Name:

10/17/2023 Sampling Type: ASIO OTIS FED #3 (6.22.23) Sampling Condition:

Project Number: 2073

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 4 (3.5') (H235615-04)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	80.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 5 (3.5') (H235615-05)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	82.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name:

RTFY 8021R

ASIO OTIS FED #3 (6.22.23)

Sampling Condition: Cool & Intact

Project Number: 2073

Sample Received By:

Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 6 (3.5') (H235615-06)

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	66.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	62.8	% 49.1-14	8						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported:

10/17/2023 Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23) Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO Sampling Date: 10/11/2023

Sampling Condition:

Sample Received By:

Cool & Intact Tamara Oldaker

Sample ID: CS - 7 (1.5') (H235615-07)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	74.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	72.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 8 (1.5') (H235615-08)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	77.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	72.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10
Sampling Type: So

10/11/2023 Soil

Project Name:

RTFY 8021R

10/17/2023 ASIO OTIS FED #3 (6.22.23)

Sampling Condition: Sample Received By:

Cool & Intact Tamara Oldaker

Project Number:

2073

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 9 (1.5') (H235615-09)

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	73.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	73.7	% 49.1-14	8						

Applyzod By: 14

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Sampling Date: 10/11/2023

Reported: 10/17/2023 Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact
Project Number: Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 10 (1.5') (H235615-10)

BTEX 8021B	mg,	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	72.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	71.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 11 (1.5') (H235615-11)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.0	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	77.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	76.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 12 (1.5') (H235615-12)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	96.9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	76.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	74.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name:

ASIO OTIS FED #3 (6.22.23)

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 13 (1') (H235615-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	72.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	64.5	% 49.1-14	8						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Tamara Oldaker Sample Received By:

Sample ID: CS - 14 (1') (H235615-14)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	95.4	% 71.5-13	4						
Chloride, SM4500CI-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	69.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	68.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

10/17/2023 Sampling Type: ASIO OTIS FED #3 (6.22.23) Sampling Condition:

Project Name: ASIO C Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023
Sampling Type: Soil

Sample Received By:

Cool & Intact Tamara Oldaker

Sample ID: CS - 15 (1') (H235615-15)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	69.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	61.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 16 (1') (H235615-16)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	73.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	68.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Tamara Oldaker

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

 10/13/2023
 Sampling Date:
 10/11/2023

 10/17/2023
 Sampling Type:
 Soil

 ASIO OTIS FED #3 (6.22.23)
 Sampling Condition:
 Cool & Intact

Sample Received By:

Project Name: ASIO
Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 17 (1') (H235615-17)

BTEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/kg		Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	68.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	59.3	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name:

ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact Project Number: Sample Received By: Tamara Oldaker 2073

Applyzod By: 14

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 18 (1') (H235615-18)

RTFY 8021R

B1EX 8021B	тд/кд		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	71.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	66.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

 10/13/2023
 Sampling Date:
 10/11/2023

 10/17/2023
 Sampling Type:
 Soil

Project Name: ASIO OTIS FED #3 (6.22.23)
Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 19 (1') (H235615-19)

RTFY 8021R

BIEX 8021B	mg/kg		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	97.4	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	67.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	60.6	% 49.1-14	8						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 20 (1') (H235615-20)

RTFY 8021R

BIEX 8021B	тд/кд		Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	2.12	106	2.00	3.61	
Toluene*	<0.050	0.050	10/16/2023	ND	1.91	95.7	2.00	5.08	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.96	98.0	2.00	5.66	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.85	97.4	6.00	5.34	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	189	94.4	200	1.13	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	234	117	200	32.1	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	68.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	61.6	% 49.1-14	8						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23) Project Number: 2073

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 21 (1') (H235615-21)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	99.7	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	105 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	121 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

10/17/2023 ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 22 (1') (H235615-22)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	105	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported:

Sampling Date: 10/11/2023 Sampling Type:

Soil

Project Name:

RTFY 8021R

10/17/2023 ASIO OTIS FED #3 (6.22.23)

Sampling Condition: Sample Received By:

Cool & Intact Tamara Oldaker

Project Number: Project Location: 2073

EDDY COUNTY, NEW MEXICO

Sample ID: CS - 23 (1') (H235615-23)

B1EX 8021B	mg/	кд	Anaiyze	а ву: мѕ					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	80.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	94.7	% 49.1-14	8						

Analyzed By: MC

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 24 (1') (H235615-24)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	416	104	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	100	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: CS - 25 (1') (H235615-25)

BTEX 8021B	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	99.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 26 (1') (H235615-26)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	95.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Cool & Intact

Tamara Oldaker

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported:

Sampling Date: 10/11/2023 10/17/2023 Sampling Type: Soil

Sampling Condition:

Sample Received By:

Project Name: ASIO OTIS FED #3 (6.22.23) Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 27 (1') (H235615-27)

BTEX 8021B	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	94.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	108	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 28 (4.5') (H235615-28)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	99.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

10/17/2023 Sampling Type: ASIO OTIS FED #3 (6.22.23) Sampling Condition

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

ampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 29 (4.5') (H235615-29)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	75.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.0	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

10/17/2023 ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 30 (4.5') (H235615-30)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	93.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/12/2023 Sampling Type: Soil

Project Name:

ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact Tamara Oldaker Project Number: 2073 Sample Received By:

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 31 (4.5') (H235615-31)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	95.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	110	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/12/2023 Sampling Type: Soil

Project Name:

ASIO OTIS FED #3 (6.22.23)

Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 32 (4.5') (H235615-32)

BTEX 8021B	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	73.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.8	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 33 (4.5') (H235615-33)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	73.4	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: CS - 34 (4.5') (H235615-34)

BTEX 8021B	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	74.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	88.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/12/2023
Sampling Type: Soil

Project Name: Project Number: ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact
2073 Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: CS - 35 (4.5') (H235615-35)

BTEX 8021B	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	73.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.4	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 1 (2.5') (H235615-36)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	100	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	87.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	106	% 49.1-14	8						

Cardinal Laboratories

*=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Kreine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

Sampling Date: 10/11/2023 Sampling Type: Soil

Project Name: Project Number:

ASIO OTIS FED #3 (6.22.23) Sampling Condition: Cool & Intact 2073 Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: SW - 2 (3.5') (H235615-37)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102 %	6 71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	89.8	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107 9	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Cool & Intact

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023 Sampling Type: Soil

Sampling Condition:

Project Name: ASIO OTIS FED #3 (6.22.23)

Project Number: 2073 Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: SW - 3 (3.5') (H235615-38)

BTEX 8021B	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	83.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

10/17/2023 Sampling Type: ASIO OTIS FED #3 (6.22.23) Sampling Condition:

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Soil Cool & Intact

Sample Received By: Tamara Oldaker

Sample ID: SW - 4 (1.5') (H235615-39)

BTEX 8021B	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	87.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported:

Sampling Date: 10/11/2023 10/17/2023 Sampling Type:

Project Name: ASIO OTIS FED #3 (6.22.23) Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Soil Sampling Condition: Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SW - 5 (1.5') (H235615-40)

BTEX 8021B	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.97	98.5	2.00	0.590	
Toluene*	<0.050	0.050	10/16/2023	ND	2.03	102	2.00	1.17	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	2.05	102	2.00	0.980	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	6.20	103	6.00	0.432	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	179	89.4	200	1.33	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	201	101	200	6.34	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	113	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

3/2023 Sampling Date: 10/11/2023 7/2023 Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23)
Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Type: Soil
Sampling Condition: Cool & Intact

Sample Received By:

Tamara Oldaker

Sample ID: SW - 6 (1.5') (H235615-41)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	90.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	100	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 7 (1.5') (H235615-42)

Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	82.7	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	92.6	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg D. Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported:

Sampling Date: 10/11/2023 10/17/2023 Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23) Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO Sampling Condition: Cool & Intact Sample Received By: Tamara Oldaker

Sample ID: SW - 8 (1') (H235615-43)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	88.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact Tamara Oldaker Sample Received By:

Sample ID: SW - 9 (1') (H235615-44)

Project Name:

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	101 9	% 71.5-13	4						
Chloride, SM4500CI-B	mg/	'kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	81.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	91.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/11/2023
Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23)

Sampling Type: Sampling Condition:

Project Number: 2073

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: SW - 10 (1') (H235615-45)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	75.3	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	82.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 11 (1') (H235615-46)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	90.0	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	93.2	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 12 (1') (H235615-47)

BTEX 8021B	mg	'kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	'kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	70.9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	80.3	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Name: ASIO Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/11/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 13 (1') (H235615-48)

BTEX 8021B	mg	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	75.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	85.1	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023

ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Name:

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 14 (4.5') (H235615-49)

BTEX 8021B	mg,	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	104 5	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	78.1	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023 Reported: 10/17/2023 Sampling Date: 10/12/2023
Sampling Type: Soil

Project Name: ASIO OTIS FED #3 (6.22.23)
Project Number: 2073

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Project Location: EDDY COUNTY, NEW MEXICO

Sample ID: SW - 15 (4.5') (H235615-50)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	<0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	102	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	86.6	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	96.8	% 49.1-14	8						

Applyzod By: 14

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client; subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

CARMONA RESOURCES CONNER MOEHRING 310 W WALL ST SUITE 415 MIDLAND TX, 79701 Fax To:

Received: 10/13/2023

Reported: 10/17/2023

Project Name: ASIO OTIS FED #3 (6.22.23)

Project Number: 2073

Project Location: EDDY COUNTY, NEW MEXICO

Sampling Date: 10/12/2023

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Tamara Oldaker

Sample ID: SW - 16 (4.5') (H235615-51)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	10/16/2023	ND	1.89	94.7	2.00	3.05	
Toluene*	<0.050	0.050	10/16/2023	ND	1.85	92.3	2.00	0.978	
Ethylbenzene*	< 0.050	0.050	10/16/2023	ND	1.94	97.1	2.00	1.58	
Total Xylenes*	<0.150	0.150	10/16/2023	ND	5.83	97.1	6.00	1.97	
Total BTEX	<0.300	0.300	10/16/2023	ND					
Surrogate: 4-Bromofluorobenzene (PID	103	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	10/16/2023	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	10/16/2023	ND	186	93.2	200	5.87	
DRO >C10-C28*	<10.0	10.0	10/16/2023	ND	194	97.0	200	4.52	
EXT DRO >C28-C36	<10.0	10.0	10/16/2023	ND					
Surrogate: 1-Chlorooctane	78.2	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	86.5	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-04 The RPD for the BS/BSD was outside of historical limits.

A-01 DRO failed marginally high. All samples below RL.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

	Some or		6/10/2025 1 Comments: Email to		CS-9 (1.5)						CS-3 (3.5')	CS-2 (3.5')	CS-1 (3.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Project Number:	Project Name:		City, State ZIP: Midla			Project Manager: Conn		
1	foce	Relinquished	Email to Mike Carmona / Mcarmona@carmonaresources.com and Combo mooning of the Combo mooning) 10/11/2023					10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	ation Date		Yes No N/A	NO	es	Temp Blank:		DD/GPJ	Eddy County, New Mexico	2073	Asio Otis Fed #3 (6.22.23)	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring		
	1	Relinquished by: (Signature)	nona@carmona	3	3	5 6			,	3				Time	Corrected Temperature	Temperature Reading:	Collection Factor.	Thermometer ID:	Yeş No			Mexico		.22.23)							
			esources.com	>	< >	×	×	×	< >	< ×	×	×	×	Soil	erature.	ading:	<i>A</i> 1.	ξ ···	Wet Ice:			Due Date:	Routine	Turn	Email:						
				Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Comp	Water Comp		1000	2200	148	Yes No			48 hours	√ Rush	Turn Around	mcarmona@carr	City, State ZIP:	Address:	Company Name:	Bill to. (if afferent)	Dill to: Of different)	
	10-1										T	T	T	Cont Cont				Par	ame	ters			Code	Pres.	monaresources						
	1323	Date/Time		Cmo	×	×	×	×	×	× >	× >	< >	< >	-				EX 8											Common	Carmon	
	5	ime		hrings	-	+	+	+	+	+	+	< >	+	-	PH 8			GRO			MR	0)	+		com					a Resour	
-	50				×	×	×	×	×	× ?	× ?	× >	< >		1 5			iona	7430				+							rces	
				onaresources.com									+											- - -							
				rces.co							-	-	+										+	ANALTSIS REGUES							
	000	Re		ă						+	+	-	-										+	O KEW							
	Mund	Received by: (Signature)																						000			Reporting:Level II Level III	State of Project:	Program: UST/PST PRP Pro	Work Orde	Work Order No.
		Date/Ilme												oalibia collination	Sample Comme	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H ₃ PO ₄ : HP	2		Cool: Cool MeOH: Me	None: NO DI Water: H ₂ O	Preservative Codes	ADaPT Other:	ST/UST RRP Level IV		□ rownfields □ RC □ perfund	Work Order Comments	Page1 of

□ □	ADAPT Other	ting:Level III	of Project:	am: UST/PST ☐PRP ☐ rownfields ☐ RC ☐ perfund	Work Order Comments	Page2 of6	Work Order No: H235615	
						Page 55	of 59	

HCL: HC

NaOH: Na HNO3: HN Cool: Cool None: NO

MeOH: Me DI Water: H₂O **Preservative Codes**

Na2S2O3: NaSO3 NaHSO4: NABIS H₃PO₄: HP H2SO4: H2

Zn Acetate+NaOH: Zn NaOH+Ascorbic Acid: SAPC

Sample Comments

Date/Time

										Work C	Work Order No: Hd 556	e 56 o
												Page
	ner Moehring				Dill to						Page3 of	6
	Ocinici Mocining				DIII to: (if different)		Carmor	Carmona Resources	Xes	Wo	Work Order Comments	
Name:	Carmona Resources	3			Company Name	œ.				Program: UST/PST _PRP	□ rownfields □ RC	perfund
ty State 7ID: Midla	Midland TX 70701				Office of					Bonotina: Oct.		
	013 6033			1	-					Toyou III	California Char	LEAST IN
none: 432-8	432-813-6823			Email:	mcarmona@	carmonaresource	esources	.com		Deliverables: EDD	ADaPT Other:	
oject Name:	Asio Otis Fed #3 (6.22.23)	ed #3 (6.2)	2.23)	Turr	Turn Around				ANALYSI	ANALYSIS REQUEST	Preservative Codes	des
oject Number:		2073		Routine	✓ Rush	Pres. Code			7		None: NO DI W	DI Water: H ₂ O
oject Location	Eddy County, New Mexico	y, New Me	exico	Due Date:	48 hours							MeOH: Me
ampler's Name:	DI	DD/GPJ						MRO)				HNO ₃ : HN
AMDI E DECEIDT	1					ters					H ₂ S0 ₄ : H ₂ NaO	NaOH: Na
ceived Intact:	Yes No		Thermometer ID:	AAGI IGG:	les Mo	rame	021E	9 450			H ₃ PO ₄ : HP	
poler Custody Seals:	5	(N/A) C	Correction Factor:	ת	1	Pa					Na ₂ S ₂ O ₃ : NaSO ₃	
imple Custody Seals:	1	NA T	Temperature Reading:	ading:	a.ac						Zn Acetate+NaOH: Zn	
iai Collallicis.			Corrected Lemperature	erature:	Grab/	111		PH 80			NaOH+Ascorbic Acid: SAPC	APC
CS-21 (1")		10/11/2023	IIIIe	×	Water Comp	p Cont	<	× ×			Sample Comments	ents
CS-22 (1')	10/1	10/11/2023		×	Comp	T	×	+				
CS-23 (1")	10/1	10/11/2023		×	Comp	7	×	+				
CS-24 (1')	10/1	10/11/2023		×	Comp	p 1	×	×				
CS-25 (1')	10/1	10/11/2023		×	Comp	p 1	×	×				
CS-26 (1")	10/1	10/11/2023		×	Comp	p 1	×	×				
CS-27 (1')	10/1	10/11/2023		×	Comp	p 1	×	×				
CS-28 (4.5')	10/1	10/12/2023		×	Comp	p 1	×	×				
CS-29 (4.5')	10/1	10/12/2023	1	×	Comp	p 1	×					
CS-30 (4.5')	10/1	10/12/2023		×	Comp	p 1	×	×				
mments: Email to Mike Carmona / Mcarmona@carmonaresources.com and	ike Carmona / I	Mcarmona	a@carmonare	sources.com	and Conner Moehring /	Moehring	/ Cmoeh	ıring@ca	Cmoehring@carmonaresources.com			
Som of	Relinqu	ished by:	Relinquished by: (Signature)				Date/Time	ne ne		Received by: (algnature)	Date/Time	me
1						10.00	100	100	Mille	min when	7	
	C											

Chain of Custody

Page 57 of 59

ed by O	CD:	6/10/2025 1	WIT TO S	11	A	N)	C	1	F	0	R	1		lota	Sam	Coo	Reca	SA	PO #:	Sam	Proj	Proj	Proj	Phone:	City	Add	Con	Pro	Page 1
lown	2		omments: Email to Mike Carmona	SW-14 (4.5)	SW-13 (1')	SW-12 (1')	SW-11 (1')	SW-10 (1')	SW-9 (1")	SW-8 (1')	SW-7 (1.5")	SW-6 (1.5")	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	P.F.	Sampler's Name:	Project Location	Project Number:	Project Name:		ate ZIP:	Address:	Company Name:	Project Manager:	
100	AAAAA		o Mike Carmo	1.5)	1)	(1)	(1)	(1)	1)	1")	.5")	.5')	ification		s: Yes						Eddy		Asio	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	
	Relinquished by: (Signature)	a mean	10/12/2023	10/12/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	10/11/2023	Date		No NIA		es No	Temp Blank:		DD/GPJ	Eddy County, New Mexico	2073	Asio Otis Fed #3 (6.22.23)		9701	t Ste 500	ources	ring	
	/: (Signature)	Carriona											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes Mo			Mexico		.22.23)						
		meaning annonates ources, com and conner Moenring	×	×	×	×	×	×	×	×	×	×	Soil	perature:	eading:	OT:		Wet Ice:			Due Date:	Routine	Tur	Ema					
		and Conn		0	0	0	0	0	0	0	0		Water		2.0		142	Yes			48 hours	✓ Rush	Turn Around	Email: mcarmona@c	City, State ZIP	Address:	Company Name:	Bill to: (if different)	
jan,		er Moenri	Comp	Comp			Comp						Comp C		5.		1	ð				0.0		$\overline{\omega}$	ZIP:		Name:	ferent)	
13-23	Date	ng / Cm	×	1 ×	^ ×	1 ×	1 ×	1 ×	1 ×	1 ×	1 ×		# of		B		8021	etei	rs			Pres. Code		monaresources.com				Co	
31708	Date/Time	noehrin	×	×	×	×	×	×		×	×	×	TF	PH 801		13			+ M	IRO)				rces.co				armona l	
8		Cmoehring@carmon	×	×	×	×	×	×	×	×	×	×			Ch	lorid	le 45	00						m				Carmona Resources	
		onaresoi								1		1																	
	1	aresources.com																					ANALY						
100	Rec	Ē						-	-	-		+									-	-	ANALYSIS REQUEST						
	Received by:																				1		QUEST	Deliv	Repo	State	Prog		
	(Signe																							Deliverables: EDD	Reporting:Level III Level III	State of Project:	Program: UST/PST PRP		
	we)							+	+	1	+	+									+			EDD [el II	ict:	T/PST		Worl
(A)																					1						PRP	Nork O	Orde
R					-	-	-	+	4	+	+			Z	Zr	Z :	Z	E :	Į:	H (2 :	Z		ADaPT 🗆	□ST/UST		rownfields	rder Co	Work Order No:
													Sami	OH+Asc	Acetate	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO : NARIS	BO . HB	H.SO.: H.	HCL: HC	ol Cool	None: NO	Pres				lds	Work Order Comments	Page A
	Date												Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	laSO,	ARIS		z :	I Z		NO DI Water I	prvative	Other:	DRRP [2		235
	Date/Time												ments	d: SAPC	Zn			2011. 140	NaOH: Na	HNO. HN	Duran.	DI Water H-O	Codes		Level IV		perfund		2/3
																					20	5				Г	-		Page 58 of

ved by OC	D: 6/1	10/2025 10	:29:1	9 AM		5																	Page 182
(Jour	2	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carm				SW-16 (4.5')	Sample Identification	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIPT	PO #	Sampler's Name:	Project Location	Project Number:	Project Name:		e ZIP:			Project Manager:	
Mari	R	to Mike Carmo	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \			(4.5")	tification		Yes	Yes				Lucy C	Eddy C		Asio Ot	432-813-6823	Midland, TX 79701	310 W Wall St Ste 500	Carmona Resources	Conner Moehring	Tabs
	Relinquished by: (Signature)	na / Mcarmoi				10/12/2023	Date	1	No MIA	ONA	No	Temp Blank:		DD/GPJ	Eddy County New Mexico	2073	Asio Otis Fed #3 (6.22.23)		01	te 500	rces	g	
	/: (Signature)	na@carmona					Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes , NO			exico		2.23)						
		resources.con				×	Soil	perature:	ading:	or:		Wet Ice:			Due Date:	Routine	Turn	Email:					
		n and Coni					Water	1	2:0	1	140	Yes (48 hours	✓ Rush	Turn Around	mcarmona	City, State ZIP:	Address:	Company Name	Bill to: (if different)	
0		ner Moehrii				Comp 1	Grab/ # of Comp Cont		76	P	arar	nete	rs			Pres. Code		@ca	ZIP:		ame:	erent)	
13-23	Date/Time	ng / Cm				×	# *		В	TEX	802	1B				• "		monaresources.				Carm	
6	Time	behring				×	TP	H 80	15M	(GF	RO +	DRC) + M	IRO)				s.com				Carmona Resources	
300						×			CI	hlori	de 4	500										ources	
		onaresources.com															ANA						1
	R	s.com		2 .													ANALYSIS REQUEST						
12	Received by:																QUEST	Delive	Repor	State	Progr		
	y (Sigh																	Deliverables: EDD	Reporting:Level III	State of Project:	am: UST		
6	skure)					+														1	PST D	W	Work
				-														AL			₹ Q	ork Ord	Order
1	5					+		NaO	Zn Ac	Na ₂ S	NaHS	H ₃ PC	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO		ADaPT L	LIST/UST		Program: UST/PST PRP prownfields RC	Work Order Comments	Work Order No: Ha
							Sample	H+Ascorb	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	H ₃ PO ₄ : HP	4: H ₂	HC	Cool	NO	Preserv	Other:	LRRP]	RC	nents	#33
	Date/Time						Sample Comments	NaOH+Ascorbic Acid: SAPC	OH: Zn	03	S		NaOH: Na	HNO3: HN	MeOH: Me	DI Water: H ₂ O	Preservative Codes		LLevel IV		perfund		835%/
	me						nts	PC	3				Na	H	Me	er: H ₂	les		2		und	-	Page 59 of 59

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring
Carmona Resources
310 W Wall St
Ste 500

Midland, Texas 79701 Generated 5/28/2024 6:18:40 PM

JOB DESCRIPTION

Asio Otis Fed #3 (6.22.23) Eddy County, New Mexico

JOB NUMBER

880-43855-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 5/28/2024 6:18:40 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) Laboratory Job ID: 880-43855-1 SDG: Eddy County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
Surrogate Summary	7
QC Sample Results	8
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Method Summary	16
Sample Summary	17
Chain of Custody	18
Receipt Checklists	20

3

4

6

8

10

11

13

Definitions/Glossary

Job ID: 880-43855-1 Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Qualifiers

GC VOA Qualifier

Qualifier Description LCS/LCSD RPD exceeds control limits. U Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier **Qualifier Description** F1 MS and/or MSD recovery exceeds control limits. S1+ Surrogate recovery exceeds control limits, high biased. Indicates the analyte was analyzed for but not detected.

HPLC/IC Qualifier

Indicates the analyte was analyzed for but not detected.

Qualifier Description

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report. Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid CFU Colony Forming Unit **CNF** Contains No Free Liquid

DFR Duplicate Error Ratio (normalized absolute difference)

Dil Fac **Dilution Factor**

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

Decision Level Concentration (Radiochemistry) DLC

EDL Estimated Detection Limit (Dioxin) LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL

EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

Method Detection Limit MDL Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present PQL Practical Quantitation Limit

PRES Presumptive QC **Quality Control**

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

Toxicity Equivalent Factor (Dioxin) TEF Toxicity Equivalent Quotient (Dioxin) TEQ

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Job ID: 880-43855-1

Project: Asio Otis Fed #3 (6.22.23)

Eurofins Midland Job ID: 880-43855-1

Job Narrative 880-43855-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers are applied to indicate exceptions. Noncompliant quality control (QC) is further explained in narrative comments.

- Matrix QC may not be reported if insufficient sample or site-specific QC samples were not submitted. In these situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise specified in the
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 5/23/2024 3:49 PM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 2.2°C.

GC VOA

Method 8021B: The laboratory control sample (LCS) associated with preparation batch 880-81401 and analytical batch 880-81256 was outside acceptance criteria. Re-extraction and/or re-analysis could not be performed; therefore, the data have been reported. The batch matrix spike/matrix spike duplicate (MS/MSD) was within acceptance limits and may be used to evaluate matrix performance.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD NM: The surrogate recovery for the blank associated with preparation batch 880-81539 and analytical batch 880-81573 was outside the upper control limits.

Method 8015MOD NM: Surrogate recovery for the following samples were outside control limits: (880-43875-A-1-C), (880-43875-A-1-D MS) and (880-43875-A-1-E MSD). Evidence of matrix interferences is not obvious.

