REVIEWED

By NVelez at 1:07 pm, Aug 28, 2025

- 1. Continue with O & M schedule.
- 2. Submit next quarterly report by October 15, 2025.

August 28, 2025

New Mexico Oil Conservation Division

New Mexico Energy, Minerals, and Natural Resources Department 1220 South St. Francis Drive Santa Fe, New Mexico 87505

Re: Second Quarter 2025 - Remediation System Quarterly Report

Federal 18 #1T San Juan County, New Mexico Hilcorp Energy Company

NMOCD Incident Number: NCS2103335776

To Whom it May Concern:

Ensolum, LLC (Ensolum), on behalf of Hilcorp Energy Company (Hilcorp), presents this *Second Quarter 2025 – Remediation System Quarterly Report* summarizing second quarter 2025 activities at the former Federal 18 #1T coalbed methane gas well (Site), located in Unit M, Section 18, Township 30 North, Range 12 West in the City of Farmington, New Mexico. The casing of the original gas well has been modified to vent gas and purge water from the Ojo Alamo and Nacimiento Formations. Since initiation of the remediation system in 2010, quarterly reports have been submitted to the New Mexico Oil Conservation Division (NMOCD) to record activities performed at the Site, as well as document well-casing pressures from nearby domestic water well SJ-01737, the volume of gas vented from the Site's well, and groundwater analytical results collected from the Site's well.

SITE BACKGROUND

As part of an ongoing effort between the NMOCD and Hilcorp (Site originally owned and operated by XTO Energy, Inc. [XTO]), the agreed upon remedial option for the Site was to install a vacuum system at the Site to vent gas from the Nacimiento formation, which overlies the Ojo Alamo Formation. Gas found in the Nacimiento formation could have originated from several contributing sources in the area including existing and/or abandoned gas wells near the Site. In agreement with the NMOCD, XTO modified the Site's production well to vent gas and recover contaminated groundwater by setting a plug at a depth of approximately 513 feet below ground surface (bgs). Perforations were made in the casing at 437 feet to 452 feet bgs and 457 feet to 473 feet bgs in order to monitor groundwater and vent gas from the Nacimiento Formation. Based on initial groundwater sampling results, XTO recommended pumping the aquifer until groundwater results were below the New Mexico Water Quality Control Commission (NMWQCC) standards for applicable chemicals of concern (COCs).

A submersible water pump was installed in the Site's well in November 2010 at a depth of approximately 485 feet bgs in order to recover impacted groundwater. Based on aquifer tests performed by XTO, the water pump was set to maintain a static water level of approximately 473 feet bgs. The water pump is plumbed into the existing water lines and stored in the on-Site 210-barrel (bbl) water tank, which is regularly emptied for off-Site disposal. A vacuum pump was

Page 2

subsequently installed at the Site's well to also remove gas entrained in the formation. A portable generator was originally placed at the Site to power both the vacuum and water pumps. Generator maintenance issues led to the system being electrified on February 3, 2011.

Operation and maintenance (O&M) inspections are conducted by Hilcorp personnel regularly to check the system and verify proper water and vacuum pump operation, record water meter volumes, and verify no other Site conditions dictate system maintenance and/or adjustment. Possible pressure variations in the subsurface due to the vacuum pump are monitored using nearby water well SJ-01737. Casing pressure measurements from the SJ-01737 well are included in Table 1.

SECOND QUARTER 2025 SITE ACTIVITIES AND RESULTS

Approximately 52,604 gallons (1,252 bbls) of water were removed from the Site's well between the first quarter and second quarter of 2025 sampling events. To date, approximately 1,449,826 gallons (34,520 bbls) of impacted water have been removed from the Site. A water sample from the well was collected on April 14, 2025 and submitted to Eurofins Environment Testing for laboratory analysis. Specifically, the water sample was analyzed for the following COCs: volatile organic compounds (VOCs), including benzene, toluene, ethylbenzene, and xylenes (BTEX), following Environmental Protection Agency (EPA) Method 8260B, specific conductance (or electrical conductivity) following Standard Method (SM) 2510B, pH following Method SM4500-H+B, and total dissolved solids (TDS) following Method SM2540C.

Based on results from the April 2025 sampling event, benzene and TDS remain at concentrations exceeding the applicable NMWQCC standards and appear to be similar to historical results. Analytical results are summarized in Table 2, with complete laboratory reports attached as Appendix A.

The Site vacuum pump has been operating based on a setting of 690 minutes on and 30 minutes off (totaling 23 hours runtime per day). During the second quarter of 2025, the pump operated at an average flow rate of 4.2 actual cubic feet per minute (ACFM). Approximately 36,708 thousand cubic feet (MCF) of gas/air have been emitted from the Site's well since the system began operating in 2010. There were no deviations from the regular operation and maintenance activities for the system during the second quarter of 2025. Gas/air volumes vented by the system are summarized in Table 3.

RECOMMENDATIONS

O&M visits will continue to be performed by Hilcorp personnel to verify the system is operating as designed. Deviations from regular operations will be noted on field logs and included in the following quarterly report. Hilcorp will continue to remove and monitor water from the Site until benzene and TDS concentrations are compliant with NMWQCC standards for eight consecutive quarters.

Hilcorp Energy Company Second Quarter 2025 – Remediation System Quarterly Report Federal 18 #1T

Page 3

We appreciate the opportunity to provide this report to the NMOCD. If you should have any questions or comments regarding this proposal, please contact the undersigned.

