

August 13, 2025

District Supervisor
Oil Conservation Division, District 1
1625 North French Drive
Hobbs, New Mexico 88240

Re: Remediation Report and Closure Request
Maverick Permian, LLC
Oxy State F1 Battery Release
Unit Letter Unit Letter M, Section 01, Township 21 South, Range 36 East
Lea County, New Mexico
Incident ID# nAPP2317958480

Dear Sir or Madam.

Tetra Tech, Inc. (Tetra Tech) was contracted by Maverick Natural Resources (Maverick) to assess a spill that occurred at the Oxy State F1 Battery. The release footprint is located in Public Land Survey System (PLSS) Unit Letter M, Section 01, Township 21 South, Range 36 East, in Lea County, New Mexico (Site). The release occurred at coordinates 32.5012472°, -103.2262938°, as shown in **Figure 1**.

BACKGROUND

On June 27, 2023, Maverick Natural Resources (Maverick) discovered that a release had occurred due to the overfilling of a produced water tank within the tank battery, releasing approximately 50 barrels of produced water into what was reportedly a lined secondary containment structure. Tetra Tech performed a site visit and preliminary liner inspection on August 2, 2023, and found the release also went into an apparent unlined portion of the tank battery secondary containment.

SITE CHARACTERIZATION

Receptors

Tetra Tech performed a site characterization for the release location and did not identify any watercourses, sinkholes, playas, residences, schools, hospitals, institutions, churches, springs, private domestic water wells, wetlands, incorporated municipal boundaries, subsurface mines, or floodplains within the distances specified in 19.15.29.11 New Mexico Administrative Code (NMAC). Based on a review of the NMOCD Mapper, the site is in an area of low karst potential, as shown in **Attachment 1**.

Depth to Groundwater

On May 30, 2025, Tetra Tech and H&R Enterprises (H&R) mobilized to the Oxy State F1 Battery Site and installed a Depth-To-Water (DTW) boring to 70 feet bgs at 32.501526°, -103.225944°, approximately 270 feet northeast of the release location. The DTW boring did not identify groundwater in the upper 70 feet, which verifies that groundwater is below 70 feet bgs at the Site. The DTW bore log is included in **Attachment 2**

Wetlands

Readily available data were reviewed to determine the status of the Site regarding wetland designation or potential wetlands existence. The U.S. Fish and Wildlife Service (USFWS) National Wetlands Inventory (NWI) Wetlands

Tetra Tech, Inc.

1500 CityWest Boulevard, Suite 1000, Houston, Texas 77042

Tel +1.832.251.5160 | tetratech.com/oga | tetratech.com

Maverick Permian, LLC August 13, 2025

Reclamation Report and Closure Request Oxy State F1 Battery Release Incident ID# nAPP2317958480

Interactive Mapper and the New Mexico OpenEnviroMap were queried to determine if any potential wetlands are mapped near the remediation location. Based on the NWI and OpenEnviroMap review, The Site is not identified as having a mapped wetland within 300 feet of the Site.

Biologically Sensitive Areas

The remediation and associated activities were constrained to the existing developed facility pad and would, therefore, not impact potential biologically sensitive areas.

Cultural Properties Protection

To comply with 1.10.15 NMAC and New Mexico State Land Office (NMSLO) requirements, Ensolum engaged Beaver Creek Archaeology on behalf of Maverick to perform an Archaeological Records Management System (ARMS) Inspection/Review for the remediation area.

Beaver Creek Archaeology did not identify previous surveys of the area. However, they recommended that no additional archaeological work be required for the remediation area, as it has experienced disturbances from the early 2000s to the present due to facility pad development. Beaver Creek additionally states that no previously recorded sites are located within 100 feet of the remediation area.

As the remediation area was constrained to the active facility pad, no additional archaeological survey work was performed as part of the remedial activity described below. No subsurface cultural materials were encountered during remediation. The Remediation memo is attached as **Attachment 3**.

Soils

According to the United States Department of Agriculture (USDA) Natural Resources Conservation Service (NRCS), the Site is mapped as having Pyote and Maljamar fine sands, which is classified as a sand with a published soil profile of fine sand from the surface to 30 inches below ground surface (bgs), fine sandy loam from 30 to 60 inches bgs. The USDA NCRS Soil Map and soil profile are provided in **Attachment 1**.

REGULATORY FRAMEWORK

Based upon the release footprint location and in accordance with Subsection E of 19.15.29.12 NMAC, per 19.15.29.11 NMAC, the site characterization data was used to determine recommended remedial action levels for Benzene, Toluene, Ethylbenzene, and Xylene (BTEX), Total Petroleum Hydrocarbons (TPH) in soil.

Based on the site characterization approved by the NMOCD Remediation Work Plan, and in accordance with Table I of 19.15.29.12 NMAC, the remediation RRALs for the Site for groundwater between 51 and 100 feet bgs are as follows:

Closure Criteria for Soils Impacted by a Release

Constituent	Remediation RRAL
Chloride	10,000 mg/kg
TPH (GRO+DRO+ORO)	2,500 mg/kg
TPH (GRO+DRO)	1,000 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

Maverick Permian, LLC August 13, 2025

Additionally, in accordance with the NMOCD guidance *Procedures for Implementation of the Spill Rule* (19.15.29 NMAC), the following reclamation requirements for surface soils (0-4 feet bgs) outside of active oil and gas operations are as follows:

Reclamation Requirements

Constituent	Remediation RRAL
Chloride	600 mg/kg
TPH (GRO+DRO+ORO)	100 mg/kg
BTEX	50 mg/kg
Benzene	10 mg/kg

INITIAL RESPONSE ACTIVITIES

The release occurred due to an overfilling of a produced water tank within the tank battery into an approximately 1,375-square-foot area, as shown in **Figure 2**. According to Site records, initial response actions were taken by Maverick at the release site on June 27, 2023. On August 2, 2023. Tetra Tech performed a site visit and preliminary inspection and found that the release occurred into a section of unlined tank battery secondary containment.

REMEDIATION AND CONFIRMATION SAMPLING

Excavation activities commenced on December 13, 2024, and concluded on February 7, 2025. Maverick's subcontractor, McNabb Partners (McNabb), used heavy equipment to excavate impacted soil from the remediation area to a maximum depth of four (4) feet bgs. To avoid potential contact by heavy equipment with pressurized lines within the remediation area, heavy equipment was maintained at least 2 feet from pressurized lines where hydroexcavation and hand-digging were employed.

McNabb excavated 230 cubic yards of contaminated soil from an approximately 1,375-square-foot area and transported it to R360 for off-site disposal. Photographs of the final excavation are provided in **Attachment 4**

Confirmation Sampling Notification

On December 11, 2024, Tetra Tech notified the NMOCD of the anticipated initial confirmation sampling through the submission of a C-141N Sampling Notification in the NMOCD ePermitting portal and provided subsequent C-141N Sampling Notification submissions through the NMOCD ePermitting portal to cover final confirmation sampling conducted on February 12, 2025.

Confirmation Sampling

Upon reaching the final lateral and vertical excavation extents of the excavation, Tetra Tech collected 15 final confirmation samples, including seven (7) 5-point composite floor samples and eight (8) five-point composite side wall samples from the excavated areas. The remediation excavation confirmation sampling area comprised a total area of 1,375 square feet and a sampling density of approximately one (1) confirmation sample per 197 square feet.

Samples were submitted to Cardinal Laboratory in Hobbs, New Mexico, to analyze BTEX by Method 8021B, TPH by Method 8015M, and chloride by Method SM4500 CL-B. Laboratory analytical results for final confirmation samples reported concentrations of BTEX, TPH, and chloride as less than the respective Reclamation Requirements, demonstrating clean margins. Shallow confirmation sample laboratory analytical results screened

Maverick Permian, LLC August 13, 2025

against Reclamation Requirements are summarized in **Table 1**, and Deep confirmation sample laboratory analytical results screened against RRALs are summarized in **Table 2**. Laboratory analytical data packages, including chain of custody documentation, are included in **Attachment 5**. Confirmation sampling locations and excavation extents are shown in **Figure 3**.

Excavation Backfill

From February 7 through 12, 2025, subsequent to the receipt of final confirmation sampling results, McNabb completed the backfilling of the excavated areas with 250 cubic yards of caliche. Photographic Documentation showing the excavated areas and final grading after backfilling is provided in **Attachment 4**.

Reclamation and Revegetation

No impacted surface areas were present off the developed well pad, therefore, reclamation and revegetation were not conducted as part of this remediation. Reclamation and revegetation will be conducted in accordance with NMOCD and New Mexico State Land Office (NMSLO) requirements at the end of the life of the well pad, subsequent to well plugging and abandonment.

CONCLUSION

Based on the confirmation sampling results, the impacted soil within the release footprint with concentrations greater than RRALs or Reclamation Requirements, as appropriate, has been removed and properly disposed of offsite, the excavated area has been backfilled with clean material, and the surface of the well pad has been restored; therefore, Site remediation is complete. Reclamation and revegetation will be conducted at the end-of-life of the Oxy State F-1 Battery. If you have any questions concerning the remediation activities for the Site, please call me at (832) 252-2093.

Sincerely,

Chris Straub Project Manager

Tetra Tech, Inc.

Charles H. Terhune IV, P.G.

Program Manager

Tetra Tech, Inc.

cc: Bryce Wagoner, Maverick Permian, LLC

New Mexico State Land Office

Maverick Permian, LLC August 13, 2025

Reclamation Report and Closure Request Oxy State F1 Battery Release Incident ID# nAPP2317958480