Method 8015MOD NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-81539 and analytical batch 880-81573 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Client Sample ID: Backfill Material

Released to Imaging: 7/21/2025 11:07:53 AM

Date Collected: 05/22/24 00:00 Date Received: 05/23/24 15:49

Lab Sample ID: 880-43855-1

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U *1	0.00198		mg/Kg		05/23/24 16:00	05/23/24 18:36	1
Toluene	<0.00198	U *1	0.00198		mg/Kg		05/23/24 16:00	05/23/24 18:36	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		05/23/24 16:00	05/23/24 18:36	,
m-Xylene & p-Xylene	<0.00396	U *1	0.00396		mg/Kg		05/23/24 16:00	05/23/24 18:36	
o-Xylene	<0.00198	U	0.00198		mg/Kg		05/23/24 16:00	05/23/24 18:36	•
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		05/23/24 16:00	05/23/24 18:36	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	88		70 - 130				05/23/24 16:00	05/23/24 18:36	
1,4-Difluorobenzene (Surr)	89		70 - 130				05/23/24 16:00	05/23/24 18:36	1
- Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00396	U	0.00396		mg/Kg			05/23/24 18:36	
Method: SW846 8015 NM - Diese	I Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.6	U	49.6		mg/Kg			05/25/24 14:03	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.6	U	49.6		mg/Kg		05/24/24 14:07	05/25/24 14:03	1
Diesel Range Organics (Over	<49.6	U	49.6		mg/Kg		05/24/24 14:07	05/25/24 14:03	,
C10-C28) Oil Range Organics (Over C28-C36)	<49.6	U	49.6		mg/Kg		05/24/24 14:07	05/25/24 14:03	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				05/24/24 14:07	05/25/24 14:03	
o-Terphenyl	121		70 - 130				05/24/24 14:07	05/25/24 14:03	:
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	e						
	• .	-				_			B.: E
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Surrogate Summary

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Rec
		BFB1	DFBZ1	· ·
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-43830-A-1-A MS	Matrix Spike	104	103	
880-43830-A-1-B MSD	Matrix Spike Duplicate	97	100	
880-43855-1	Backfill Material	88	89	
LCS 880-81401/1-A	Lab Control Sample	102	104	
LCSD 880-81401/2-A	Lab Control Sample Dup	102	99	
MB 880-81401/5-A	Method Blank	88	92	
Surrogate Legend				
BFB = 4-Bromofluoroben	zene (Surr)			
DFBZ = 1,4-Difluorobenz	ene (Surr)			

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-43855-1	Backfill Material	103	121	
880-43875-A-1-D MS	Matrix Spike	132 S1+	140 S1+	
880-43875-A-1-E MSD	Matrix Spike Duplicate	121	138 S1+	
LCS 880-81539/2-A	Lab Control Sample	118	121	
LCSD 880-81539/3-A	Lab Control Sample Dup	117	121	
MB 880-81539/1-A	Method Blank	141 S1+	181 S1+	

1CO = 1-Chlorooctane

OTPH = o-Terphenyl

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

QC Sample Results

Client: Carmona Resources Job ID: 880-43855-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-81401/5-A

Lab Sample ID: LCS 880-81401/1-A

Matrix: Solid

Analysis Batch: 81256

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 81401

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		05/23/24 10:14	05/23/24 13:41	1
Toluene	<0.00200	U	0.00200		mg/Kg		05/23/24 10:14	05/23/24 13:41	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		05/23/24 10:14	05/23/24 13:41	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		05/23/24 10:14	05/23/24 13:41	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		05/23/24 10:14	05/23/24 13:41	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		05/23/24 10:14	05/23/24 13:41	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		70 - 130	05/23/24 10:14	05/23/24 13:41	1
1,4-Difluorobenzene (Surr)	92		70 - 130	05/23/24 10:14	05/23/24 13:41	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 81401

Prep Type: Total/NA

Prep Batch: 81401

35

Matrix: Solid Analysis Batch: 81256

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits Benzene 0.100 0.1209 mg/Kg 121 70 - 130 Toluene 0.100 0.1024 mg/Kg 102 70 - 130 0.100 Ethylbenzene 0.1096 mg/Kg 110 70 - 130 0.200 0.2210 70 - 130 m-Xylene & p-Xylene mg/Kg 111 0.100 o-Xylene 0.1057 mg/Kg 106 70 - 130

LCS LCS

Surrogate	%Recovery G	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	104		70 - 130

Client Sample ID: Lab Control Sample Dup

Matrix: Solid

Lab Sample ID: LCSD 880-81401/2-A

Analysis Batch: 81256

LCSD LCSD RPD Spike %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.07648 *1 mg/Kg 76 70 - 130 45 35 Toluene 0.100 0.07015 *1 mg/Kg 70 70 - 130 37 35 Ethylbenzene 0.100 0.07816 mg/Kg 78 70 - 130 34 35 0.200 m-Xylene & p-Xylene 0.1541 *1 mg/Kg 77 70 - 130 36 35

0.07640

mg/Kg

0.100

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	102		70 - 130
1,4-Difluorobenzene (Surr)	99		70 - 130

Lab Sample ID: 880-43830-A-1-A MS

Matrix: Solid

o-Xylene

Analysis Batch: 81256

Client Sample ID: Matrix Spike Prep Type: Total/NA

70 - 130

Prep Batch: 81401

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U *1	0.0996	0.08813		mg/Kg		88	70 - 130	
Toluene	<0.00200	U *1	0.0996	0.07899		mg/Kg		79	70 - 130	

Eurofins Midland

Page 8 of 20

QC Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 880-43830-A-1-A MS

Lab Sample ID: 880-43830-A-1-B MSD

Matrix: Solid

Analysis Batch: 81256

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 81401

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Ethylbenzene	<0.00200	U	0.0996	0.08731		mg/Kg		88	70 - 130	
m-Xylene & p-Xylene	<0.00399	U *1	0.199	0.1722		mg/Kg		86	70 - 130	
o-Xylene	<0.00200	U	0.0996	0.08636		mg/Kg		87	70 - 130	

MS MS

Surrogate	%Recovery Qu	alifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	103		70 - 130

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 81401

Analysis Batch: 81256

Matrix: Solid

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U *1	0.101	0.08876		mg/Kg		88	70 - 130	1	35
Toluene	<0.00200	U *1	0.101	0.07921		mg/Kg		79	70 - 130	0	35
Ethylbenzene	<0.00200	U	0.101	0.08862		mg/Kg		88	70 - 130	1	35
m-Xylene & p-Xylene	<0.00399	U *1	0.202	0.1751		mg/Kg		87	70 - 130	2	35
o-Xylene	<0.00200	U	0.101	0.08627		mg/Kg		86	70 - 130	0	35

MSD MSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	97		70 - 130
1,4-Difluorobenzene (Surr)	100		70 - 130

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-81539/1-A

Matrix: Solid

Analysis Batch: 81573

Client Sample ID: Method Bla	nk
Prep Type: Total/I	۱A

Prep Batch: 81539

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		05/24/24 14:07	05/25/24 07:49	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		05/24/24 14:07	05/25/24 07:49	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		05/24/24 14:07	05/25/24 07:49	1

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	141	S1+	70 - 130	05/24/24 14:07	05/25/24 07:49	1
o-Terphenyl	181	S1+	70 - 130	05/24/24 14:07	05/25/24 07:49	1

Lab Sample ID: LCS 880-81539/2-A

Matrix: Solid

Analysis Batch: 81573

Client Sample ID: La	ab Control Sample
P	rep Type: Total/NA

Prep Batch: 81539

	Spike	LCS	LCS				%Rec
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits
Gasoline Range Organics	1000	1020		mg/Kg		102	70 - 130
(GRO)-C6-C10							
Diesel Range Organics (Over	1000	1110		ma/Ka		112	70 130

C10-C28)

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

LCS LCS

Lab Sample ID: LCS 880-81539/2-A

Matrix: Solid

Analysis Batch: 81573

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 81539

Surrogate %Recovery Qualifier

Limits 1-Chlorooctane 118 70 - 130 o-Terphenyl 121 70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

110

Prep Type: Total/NA

Prep Batch: 81539

2

Lab Sample ID: LCSD 880-81539/3-A **Matrix: Solid**

Lab Sample ID: 880-43875-A-1-D MS

Analysis Batch: 81573

Spike LCSD LCSD %Rec RPD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit 1000 1098 110 70 - 1307 20 Gasoline Range Organics mg/Kg (GRO)-C6-C10

1098

mg/Kg

1000

Diesel Range Organics (Over C10-C28)

LCSD LCSD

Surrogate %Recovery Qualifier Limits 70 - 130 1-Chlorooctane 117 121 70 - 130 o-Terphenyl

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 81539

Sample Sample MS MS Spike Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics <50.0 U 1000 1192 mg/Kg 117 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 90.0 F1 1000 740.6 F1 mg/Kg 65 70 - 130

C10-C28)

Matrix: Solid

Analysis Batch: 81573

MS MS

%Recovery Qualifier Surrogate Limits 132 S1+ 70 - 130 1-Chlorooctane 140 S1+ o-Terphenyl 70 - 130

Lab Sample ID: 880-43875-A-1-E MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 81573

Prep Type: Total/NA Prep Batch: 81539

Sample Sample MSD MSD RPD Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit <50.0 U 1000 1094 107 Gasoline Range Organics 70 - 130 20 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 90.0 F1 1000 706.1 F1 mg/Kg 62 70 - 130 20

C10-C28)

MSD MSD

Qualifier Surrogate %Recovery Limits 1-Chlorooctane 70 - 130 121 138 S1+ 70 - 130 o-Terphenyl

Eurofins Midland

QC Sample Results

Client: Carmona Resources

Job ID: 880-43855-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: Method Blank

Client Sample ID: Matrix Spike Duplicate

Prep Type: Soluble

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-81477/1-A

Matrix: Solid

Analysis Batch: 81481

Analyte

Chloride

Prep Type: Soluble

MB MB Dil Fac MDL Unit Result Qualifier RL D Prepared Analyzed <5.00 U 5.00 mg/Kg 05/24/24 03:52

Lab Sample ID: LCS 880-81477/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 81481

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit D %Rec Limits Chloride 250 253.0 mg/Kg 101 90 - 110

Lab Sample ID: LCSD 880-81477/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble** Analysis Batch: 81481

LCSD LCSD %Rec RPD Spike Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Chloride 250 254.2 mg/Kg 102 90 - 110

Lab Sample ID: 880-43823-A-24-C MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 81481

MS MS Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 59.2 252 314.4 101 90 - 110 mg/Kg

Lab Sample ID: 880-43823-A-24-D MSD

Matrix: Solid

Analysis Batch: 81481

Sample Sample Spike MSD MSD %Rec RPD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit 252 Chloride 59.2 314.9 mg/Kg 101 90 - 110 0 20

QC Association Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

GC VOA

Analysis Batch: 81256

Lab Sample ID 880-43855-1	Client Sample ID Backfill Material	Prep Type Total/NA	Matrix Solid	Method 8021B	Prep Batch 81401
MB 880-81401/5-A	Method Blank	Total/NA	Solid	8021B	81401
LCS 880-81401/1-A	Lab Control Sample	Total/NA	Solid	8021B	81401
LCSD 880-81401/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	81401
880-43830-A-1-A MS	Matrix Spike	Total/NA	Solid	8021B	81401
880-43830-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	81401

Prep Batch: 81401

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Total/NA	Solid	5035	
MB 880-81401/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-81401/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-81401/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-43830-A-1-A MS	Matrix Spike	Total/NA	Solid	5035	
880-43830-A-1-B MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Analysis Batch: 81520

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 81539

Lab Sample ID 880-43855-1	Client Sample ID Backfill Material	Prep Type Total/NA	Matrix Solid	Method 8015NM Prep	Prep Batch
MB 880-81539/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-81539/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-81539/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-43875-A-1-D MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-43875-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 81573

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Total/NA	Solid	8015B NM	81539
MB 880-81539/1-A	Method Blank	Total/NA	Solid	8015B NM	81539
LCS 880-81539/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	81539
LCSD 880-81539/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	81539
880-43875-A-1-D MS	Matrix Spike	Total/NA	Solid	8015B NM	81539
880-43875-A-1-E MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	81539

Analysis Batch: 81720

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Total/NA	Solid	8015 NM	

HPLC/IC

Leach Batch: 81477

Г					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Soluble	Solid	DI Leach	
MB 880-81477/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-81477/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-81477/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	

Eurofins Midland

Page 12 of 20

QC Association Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

HPLC/IC (Continued)

Leach Batch: 81477 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43823-A-24-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-43823-A-24-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Analysis Batch: 81481

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-43855-1	Backfill Material	Soluble	Solid	300.0	81477
MB 880-81477/1-A	Method Blank	Soluble	Solid	300.0	81477
LCS 880-81477/2-A	Lab Control Sample	Soluble	Solid	300.0	81477
LCSD 880-81477/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	81477
880-43823-A-24-C MS	Matrix Spike	Soluble	Solid	300.0	81477
880-43823-A-24-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	81477

Eurofins Midland

3

5

0

8

9

11

13

Lab Chronicle

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: Backfill Material

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-43855-1

Matrix: Solid

Date Collected: 05/22/24 00:00 Date Received: 05/23/24 15:49

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	81401	05/23/24 16:00	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	81256	05/23/24 18:36	EL	EET MID
Total/NA	Analysis	Total BTEX		1			81520	05/23/24 18:36	SM	EET MID
Total/NA	Analysis	8015 NM		1			81720	05/25/24 14:03	SM	EET MID
Total/NA	Prep	8015NM Prep			10.09 g	10 mL	81539	05/24/24 14:07	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	81573	05/25/24 14:03	SM	EET MID
Soluble	Leach	DI Leach			5.03 g	50 mL	81477	05/23/24 16:30	SA	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	81481	05/24/24 06:30	SMC	EET MID

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Project/Site: Asio Otis Fed #3 (6.22.23)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	m	Identification Number	Expiration Date
Texas	NELAF)	T104704400-23-26	06-30-24
,	are included in this report, but oes not offer certification.	t the laboratory is not certif	ied by the governing authority. This lis	st may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	

Method Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Eurofins Midland

3

4

5

7

9

10

1 2

R

Sample Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-43855-1

SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-43855-1	Backfill Material	Solid	05/22/24 00:00	05/23/24 15:49

3

А

6

8

46

11

12

Project Manager

Carmona Resources Conner Moehring

Company Name Bill to (if different)

Carmona Resources

7
1

Company Name	Carriona Resources			Company Name									ogram:	UST/P	st □	굓 	rownf	Program: UST/PST ☐PRP ☐ rownfields ☐ tRC	RC		perfund	ユ
Address. 310	310 W Wall St Ste 500			Address								st	ate of F	State of Project:								
City, State ZIP Mic	Midland, TX 79701			City, State ZIP								R R	porting	Reporting Level II Level III ST/UST	□Lev	e =]s⊤⁄∟		- RRP			므
Phone 43:	432-813-6823		Email	mcarmona@carmonaresources.com	nonares	ources.	com					Ğ	liverab	Deliverables EDD			ADaPT 🗆		Other:			
Project Name	Asio Otis Fed #3 (6.22.23)	(6.22.23)	Turn £	Turn Around						ANALYSIS REQUEST	SIS R	QUE	¥					Pre	serva	Preservative Codes	aabc	
Project Number	2073		Routine	Rush	Pres.							_	\dashv	\dashv	7			None NO		2	ator: H.C	1
Project Location	Eddy County, New Mexico	w Mexico	Due Date	72 Hrs		_		1	1		_		\dashv	1	1		ل	5	<u>,</u>		March 120	
Sampler's Name	₻						RO)											HO 40	1			
PO #		<i>)</i>		١	s		+ M											H.SO. H.			NaOH Na	
SAMPLE RECEIPT	Tem p Blank	(V=)(X)	Wet Ice:	CXès No	eter		ORO 											H.BO. HB	⊽ ~	i de C	NaCIT Na	
Received Intact:	(Yes No	Thermometer ID		510	ram	8021	0 + I e 30											PARSO.	NABIO	•		
Cooler Custody Seals	Yes No(N/A	Correction Factor	-:	7	Pa							,		,				Nasao Naso	Naco Selection			
Sample Custody Seals:	Yes No NA	Temperature Reading:	ading:	2														Zn Acetate+NaOU Zn	to the Co	₹ ³		
Total Containers		Corrected Temperature	erature	0,7			801										_	NaOH+Ascorbic Acid SAPC	scorbic	Acid (SAPC	
Sample Identification	ation Date	Time	Soil	Water Comp	Cont		TPI											Sai	nple (Sample Comments	ents	
Backfill Materia	ial 5/22/2024	:4	×	Comp	_	×	×				_	_	+	\dashv								
																		-				\bot
						-	-	-			-	-	-	-								
						_		\dashv	T		\bot	+	+	\dashv	\top							丄
												_		_								\perp
						-	-	+	+		_	-	+									\sqcup
						1			T		4	+	+	+	1							
							$\left \cdot \right $	H				$\vdash \vdash$	H									
Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	Mike Carmona / Mcan	mona@carmonari	esources.com a	and Conner Mo	ehring /	Cmoeh	ring@	carmon	aresou	rces.c	m											
	Reļinquishe	Relinquished by: (Signature)				Date/Time	ne			4	R	eviore	d by /	Received by (Signature)	re)					Date/Time	ime	[
TOB	1	Hermania.			5/23/	124	1541						\									
								-						į.								<u></u>
								-				-										

0 -	
8 ≣	
880-43855	
% =	
Chain	
의 💻	
of Custody	
<u> </u>	
[ઢું ≣	
~ =	
=	

Work Order Comments

Relinquished by: (Signature)	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com			Davilli Maroliai Jizzizvet	on Date Time Soil Water Comp	+-	Seals: Yes No NA	Yes No N/A Correction Factor:	s No Thermometer ID:	Wet ice: (Xes No		IR	Eddy County New Mexico Due Date: 72 Hrs	r: 2073 Routine 🗸 Rush	Project Name: Asio Otis Fed #3 (6.22.23) Turn Around	432-813-6823 Email:	ZIP:	Address: 310 W Wall St Ste 500 Address:	Carmona Resources	Project Manager: Conner Moehring Bill to: (# different)	Cha
123	ring / Cmc			\vdash	Cont Cont		E	P STE		nete 21B	rs			Code		naresource			L	Carm	Chain of Custody
Date/Time	oehring@				+	PH 80	-			DRC) + N	IRO)				s.com				Carmona Resources	Custo
Re)carmonaresources.com				×			miori	G# 3						ANALYSIS REQUEST					urces	ody
Redeived by (Signature)															QUEST	Deliverables: EDD ADa	Level III	State of Project:	Program: UST/PST PRP prownfields RC	Work Order	880-43855 Chain of Custody
Date/Time					Sample Comments	NaOH+Ascorbic Acid: SAPC	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO ₄ : NABIS	H ₃ PO ₄ : HP	H ₂ S0 ₄ : H ₂ NaOH: Na		Cool: Cool MeOH: Me	None: NO DI Water: H ₂ O	Preservative Codes	ADaPT Other:	ST/UST RRP Level IV		wnfields	Work Order Comments	Custody

Login Sample Receipt Checklist

Client: Carmona Resources Job Number: 880-43855-1

SDG Number: Eddy County, New Mexico

Login Number: 43855 List Source: Eurofins Midland

List Number: 1 Creator: Teel, Brianna

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

Released to Imaging: 7/21/2025 11:07:53 AM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Conner Moehring
Carmona Resources
310 W Wall St
Ste 500

Midland, Texas 79701 Generated 12/13/2024 4:36:21 PM

JOB DESCRIPTION

Asio Otis Fed #3 (6.22.23) Eddy County, New Mexico

JOB NUMBER

880-52160-1

Eurofins Midland 1211 W. Florida Ave Midland TX 79701

Eurofins Midland

Job Notes

This report may not be reproduced except in full, and with written approval from the laboratory. The results relate only to the samples tested. For questions please contact the Project Manager at the e-mail address or telephone number listed on this page.

Analytical test results meet all requirements of the associated regulatory program (i.e., NELAC (TNI), DoD, and ISO 17025) unless otherwise noted under the individual analysis.

Authorization

Generated 12/13/2024 4:36:21 PM

Authorized for release by Jessica Kramer, Project Manager Jessica.Kramer@et.eurofinsus.com (432)704-5440

Eurofins Midland is a laboratory within Eurofins Environment Testing South Central, LLC, a company within Eurofins Environment Testing Group of Companies

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) Laboratory Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	7
Surrogate Summary	30
QC Sample Results	33
QC Association Summary	47
Lab Chronicle	56
Certification Summary	66
Method Summary	67
Sample Summary	68
Chain of Custody	69
Receipt Checklists	72

4

6

8

9

10

12

13

Definitions/Glossary

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Indicates the analyte was analyzed for but not detected.

GC Semi VOA

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
S1-	Surrogate recovery exceeds control limits, low biased.
S1+	Surrogate recovery exceeds control limits, high biased.
U	Indicates the analyte was analyzed for but not detected.

HPLC/IC

Qualifier	Qualifier Description
F1	MS and/or MSD recovery exceeds control limits.
U	Indicates the analyte was analyzed for but not detected.

Glossary	
Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)
LOD	Limit of Detection (DoD/DOE)
LOQ	Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit ML Minimum Level (Dioxin) MPN Most Probable Number MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present **Practical Quantitation Limit PQL**

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Carmona Resources Job ID: 880-52160-1

Project: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 Eurofins Midland

Job Narrative 880-52160-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- · Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The samples were received on 12/12/2024 11:30 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was -4.8°C.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-97670 and analytical batch 880-97690 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-97670 and analytical batch 880-97690 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: The method blank for preparation batch 880-97669 and analytical batch 880-97688 contained Gasoline Range Organics (GRO)-C6-C10 above the method detection limit. This target analyte concentration was less than the reporting limit (RL) in the method blank; therefore, re-extraction and/or re-analysis of samples was not performed.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-97669 and analytical batch 880-97688 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

Method 8015MOD_NM: Surrogate recovery for the following samples were outside control limits: CS-57 (Surface) (880-52160-22), CS-58 (Surface) (880-52160-23) and CS-59 (Surface) (880-52160-24). Evidence of matrix interference is present; therefore, reextraction and/or re-analysis was not performed.

Method 8015MOD_NM: An incorrect volume of surrogate spiking solution was inadvertently added the following samples: CS-36 (Surface) (880-52160-1). Percent recoveries are based on the amount spiked.

Method 8015MOD_NM: An incorrect volume of surrogate spiking solution was inadvertently added the following samples: CS-38 (Surface) (880-52160-3). Percent recoveries are based on the amount spiked.

Method 8015MOD_NM: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-97819 and analytical batch 880-97844 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

Eurofins Midland

5

6

۹ Q

9

11

13

14

12/12/20

Case Narrative

Client: Carmona Resources Job ID: 880-52160-1

Project: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 (Continued)

Eurofins Midland

Method 300_ORGFM_28D - Soluble: The matrix spike / matrix spike duplicate (MS/MSD) recoveries for preparation batch 880-97735 and analytical batch 880-97759 were outside control limits for one or more analytes. See QC Sample Results for detail. Sample matrix interference and/or non-homogeneity are suspected because the associated laboratory control sample (LCS) recovery is within acceptance limits.

