Site Assessment Summary, Variance Request & Proposed Remediation Plan

Mewbourne Oil Company Layla 27 SWD #001

Eddy County, New Mexico
Unit Letter "H", Section 27, Township 23 South, Range 28 East
Latitude 32.27803 North, Longitude 104.06982 West
NMOCD Reference No. nAPP2428849677

Prepared By:

Etech Environmental & Safety Solutions, Inc.

6309 Indiana Ave, Ste. D Lubbock, Texas 79413

July 25, 2025

Lance Crenshaw

Midland • San Antonio • Lubbock • Hobbs • Lafayette

TABLE OF CONTENTS

	Section
PROJECT INFORMATION	1.0
SITE CHARACTERIZATION	2.0
CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE	3.0
REGULATORY SUBMITTALS	4.0
SITE ASSESSMENT.	5.0
VARIANCE REQUEST	6.0
PROPOSED REMEDIAL ACTIVITIES.	7 .0
RESTORATION, RECLAMATION & RE-VEGETATION PLAN	8.0
LIMITATIONS	9.0
DISTRIBUTION	10.0

FIGURES

Figure 1 - Site Location Map

Figure 2A - Site Characterization Map (0.5-Mile Radius)

Figure 2B - Site Characterization Map (5-Mile Radius)

Figure 3 - Sample Location Map

TABLES

Table 1 - Concentrations of BTEX, TPH & Chloride in Soil

APPENDICES

Appendix A - Depth to Groundwater Information

Appendix B - Pad Liner Installation (2016)

Appendix C - Environmental Karst Study Report

Appendix D - Regulatory Correspondence

Appendix E - Field Data

Appendix F - Photographic Log

Appendix G - Liner Integrity Inspection Report

Appendix H - Laboratory Analytical Reports

1.0 PROJECT INFORMATION

Etech Environmental & Safety Solutions, Inc. (Etech), on behalf of Mewbourne Oil Company (Mewbourne), has prepared this *Site Assessment Summary, Variance Request & Proposed Remediation Plan* for the release site known as the Layla 27 SWD #001 (henceforth, "Site"). Details of the release are summarized below:

Latituda.		on of Release S				
Latitude:	32.27803	Longitude ded GPS are in WGS84 for				
Site Name:	Layla 27 SWD #001	Site Type:	Production Tank			
Date Release Discove		API # (if appl				
Unit Letter S	ection Township 27 238	Range 28E	County Eddy			
Surface Owner: S	State Federal Triba	1 X Private (Na	ame Dorothy W. Queen Revocable Trust			
	Nature a	and Volume of	Release			
Crude Oil	Volume Released (bbls)		Volume Recovered (bbls)			
X Produced Water	Volume Released (bbls)	305	Volume Recovered (bbls) 250			
	Is the concentration of diss the produced water > 10,0		X Yes No N/A			
Condensate	Volume Released (bbls)		Volume Recovered (bbls)			
Natural Gas	Volume Released (Mcf)		Volume Recovered (Mcf)			
Other (describe)	Volume/Weight Released		Volume/Weight Recovered			
Cause of Release: Mechanical failure of	on a threaded flange.					
	I	nitial Response				
X The source of the	e release has been stopped.					
X The impacted are	ea has been secured to protect h	uman health and the	environment.			
X Release materials	s have been contained via the us	se of berms or dikes,	absorbent pad, or other containment devices			
X All free liquids a	nd recoverable materials have b	een removed and m	anaged appropriately.			

Previously submitted portions of the New Mexico Oil Conservation Division (NMOCD) Form C-141 are available in the NMOCD Permitting system.

2.0 SITE CHARACTERIZATION

what is the shallowest depth to groundwater beneath the area affected by the release in	
feet below ground surface (bgs)?	Between 26 and 50 (ft.)
What method was used to determine the depth to groundwater?	NM OSE iWaters Database Search
Did the release impact groundwater or surface water?	Yes X No
What is the minimum distance between the closest lateral extents of the release and the following surface areas?	
A continuously flowing watercourse or any other significant watercourse?	Between 300 and 500 (ft.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)?	Between ½ and 1 (mi.)
An occupied permanent residence, school, hospital, institution or church?	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes?	Between 1,000 (ft.) and ½ (mi.)
Any other fresh water well or spring?	Between 300 and 500 (ft.)
Incorporated municipal boundaries or a defined municipal fresh water well field?	Between 1 and 5 (mi.)
A wetland?	Between 300 and 500 (ft.)
A subsurface mine?	Greater than 5 (mi.)
A (non-karst) unstable area?	Between 500 and 1,000 (ft.)
Categorize the risk of this well/site being in a karst geology.	Low
A 100-year floodplain?	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production or storage site?	Yes X No

A search of groundwater databases maintained by the New Mexico Office of the State Engineer (NMOSE) and United States Geological Survey (USGS) was conducted in an effort to determine the horizontal distance to known water sources within a half-mile radius of the Site. Probable groundwater depth was determined using data generated by numeric models based on available water well data and published information. Depth to groundwater information is provided as Appendix A.

Additional NMOCD Siting Criteria data was gathered from available resources including Bureau of Land Management (BLM) and Fish and Wildlife Services (FWS) shapefiles; topographic maps; NMOSE and USGS databases; and aerial imagery. The results are depicted in Figures 1, 2A, 2B, and 4.

In July 2016, in conjunction with the remediation of NMOCD Incident #nAB1609149408 (2RP-3626), an impermeable, high-density polyethylene (HDPE) liner was installed in the footprint of the entire production pad for the Layla 27 SWD #001 tank battery at depths ranging from approximately one (1) to four (4) feet bgs. The footprint of the pad liner is depicted in Figure 3, "Sample Location Map". Photographs of the 2016 liner installation are provided in Appendix B.

A karst study of the affected area was conducted by a third-party environmental contractor in April 2025. According to the *Environmental Karst Study Report* (Karst Survey) dated May 23, 2025, "The LS271 survey contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary. One recognized surface feature exists within the 200-meter survey boundary. This feature is likely related to soil piping and represents a safety hazard, but not a karst hazard. The LS271 survey contains one high-resistivity anomaly which we interpret as a subsurface void. This feature exists outside of the 200-foot (61-meter) survey boundary. This feature may represent a collapse risk and present a hazard to equipment operators working in that area. A moderately well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground..." The karst study report is provided as Appendix C.