LIST OF ATTACHMENTS

Figures

Figure 1 – Overview Map and Topographic Map

Figure 2 – Approximate Release Extent and Site Assessment Map

Figure 3 – Excavation Extents and Confirmation Sample Locations Map

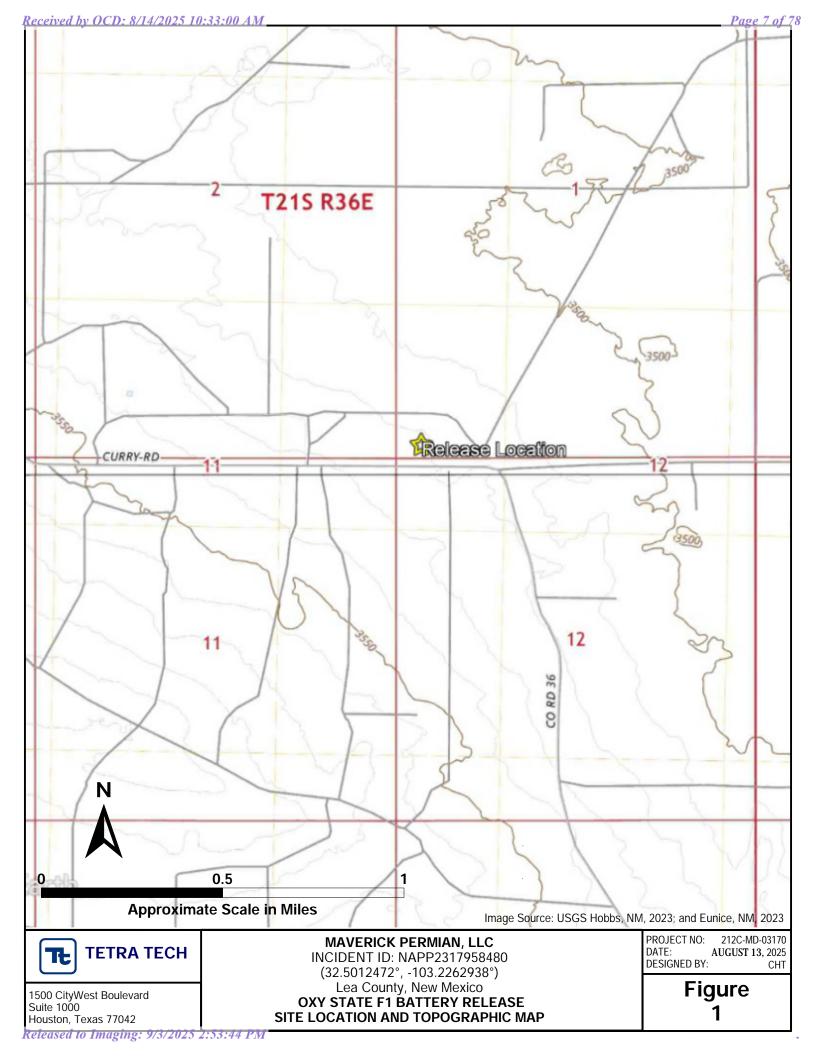
Tables

Table 1 – Summary of Analytical Results – Shallow Confirmation Sampling Table 2 – Summary of Analytical Results – Deep Confirmation Sampling

Attachments

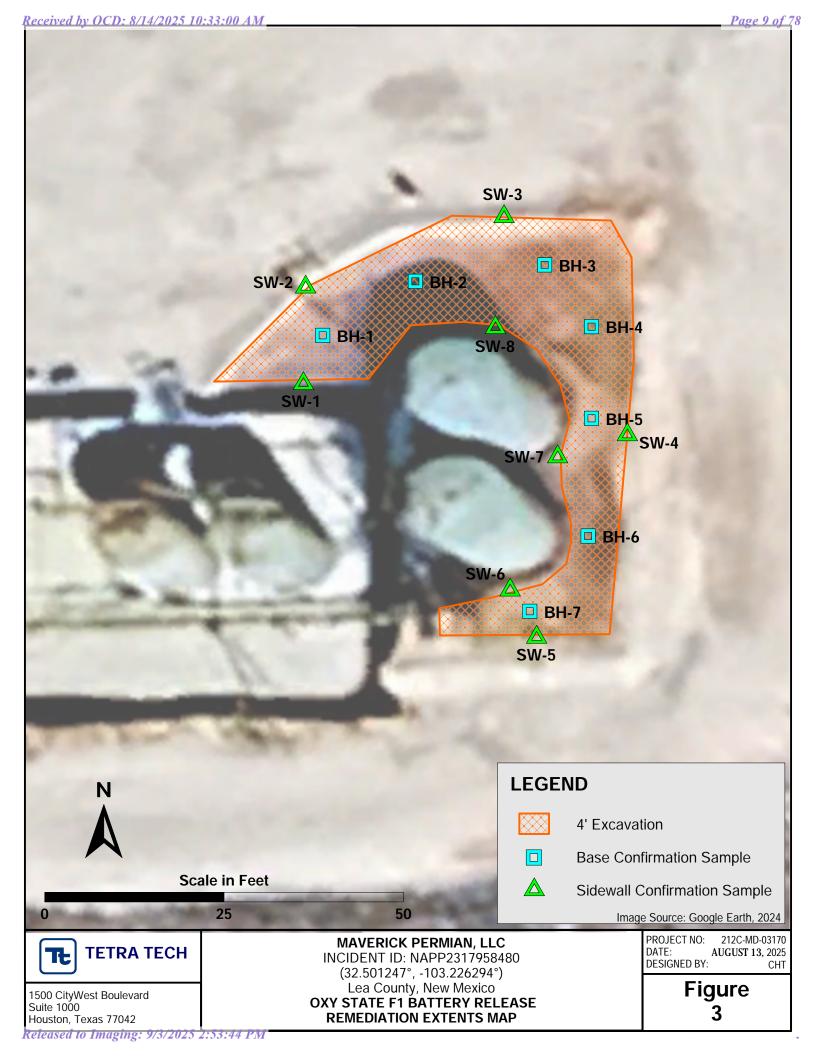
Attachment 1 - Site Characterization Data

Attachment 2 - Bore Logs


Attachment 3 - Cultural Resource Data

Attachment 4 – Photographic Documentation

Attachment 5 - Laboratory Analytical Data


Maverick Permian, LLC August 13, 2025

FIGURES

Released to Imaging: 9/3/2025 2:53:44 PM

Maverick Permian, LLC August 13, 2025

TABLES

TABLE 1 SUMMARY OF ANALYTICAL RESULTS SHALLOW CONFIRMATION SAMPLING - INCIDENT NAPP2317958480 **MAVERICK PERMIAN, LLC OXY STATE F1 RELEASE** LEA COUNTY, NEW MEXICO

				BTEX ²											TPH ³								
Sample ID	Sample Depth	Sample Depth	Chloride ¹	Ponzon	Benzene		Toluene		Ethylbenzene		Total Vulanca		Total BTEX		GRO			EXT DRO		TPH	Total TPH		
Sample ID	Sample Date			Delizeli	E	Toluelli	5	Euryiberiz	ene	TOtal Ayle	iles	TOTALDIEX		C ₆ - C ₁₀		> C ₁₀ - C ₂₈		> C ₂₈ - C ₃₆		GRO+DRO	(GRO+DRO+EXT DRO)		
		feet bgs	mg/kg C	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	mg/kg		
Reclamation Req	uirements (19.15.29	NMAC)	600	10								50								1,000	2,500		
SW-1	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-2	2/5/2025	0.0-4.0	<16.0	< 0.0500		< 0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-3	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-4	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-5	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-6	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-7	2/5/2025	0.0-4.0	<16.0	<0.0500		<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		
SW-8	2/5/2025	0.0-4.0	240	< 0.0500		< 0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-		

NOTES:

bgs: Below ground surface

GRO: Gasoline Range Organics

1: Method SM4500CI-B

Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC.

mg/kg: Milligrams per kilogram TPH: Total Petroleum Hydrocarbons DRO: Diesel Range Organics

2: Method 8021B

3: Method 8015M EXT DRO: Oil Range Organics

TABLE 2 SUMMARY OF ANALYTICAL RESULTS DEEP CONFIRMATION SAMPLING - INCIDENT NAPP2317958480 MAVERICK PERMIAN, LLC OXY STATE F1 RELEASE LEA COUNTY, NEW MEXICO

			BTEX ²										TPH ³								
Sample ID	Sample Date	Sample Depth	Chloride ¹	Ponzo	Benzene		Toluene		Ethylbenzene		Total Xylenes		Total BTEX			DRO > C ₁₀ - C ₂₈		EXT DRO > C ₂₈ - C ₃₆		TPH	Total TPH
Sample ID	Sample Date			Delize																GRO+DRO	(GRO+DRO+EXT DRO)
		feet bgs	mg/kg (mg/kg	Q	mg/kg	Q	mg/kg	Q	mg/kg	q	mg/kg	О	mg/kg	Q	mg/kg	Q	mg/kg	ø	mg/kg	mg/kg
Table 1 Closure C	Criteria (19.15.29 NM	AC)	10,000	10								50								1,000	2,500
BH-1 (4')	2/5/2025	4.0-4.5	992	< 0.0500)	<0.0500		< 0.0500		<0.1500		< 0.300		<10		<10		<10		-	-
BH-2 (4')	2/5/2025	4.0-4.5	1,120	< 0.0500)	< 0.0500		<0.0500		<0.1500		<0.300		<10		<10		<10		-	-
BH-3 (4')	2/5/2025	4.0-4.5	1,360	< 0.0500)	<0.0500		<0.0500		<0.1500		< 0.300		<10		<10		<10		-	-
BH-4 (4')	2/5/2025	4.0-4.5	1,340	< 0.0500)	< 0.0500		< 0.0500		<0.1500		<0.300		<10		28.1		<10		28.1	28.1
BH-5 (4')	2/5/2025	4.0-4.5	1,410	< 0.0500)	<0.0500		<0.0500		<0.1500		< 0.300		<10		11.8		<10		11.8	11.8
BH-6 (4')	2/5/2025	4.0-4.5	1,390	< 0.0500)	<0.0500		<0.0500		<0.1500		<0.300		<10		15.7		<10		15.7	15.7
BH-7 (4')	2/5/2025	4.0-4.5	1,090	< 0.0500)	< 0.0500		<0.0500		<0.1500		< 0.300		<10		19.6		<10		19.6	19.6

NOTES:

bgs: Below ground surface

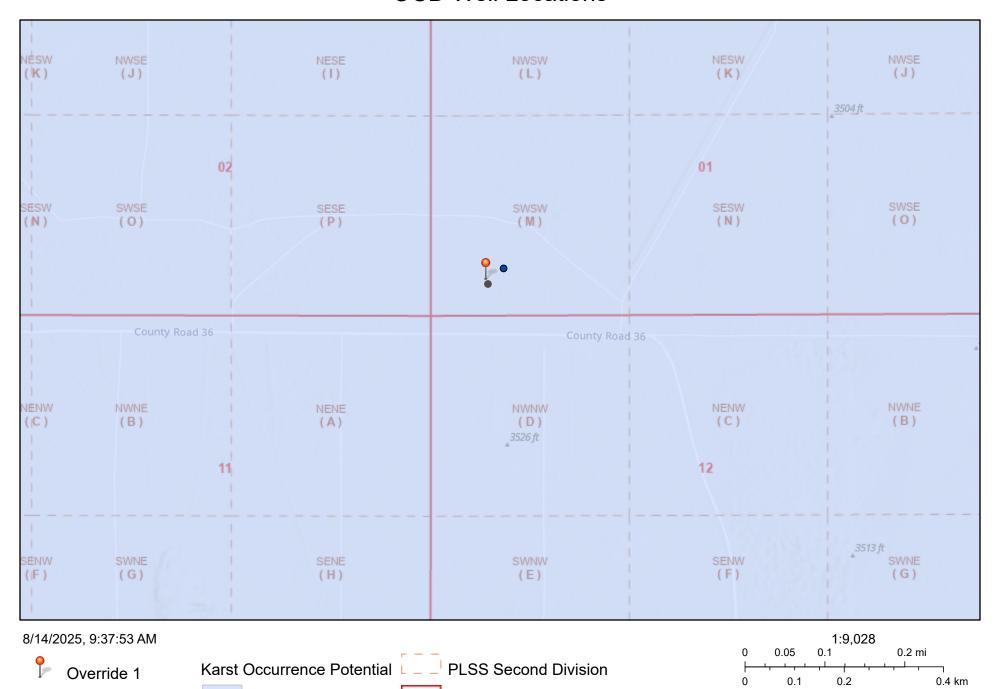
GRO: Gasoline Range Organics

1: Method SM4500CI-B

Bold and highlighted values indicate exceedance of Table I 19.15.29.12 NMAC Closure Criteria.