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

-

3

4

5

7

9

4 4

12

13

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-1

Client Sample ID: CS-36 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 17:34	-
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 17:34	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 17:34	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 17:34	
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 17:34	
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 17:34	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	91		70 - 130				12/12/24 12:54	12/12/24 17:34	
1,4-Difluorobenzene (Surr)	87		70 - 130				12/12/24 12:54	12/12/24 17:34	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/12/24 17:34	
Method: SW846 8015 NM - Diese Analyte		ics (DRO) (Qualifier	GC) RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Total TPH	<49.8	U	49.8		mg/Kg			12/12/24 21:54	
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		12/12/24 13:09	12/12/24 21:54	
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		12/12/24 13:09	12/12/24 21:54	
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 13:09	12/12/24 21:54	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
1-Chlorooctane	52	S1-	70 - 130				12/12/24 13:09	12/12/24 21:54	
o-Terphenyl	54	S1-	70 - 130				12/12/24 13:09	12/12/24 21:54	
-		.h Calhl							
Method: EPA 300.0 - Anions, Ion	Chromatograp	my - Solubi	е						
Method: EPA 300.0 - Anions, Ion Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa

Client Sample ID: CS-37 (Surface) Lab Sample ID: 880-52160-2 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/12/24 12:54	12/12/24 17:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	93		70 - 130				12/12/24 12:54	12/12/24 17:55	1
1.4-Difluorobenzene (Surr)	86		70 - 130				12/12/24 12:54	12/12/24 17:55	1

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-2

Client Sample ID: CS-37 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Job ID: 880-52160-1

Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			12/12/24 17:55	1
- Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			12/12/24 22:09	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		12/12/24 13:09	12/12/24 22:09	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		12/12/24 13:09	12/12/24 22:09	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		12/12/24 13:09	12/12/24 22:09	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	74		70 - 130				12/12/24 13:09	12/12/24 22:09	1
o-Terphenyl	77		70 - 130				12/12/24 13:09	12/12/24 22:09	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	le						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	387		9.92		mg/Kg			12/12/24 20:36	

Client Sample ID: CS-38 (Surface) Lab Sample ID: 880-52160-3

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Released to Imaging: 7/21/2025 11:07:53 AM

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
Toluene	< 0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 18:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				12/12/24 12:54	12/12/24 18:15	1
1 1 Differenchemanne (Court)	82		70 ₋ 130				12/12/24 12:54	12/12/24 18:15	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald			MDI	Unit	n			
- '	- Total BTEX Cald								·
- '	- Total BTEX Cald	Qualifier	RL 0.00398	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 12/12/24 18:15	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00398	Qualifier U	RL 0.00398	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 12/12/24 18:15	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 49.9		mg/Kg		Prepared	Analyzed 12/12/24 18:15 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared	Analyzed 12/12/24 18:15 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 49.9	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 12/12/24 18:15 Analyzed 12/13/24 14:22	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D Analyte Gasoline Range Organics	- Total BTEX Calc Result <0.00398 esel Range Organ Result <49.9 diesel Range Orga Result	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier U	RL 0.00398 GC) RL 49.9 (GC) RL	MDL	mg/Kg Unit mg/Kg Unit	<u>D</u>	Prepared Prepared	Analyzed 12/12/24 18:15 Analyzed 12/13/24 14:22 Analyzed	Dil Fac

Eurofins Midland

Matrix: Solid

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Client Sample ID: CS-38 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-3

Matrix: Solid

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/13/24 09:37	12/13/24 14:22	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	148	S1+	70 - 130				12/13/24 09:37	12/13/24 14:22	1
o-Terphenyl	133	S1+	70 - 130				12/13/24 09:37	12/13/24 14:22	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier MDL Dil Fac Analyte RL Unit D Prepared Analyzed 50.5 12/12/24 20:41 71.7 5 Chloride mg/Kg

Client Sample ID: CS-39 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-52160-4

12/12/24 18:36

12/12/24 12:54

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 18:36 mg/Kg Toluene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 18:36 mg/Kg Ethylbenzene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 18:36 mg/Kg 12/12/24 18:36 m-Xylene & p-Xylene 12/12/24 12:54 <0.00403 U 0.00403 mg/Kg o-Xylene <0.00202 U 0.00202 mg/Kg 12/12/24 12:54 12/12/24 18:36 Xylenes, Total <0.00403 U 0.00403 mg/Kg 12/12/24 12:54 12/12/24 18:36 %Recovery Limits Dil Fac Surrogate Qualifier Prepared Analyzed 70 - 130 12/12/24 12:54 12/12/24 18:36 4-Bromofluorobenzene (Surr) 94

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00403 U 0.00403 mg/Kg 12/12/24 18:36

70 - 130

89

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier MDL Dil Fac RL Unit D Prepared Analyzed Total TPH <50.0 Ū 50.0 12/13/24 14:36 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <50.0 U 50.0 12/13/24 09:37 12/13/24 14:36 mg/Kg (GRO)-C6-C10 50.0 12/13/24 09:37 12/13/24 14:36 Diesel Range Organics (Over <50.0 U mg/Kg Oil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 12/13/24 09:37 12/13/24 14:36 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 92 70 - 130 12/13/24 09:37 12/13/24 14:36 81 70 - 130 12/13/24 09:37 o-Terphenyl 12/13/24 14:36

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier MDL Dil Fac RL Unit Prepared Analyzed Chloride 64.9 49.8 12/12/24 20:46 mg/Kg

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-5

Matrix: Solid

Client Sample ID: CS-40 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 18:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				12/12/24 12:54	12/12/24 18:56	1
1,4-Difluorobenzene (Surr)	86		70 - 130				12/12/24 12:54	12/12/24 18:56	1
- Method: TAL SOP Total BTEX - T	otal BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/12/24 18:56	1
Method. Offorto out of Italy - Diese	i Kange Organ	ICS (DRO) (GC)						
			•	MDI	Unit	D	Prenared	Analyzed	Dil Fac
Analyte		Qualifier	GC) RL 49.9	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 12/13/24 00:34	
Analyte	Result	Qualifier	RL	MDL		<u>D</u>	Prepared		
Analyte Total TPH	Result <49.9	Qualifier U	RL 49.9	MDL		<u>D</u>	Prepared		
Analyte Total TPH . Method: SW846 8015B NM - Dies	Result <49.9	Qualifier U	RL 49.9			<u>D</u>	Prepared Prepared		1
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics	Result <49.9	Qualifier Unics (DRO) Qualifier	RL 49.9 (GC)		mg/Kg			12/13/24 00:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.9 sel Range Orga Result <49.9	Qualifier U unics (DRO) Qualifier U	(GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	12/13/24 00:34 Analyzed 12/13/24 00:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.9 sel Range Orga Result	Qualifier U unics (DRO) Qualifier U	(GC)		mg/Kg		Prepared	12/13/24 00:34 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 sel Range Orga Result <49.9 <49.9	Qualifier U unics (DRO) Qualifier U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12	12/13/24 00:34 Analyzed 12/13/24 00:34 12/13/24 00:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.9 sel Range Orga Result <49.9	Qualifier U unics (DRO) Qualifier U	(GC) RL 49.9		mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	12/13/24 00:34 Analyzed 12/13/24 00:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	Result <49.9 sel Range Orga Result <49.9 <49.9	Qualifier U unics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12	12/13/24 00:34 Analyzed 12/13/24 00:34 12/13/24 00:34	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result <49.9 Sel Range Orga Result <49.9 <49.9 <49.9	Qualifier U unics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9 49.9		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12	Analyzed 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34	Dil Face
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	Result	Qualifier U unics (DRO) Qualifier U U	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared	Analyzed 12/13/24 00:34 Analyzed 12/13/24 00:34 12/13/24 00:34 Analyzed	Dil Fac
Analyte Total TPH Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	Result <49.9	Qualifier U unics (DRO) Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34 Analyzed 12/13/24 00:34	Dil Fac
Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	Result	Qualifier U unics (DRO) Qualifier U U Qualifier	RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34 12/13/24 00:34 Analyzed 12/13/24 00:34	Dil Face 1 Dil Face 1 Dil Face

Client Sample ID: CS-41 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		12/12/24 12:54	12/12/24 19:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		70 - 130				12/12/24 12:54	12/12/24 19:17	1
1,4-Difluorobenzene (Surr)	81		70 - 130				12/12/24 12:54	12/12/24 19:17	1

Eurofins Midland

Lab Sample ID: 880-52160-6

Matrix: Solid

Released to Imaging: 7/21/2025 11:07:53 AM

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-6

Matrix: Solid

Client Sample ID: CS-41 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Method: TAL SOP Total BTEX - Tot	al BTEX Calo	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/12/24 19:17	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Total TPH	<49.7	U	49.7	mg/Kg			12/13/24 01:18	1	

		· ·			9,9			12/10/2101110	
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.7	U	49.7		mg/Kg		12/12/24 13:12	12/13/24 01:18	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		12/12/24 13:12	12/13/24 01:18	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.7	U	49.7		mg/Kg		12/12/24 13:12	12/13/24 01:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				12/12/24 13:12	12/13/24 01:18	1
o-Terphenvl	80		70 - 130				12/12/24 13:12	12/13/24 01:18	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
	Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac	
	Chloride	123	10.0	mg/Kg			12/12/24 21:44	1	

Client Sample ID: CS-42 (Surface)

Lab Sample ID: 880-52160-7

Date Collected: 12/12/24 00:00

Matrix: Solid

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 19:37	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				12/12/24 12:54	12/12/24 19:37	1
Method: TAL SOP Total BTEX			70 - 130			_	12/12/24 12:54	12/12/24 19:37	·
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	Qualifier	RL	MDL	Unit	<u>D</u>	12/12/24 12:54 Prepared	Analyzed	Dil Fac
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00398	Qualifier U	RL 0.00398	MDL	Unit mg/Kg	<u>D</u>			•
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <	Qualifier U	RL 0.00398		mg/Kg		Prepared	Analyzed 12/12/24 19:37	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 sel Range Organ Result	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg	<u>D</u>		Analyzed 12/12/24 19:37 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte	- Total BTEX Calc Result <0.00398 sel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 12/12/24 19:37	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00398 sel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00398		mg/Kg		Prepared	Analyzed 12/12/24 19:37 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D	- Total BTEX Calc Result <0.00398 sel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U	RL 0.00398	MDL	mg/Kg		Prepared	Analyzed 12/12/24 19:37 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00398 sel Range Organ Result <50.0 iesel Range Orga	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 12/12/24 19:37 Analyzed 12/13/24 01:32	Dil Fac

Client Sample Results

Client: Carmona Resources

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-7

Client Sample ID: CS-42 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continu	ied)				
Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.0	U	50.0	mg/Kg		12/12/24 13:12	12/13/24 01:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130			12/12/24 13:12	12/13/24 01:32	1
o-Terphenyl	83		70 - 130			12/12/24 13:12	12/13/24 01:32	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Chloride 369 10.1 12/12/24 21:49 mg/Kg

Client Sample ID: CS-43 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-8

Matrix: Solid

	_ :					_			
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		12/12/24 12:54	12/12/24 19:58	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				12/12/24 12:54	12/12/24 19:58	1
1,4-Difluorobenzene (Surr)	81		70 - 130				12/12/24 12:54	12/12/24 19:58	1

Method: TAL SOP Total BTEX - Tot	al BTEX Calc	ulation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00397	U	0.00397		mg/Kg			12/12/24 19:58	1

Method: SW846 8015 NM - Diesel F	Range Organi	ics (DRO) (G	C)						
Analyte	Result	Qualifier	RL	MDL Ur	nit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0	m _i	g/Kg			12/13/24 01:48	1
_									

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 01:48	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 01:48	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 01:48	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	95		70 - 130				12/12/24 13:12	12/13/24 01:48	1
o-Terphenvl	85		70 - 130				12/12/24 13:12	12/13/24 01:48	1

Method: EPA 300.0 - Anions, Ion C	hromatograp	hy - Soluble							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	369		10.0		mg/Kg			12/12/24 21:55	1

Client Sample Results

Client: Carmona Resources

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: CS-44 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-9

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
Toluene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/12/24 12:54	12/12/24 20:18	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				12/12/24 12:54	12/12/24 20:18	1
1,4-Difluorobenzene (Surr)	83		70 - 130				12/12/24 12:54	12/12/24 20:18	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00402	11	0.00402		mg/Kg			12/12/24 20:18	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier RL MDL Unit D Analyzed Dil Fac Prepared Total TPH <49.8 U 49.8 12/13/24 02:02 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Gasoline Range Organics <49.8 U 49.8 12/12/24 13:12 12/13/24 02:02 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over <49.8 U 49.8 12/12/24 13:12 12/13/24 02:02 mg/Kg C10-C28) Oil Range Organics (Over C28-C36) <49.8 U 49.8 mg/Kg 12/12/24 13:12 12/13/24 02:02 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 89 70 - 130 12/12/24 13:12 12/13/24 02:02 79 70 - 130 12/12/24 13:12 12/13/24 02:02 o-Terphenyl

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit D Prepared Analyzed Dil Fac 12/12/24 22:00 Chloride 331 9.96 mg/Kg

Client Sample ID: CS-45 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Released to Imaging: 7/21/2025 11:07:53 AM

- Method: SW846 8021B - Volati	ile Organic Comp	ounds (GC))						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
m-Xylene & p-Xylene	<0.00404	U	0.00404		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
Xylenes, Total	<0.00404	U	0.00404		mg/Kg		12/12/24 12:54	12/12/24 20:39	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				12/12/24 12:54	12/12/24 20:39	1
1,4-Difluorobenzene (Surr)	83		70 - 130				12/12/24 12:54	12/12/24 20:39	1

Eurofins Midland

Lab Sample ID: 880-52160-10

Matrix: Solid

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Client Sample ID: CS-45 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-10

Lab Sample ID: 880-52160-11

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00404	U	0.00404		mg/Kg			12/12/24 20:39	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.7	U	49.7		mg/Kg			12/13/24 02:17	1
Method: SW846 8015B NM - Dies Analyte	•	nics (DRO) Qualifier	(GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.7		49.7		mg/Kg		12/12/24 13:12	12/13/24 02:17	1
Diesel Range Organics (Over	<49.7	U	49.7		mg/Kg		12/12/24 13:12	12/13/24 02:17	1
· /	<49.7 <49.7		49.7 49.7		mg/Kg		12/12/24 13:12 12/12/24 13:12	12/13/24 02:17 12/13/24 02:17	1
Diesel Range Organics (Over C10-C28)		U							1 1 <i>Dil Fac</i>
Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	<49.7	U	49.7				12/12/24 13:12	12/13/24 02:17	1 1 <i>Dil Fac</i> 1

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 293 9.90 mg/Kg 12/12/24 22:16

Client Sample ID: CS-46 (Surface)

Released to Imaging: 7/21/2025 11:07:53 AM

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/12/24 22:03	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				12/12/24 12:54	12/12/24 22:03	1
1,4-Difluorobenzene (Surr)	85		70 - 130				12/12/24 12:54	12/12/24 22:03	1
Method: TAL SOP Total BTEX	- Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Method. TAL SOF Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL U	Jnit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00401	U	0.00401	m	ng/Kg			12/12/24 22:03	1
	_									

ı	Method: SW846 8015 NM - Diesel Ra	ange Organi	ics (DRO) (G0	C)					
	Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
l	Total TPH	<50.0	U	50.0	mg/Kg			12/13/24 02:31	1

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC)										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 02:31	1	
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 02:31	1	

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: CS-46 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-11

Matrix: Solid

1	Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC) (Continu	ıed)					
1	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 02:31	1
9	Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1	1-Chlorooctane	98		70 - 130				12/12/24 13:12	12/13/24 02:31	1
c	o-Terphenyl	87		70 - 130				12/12/24 13:12	12/13/24 02:31	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Chloride 257 10.1 12/12/24 22:21 mg/Kg

Client Sample ID: CS-47 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-12

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:23	
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:23	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:23	
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/12/24 12:54	12/12/24 22:23	
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/12/24 22:23	
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/12/24 12:54	12/12/24 22:23	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				12/12/24 12:54	12/12/24 22:23	-
1,4-Difluorobenzene (Surr)	84		70 - 130				12/12/24 12:54	12/12/24 22:23	

Method: TAL SOP Total BTEX - Tota	culation								
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00400	U	0.00400		mg/Kg			12/12/24 22:23	1

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/13/24 02:46	1
Method: SW846 8015B NM - Diesel Rang	ge Orga	nics (DRO) (GC)							
Analyte	_	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/12/24 13:12	12/13/24 02:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/12/24 13:12	12/13/24 02:46	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/12/24 13:12	12/13/24 02:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130				12/12/24 13:12	12/13/24 02:46	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble									
Analyte	Result Qualif	fier RL	MDL U	Unit	D	Prepared	Analyzed	Dil Fac	
Chloride	397	9.98	r	mg/Kg			12/12/24 22:26	1	

70 - 130

79

Eurofins Midland

12/13/24 02:46

12/12/24 13:12

o-Terphenyl

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-13

Client Sample ID: CS-48 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
o-Xylene	< 0.00199	U	0.00199		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/24 12:54	12/12/24 22:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		70 - 130				12/12/24 12:54	12/12/24 22:44	1
1,4-Difluorobenzene (Surr)	79		70 - 130				12/12/24 12:54	12/12/24 22:44	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/12/24 22:44	1
Method: SW846 8015 NM - Diese					3 3				
Method: SW846 8015 NM - Diese	el Range Organ			MDL	Unit	D	Prepared	Analyzed	Dil Fac
- -	el Range Organ	ics (DRO) (GC)	MDL		<u>D</u>	Prepared	Analyzed 12/13/24 03:01	
Method: SW846 8015 NM - Diese Analyte Total TPH	el Range Organ Result <49.9	ics (DRO) (Qualifier	GC) RL 49.9	MDL	Unit	<u>D</u>	Prepared		
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result <49.9 sel Range Organ	ics (DRO) (Qualifier U	GC) RL 49.9	MDL	Unit		Prepared	12/13/24 03:01	1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte	el Range Organ Result <49.9 sel Range Orga Result	Qualifier Unics (DRO) Qualifier	GC) RL 49.9		Unit mg/Kg	<u>D</u>	Prepared Prepared		1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	el Range Organ Result <49.9 sel Range Organ	Qualifier Unics (DRO) Qualifier	GC) RL 49.9		Unit mg/Kg			12/13/24 03:01	Dil Fac
Method: SW846 8015 NM - Dieso Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result 49.9 sel Range Orga Result 49.9	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9		Unit mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	12/13/24 03:01 Analyzed 12/13/24 03:01	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.9 sel Range Orga Result	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.9 (GC) RL		Unit mg/Kg		Prepared	12/13/24 03:01 Analyzed	1 Dil Fac
Method: SW846 8015 NM - Dieso Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10	el Range Organ Result 49.9 sel Range Orga Result 49.9	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.9 (GC) RL 49.9		Unit mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	12/13/24 03:01 Analyzed 12/13/24 03:01	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	el Range Organ Result 49.9 sel Range Orga Result 49.9	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.9 (GC) RL 49.9 49.9		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12	12/13/24 03:01 Analyzed 12/13/24 03:01 12/13/24 03:01	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result 49.9 sel Range Orga Result 49.9 449.9 449.9	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.9 (GC) RL 49.9 49.9 49.9		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12	Analyzed 12/13/24 03:01 12/13/24 03:01 12/13/24 03:01 12/13/24 03:01	1 Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 %Recovery	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.9 (GC) RL 49.9 49.9 49.9 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared	Analyzed 12/13/24 03:01 Analyzed 12/13/24 03:01 12/13/24 03:01 12/13/24 03:01 Analyzed	Dil Fac
Method: SW846 8015 NM - Dieso Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 %Recovery 95 84	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 03:01 Analyzed 12/13/24 03:01 12/13/24 03:01 Analyzed 12/13/24 03:01	Dil Fac
Method: SW846 8015 NM - Dieso Analyte Total TPH Method: SW846 8015B NM - Die Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <49.9 sel Range Orga Result <49.9 <49.9 <49.9 %Recovery 95 84 n Chromatograp	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.9 (GC) RL 49.9 49.9 49.9 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 03:01 Analyzed 12/13/24 03:01 12/13/24 03:01 Analyzed 12/13/24 03:01	Dil Fac

Client Sample ID: CS-49 (Surface) Lab Sample ID: 880-52160-14 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/12/24 12:54	12/12/24 23:04	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		70 - 130				12/12/24 12:54	12/12/24 23:04	1
1,4-Difluorobenzene (Surr)	85		70 - 130				12/12/24 12:54	12/12/24 23:04	1

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-14

Client Sample ID: CS-49 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			12/12/24 23:04	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			12/13/24 03:15	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:15	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:15	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:15	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	90		70 - 130				12/12/24 13:12	12/13/24 03:15	1
o-Terphenyl	80		70 - 130				12/12/24 13:12	12/13/24 03:15	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hv - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	101	-	10.1		mg/Kg			12/12/24 22:37	

Client Sample ID: CS-50 (Surface) Lab Sample ID: 880-52160-15

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Released to Imaging: 7/21/2025 11:07:53 AM

Method: SW846 8021B - Volati	Method: SW846 8021B - Volatile Organic Compounds (GC)											
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac			
Benzene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
Toluene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
Ethylbenzene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
m-Xylene & p-Xylene	<0.00402	U	0.00402		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
o-Xylene	<0.00201	U	0.00201		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
Xylenes, Total	<0.00402	U	0.00402		mg/Kg		12/12/24 12:54	12/12/24 23:25	1			
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac			
4-Bromofluorobenzene (Surr)	96		70 - 130				12/12/24 12:54	12/12/24 23:25	1			
1,4-Difluorobenzene (Surr)	81		70 - 130				12/12/24 12:54	12/12/24 23:25	1			

Method: TAL SOP Total BTEX - Total BTEX Calculation										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total BTEX	<0.00402	U	0.00402		mg/Kg			12/12/24 23:25	1

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)										
	Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
	Total TPH	<49.8	U	49.8		mg/Kg			12/13/24 03:45	1

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:45	1
Diesel Range Organics (Over C10-C28)	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:45	1

Eurofins Midland

Matrix: Solid

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Client Sample ID: CS-50 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-15

Matrix: Solid

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 03:45	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	93		70 - 130				12/12/24 13:12	12/13/24 03:45	1
o-Terphenyl	81		70 - 130				12/12/24 13:12	12/13/24 03:45	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier RL MDL Dil Fac Analyte Unit D Prepared Analyzed 9.96 101 F1 12/12/24 22:42 Chloride mg/Kg

Client Sample ID: CS-51 (Surface)

Released to Imaging: 7/21/2025 11:07:53 AM

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-16

Matrix: Solid

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac Benzene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 23:46 mg/Kg Toluene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 23:46 mg/Kg Ethylbenzene <0.00202 U 0.00202 12/12/24 12:54 12/12/24 23:46 mg/Kg m-Xylene & p-Xylene 12/12/24 12:54 12/12/24 23:46 <0.00404 U 0.00404 mg/Kg o-Xylene <0.00202 U 0.00202 mg/Kg 12/12/24 12:54 12/12/24 23:46 <0.00404 U Xylenes, Total 0.00404 mg/Kg 12/12/24 12:54 12/12/24 23:46 %Recovery Limits Dil Fac Surrogate Qualifier Prepared Analyzed 70 - 130 12/12/24 12:54 12/12/24 23:46 4-Bromofluorobenzene (Surr) 95 76 70 - 130 1,4-Difluorobenzene (Surr) 12/12/24 12:54 12/12/24 23:46

Method: TAL SOP Total BTEX - Total BTEX Calculation Analyte Result Qualifier RL MDL Unit D Dil Fac Prepared Analyzed Total BTEX <0.00404 U 0.00404 mg/Kg 12/12/24 23:46

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC) Analyte Result Qualifier MDL Dil Fac RL Unit D Prepared Analyzed Total TPH <50.0 Ū 50.0 12/13/24 03:59 mg/Kg

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) Result Qualifier Analyte RL MDL Unit Prepared Analyzed Dil Fac <50.0 U 50.0 12/12/24 13:12 12/13/24 03:59 Gasoline Range Organics mg/Kg (GRO)-C6-C10 50.0 12/12/24 13:12 12/13/24 03:59 Diesel Range Organics (Over <50.0 U mg/Kg Oil Range Organics (Over C28-C36) <50.0 U 50.0 mg/Kg 12/12/24 13:12 12/13/24 03:59 Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 1-Chlorooctane 79 70 - 130 12/12/24 13:12 12/13/24 03:59 71 70 - 130 12/12/24 13:12 o-Terphenyl 12/13/24 03:59

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier MDL Dil Fac RL Unit Prepared Analyzed Chloride 465 10.0 12/12/24 22:58 mg/Kg

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-17

Client Sample ID: CS-52 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 00:06	
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 00:06	
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 00:06	
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/12/24 12:54	12/13/24 00:06	
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 00:06	
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/12/24 12:54	12/13/24 00:06	•
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	96		70 - 130				12/12/24 12:54	12/13/24 00:06	
1,4-Difluorobenzene (Surr)	89		70 - 130				12/12/24 12:54	12/13/24 00:06	
Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
T L LDTEV	<0.00399	П	0.00399		mg/Kg			12/13/24 00:06	
: Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Method: SW846 8015 NM - Diese	el Range Organ			MDL	Unit	D	Prepared	Analyzed	Dil Fa
Method: SW846 8015 NM - Diese Analyte	el Range Organ	ics (DRO) (Qualifier	GC)	MDL		D	Prepared		Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH	Result <49.8	ics (DRO) (Qualifier	GC) RL 49.8	MDL	Unit	<u>D</u>	Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies	el Range Organ Result <49.8 sel Range Organ	ics (DRO) (Qualifier	GC) RL 49.8		Unit	<u>D</u>	Prepared Prepared	Analyzed	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ Result <49.8 sel Range Organ	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) RL 49.8		Unit mg/Kg		<u> </u>	Analyzed 12/13/24 04:14	
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result <49.8 sel Range Organ Result	ics (DRO) (Qualifier U nics (DRO) Qualifier	GC) RL 49.8 (GC) RL		Unit mg/Kg		Prepared	Analyzed 12/13/24 04:14 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result <49.8 sel Range Organ Result	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.8 (GC) RL		Unit mg/Kg		Prepared	Analyzed 12/13/24 04:14 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result Result Result Result 49.8 49.8 449.8 449.8	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.8 (GC) RL 49.8 49.8		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result Result Result Result 49.8 Result 49.8	ics (DRO) (Qualifier U nics (DRO) Qualifier U	GC) RL 49.8 (GC) RL 49.8		Unit mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	el Range Organ Result <49.8 sel Range Orga Result <49.8 <49.8 <49.8 <49.8 %Recovery	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.8 (GC) RL 49.8 49.8 49.8 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14 12/13/24 04:14 Analyzed	Dil Fa
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate	el Range Organ Result 49.8 sel Range Orga Result 49.8 49.8 49.8	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.8 (GC) RL 49.8 49.8 49.8		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14 12/13/24 04:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane	el Range Organ Result <49.8 sel Range Orga Result <49.8 <49.8 <49.8 <49.8 %Recovery	ics (DRO) (Qualifier U nics (DRO) Qualifier U U	GC) RL 49.8 (GC) RL 49.8 49.8 49.8 Limits		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14 12/13/24 04:14 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl	el Range Organ Result <49.8 sel Range Orga Result <49.8 <49.8 <49.8 <49.8 %Recovery 98 87	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.8 (GC) RL 49.8 49.8 49.8 49.8 Limits 70 - 130 70 - 130		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14 Analyzed 12/13/24 04:14	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36) Surrogate 1-Chlorooctane o-Terphenyl Method: EPA 300.0 - Anions, Ion Analyte	el Range Organ Result <49.8 sel Range Orga Result <49.8 <49.8 <49.8 49.8 %Recovery 98 87 Chromatograp	ics (DRO) (Qualifier U nics (DRO) Qualifier U U Qualifier	GC) RL 49.8 (GC) RL 49.8 49.8 49.8 49.8 Limits 70 - 130 70 - 130	MDL	Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 13:12 12/12/24 13:12 12/12/24 13:12 Prepared 12/12/24 13:12	Analyzed 12/13/24 04:14 Analyzed 12/13/24 04:14 12/13/24 04:14 Analyzed 12/13/24 04:14	Dil Fac