3.0 CLOSURE CRITERIA FOR SOILS IMPACTED BY A RELEASE

Based on the volume and nature of the release, inferred depth to groundwater, and NMOCD Siting Criteria, the NMOCD Closure Criteria and NMOCD Reclamation Standards for the Site are as listed below:

Probable Depth to Groundwater	('onstituent	Laboratory Analytical Method	Closure Criteria*†	Reclamation Standards*‡
	Chloride (Cl-)	EPA** 300.0 or SM4500 Cl B	600	600
Between 26 and	Total Petroleum Hydrocarbons (TPH)	EPA SW-846 Method 8015M Ext	100	100
50 (ft.)	Gas Range Organics + Diesel Range Organics (GRO+DRO)	EPA SW-846 Method 8015M	N/A	N/A
30 (11.)	Benzene	EPA SW-846 Methods 8021b or 8260b	10	10
	Benzene, Toluene, Ethylbenzene, Total Xylenes (BTEX)	EPA SW-846 Methods 8021b or 8260b	50	50

^{*} Measured in milligrams per kilogram (mg/kg)

4.0 REGULATORY SUBMITTALS

On December 12, 2024, a *Proposed Remediation Plan* was submitted to the NMOCD outlining remedial activities designed to advance the Site toward NMOCD-approved closure. The NMOCD subsequently denied the remediation plan on the grounds that the extent of the release had not been delineated horizontally or vertically, and the depth to ground water determination was inadequate, as it did not include gauging data from a recently drilled well nearby.

For additional information, please reference the *Proposed Remediation Plan*, which is available in the NMOCD Permitting system.

Copies of all regulatory correspondence are provided in Appendix D.

5.0 SITE ASSESSMENT

On February 14, 2025, Etech conducted a site assessment. During the site assessment, four (4) test trenches (TT-1 through TT-4) were advanced within the margins of the release in an effort to determine the vertical extent of impacted soil. In addition, six (6) hand-augered soil bores (NH, EH 1, EH 2, SH, WH 1, and WH 2) were advanced along the release margins to determine the horizontal extent of impacted soil.

The test trenches were advanced in one-foot increments until the liner underlying the Site was encountered, which ranged from approximately one (1) foot bgs in trench TT-1 to approximately three (3) feet bgs in trenches TT-2, TT-3, and TT-4. Inspections of the exposed portions of the liner were performed to check its integrity and confirm that it remained intact. No holes or breaches were discovered during the inspections.

During the advancement of the test trenches and hand-augered soil bores, soil samples were collected and field-screened for the presence of Volatile Organic Compounds (VOCs) utilizing olfactory/visual senses and/or concentrations of chloride utilizing a Hach Quantab ® chloride test kit. Based on field observations and field test data, a total of 20 delineation soil samples (TT-1 @ Surf, TT-1 @ 1', TT-2 @ Surf through TT-2 @ 3', TT-3 @ Surf through TT-3 @ 3', TT-4 @ Surf through TT-4 @ 3', NH, EH-1, EH-2, SH, WH-1, and WH-2) were submitted to a certified, commercial laboratory (henceforth, "the laboratory") for analysis of BTEX, TPH, and chloride. Based on laboratory analytical results, the horizontal extent of impacted soil was adequately defined in the areas characterized by sample points NH, EH 1, EH 2, SH, WH 1, and WH 2.

Delineation sample points, the extent of the affected area, and the footprint of the pad liner referenced in Section 2.0 above are depicted in Figure 3. Soil chemistry data is summarized in Table 1. Field data is provided in Appendix E. General photographs of the Site are provided in Appendix F. A "Liner Integrity Inspection Report" is provided in Appendix G. Laboratory analytical reports are provided in Appendix H.

^{**} Environmental Protection Agency

[†] Table I, Section 19.15.29.12 of the New Mexico Administrative Code (NMAC).

[‡] The NMOCD Reclamation Standards apply only to the top 4' of soil in non-production areas. Subsection 19.15.29.13 D.(1) NMAC.

6.0 VARIANCE REQUEST

According to historical records available in the NMOCD Permitting system, in July 2016 an impermeable HDPE liner was installed in the footprint of the entire production pad for the Layla 27 SWD #001 tank battery at depths ranging from approximately one (1) to four (4) feet bgs (see Section 2.0, Figure 3, and Appendix B). This engineered control was designed to mitigate potential releases at the Site and prevent the vertical migration of any contamination to groundwater. As shown in Figure 3, the liner extends well beyond the maximum horizontal extent of the affected area. Visual inspections of exposed portions of the liner conducted in February 2025 confirmed that it remains intact (see Section 5.0 and Appendix G).

The drilling log for NMOSE well C-4830 POD 1 (located approximately 400 feet to the east of the release) indicates that the underlying soil stratigraphy at the Site includes interbedded clays and silty clays, which are described in the well log as "very stiff-hard", "consolidated", and of low to medium plasticity (see Appendix A). These characteristics are indicative of low-permeability soils that restrict the vertical movement of moisture.

The Karst Survey indicated that no surface karst features are present within 200 feet of the release area, and that the subsurface is "moderately well-layered", which is indicative of "stable ground." This geologic stability, coupled with the absence of karst features proximate to the affected area, significantly reduces the risk of contaminant migration to groundwater through subsurface conduits.

The affected area has been horizontally delineated to the Table 1 Closure Criteria for a site where the depth to groundwater is ≤50 feet bgs and has been vertically delineated to <10,000 mg/kg chloride and <100 mg/kg TPH.

Based on the information above, Mewbourne respectfully requests a variance from the requirements of Subsections 19.15.29.12.C(3) and 19.15.29.13.D(1) NMAC, as well as from the NMOCD's position that "soil standards below 4 feet must be delineated/remediated to Table 1 Closure Criteria for the approved site-specific depth to groundwater" (see rejection letter dated January 10, 2025, provided in Appendix D). Mewbourne also requests a relaxation of the closure criterion for chloride from 600 mg/kg to 10,000 mg/kg. Mewbourne affirms that attempting to excavate impacted soil to ≤600 mg/kg chloride would require disturbing the underlying HDPE liner, which could unnecessarily compromise its integrity and impermeability. Given the stable site conditions, low permeability of the underlying soil, and absence of potential subsurface contaminant migration pathways, leaving marginally impacted soil in-situ and avoiding damage to the impermeable liner would "...provide an equal or better protection of fresh water, public health and the environment" than excavation to ≤600 mg/kg chloride, pursuant to Subsection 19.15.29.14 A(2) NMAC.

7.0 PROPOSED REMEDIAL ACTIVITIES

Mewbourne proposes the following remedial activities designed to advance the Site toward an NMOCD-approved closure:

- Utilizing mechanical equipment, impacted soil within the release margins will be excavated and stockpiled on-site, pending final disposition.
 - The excavation will be advanced vertically until field tests and field observations suggest that concentrations of benzene, BTEX, TPH, and chloride are below the proposed Closure Criteria of 10 mg/kg; 50 mg/kg; 100 mg/kg; and 10,000 mg/kg, respectively. If excavation to 10,000 mg/kg chloride cannot be achieved without the risk of compromising the HDPE liner, a protective cushion of material at least six (6) inches thick will be left in-situ to prevent damage to the liner during backfilling activities.
 - The sidewalls of the excavated area(s) will be advanced until field tests and field observations suggest that benzene, BTEX, TPH, and chloride concentrations are below 10 mg/kg, 50 mg/kg, 100 mg/kg, and 600 mg/kg, respectively (or to the extent practicable).
 - Should any holes or breaches be discovered (or inadvertently created) in the HDPE liner during the course of excavation activities, the compromised section(s) of the liner will be removed, and any underlying impacted soil will

be excavated until field tests and field observations suggest that benzene, BTEX, TPH, and chloride concentrations are below the applicable Closure Criteria. The liner will be repaired to restore its integrity and impermeability prior to backfilling the excavated area(s).