Ensolum, LLC

Shir

Stuart Hyde, PG (licensed in TX, WY, & WA) Senior Managing Geologist (970) 903-1607 shyde@ensolum.com Daniel R. Moir, PG (licensed in WY & TX) Senior Managing Geologist (303) 887-2946 dmoir@ensolum.com

Attachments:

Table 1 Well SJ-01737 Casing Pressure Readings

Table 2 Water Analytical Results
Table 3 Gas and Air Vented

Appendix A Laboratory Analytical Reports

TABLES

TABLE 1 WELL SJ-01737 CASING PRESSURE READINGS Federal 18 #1T

Hilcorp Energy Company San Juan County, New Mexico

San Juan County, New Mexico									
Sample Date	Casing Pressure (ounces)	Average							
4/6/2023	0	0.000							
4/18/2023	0	0.000							
4/28/2023	0	0.000							
5/4/2023	0	0.000							
5/10/2023	0	0.000							
5/19/2023	0	0.000							
6/6/2023	0	0.000							
6/23/2023	0	0.000							
7/7/2023	0	0.000							
7/13/2023	0	0.000							
7/24/2023	0	0.000							
8/4/2023	0	0.000							
8/10/2023	0	0.000							
8/21/2023	0	0.000							
9/7/2023	0	0.000							
9/27/2023	0	0.000							
10/14/2023	0	0.000							
10/27/2023	0	0.000							
11/9/2023	0	0.000							
12/11/2023	0	0.000							
12/27/2023	0	0.000							
1/9/2024	0	0.000							
1/18/2024	0	0.000							
1/25/2024	0	0.000							
1/31/2024	0	0.000							
2/22/2024	0	0.000							
3/7/2024	0	0.000							
3/26/2024	0	0.000							
6/10/2024	0	0.000							
9/18/2024	0	0.000							
10/10/2024	0	0.000							
10/23/2024	0	0.000							
11/11/2024	0	0.000							
12/4/2024	0	0.000							
12/19/2024	0	0.000							
1/11/2025	0	0.000							
1/16/2025	0	0.000							
2/7/2025	0	0.000							
2/20/2025	0	0.000							
3/10/2025	0	0.000							
3/29/2025	0	0.000							
4/14/2025	0	0.000							
4/24/2025	0	0.000							
5/15/2025	0	0.000							
5/20/2025	0	0.000							
6/9/2025	0	0.000							
	+								
6/27/2025	0	0.000							

Ensolum 1 of 1

ENSOLUM

	TABLE 2 WATER ANALYTICAL RESULTS Federal 18 #1T Hilcorp Energy Company San Juan County, New Mexico										
Sample Date	Benzene (µg/L)	Toluene (µg/L)	Ethylbenzene (µg/L)	Xylene (μg/L)	TDS (mg/L)	Electrical Conductivity (umhos/cm)	рН	Purge Water Volume (gallons)			
NMWQCC Standards	5.0	1,000	700	620	1,000		6 thru 9				
11/5/2010	ND 450	5.2	ND	ND 670	1,400	2,600	7.2	NM			
9/24/2010 9/24/2010	150 190	ND 170	76 24	670 210	13,000	18,000	6.1	NM NM			
9/24/2010	143	221	63.6	950				NM			
9/24/2010	320	377	31.8	568	11,100	16,000	5.84	NM			
12/10/2011			-	-	7,610	8,900	6.36	3,033			
1/5/2011	67	93	7.9	25		-		7,798			
1/5/2011	73	99	10	39	4,800	6,000	6.6	7,798			
1/29/2011	60	93	10	33		4,900	6.4	10,791			
2/28/2011	42	60	6.1	20	3,400	4,000	6.7	14,795			
4/1/2011 4/29/2011	23 29	27 28	1.8	6.8 7.3	2,700 2,600	3,100 2,900	6.8 6.9	31,238 50,217			
5/31/2011	14	19	1.4	4.9	2,500	2,800	6.7	76,513			
6/14/2011	55	81	2.8	15	2,500	2,700	6.7	88,120			
6/30/2011	52	67	2.6	12	2,500	2,700	6.9	101,209			
8/15/2011	21	25	1.2	5.8	2,500	2,600	6.8	140,267			
9/2/2011	10	12	0.64	3.2	2,500	2,600	7.2	155,801			
9/16/2011	9.6	11	0.64	3	2,400	2,500	7.2	168,040			
9/30/2011	7.2	8.7	0.64	2.5	2,500	2,600	7	180,393			
10/28/2011	5.1	ND ND	1.8	2.7	2,300	2,600	6.9	205,220 233,488			
11/30/2011 12/30/2011	3.4	ND ND	3.9 ND	2.9	2,500 2,500	2,600 2,500	7.1 7.5	233,488 261,391			
4/3/2012	6	ND ND	ND ND	1.6	2,500	2,500	7.5	351,300			
4/9/2012					2,400	2.400	7.4	NM			
7/3/2012	5.3	ND	ND	ND	2,300	2,400	7.4	NM			
7/6/2012						-		441,053			
9/19/2012				-				521,271			
9/27/2012	6.2	ND	ND	ND	2,300	2,500	7.1	NM			
12/14/2012				-				598,540			
12/31/2012	13.9	1.1	ND	3.3	2,690	2,440	7.05	604,689			
1/23/2013 2/22/2013	160	190 77	ND ND	26 1.8	2,400	2,500	7.1	NM eos seo			
5/2/2013	7.1 9	6.9	ND ND	ND	2,100 2,400	2,500 2,600	7.1	605,860 612,601			
8/19/2013	20	11	ND ND	2.3	2,200	2,600	7.2	NM			
9/23/2013	13	11	ND	2.2	2,300	2,500	7.1	621,744			
11/25/2013	4.6	5.2	ND	ND	2,200	2,700	7.7	631,430			
2/4/2014	15	17	0.72	3.1	2,200	2,500	7.3	636,120			
10/1/2015	54.2	57	1.37	9.77	2,260	2,640	6.98	639,410			
10/20/2015	42.3	39.9	0.964	7.06	2,330	1,460	7.09	642,650			
3/28/2016	38	34.1	0.835	4.82	2,230	2,570	6.86	650,850			
6/14/2016	78.3	58.4	1.16	7.22	2,890	2,600	6.89	704,371			
8/29/2016 11/18/2016	19 13.2	ND 5.61	ND ND	2.18	2,410 2,470	2,590 2,580	7.02 7.03	763,261 842,610			
3/31/2017	9.61	7.87	ND ND	ND	2,300	2,570	7.28	858,190			
6/16/2017	64.6	29.2	0.781	5.4	2,360	2,570	7.05	927,854			
9/7/2017	4.61	1.73	ND	ND	2,030	2,450	7.14	997,330			
12/5/2017	138	51.5	1.65	9.378	2,230	2,590	7.2	1,080,550			
3/6/2018	19.9	14.8	0.543	2.71	2,290	2,620	7.13	1,080,840			
8/7/2018	7.9	8.06	<0.5	<1.5	2,200	2,300	7.19	1,082,751			
1/3/2019	7.07	3.29	0.177	1.08	2,080	6,750	6.35	1,120,220			
2/22/2019	19.8	11.1	<0.5	3.97	2,270	2,710	7.46	1,120,366			
5/24/2019 9/10/2019	11.9 23.2	10.8 18.8	ND ND	ND ND	2,380 2,260	2,760 2,600	7.15 7.37	1,123,853			
10/29/2019	5.41	5.68	ND ND	ND ND	2,300	2,530	7.09	1,125,478 1,127,076			
2/27/2020	20.7	19.3	ND ND	ND	2,280	2,580	7.06	1,128,506			
5/15/2020	10.3	8.91	ND	ND	2,460	2,570	7.27	1,131,033			
8/25/2020	3.9	3.5	ND	ND	2,190	2,640	7.62	1,131,100			
10/27/2020	31.1	24.4	ND	ND	2,240	2,530	7.43	1,131,119			
2/17/2021	73	<1	<1	<1.5	2,200	2,400	7.42	1,131,123			
6/29/2021 (2)								1,134,031			
9/30/2021	130	87	<5.0	8.1	2,300	2,500	7.20	1,134,167			
12/6/2021	33 25	20	<1.0	6.0	2,430 2,380	2,500	7.15	1,143,239 1,156,355			
2/17/2022 4/12/2022	25	3.1 4.3	<1.0 <1.0	2.7	2,380	2,600 2,500	7.17 7.13	1,156,355			
7/15/2022	33	4.3	<1.0	1.3	2,360	2,600	7.13	1,169,456			
10/11/2022	47	4.6	<1.0	2.0	2,320	2,600	7.13	1,210,479			
1/12/2023	40	1.7	<1.0	<1.5	2,330	2,600	7.17	1,229,525			
5/10/2023	32	1.7	<1.0	<1.5	2,320	2,600	6.73	1,253,497			
7/24/2023	34	1.3	<1.0	<1.5	2,360	2,600	7.18	1,269,880			
10/27/2023	31	<1.0	<1.0	<1.5	2,360	2,600	7.17	1,288,677			
1/18/2024	47	<1.0	<1.0	<1.5	2,330	2,600	7.19	1,304,447			
4/11/2024	42	<1.0	<1.0	<1.5	2,300	2,600	7.20	1,316,350			
7/15/2024	46 22	1.1	<1.0 <1.0	<1.5	2,400 2,400	2,500 2,600	7.40	1,331,838			
10/24/2024 1/16/2025	12	7.5 1.2	<1.0 <1.0	<1.5 <1.5	2,400	2,600	7.30	1,368,720 1,397,222			
4/14/2025	7.9	<1.0	<1.0	<1.5	2,300	2,500	7.3 HF 7.2 HF	1,397,222			
.,/2020		-1.0	-1.0	-1.0	_,000	2,500	1.2111	.,.75,020			