Client Sample ID: CS-53 (Surface) Lab Sample ID: 880-52160-18 **Matrix: Solid**

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Method: SW846 8021B - Volatile Organic Compounds (GC) Analyte Result Qualifier MDL Unit RL D Prepared Dil Fac Analyzed Benzene <0.00199 U 0.00199 mg/Kg 12/12/24 12:54 12/13/24 00:27 Toluene <0.00199 U 0.00199 mg/Kg 12/12/24 12:54 12/13/24 00:27 Ethylbenzene <0.00199 U 0.00199 mg/Kg 12/12/24 12:54 12/13/24 00:27 m-Xylene & p-Xylene <0.00398 U 0.00398 mg/Kg 12/12/24 12:54 12/13/24 00:27 o-Xylene <0.00199 U 0.00199 mg/Kg 12/12/24 12:54 12/13/24 00:27 <0.00398 U 0.00398 12/12/24 12:54 12/13/24 00:27 Xylenes, Total mg/Kg %Recovery Qualifier Limits Surrogate Prepared Analyzed Dil Fac 93 70 - 130 12/12/24 12:54 4-Bromofluorobenzene (Surr) 12/13/24 00:27 1,4-Difluorobenzene (Surr) 84 70 - 130 12/12/24 12:54 12/13/24 00:27

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Client Sample ID: CS-53 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-18

12/12/24 13:12 12/13/24 04:28

Lab Sample ID: 880-52160-19

Matrix: Solid

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398	U	0.00398		mg/Kg			12/13/24 00:27	1
- Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8		mg/Kg			12/13/24 04:28	1
Method: SW846 8015B NM - Dies	•	• •	• •			_			B.1 E
Method: SW846 8015B NM - Dies Analyte	•	nics (DRO) Qualifier	(GC)	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•	Qualifier	• •	MDL	Unit mg/Kg	<u>D</u>	Prepared 12/12/24 13:12	Analyzed 12/13/24 04:28	Dil Fac
	Result	Qualifier	RL	MDL		<u>D</u>			Dil Fac
Analyte Gasoline Range Organics	Result	Qualifier U	RL	MDL		<u>D</u>			Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10	Result <49.8	Qualifier U	RL 49.8	MDL	mg/Kg	<u>D</u>	12/12/24 13:12	12/13/24 04:28	Dil Fac
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	Result <49.8	Qualifier U	RL 49.8	MDL	mg/Kg	<u>D</u>	12/12/24 13:12	12/13/24 04:28	Dil Fac 1 1
Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	Result <49.8 <49.8	Qualifier U U U	RL 49.8	MDL	mg/Kg	<u>D</u>	12/12/24 13:12 12/12/24 13:12	12/13/24 04:28 12/13/24 04:28	Dil Fac 1 1 1 Dil Fac

Method: EPA 300.0 - Anions, Ion C	Chromatography - Soluble						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	155	10.1	mg/Kg			12/12/24 23:19	1

70 - 130

Client Sample ID: CS-54 (Surface)

Date Collected: 12/12/24 00:00

o-Terphenyl

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/13/24 00:47	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/13/24 00:47	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/13/24 00:47	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		12/12/24 12:54	12/13/24 00:47	
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:54	12/13/24 00:47	,
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		12/12/24 12:54	12/13/24 00:47	
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		70 - 130				12/12/24 12:54	12/13/24 00:47	
1,4-Difluorobenzene (Surr)	85		70 - 130				12/12/24 12:54	12/13/24 00:47	1
•									
		culation Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte		Qualifier	RL 0.00397	MDL	Unit mg/Kg	<u>D</u>	Prepared	Analyzed 12/13/24 00:47	Dil Fac
Analyte Total BTEX	Result <0.00397	Qualifier U	0.00397	MDL		<u>D</u>	Prepared		Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Die	Result <0.00397 esel Range Organ	Qualifier U	0.00397			<u>D</u>	Prepared Prepared		1
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	Result <0.00397 esel Range Organ	Qualifier U ics (DRO) (Qualifier	0.00397 GC)		mg/Kg	=		12/13/24 00:47	1
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	Result <0.00397 esel Range Organ Result <49.	Qualifier U ics (DRO) (Qualifier	0.00397 GC) RL 49.9		mg/Kg	=		12/13/24 00:47 Analyzed	1
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - D Analyte	esel Range Organ Result <49. Diesel Range Organ Result	Qualifier U ics (DRO) (Qualifier	0.00397 GC) RL 49.9	MDL	mg/Kg	=		12/13/24 00:47 Analyzed	Dil Fac
Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - Die	esel Range Organ Result <49. Diesel Range Organ Result	Qualifier U ics (DRO) (Qualifier 9 nics (DRO) Qualifier	0.00397 GC) RL 49.9	MDL	mg/Kg Unit mg/Kg	<u></u>	Prepared	12/13/24 00:47 Analyzed 12/13/24 04:44	Dil Fac

Eurofins Midland

12/13/24 04:44

12/12/24 13:12

49.9

mg/Kg

<49.9

Diesel Range Organics (Over

C10-C28)

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: CS-54 (Surface)

Lab Sample ID: 880-52160-19 Date Collected: 12/12/24 00:00

Matrix: Solid

Date Received: 12/12/24 11:30

Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/12/24 13:12	12/13/24 04:44	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				12/12/24 13:12	12/13/24 04:44	1
o-Terphenyl	128		70 - 130				12/12/24 13:12	12/13/24 04:44	1

Method: EPA 300.0 - Anions, Ion Ch	nromatograph	ny - Soluble						
Analyte	Result (Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	140		9.90	mg/Kg			12/12/24 23:24	1

Client Sample ID: CS-55 (Surface)

Lab Sample ID: 880-52160-20 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 01:08	
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 01:08	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 01:08	
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/13/24 01:08	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:54	12/13/24 01:08	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:54	12/13/24 01:08	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		70 - 130				12/12/24 12:54	12/13/24 01:08	1
1,4-Difluorobenzene (Surr)	77		70 - 130				12/12/24 12:54	12/13/24 01:08	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/13/24 01:08	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.	0	50.0		mg/Kg			12/13/24 04:57	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 04:57	1
Diesel Range Organics (Over C10-C28)	<50.	0	50.0		mg/Kg		12/12/24 13:12	12/13/24 04:57	1
•	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/13/24 04:57	1
Oil Range Organics (Over C28-C36)	-00.0								
Oil Range Organics (Over C28-C36) Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
Surrogate		Qualifier	Limits 70 - 130				Prepared 12/12/24 13:12	Analyzed 12/13/24 04:57	
	%Recovery	Qualifier							
Surrogate 1-Chlorooctane	%Recovery 111 111	<u> </u>	70 - 130 70 - 130				12/12/24 13:12	12/13/24 04:57	1
Surrogate 1-Chlorooctane o-Terphenyl	%Recovery 111 111 Chromatograp	<u> </u>	70 - 130 70 - 130	MDL	Unit	D	12/12/24 13:12	12/13/24 04:57	Dil Fac

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-21

Client Sample ID: CS-56 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 00:53	
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 00:53	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 00:53	1
m-Xylene & p-Xylene	<0.00399	U	0.00399		mg/Kg		12/12/24 12:57	12/13/24 00:53	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 00:53	1
Xylenes, Total	<0.00399	U	0.00399		mg/Kg		12/12/24 12:57	12/13/24 00:53	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		70 - 130				12/12/24 12:57	12/13/24 00:53	1
1,4-Difluorobenzene (Surr)	102		70 - 130				12/12/24 12:57	12/13/24 00:53	1
Method: TAL SOP Total BTEX -	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00399	U	0.00399		mg/Kg			12/13/24 00:53	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	A so a la ses al	
Total TPH	56.9		49.7		mg/Kg			Analyzed 12/13/24 05:13	
		nics (DRO)	49.7			_ =			
Method: SW846 8015B NM - Die	sel Range Orga		49.7 (GC)	MDL	mg/Kg			12/13/24 05:13	1
Method: SW846 8015B NM - Die Analyte Gasoline Range Organics	sel Range Orga	Qualifier	49.7		mg/Kg		Prepared 12/12/24 13:12		Dil Fac
Method: SW846 8015B NM - Die Analyte	sel Range Orga Result	Qualifier	49.7 (GC)		mg/Kg		Prepared	12/13/24 05:13 Analyzed	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	sel Range Orga Result <49.7	Qualifier U	49.7 (GC) RL 49.7		mg/Kg Unit mg/Kg		Prepared 12/12/24 13:12	12/13/24 05:13 Analyzed 12/13/24 05:13	Dil Fac
Method: SW846 8015B NM - Dies Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	sel Range Orga Result								

Client Sample ID: CS-57 (Surface) Lab Sample ID: 880-52160-22 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/24 12:57	12/13/24 01:13	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		70 - 130				12/12/24 12:57	12/13/24 01:13	1
1,4-Difluorobenzene (Surr)	99		70 - 130				12/12/24 12:57	12/13/24 01:13	1

Client Sample Results

Client: Carmona Resources

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-22 Client Sample ID: CS-57 (Surface)

Date Collected: 12/12/24 00:00

Matrix: Solid Date Received: 12/12/24 11:30

Analyte	Posult	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00398		0.00398	WIDE			Frepareu	12/13/24 01:13	
TOTAL BIEX	<0.00396	U	0.00396		mg/Kg			12/13/24 01:13	ı
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	81.3		49.8		mg/Kg			12/13/24 05:27	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 05:27	1
(GRO)-C6-C10									
Diesel Range Organics (Over C10-	81.3		49.8		mg/Kg		12/12/24 13:12	12/13/24 05:27	1
C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 05:27	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	104		70 - 130				12/12/24 13:12	12/13/24 05:27	1
o-Terphenyl	170	S1+	70 - 130				12/12/24 13:12	12/13/24 05:27	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hv - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	365		9.98		mg/Kg			12/12/24 23:40	

Client Sample ID: CS-58 (Surface) Lab Sample ID: 880-52160-23

Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

Released to Imaging: 7/21/2025 11:07:53 AM

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
m-Xylene & p-Xylene	<0.00397	U	0.00397		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
Xylenes, Total	<0.00397	U	0.00397		mg/Kg		12/12/24 12:57	12/13/24 01:34	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	100		70 - 130				12/12/24 12:57	12/13/24 01:34	1
			70 - 130				12/12/24 12:57	12/13/24 01:34	·
Method: TAL SOP Total BTEX Analyte	- Total BTEX Cald	Qualifier	RL	MDL	Unit ma/Ka	<u>D</u>	12/12/24 12:57 Prepared	Analyzed	
Method: TAL SOP Total BTEX Analyte Total BTEX	- Total BTEX Calc Result <0.00397	Qualifier U	RL 0.00397	MDL	Unit mg/Kg	<u>D</u>			Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <	Qualifier U	RL 0.00397		mg/Kg		Prepared	Analyzed 12/13/24 01:34	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00397 sel Range Organ Result	Qualifier U ics (DRO) (Qualifier	RL 0.00397		mg/Kg	<u>D</u>		Analyzed 12/13/24 01:34 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die	- Total BTEX Calc Result <	Qualifier U ics (DRO) (Qualifier	RL 0.00397		mg/Kg		Prepared	Analyzed 12/13/24 01:34	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH	- Total BTEX Calc Result <0.00397 sel Range Organ Result 89.4	Qualifier U ics (DRO) (Qualifier	RL 0.00397 GC) RL 49.8		mg/Kg		Prepared	Analyzed 12/13/24 01:34 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte Total TPH Method: SW846 8015B NM - Die	- Total BTEX Calc Result <0.00397 sel Range Organ Result 89.4 iesel Range Orga	Qualifier U ics (DRO) (Qualifier	RL 0.00397 GC) RL 49.8	MDL	mg/Kg		Prepared	Analyzed 12/13/24 01:34 Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX Method: SW846 8015 NM - Die Analyte	- Total BTEX Calc Result <0.00397 sel Range Organ Result 89.4 iesel Range Orga	Qualifier U ics (DRO) (Qualifier nics (DRO) Qualifier	RL 0.00397 GC) RL 49.8	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 12/13/24 01:34 Analyzed 12/13/24 05:41	Dil Fac

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-24

Client Sample ID: CS-58 (Surface)

Lab Sample ID: 880-52160-23 Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Method: SW846 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 05:41	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				12/12/24 13:12	12/13/24 05:41	1
o-Terphenyl	192	S1+	70 - 130				12/12/24 13:12	12/13/24 05:41	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Result Qualifier RL MDL Unit Dil Fac Prepared Analyzed 530 9.96 Chloride 12/12/24 23:45 mg/Kg

Client Sample ID: CS-59 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:57	12/13/24 01:55	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		70 - 130				12/12/24 12:57	12/13/24 01:55	1

4-Bromofluorobenzene (Surr)	99	70 - 130	12/12/24 12:57	12/13/24 01:55	1
1,4-Difluorobenzene (Surr)	102	70 - 130	12/12/24 12:57	12/13/24 01:55	1
Mothod: TAL SOR Total BTEV Tot	tal PTEV Calculation				

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00401	U	0.00401		mg/Kg			12/13/24 01:55	1

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	54.0		49.8		mg/Kg			12/13/24 05:57	1

Total IPH	54.0		49.0		mg/Rg			12/13/24 03.37	'
Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO) (0	GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<49.8	U	49.8		mg/Kg		12/12/24 13:12	12/13/24 05:57	1

Diesel Range Organics (Over	54.0	49.8	mg/Kg	12/12/24 13:12	12/13/24 05:57
C10-C28)			0 0		
Oil Range Organics (Over C28-C36)	<49.8 U	49.8	mg/Kg	12/12/24 13:12	12/13/24 05:57

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	102		70 - 130	12/12/24 13:12	12/13/24 05:57	1
o-Terphenyl	149	S1+	70 - 130	12/12/24 13:12	12/13/24 05:57	1

	hromatograp	hy - Soluble)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	152		10.0		mg/Kg			12/12/24 23:51	1

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-25

Matrix: Solid

12/12/24 22:56

CI	ient	Sample	D:	CS-60	(Surface)	
----	------	--------	----	-------	-----------	--

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Total BTEX

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:59	12/12/24 22:56	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				12/12/24 12:59	12/12/24 22:56	1
1,4-Difluorobenzene (Surr)	95		70 - 130				12/12/24 12:59	12/12/24 22:56	1
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTEX		culation	70 - 130				12/12/24 12:59	12/12/24 22:56	
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil F

Method: SW846 8015 NM - Diesel Range Organics (DRO) (GC)	

<0.00401 U

Analyte	Result	Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.8	U	49.8	mg/K	9		12/12/24 14:32	1

0.00401

mg/Kg

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.8	U	49.8		mg/Kg		12/12/24 08:17	12/12/24 14:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.8	U	49.8		mg/Kg		12/12/24 08:17	12/12/24 14:32	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.8	U	49.8		mg/Kg		12/12/24 08:17	12/12/24 14:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				12/12/24 08:17	12/12/24 14:32	1

o-Terphenyl	78	70 - 130	12/12/24 08:17	12/12/24 14:32	1
Method: EPA 300.0 - Anions, Ion Chromato	graphy - Soluble				

Analyte	Result Qua	llifier RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Chloride	146	9.98	mg/Kg			12/12/24 23:16	1

Cheft Sample ID. C3-61 (Surface)	Lab Sample ID: 000-52 100-20
Date Collected: 12/12/24 00:00	Matrix: Solid
Date Received: 12/12/24 11:30	

	Method:	SW846 8021B	- Volatile O	rganic Com	pounds (C	GC)
--	---------	-------------	--------------	------------	-----------	-----

Wiethou. Strotto ouz ID - Volati	ne Organic Comp		,						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/12/24 12:59	12/12/24 23:16	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	130		70 - 130				12/12/24 12:59	12/12/24 23:16	1

Eurofins Midland

12/12/24 23:16

12/12/24 12:59

70 - 130

1,4-Difluorobenzene (Surr)

Client Sample Results

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-26 Client Sample ID: CS-61 (Surface)

Date Collected: 12/12/24 00:00 Matrix: Solid Date Received: 12/12/24 11:30

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403	U	0.00403		mg/Kg			12/12/24 23:16	1
Method: SW846 8015 NM - Diese	Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<49.9	U	49.9		mg/Kg			12/12/24 14:46	1
- Method: SW846 8015B NM - Dies	el Range Orga	nics (DRO)	(GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<49.9	U	49.9		mg/Kg		12/12/24 08:17	12/12/24 14:46	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<49.9	U	49.9		mg/Kg		12/12/24 08:17	12/12/24 14:46	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<49.9	U	49.9		mg/Kg		12/12/24 08:17	12/12/24 14:46	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	103		70 - 130				12/12/24 08:17	12/12/24 14:46	1
o-Terphenyl	92		70 - 130				12/12/24 08:17	12/12/24 14:46	1
Method: EPA 300.0 - Anions, Ion	Chromatogran	hy - Solubl	e						
Analyte	•	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	150		9.96		mg/Kg	— <u> </u>		12/12/24 23:22	1

Client Sample ID: CS-62 (Surface) Lab Sample ID: 880-52160-27

Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received:	12/12/24 11:30	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:59	12/12/24 23:37	1
Toluene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:59	12/12/24 23:37	1
Ethylbenzene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:59	12/12/24 23:37	1
m-Xylene & p-Xylene	<0.00398	U	0.00398		mg/Kg		12/12/24 12:59	12/12/24 23:37	1
o-Xylene	<0.00199	U	0.00199		mg/Kg		12/12/24 12:59	12/12/24 23:37	1
Xylenes, Total	<0.00398	U	0.00398		mg/Kg		12/12/24 12:59	12/12/24 23:37	,
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	124		70 - 130				12/12/24 12:59	12/12/24 23:37	
							10/10/01 10 50	10/10/01 00 07	-
1,4-Difluorobenzene (Surr) Method: TAL SOP Total BTE Analyte		culation Qualifier	70 ₋ 130 RL	MDL	Unit	D	12/12/24 12:59 Prepared	12/12/24 23:37 Analyzed	
Method: TAL SOP Total BTEX	(- Total BTEX Cald			MDI	l Init	D			
Method: TAL SOP Total BTEX	(- Total BTEX Cald	Qualifier		MDL	Unit mg/Kg	<u>D</u>			
Method: TAL SOP Total BTEX Analyte	(- Total BTEX Cald Result <0.00398	Qualifier U	RL 0.00398	MDL		<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTEX Analyte Total BTEX	(- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U	RL 0.00398			<u>D</u>		Analyzed	Dil Fac
Method: TAL SOP Total BTE) Analyte Total BTEX Method: SW846 8015 NM - Di	(- Total BTEX Calc Result <0.00398 esel Range Organ	Qualifier U ics (DRO) (Qualifier	RL 0.00398		mg/Kg		Prepared	Analyzed 12/12/24 23:37	·
Method: TAL SOP Total BTE) Analyte Total BTEX Method: SW846 8015 NM - Di Analyte	C - Total BTEX Calc Result <0.00398 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.0		mg/Kg		Prepared	Analyzed 12/12/24 23:37 Analyzed	Dil Fac
Method: TAL SOP Total BTE) Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH	(- Total BTEX Calc Result <0.00398 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U	RL 0.00398 GC) RL 50.0	MDL	mg/Kg		Prepared	Analyzed 12/12/24 23:37 Analyzed	Dil Fac
Method: TAL SOP Total BTE) Analyte Total BTEX Method: SW846 8015 NM - Di Analyte Total TPH Method: SW846 8015B NM - I	(- Total BTEX Calc Result <0.00398 esel Range Organ Result <50.0	Qualifier U ics (DRO) (Qualifier U nics (DRO) Qualifier	RL 0.00398 GC) RL 50.0	MDL	mg/Kg Unit mg/Kg	<u>D</u>	Prepared Prepared	Analyzed 12/12/24 23:37 Analyzed 12/12/24 15:01	Dil Fa

Job ID: 880-52160-1

Client: Carmona Resources SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: CS-62 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-27

Matrix: Solid

Method: SW846 8015B NM - Die	esel Range Orga	nics (DRO	(GC) (Continu	ıed)					
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 08:17	12/12/24 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	91		70 - 130				12/12/24 08:17	12/12/24 15:01	1
o-Terphenyl	81		70 - 130				12/12/24 08:17	12/12/24 15:01	1

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble Analyte Result Qualifier RL MDL Unit Analyzed Dil Fac Prepared Chloride 192 10.1 12/12/24 23:28 mg/Kg

Client Sample ID: CS-63 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

1,4-Difluorobenzene (Surr)

Lab Sample ID: 880-52160-28

12/12/24 23:57

12/12/24 12:59

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
Toluene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
Ethylbenzene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
m-Xylene & p-Xylene	<0.00403	U	0.00403		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
o-Xylene	<0.00202	U	0.00202		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
Xylenes, Total	<0.00403	U	0.00403		mg/Kg		12/12/24 12:59	12/12/24 23:57	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				12/12/24 12:59	12/12/24 23:57	1

Method: TAL SOP Total BTEX - Tot	al BTEX Calculation						
Analyte	Result Qualifier	RL	MDL Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00403 U	0.00403	ma/Ka			12/12/24 23:57	

70 - 130

Method: SW846 8015 NM - Diesel Range	Organ	ics (DRO) (GC)							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.1	U	50.1		mg/Kg			12/12/24 14:32	1

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.1	U	50.1		mg/Kg		12/12/24 08:20	12/12/24 14:32	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.1	U	50.1		mg/Kg		12/12/24 08:20	12/12/24 14:32	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.1	U	50.1		mg/Kg		12/12/24 08:20	12/12/24 14:32	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	86		70 - 130				12/12/24 08:20	12/12/24 14:32	1
o-Terphenvl	88		70 - 130				12/12/24 08:20	12/12/24 14:32	1

Method: EPA 300.0 - Anions, Ion C	hromatography - Soluble	9					
Analyte	Result Qualifier	RL	MDL Un	it D	Prepared	Analyzed	Dil Fac
Chloride	150	9.96	mį	g/Kg		12/12/24 23:34	1

Client Sample Results

Client: Carmona Resources

Job ID: 880-52160-1 SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Client Sample ID: CS-64 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-29

Matrix: Solid

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
m-Xylene & p-Xylene	<0.00401	U	0.00401		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
Xylenes, Total	<0.00401	U	0.00401		mg/Kg		12/12/24 12:59	12/13/24 00:17	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	127		70 - 130				12/12/24 12:59	12/13/24 00:17	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/12/24 12:59	12/13/24 00:17	1
- Method: TAL SOP Total BTEX - 1	Total BTEX Cald	culation							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	< 0.00401	U	0.00401		mg/Kg			12/13/24 00:17	1
Total BTEX Method: SW846 8015 NM - Diese					mg/Kg			12/13/24 00:17	1
_	el Range Organ			MDL	mg/Kg Unit	D	Prepared	12/13/24 00:17 Analyzed	1 Dil Fac
The thod: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (Qualifier	GC)	MDL		<u>D</u>	Prepared		,
Method: SW846 8015 NM - Diese Analyte Total TPH	Result <49.8	ics (DRO) (Qualifier	GC) RL 49.8	MDL	Unit	<u>D</u>	Prepared	Analyzed	'
Method: SW846 8015 NM - Diese Analyte	el Range Organ Result <49.8 sel Range Organ	ics (DRO) (Qualifier	GC) RL 49.8		Unit	<u>D</u>	Prepared Prepared	Analyzed	,
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese	el Range Organ Result <49.8 sel Range Organ	ics (DRO) (Qualifier U unics (DRO) Qualifier	GC) RL 49.8		Unit mg/Kg		<u> </u>	Analyzed 12/12/24 14:46	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Dies Analyte	el Range Organ Result Result Result Result Result	ics (DRO) (Qualifier U unics (DRO) Qualifier	GC) RL 49.8 (GC) RL		Unit mg/Kg		Prepared	Analyzed 12/12/24 14:46 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics	el Range Organ Result Result Result Result Result	ics (DRO) (Qualifier U unics (DRO) Qualifier U	GC) RL 49.8 (GC) RL		Unit mg/Kg		Prepared	Analyzed 12/12/24 14:46 Analyzed	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result Result Result Result 49.8 49.8 49.8 49.8	ics (DRO) (Qualifier U unics (DRO) Qualifier U	GC) RL 49.8 (GC) RL 49.8 49.8		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 08:20 12/12/24 08:20	Analyzed 12/12/24 14:46 Analyzed 12/12/24 14:46 12/12/24 14:46	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over	el Range Organ Result Result Result Result <49.8	ics (DRO) (Qualifier U unics (DRO) Qualifier U	GC) RL 49.8 (GC) RL 49.8		Unit mg/Kg Unit mg/Kg		Prepared 12/12/24 08:20	Analyzed 12/12/24 14:46 Analyzed 12/12/24 14:46	Dil Fac
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28)	el Range Organ Result Result Result Result 49.8 49.8 49.8 49.8	ics (DRO) (Qualifier U unics (DRO) Qualifier U U	GC) RL 49.8 (GC) RL 49.8 49.8		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 08:20 12/12/24 08:20	Analyzed 12/12/24 14:46 Analyzed 12/12/24 14:46 12/12/24 14:46	Dil Fac Dil Fac 1
Method: SW846 8015 NM - Diese Analyte Total TPH Method: SW846 8015B NM - Diese Analyte Gasoline Range Organics (GRO)-C6-C10 Diesel Range Organics (Over C10-C28) Oil Range Organics (Over C28-C36)	el Range Organ Result <49.8 sel Range Orga Result <49.8 <49.8 <49.8	ics (DRO) (Qualifier U unics (DRO) Qualifier U U	GC) RL 49.8 (GC) RL 49.8 49.8 49.8		Unit mg/Kg Unit mg/Kg mg/Kg		Prepared 12/12/24 08:20 12/12/24 08:20 12/12/24 08:20	Analyzed 12/12/24 14:46 Analyzed 12/12/24 14:46 12/12/24 14:46 12/12/24 14:46	Dil Fac 1 Dil Fac 1 1