- Upon completion of excavation activities, representative five-point composite confirmation soil samples will be collected every 200 square feet from the sidewalls and floor(s) of the excavated area(s) to be submitted for laboratory analysis. In addition, discrete grab samples will be collected from wet or visibly stained areas inferred to have been affected by the release, as necessary. The excavation will be advanced as necessary if any exceedances are identified.
- Excavated soil will be transferred to an NMOCD-permitted surface waste facility for disposal.
- Upon receiving laboratory analytical results from confirmation soil samples, the excavated area(s) will be backfilled and restored as described in Section 8.0 below.
- Upon completion of all proposed remedial activities, a *Remediation Summary & Soil Closure Request* will be prepared detailing field activities and laboratory analytical results from confirmation soil samples.

Requesting a remediation plan approval with this submission?	X Yes No
Requesting a deferral of remediation closure due date with the approval of this submission?	Yes X No
Have the lateral and vertical extents of contamination been fully delineated?	X Yes No
Was this release entirely contained within a lined containment area?	X Yes No
On what estimated date will (or did) the remediation commence?	8/25/2025
On what date will (or did) the final sampling or liner inspection occur?	9/15/2025
On what date will (or was) the remediation complete(d)?	9/22/2025
What is the total surface area (sq. ft.) in need of or that will eventually be reclaimed?	~15,596
What is the total volume (cy) in need of or that will eventually be reclaimed?	~2,934
What was the total surface area (sq. ft.) that has or will be remediated?	~15,596
What was the total volume (cy) that has or will be remediated?	~2,934
This remediation utilized the following processes to remediate/reduce contaminants: (Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	X Yes No
(Ex Situ) Excavation and on-site disposal (i.e. dig and had), hydrovac, etc.) (Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Yes X No
(In Situ) Soil Vapor Extraction	Yes X No
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Yes X No
(In Situ) Biological processing (i.e. Microbes/Fertilizer, etc.)	Yes X No
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Yes X No
Ground Water Abatement pursuant to 19.15.30 NMAC	Yes X No
Other (Non-listed remedial process)	Yes X No
Which OCD approved facility was or will be used for off-site disposal?	R360 Red Bluff Facility
NMOCD Disposal Facility ID?	Texas
Summarize any additional remediation activities not included by answers above.	N/A

8.0 RESTORATION, RECLAMATION & RE-VEGETATION PLAN

Upon completion of the proposed remedial activities and receipt of laboratory analytical results from confirmation soil samples, affected areas will be substantially restored to the condition that existed prior to the release, to the extent practicable. Excavated areas will be backfilled with locally sourced, non-impacted, "like" material emplaced at or near original relative positions. The affected areas will be compacted and contoured to achieve erosion control, stability, and preservation of surface water flow, to the extent practicable.

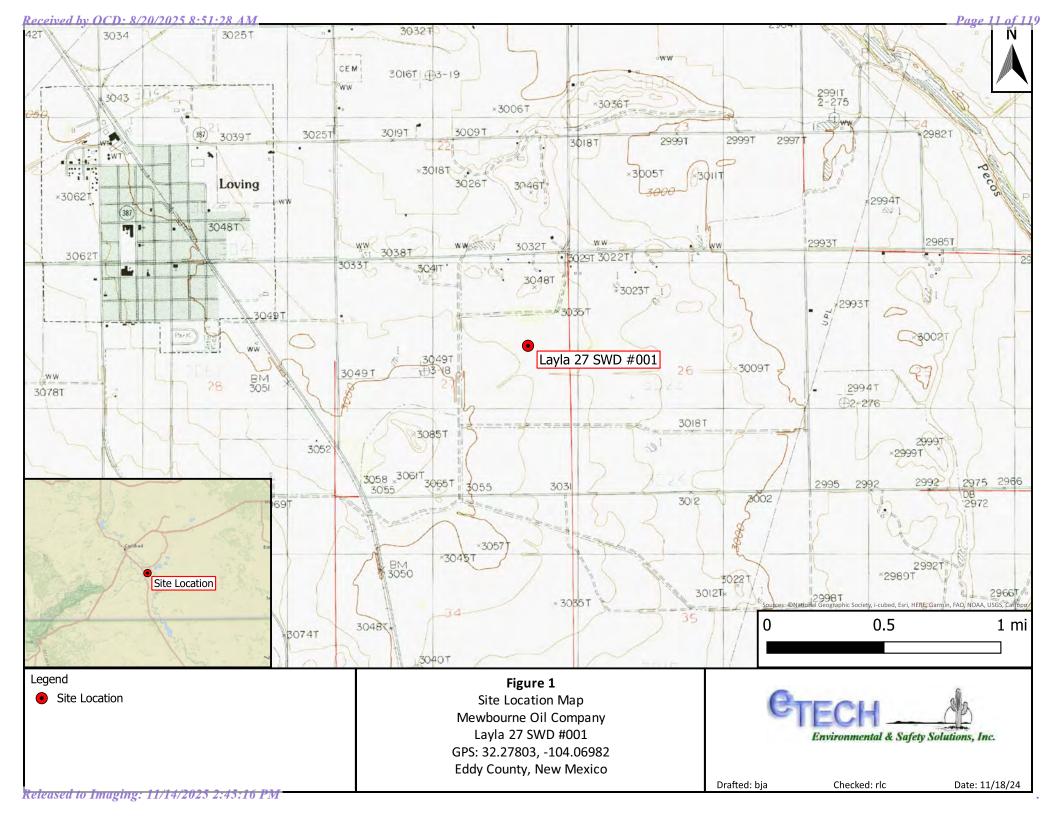
The release was limited to the lined production pad of an active tank battery and did not impact the adjacent pasture. Final reclamation and revegetation will be conducted upon decommissioning and abandonment of the location in accordance with Section 19.15.29.13 NMAC. The reclaimed area will be revegetated with an agency and/or landowner-approved seed mix during the first favorable growing season following closure of the facility. The seed mix will be certified as weed-free and installed at the prescribed rate utilizing either a seed drill or a broadcaster and harrow.