- (1): initial water sample
- (2): water pump not functioning

 µg/L: micrograms per liter

 µmhos/cm: micromhos per centimeter
- µunoscm: micromhos per centimeter
 mg/L: milligrams per liter
 ND: not detected, practical quantitation limit unknown
 NMWQCC: New Mexico Water Quality Control Commission
 --: not analyzed

- --. incl analyzed

 --. incl analyzed

 --. incl analyzed

 --. incl analyzed

 --. incl analyzed outside of hold time.

 HF: Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample analyzed outside of hold time.

 Concentrations in **bold** and shaded exceed the New Mexico Water Quality Control Commission Standards, 20.6.2 of the New Mexico Administrative Code

TABLE 3 GAS AND AIR VENTED Federal 18 #1T **Hilcorp Energy Company** San Juan County, New Mexico Total Vented Gas Date SCFM ACFM and Air (MCF) 9/17/2019 26,677 10/7/2019 6 26,849 10/21/2019 6 26.969 10/28/2019 6 27,030 12/5/2019 6 27,356 12/19/2019 6 27.477 1/7/2020 6 27,954 1/17/2020 3 6 28,040 1/30/2020 6 28.153 2/12/2020 28,265 2/25/2020 3 6 28.377 4/3/2020 3 6 28,705 28,756 4/9/2020 4/15/2020 28.808 6 4/23/2020 3 6 28.877 4/30/2020 28,937 5/15/2020 6 29.067 5/21/2020 3 6 29,118 5/29/2020 29,179 6 6/5/2020 6 29,239 6/29/2020 0 0 Hot, not running 7/8/2020 0 0 Unit Down 8/11/2020 0 0 Unit Down 8/25/2020 0 0 Unit Down 9/16/2020 0 0 Unit Down 9/22/2020 0 0 Unit Down 10/26/2020 0 0 Unit Down 11/9/2020 0 0 Unit Down 12/8/2020 0 0 Unit Down 1/5/2021 0 0 Unit Down 1/20/2021 0 0 Unit Down 2/11/2021 Unit Down 2/17/2021 0 0 Unit Down 3/22/2021 0 0 Unit Down *3/31/2021 5.6 29,241 6/29/2021 5.6 29,262 9/30/2021 5.6 7 29,281 12/31/2021 5.6 29,320 1/19/2022 5.6 29.328 1/24/2022 5.6 7 29,353 3/31/2022 29,991 5.6 6/14/2022 5.6 30.715 9/30/2022 5.6 31,759 32,647 12/31/2022 5.6 3/31/2023 3.1 3.9 33,132 6/30/2023 2.5 3.1 33,527 9/27/2023 2.25 2.8 33.874 12/27/2023 2.05 2.6 34,198 34,628 3/26/2024 2.75 3.5 2.5 3.1 34.958 6/10/2024 9/18/2024 2.25 2.8 35,348 12/19/2024 1.75 2.2 35,628 3/29/2025 3.25 4.1 36.192 6/27/2025 3.3 42 36.708

Notes

ACFM - flow rate in actual cubic feet per minute

MCF - thousand cubic feet

SCFM - flow rate in standard cubic feet per minute

* - Pump operated from 3/23 - 3/31/2021.