Client Sample ID: CS-65 (Surface) Lab Sample ID: 880-52160-30 Date Collected: 12/12/24 00:00 **Matrix: Solid**

RL

10.0

MDL Unit

mg/Kg

D

Prepared

Analyzed

12/12/24 23:52

Dil Fac

Date Received: 12/12/24 11:30

Analyte

Chloride

Method: EPA 300.0 - Anions, Ion Chromatography - Soluble

Result Qualifier

201

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
Toluene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
Ethylbenzene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
m-Xylene & p-Xylene	<0.00396	U	0.00396		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
o-Xylene	<0.00198	U	0.00198		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
Xylenes, Total	<0.00396	U	0.00396		mg/Kg		12/12/24 12:59	12/13/24 00:38	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	128		70 - 130				12/12/24 12:59	12/13/24 00:38	1
1,4-Difluorobenzene (Surr)	93		70 - 130				12/12/24 12:59	12/13/24 00:38	1

Client Sample Results

Client: Carmona Resources

Released to Imaging: 7/21/2025 11:07:53 AM

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Client Sample ID: CS-65 (Surface) Lab Sample ID: 880-52160-30

Date Collected: 12/12/24 00:00	Matrix: Solid
Date Received: 12/12/24 11:30	

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total BTEX	<0.00396	U	0.00396		mg/Kg			12/13/24 00:38	1
Method: SW846 8015 NM - Diese	el Range Organ	ics (DRO) (GC)						
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Total TPH	<50.0	U	50.0		mg/Kg			12/12/24 15:01	1
Method: SW846 8015B NM - Dies	sel Range Orga	nics (DRO)	(GC)						
Analyte		Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 15:01	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 15:01	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 15:01	1
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	97		70 - 130				12/12/24 08:20	12/12/24 15:01	1
o-Terphenyl -	96		70 - 130				12/12/24 08:20	12/12/24 15:01	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy - Solubl	e						
Analyte	• •	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	157		10.1		mg/Kg			12/12/24 23:58	

Surrogate Summary

Client: Carmona Resources

Job ID: 880-52160-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		BFB1	DFBZ1	
_ab Sample ID	Client Sample ID	(70-130)	(70-130)	
880-52158-A-1-B MS	Matrix Spike	102	102	
380-52158-A-1-C MSD	Matrix Spike Duplicate	103	103	
380-52160-1	CS-36 (Surface)	91	87	
380-52160-1 MS	CS-36 (Surface)	105	103	
380-52160-1 MSD	CS-36 (Surface)	105	106	
380-52160-2	CS-37 (Surface)	93	86	
380-52160-3	CS-38 (Surface)	95	82	
380-52160-4	CS-39 (Surface)	94	89	
380-52160-5	CS-40 (Surface)	94	86	
380-52160-6	CS-41 (Surface)	97	81	
380-52160-7	CS-42 (Surface)	96	86	
380-52160-8	CS-43 (Surface)	92	81	
380-52160-9	CS-44 (Surface)	95	83	
380-52160-10	CS-45 (Surface)	98	83	
380-52160-11	CS-46 (Surface)	94	85	
380-52160-12	CS-47 (Surface)	98	84	
380-52160-13	CS-48 (Surface)	91	79	
380-52160-14	CS-49 (Surface)	95	85	
380-52160-15	CS-50 (Surface)	96	81	
880-52160-16	CS-51 (Surface)	95	76	
880-52160-17	CS-52 (Surface)	96	89	
880-52160-18	CS-53 (Surface)	93	84	
880-52160-19	CS-54 (Surface)	94	85	
880-52160-20	CS-55 (Surface)	92	77	
380-52160-21	CS-56 (Surface)	96	102	
380-52160-22	CS-57 (Surface)	98	99	
380-52160-23	CS-58 (Surface)	100	99	
380-52160-24	CS-59 (Surface)	99	102	
380-52160-25	CS-60 (Surface)	99 127	95	
	· ·	121	93	
380-52160-25 MS	CS-60 (Surface)			
380-52160-25 MSD	CS-60 (Surface)	116	94	
380-52160-26	CS-61 (Surface)	130	97	
380-52160-27	CS-62 (Surface)	124	94	
380-52160-28	CS-63 (Surface)	127	95	
380-52160-29	CS-64 (Surface)	127	93	
380-52160-30	CS-65 (Surface)	128	93	
_CS 880-97734/1-A	Lab Control Sample	104	109	
CS 880-97736/1-A	Lab Control Sample	100	103	
.CS 880-97737/1-A	Lab Control Sample	124	98	
.CSD 880-97734/2-A	Lab Control Sample Dup	104	106	
.CSD 880-97736/2-A	Lab Control Sample Dup	98	100	
.CSD 880-97737/2-A	Lab Control Sample Dup	122	92	
MB 880-97671/5-A	Method Blank	110	97	
MB 880-97734/5-A	Method Blank	81	90	
MB 880-97736/5-A	Method Blank	90	93	

BFB = 4-Bromofluorobenzene (Surr)

DFBZ = 1,4-Difluorobenzene (Surr)

Surrogate Summary

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Client Sample ID Matrix Spike Matrix Spike Duplicate CS-36 (Surface)	1CO1 (70-130) 92	OTPH1 (70-130)	Percent Surrogate Recovery (Acceptance Limits)
Matrix Spike Matrix Spike Duplicate	(70-130)		
Matrix Spike Matrix Spike Duplicate		(70-130)	
Matrix Spike Duplicate	92		
		82	
CS-36 (Surface)	94	83	
00 00 (04.1400)	52 S1-	54 S1-	
CS-37 (Surface)	74	77	
CS-38 (Surface)	148 S1+	133 S1+	
CS-39 (Surface)	92	81	
CS-40 (Surface)	86	76	
CS-40 (Surface)	102	82	
CS-40 (Surface)	103	82	
CS-41 (Surface)	93	80	
CS-42 (Surface)	93	83	
CS-43 (Surface)	95	85	
CS-44 (Surface)	89	79	
CS-45 (Surface)	89	80	
CS-46 (Surface)	98	87	
CS-47 (Surface)	89	79	
CS-48 (Surface)	95	84	
CS-49 (Surface)	90	80	
CS-50 (Surface)	93	81	
CS-51 (Surface)	79	71	
CS-52 (Surface)	98	87	
CS-53 (Surface)	102	94	
CS-54 (Surface)	103	128	
CS-55 (Surface)	111	111	
	73	123	
	104	170 S1+	
·	103		
	102		
·			
·			
·			
•			
·			
•			
•			
•			
	CS-40 (Surface) CS-40 (Surface) CS-40 (Surface) CS-41 (Surface) CS-42 (Surface) CS-43 (Surface) CS-44 (Surface) CS-45 (Surface) CS-46 (Surface) CS-47 (Surface) CS-48 (Surface) CS-49 (Surface) CS-49 (Surface) CS-51 (Surface) CS-51 (Surface) CS-52 (Surface) CS-53 (Surface)	CS-40 (Surface) 86 CS-40 (Surface) 102 CS-40 (Surface) 103 CS-41 (Surface) 93 CS-42 (Surface) 95 CS-43 (Surface) 89 CS-44 (Surface) 89 CS-45 (Surface) 98 CS-46 (Surface) 98 CS-47 (Surface) 95 CS-48 (Surface) 95 CS-49 (Surface) 90 CS-50 (Surface) 79 CS-51 (Surface) 79 CS-52 (Surface) 102 CS-53 (Surface) 102 CS-54 (Surface) 103 CS-55 (Surface) 111 CS-56 (Surface) 104 CS-58 (Surface) 102 CS-60 (Surface) 103 CS-59 (Surface) 102 CS-60 (Surface) 91 CS-62 (Surface) 91 CS-63 (Surface) 96 CS-64 (Surface) 97 CS-65 (Surface) 97 Matrix Spike 95 Matrix Spike Duplicate 84 Matrix Spike Duplicate	CS-40 (Surface) 86 76 CS-40 (Surface) 102 82 CS-40 (Surface) 103 82 CS-41 (Surface) 93 80 CS-42 (Surface) 93 83 CS-43 (Surface) 95 85 CS-44 (Surface) 89 79 CS-45 (Surface) 98 80 CS-46 (Surface) 98 87 CS-46 (Surface) 98 87 CS-46 (Surface) 95 84 CS-47 (Surface) 95 84 CS-49 (Surface) 90 80 CS-50 (Surface) 93 81 CS-50 (Surface) 93 81 CS-50 (Surface) 98 87 CS-51 (Surface) 102 94 CS-52 (Surface) 103 128 CS-53 (Surface) 101 111 111 CS-56 (Surface) 104 170 S1+ CS-56 (Surface) 103 192 S1+ CS-60 (Surface) 103 192 S1+

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

Surrogate Summary

Client: Carmona Resources

Job ID: 880-52160-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Matrix: Solid Prep Type: Total/NA

				Percent Surrogate Recovery (Acceptance Limits)
		1CO1	OTPH1	
Lab Sample ID	Client Sample ID	(70-130)	(70-130)	
LCSD 880-97819/3-A	Lab Control Sample Dup	117	95	
MB 880-97669/1-A	Method Blank	88	79	
MB 880-97670/1-A	Method Blank	89	92	
MB 880-97740/1-A	Method Blank	80	81	
MB 880-97741/1-A	Method Blank	85	76	
Surrogate Legend				
1CO = 1-Chlorooctane				
OTPH = o-Terphenyl				

Client: Carmona Resources Job ID: 880-52160-1 SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 880-97671/5-A

Matrix: Solid Analysis Batch: 97674 Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97671

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 08:29	12/12/24 11:37	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 08:29	12/12/24 11:37	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 08:29	12/12/24 11:37	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/12/24 08:29	12/12/24 11:37	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 08:29	12/12/24 11:37	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/12/24 08:29	12/12/24 11:37	1

MB MB

MR MR

Surrogate	%Recovery	Qualifier	Limits		Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	110		70 - 130	-	12/12/24 08:29	12/12/24 11:37	1
1,4-Difluorobenzene (Surr)	97		70 - 130		12/12/24 08:29	12/12/24 11:37	1

Lab Sample ID: MB 880-97734/5-A

Matrix: Solid

Analysis Batch: 97761

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97734

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac mg/Kg Benzene <0.00200 U 0.00200 12/12/24 12:54 12/12/24 17:13 Toluene <0.00200 U 0.00200 mg/Kg 12/12/24 12:54 12/12/24 17:13 Ethylbenzene <0.00200 U 0.00200 mg/Kg 12/12/24 12:54 12/12/24 17:13 <0.00400 U 0.00400 12/12/24 12:54 12/12/24 17:13 m-Xylene & p-Xylene mg/Kg <0.00200 U 0.00200 12/12/24 17:13 o-Xylene mg/Kg 12/12/24 12:54 12/12/24 12:54 Xylenes, Total <0.00400 U 0.00400 mg/Kg 12/12/24 17:13

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	81		70 - 130	12/12/24 12:54	12/12/24 17:13	1
1,4-Difluorobenzene (Surr)	90		70 - 130	12/12/24 12:54	12/12/24 17:13	1

Lab Sample ID: LCS 880-97734/1-A

Matrix: Solid

Analysis Batch: 97761

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 97734

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1032		mg/Kg		103	70 - 130	
Toluene	0.100	0.09935		mg/Kg		99	70 - 130	
Ethylbenzene	0.100	0.1030		mg/Kg		103	70 - 130	
m-Xylene & p-Xylene	0.200	0.2040		mg/Kg		102	70 - 130	
o-Xylene	0.100	0.1001		mg/Kg		100	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	104	70 - 130
1.4-Difluorobenzene (Surr)	109	70 - 130

Lab Sample ID: LCSD 880-97734/2-A

Matrix: Solid

Analysis Batch: 97761

Client Sample ID: Lab	Control Sample Dup
	Date of Taxable Taxable I/NIA

Prep Type: Total/NA

Prep Batch: 97734

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1039		mg/Kg		104	70 - 130	1	35

Eurofins Midland

Page 33 of 72

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCSD 880-97734/2-A

Matrix: Solid

Analysis Batch: 97761

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 97734

	Spike	LCSD I	LCSD			%Rec		RPD
Analyte	Added	Result (Qualifier Unit	D	%Rec	Limits	RPD	Limit
Toluene	0.100	0.1064	mg/Kg		106	70 - 130	7	35
Ethylbenzene	0.100	0.1061	mg/Kg		106	70 - 130	3	35
m-Xylene & p-Xylene	0.200	0.2081	mg/Kg		104	70 - 130	2	35
o-Xylene	0.100	0.1023	mg/Kg		102	70 - 130	2	35

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	104		70 - 130
1,4-Difluorobenzene (Surr)	106		70 - 130

Client Sample ID: CS-36 (Surface) Lab Sample ID: 880-52160-1 MS

Matrix: Solid

Analysis Batch: 97761

Prep Type: Total/NA

Prep Batch: 97734

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Benzene <0.00200 0.101 0.09635 96 mg/Kg 70 - 130 Toluene <0.00200 U 0.101 0.09329 93 70 - 130 mg/Kg Ethylbenzene <0.00200 U 0.101 0.08936 70 - 130 mg/Kg 89 m-Xylene & p-Xylene <0.00401 U 0.202 0.1806 90 70 - 130 mg/Kg o-Xylene <0.00200 U 0.101 0.08800 mg/Kg 87 70 - 130

MS MS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Lab Sample ID: 880-52160-1 MSD

Matrix: Solid

Analysis Batch: 97761

Client Sample ID: CS-36 (Surface)

Prep Type: Total/NA

Prep Batch: 97734

%Rec MSD MSD RPD Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Benzene <0.00200 U 0.0998 0.09989 mg/Kg 100 70 - 130 35 Toluene <0.00200 U 0.0998 0.09171 mg/Kg 92 70 - 130 35 Ethylbenzene <0.00200 U 0.0998 0.09025 mg/Kg 90 70 - 130 35 0.200 <0.00401 U 0.1728 87 70 - 130 35 m-Xylene & p-Xylene mg/Kg 0.0998 o-Xylene <0.00200 U 0.08474 mg/Kg 85 70 - 130 35

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	105	70 - 130
1,4-Difluorobenzene (Surr)	106	70 - 130

Lab Sample ID: MB 880-97736/5-A

Matrix: Solid

Analysis Batch: 97763

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97736

мв мв

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/12/24 17:50	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/12/24 17:50	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/12/24 17:50	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/12/24 12:57	12/12/24 17:50	1

Eurofins Midland

Page 34 of 72

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 880-97736/5-A

Matrix: Solid

Analysis Batch: 97763

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97736

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:57	12/12/24 17:50	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/12/24 12:57	12/12/24 17:50	1

MD MD

MR MR

	1110	m.b				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		70 - 130	12/12/24 12:57	12/12/24 17:50	1
1,4-Difluorobenzene (Surr)	93		70 - 130	12/12/24 12:57	12/12/24 17:50	1

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 880-97736/1-A **Matrix: Solid**

Lab Sample ID: LCSD 880-97736/2-A

Matrix: Solid

Analysis Batch: 97763

Prep Type: Total/NA

Prep Batch: 97736

	Spike	LCS	LUS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1142		mg/Kg		114	70 - 130	
Toluene	0.100	0.1088		mg/Kg		109	70 - 130	
Ethylbenzene	0.100	0.1034		mg/Kg		103	70 - 130	
m-Xylene & p-Xylene	0.200	0.2008		mg/Kg		100	70 - 130	
o-Xylene	0.100	0.1119		mg/Kg		112	70 - 130	

LCS LCS

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	100	70 - 130
1,4-Difluorobenzene (Surr)	103	70 - 130

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Analysis Batch: 97763							Prep	Batch:	97736
	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	0.100	0.1162		mg/Kg		116	70 - 130	2	35
Toluene	0.100	0.1124		mg/Kg		112	70 - 130	3	35
Ethylbenzene	0.100	0.1073		mg/Kg		107	70 - 130	4	35
m-Xylene & p-Xylene	0.200	0.2058		mg/Kg		103	70 - 130	3	35
o-Xylene	0.100	0.1152		mg/Kg		115	70 - 130	3	35

LCSD LCSD

<0.00200 U

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	98	70 - 130
1.4-Difluorobenzene (Surr)	100	70 ₋ 130

Lab Sample ID: 880-52158-A-1-B MS

Matrix: Solid

o-Xylene

Analysis Batch: 97763

Client Sample ID: Matrix Spike

70 - 130

Prep Type: Total/NA Prep Batch: 97736

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.101	0.1065		mg/Kg		106	70 - 130	
Toluene	<0.00200	U	0.101	0.09823		mg/Kg		97	70 - 130	
Ethylbenzene	<0.00200	U	0.101	0.09123		mg/Kg		91	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.202	0.1731		mg/Kg		86	70 - 130	

0.09501

mg/Kg

Eurofins Midland

0.101

Limits

70 - 130

70 - 130

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

102

Lab Sample ID: 880-52158-A-1-B MS

Matrix: Solid

Analysis Batch: 97763

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 97736

MS MS Surrogate %Recovery Qualifier 4-Bromofluorobenzene (Surr) 102

Lab Sample ID: 880-52158-A-1-C MSD

Matrix: Solid

Analysis Batch: 97763

1,4-Difluorobenzene (Surr)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 97736

-	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	<0.00200	U	0.0998	0.1106		mg/Kg		111	70 - 130	4	35
Toluene	<0.00200	U	0.0998	0.1015		mg/Kg		102	70 - 130	3	35
Ethylbenzene	<0.00200	U	0.0998	0.09755		mg/Kg		98	70 - 130	7	35
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1866		mg/Kg		93	70 - 130	8	35
o-Xylene	<0.00200	U	0.0998	0.1033		mg/Kg		103	70 - 130	8	35

MSD MSD

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 103 70 - 130 1,4-Difluorobenzene (Surr) 103 70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97737

Lab Sample ID: MB 880-97737/5-A

Matrix: Solid

Analysis Batch: 97674

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:34	1
Toluene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:34	1
Ethylbenzene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:34	1
m-Xylene & p-Xylene	<0.00400	U	0.00400		mg/Kg		12/12/24 12:59	12/12/24 22:34	1
o-Xylene	<0.00200	U	0.00200		mg/Kg		12/12/24 12:59	12/12/24 22:34	1
Xylenes, Total	<0.00400	U	0.00400		mg/Kg		12/12/24 12:59	12/12/24 22:34	1

мв мв

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	123		70 - 130	12/12/24 12:59	12/12/24 22:34	1
1,4-Difluorobenzene (Surr)	91		70 - 130	12/12/24 12:59	12/12/24 22:34	1

Lab Sample ID: LCS 880-97737/1-A

Matrix: Solid

Analysis Batch: 97674

Prep Type: Total/NA

	Бріке	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	0.100	0.1252		mg/Kg		125	70 - 130	
Toluene	0.100	0.1173		mg/Kg		117	70 - 130	
Ethylbenzene	0.100	0.1111		mg/Kg		111	70 - 130	
m-Xylene & p-Xylene	0.200	0.2355		mg/Kg		118	70 - 130	
o-Xylene	0.100	0.1149		mg/Kg		115	70 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 70 - 130 124

Eurofins Midland

Client Sample ID: Lab Control Sample

Prep Batch: 97737

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 880-97737/1-A

Matrix: Solid

Analysis Batch: 97674

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 97737

LCS LCS

Surrogate %Recovery Qualifier Limits 1,4-Difluorobenzene (Surr) 98 70 - 130

Lab Sample ID: LCSD 880-97737/2-A

Matrix: Solid

m-Xylene & p-Xylene

o-Xylene

Analysis Batch: 97674

Client Sample ID: Lab Control Sample Dup

110

111

Prep Type: Total/NA

3

Prep Batch: 97737

Spike LCSD LCSD %Rec Analyte Added Result Qualifier Unit %Rec Limits RPD Limit Benzene 0.100 0.1194 mg/Kg 119 70 - 130 5 35 Toluene 0.100 0.1127 mg/Kg 113 70 - 130 35 4 Ethylbenzene 0.100 0.1035 mg/Kg 103 70 - 130 35 0.200 0.2201 70 - 130

0.1110

0.100

mg/Kg

mg/Kg

LCSD LCSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	122	70 - 130
1,4-Difluorobenzene (Surr)	92	70 - 130

Lab Sample ID: 880-52160-25 MS Client Sample ID: CS-60 (Surface)

Matrix: Solid

Analysis Batch: 97674

70 - 130

Prep Type: Total/NA

Prep Batch: 97737

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	<0.00200	U	0.101	0.1025		mg/Kg		102	70 - 130	
Toluene	<0.00200	U	0.101	0.09244		mg/Kg		92	70 - 130	
Ethylbenzene	<0.00200	U	0.101	0.08408		mg/Kg		83	70 - 130	
m-Xylene & p-Xylene	<0.00401	U	0.202	0.1780		mg/Kg		88	70 - 130	
o-Xylene	<0.00200	U	0.101	0.08911		mg/Kg		88	70 - 130	

MS MS

Surrogate	%Recovery	Qualifier	Limits
4-Bromofluorobenzene (Surr)	121		70 - 130
1.4-Difluorobenzene (Surr)	94		70 - 130

Lab Sample ID: 880-52160-25 MSD

Matrix: Solid

Analysis Batch: 97674

Client Sample ID: CS-60 (Surface)

Prep Type: Total/NA

Prep Batch: 97737

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit	
Benzene	<0.00200	U	0.0998	0.09690		mg/Kg		97	70 - 130	6	35	
Toluene	<0.00200	U	0.0998	0.08581		mg/Kg		86	70 - 130	7	35	
Ethylbenzene	<0.00200	U	0.0998	0.07706		mg/Kg		77	70 - 130	9	35	
m-Xylene & p-Xylene	<0.00401	U	0.200	0.1631		mg/Kg		82	70 - 130	9	35	
o-Xylene	<0.00200	U	0.0998	0.08235		mg/Kg		83	70 - 130	8	35	

MSD MSD

Surrogate	%Recovery Qualifier	Limits
4-Bromofluorobenzene (Surr)	116	70 - 130
1,4-Difluorobenzene (Surr)	94	70 - 130

Eurofins Midland

35

35

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 880-97669/1-A

Matrix: Solid

Analysis Batch: 97688

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97669

	MB	MB							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 08:17	12/12/24 09:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/12/24 08:17	12/12/24 09:28	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 08:17	12/12/24 09:28	1
	МВ	MB							
Surrogate	%Recovery	Qualifier	Limits				Prepared	Analyzed	Dil Fac
1-Chlorooctane	88		70 - 130				12/12/24 08:17	12/12/24 09:28	1
o-Terphenyl	79		70 - 130				12/12/24 08:17	12/12/24 09:28	1

Lab Sample ID: LCS 880-97669/2-A

Matrix: Solid

Analysis Batch: 97688

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 97669

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	1000	1179		mg/Kg		118	70 - 130	
Diesel Range Organics (Over C10-C28)	1000	928.2		mg/Kg		93	70 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 1-Chlorooctane 119 70 - 130 o-Terphenyl 97 70 - 130

Lab Sample ID: LCSD 880-97669/3-A

Matrix: Solid

Analysis Batch: 97688

Client Sample	ID: Lab	Control	Sample	Dup
---------------	---------	---------	--------	-----

Prep Type: Total/NA

Prep Batch: 97669

Spike LCSD LCSD RPD %Rec Limit Analyte Added Result Qualifier %Rec Limits RPD Unit Gasoline Range Organics 1000 1179 mg/Kg 118 70 - 130 20 (GRO)-C6-C10 Diesel Range Organics (Over 1000 895.4 mg/Kg 90 70 - 130 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery Qua	ilifier Limits
1-Chlorooctane	116	70 - 130
o-Terphenyl	93	70 - 130

Lab Sample ID: 890-7454-A-1-E MS

Matrix: Solid

Analysis Batch: 97688

Client Sam	ple	ID:	Matrix	Spike

Prep Type: Total/NA

Prep Batch: 97669

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	141		997	1026		mg/Kg		89	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	580	F1	997	1250	F1	mg/Kg		67	70 - 130	
C10-C28)										

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

MS MS

Lab Sample ID: 890-7454-A-1-E MS

Matrix: Solid

Analysis Batch: 97688

Client Sample ID: Matrix Spike

Prep Type: Total/NA

Prep Batch: 97669

	W S	WIS	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	89		70 - 130

Lab Sample ID: 890-7454-A-1-F MSD Client Sample ID: Matrix Spike Duplicate

Matrix: Solid

Analysis Batch: 97688

Prep Type: Total/NA

Prep Batch: 97669

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics	141		997	1031		mg/Kg		89	70 - 130		20
(GRO)-C6-C10											
Diesel Range Organics (Over	580	F1	997	1234	F1	mg/Kg		66	70 - 130	1	20
C10-C28)											

MSD MSD

MB MB

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	104		70 - 130
o-Terphenyl	88		70 - 130

Lab Sample ID: MB 880-97670/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 97690

Prep Type: Total/NA Prep Batch: 97670

Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 09:28	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 09:28	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 08:20	12/12/24 09:28	1
	MP	MD							