mg/kg: Milligrams per kilogram

DRO: Diesel Range Organics


EXT DRO: Oil Range Organics

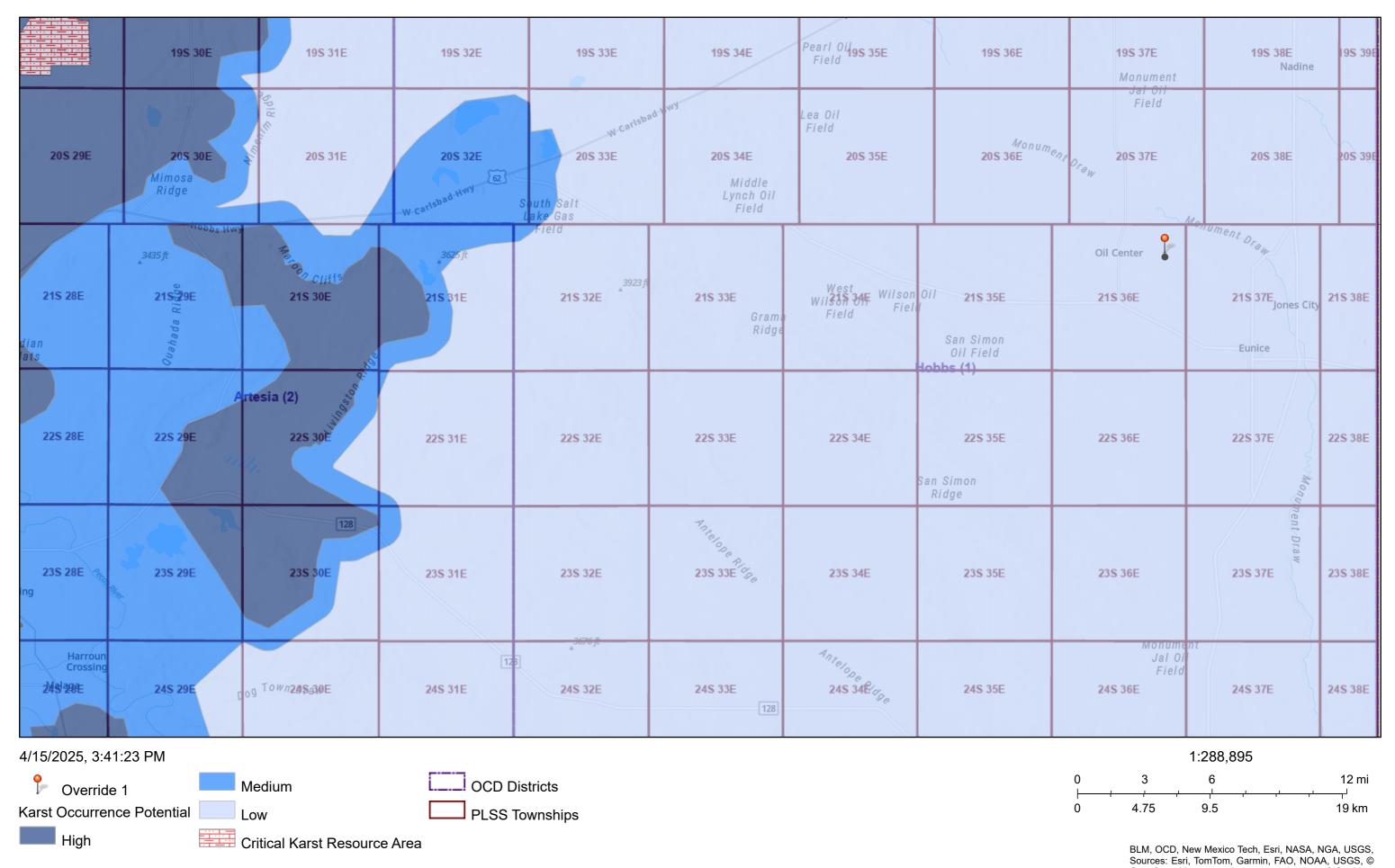
2: Method 8021B

Maverick Permian, LLC August 13, 2025

ATTACHMENT 1 – SITE CHARACTERIZATION DATA

OCD Well Locations

PLSS First Division


BLM, OCD, New Mexico Tech, Oil Conservation Division (OCD), Energy,

Minerals and Natural Resources Department (EMNRD), Esri, NASA, NGA,

OSE Water PODs

Low

Oxy State F1 Release Karst

Oxy State F1 Battery Release

August 13, 2025

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

Other

Riverine

base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Service is not responsible for the accuracy or currentness of the

New Mexico Office of the State Engineer Water Column/Average Depth to Water

No records found.

Basin/County Search:

County: Lea

UTMNAD83 Radius Search (in meters):

Easting (X): 669445 **Northing (Y):** 3583968 **Radius:** 800

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Oxy State F1 Battery Release

August 13, 2025

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

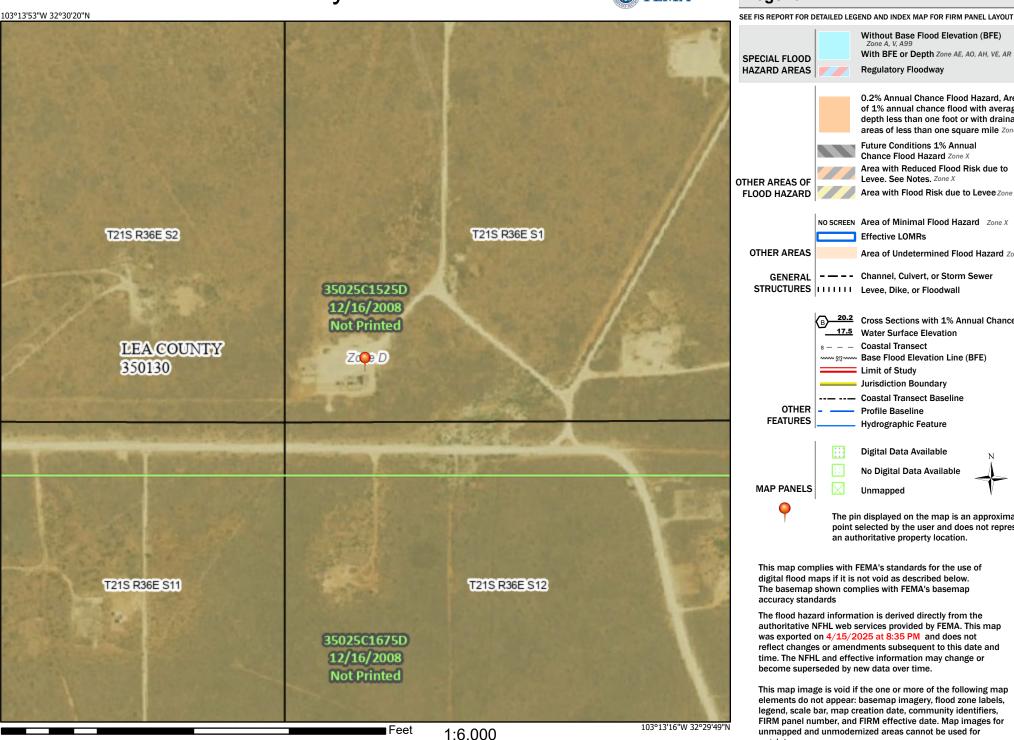
Lake

Riverine

Other

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Received by OCD: 8/14/2025 10:33:00 AM National Flood Hazard Layer FIRMette


Without Base Flood Elevation (BFE) With BFE or Depth Zone AE, AO, AH, VE, AR SPECIAL FLOOD HAZARD AREAS Regulatory Floodway 0.2% Annual Chance Flood Hazard, Areas of 1% annual chance flood with average depth less than one foot or with drainage areas of less than one square mile Zone X **Future Conditions 1% Annual** Chance Flood Hazard Zone X Area with Reduced Flood Risk due to Levee. See Notes. Zone X OTHER AREAS OF Area with Flood Risk due to Levee Zone D FLOOD HAZARD NO SCREEN Area of Minimal Flood Hazard Zone X Effective LOMRs OTHER AREAS Area of Undetermined Flood Hazard Zone D - - - Channel, Culvert, or Storm Sewer **GENERAL** STRUCTURES | LILLIL Levee, Dike, or Floodwall 20.2 Cross Sections with 1% Annual Chance 17.5 Water Surface Elevation **Coastal Transect** ₩ 513 W Base Flood Elevation Line (BFE) Limit of Study Jurisdiction Boundary — --- Coastal Transect Baseline OTHER **Profile Baseline FEATURES** Hydrographic Feature Digital Data Available No Digital Data Available MAP PANELS Unmapped The pin displayed on the map is an approximate point selected by the user and does not represent

This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards

an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 4/15/2025 at 8:35 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

MAP LEGEND

â

0

Δ

Water Features

Transportation

Background

Spoil Area

Stony Spot

Wet Spot

Other

Rails

US Routes

Major Roads

Local Roads

Very Stony Spot

Special Line Features

Streams and Canals

Interstate Highways

Aerial Photography

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Points

Special Point Features

Blowout

Borrow Pit

Clay Spot

Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow

Marsh or swamp

Mine or Quarry

Miscellaneous Water

Perennial Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20,000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed scale.

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Lea County, New Mexico Survey Area Data: Version 21, Sep 3, 2024

Soil map units are labeled (as space allows) for map scales 1:50,000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12, 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
PU	Pyote and Maljamar fine sands	10.5	100.0%
Totals for Area of Interest		10.5	100.0%

Maverick Permian, LLC August 13, 2025

ATTACHMENT 2 – BORE LOGS

BORING LOG: State F Battery DTW

PROJECT NUMBER: 212C-MD-03708 **PROJECT NAME:** State F Battery Remediation

CLIENT: Maverick Permian, LLC
ADDRESS: 1410 NW County Road

Hobbs, NM 88240

DRILLING COMPANY: H&R Enterprises

DRILL RIG: Air Rotary Rig
DRILLING METHOD: Air Rotary
BORING TYPE: Depth-to-Water

TOTAL DEPTH: 75 feet **DIAMETER:** 8 inches

LATITUDE: 32.501526°

 $\textbf{LONGITUDE: -}103.225944^{\circ}$

SURFACE ELEVATION: 3,518 Feet AMSL LOGGED BY: Jorge Fernandez-Velo CHECKED BY: Charles Terhune

COMMENTS: AMSL: Above Mean Sea Level

Depth (Feet)	Drilling Method	Boring Completion	Graphic Log	Material Description	
- - - - 5				Silty Sand, dark red, moist, medium dense, non-plastic. Light brown from 5 to 10 feet bgs.	
- 10 - - - 15				Silty Sand with caliche, light brown, dry, medium dense, non plastic. Light red from 20 to 30 feet bgs.	
- 20					
- - 25 -					
- 30 - - - - 35	AR			Sand with silt, light red, dry, dense, non-plastic.	
- 40					
- 45					
- 50					
- 55 - 60				Silty sand with caliche, light red, medium dense, non-plastic.	
- 65					
- 70					
75		<u> </u>		End of Hole at 75 feet below ground surface. No groundwater encountered, Hole plugged with hydrated bentonite.	