SCFM per day based on manufacture specifications.

ACFM is estimated based on site elevation and/or observed vacuum

Ensolum 1 of 1

APPENDIX A

Laboratory Analytical Reports

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mitch Killough Hilcorp Energy PO BOX 4700 Farmington, New Mexico 87499

Generated 4/23/2025 5:32:30 PM

JOB DESCRIPTION

Federal 18 1T

JOB NUMBER

885-23210-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 4/23/2025 5:32:30 PM

Authorized for release by Michelle Garcia, Project Manager michelle.garcia@et.eurofinsus.com (505)345-3975 ,

2

3

4

5

7

1 N

Client: Hilcorp Energy

Laboratory Job ID: 885-23210-1

Project/Site: Federal 18 1T

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	8
QC Association Summary	11
Lab Chronicle	12
Certification Summary	13
Chain of Custody	15
Receipt Checklists	16

2

3

4

6

8

9

Definitions/Glossary

Client: Hilcorp Energy Job ID: 885-23210-1 Project/Site: Federal 18 1T

Qualifiers

General Chemistry

Qualifier **Qualifier Description**

HF Parameter with a holding time of 15 minutes. Test performed by laboratory at client's request. Sample was analyzed outside of hold time.

Glossary

Abbreviation	These commonly used abbreviations may or may not be present in this report.
☼	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)
Dil Fac	Dilution Factor
DL	Detection Limit (DoD/DOE)
DL, RA, RE, IN	Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample
DLC	Decision Level Concentration (Radiochemistry)
EDL	Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE) MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry) Minimum Detectable Concentration (Radiochemistry) MDC MDL Method Detection Limit

ML Minimum Level (Dioxin) MPN Most Probable Number Method Quantitation Limit MQL

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive **Quality Control** QC

RER Relative Error Ratio (Radiochemistry)

RLReporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

Too Numerous To Count **TNTC**

Case Narrative

Client: Hilcorp Energy

Job ID: 885-23210-1

Project: Federal 18 1T

Job ID: 885-23210-1 Eurofins Albuquerque

Job Narrative 885-23210-1

Analytical test results meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page unless otherwise noted under the individual analysis. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable.

- Matrix QC may not be reported if insufficient sample is provided or site-specific QC samples were not submitted. In these
 situations, to demonstrate precision and accuracy at a batch level, a LCS/LCSD may be performed, unless otherwise
 specified in the method.
- Surrogate and/or isotope dilution analyte recoveries (if applicable) which are outside of the QC window are confirmed unless attributed to a dilution or otherwise noted in the narrative.

Regulated compliance samples (e.g. SDWA, NPDES) must comply with the associated agency requirements/permits.

Receipt

The sample was received on 4/15/2025 7:15 AM. Unless otherwise noted below, the sample arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.3°C.

Receipt Exceptions

The Chain-of-Custody (COC) was incomplete as received and/or improperly completed: Sample ID was not on the COC. Used ID listed on the sample label.

GC/MS VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

General Chemistry

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

9

6

R

9

10

Released to Imaging: 8/28/2025 1:12:49 PM

Client Sample Results

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Client Sample ID: MW-1 Lab Sample ID: 885-23210-1