	INIB	MB				
Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	89		70 - 130	12/12/24 08:20	12/12/24 09:28	1
o-Terphenyl	92		70 - 130	12/12/24 08:20	12/12/24 09:28	1

Lab Sample ID: LCS 880-97670/2-A **Client Sample ID: Lab Control Sample**

Matrix: Solid

Analysis Batch: 97690

Prep Type: Total/NA Prep Batch: 97670

inalysis Eulerin stress								
	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	1000	923.9		mg/Kg		92	70 - 130	
(GRO)-C6-C10								
Diesel Range Organics (Over	1000	942.9		mg/Kg		94	70 - 130	
C10-C28)								

LCS LCS

Surrogate	%Recovery Qualifier	Limits
1-Chlorooctane	108	70 - 130
o-Terphenvl	99	70 - 130

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-97670/3-A

Matrix: Solid Analysis Batch: 97690 Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA Prep Batch: 97670

Spike LCSD LCSD RPD Limit Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics 1000 812.9 mg/Kg 81 70 - 130 13 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 804.0 70 - 130 mg/Kg 80 16 20

RPD

C10-C28)

LCSD LCSD

%Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 92 o-Terphenyl 82 70 - 130

Client Sample ID: Matrix Spike

Prep Type: Total/NA Prep Batch: 97670

Lab Sample ID: 890-7455-A-5-E MS **Matrix: Solid**

Analysis Batch: 97690

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	998	786.4		mg/Kg		79	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U F1	998	693.5	F1	mg/Kg		69	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 95 70 - 130 o-Terphenyl 85 70 - 130

Lab Sample ID: 890-7455-A-5-F MSD Client Sample ID: Matrix Spike Duplicate Prep Type: Total/NA

Matrix: Solid

Matrix: Solid

Analysis Batch: 97690

Lab Sample ID: MB 880-97740/1-A

Analysis Batch: 97690									Prep	Batch:	97670
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	998	695.7		mg/Kg		70	70 - 130	12	20
Diesel Range Organics (Over C10-C28)	<50.0	U F1	998	607.2	F1	mg/Kg		61	70 - 130	13	20

MSD MSD Surrogate %Recovery Qualifier Limits 1-Chlorooctane 84 70 - 130 75 o-Terphenyl 70 - 130

MR MR

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 97740

	141.0	141.0							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	<50.0	U	50.0		mg/Kg		12/12/24 13:09	12/12/24 16:28	1
(GRO)-C6-C10									
Diesel Range Organics (Over	<50.0	U	50.0		mg/Kg		12/12/24 13:09	12/12/24 16:28	1
C10-C28)									
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 13:09	12/12/24 16:28	1

Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: MB 880-97740/1-A

Lab Sample ID: LCS 880-97740/2-A

Lab Sample ID: LCSD 880-97740/3-A

Matrix: Solid

Matrix: Solid

Analysis Batch: 97690

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 97740

MB MB

Surrogate	%Recovery	Qualifier	Limits	Prepared	Analyzed	Dil Fac
1-Chlorooctane	80		70 - 130	12/12/24 13:09	12/12/24 16:28	1
o-Terphenyl	81		70 - 130	12/12/24 13:09	12/12/24 16:28	1

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 97740

Analysis Batch: 97690 Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 1000 924.6 92 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 952.4 mg/Kg 95

C10-C28)

Matrix: Solid

Analysis Batch: 97690

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	109		70 - 130
o-Terphenyl	99		70 - 130

Client Sample ID: Lab Control Sample Dup

70 - 130

Prep Type: Total/NA

Prep Batch: 97740

Spike LCSD LCSD Analyte Added Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics 1000 928.4 mg/Kg 93 70 - 130 0 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 906.8 mg/Kg 91 70 - 130 20 C10-C28)

LCSD LCSD

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	106		70 - 130
o-Terphenyl	93		70 - 130

Lab Sample ID: 880-52159-A-4-F MS Client Sample ID: Matrix Spike **Matrix: Solid**

Prep Type: Total/NA

Analysis Batch: 97690 Prep Batch: 97740 Sample Sample

	Gampic	Campic	Opine		1110				/01100	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics	<49.9	U	994	812.6		mg/Kg		82	70 - 130	
(GRO)-C6-C10										
Diesel Range Organics (Over	<49.9	U	994	712.0		mg/Kg		72	70 - 130	
C10-C28)										

MS MS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	82		70 - 130

Lab Sample ID: 880-52159-A-4-G MSD

Matrix: Solid

Analysis Batch: 97690

QC Sample Results

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Client Sample ID: Matrix Spike Duplicate

Prep Type: Total/NA

Prep Batch: 97740

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<49.9	U	994	828.2		mg/Kg		83	70 - 130	2	20
Diesel Range Organics (Over C10-C28)	<49.9	U	994	740.6		mg/Kg		75	70 - 130	4	20

MSD MSD %Recovery Qualifier Limits Surrogate 1-Chlorooctane 70 - 130 94

o-Terphenyl 83 70 - 130 Lab Sample ID: MB 880-97741/1-A

Client Sample ID: Method Blank

Prep Type: Total/NA Prep Batch: 97741

Prep Batch: 97741

Matrix: Solid

Analysis Batch: 97688

	MR	MR							
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/12/24 23:50	1
Diesel Range Organics (Over C10-C28)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/12/24 23:50	1
Oil Range Organics (Over C28-C36)	<50.0	U	50.0		mg/Kg		12/12/24 13:12	12/12/24 23:50	1

MB MB Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 1-Chlorooctane 85 70 - 130 12/12/24 13:12 12/12/24 23:50 o-Terphenyl 76 70 - 130 12/12/24 13:12 12/12/24 23:50

Lab Sample ID: LCS 880-97741/2-A Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA

Analysis Batch: 97688

Spike LCS LCS %Rec Analyte Added Result Qualifier %Rec Unit D Limits Gasoline Range Organics 1000 1194 mg/Kg 119 70 - 130 (GRO)-C6-C10 Diesel Range Organics (Over 1000 884.4 mg/Kg 88 70 - 130 C10-C28)

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	111		70 - 130
o-Terphenyl	88		70 - 130

Lab Sample ID: LCSD 880-97741/3-A Client Sample ID: Lab Control Sample Dup Prep Type: Total/NA

Matrix: Solid Analysis Batch: 97688

RPD LCSD LCSD Spike %Rec Added Result Qualifier Analyte Unit %Rec Limits Limit Gasoline Range Organics 1000 1011 mg/Kg 101 70 - 130 17 20 (GRO)-C6-C10 1000 774.6 Diesel Range Organics (Over mg/Kg 70 - 130 13 20

C10-C28)

Eurofins Midland

Prep Batch: 97741

Client: Carmona Resources Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Job ID: 880-52160-1

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-97741/3-A

Matrix: Solid

Analysis Batch: 97688

Client Sample ID: Lab Control Sample Dup

Prep Type: Total/NA

Prep Batch: 97741

LCSD LCSD

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 102 70 - 130 o-Terphenyl 81 70 - 130

Lab Sample ID: 880-52160-5 MS Client Sample ID: CS-40 (Surface)

Matrix: Solid

Analysis Batch: 97688

Prep Type: Total/NA

Prep Batch: 97741

Sample Sample Spike MS MS %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits <49.9 U 994 932 2 94 70 - 130Gasoline Range Organics mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 994 705.1 71 <49.9 U mg/Kg 70 - 130C10-C28)

MS MS

%Recovery Surrogate Qualifier Limits 102 70 - 130 1-Chlorooctane 82 70 - 130 o-Terphenyl

Lab Sample ID: 880-52160-5 MSD Client Sample ID: CS-40 (Surface)

Matrix: Solid

Analysis Batch: 97688

Prep Type: Total/NA

Prep Batch: 97741

Sample Sample MSD MSD RPD Spike Analyte Added Result Qualifier Result Qualifier Unit D %Rec Limits RPD Limit Gasoline Range Organics <49.9 U 994 933.7 mg/Kg 94 70 - 130 0 20 (GRO)-C6-C10 Diesel Range Organics (Over <49.9 U 994 707.0 mg/Kg 71 70 - 130 0 20

C10-C28)

MSD MSD

%Recovery Qualifier Surrogate Limits 70 - 130 1-Chlorooctane 103 70 - 130 o-Terphenyl 82

Lab Sample ID: LCS 880-97819/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 97844

Prep Type: Total/NA

Prep Batch: 97819

%Rec

LCS LCS Spike Analyte Added Result Qualifier Unit %Rec Limits 1000 Gasoline Range Organics 1143 114 70 - 130 mg/Kg (GRO)-C6-C10 Diesel Range Organics (Over 1000 966.1 mg/Kg 97 70 - 130

C10-C28)

LCS LCS

%Recovery Qualifier Surrogate Limits 1-Chlorooctane 121 70 - 130 103 70 - 130 o-Terphenyl

Client: Carmona Resources Job ID: 880-52160-1 Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Method: 8015B NM - Diesel Range Organics (DRO) (GC) (Continued)

Lab Sample ID: LCSD 880-97819/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid** Prep Type: Total/NA Analysis Batch: 97844 Prep Batch: 97819 Spike LCSD LCSD RPD Limit Analyte Added Result Qualifier Unit %Rec Limits RPD Gasoline Range Organics 1000 1193 mg/Kg 119 70 - 130 4 20 (GRO)-C6-C10 1000 Diesel Range Organics (Over 70 - 130 904.1 mg/Kg 90 7 20 C10-C28)

LCSD LCSD %Recovery Qualifier Limits Surrogate 70 - 130 1-Chlorooctane 117 o-Terphenyl 95 70 - 130

Lab Sample ID: 890-7466-A-1-F MS Client Sample ID: Matrix Spike

Matrix: Solid

Analysis Batch: 97844

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	899.3		mg/Kg		90	70 - 130	
Diesel Range Organics (Over C10-C28)	<50.0	U F1	999	660.4	F1	mg/Kg		64	70 - 130	

MS MS Surrogate %Recovery Qualifier Limits 1-Chlorooctane 91 70 - 130 o-Terphenyl 71 70 - 130

Lab Sample ID: 890-7466-A-1-G MSD

Matrix: Solid

Analysis Batch: 97844									Prep	Batch:	97819
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Gasoline Range Organics (GRO)-C6-C10	<50.0	U	999	907.6		mg/Kg		91	70 - 130	1	20
Diesel Range Organics (Over C10-C28)	<50.0	U F1	999	666.1	F1	mg/Kg		65	70 - 130	1	20
	MSD	MSD									

	MOD	MOD	
Surrogate	%Recovery	Qualifier	Limits
1-Chlorooctane	92		70 - 130
o-Terphenyl	73		70 - 130

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 880-97733/1-A Client Sample ID: Method Blank **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 97756

	MB	MB	ıB										
Analyte	Result	Qualifier	RL	MDL	Unit	D	Prepared	Analyzed	Dil Fac				
Chloride	<10.0	U	10.0		ma/Ka			12/12/24 18:08	1				

Eurofins Midland

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: Matrix Spike Duplicate

Prep Batch: 97819

Job ID: 880-52160-1 Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23) SDG: Eddy County, New Mexico

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: LCS 880-97733/2-A Client Sample ID: Lab Control Sample **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 97756

LCS LCS Spike %Rec Analyte Added Result Qualifier %Rec Limits Unit Chloride 250 241.0 mg/Kg 96 90 - 110

Lab Sample ID: LCSD 880-97733/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 97756

Spike LCSD LCSD %Rec RPD Added Analyte Result Qualifier Unit D %Rec Limits RPD Limit Chloride 250 241.5 mg/Kg 97 90 - 110 0

Lab Sample ID: 880-52159-A-14-C MS Client Sample ID: Matrix Spike **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 97756

Spike MS MS %Rec Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 22 1 250 276.2 mg/Kg 102 90 - 110

Lab Sample ID: 880-52159-A-14-D MSD Client Sample ID: Matrix Spike Duplicate **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 97756

MSD MSD RPD Spike %Rec Sample Sample Added RPD Analyte Result Qualifier Result Qualifier Unit %Rec Limits Limit Chloride 22.1 250 277.2 102 90 - 110 20 mg/Kg

Lab Sample ID: MB 880-97735/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 97759

Analyte Result Qualifier RL MDL Unit Prepared Analyzed Dil Fac 10.0 Chloride <10.0 U mg/Kg 12/12/24 21:13

MR MR

Lab Sample ID: LCS 880-97735/2-A Client Sample ID: Lab Control Sample **Prep Type: Soluble** Matrix: Solid

Analysis Batch: 97759

Spike LCS LCS %Rec Added Analyte Result Qualifier Unit %Rec Limits Chloride 250 242 8 mg/Kg 90 - 110

Lab Sample ID: LCSD 880-97735/3-A Client Sample ID: Lab Control Sample Dup **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 97759

LCSD LCSD RPD Spike %Rec Added Result Qualifier Limits RPD Limit Analyte Unit D %Rec Chloride 250 242.5 mg/Kg 97 90 - 110 20

Lab Sample ID: 880-52160-5 MS Client Sample ID: CS-40 (Surface)

Matrix: Solid

Analysis Batch: 97759

Released to Imaging: 7/21/2025 11:07:53 AM

MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 942 1260 2192 mg/Kg 99 90 - 110

Eurofins Midland

Prep Type: Soluble

Job ID: 880-52160-1

Client: Carmona Resources SDG: Eddy County, New Mexico Project/Site: Asio Otis Fed #3 (6.22.23)

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: 880-52160-5 MSD Client Sample ID: CS-40 (Surface) **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 97759

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	942		1260	2192		mg/Kg		99	90 - 110	0	20

Lab Sample ID: 880-52160-15 MS Client Sample ID: CS-50 (Surface) **Matrix: Solid**

Prep Type: Soluble

Analysis Batch: 97759

	Sample	Sample	Spike	IVIS	M2				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	101	F1	249	431.6	F1	mg/Kg		133	90 - 110	

Lab Sample ID: 880-52160-15 MSD Client Sample ID: CS-50 (Surface)

Matrix: Solid Prep Type: Soluble

Analysis Batch: 97759

MSD MSD %Rec RPD Spike Sample Sample Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Limit Chloride 101 F1 249 431.5 F1 mg/Kg 133 90 - 110

Lab Sample ID: MB 880-97739/1-A Client Sample ID: Method Blank **Prep Type: Soluble**

Matrix: Solid

Analysis Batch: 97765

мв мв

Analyte	Result	Qualifier	RL	MDL Un		D	Prepared	Analyzed	Dil Fac
Chloride	<10.0	U	10.0	mg	ı/Kg			12/12/24 21:54	1

Lab Sample ID: LCS 880-97739/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Soluble**

ורפ ורפ

Analysis Batch: 97765

	Opino	200					701100	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	250	258.7		mg/Kg		103	90 - 110	

Snika

Lab Sample ID: LCSD 880-97739/3-A Client Sample ID: Lab Control Sample Dup **Matrix: Solid Prep Type: Soluble**

Analysis Batch: 97765

	Spike	LCSD	LCSD				%Rec		RPD
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	250	259.0		mg/Kg	_	104	90 - 110	0	20

Lab Sample ID: 880-52160-28 MS Client Sample ID: CS-63 (Surface)

Matrix: Solid

Analysis Batch: 97765

	Sample	Sample	Spike	MS	MS				%Rec	
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Chloride	150		249	420.3	-	ma/Ka		108	90 - 110	

Lab Sample ID: 880-52160-28 MSD Client Sample ID: CS-63 (Surface) **Prep Type: Soluble**

Matrix: Solid

Released to Imaging: 7/21/2025 11:07:53 AM

Analysis Batch: 97765											
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	150		249	420.6		mg/Kg		109	90 - 110		20

Eurofins Midland

Prep Type: Soluble

% Pac

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

GC VOA

Prep Batch: 97671

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-97671/5-A	Method Blank	Total/NA	Solid	5035	

Analysis Batch: 97674

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-25	CS-60 (Surface)	Total/NA	Solid	8021B	97737
880-52160-26	CS-61 (Surface)	Total/NA	Solid	8021B	97737
880-52160-27	CS-62 (Surface)	Total/NA	Solid	8021B	97737
880-52160-28	CS-63 (Surface)	Total/NA	Solid	8021B	97737
880-52160-29	CS-64 (Surface)	Total/NA	Solid	8021B	97737
880-52160-30	CS-65 (Surface)	Total/NA	Solid	8021B	97737
MB 880-97671/5-A	Method Blank	Total/NA	Solid	8021B	97671
MB 880-97737/5-A	Method Blank	Total/NA	Solid	8021B	97737
LCS 880-97737/1-A	Lab Control Sample	Total/NA	Solid	8021B	97737
LCSD 880-97737/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	97737
880-52160-25 MS	CS-60 (Surface)	Total/NA	Solid	8021B	97737
880-52160-25 MSD	CS-60 (Surface)	Total/NA	Solid	8021B	97737

Prep Batch: 97734

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-52160-1	CS-36 (Surface)	Total/NA	Solid	5035	
880-52160-2	CS-37 (Surface)	Total/NA	Solid	5035	
880-52160-3	CS-38 (Surface)	Total/NA	Solid	5035	
880-52160-4	CS-39 (Surface)	Total/NA	Solid	5035	
880-52160-5	CS-40 (Surface)	Total/NA	Solid	5035	
880-52160-6	CS-41 (Surface)	Total/NA	Solid	5035	
880-52160-7	CS-42 (Surface)	Total/NA	Solid	5035	
880-52160-8	CS-43 (Surface)	Total/NA	Solid	5035	
880-52160-9	CS-44 (Surface)	Total/NA	Solid	5035	
880-52160-10	CS-45 (Surface)	Total/NA	Solid	5035	
880-52160-11	CS-46 (Surface)	Total/NA	Solid	5035	
880-52160-12	CS-47 (Surface)	Total/NA	Solid	5035	
880-52160-13	CS-48 (Surface)	Total/NA	Solid	5035	
880-52160-14	CS-49 (Surface)	Total/NA	Solid	5035	
880-52160-15	CS-50 (Surface)	Total/NA	Solid	5035	
880-52160-16	CS-51 (Surface)	Total/NA	Solid	5035	
880-52160-17	CS-52 (Surface)	Total/NA	Solid	5035	
880-52160-18	CS-53 (Surface)	Total/NA	Solid	5035	
880-52160-19	CS-54 (Surface)	Total/NA	Solid	5035	
880-52160-20	CS-55 (Surface)	Total/NA	Solid	5035	
MB 880-97734/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-97734/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-97734/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-52160-1 MS	CS-36 (Surface)	Total/NA	Solid	5035	
880-52160-1 MSD	CS-36 (Surface)	Total/NA	Solid	5035	

Prep Batch: 97736

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-21	CS-56 (Surface)	Total/NA	Solid	5035	
880-52160-22	CS-57 (Surface)	Total/NA	Solid	5035	
880-52160-23	CS-58 (Surface)	Total/NA	Solid	5035	
880-52160-24	CS-59 (Surface)	Total/NA	Solid	5035	

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

GC VOA (Continued)

Prep Batch: 97736 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 880-97736/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-97736/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-97736/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-52158-A-1-B MS	Matrix Spike	Total/NA	Solid	5035	
880-52158-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	5035	

Prep Batch: 97737

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-25	CS-60 (Surface)	Total/NA	Solid	5035	
880-52160-26	CS-61 (Surface)	Total/NA	Solid	5035	
880-52160-27	CS-62 (Surface)	Total/NA	Solid	5035	
880-52160-28	CS-63 (Surface)	Total/NA	Solid	5035	
880-52160-29	CS-64 (Surface)	Total/NA	Solid	5035	
880-52160-30	CS-65 (Surface)	Total/NA	Solid	5035	
MB 880-97737/5-A	Method Blank	Total/NA	Solid	5035	
LCS 880-97737/1-A	Lab Control Sample	Total/NA	Solid	5035	
LCSD 880-97737/2-A	Lab Control Sample Dup	Total/NA	Solid	5035	
880-52160-25 MS	CS-60 (Surface)	Total/NA	Solid	5035	
880-52160-25 MSD	CS-60 (Surface)	Total/NA	Solid	5035	

Analysis Batch: 97761

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-1	CS-36 (Surface)	Total/NA	Solid	8021B	97734
880-52160-2	CS-37 (Surface)	Total/NA	Solid	8021B	97734
880-52160-3	CS-38 (Surface)	Total/NA	Solid	8021B	97734
880-52160-4	CS-39 (Surface)	Total/NA	Solid	8021B	97734
880-52160-5	CS-40 (Surface)	Total/NA	Solid	8021B	97734
880-52160-6	CS-41 (Surface)	Total/NA	Solid	8021B	97734
880-52160-7	CS-42 (Surface)	Total/NA	Solid	8021B	97734
880-52160-8	CS-43 (Surface)	Total/NA	Solid	8021B	97734
880-52160-9	CS-44 (Surface)	Total/NA	Solid	8021B	97734
880-52160-10	CS-45 (Surface)	Total/NA	Solid	8021B	97734
880-52160-11	CS-46 (Surface)	Total/NA	Solid	8021B	97734
880-52160-12	CS-47 (Surface)	Total/NA	Solid	8021B	97734
880-52160-13	CS-48 (Surface)	Total/NA	Solid	8021B	97734
880-52160-14	CS-49 (Surface)	Total/NA	Solid	8021B	97734
880-52160-15	CS-50 (Surface)	Total/NA	Solid	8021B	97734
880-52160-16	CS-51 (Surface)	Total/NA	Solid	8021B	97734
880-52160-17	CS-52 (Surface)	Total/NA	Solid	8021B	97734
880-52160-18	CS-53 (Surface)	Total/NA	Solid	8021B	97734
880-52160-19	CS-54 (Surface)	Total/NA	Solid	8021B	97734
880-52160-20	CS-55 (Surface)	Total/NA	Solid	8021B	97734
MB 880-97734/5-A	Method Blank	Total/NA	Solid	8021B	97734
LCS 880-97734/1-A	Lab Control Sample	Total/NA	Solid	8021B	97734
LCSD 880-97734/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	97734
880-52160-1 MS	CS-36 (Surface)	Total/NA	Solid	8021B	97734
880-52160-1 MSD	CS-36 (Surface)	Total/NA	Solid	8021B	97734

Analysis Batch: 97763

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-21	CS-56 (Surface)	Total/NA	Solid	8021B	97736

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

GC VOA (Continued)

Analysis Batch: 97763 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-22	CS-57 (Surface)	Total/NA	Solid	8021B	97736
880-52160-23	CS-58 (Surface)	Total/NA	Solid	8021B	97736
880-52160-24	CS-59 (Surface)	Total/NA	Solid	8021B	97736
MB 880-97736/5-A	Method Blank	Total/NA	Solid	8021B	97736
LCS 880-97736/1-A	Lab Control Sample	Total/NA	Solid	8021B	97736
LCSD 880-97736/2-A	Lab Control Sample Dup	Total/NA	Solid	8021B	97736
880-52158-A-1-B MS	Matrix Spike	Total/NA	Solid	8021B	97736
880-52158-A-1-C MSD	Matrix Spike Duplicate	Total/NA	Solid	8021B	97736

Analysis Batch: 97798

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
880-52160-1	CS-36 (Surface)	Total/NA	Solid	Total BTEX	-
880-52160-2	CS-37 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-3	CS-38 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-4	CS-39 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-5	CS-40 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-6	CS-41 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-7	CS-42 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-8	CS-43 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-9	CS-44 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-10	CS-45 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-11	CS-46 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-12	CS-47 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-13	CS-48 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-14	CS-49 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-15	CS-50 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-16	CS-51 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-17	CS-52 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-18	CS-53 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-19	CS-54 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-20	CS-55 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-21	CS-56 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-22	CS-57 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-23	CS-58 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-24	CS-59 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-25	CS-60 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-26	CS-61 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-27	CS-62 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-28	CS-63 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-29	CS-64 (Surface)	Total/NA	Solid	Total BTEX	
880-52160-30	CS-65 (Surface)	Total/NA	Solid	Total BTEX	

GC Semi VOA

Prep Batch: 97669

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-25	CS-60 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-26	CS-61 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-27	CS-62 (Surface)	Total/NA	Solid	8015NM Prep	
MB 880-97669/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-97669/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	

Eurofins Midland

2

3

F

_

8

9

11

12

1 *1*

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

GC Semi VOA (Continued)

Prep Batch: 97669 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
LCSD 880-97669/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-7454-A-1-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-7454-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 97670

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-28	CS-63 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-29	CS-64 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-30	CS-65 (Surface)	Total/NA	Solid	8015NM Prep	
MB 880-97670/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-97670/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-97670/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-7455-A-5-E MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-7455-A-5-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 97688

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-52160-5	CS-40 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-6	CS-41 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-7	CS-42 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-8	CS-43 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-9	CS-44 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-10	CS-45 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-11	CS-46 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-12	CS-47 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-13	CS-48 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-14	CS-49 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-15	CS-50 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-16	CS-51 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-17	CS-52 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-18	CS-53 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-19	CS-54 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-20	CS-55 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-21	CS-56 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-22	CS-57 (Surface)	Total/NA	Solid	8015B NM	9774
380-52160-23	CS-58 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-24	CS-59 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-25	CS-60 (Surface)	Total/NA	Solid	8015B NM	9766
880-52160-26	CS-61 (Surface)	Total/NA	Solid	8015B NM	9766
880-52160-27	CS-62 (Surface)	Total/NA	Solid	8015B NM	9766
MB 880-97669/1-A	Method Blank	Total/NA	Solid	8015B NM	9766
MB 880-97741/1-A	Method Blank	Total/NA	Solid	8015B NM	9774
LCS 880-97669/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	9766
LCS 880-97741/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	9774
LCSD 880-97669/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	9766
LCSD 880-97741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	9774
380-52160-5 MS	CS-40 (Surface)	Total/NA	Solid	8015B NM	9774
880-52160-5 MSD	CS-40 (Surface)	Total/NA	Solid	8015B NM	9774
890-7454-A-1-E MS	Matrix Spike	Total/NA	Solid	8015B NM	9766
890-7454-A-1-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	9766