All areas reasonably needed for production or subsequent drilling operations have been stabilized, returned to the site's existing grade, and have a soil cover that prevents ponding of water, minimizing dust and erosion.	Yes X No
All areas not reasonably needed for production or subsequent drilling operations have been reclaimed to contain a minimum of four feet of non-waste containing earthen material with concentrations of less than 600 mg/kg chloride, 100 mg/kg TPH, 50 mg/kg BTEX, and 10 mg/kg benzene?	Yes X No
Requesting a remediation closure approval with this submission?	Yes X No
Requesting a reclamation approval with this submission?	Yes X No
Requesting a restoration complete approval with this submission?	Yes X No
What was the total surface area (sq. ft.) remediated?	0 (To be completed)
What was the total volume (cy) remediated?	0 (To be completed)
What was the total surface area (in square feet) reclaimed?	0 (To be completed)
What was the total volume (in cubic yards) reclaimed?	0 (To be completed)

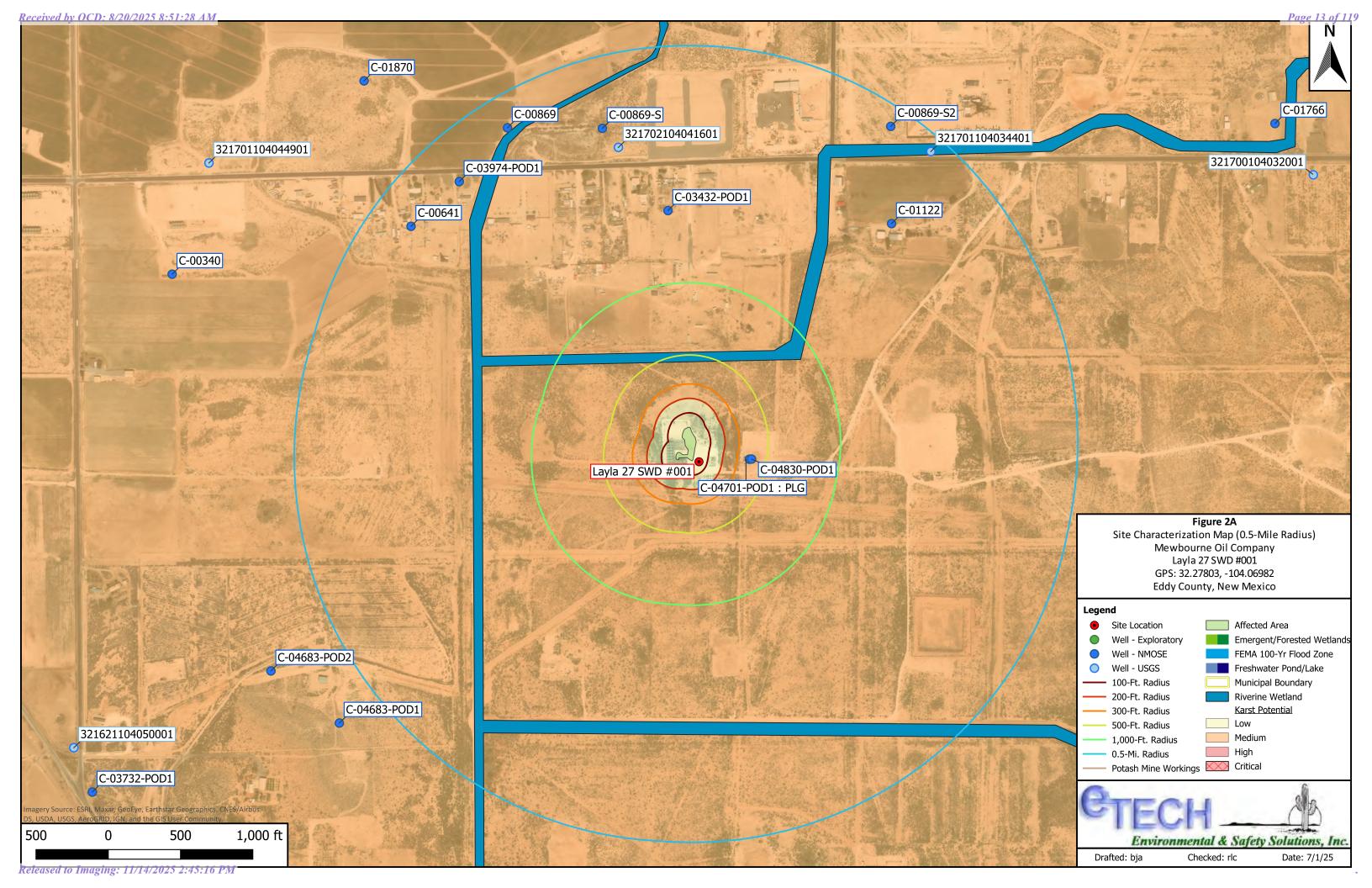
9.0 LIMITATIONS

Etech Environmental & Safety Solutions, Inc., has prepared this Site Assessment Summary, Variance Request & Proposed Remediation Plan to the best of its ability. No other warranty, expressed or implied, is made or intended. Etech has examined and relied upon documents referenced in the report and on oral statements made by certain individuals. Etech has not conducted an independent examination of the facts contained in referenced materials and statements. Etech has presumed the genuineness of these documents and statements and that the information provided therein is true and accurate. Etech has prepared the report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Etech notes that the facts and conditions referenced in this report may change over time, and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of Mewbourne Oil Company. Use of the information contained in this report is prohibited without the consent of Etech and/or Mewbourne Oil Company.


10.0 DISTRIBUTION

Mewbourne Oil Company 4801 Business Park Blvd. Hobbs, NM 88240


New Mexico Energy, Minerals and Natural Resources Department Oil Conservation Division, District 2 811 S. First Street Artesia, NM 88210