Date Collected: 04/14/25 13:00 Matrix: Water Date Received: 04/15/25 07:15

Method: SW846 8260B - Volatile Organic Compounds (GC/MS) Result Qualifier Dil Fac Analyte Unit D Prepared Analyzed 1,1,1,2-Tetrachloroethane ND 1.0 ug/L 04/19/25 00:37 ND 1,1,1-Trichloroethane 1.0 ug/L 04/19/25 00:37 1,1,2,2-Tetrachloroethane ND 2.0 ug/L 04/19/25 00:37 ND 1,1,2-Trichloroethane 1.0 ug/L 04/19/25 00:37 1.1-Dichloroethane ND ug/L 04/19/25 00:37 1.0 1,1-Dichloroethene ND 1.0 ug/L 04/19/25 00:37 1,1-Dichloropropene ND 1.0 ug/L 04/19/25 00:37 1,2,3-Trichlorobenzene ND 1.0 ug/L 04/19/25 00:37 1,2,3-Trichloropropane ND 2.0 ug/L 04/19/25 00:37 1,2,4-Trichlorobenzene ND 1.0 ug/L 04/19/25 00:37 1,2,4-Trimethylbenzene ND 1.0 ug/L 04/19/25 00:37 1,2-Dibromo-3-Chloropropane ND 2.0 ug/L 04/19/25 00:37 ug/L 1,2-Dibromoethane (EDB) ND 1.0 04/19/25 00:37 1,2-Dichlorobenzene ND 1.0 ug/L 04/19/25 00:37 ND 1,2-Dichloroethane (EDC) 1.0 ug/L 04/19/25 00:37 1,2-Dichloropropane ND 1.0 ug/L 04/19/25 00:37 ND 1,3,5-Trimethylbenzene 1.0 ug/L 04/19/25 00:37 1,3-Dichlorobenzene ND 1.0 ug/L 04/19/25 00:37 1,3-Dichloropropane ND 1.0 ug/L 04/19/25 00:37 1,4-Dichlorobenzene ND 1.0 ug/L 04/19/25 00:37 1-Methylnaphthalene ND 4.0 ug/L 04/19/25 00:37 2,2-Dichloropropane ND 2.0 ug/L 04/19/25 00:37 2-Butanone ND 10 ug/L 04/19/25 00:37 2-Chlorotoluene ND 1.0 ug/L 04/19/25 00:37 2-Hexanone ND 10 ug/L 04/19/25 00:37 2-Methylnaphthalene ND ug/L 4.0 04/19/25 00:37 4-Chlorotoluene ND 1.0 ug/L 04/19/25 00:37 4-Isopropyltoluene ND ug/L 1.0 04/19/25 00:37 ug/L 4-Methyl-2-pentanone ND 10 04/19/25 00:37 Acetone ND 10 ug/L 04/19/25 00:37 **Benzene** 7.9 1.0 ug/L 04/19/25 00:37 Bromobenzene ND 1.0 ug/L 04/19/25 00:37 Bromodichloromethane ND ug/L 04/19/25 00:37 1.0 Dibromochloromethane ND 10 ug/L 04/19/25 00:37 Bromoform ND 1.0 ug/L 04/19/25 00:37 Bromomethane ND ug/L 04/19/25 00:37 3.0 Carbon disulfide ND 10 ug/L 04/19/25 00:37 ug/L Carbon tetrachloride ND 1.0 04/19/25 00:37 Chlorobenzene ND ug/L 1.0 04/19/25 00:37 Chloroethane ND 2.0 ug/L 04/19/25 00:37 Chloroform ND 1.0 ug/L 04/19/25 00:37 Chloromethane ND 3.0 ug/L 04/19/25 00:37 cis-1,2-Dichloroethene ND 1.0 ug/L 04/19/25 00:37 cis-1,3-Dichloropropene ug/L 04/19/25 00:37 ND 1.0 Dibromomethane ND ug/L 1.0 04/19/25 00:37 Dichlorodifluoromethane ND 1.0 ug/L 04/19/25 00:37 Ethylbenzene ND 1.0 ug/L 04/19/25 00:37 Hexachlorobutadiene ND 1.0 ug/L 04/19/25 00:37 Isopropylbenzene ND 1.0 ug/L 04/19/25 00:37

Eurofins Albuquerque

9

3

5

8

10

Job ID: 885-23210-1

Client: Hilcorp Energy Project/Site: Federal 18 1T

Client Sample ID: MW-1

Lab Sample ID: 885-23210-1

Matrix: Water

Date Collected: 04/14/25 13:00 Date Received: 04/15/25 07:15

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Methyl-tert-butyl Ether (MTBE)	ND		1.0	ug/L			04/19/25 00:37	1
Methylene Chloride	ND		2.5	ug/L			04/19/25 00:37	1
n-Butylbenzene	ND		3.0	ug/L			04/19/25 00:37	1
N-Propylbenzene	ND		1.0	ug/L			04/19/25 00:37	1
Naphthalene	ND		2.0	ug/L			04/19/25 00:37	1
sec-Butylbenzene	ND		1.0	ug/L			04/19/25 00:37	1
Styrene	ND		1.0	ug/L			04/19/25 00:37	1
tert-Butylbenzene	ND		1.0	ug/L			04/19/25 00:37	1
Tetrachloroethene (PCE)	ND		1.0	ug/L			04/19/25 00:37	1
Toluene	ND		1.0	ug/L			04/19/25 00:37	1
trans-1,2-Dichloroethene	ND		1.0	ug/L			04/19/25 00:37	1
trans-1,3-Dichloropropene	ND		1.0	ug/L			04/19/25 00:37	1
Trichloroethene (TCE)	ND		1.0	ug/L			04/19/25 00:37	1
Trichlorofluoromethane	ND		1.0	ug/L			04/19/25 00:37	1
Vinyl chloride	ND		1.0	ug/L			04/19/25 00:37	1
Xylenes, Total	ND		1.5	ug/L			04/19/25 00:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93		70 - 130				04/19/25 00:37	1
Toluene-d8 (Surr)	87		70 - 130				04/19/25 00:37	1
4-Bromofluorobenzene (Surr)	106		70 - 130				04/19/25 00:37	1
Dibromofluoromethane (Surr)	91		70 - 130				04/19/25 00:37	1

General	I Chemistry	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Total Dissolved Solids (SM 2540C)	2300		250	mg/L			04/17/25 13:21	1
Specific Conductance (SM 2510B)	2500		10	umhos/cm	1		04/16/25 17:39	1
pH (SM 4500 H+ B)	7.2	HF	0.1	SU			04/16/25 17:39	1

3

3

5

7

0

10

QC Sample Results

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Method: 8260B - Volatile Organic Compounds (GC/MS)

Lab Sample ID: MB 885-24602/4

Matrix: Water

Client Sample	ID:	Meth	od Blank	
P	rep	Type:	Total/NA	

D	Prepared	Analyzed	Dil Fac
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1
		04/18/25 11:36	1