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Maverick Permian, LLC August 13, 2025

ATTACHMENT 3 – CULTURAL RESOURCES DATA

Stephanie Garcia Richard COMMISSIONER

State of New Mexico Commissioner of Public Lands

310 OLD SANTA FE TRAIL P.O. BOX 1148 SANTA FE, NEW MEXICO 87504-1148 COMMISSIONER'S OFFICE

Phone (505) 827-5760 Fax (505) 827-5766 www.nmstatelands.org

MEMORANDUM

TO: Maverick Natural Resources Inc

FROM: Carlyn Stewart, Trust Land Archaeologist

(505) 365-3800

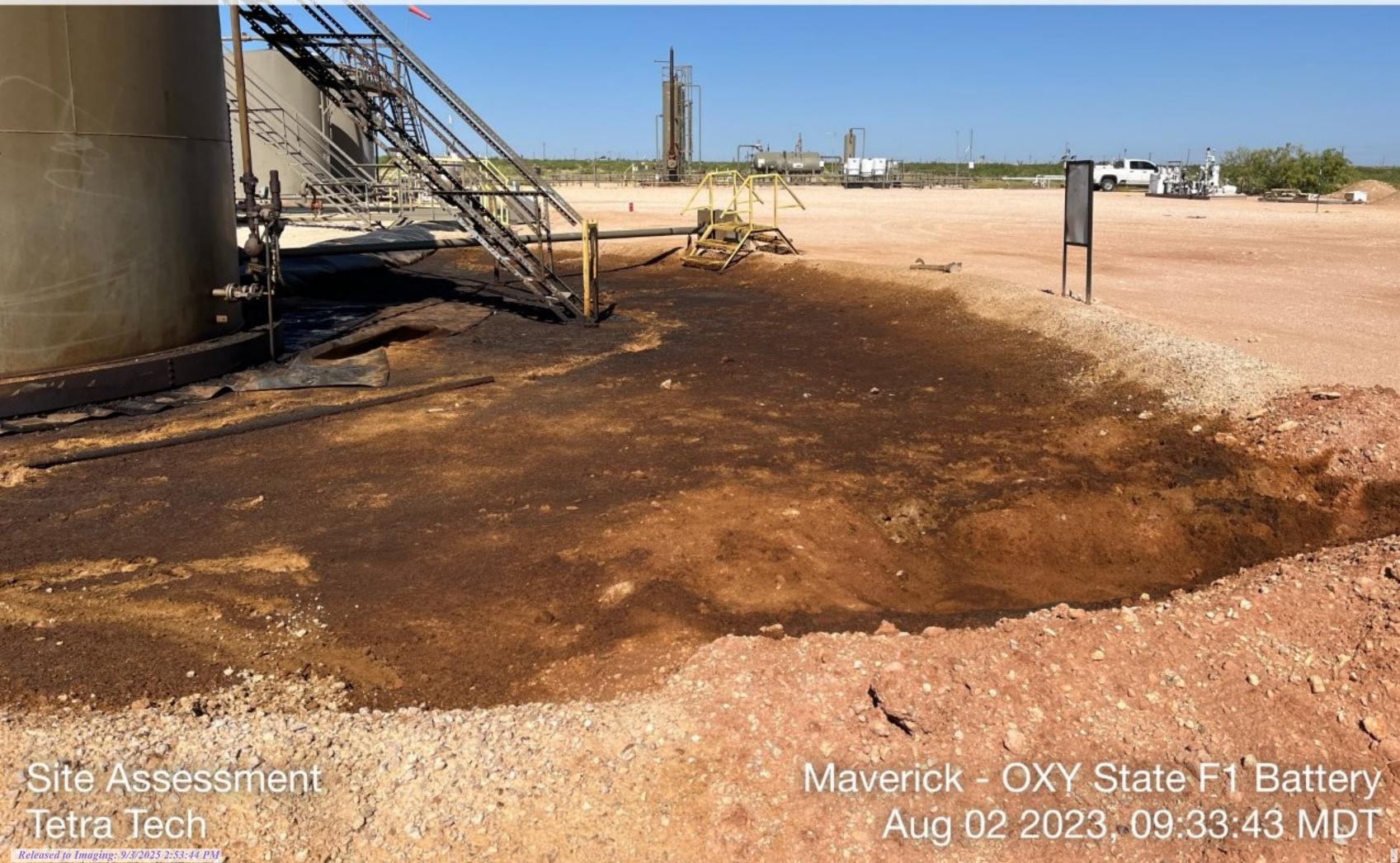
cstewart@nmslo.gov

SUBJECT: Maverick Natural Resources Inc

Remediation for: State F1 Battery T21 R36E S1 N.M.P.M. Lea County

REFERENCE: NMSLO Cultural Properties Protection Rule (19.2.24 NMAC)

DATE: 1/2/2025

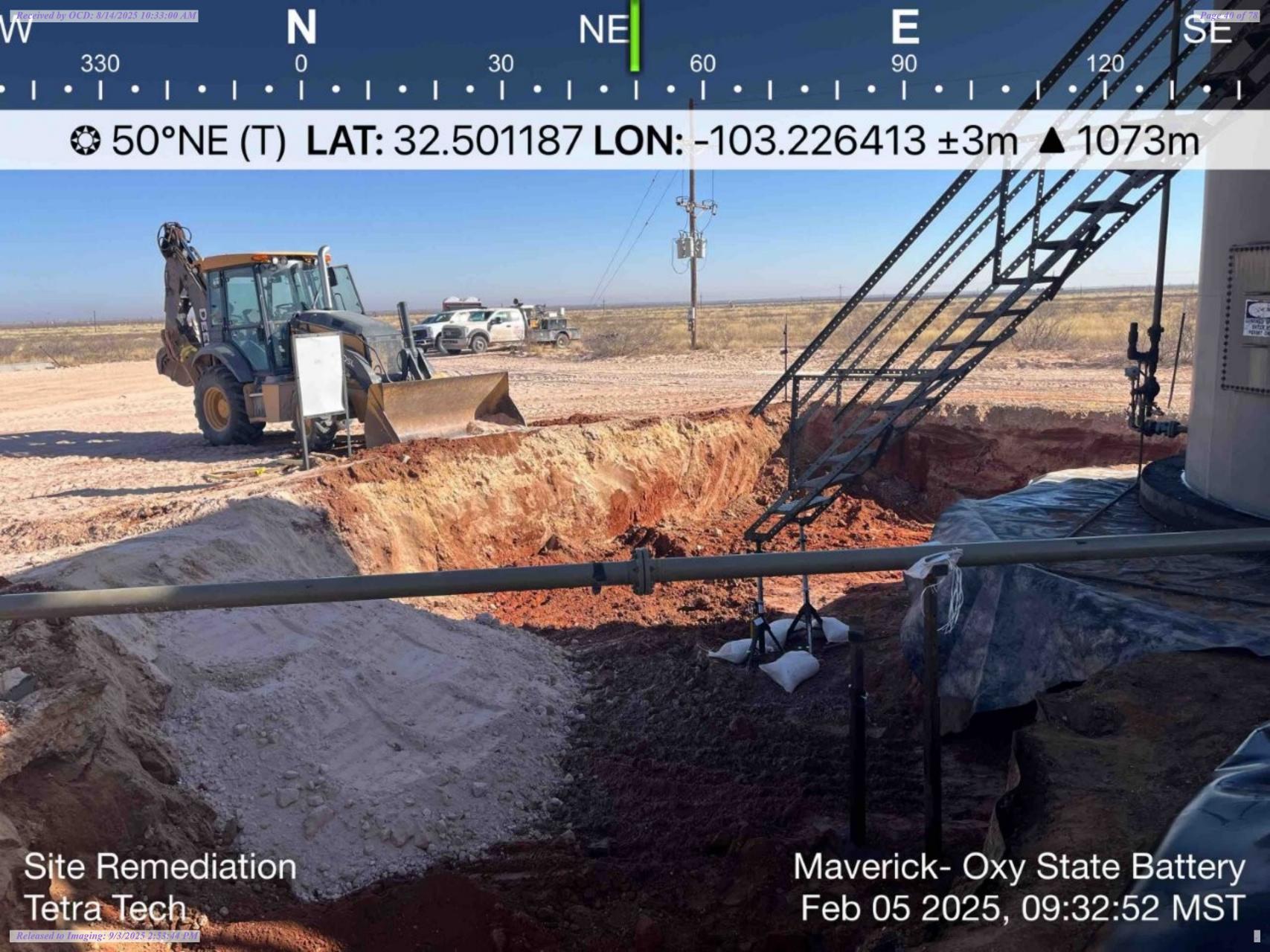

Thank you for your submission relating to the Proponent's proposed remediation activities at State F1 Battery. An archaeological survey of the entire area of potential effect has been completed (NMCRIS Activity No. 157395) and no cultural properties were identified. Pursuant to NMSLO 19.2.24.8 (C) NMAC, remediation may proceed.

If any cultural materials are inadvertently encountered during surface disturbance, work must cease within 50 feet and the NMSLO Cultural Resources Office must be notified immediately by emailing (CROinfo@slo.state.nm.us). Please reach out if you have questions or need additional clarification.