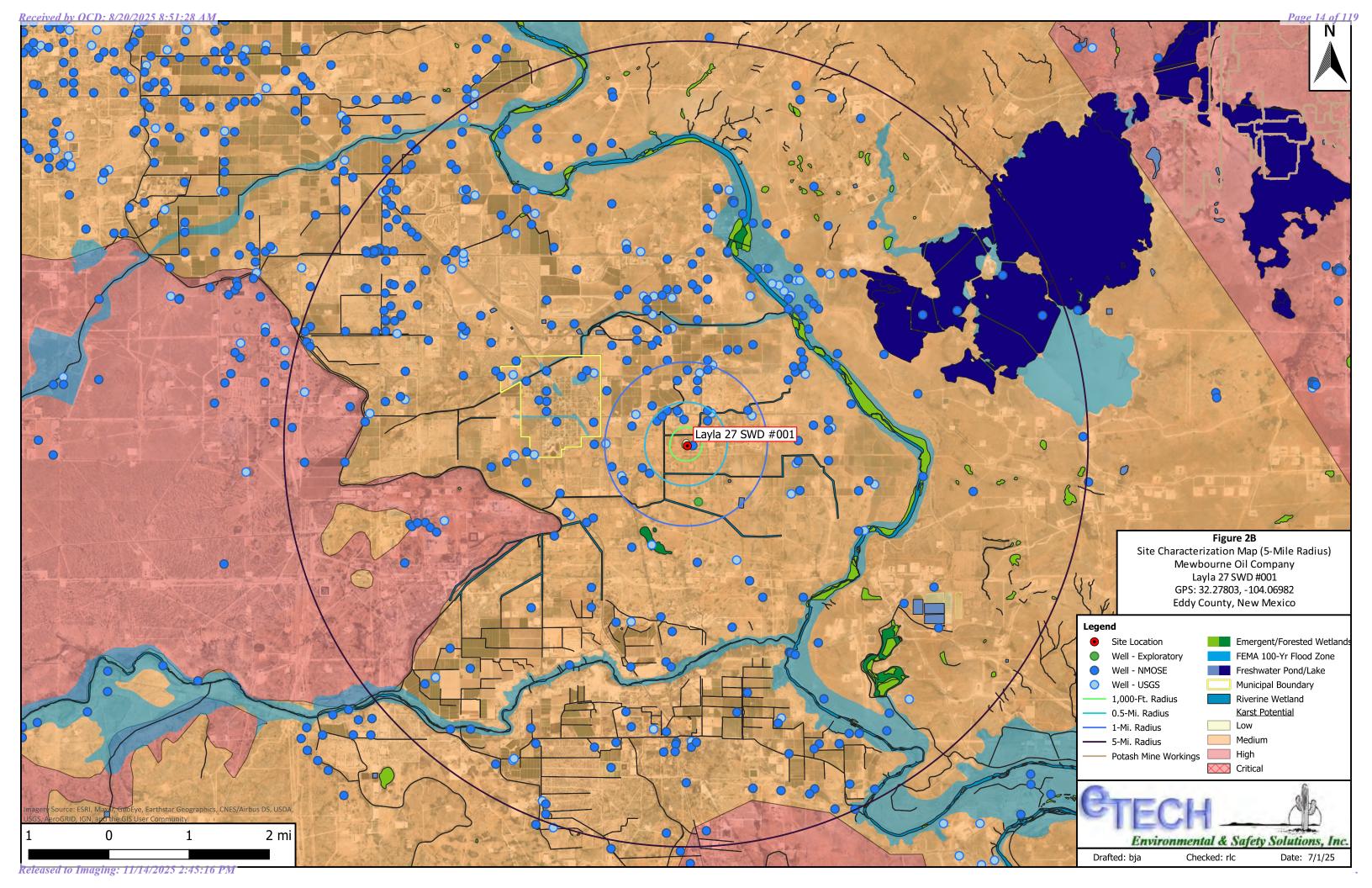

(Electronic Submission)

Figure 1 Site Location Map

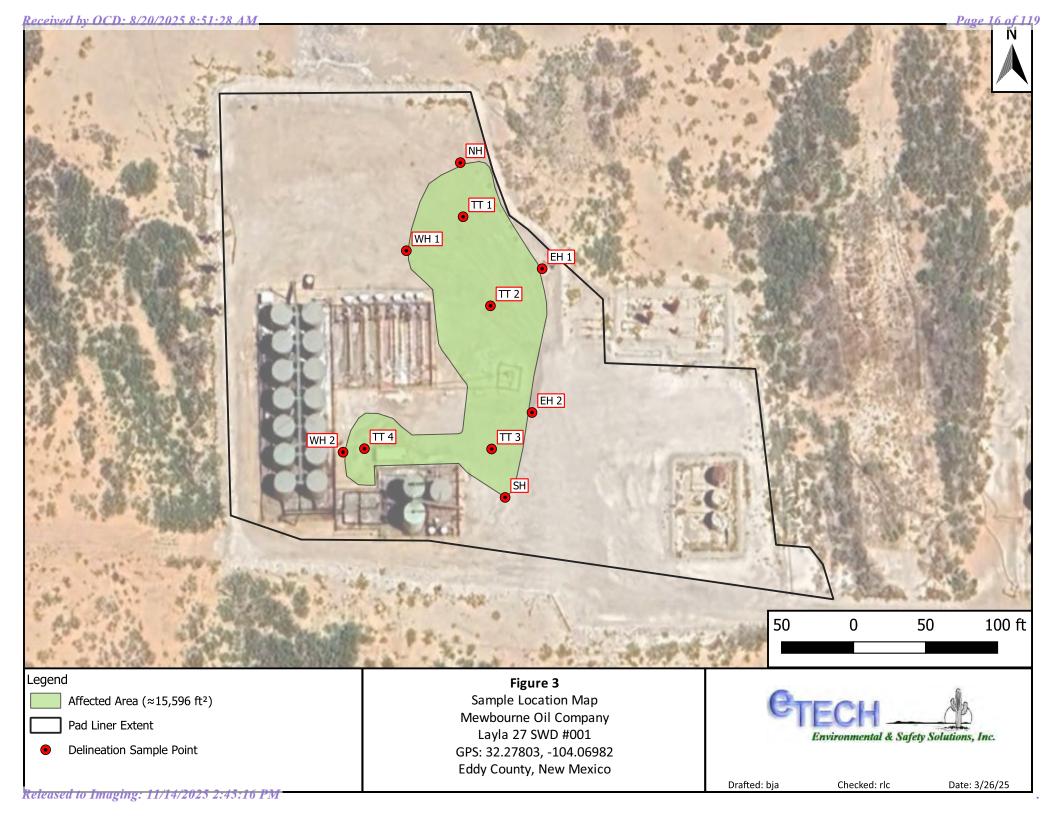
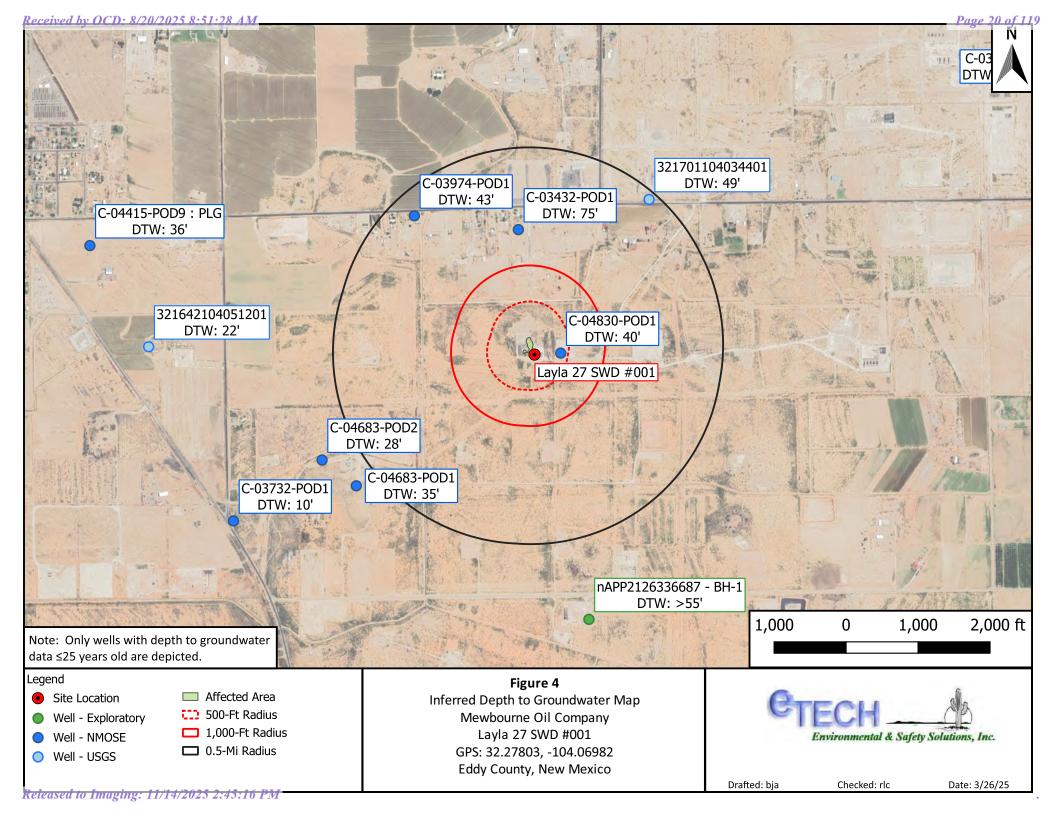