	МВ						
Analyte		Qualifier	RL	Unit	D Prepare		Dil Fa
1,1,1,2-Tetrachloroethane	ND		1.0	ug/L		04/18/25 11:36	•
1,1,1-Trichloroethane	ND		1.0	ug/L		04/18/25 11:36	•
1,1,2,2-Tetrachloroethane	ND		2.0	ug/L		04/18/25 11:36	
1,1,2-Trichloroethane	ND		1.0	ug/L		04/18/25 11:36	•
1,1-Dichloroethane	ND		1.0	ug/L		04/18/25 11:36	•
1,1-Dichloroethene	ND		1.0	ug/L		04/18/25 11:36	
1,1-Dichloropropene	ND		1.0	ug/L		04/18/25 11:36	•
1,2,3-Trichlorobenzene	ND		1.0	ug/L		04/18/25 11:36	•
1,2,3-Trichloropropane	ND		2.0	ug/L		04/18/25 11:36	
1,2,4-Trichlorobenzene	ND		1.0	ug/L		04/18/25 11:36	•
1,2,4-Trimethylbenzene	ND		1.0	ug/L		04/18/25 11:36	
1,2-Dibromo-3-Chloropropane	ND		2.0	ug/L		04/18/25 11:36	
1,2-Dibromoethane (EDB)	ND		1.0	ug/L		04/18/25 11:36	
1,2-Dichlorobenzene	ND		1.0	ug/L		04/18/25 11:36	
1,2-Dichloroethane (EDC)	ND		1.0	ug/L		04/18/25 11:36	
1,2-Dichloropropane	ND		1.0	ug/L		04/18/25 11:36	
1,3,5-Trimethylbenzene	ND		1.0	ug/L		04/18/25 11:36	
1,3-Dichlorobenzene	ND		1.0	ug/L		04/18/25 11:36	
1,3-Dichloropropane	ND		1.0	ug/L		04/18/25 11:36	
1,4-Dichlorobenzene	ND		1.0	ug/L		04/18/25 11:36	
1-Methylnaphthalene	ND		4.0	ug/L		04/18/25 11:36	
2,2-Dichloropropane	ND		2.0	ug/L		04/18/25 11:36	
2-Butanone	ND		10	ug/L		04/18/25 11:36	
2-Chlorotoluene	ND		1.0	ug/L		04/18/25 11:36	
2-Hexanone	ND		10	ug/L		04/18/25 11:36	
2-Methylnaphthalene	ND		4.0	ug/L		04/18/25 11:36	
4-Chlorotoluene	ND		1.0	ug/L		04/18/25 11:36	
4-Isopropyltoluene	ND		1.0	ug/L		04/18/25 11:36	
4-Methyl-2-pentanone	ND		10	ug/L		04/18/25 11:36	
Acetone	ND		10	ug/L		04/18/25 11:36	
Benzene	ND		1.0	ug/L		04/18/25 11:36	
Bromobenzene	ND		1.0	ug/L		04/18/25 11:36	
Bromodichloromethane	ND		1.0	ug/L		04/18/25 11:36	
Dibromochloromethane	ND		1.0	ug/L		04/18/25 11:36	
Bromoform	ND		1.0	ug/L		04/18/25 11:36	
Bromomethane	ND ND		3.0			04/18/25 11:36	
Carbon disulfide	ND		10	ug/L		04/18/25 11:36	
				ug/L			
Carbon tetrachloride	ND		1.0	ug/L		04/18/25 11:36	
Chlorobenzene	ND		1.0	ug/L		04/18/25 11:36	
Chloroethane	ND		2.0	ug/L		04/18/25 11:36	
Chloroform	ND		1.0	ug/L		04/18/25 11:36	•
Chloromethane	ND		3.0	ug/L		04/18/25 11:36	
cis-1,2-Dichloroethene	ND		1.0	ug/L		04/18/25 11:36	•
cis-1,3-Dichloropropene	ND		1.0	ug/L		04/18/25 11:36	•
Dibromomethane	ND		1.0	ug/L		04/18/25 11:36	
Dichlorodifluoromethane	ND		1.0	ug/L		04/18/25 11:36	•
Ethylbenzene	ND		1.0	ug/L		04/18/25 11:36	•
Hexachlorobutadiene	ND		1.0	ug/L		04/18/25 11:36	

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Method: 8260B - Volatile Organic Compounds (GC/MS) (Continued)

Lab Sample ID: MB 885-24602/4 Matrix: Water

Analysis Batch: 24602

Client Sample ID: Method Blank

Prep Type: Total/NA

MB MB Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Isopropylbenzene ND 1.0 ug/L 04/18/25 11:36 Methyl-tert-butyl Ether (MTBE) ND 1.0 ug/L 04/18/25 11:36 Methylene Chloride ND 04/18/25 11:36 2.5 ug/L n-Butylbenzene ND 3.0 ug/L 04/18/25 11:36 N-Propylbenzene ND 1.0 ug/L 04/18/25 11:36 ug/L Naphthalene ND 2.0 04/18/25 11:36 sec-Butylbenzene ND 1.0 ug/L 04/18/25 11:36 Styrene ND ug/L 1.0 04/18/25 11:36 ND tert-Butylbenzene 1.0 ug/L 04/18/25 11:36 Tetrachloroethene (PCE) ND 1.0 ug/L 04/18/25 11:36 Toluene ND ug/L 04/18/25 11:36 1.0 trans-1,2-Dichloroethene ND ug/L 1.0 04/18/25 11:36 trans-1,3-Dichloropropene ND 1.0 ug/L 04/18/25 11:36 Trichloroethene (TCE) ND 1.0 ug/L 04/18/25 11:36 Trichlorofluoromethane ND 1.0 ug/L 04/18/25 11:36

MB MB

ND

ND

	IVID IVID				
Surrogate	%Recovery Qualifie	r Limits	Prepared	Analyzed	Dil Fac
1,2-Dichloroethane-d4 (Surr)	93	70 - 130		04/18/25 11:36	1
Toluene-d8 (Surr)	88	70 - 130		04/18/25 11:36	1
4-Bromofluorobenzene (Surr)	105	70 - 130		04/18/25 11:36	1
Dibromofluoromethane (Surr)	90	70 - 130		04/18/25 11:36	1

1.0

1.5

ug/L

ug/L

Lab Sample ID: LCS 885-24602/3

Matrix: Water

Vinyl chloride

Xylenes, Total

Analysis Batch: 24602

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

04/18/25 11:36

04/18/25 11:36

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
1,1-Dichloroethene	20.0	18.9		ug/L		95	70 - 130	
Benzene	20.0	22.6		ug/L		113	70 - 130	
Chlorobenzene	20.0	18.6		ug/L		93	70 - 130	
Toluene	20.0	18.7		ug/L		93	70 - 130	
Trichloroethene (TCE)	20.0	17.6		ug/L		88	70 - 130	