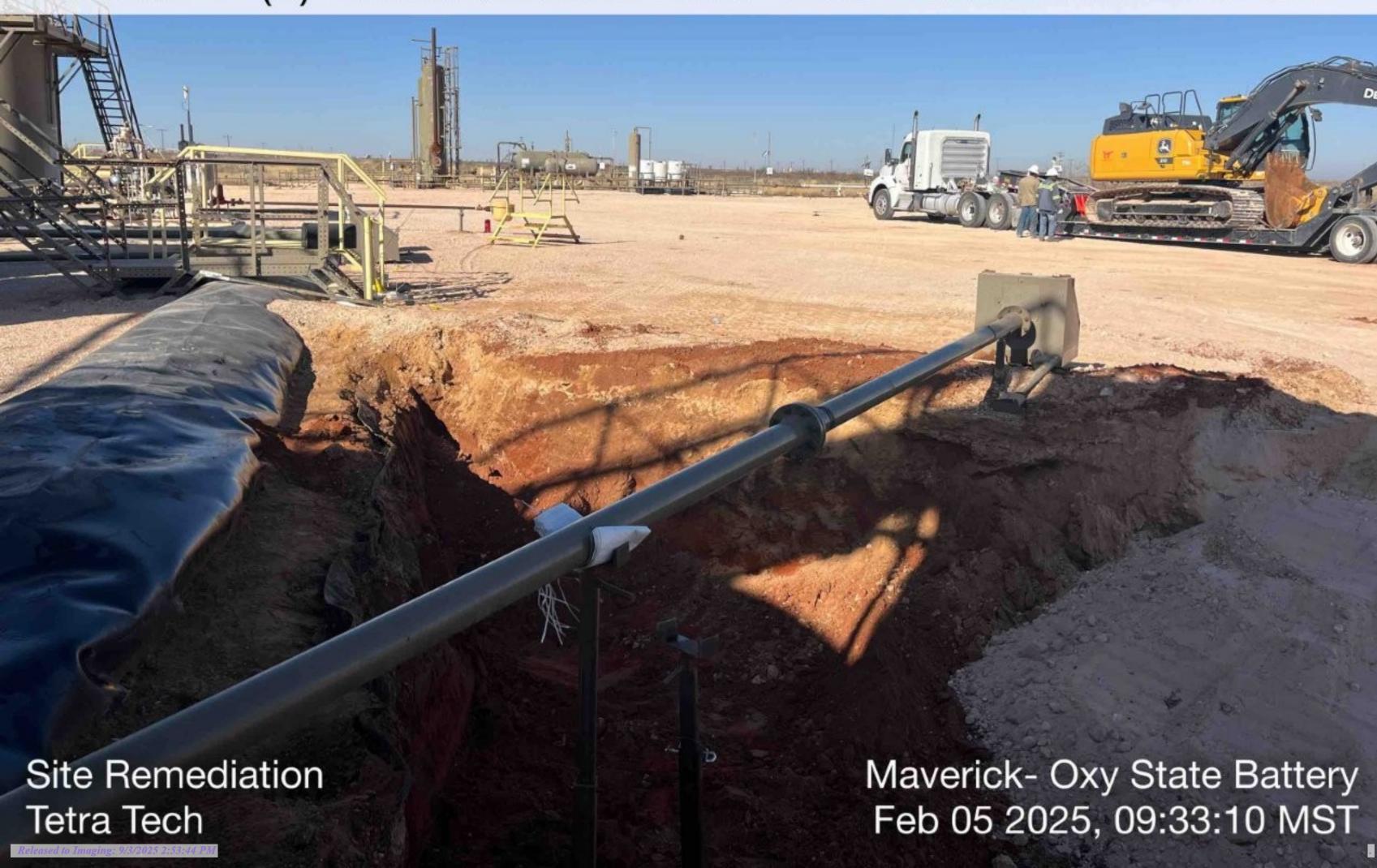
Maverick Permian, LLC August 13, 2025

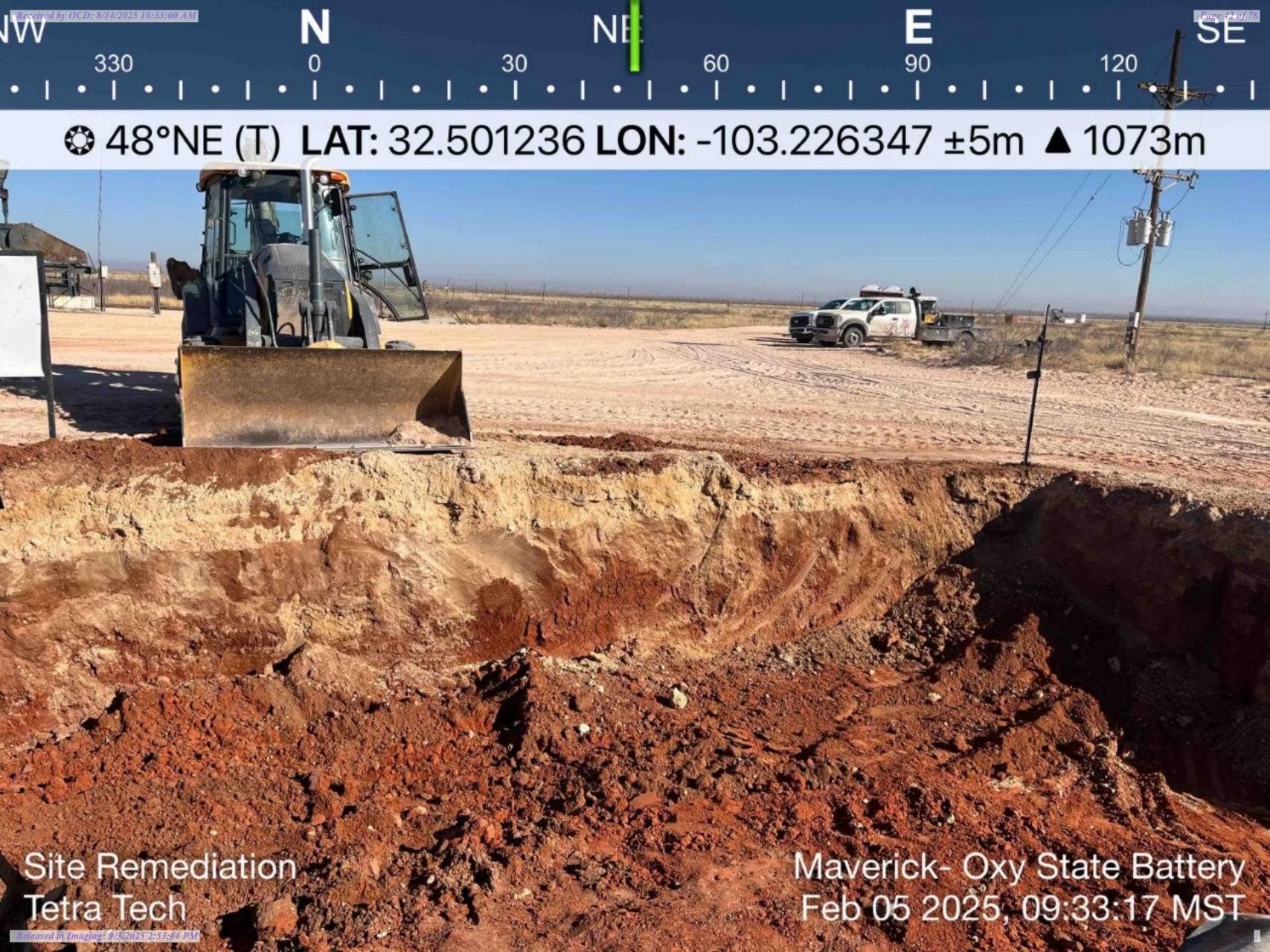
ATTACHMENT 4 – PHOTOGRAPHIC DOCUMENTATION