Figure 2A & 2B Site Characterization Maps

Figure 3 Sample Location Map

Table 1 Concentrations of BTEX, TPH & Chloride in Soil


Table 1 Concentrations of BTEX, TPH & Chloride in Soil **Mewbourne Oil Company** Layla 27 SWD #001 NMOCD Ref. #: nAPP2428849677

NWOCD Ref. #: IIAF F 2428849077												
Prop	osed Closure C	Criteria		10	50	N/A	N/A	N/A	N/A	100	10,000	
				SW 846 8021B SW			V 846 8015M Ext.			4500 Cl		
Sample ID	Date	Depth (Feet)	Soil Status	Benzene (mg/kg)	BTEX (mg/kg)	GRO C ₆ -C ₁₀ (mg/kg)	DRO C ₁₀ -C ₂₈ (mg/kg)	$GRO + DRO$ C_6-C_{28} (mg/kg)	ORO C ₂₈ -C ₃₆ (mg/kg)	TPH C ₆ -C ₃₆ (mg/kg)	Chloride (mg/kg)	
TT-1 @ SURF	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	36,400	
TT-1 @ 1'	2/14/2025	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	8,000	
TT-2 @ SURF	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	34,400	
TT-2 @ 1'	2/14/2025	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	7,000	
TT-2 @ 2'	2/14/2025	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	3,520	
TT-2 @ 3'	2/14/2025	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	3,040	
TT-3 @ SURF	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	137	137	53.6	191	21,600	
TT-3 @ 1'	2/14/2025	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	4,080	
TT-3 @ 2'	2/14/2025	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	2,920	
TT-3 @ 3'	2/14/2025	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	2,680	
TT-4 @ SURF	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	51.0	51.0	11.6	62.6	60,000	
TT-4 @ 1'	2/14/2025	1	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	4,960	
TT-4 @ 2'	2/14/2025	2	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,490	
TT-4 @ 3'	2/14/2025	3	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	1,250	
NH	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	368	
EH-1	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	528	
EH-2	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	448	
SH	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	416	
WH-1	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	<20.0	<10.0	<30.0	48.0	
WH-2	2/14/2025	0	In-Situ	< 0.050	< 0.300	<10.0	<10.0	< 20.0	<10.0	<30.0	32.0	

Dash (-): Sample not analyzed for that constituent **Bold:** NMOCD Closure Criteria exceedance.

Red: NMOCD Reclamation Standard exceedance.
Red Border with Shading: Highest observed concentration.

Appendix A Depth to Groundwater Information

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE quarters are smallest to largest

NAD83 UTM in meters

Well Tag	POD Nbr	Q64	Q16	Q4	Sec	Tws	Rng	х	Υ	Мар
NA	C 04830 POD1	NE	SE	NE	27	235	28E	587706.9	3571639.9	

* UTM location was derived from PLSS - see Help

Driller License:	1868	Driller Company:	TALON/LPE LTD		
Driller Name:	ROBERT A MI	EYER			
Drill Start Date:	2024-05-29	Drill Finish Date:	2024-05-30	Plug Date:	
Log File Date:	2024-08-12	PCW Rcv Date:		Source:	Shallow
Pump Type:		Pipe Discharge Size:		Estimated Yield:	
Casing Size:		Depth Well:	52	Depth Water:	40

Water Bearing Stratifications:

Тор	Bottom Description						
23	41	Sandstone/Gravel/Conglomerate					
41	42	Sandstone/Gravel/Conglomerate					

Casing Perforations:

Тор	Bottom
21	51

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

3/26/25 3:34 PM MST Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | <u>Disclaimer</u> | <u>Contact Us</u> | <u>Help</u> | <u>Home</u> |

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

OCC DIT ALC: 19 700

LION		OSE POD NO. (WELL NO.) POD-1 (MW-1) WELL TAG ID NO.						OSE FILE NO(S). C-4830				
OCATI	WELL OWNER NAME(S) Chevron U.S.A, Inc								ONAL)			
WELL L	WELL OWNER 6301 Deauvil		ADDRESS					CITY Midland		STATE Texas	ZIP 79706	
GENERAL AND WELL LOCATION	WELL LOCATION (FROM GPS)	TION LATITUDE 32 16 41.0916 N *ACCURACY						REQUIRED: ONE TEN	TH OF A SECOND			
1. GE	DESCRIPTION Sec 27, T23S		G WELL LOCATION TO	STREET ADD	RESS AND COMM	ON LANDMAR	KS – PLS	SS (SECTION, TO	WNSHJIP, RANGE) WI	IERE AVAILABLE		
	LICENSE NO. NAME OF LICENSED DRILLER WD-1868 Robert A Meyer							NAME OF WELL DR	ILLING COMPANY Γalon/LPE, Ltd			
	DRILLING STAI 05/29/20		05/30/2024	DEPTH OF CO	DEPTH OF COMPLETED WELL (FT) 52 BORE HOLE DEPTH (FT) 52				DEPTH WATER FIR	ST ENCOUNTERED (FT 40	()	
N	COMPLETED WELL IS: ARTESIAN *add Centralizer info below DRY HOLE SHALLOW (UNCONFINED) STATIC WATER LEVEL IN COMPLETED WELL 27 05/31/2024											
LTIC	DRILLING FLUI	D:	AIR	☐ MUD	ADDIT	IVES - SPECIF	7:					
& CASING INFORMATION	DRILLING METHOD: ROTARY HAMMER CABLE TOOL OTHER - SPECIFY:								CHECK	HERE IF PITLESS ADA	APTER IS	
	DEPTH (feet bgl) BORE HOLE			CASING	CASING MATERIAL AND/OR			. on . o	CASING	CASDIC WALL		
	FROM	ТО	DIAM (inches)		GRADE (include each casing string, and note sections of screen)		CON	ASING NECTION TYPE Using diameter)	INSIDE DIAM. (inches)	CASING WALL THICKNESS (inches)	SLOT SIZE (inches	
& C	0	21	6.275		Sch 40 PVC			Riser	2	2.25	-	
NG.	21	51	6.275		Sch 40 PVC		5	Screen	2	2.25	0.010	
2. DRILLING	51	52	6.275		Sch 40 PVC		Cor	ne Sump	2	2.25	-	
AL	DEPTH (fee	et bgl)	BORE HOLE DIAM. (inches)		LIST ANNULAR SEAL MATERIAL AND GRAVEL PACK SIZE-RANGE BY INTERVAL *(if using Centralizers for Artesian wells- indicate the spacing below					METHO PLACE		
ERI	0	16	6.275			d Cement I/II			3.56	Trer	nie	
TAT	16	19	6.275		3/8" Hydrat	ed Bentonite	Chips		0.56	Tren	nie	
3. ANNULAR MATERIAL	19	52	6/275	8/16 Silica Sand				6.18	Tren	nie		