LCS LCS

Surrogate	%Recovery	Qualifier	Limits
1,2-Dichloroethane-d4 (Surr)	93		70 - 130
Toluene-d8 (Surr)	89		70 - 130
4-Bromofluorobenzene (Surr)	104		70 - 130
Dibromofluoromethane (Surr)	91		70 - 130

Eurofins Albuquerque

2

4

6

8

10

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

%Rec

Limits

Client Sample ID: Lab Control Sample

Client Sample ID: Lab Control Sample

80 - 120

101

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: MW-1

Client Sample ID: MW-1

Prep Type: Total/NA

Prep Type: Total/NA

Job ID: 885-23210-1

Client: Hilcorp Energy Project/Site: Federal 18 1T

Method: 2540C - Solids, Total Dissolved (TDS)

Lab Sample ID: MB 885-24483/1

Matrix: Water

Analysis Batch: 24483

MB MB

Result Qualifier RL Unit Analyzed Dil Fac Analyte D Prepared 50 04/17/25 13:21 **Total Dissolved Solids** ND mg/L

LCS LCS

Spike

Lab Sample ID: LCS 885-24483/2

Matrix: Water

Analysis Batch: 24483

Added Result Qualifier Unit D %Rec Analyte Total Dissolved Solids 1000 1010 mg/L

Method: SM 2510B - Conductivity, Specific Conductance

Lab Sample ID: LCS 885-24474/4

Matrix: Water

Analysis Batch: 24474

Spike LCS LCS %Rec Added Result Qualifier Limits Analyte Unit %Rec Specific Conductance 99.2 101 umhos/cm 101 85 - 115

Lab Sample ID: MRL 885-24474/3

Matrix: Water

Analysis Batch: 24474

Spike MRL MRL %Rec Added Analyte Result Qualifier Unit %Rec Limits Specific Conductance 9.83 ND umhos/cm 96 50 - 150

Lab Sample ID: 885-23210-1 DU

Matrix: Water

Analysis Batch: 24474

DU DU **RPD** Sample Sample Analyte Result Qualifier Result Qualifier Unit **RPD** Limit Specific Conductance 2500 2550 umhos/cm 20

Method: SM 4500 H+ B - pH

Lab Sample ID: 885-23210-1 DU

Released to Imaging: 8/28/2025 1:12:49 PM

Matrix: Water

Analysis Batch: 24475 Sample Sample DU DU RPD Analyte Result Qualifier Result Qualifier Unit RPD Limit pН 7.2 HF 7.3 SU 0.3

QC Association Summary

Client: Hilcorp Energy Job ID: 885-23210-1 Project/Site: Federal 18 1T

GC/MS VOA

Analysis Batch: 24602

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-23210-1	MW-1	Total/NA	Water	8260B	
MB 885-24602/4	Method Blank	Total/NA	Water	8260B	
LCS 885-24602/3	Lab Control Sample	Total/NA	Water	8260B	

General Chemistry

Analysis Batch: 24474

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-23210-1	MW-1	Total/NA	Water	SM 2510B	
LCS 885-24474/4	Lab Control Sample	Total/NA	Water	SM 2510B	
MRL 885-24474/3	Lab Control Sample	Total/NA	Water	SM 2510B	
885-23210-1 DU	MW-1	Total/NA	Water	SM 2510B	

Analysis Batch: 24475

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-23210-1	MW-1	Total/NA	Water	SM 4500 H+ B	
885-23210-1 DU	MW-1	Total/NA	Water	SM 4500 H+ B	

Analysis Batch: 24483

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-23210-1	MW-1	Total/NA	Water	2540C	
MB 885-24483/1	Method Blank	Total/NA	Water	2540C	
LCS 885-24483/2	Lab Control Sample	Total/NA	Water	2540C	

Lab Chronicle

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Client Sample ID: MW-1 Lab Sample ID: 885-23210-1 Date Collected: 04/14/25 13:00

Matrix: Water

Date Received: 04/15/25 07:15

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Analysis	8260B			24602	JP	EET ALB	04/19/25 00:37
Total/NA	Analysis	2540C		1	24483	KS	EET ALB	04/17/25 13:21
Total/NA	Analysis	SM 2510B		1	24474	KB	EET ALB	04/16/25 17:39
Total/NA	Analysis	SM 4500 H+ B		1	24475	KB	EET ALB	04/16/25 17:39

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date
New Mexico	State		NM9425, NM0901	02-27-26
	es are included in this report does not offer certification	•	not certified by the governing author	ity. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
2540C		Water	Total Dissolved Solids	
8260B		Water	1,1,1,2-Tetrachloroethane	e
8260B		Water	1,1,1-Trichloroethane	
8260B		Water	1,1,2,2-Tetrachloroethane	e
8260B		Water	1,1,2-Trichloroethane	
8260B		Water	1,1-Dichloroethane	
8260B		Water	1,1-Dichloroethene	
8260B		Water	1,1-Dichloropropene	
8260B		Water	1,2,3-Trichlorobenzene	
8260B		Water	1,2,3-Trichloropropane	
8260B		Water	1,2,4-Trichlorobenzene	
8260B		Water	1,2,4-Trimethylbenzene	
8260B		Water	1,2-Dibromo-3-Chloropro	pane
8260B		Water	1,2-Dibromoethane (EDE	3)
8260B		Water	1,2-Dichlorobenzene	
8260B		Water	1,2-Dichloroethane (EDC	5)
8260B		Water	1,2-Dichloropropane	
8260B		Water	1,3,5-Trimethylbenzene	
8260B		Water	1,3-Dichlorobenzene	
8260B		Water	1,3-Dichloropropane	
8260B		Water	1,4-Dichlorobenzene	
8260B		Water	1-Methylnaphthalene	
8260B		Water	2,2-Dichloropropane	
8260B		Water	2-Butanone	
8260B		Water	2-Chlorotoluene	
8260B		Water	2-Hexanone	
8260B		Water	2-Methylnaphthalene	
8260B		Water	4-Chlorotoluene	
8260B		Water	4-Isopropyltoluene	
8260B		Water	4-Methyl-2-pentanone	
8260B		Water	Acetone	
8260B		Water	Benzene	
8260B		Water	Bromobenzene	
8260B		Water	Bromodichloromethane	
8260B		Water	Bromoform	
8260B		Water	Bromomethane	
8260B		Water	Carbon disulfide	
8260B		Water	Carbon tetrachloride	
8260B		Water	Chlorobenzene	
8260B		Water	Chloroethane	
8260B		Water	Chloroform	
8260B		Water	Chloromethane	
8260B		Water	cis-1,2-Dichloroethene	
8260B		Water	cis-1,3-Dichloropropene	
8260B		Water	Dibromochloromethane	