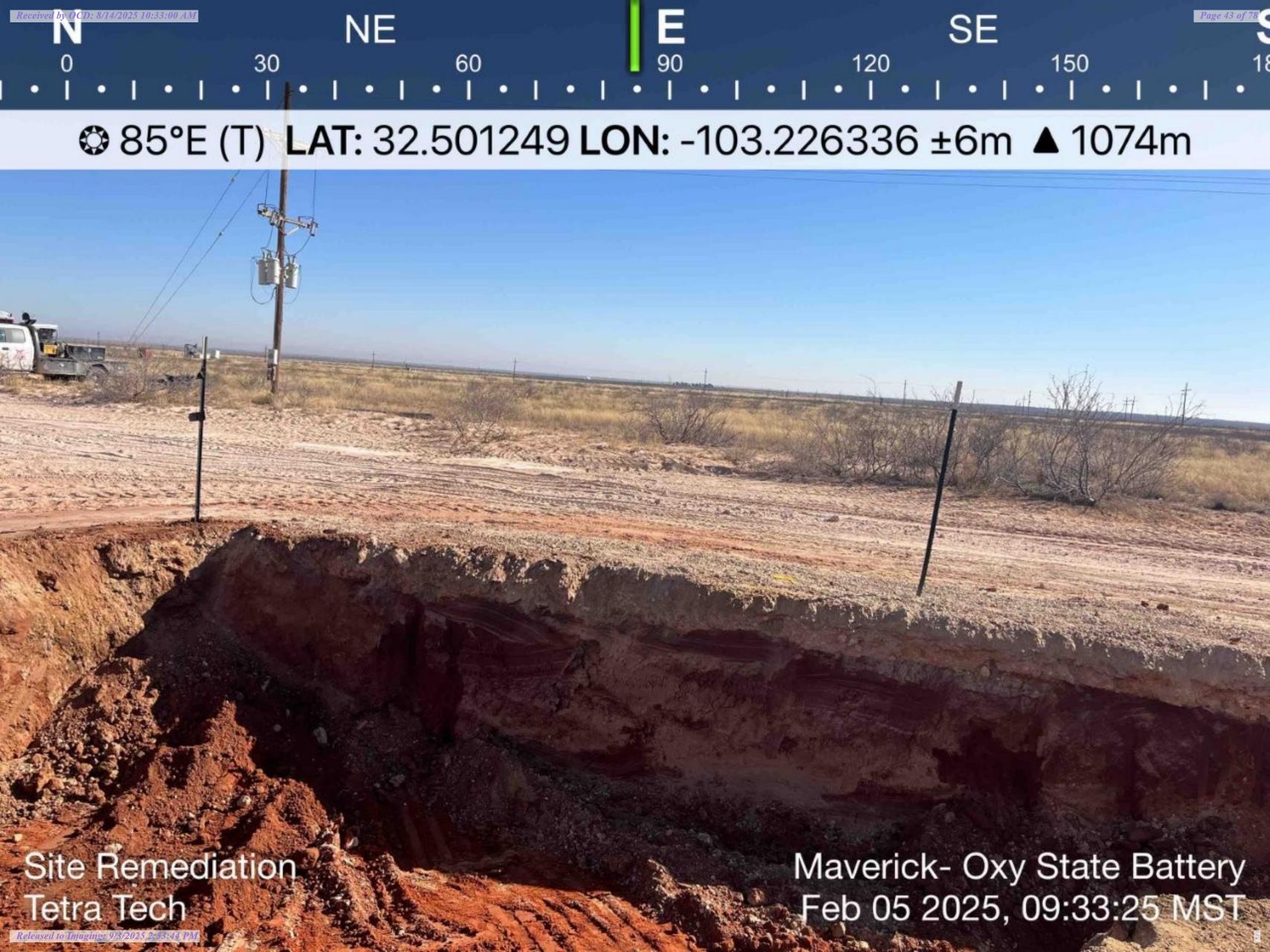
Site Remediation Tetra Tech

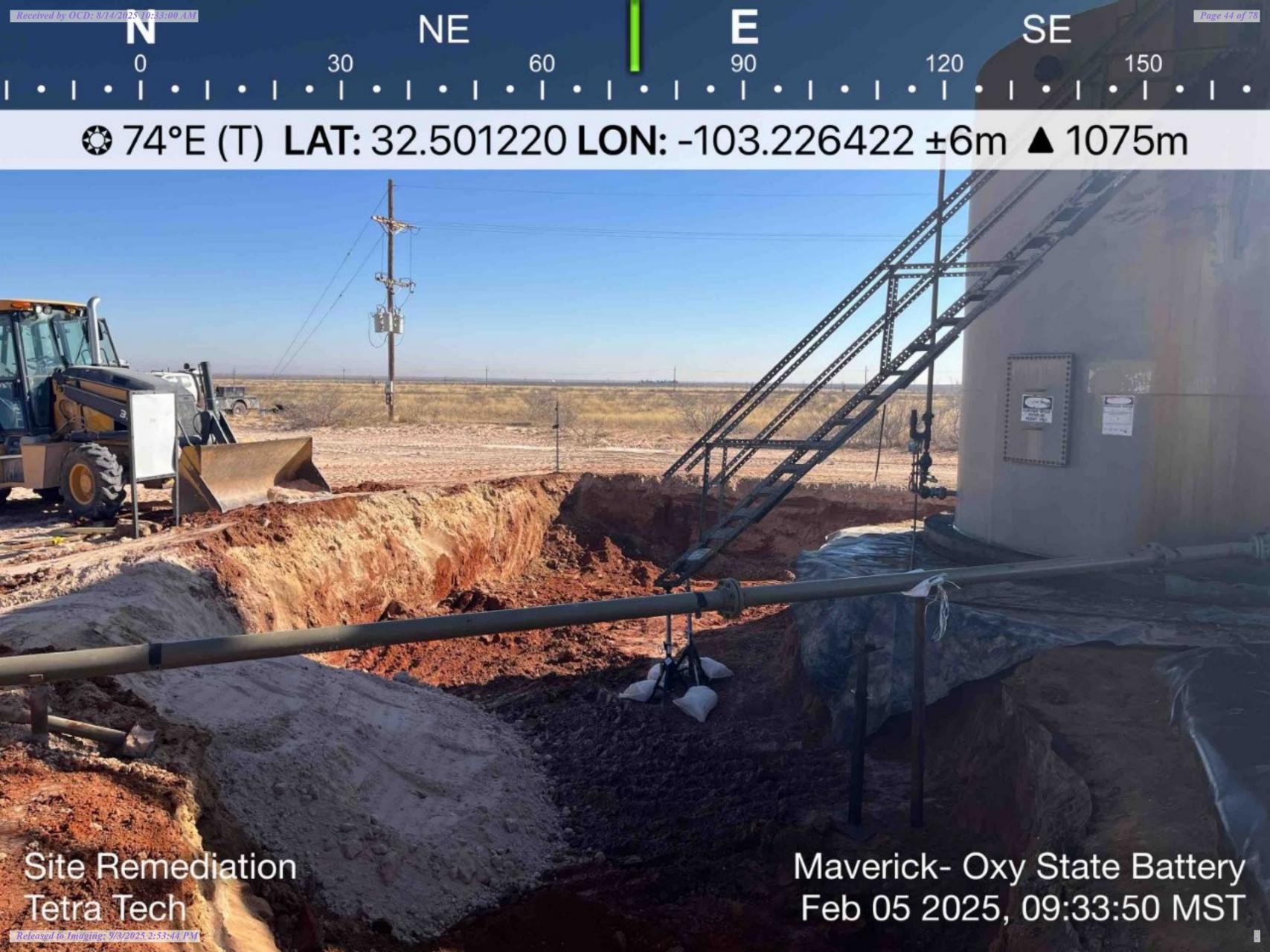

Maverick- Oxy State Battery Feb 05 2025, 09:32:20 MST

Site Remediation
Tetra Tech

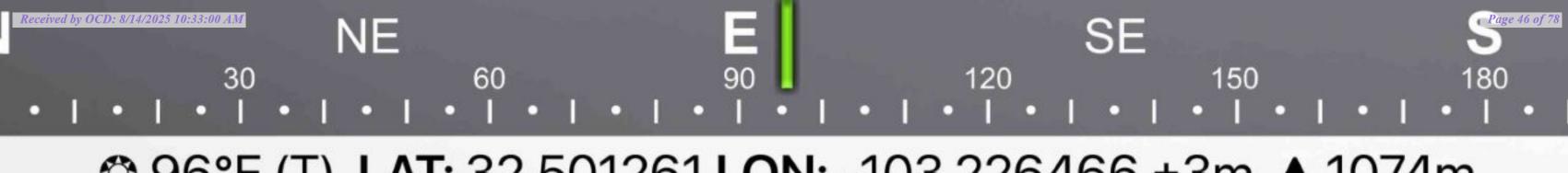

Maverick Oxy State Battery
Feb 05 2025, 09:32:27 MST

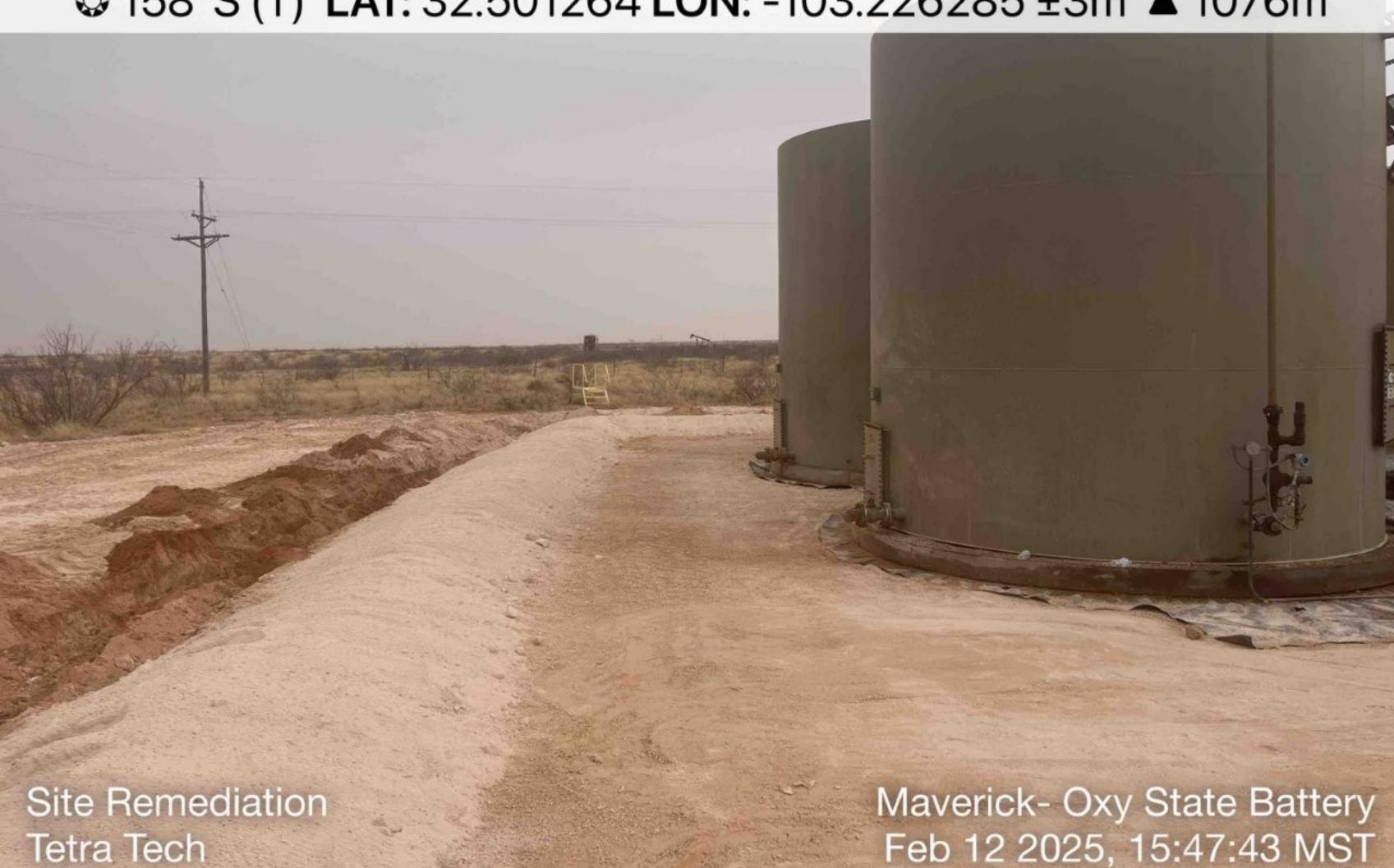






② 288°W (T) LAT: 32.501230 LON: -103.226353 ±3m ▲ 1073m





② 96°E (T) LAT: 32.501261 LON: -103.226466 ±3m ▲ 1074m

Tetra Tech

SW SE 120 150 240 270

② 192°S (T) LAT: 32.501131 LON: -103.226298 ±3m ▲ 1075m

Reclamation Report and Closure Request Oxy State F1 Battery Release Incident ID# nAPP2317958480 Maverick Permian, LLC August 13, 2025

ATTACHMENT 5 – LABORATORY ANALYTICAL DATA

February 07, 2025

CHUCK TERHUNE
TETRA TECH
901 WEST WALL STREET , STE 100
MIDLAND, TX 79701

RE: OXY STATE F1 BATTERY

Enclosed are the results of analyses for samples received by the laboratory on 02/05/25 12:36.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Wite Sough

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Mike Snyder For Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: LEA COUNTY, NM

mg/kg

Sample ID: BH - 1 (4.0') (H250694-01)

BTEX 8021B

DILX 0021D	ilig	r kg	Allalyze	u by. 311					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	992	16.0	02/06/2025	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	96.5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Me Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: **OXY STATE F1 BATTERY** Sampling Condition: Cool & Intact Sample Received By: Shalyn Rodriguez Project Number: 212C-MD-03170

Analyzed By: JH

Project Location: LEA COUNTY, NM

Sample ID: BH - 2 (4.0') (H250694-02)

BTEX 8021B

	9/	9	7.1.4.7.2	,					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1120	16.0	02/06/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	110	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

wite Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Fax To:

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: LEA COUNTY, NM

Sample ID: BH - 3 (4.0') (H250694-03)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1360	16.0	02/06/2025	ND	432	108	400	3.64	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	109	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: **OXY STATE F1 BATTERY** Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-03170 Shalyn Rodriguez

Project Location: LEA COUNTY, NM

Sample ID: BH - 4 (4.0') (H250694-04)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1340	16.0	02/06/2025	ND	432	108	400	3.64	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	28.1	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	123 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

with Sigh

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: LEA COUNTY, NM

Sample ID: BH - 5 (4.0') (H250694-05)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1410	16.0	02/06/2025	ND	432	108	400	3.64	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	11.8	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	112	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: LEA COUNTY, NM

Sample ID: BH - 6 (4.0') (H250694-06)