FILE NO. C-4830 POD NO. LOCATION 235. 286.27
Released to Imaging: 11/14/2025 2:45:16 PM WELL TAG ID NO. NA 242 PAGE 1 OF 2

1	DEPTH (fee	t bgl)				ESTIMATED			
	FROM	то	THICKNESS (feet)	COLOR AND TYPE OF MATERIAL ENCOUNTERED - INCLUDE WATER-BEARING CAVITIES OR FRACTURE ZONES (attach supplemental sheets to fully describe all units)	WATER BEARING? (YES / NO)	YIELD FOR WATER- BEARING ZONES (gpm)			
	0	1.5	1.5	SM: Medium brown, poorly-graded, very fine silty sand; loose/unconsolidated	dry. Y ✓ N				
	1.5	9	7.5	CL: Red/brown to pale pink/brown, vf sandy-silty clay; low-mod plast; consolidated, very stiff to hard	; dry. Y ✓ N				
	9	9.5	0.5	SM: Medium brownish-grey, poorly-graded, very fine silty sand;	dry. Y ✓N				
	9.5	23	13.5	CL: Red/brown, vf sandy-silty clay; low to moderate plasticity; consolidated, very stiff to hard	; dry. Y ✓ N				
	23	41	18	CL-ML: Interbedded clay and silty clay; red/brown to brown/orange; low-mod plast; consolidated, very stiff-har	d; dry. ✓ Y N				
T	41	41.5	0.5	CL: Locally grades to very fine sandy clay; with up to 30% san	d. ✓ Y N				
WEL	41.5	52	10.5	CL-ML: Interbedded clay and silty clay; red/brown to brown/orange; low-mod plast; consolidated, very stiff-ha	d; dry ✓ Y N				
OF					Y N				
900					Y N				
ICI					Y N				
507					Y N				
EOI					Y N				
ROC					Y N				
4. HYDROGEOLOGIC LOG OF WELL					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
					Y N				
	METHOD USE	TOTAL ESTIMATED							
	ПРИМР	WEIT							
	РОМР								
NO	WELL TEST TEST RESULTS - ATTACH A COPY OF DATA COLLECTED DURING WELL TESTING, INCLUDING DISCHARGE METHOD, START TIME, END TIME, AND A TABLE SHOWING DISCHARGE AND DRAWDOWN OVER THE TESTING PERIOD.								
VISI	MISCELLANE	OUS INF	ORMATION:						
TEST; RIG SUPERVISION		00C DIT AUG 12 2024 #40:05							
EST;	PRINT NAME	(S) OF DI	SILL BIG STIDER	RVISOR(S) THAT PROVIDED ONSITE SUPERVISION OF WELL CONS	TRUCTION OTHER T	HAN LICENSEE			
S. TI	I KINT NAME	(3) OF DI	MLL MO SUPER	AVISOR(S) THAT PROVIDED OBSITE SUPERVISION OF WELL CONS	IKOCHON OTHER II	IAN LICENSEE:			
TURE	CORRECT RE	CORD OF	F THE ABOVE I	FIES THAT, TO THE BEST OF HIS OR HER KNOWLEDGE AND BELII DESCRIBED HOLE AND THAT HE OR SHE WILL FILE THIS WELL RI 80 DAYS AFTER COMPLETION OF WELL DRILLING:	EF, THE FOREGOING ECORD WITH THE ST	IS A TRUE AND ATE ENGINEER			
6. SIGNATURE	Robert A M	Meyer	origitally signed by Robert A Mey NY: cn=Robert A Meyer, o=Talo ad., ou=VP of Drilling, mail=rmeyer@talonlpe.com, c=1 bate: 2024.08.08 16:24:11-05'00	Robert A Meyer	08/08/2024				
-		DATE	DATE						

FOR OSE INTERNAL USE		WR-20 WELL RECORD & LOG (Version 09/22/2022)			
FILE NO. C-4830	POD NO.	TRN NO. 759 256			
LOCATION 235-28E.27 242		WELL TAG ID NO. NA	PAGE 2 OF 2		

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE NAD83 UTM in meters quarters are smallest to largest **Well Tag POD Nbr** Q64 Q16 Q4 Tws Rng X Мар Sec C 03432 POD1 NW NE NE 27 23S 28E 587527.4 3572162.5 * UTM location was derived from PLSS - see Help **Driller License:** SOUTHEAST DRILLING COMPANY 1400 **Driller Company: Driller Name:** MARK HAMMOND **Drill Start Date: Drill Finish Date:** 2009-10-25 Plug Date: 2009-10-17 Shallow Log File Date: 2009-10-26 **PCW Rcv Date:** Source: Pump Type: **Pipe Discharge Size: Estimated Yield:** 45 Casing Size: 6.25 **Depth Well:** 115 **Depth Water:** 75