Eurofins Midland

3

Л

<u>ر</u>

8

9

11

13

14

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

GC Semi VOA

Analysis Batch: 97690

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-1	CS-36 (Surface)	Total/NA	Solid	8015B NM	97740
880-52160-2	CS-37 (Surface)	Total/NA	Solid	8015B NM	97740
880-52160-28	CS-63 (Surface)	Total/NA	Solid	8015B NM	97670
880-52160-29	CS-64 (Surface)	Total/NA	Solid	8015B NM	97670
880-52160-30	CS-65 (Surface)	Total/NA	Solid	8015B NM	97670
MB 880-97670/1-A	Method Blank	Total/NA	Solid	8015B NM	97670
MB 880-97740/1-A	Method Blank	Total/NA	Solid	8015B NM	97740
LCS 880-97670/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	97670
LCS 880-97740/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	97740
LCSD 880-97670/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	97670
LCSD 880-97740/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	97740
880-52159-A-4-F MS	Matrix Spike	Total/NA	Solid	8015B NM	97740
880-52159-A-4-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	97740
890-7455-A-5-E MS	Matrix Spike	Total/NA	Solid	8015B NM	97670
890-7455-A-5-F MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	97670

Prep Batch: 97740

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-1	CS-36 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-2	CS-37 (Surface)	Total/NA	Solid	8015NM Prep	
MB 880-97740/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
LCS 880-97740/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-97740/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
880-52159-A-4-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
880-52159-A-4-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Prep Batch: 97741

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Bato
380-52160-5	CS-40 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-6	CS-41 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-7	CS-42 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-8	CS-43 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-9	CS-44 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-10	CS-45 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-11	CS-46 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-12	CS-47 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-13	CS-48 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-14	CS-49 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-15	CS-50 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-16	CS-51 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-17	CS-52 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-18	CS-53 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-19	CS-54 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-20	CS-55 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-21	CS-56 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-22	CS-57 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-23	CS-58 (Surface)	Total/NA	Solid	8015NM Prep	
380-52160-24	CS-59 (Surface)	Total/NA	Solid	8015NM Prep	
MB 880-97741/1-A	Method Blank	Total/NA	Solid	8015NM Prep	
CS 880-97741/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-97741/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

GC Semi VOA (Continued)

Prep Batch: 97741 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-5 MS	CS-40 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-5 MSD	CS-40 (Surface)	Total/NA	Solid	8015NM Prep	

Analysis Batch: 97784

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-1	CS-36 (Surface)	Total/NA	Solid	8015 NM	
880-52160-2	CS-37 (Surface)	Total/NA	Solid	8015 NM	
880-52160-3	CS-38 (Surface)	Total/NA	Solid	8015 NM	
880-52160-4	CS-39 (Surface)	Total/NA	Solid	8015 NM	
880-52160-5	CS-40 (Surface)	Total/NA	Solid	8015 NM	
880-52160-6	CS-41 (Surface)	Total/NA	Solid	8015 NM	
880-52160-7	CS-42 (Surface)	Total/NA	Solid	8015 NM	
880-52160-8	CS-43 (Surface)	Total/NA	Solid	8015 NM	
880-52160-9	CS-44 (Surface)	Total/NA	Solid	8015 NM	
880-52160-10	CS-45 (Surface)	Total/NA	Solid	8015 NM	
880-52160-11	CS-46 (Surface)	Total/NA	Solid	8015 NM	
880-52160-12	CS-47 (Surface)	Total/NA	Solid	8015 NM	
880-52160-13	CS-48 (Surface)	Total/NA	Solid	8015 NM	
880-52160-14	CS-49 (Surface)	Total/NA	Solid	8015 NM	
880-52160-15	CS-50 (Surface)	Total/NA	Solid	8015 NM	
880-52160-16	CS-51 (Surface)	Total/NA	Solid	8015 NM	
880-52160-17	CS-52 (Surface)	Total/NA	Solid	8015 NM	
880-52160-18	CS-53 (Surface)	Total/NA	Solid	8015 NM	
880-52160-19	CS-54 (Surface)	Total/NA	Solid	8015 NM	
880-52160-20	CS-55 (Surface)	Total/NA	Solid	8015 NM	
880-52160-21	CS-56 (Surface)	Total/NA	Solid	8015 NM	
880-52160-22	CS-57 (Surface)	Total/NA	Solid	8015 NM	
880-52160-23	CS-58 (Surface)	Total/NA	Solid	8015 NM	
880-52160-24	CS-59 (Surface)	Total/NA	Solid	8015 NM	
880-52160-25	CS-60 (Surface)	Total/NA	Solid	8015 NM	
880-52160-26	CS-61 (Surface)	Total/NA	Solid	8015 NM	
880-52160-27	CS-62 (Surface)	Total/NA	Solid	8015 NM	
880-52160-28	CS-63 (Surface)	Total/NA	Solid	8015 NM	
880-52160-29	CS-64 (Surface)	Total/NA	Solid	8015 NM	
880-52160-30	CS-65 (Surface)	Total/NA	Solid	8015 NM	

Prep Batch: 97819

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-3	CS-38 (Surface)	Total/NA	Solid	8015NM Prep	
880-52160-4	CS-39 (Surface)	Total/NA	Solid	8015NM Prep	
LCS 880-97819/2-A	Lab Control Sample	Total/NA	Solid	8015NM Prep	
LCSD 880-97819/3-A	Lab Control Sample Dup	Total/NA	Solid	8015NM Prep	
890-7466-A-1-F MS	Matrix Spike	Total/NA	Solid	8015NM Prep	
890-7466-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015NM Prep	

Analysis Batch: 97844

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-3	CS-38 (Surface)	Total/NA	Solid	8015B NM	97819
880-52160-4	CS-39 (Surface)	Total/NA	Solid	8015B NM	97819
LCS 880-97819/2-A	Lab Control Sample	Total/NA	Solid	8015B NM	97819
LCSD 880-97819/3-A	Lab Control Sample Dup	Total/NA	Solid	8015B NM	97819

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

GC Semi VOA (Continued)

Analysis Batch: 97844 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
890-7466-A-1-F MS	Matrix Spike	Total/NA	Solid	8015B NM	97819
890-7466-A-1-G MSD	Matrix Spike Duplicate	Total/NA	Solid	8015B NM	97819

HPLC/IC

Leach Batch: 97733

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batc
880-52160-1	CS-36 (Surface)	Soluble	Solid	DI Leach	_
880-52160-2	CS-37 (Surface)	Soluble	Solid	DI Leach	
880-52160-3	CS-38 (Surface)	Soluble	Solid	DI Leach	
880-52160-4	CS-39 (Surface)	Soluble	Solid	DI Leach	
MB 880-97733/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-97733/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-97733/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-52159-A-14-C MS	Matrix Spike	Soluble	Solid	DI Leach	
880-52159-A-14-D MSD	Matrix Spike Duplicate	Soluble	Solid	DI Leach	

Leach Batch: 97735

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-5	CS-40 (Surface)	Soluble	Solid	DI Leach	
880-52160-6	CS-41 (Surface)	Soluble	Solid	DI Leach	
880-52160-7	CS-42 (Surface)	Soluble	Solid	DI Leach	
880-52160-8	CS-43 (Surface)	Soluble	Solid	DI Leach	
880-52160-9	CS-44 (Surface)	Soluble	Solid	DI Leach	
880-52160-10	CS-45 (Surface)	Soluble	Solid	DI Leach	
880-52160-11	CS-46 (Surface)	Soluble	Solid	DI Leach	
880-52160-12	CS-47 (Surface)	Soluble	Solid	DI Leach	
880-52160-13	CS-48 (Surface)	Soluble	Solid	DI Leach	
880-52160-14	CS-49 (Surface)	Soluble	Solid	DI Leach	
880-52160-15	CS-50 (Surface)	Soluble	Solid	DI Leach	
880-52160-16	CS-51 (Surface)	Soluble	Solid	DI Leach	
880-52160-17	CS-52 (Surface)	Soluble	Solid	DI Leach	
880-52160-18	CS-53 (Surface)	Soluble	Solid	DI Leach	
880-52160-19	CS-54 (Surface)	Soluble	Solid	DI Leach	
880-52160-20	CS-55 (Surface)	Soluble	Solid	DI Leach	
880-52160-21	CS-56 (Surface)	Soluble	Solid	DI Leach	
880-52160-22	CS-57 (Surface)	Soluble	Solid	DI Leach	
880-52160-23	CS-58 (Surface)	Soluble	Solid	DI Leach	
880-52160-24	CS-59 (Surface)	Soluble	Solid	DI Leach	
MB 880-97735/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-97735/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-97735/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-52160-5 MS	CS-40 (Surface)	Soluble	Solid	DI Leach	
880-52160-5 MSD	CS-40 (Surface)	Soluble	Solid	DI Leach	
880-52160-15 MS	CS-50 (Surface)	Soluble	Solid	DI Leach	
880-52160-15 MSD	CS-50 (Surface)	Soluble	Solid	DI Leach	

Leach Batch: 97739

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-25	CS-60 (Surface)	Soluble	Solid	DI Leach	
880-52160-26	CS-61 (Surface)	Soluble	Solid	DI Leach	

Client: Carmona Resources

HPLC/IC (Continued)

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

300.

Leach Batch: 97739 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-27	CS-62 (Surface)	Soluble	Solid	DI Leach	
880-52160-28	CS-63 (Surface)	Soluble	Solid	DI Leach	
880-52160-29	CS-64 (Surface)	Soluble	Solid	DI Leach	
880-52160-30	CS-65 (Surface)	Soluble	Solid	DI Leach	
MB 880-97739/1-A	Method Blank	Soluble	Solid	DI Leach	
LCS 880-97739/2-A	Lab Control Sample	Soluble	Solid	DI Leach	
LCSD 880-97739/3-A	Lab Control Sample Dup	Soluble	Solid	DI Leach	
880-52160-28 MS	CS-63 (Surface)	Soluble	Solid	DI Leach	
880-52160-28 MSD	CS-63 (Surface)	Soluble	Solid	DI Leach	

Analysis Batch: 97756

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-1	CS-36 (Surface)	Soluble	Solid	300.0	97733
880-52160-2	CS-37 (Surface)	Soluble	Solid	300.0	97733
880-52160-3	CS-38 (Surface)	Soluble	Solid	300.0	97733
880-52160-4	CS-39 (Surface)	Soluble	Solid	300.0	97733
MB 880-97733/1-A	Method Blank	Soluble	Solid	300.0	97733
LCS 880-97733/2-A	Lab Control Sample	Soluble	Solid	300.0	97733
LCSD 880-97733/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	97733
880-52159-A-14-C MS	Matrix Spike	Soluble	Solid	300.0	97733
880-52159-A-14-D MSD	Matrix Spike Duplicate	Soluble	Solid	300.0	97733

Analysis Batch: 97759

Released to Imaging: 7/21/2025 11:07:53 AM

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-5	CS-40 (Surface)	Soluble	Solid	300.0	9773
880-52160-6	CS-41 (Surface)	Soluble	Solid	300.0	97735
880-52160-7	CS-42 (Surface)	Soluble	Solid	300.0	97735
880-52160-8	CS-43 (Surface)	Soluble	Solid	300.0	97735
880-52160-9	CS-44 (Surface)	Soluble	Solid	300.0	97735
880-52160-10	CS-45 (Surface)	Soluble	Solid	300.0	97735
880-52160-11	CS-46 (Surface)	Soluble	Solid	300.0	9773
880-52160-12	CS-47 (Surface)	Soluble	Solid	300.0	97735
880-52160-13	CS-48 (Surface)	Soluble	Solid	300.0	9773
880-52160-14	CS-49 (Surface)	Soluble	Solid	300.0	9773
880-52160-15	CS-50 (Surface)	Soluble	Solid	300.0	97735
880-52160-16	CS-51 (Surface)	Soluble	Solid	300.0	9773
880-52160-17	CS-52 (Surface)	Soluble	Solid	300.0	9773
880-52160-18	CS-53 (Surface)	Soluble	Solid	300.0	9773
880-52160-19	CS-54 (Surface)	Soluble	Solid	300.0	97735
880-52160-20	CS-55 (Surface)	Soluble	Solid	300.0	9773
880-52160-21	CS-56 (Surface)	Soluble	Solid	300.0	9773
880-52160-22	CS-57 (Surface)	Soluble	Solid	300.0	97735
880-52160-23	CS-58 (Surface)	Soluble	Solid	300.0	9773
880-52160-24	CS-59 (Surface)	Soluble	Solid	300.0	9773
MB 880-97735/1-A	Method Blank	Soluble	Solid	300.0	97735
LCS 880-97735/2-A	Lab Control Sample	Soluble	Solid	300.0	9773
LCSD 880-97735/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	9773
880-52160-5 MS	CS-40 (Surface)	Soluble	Solid	300.0	9773
880-52160-5 MSD	CS-40 (Surface)	Soluble	Solid	300.0	9773
880-52160-15 MS	CS-50 (Surface)	Soluble	Solid	300.0	9773
880-52160-15 MSD	CS-50 (Surface)	Soluble	Solid	300.0	9773

Client: Carmona Resources

Job ID: 880-52160-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

9

HPLC/IC

Analysis Batch: 97765

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
880-52160-25	CS-60 (Surface)	Soluble	Solid	300.0	97739
880-52160-26	CS-61 (Surface)	Soluble	Solid	300.0	97739
880-52160-27	CS-62 (Surface)	Soluble	Solid	300.0	97739
880-52160-28	CS-63 (Surface)	Soluble	Solid	300.0	97739
880-52160-29	CS-64 (Surface)	Soluble	Solid	300.0	97739
880-52160-30	CS-65 (Surface)	Soluble	Solid	300.0	97739
MB 880-97739/1-A	Method Blank	Soluble	Solid	300.0	97739
LCS 880-97739/2-A	Lab Control Sample	Soluble	Solid	300.0	97739
LCSD 880-97739/3-A	Lab Control Sample Dup	Soluble	Solid	300.0	97739
880-52160-28 MS	CS-63 (Surface)	Soluble	Solid	300.0	97739
880-52160-28 MSD	CS-63 (Surface)	Soluble	Solid	300.0	97739

3

5

6

Ω

9

10

13

14

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-1

Matrix: Solid

Client Sample ID: CS-36 (Surface) Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 17:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 17:34	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 21:54	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	97740	12/12/24 13:09	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97690	12/12/24 21:54	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	97733	12/12/24 12:53	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97756	12/12/24 20:30	CH	EET MID

Client Sample ID: CS-37 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-2

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 17:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 17:55	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 22:09	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	97740	12/12/24 13:09	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97690	12/12/24 22:09	TKC	EET MID
Soluble	Leach	DI Leach			5.04 g	50 mL	97733	12/12/24 12:53	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97756	12/12/24 20:36	CH	EET MID

Client Sample ID: CS-38 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-3

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 18:15	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 18:15	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 14:22	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	97819	12/13/24 09:37	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97844	12/13/24 14:22	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	97733	12/12/24 12:53	CH	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	97756	12/12/24 20:41	CH	EET MID

Date Received: 12/12/24 11:30

Soluble	Analysis	300.0	5	50 mL	50 mL	97756	12/12/24 20:41	СН	EET MID
Client Sam	ple ID: CS-39	(Surface)					Lab Samp	ole ID:	880-52160-4
Date Collecte	d: 12/12/24 00:00)							Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 18:36	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 18:36	AJ	EET MID

Eurofins Midland

Released to Imaging: 7/21/2025 11:07:53 AM

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lab Sample ID: 880-52160-4

Matrix: Solid

Client Sample ID: CS-39 (Surface) Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			97784	12/13/24 14:36	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97819	12/13/24 09:37	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97844	12/13/24 14:36	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97733	12/12/24 12:53	СН	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	97756	12/12/24 20:46	CH	EET MID

Client Sample ID: CS-40 (Surface)

Lab Sample ID: 880-52160-5 Date Collected: 12/12/24 00:00

Matrix: Solid

Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 18:56	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 18:56	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 00:34	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 00:34	TKC	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	97735	12/12/24 12:56	CH	EET MID
Soluble	Analysis	300.0		5	50 mL	50 mL	97759	12/12/24 21:28	CH	EET MID

Client Sample ID: CS-41 (Surface)

Lab Sample ID: 880-52160-6 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 19:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 19:17	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 01:18	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 01:18	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 21:44	CH	EET MID

Client Sample ID: CS-42 (Surface)

Lab Sample ID: 880-52160-7 Date Collected: 12/12/24 00:00 **Matrix: Solid**

Date Received: 12/12/24 11:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 19:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 19:37	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 01:32	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.00 g 1 uL	10 mL 1 uL	97741 97688	12/12/24 13:12 12/13/24 01:32	EL TKC	EET MID EET MID

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Lah Sample ID: 880-52160-7

Client Sample ID: CS-42 (Surface) Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab	Sample	ID.	000-52100-7
			Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 21:49	CH	EET MID

Client Sample ID: CS-43 (Surface) Lab Sample ID: 880-52160-8

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 19:58	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 19:58	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 01:48	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 01:48	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 21:55	CH	EET MID

Client Sample ID: CS-44 (Surface) Lab Sample ID: 880-52160-9

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.98 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 20:18	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 20:18	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 02:02	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 02:02	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:00	CH	EET MID

Client Sample ID: CS-45 (Surface) Lab Sample ID: 880-52160-10

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 20:39	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 20:39	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 02:17	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 02:17	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	97735	12/12/24 12:56	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:16	CH	EET MID

Eurofins Midland

Matrix: Solid

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Client Sample ID: CS-46 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30 Lab Sample ID: 880-52160-11

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 22:03	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 22:03	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 02:31	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 02:31	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:21	CH	EET MID

Client Sample ID: CS-47 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-12

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.00 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 22:23	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 22:23	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 02:46	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.02 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 02:46	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:26	CH	EET MID

Client Sample ID: CS-48 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-13

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 22:44	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 22:44	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 03:01	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 03:01	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:32	CH	EET MID

Client Sample ID: CS-49 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample	D: 880-52160-14
------------	-----------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 23:04	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 23:04	AJ	EET MID

Eurofins Midland

2

<u>ی</u>

5

7

9

11

1 /

omio malan

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Client Sample ID: CS-49 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-14

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			97784	12/13/24 03:15	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 03:15	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	97735	12/12/24 12:56	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:37	CH	EET MID

Client Sample ID: CS-50 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab	Sample	:טו	880-52160-15	
			Matrix: Solid	

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.97 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 23:25	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 23:25	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 03:45	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 03:45	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:42	CH	EET MID

Client Sample ID: CS-51 (Surface) Lab Sample ID: 880-52160-16

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.95 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/12/24 23:46	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 23:46	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 03:59	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 03:59	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	97735	12/12/24 12:56	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 22:58	CH	EET MID

Client Sample ID: CS-52 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

12/12/21 22:00	011	LL1 IIIID
Lab Sample	e ID: 8	80-52160-17
		Matrix: Solid

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/13/24 00:06	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:06	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 04:14	AJ	EET MID
Total/NA Total/NA	Prep Analysis	8015NM Prep 8015B NM		1	10.05 g 1 uL	10 mL 1 uL	97741 97688	12/12/24 13:12 12/13/24 04:14	EL TKC	EET MID EET MID

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Client Sample ID: CS-52 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-17

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.97 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:03	CH	EET MID

Client Sample ID: CS-53 (Surface) Lab Sample ID: 880-52160-18

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/13/24 00:27	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:27	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 04:28	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 04:28	TKC	EET MID
Soluble	Leach	DI Leach			4.95 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:19	CH	EET MID

Client Sample ID: CS-54 (Surface)

Lab Sample ID: 880-52160-19

Matrix: Solid

Date Received: 12/12/24 11:30

Date Collected: 12/12/24 00:00

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/13/24 00:47	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:47	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 04:44	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 04:44	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:24	CH	EET MID

Client Sample ID: CS-55 (Surface)

Lab Sample ID: 880-52160-20

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97734	12/12/24 12:54	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97761	12/13/24 01:08	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 01:08	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 04:57	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 04:57	TKC	EET MID
Soluble	Leach	DI Leach			5.05 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:30	CH	EET MID

Eurofins Midland

Matrix: Solid

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Job ID: 880-52160-1

Client Sample ID: CS-56 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-21

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.01 g	5 mL	97736	12/12/24 12:57	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97763	12/13/24 00:53	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:53	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 05:13	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.06 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 05:13	TKC	EET MID
Soluble	Leach	DI Leach			4.96 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:35	CH	EET MID

Client Sample ID: CS-57 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-22

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97736	12/12/24 12:57	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97763	12/13/24 01:13	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 01:13	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 05:27	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 05:27	TKC	EET MID
Soluble	Leach	DI Leach			5.01 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:40	CH	EET MID

Client Sample ID: CS-58 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-23

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.04 g	5 mL	97736	12/12/24 12:57	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97763	12/13/24 01:34	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 01:34	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/13/24 05:41	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.04 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 05:41	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97735	12/12/24 12:56	СН	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:45	CH	EET MID

Client Sample ID: CS-59 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample	ID: 880-52160-24
------------	------------------

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97736	12/12/24 12:57	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97763	12/13/24 01:55	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 01:55	AJ	EET MID

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Client Sample ID: CS-59 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-24

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Analysis	8015 NM		1			97784	12/13/24 05:57	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	97741	12/12/24 13:12	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/13/24 05:57	TKC	EET MID
Soluble	Leach	DI Leach			4.98 g	50 mL	97735	12/12/24 12:56	CH	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97759	12/12/24 23:51	CH	EET MID

Client Sample ID: CS-60 (Surface) Lab Sample ID: 880-52160-25

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

Batch Batch Dil Initial Final Batch Prepared Prep Type Method Amount Amount Number or Analyzed Type Run Factor Analyst Lab 5035 Total/NA Prep 4.99 g 5 mL 97737 12/12/24 12:59 MNR **EET MID** Total/NA Analysis 8021B 5 mL 5 mL 97674 12/12/24 22:56 MNR EET MID 1 Total/NA Total BTEX Analysis 1 97798 12/12/24 22:56 ΑJ **EET MID** Total/NA Analysis 8015 NM 97784 12/12/24 14:32 **EET MID** AJ Total/NA Prep 8015NM Prep 10.04 g 10 mL 97669 12/12/24 08:17 EL **EET MID** Total/NA Analysis 8015B NM 1 uL 97688 12/12/24 14:32 TKC **EET MID** 1 uL Soluble Leach DI Leach 5.01 g 50 mL 97739 12/12/24 13:07 SA **EET MID** Soluble Analysis 300.0 1 50 mL 50 mL 97765 12/12/24 23:16 СН **EET MID**

Client Sample ID: CS-61 (Surface) Lab Sample ID: 880-52160-26

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.96 g	5 mL	97737	12/12/24 12:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97674	12/12/24 23:16	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 23:16	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 14:46	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.03 g	10 mL	97669	12/12/24 08:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/12/24 14:46	TKC	EET MID
Soluble	Leach	DI Leach			5.02 g	50 mL	97739	12/12/24 13:07	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97765	12/12/24 23:22	CH	EET MID

Client Sample ID: CS-62 (Surface) Lab Sample ID: 880-52160-27

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

_	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Туре	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.02 g	5 mL	97737	12/12/24 12:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97674	12/12/24 23:37	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/12/24 23:37	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 15:01	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.01 g	10 mL	97669	12/12/24 08:17	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97688	12/12/24 15:01	TKC	EET MID

Eurofins Midland

Matrix: Solid

Lab Chronicle

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Client Sample ID: CS-62 (Surface)

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-27

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Soluble	Leach	DI Leach			4.96 g	50 mL	97739	12/12/24 13:07	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97765	12/12/24 23:28	CH	EET MID

Client Sample ID: CS-63 (Surface) Lab Sample ID: 880-52160-28

Initial

Final

Batch

Prepared

Dil

Date Collected: 12/12/24 00:00 Date Received: 12/12/24 11:30

Batch

Batch

Matrix: Solid

Analyst Lab MNR EET MID MNR **EET MID** AJ **EET MID** ΑJ **EET MID** EL EET MID

Prep Type Туре Method Run Factor Amount Amount Number or Analyzed Total/NA 5035 4.96 g 97737 12/12/24 12:59 Prep 5 mL Total/NA 8021B 5 mL 5 mL 12/12/24 23:57 Analysis 1 97674 Total/NA Total BTEX 97798 12/12/24 23:57 Analysis 1 Total/NA Analysis 8015 NM 97784 12/12/24 14:32 97670 12/12/24 08:20 Total/NA Prep 8015NM Prep 9.98 g 10 mL 8015B NM Total/NA Analysis 1 uL 1 uL 97690 12/12/24 14:32 TKC **EET MID** Soluble DI Leach 5.02 g 50 mL 97739 12/12/24 13:07 SA **EET MID** Leach 300.0 Analysis 50 mL 97765 12/12/24 23:34 СН **EET MID** Soluble 1 50 mL

Client Sample ID: CS-64 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-29

Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			4.99 g	5 mL	97737	12/12/24 12:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97674	12/13/24 00:17	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:17	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 14:46	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.05 g	10 mL	97670	12/12/24 08:20	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97690	12/12/24 14:46	TKC	EET MID
Soluble	Leach	DI Leach			4.99 g	50 mL	97739	12/12/24 13:07	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97765	12/12/24 23:52	CH	EET MID

Client Sample ID: CS-65 (Surface)

Date Collected: 12/12/24 00:00

Date Received: 12/12/24 11:30

Lab Sample ID: 880-52160-30 Matrix: Solid

	Batch	Batch		Dil	Initial	Final	Batch	Prepared		
Prep Type	Type	Method	Run	Factor	Amount	Amount	Number	or Analyzed	Analyst	Lab
Total/NA	Prep	5035			5.05 g	5 mL	97737	12/12/24 12:59	MNR	EET MID
Total/NA	Analysis	8021B		1	5 mL	5 mL	97674	12/13/24 00:38	MNR	EET MID
Total/NA	Analysis	Total BTEX		1			97798	12/13/24 00:38	AJ	EET MID
Total/NA	Analysis	8015 NM		1			97784	12/12/24 15:01	AJ	EET MID
Total/NA	Prep	8015NM Prep			10.00 g	10 mL	97670	12/12/24 08:20	EL	EET MID
Total/NA	Analysis	8015B NM		1	1 uL	1 uL	97690	12/12/24 15:01	TKC	EET MID
Soluble	Leach	DI Leach			4.97 g	50 mL	97739	12/12/24 13:07	SA	EET MID
Soluble	Analysis	300.0		1	50 mL	50 mL	97765	12/12/24 23:58	CH	EET MID

Lab Chronicle

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

2

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

3

А

6

8

9

11

13

14

Accreditation/Certification Summary

Client: Carmona Resources

Job ID: 880-52160-1

Project/Site: Asio Otis Fed #3 (6.22.23)

SDG: Eddy County, New Mexico

Laboratory: Eurofins Midland

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progra	am	Identification Number	Expiration Date
Texas	NELA	Р	T104704400	06-30-25
,	are included in this report, but bes not offer certification.	it the laboratory is not certif	fied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8015 NM		Solid	Total TPH	
Total BTEX		Solid	Total BTEX	

1

Method Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1

SDG: Eddy County, New Mexico

Method	Method Description	Protocol	Laboratory
8021B	Volatile Organic Compounds (GC)	SW846	EET MID
Total BTEX	Total BTEX Calculation	TAL SOP	EET MID
8015 NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
8015B NM	Diesel Range Organics (DRO) (GC)	SW846	EET MID
300.0	Anions, Ion Chromatography	EPA	EET MID
5035	Closed System Purge and Trap	SW846	EET MID
8015NM Prep	Microextraction	SW846	EET MID
DI Leach	Deionized Water Leaching Procedure	ASTM	EET MID

Protocol References:

ASTM = ASTM International

EPA = US Environmental Protection Agency

SW846 = "Test Methods For Evaluating Solid Waste, Physical/Chemical Methods", Third Edition, November 1986 And Its Updates.