RTFY 8021R

Method Blank ND ND ND	BS 2.06 2.15	% Recovery	True Value QC 2.00	RPD 1.50	Qualifier
ND			2.00	1 50	
	2.15	400		1.50	
ND		108	2.00	0.373	
* *=	2.19	110	2.00	0.190	
ND	6.71	112	6.00	0.105	
ND					
ed By: AC					
Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
ND	432	108	400	3.64	
ed By: MS					
Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
ND	206	103	200	3.64	
ND	200	99.9	200	2.31	
ND					
2 -	Method Blank ND ND	Method Blank BS ND 206 ND 200	Method Blank BS % Recovery ND 206 103 ND 200 99.9	Red By: MS Method Blank BS % Recovery True Value QC ND 206 103 200 ND 200 99.9 200	Red By: MS Method Blank BS % Recovery True Value QC RPD ND 206 103 200 3.64 ND 200 99.9 200 2.31

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: LEA COUNTY, NM

Sample ID: BH - 7 (4.0') (H250694-07)

RTFY 8021R

Result 0.050	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
0.050	0.050							-
	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
0.300	0.300	02/05/2025	ND					
107 %	6 71.5-13-	4						
mg/l	kg	Analyze	d By: AC					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
L090	16.0	02/06/2025	ND	432	108	400	3.64	
mg/l	kg	Analyze	d By: MS					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
19.6	10.0	02/06/2025	ND	200	99.9	200	2.31	
<10.0	10.0	02/06/2025	ND					
101 %	6 48 2-13.	1						
-01/	,0.2 15	7						
	Result	Result Reporting Limit 1.090 16.0 mg/kg Result Reporting Limit 1.10.0 10.0 1.10.0 10.0 1.10.0 10.0	Result Reporting Limit Analyzed 1.090 16.0 02/06/2025 1.090 16.0 02/06/2025 1.00 10.0 02/06/2025 1.00 10.0 02/06/2025 1.00 10.0 02/06/2025 1.00 10.0 02/06/2025	Result Reporting Limit Analyzed Method Blank L090 16.0 02/06/2025 ND mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank x10.0 10.0 02/06/2025 ND 19.6 10.0 02/06/2025 ND x10.0 10.0 02/06/2025 ND	Result Reporting Limit Analyzed Method Blank BS 1.090 16.0 02/06/2025 ND 432 1.090 mg/kg Analyzed By: MS 1.000 Result Reporting Limit Analyzed Method Blank BS 1.000 10.0 02/06/2025 ND 206 1.000 10.0 02/06/2025 ND 200 1.000 10.0 02/06/2025 ND 200 1.000 10.0 02/06/2025 ND	Result Reporting Limit Analyzed Method Blank BS % Recovery 1.090 16.0 02/06/2025 ND 432 108 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery x10.0 10.0 02/06/2025 ND 206 103 19.6 10.0 02/06/2025 ND 200 99.9 x10.0 10.0 02/06/2025 ND ND	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC 1.090 16.0 02/06/2025 ND 432 108 400 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC 4:10.0 10.0 02/06/2025 ND 206 103 200 19.6 10.0 02/06/2025 ND 200 99.9 200 4:10.0 10.0 02/06/2025 ND 200 99.9 200	Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD 1.090 16.0 02/06/2025 ND 432 108 400 3.64 mg/kg Analyzed By: MS Result Reporting Limit Analyzed Method Blank BS % Recovery True Value QC RPD 410.0 10.0 02/06/2025 ND 206 103 200 3.64 19.6 10.0 02/06/2025 ND 200 99.9 200 2.31 410.0 10.0 02/06/2025 ND ND 200 99.9 200 2.31

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

02/05/2025

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701

(432) 682-3946

Received: 02/05/2025 Sampling Date:

Reported: 02/07/2025 Sampling Type: Soil

Fax To:

Project Name: **OXY STATE F1 BATTERY** Sampling Condition: Cool & Intact Project Number: Sample Received By: 212C-MD-03170 Shalyn Rodriguez

Project Location: LEA COUNTY, NM

Sample ID: SW - 1 (H250694-08)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108 9	71.5-13	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	111 %	6 48.2-13	4						
Surrogate: 1-Chlorooctadecane	116 %	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

with Sigh

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: LEA COUNTY, NM

ma/ka

Sample ID: SW - 2 (H250694-09)

RTFY 8021R

very True Value QC RPD Qualifier
2.00 1.50
2.00 0.373
2.00 0.190
6.00 0.105
very True Value QC RPD Qualifier
400 3.77
very True Value QC RPD Qualifier
200 3.64
200 2.31
v }

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

ma/ka

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: LEA COUNTY, NM

Sample ID: SW - 3 (H250694-10)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	130	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	136	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET, STE 100 MIDLAND TX, 79701 Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: **OXY STATE F1 BATTERY** Sampling Condition: Cool & Intact Sample Received By: Project Number: 212C-MD-03170 Shalyn Rodriguez

Project Location: LEA COUNTY, NM

Sample ID: SW - 4 (H250694-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	111 9	6 48.2-13	4						
Surrogate: 1-Chlorooctadecane	118 9	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

with Sigh

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: LEA COUNTY, NM

ma/ka

Sample ID: SW - 5 (H250694-12)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	113	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	120	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: LEA COUNTY, NM

ma/ka

Sample ID: SW - 6 (H250694-13)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	114	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client is subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Mile Sough

Analytical Results For:

TETRA TECH
CHUCK TERHUNE
901 WEST WALL STREET , STE 100
MIDLAND TX, 79701
Fax To: (432) 682-3946

Received: 02/05/2025 Sampling Date: 02/05/2025

Reported: 02/07/2025 Sampling Type: Soil

Project Name: OXY STATE F1 BATTERY Sampling Condition: Cool & Intact
Project Number: 212C-MD-03170 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: LEA COUNTY, NM

ma/ka

Sample ID: SW - 7 (H250694-14)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	<16.0	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	110	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Me Sough

Analytical Results For:

Fax To:

TETRA TECH CHUCK TERHUNE 901 WEST WALL STREET , STE 100 MIDLAND TX, 79701

(432) 682-3946

Analyzed By: 14

Received: 02/05/2025 Reported: 02/07/2025

Project Name: OXY STATE F1 BATTERY
Project Number: 212C-MD-03170

ma/ka

Project Location: LEA COUNTY, NM

Sampling Date: 02/05/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact
Sample Received By: Shalyn Rodriguez

Sample ID: SW - 8 (H250694-15)

RTFY 8021R

BIEX 8021B	mg	/ kg	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/05/2025	ND	2.06	103	2.00	1.50	
Toluene*	<0.050	0.050	02/05/2025	ND	2.15	108	2.00	0.373	
Ethylbenzene*	<0.050	0.050	02/05/2025	ND	2.19	110	2.00	0.190	
Total Xylenes*	<0.150	0.150	02/05/2025	ND	6.71	112	6.00	0.105	
Total BTEX	<0.300	0.300	02/05/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	111	% 71.5-13	4						
Chloride, SM4500Cl-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	240	16.0	02/06/2025	ND	432	108	400	3.77	
TPH 8015M	mg	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/06/2025	ND	206	103	200	3.64	
DRO >C10-C28*	<10.0	10.0	02/06/2025	ND	200	99.9	200	2.31	
EXT DRO >C28-C36	<10.0	10.0	02/06/2025	ND					
Surrogate: 1-Chlorooctane	113	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Me Sough

Notes and Definitions

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

MA Sough

Mike Snyder For Celey D. Keene, Lab Director/Quality Manager

Page 17 of 19

% C	Tetra Tech, Inc.				Mic	idland,T	Texas 7				¥									F	Page		<	86	18 of 19
ent Name:		Site Manager:		Chi	Fa	Terh	2) 682-	3946			_								REQ			_			Page 18
oject Name:	Maverick Natural Resources Oxy State F1 Battery		chuck.terh	281	1-75	5-89	65				\dashv	ı	(Cir 	cle	or :	Spe	ecit	y № 	leti	hod 	No	o.)		
ject Location: unty, state)		Project #:	oridok.tori			C-MI																	list)		
oice to:	<u>'</u>																								
ceiving Labora	Cardinal Labs		7		Jorg	je Fe	erna	ndez				260B	O - ORO - MRO)	Cr Pb Se	Cr Pb				8270C/625			TDS			
	Include : Chris Straub Chris.Straub@tetratech.com Jorge.F	ernandez@		Т	ATRI	x		ESERVAT METHOD		SS	(N	BTEX 8260B	GRO - DRO	Ad As Ba Cd	g As Ba C	oditol	dalles	260B / 624	GC/MS Semi. Vol. 8270C/ PCB's 8082 / 608		(8)	Sulfate	E	Dalaise	
2506 LAB#	94	YEAR: 2025		FER		T		,		CONTAINERS	FILTERED (Y/N)	8021B	8015M (8270C		TCLP Volatiles	N Ellan	GC/MS Vol. 8	MS Semi.	3M	PLM (Asbestos)	oride S	General Wate	ON/Cauch	
ONLY)		2/5/2025	830	WA	X SOIL		로 <u>로</u>	x	+	#	딢	X BTEX	X H	PAH	TCL	12L	<u> </u>	/SS	GC/ PCE	NORM	X PLN	\top	Ger	Ž	
1	BH-1 (4.0')	2/5/2025	835	t	x	\top	\dagger	x	+			х	х					П			х		П	I	
3	BH-2 (4.0') BH-3 (4.0')	2/5/2025	840	T	х		\top	х				х	х					Ц	\perp	\perp	×		\coprod	\perp	\perp
3	BH-4 (4.0')	2/5/2025	845		х			х				х	х	Ц		Ц	\perp	Ц	\perp	\perp	×	4	\sqcup	+	\vdash
5	BH-5 (4.0')	2/5/2025	850		х			x	\perp	_		х	х	Ц	\perp	Н	\perp	Н	\perp	\perp	×	4	++	+	\vdash
(0	BH-6 (4.0')	2/5/2025	855	L	х			x	\perp	_	_	х	х	Н	\perp	Н	\perp	Н	\dashv	\perp	×	4	₩	+	\vdash
7	BH-7 (4.0')	2/5/2025	900		х			x	\perp	\perp	_	х	x	Н	\perp	Ц	4	\sqcup	\dashv	\perp	X	<u> </u>	++	+	₩
8	SW-1	2/5/2025	905	L	х		\perp	x	\perp	_	_	х	x	Н	+	Н	\perp	\perp	\vdash	+	H'	×	++	+	₩
9	SW-2	2/5/2025	910	L	х	Ц	\perp	x	\perp	\perp	_	х	х	Н	+	Н	\perp	1	\vdash	+	H	×	+	+	₩
1		2/5/2025	915	L	х			x				х	х	Ш	丄			VC.	Щ			X	\coprod	\perp	Ш
linquished	Date: Time: 1235 $ \begin{array}{cccccccccccccccccccccccccccccccccc$,	deic	m	ey		Date 2	s T	ime:	23	0	Sar	Of ople To	NLY emper	ature		_	USH	ł: Sa	ame	Day Autho	24	hr	48 hr	72 hr
Š.	py: Date: Time:	Received by	у.				Date						5.7			0							TRRF	, Keb	ort
eceived		ORIGINA	L COPY									(Ci	rcle) H	IAND	DELI	/ERE	D F	EDE	K UF	S	Track	ing#	t		