Eurofins Albuquerque

-

2

J

_

7

9

Accreditation/Certification Summary

Client: Hilcorp Energy Job ID: 885-23210-1

Project/Site: Federal 18 1T

Laboratory: Eurofins Albuquerque (Continued)

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

thority	Progr	am	Identification Numb	er Expiration Date
	are included in this repo oes not offer certification	•	not certified by the governing aut	thority. This list may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
8260B	_	Water	Dibromomethane	_
8260B		Water	Dichlorodifluorometha	ane
8260B		Water	Ethylbenzene	
8260B		Water	Hexachlorobutadiene	•
8260B		Water	Isopropylbenzene	
8260B		Water	Methylene Chloride	
8260B		Water	Methyl-tert-butyl Ethe	er (MTBE)
8260B		Water	Naphthalene	
8260B		Water	n-Butylbenzene	
8260B		Water	N-Propylbenzene	
8260B		Water	sec-Butylbenzene	
8260B		Water	Styrene	
8260B		Water	tert-Butylbenzene	
8260B		Water	Tetrachloroethene (P	CE)
8260B		Water	Toluene	
8260B		Water	trans-1,2-Dichloroeth	ene
8260B		Water	trans-1,3-Dichloropro	pene
8260B		Water	Trichloroethene (TCE	Ξ)
8260B		Water	Trichlorofluoromethar	ne
8260B		Water	Vinyl chloride	
8260B		Water	Xylenes, Total	
SM 2510B		Water	Specific Conductance	e
SM 4500 H+ B		Water	рН	
egon	NELA	P	NM100001	02-26-26

Eurofins Albuquerque

9

A

8

9

Client: Hilicorp Farmington NM X Standard Rush Project Name: Mailing Address: 362 Road 3100 Aztec, NM 87410 Federal 18 1T Project #:	ENTAL
Mailing Address: 382 Road 3100 Aztec, NM 87410 Billing Address: PO Box 61529 Houston, TX 77208 Project #: Project #: Project #: Project #: Project #: Tel. 505-345-3975 Fax 505-345-4107 Analysis Request Analysis Request Project Manager: QA/QC Package: Standard	
Mailing Address: 382 Road 3100 Aztec, NM 87410 Billing Address: PO Box 61529 Houston, TX 77208 Project #: Project #: Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107 Tel. 505-345-3975 Fax 505-345-4107 Analysis Request Analysis Request Standard Level 4 (Full Validation)	
Billing Address: PO Box 61529 Houston, TX 77208 Phone #: 505-486-9543 email or Fax#: Brandon.Sinclair@hilcorp.com QA/QC Package: Standard	09 88
Project Manager: QA/QC Package: Standard Level 4 (Full Validation) Accreditation: NELAC Other Container Type and # e Type Project Manager: Sampler: Brandon Sinclair On Ice: Vest No Project Manager: Sampler: Brandon Sinclair On Ice: Vest No Preservativ and # e Type Preservativ and # e Type Preservativ (3) 40ml VOA (1) 500ml Cool	80.
Standard Level 4 (Full Validation) Accreditation: Az Compliance Sampler: Brandon Sinclair On Ice: Yes No Preservativ HEAL No. Preservativ HEAL No. Preservativ HEAL No. Accordination: Az Compliance Sample Name Container Type Preservativ HEAL No. Accordination: Az Compliance Sample Name Container Type Preservativ HEAL No. Accordination: Az Compliance Sample Name Container Type Preservativ HEAL No. Accordination: Az Compliance Sample Name Container Type Preservativ HEAL No. Accordination: Az Compliance Az	
Standard Level 4 (Full Validation) M	
Date Time Matrix Sample Name and # e Type \frac{\frac{1}{2}}{2} \frac{1}{2} \f	
Date Time Matrix Sample Name and # e Type \frac{\frac{1}{2}}{2} \frac{1}{2} \f	
Date Time Matrix Sample Name and # e Type \frac{\frac{1}{2}}{2} \frac{1}{2} \f	
Date Time Matrix Sample Name and # e Type \frac{\frac{1}{2}}{2} \frac{1}{2} \f	
10 LV 13 a a lostice (3) 40ml VOA HCI (1) 500ml COOL	
	++++
Date: Time: Relinquished by: Y-19 1600 PM Sun A Received by: Received by: Received by: A COUNTY 4/5/25 74(
Date: Time: Relinquished by: Received by. Via: Date Time	

Login Sample Receipt Checklist

Client: Hilcorp Energy Job Number: 885-23210-1

List Source: Eurofins Albuquerque Login Number: 23210

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	False	Refer to Job Narrative for details.
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 500246

CONDITIONS

Operator:	OGRID:
HILCORP ENERGY COMPANY	372171
1111 Travis Street	Action Number:
Houston, TX 77002	500246
	Action Type:
	[REPORT] Alternative Remediation Report (C-141AR)

CONDITIONS

Cre:	ated	Condition	Condition Date
nv	elez	1. Continue with O & M schedule. 2. Submit next quarterly report by October 15, 2025.	8/28/2025