TAL SOP = TestAmerica Laboratories, Standard Operating Procedure

Laboratory References:

EET MID = Eurofins Midland, 1211 W. Florida Ave, Midland, TX 79701, TEL (432)704-5440

Sample Summary

Client: Carmona Resources

Project/Site: Asio Otis Fed #3 (6.22.23)

Job ID: 880-52160-1 SDG: Eddy County, New Mexico

Lab Sample ID	Client Sample ID	Matrix	Collected	Received
880-52160-1	CS-36 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-2	CS-37 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-3	CS-38 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-4	CS-39 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-5	CS-40 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-6	CS-41 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-7	CS-42 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-8	CS-43 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-9	CS-44 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-10	CS-45 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-11	CS-46 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-12	CS-47 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-13	CS-48 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-14	CS-49 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-15	CS-50 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
30-52160-16	CS-51 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
30-52160-17	CS-52 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
30-52160-18	CS-53 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-19	CS-54 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-20	CS-55 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-21	CS-56 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-22	CS-57 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-23	CS-58 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-24	CS-59 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
880-52160-25	CS-60 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-26	CS-61 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-27	CS-62 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-28	CS-63 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
380-52160-29	CS-64 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30
80-52160-30	CS-65 (Surface)	Solid	12/12/24 00:00	12/12/24 11:30

										Page
Project Manager: Conner Moehring	oehring			Bill to: (if different)		Carmona Resources	Resource	co		Work Order Comments
	Carmona Resources			Company Name:					Program: UST/PST	Program: UST/PST ☐PRP ☐Brownfields ☐RRC
	310 W Wall St Ste 500			Address:					State of Project:	
EP:	TX 79701			City, State ZIP:					Reporting:Level II Level III PST/UST	evel III PST/UST TRRP
	3823		Email:	Email: mcarmona@carmonaresources.com	monares	ources.c	om		Deliverables: EDD	ADaPT □ Other:
Project Name: A	Asio Otis Fed #3 (6.22.23)	22.23)	Turn A	Turn Around				ANALYSIS REQUEST	QUEST	Preservative Codes
ñ	2073		□ Routine	☑ Rush	Pres. Code					None: NO
	Eddy County, New Mexico		Due Date:	24 Hrs)	_			Cool: Cool
:	CRM					MRO				HCL: HC
PO#					ers	D + R				H ₂ SO ₄ : H ₂
SAMPLE RECEIPT	Temp Blank:	Yes No	Wet ice:	Yes No	mete		_			H ₃ PO ₄ : HP
	. Z	Thermometer ID:		1	Para	X 80	ride 3			NaHSO4: NABIS
Cooler Custody Seals:	No	Correction Factor:		1	P	_	_			Na ₂ S ₂ O ₃ : NaSO ₃
Seals:	Yes No N/A	Temperature Reading:	ding:	1. 1.		_				Zn Acetate+NaOH: Zn
Total Containers:		Corrected Temperature:	rature:	10.0		H 80				NaOH+Ascorbic Acid: SAPC
Sample Identification	Date	Time	Soil	Water Comp	# of Cont	TP				Sample Comments
CS-36 (Surface)	12/12/2024		×	C	1					
CS-37 (Surface)	12/12/2024		×	С	1	×	×			
CS-38 (Surface)	12/12/2024		×	c	_		\vdash			
CS-39 (Surface)	12/12/2024		×	c						
CS-40 (Surface)	12/12/2024		×	C	_	+	+			
CS-41 (Surface)	12/12/2024		×	0	_	+	+			
CS-42 (Surface)	12/12/2024		× >	2 0	_	× >	× >			
CS-44 (Surface)	12/12/2024		×	c		\dashv	\dashv			
CS-45 (Surface)	12/12/2024		×	C	-1	×	×			
6	Carmona / Mearmo	ona@carmonare	sources.com	and Conner Mo	oehring /	Cmoehi	ring@ca	Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com		
	Relinquished by: (Signature)	ру: (Signature)				Date/Time	е	R	Received by: (Signature)	
Man		72			12/12	124011	-	T		121

.1	ADaPT Other:	Deliverables: EDD	esources.com	Email: mcarmona@carmonaresources.com	432-813-6823	
☐ Level N	I □ST/UST □RRP	Reporting:Level II Level III PST/UST TRRP Level N		City, State ZIP:	Midland, TX 79701	ZIP:
		State of Project:		Address:	310 W Wall St Ste 500	
Duperfun	□ Brownfields □ RRC	Program: UST/PST PRP Brownfields RRC perfur		Company Name:	Carmona Resources	Vame:
	Work Order Comments	Work	Carmona Resources	Bill to: (if different)	Conner Moehring	nager:
52160	, I	Work Order No:	Chain of Custody	Chain		

4			Comments: Email	CS-55 (Sur	CS-54 (Sur	CS-53 (Sur	CS-52 (Sur	CS-51 (Sur	CS-50 (Sur	CS-49 (Sur	CS-48 (Sui	CS-47 (Sui	CS-46 (Sur	Sample Ident	Total Containers:	Sample Custody Seals:	Cooler Custody Seals:	Received Intact:	SAMPLE RECEIF	PO#:	Sampler's Name:	Project Location	Project Number:	Project Name:	Phone:	City, State ZIP:
	Relinqu		to Mike Carmona / N													Yes No	Yes No	Yes No			C	Eddy County	21	Asio Otis Fe	432-813-6823	Midland, TX 79701
2002	ished by: (Signature		carmona@carmon	2/2024	2/2024	2/2024	2/2024	2/2024	2/2024	2/2024	2/2024	2/2024	2/2024)ate Time	Corrected Ter	L			k: Yes No		RM	, New Mexico	073	d #3 (6.22.23)		
			aresources.cor	× ;	×	×	×	×	×	×	×	×	×	Soil	nperature:	Reading:	ctor:	Ö	Wet Ice:			Due Date:	Routine	Tun	Emai	
			n and Conner		C	0	0	0	0	С	C	C	0	Water Com					Yes No			24 Hrs	⊠ Rush	Around	: mcarmona@o	City, State ZIP:
12/12			Moehring	•	_	1	1	1	1	1	1	1	1	b/ # of p Cont		L	P	arar	nete	rs		L_	Code		armonare	
124	Date/T		/ Cmoe	× :	×	×	×	×	×	×	×	×	×			В	TEX	802	1B						sources	
:110	me		mring@	+		×	×	×	×	×	×	×	×	TPI	1 80	_	_	-	_) + N	ARO)			s.com	
			carmor			_	_	`	^	(Ĥ	^	_										\vdash			
																								A		
1			rces.co	-			_																	NALYS		
	Rece		▋	+											_									IS REQU	L	
	ived by:																							JEST	Delivera	Valoria
	(Signatu		$\ \cdot\ $	+	1	_											-	_							bles: ED	Vebound:Faser in Presenting Charlost
	re)																									L LOVO
				+	+										_	_			_	-					ADa	5
				1	1									S	NaOH+	Zn Ace	Na2S2C	NaHSC	H3PO4	H ₂ S0 ₄ :	HCL: H	Cool: C	None:	P		
1/21														ample (Ascorbic	tate+NaC	3: NaSO	A: NABIS	F	<u>ታ</u>	ดิ	00	ő	reserva	Other:	
2 //	Date/Time													omments	Acid: SAPC	H: Zn				NaOH: Na	HNO ₃ : HN	MeOH: Me	DI Water:	tive Codes		☐ Level IV
	14/12/24OU:	nature) Date/Time Received by: (Signature) 11/13/34 © [1]	Received by: (Signature)	ke Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com Relinquished by: (Signature) Date/Time Received by: (Signature) All 13/34 © 11:	Received by: (Signature)	Part Propositive Reading: Part Propositive Reading: Part Propositive Reading: Propositive Reading:	Test No. NA Correction Factor:	Yes No N/A Corrector Factor: Yes No N/A Corrector Factor: Yes No N/A Temporature Reading: Yes No N/A Ye	T Temp Blank:	PLERECEIPT Tamp Blank: Yes No Wel kex: Yes No Wel kex: Yes No Thermoneter ID:	PILE RECEIPT Temp Blank: Yes No	Eddy County, New Mexico CRM	Altumber:	Allorender All	All Silvanies All Society Secret Content Conte											

Chain of Custon

ling- /s	,	Comments: Email to Mike Carmona / Mcarmona@carmonaresources.com and Conner Moehring / Cmoehring@carmonaresources.com	CS-65 (Surface)	CS-64 (Surface)	CS-63 (Surface)	CS-62 (Surface)	CS-61 (Surface)	CS-60 (Surface)	CS-59 (Surface)	CS-58 (Surface)	CS-57 (Surface)	CS-56 (Surface)	Sample Identification	Total Containers:	Sample Custody Seals: Yes		Received Intact: Yes	SAMPLE RECEIPT Tem	PO#:		Project Location Eddy (Project Number:	Project Name: Asio C	Phone: 432-813-6823	City, State ZIP: Midland, TX 79701	Address: 310 W Wall St Ste 500	Company Name: Carmona Resources	Project Manager: Conner Moehring
	Relinquished by: (Signature)	ona / Mcarmo	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	12/12/2024	Date		No N/A	No N/A	s No	Temp Blank:		CRM	Eddy County, New Mexico	2073	Asio Otis Fed #3 (6.22.23)		701	ite 500	ırces	ng
	y: (Signature)	na@carmona											Time	Corrected Temperature:	Temperature Reading:	Correction Factor:	Thermometer ID:	Yes No			/lexico		22.23)					
		resources.co	×	×	×	×	×	×	×	×	×	×	Soil	perature:	eading:	OT:	D:	Wet ice:			Due Date:	□ Routine	Tur	Email:				
		m and Conr											Water					Yes 1			24 Hrs	Rush Rush	Turn Around	il: mcarmona	City, State ZIP:	Address:	Company Name:	Bill to: (if different)
12		ner Moehri	C 1	C 1	C 1	C 1	C 1	C 1	C 1	C 1	C 1	C 1	Grab/ # of Comp Cont		L	P	arar	nete	rs		ď	Code	,	mcarmona@carmonaresources.com	ZIP:		lame:	erent)
12/20	Date	ng / Cm	×	×	×	×	×	×	×	×	×		ă S		В		802					2 .		aresourc	-	-		Cam
124011	Date/Time	oehrin	×	×	×	×	×	×	×	×	×	×	TP	H 80	15M	(GF	RO +	DRO) + I	IRO)			es.com				Carmona Resources
		g@carmo	×	×	×	×	×	×	×	×	×	×			CH	nlori	de 3	0.00	_									sources
H		naresou																_										
117		Irces.co																					ANALYSIS REQUEST					
	Reg		-												_							\vdash	IS REQ	L				
	Received by: (Signature)																						UEST	Delivera	Reportir	State of	Prograi	
	(Signat	(Signature)		-	-						_			_		_						-		Deliverables: EDD L	ng:Level	State of Project:	n: UST/i	
	ure)] [6]	1	ST PI	Wo
																								 }]		rk Orde
					-					_			0.0	NaOT	Zn Ac	Na ₂ S ₂	NaHS	H3PO4: HP	H ₂ S0 ₄ : H ₂	HCL: HC	Cool: Cool	None: NO	_	ADaPT L	Reporting:Level III Level III LPST/UST LTRRP		Program: UST/PST ☐PRP ☐Brownfields ☐RRC	Work Order Comments
12													Sample	+Ascorbi	Zn Acetate+NaOH: Zn	Na ₂ S ₂ O ₃ : NaSO ₃	NaHSO4: NABIS	T P	: H ₂	H.	Cool	O	reserva	Other:	LRRP]	RRC	ents
1	Date/Time												Sample Comments	NaOH+Ascorbic Acid: SAPC	OH: Zn	03	Ø		NaOH: Na	HNO3: HN	МеОН: Ме	DI Wat	Preservative Codes					
6	ne												nts	APC					Na	¥	Me	DI Water: H ₂ O	des		Level IV]	Duperfund [

Vork Order No:

Login Sample Receipt Checklist

Client: Carmona Resources

Job Number: 880-52160-1

SDG Number: Eddy County, New Mexico

List Source: Eurofins Midland

List Number: 1

Creator: Vasquez, Julisa

Login Number: 52160

Question	Answer	Comment
The cooler's custody seal, if present, is intact.	N/A	
Sample custody seals, if present, are intact.	N/A	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	N/A	

2

4

6

0

10

12

13

14

APPENDIX F

CARMONA RESOURCES

MAP LEGEND

â

0

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways


Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

... Gravelly Spot

Candfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot
Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Nov 12, 2022—Dec 2, 2022

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
RG	Reeves-Gypsum land complex, 0 to 3 percent slopes	0.3	100.0%
Totals for Area of Interest		0.3	100.0%

Eddy Area, New Mexico

RG—Reeves-Gypsum land complex, 0 to 3 percent slopes

Map Unit Setting

National map unit symbol: 1w5f Elevation: 1,250 to 5,000 feet

Mean annual precipitation: 10 to 25 inches Mean annual air temperature: 57 to 70 degrees F

Frost-free period: 190 to 235 days

Farmland classification: Not prime farmland

Map Unit Composition

Reeves and similar soils: 55 percent

Gypsum land: 30 percent Minor components: 15 percent

Estimates are based on observations, descriptions, and transects of

the mapunit.

Description of Reeves

Setting

Landform: Ridges, plains, hills

Landform position (two-dimensional): Shoulder, backslope,

footslope, toeslope

Landform position (three-dimensional): Side slope, head slope,

nose slope, crest Down-slope shape: Convex Across-slope shape: Linear

Parent material: Residuum weathered from gypsum

Typical profile

H1 - 0 to 8 inches: loam H2 - 8 to 32 inches: clay loam

H3 - 32 to 60 inches: gypsiferous material

Properties and qualities

Slope: 0 to 1 percent

Depth to restrictive feature: More than 80 inches

Drainage class: Well drained

Runoff class: High

Capacity of the most limiting layer to transmit water (Ksat): Very low

to moderately low (0.00 to 0.06 in/hr) Depth to water table: More than 80 inches

Frequency of flooding: None Frequency of ponding: None

Calcium carbonate, maximum content: 25 percent

Gypsum, maximum content: 80 percent

Maximum salinity: Very slightly saline to moderately saline (2.0 to

8.0 mmhos/cm)

Sodium adsorption ratio, maximum: 4.0

Available water supply, 0 to 60 inches: Low (about 4.3 inches)

Interpretive groups

Land capability classification (irrigated): 3s Land capability classification (nonirrigated): 7s

Hydrologic Soil Group: B

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Description of Gypsum Land

Setting

Landform: Ridges, plains, hills

Landform position (two-dimensional): Shoulder, backslope,

footslope, toeslope

Landform position (three-dimensional): Side slope, head slope,

nose slope, crest

Down-slope shape: Convex

Across-slope shape: Linear

Parent material: Residuum weathered from gypsum

Interpretive groups

Land capability classification (irrigated): None specified

Land capability classification (nonirrigated): 8s

Hydric soil rating: No

Minor Components

Reagan

Percent of map unit: 5 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Largo

Percent of map unit: 5 percent

Ecological site: R070BC007NM - Loamy

Hydric soil rating: No

Cottonwood

Percent of map unit: 5 percent

Ecological site: R070BC033NM - Salty Bottomland

Hydric soil rating: No

Data Source Information

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 19, Sep 7, 2023 Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 472645

QUESTIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Prerequisites					
Incident ID (n#)	nAPP2319138455				
Incident Name	NAPP2319138455 ASIO OTUS CTB @ 0				
Incident Type	Produced Water Release				
Incident Status	Reclamation Report Received				
Incident Facility	[fAPP2202647776] ASIO OTUS FED #3H RT BTTY				

ocation of Release Source					
Please answer all the questions in this group.					
Site Name	ASIO OTUS CTB				
Date Release Discovered	06/22/2023				
Surface Owner	Federal				

Incident Details	
Please answer all the questions in this group.	
Incident Type	Produced Water Release
Did this release result in a fire or is the result of a fire	No
Did this release result in any injuries	No
Has this release reached or does it have a reasonable probability of reaching a watercourse	No
Has this release endangered or does it have a reasonable probability of endangering public health	No
Has this release substantially damaged or will it substantially damage property or the environment	No
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No

Nature and Volume of Release						
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.						
Crude Oil Released (bbls) Details	Not answered.					
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Production Produced Water Released: 34 BBL Recovered: 0 BBL Lost: 34 BBL.					
Is the concentration of chloride in the produced water >10,000 mg/l	Yes					
Condensate Released (bbls) Details	Not answered.					
Natural Gas Vented (Mcf) Details	Not answered.					
Natural Gas Flared (Mcf) Details	Not answered.					
Other Released Details	Not answered.					
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.					

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 472645

QUESTI	ONS (continued)
Operator: COG OPERATING LLC 600 W Illinois Ave Midland, TX 79701	OGRID: 229137 Action Number: 472645 Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	afety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface to does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Brittany Esparza Title: Environmental Technician Email: brittany.Esparza@ConocoPhillips.com Date: 06/10/2025

Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 3

Action 472645

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Site Characterization					
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the				
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)				
What method was used to determine the depth to ground water	U.S. Geological Survey				
Did this release impact groundwater or surface water	No				
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:					
A continuously flowing watercourse or any other significant watercourse	Between 1 and 100 (ft.)				
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Greater than 5 (mi.)				
An occupied permanent residence, school, hospital, institution, or church	Greater than 5 (mi.)				
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Greater than 5 (mi.)				
Any other fresh water well or spring	Greater than 5 (mi.)				
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)				
A wetland	Greater than 5 (mi.)				
A subsurface mine	Greater than 5 (mi.)				
An (non-karst) unstable area	Zero feet, overlying, or within area				
Categorize the risk of this well / site being in a karst geology	High				
A 100-year floodplain	Greater than 5 (mi.)				
Did the release impact areas not on an exploration, development, production, or storage site	Yes				

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided	to the appropriate district office no later than 90 days after the release discovery date.	
Requesting a remediation plan approval with this submission	Yes	
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.		
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
Soil Contamination Sampling: (Provide the highest observable value for each, in milligrams per kilograms.)		
Chloride (EPA 300.0 or SM4500 Cl B)	300	
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	8015	
GRO+DRO (EPA SW-846 Method 8015M)	8015	
BTEX (EPA SW-846 Method 8021B or 8260B)	8021	
Benzene (EPA SW-846 Method 8021B or 8260B)	8021	
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes comple which includes the anticipated timelines for beginning and completing the remediation.	ted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,	
On what estimated date will the remediation commence	10/10/2023	
On what date will (or did) the final sampling or liner inspection occur	10/11/2023	
On what date will (or was) the remediation complete(d)	10/19/2023	
What is the estimated surface area (in square feet) that will be reclaimed	5476	
What is the estimated volume (in cubic yards) that will be reclaimed	456	
What is the estimated surface area (in square feet) that will be remediated	5476	
What is the estimated volume (in cubic yards) that will be remediated 456		
These estimated dates and measurements are recognized to be the best guess or calculation at	the time of submission and may (be) change(d) over time as more remediation efforts are completed.	

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 472645

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
Yes		
ASIO OTUS FED #3H RT BTTY [fAPP2202647776]		
Not answered.		

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

I hereby agree and sign off to the above statement

I hereby agree and sign off to the above statement

Title: Environmental Technician

Email: brittany.Esparza@ConocoPhillips.com

Date: 06/10/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 7/21/2025 11:07:53 AM

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 472645

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 472645

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	410315
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	12/12/2024
What was the (estimated) number of samples that were to be gathered	30
What was the sampling surface area in square feet	4450

Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.		
Requesting a remediation closure approval with this submission	Yes	
Have the lateral and vertical extents of contamination been fully delineated	Yes	
Was this release entirely contained within a lined containment area	No	
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes	
What was the total surface area (in square feet) remediated	5476	
What was the total volume (cubic yards) remediated	456	
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes	
What was the total surface area (in square feet) reclaimed	5476	
What was the total volume (in cubic yards) reclaimed	456	
Summarize any additional remediation activities not included by answers (above)	Based on lab analytical results, the area of concern displayed concentrations below regulatory thresholds for TPH, Chloride, & BTEX	

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

Name: Brittany Esparza

I hereby agree and sign off to the above statement

Email: brittany.Esparza@ConocoPhillips.com

Date: 06/10/2025

Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 472645

QUESTIONS (continued)

Operator: COG OPERATING LLC	OGRID: 229137	
600 W Illinois Ave Midland, TX 79701	Action Number: 472645	
	Action Type: [C-141] Reclamation Report C-141 (C-141-v-Reclamation)	
QUESTIONS		
Reclamation Report		
Only answer the questions in this group if all reclamation steps have been completed.		
Requesting a reclamation approval with this submission	Yes	
What was the total reclamation surface area (in square feet) for this site	5476	
What was the total volume of replacement material (in cubic yards) for this site	456	
	four feet of non-waste containing, uncontaminated, earthen material with chloride concentrations less than 600 over must include a top layer, which is either the background thickness of topsoil or one foot of suitable material	
Is the soil top layer complete and is it suitable material to establish vegetation	Yes	
On what (estimated) date will (or was) the reseeding commence(d)	10/19/2023	
Summarize any additional reclamation activities not included by answers (above)	The site was re-seeded via hand broadcasting.	
	reclamation requirements and any conditions or directives of the OCD. This demonstration should be in the form It field notes, photographs of reclaimed area, and a narrative of the reclamation activities. Refer to 19.15.29.13	
to report and/or file certain release notifications and perform corrective actions for releatithe OCD does not relieve the operator of liability should their operations have failed to water, human health or the environment. In addition, OCD acceptance of a C-141 report	knowledge and understand that pursuant to OCD rules and regulations all operators are required asses which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or ially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed ing notification to the OCD when reclamation and re-vegetation are complete. Name: Brittany Esparza	
I hereby agree and sign off to the above statement	Name: Brittany Espaiza Title: Environmental Technician Email: brittany.Espaiza@ConocoPhillips.com	

Date: 06/10/2025

Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 8

Action 472645

QUESTIONS (continued)

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

QUESTIONS

Revegetation Report		
Only answer the questions in this group if all surface restoration, reclamation and re-vegetation obligations have been satisfied.		
Requesting a restoration complete approval with this submission	No	
Per Paragraph (4) of Subsection (D) of 19.15.29.13 NMAC for any major or minor release containing liquids, the responsible party must notify the division when reclamation and re-vegetation are complete.		

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 472645

CONDITIONS

Operator:	OGRID:
COG OPERATING LLC	229137
600 W Illinois Ave	Action Number:
Midland, TX 79701	472645
	Action Type:
	[C-141] Reclamation Report C-141 (C-141-v-Reclamation)

CONDITIONS

Created	By Condition	Condition Date
rhamle	We have received your reclamation/remediation closure report for Incident #NAPP2319138455 ASIO OTUS CTB, thank you. The reclamation/remediation closure report is approved.	7/21/2025