alysis Requ	Tetra Tech, Inc.				Mid Te	lland,T el (432	Street, S Fexas 79 () 682-45 (2) 682-3	701 559					4													e 19 of 19
nt Name:	Maverick Natural Resources	Site Manager:		Chi	uck T	Terh	une						,	Cir			Sp						No.)		Page
ect Name:	Oxy State F1 Battery	(Circle or Specify Method No.) 281-755-8965 chuck.terhune@tetratech.com																								
ect Location: inty, state)	Lea County, NM	Project #:			2120	C-M	D-03	170															ist)			
ice to:	Attn: Chuck Terhune	Sampler Signa	ture:					40-					- MRO)	-	e Hg								attached list)			
eiving Laborat	Cardinal Labs				Jorg	e F	ernar	ndez				8260B	O-ORO	i	d Cr Pb S				2/625							
	nclude : Chris Straub Chris.Straub@tetratech.com Jorge.	Fernandez@			ATRIX	×Τ		SERVAT		σ σ	9	BTEX 82	TX1005 (Ext to C35) 8015M (GRO - DRO - ORO - MRO)		Total Metals Ag As Ba Cd Cr Pb Se Hg TCLP Metals Ag As Ba Cd Cr Pb Se Hg		Volatiles	60B / 624	ol. 8270C/625	88		П	Chloride Sulfate TDS General Water Chemistry (see	Anion/Cation Balance		
250 L	74	YEAR: 2025		_	П	†	Т		T	CONTAINERS	FILTERED (Y/N)	8021B	(1005 (E	8270C	etals Ag letals Ag	olatiles	Semi Vol	Vol. 82	Semi. V	8082 / 6	spestos	1	le Su	Cation E		
LAB USE)		DATE	TIME	WATER	SOIL	1	H K	핑		# CON	FILTER		TPH TPH 80	PAH 82	Total M TCLP N	TCLP Volatiles	TCLP S	GC/MS	GC/MS Semi. Vol. 827	PCB's	NORM PLM (A	Chlorid	Chloride	Anion/	\perp	
/	SW-4	2/5/2025	920		х	1		х	T	\perp		х	х	Н	+	Н	+	+	Н	+	+	X	+	Н	+	\vdash
13	SW-5	2/5/2025	925	╀	х	+	+	X	+	+	+	X	X	Н	+	Н	+	+	Н	\forall	+	x	+	\forall	+	\vdash
	SW-6	2/5/2025	936	╀	х	+	+	X	+	+	+	X	×	Н	+	Н	+	+	Н	H	+	x	+	+	+	+
14	SW-7	2/5/2025	935	╀	X	+	+	×	+	+	+-	×	X	Н	+	+	H	+	Н	Н	+	x	+	\forall	+	\vdash
15	SW-8	2/5/2025	940	╁	X	+	+	×	+	+	+	×	X	Н				\pm			\pm	Î			士	士
				ļ	П		1	П	1	\perp	1	Н	-			+	H	+	\mathbb{H}	Н	+	+	Н	+	+	+
				\dagger	Н		\pm	\forall	1	\pm	+	\parallel		t			Ħ	1			\perp	#		#	I	丰
	y: Date: Time: 1235												LAE	3 US	SE	RI	MAF	RKS		Sta	anda	ard	TAT		Ш	
inquished b		-2 V. 2-5-25 National Property Name No. 12 No. 12																								
elinquished b	y: Date: Time:	Received by: Date: Time: Special Report Limits or TRRP Report (Circle) HAND DELIVERED FEDEX UPS Tracking #: ORIGINAL COPY																								
		ORIGINA	L COPY									(Ci	ircle) I	HANE	DEL	IVER	ED	FEDE	EX	UPS	Tr.	acking	g #: _			

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 495978

QUESTIONS

ı	Operator:	OGRID:
ı	Maverick Permian LLC	331199
ı	1000 Main Street, Suite 2900	Action Number:
ı	Houston, TX 77002	495978
ı		Action Type:
ı		[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2317958480
Incident Name	NAPP2317958480 OXY STATE F1 BATTERY PRODUCED WATER OVERFILL @ 0
Incident Type	Produced Water Release
Incident Status	Remediation Closure Report Received
Incident Facility	[fAPP2212329237] OXY STATE F1 BATTERY

Location of Release Source							
Please answer all the questions in this group.							
Site Name	OXY STATE F1 BATTERY PRODUCED WATER OVERFILL						
Date Release Discovered	06/27/2023						
Surface Owner	State						

Incident Details							
Please answer all the questions in this group.							
Incident Type	Produced Water Release						
Did this release result in a fire or is the result of a fire	No						
Did this release result in any injuries	No						
Has this release reached or does it have a reasonable probability of reaching a watercourse	No						
Has this release endangered or does it have a reasonable probability of endangering public health	No						
Has this release substantially damaged or will it substantially damage property or the environment	No						
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No						

Nature and Volume of Release							
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.							
Crude Oil Released (bbls) Details	Not answered.						
Produced Water Released (bbls) Details	Cause: Overflow - Tank, Pit, Etc. Tank (Any) Produced Water Released: 50 BBL Recovered: 45 BBL Lost: 5 BBL.						
Is the concentration of chloride in the produced water >10,000 mg/l	No						
Condensate Released (bbls) Details	Not answered.						
Natural Gas Vented (Mcf) Details	Not answered.						
Natural Gas Flared (Mcf) Details	Not answered.						
Other Released Details	Not answered.						
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	The release was fully contained within the lined tank battery secondary containment structure. 45 bbls recovered and 5 bbls absorbed by the liner cover material.						

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 495978

QUESTI	ONS (continued)
Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900 Houston, TX 77002	Action Number:
Houston, 1X 77002	495978 Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	safety hazard that would result in injury.
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releate the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are require ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: Chuck Terhune Title: Program Manager Email: chuck.terhune@tetratech.com

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 495978

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Site Characterization		
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the	
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 75 and 100 (ft.)	
What method was used to determine the depth to ground water	Direct Measurement	
Did this release impact groundwater or surface water	No	
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:		
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)	
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)	
Any other fresh water well or spring	Between ½ and 1 (mi.)	
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)	
A wetland	Between 1 and 5 (mi.)	
A subsurface mine	Greater than 5 (mi.)	
An (non-karst) unstable area	Greater than 5 (mi.)	
Categorize the risk of this well / site being in a karst geology	Low	
A 100-year floodplain	Greater than 5 (mi.)	
Did the release impact areas not on an exploration, development, production, or storage site	No	

Remediation Plan		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
Requesting a remediation	plan approval with this submission	Yes
Attach a comprehensive report der	monstrating the lateral and vertical extents of soil contamination	associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertica	l extents of contamination been fully delineated	Yes
Was this release entirely co	ontained within a lined containment area	No
Soil Contamination Sampling	: (Provide the highest observable value for each, in mill	ligrams per kilograms.)
Chloride	(EPA 300.0 or SM4500 CI B)	1410
TPH (GRO+DRO+MRO)	(EPA SW-846 Method 8015M)	28.1
GRO+DRO	(EPA SW-846 Method 8015M)	28.1
BTEX	(EPA SW-846 Method 8021B or 8260B)	0
Benzene	(EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.		
On what estimated date will	Il the remediation commence	12/13/2024
On what date will (or did) th	ne final sampling or liner inspection occur	02/05/2025
On what date will (or was) t	the remediation complete(d)	02/12/2025
What is the estimated surfa	ace area (in square feet) that will be reclaimed	0
What is the estimated volur	me (in cubic yards) that will be reclaimed	0
What is the estimated surfa	ace area (in square feet) that will be remediated	1375
What is the estimated volur	me (in cubic yards) that will be remediated	230
These estimated dates and measurements are recognized to be the best guess or calculation at the time of submission and may (be) change(d) over time as more remediation efforts are completed.		

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Released to Imaging: 9/3/2025 2:53:44 PM

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 495978

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
Yes		
HALFWAY DISPOSAL AND LANDFILL [fEEM0112334510]		
Not answered.		

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: Chuck Terhune
Title: Program Manager
Email: chuck.terhune@tetratech.com
Date: 08/14/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 495978

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 495978

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Sampling Event Information	
Last sampling notification (C-141N) recorded	429696
Sampling date pursuant to Subparagraph (a) of Paragraph (1) of Subsection D of 19.15.29.12 NMAC	02/12/2025
What was the (estimated) number of samples that were to be gathered	4
What was the sampling surface area in square feet	800

Remediation Closure Request	
Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.	
Requesting a remediation closure approval with this submission	Yes
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the sites existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion	Yes
What was the total surface area (in square feet) remediated	1375
What was the total volume (cubic yards) remediated	230
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste contain earthen material with concentrations less than 600 mg/kg chlorides, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg Benzene	Yes
What was the total surface area (in square feet) reclaimed	0
What was the total volume (in cubic yards) reclaimed	0
Summarize any additional remediation activities not included by answers (above)	Impacts were constrained to within the unlined secondary containment berm. Area was excavated and backfilled to restore the secondary containment structure bottom and earthen berms.

The responsible party must attach information demonstrating they have complied with all applicable closure requirements and any conditions or directives of the OCD. This demonstration should be in the form of a comprehensive report (in .pdf format) including a scaled site map, sampling diagrams, relevant field notes, photographs of any excavation prior to backfilling, laboratory data including chain of custody documents of final sampling, and a narrative of the remedial activities. Refer to 19.15.29.12 NMAC.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations. The responsible party acknowledges they must substantially restore, reclaim, and re-vegetate the impacted surface area to the conditions that existed prior to the release or their final land use in accordance with 19.15.29.13 NMAC including notification to the OCD when reclamation and re-vegetation are complete.

I hereby agree and sign off to the above statement

I hereby agree and sign off to the above statement

Title: Program Manager
Email: chuck.terhune@tetratech.com
Date: 08/14/2025

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 7

Action 495978

QUESTIONS (continued)

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

QUESTIONS

Reclamation Report	
Only answer the questions in this group if all reclamation steps have been completed.	
Requesting a reclamation approval with this submission No	

Sante Fe Main Office Phone: (505) 476-3441

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 495978

CONDITIONS

Operator:	OGRID:
Maverick Permian LLC	331199
1000 Main Street, Suite 2900	Action Number:
Houston, TX 77002	495978
	Action Type:
	[C-141] Remediation Closure Request C-141 (C-141-v-Closure)

CONDITIONS

Create By	d Condition	Condition Date
nvele	z None	9/3/2025