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

7/1/25 3:43 PM MST Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

A.	1912		www.ose.st	ate.nm.us	•				TOO POST		
W - 21	POD NUM	BER (WELL	NUMBER)				OSE FILE NU	MBER(S)	N		<u> </u>
Z	1	-	7432-P	001		}	C ~	034	39	Age and the second seco	
LOCATION		NER NAME		<u> </u>			PHONE (OPTIONAL)				
ò	Par	20 0 C	 	5 C a C 10		1		•	<u> </u>	ÃÓ	
֡֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝֝ <u>֚</u>	WELL OW	NER MAILI	NG ADDRESS	3401 D			CITY .		STATE	>	ZIP
	R.	, -	O ASV	n David			Louis	rı	- E-01	S T /	7256
GENERAL AND WELL	227		2 743.	DEGREES	MINUTES SECO			1	July 1		
Z	WEL	_		32	16 58.4		* ACCURACY	REQUIRED: ONE TE	NTH OF A SH	CONO	
- 3	LOCAT (FROM		ATITUDE					QUIRED: WGS 84	WIN ON A DE	[
Ä	2 - 14 - 12 - 1	L	ONGITUDE	104	04 14.6	0 W					
Ü	DESCRIP	TION RELAT	ING WELL LOCATI	ON TO STREET ADDR	ESS AND COMMON LAND	MARKS					
	- F	₹. /	76 A	sh Ro	oad 2 m	iles.	EAST	- Loui	14. ×	بهر ز	
	(2.5 AC	RE)	(10 ACRE)	(40 ACRE)	(160 ACRE)	SECTION		TOWNSHIP		RANGE	
-i	Nu	v.	משא	NE%	NE 14	a	-	23	NORTH	28	EAST
A.		ION NAME	<u> </u>	JU E A	1 10 14	LOT NUME		BLOCK NUMBER	South	UNIT/TRA	☐ west
OPTIONAL										0.2-1	
	HYDROGR	APIEC SUR	VEY			L.,		MAP NUMBER	·	TRACTNU	JMBER .
7											
	LICENSE 1	UMBER	NAME OF LICE	NSED DRILLER		=		NAME OF WELL D	RILLING COM	PANY	
,	14	00	Mar	KHAM	cmonn			South	Eas	7-	
	DRILLING	STARTED	DRILLING END	ED DEPTH OF CON	APLETED WELL (FT)	BORE HOLI	LE DEPTH (FT) DEPTH WATER FIRST ENCOUNTERED (FT)				
Ž	10-1	7-09	10-20	5-1 11	5	113	5 75				
Ĕ					l'itz			STATIC WATER LE	VEL IN COM	PLETED WEL	L (FT)
INFORMATION	COMPLET	ED WELL IS:	: ARTESIAN	DRY HOLE	SHALLOW (UNCO	ONFINED)			5		
FO	DRILLING	FLUID:	AIR	MUD	ADDITIVES - SPE	CIFY:	¥				
ic in	DRILLING	METHOD:	ROTARY	HAMMER	CABLE TOOL	OTHER	-SPECIFY:				
3. DRILLING	DEPT	H (FT)	BORE HOL	E	CASING	CONN	CTION	INSIDE DIA.	CASINO	WALI.	SLOT
E E	FROM	TO	DIA. (IN)] M	IATERIAL	TYPE (CASING)	CASING (IN)		ESS (IN)	SIZE (IN)
	4/8"	70	11"	105/8	Steeh	Wald	1	6 44	1.88		-0
Ì	20	115	11	10 5/8	5 teeh	مي سو دو او	d	6 1/4/	1.8	8	1/87
									·		
	DEPT	H (FT)	THICKNES	S F	ORMATION DESCRIP	TION OF PR	INCIPAL W	ATER-BEARING S	TRATA		YIELD
TA	FROM	то	(FT)		(INCLUDE WATER-					[(GPM)
ERA.	75	92	17	congl	lomer a tool	SANO	STON	· _			25
S	92	110	18	RecPE					-		20
Ž						· · · · · · · · · · · · · · · · · · ·					
EA											
. PE									· · · · · ·		
TE	METHOD U	JSED TO ES	TIMATE YIELD OF	WATER-BEARING STR	ATA		-7 v/4	TOTAL ESTIMATE	D WELL YIEL	D (GPM)	
4. WATER BEARING STRATA		ailec						'	15		
-3-		4 <i>1 10</i> (**									

FOR	OSE	INTERNAL	HSE
FUL	UDG	IN I DOWN	USE

WELL RECORD & LOG (Version 6/9/08)

POD NUMBER (-0.3432-P.01 FILE NUMBER (-3432

TRN NUMBER 43 95 71

23.28.27.22113141 LOCATION

PAGE 1 OF 2

Office of State Engineer

202 623 8226

								and the second of	
	TVPEO	F PUMP:	SUBMER	RSIBLE	☐ JET	M NO PUMP - WELL NOT EQUIPPED			
UMP	11120		☐ TURBIN	<u> </u>	CYLINDER	OTHER - SPECIFY:	to and the first of the second of		
SEAL AND PUMP	·		DEPTI FROM	I (FT)	BORE HOLE DIA. (IN)	MATERIAL TYPE AND SIZE	AMOUNT (CUBIC FT)		OD OF MENT
AL.A		ULAR . AND	20	115	11	3/41 g : A veh	31/2 1/Am	r Na	20
		L PACK	0	20	11	Remixiement	- 372 1/Fran	BHAND	
Ş.		···		7.0	1,7	76 C 1.11 (& 111.0.)0 1			٠, ٢
·	DEPT	H (FT)	THICK	NESS		COLOR AND TYPE OF MATERIAL ENCOUNTE	RED	WA	TER
	FROM	TO	(F1	ŋ	(INCL)	UDE WATER-BEARING CAVITIES OR FRACTUI	RE ZONES)	BEARING?	
	0	3	3		SOL			YES	□ NO
	3	75	72	-	conglo	merated Rock		☐ YES	Ø′NO
	75	92	17		congior	neighbol GANDSTONE		D YES	□ NO
	92	110	18		Red SA	<i>D</i> w		XYES	□ NO.
3	110 115 5 gyp.							☐ YES	B NO
6. GEOLOGIC LOG OF WELL							YES	□ NO	
Ö								☐ YES	□NO
9								☐ YES	. 🗖 NO
O.								☐ YES	Пио
Š								☐ YES	□ NO
B							·	☐ YES	□NO
Ö								YES	□ NO
								☐ YES	□NO
								☐ YES	□NO
· ·								YES	□ио
								☐ YES	□NO
								☐ YES	□NO
			ATTACH	ADDITION	AL PAGES AS NE	EDED TO FULLY DESCRIBE THE GEOLOGIC L	OG OF THE WELL		
			METHOD:	BAILE	R. PUMP	☐ AIR LIFT ☐ OTHER – SPECIFY:		• • • • • • • •	
N.	WELL	TEST	TEST RESU	LTS - ATTA	CH A COPY OF D	ATA COLLECTED DURING WELL TESTING, IN	CLUDING START TH	ME, END TI	ME,
(AL JINEO			AND A TAB	LE SHOWIN	IG DISCHARGE A	ND DRAWDOWN OVER THE TESTING PERIOD).	- 	
7. TEST & ADDITION	ADDITION	AL STATEM	ents or expl	ANATIONS:				divine.	S
I G									7
Z AI					÷	-		1117	77
ST.							-	3 5	
H								2 H	ž
					· · · · · · · · · · · · · · · · · · ·		- 1 (±2 2000 or 14 cm.	allong [778
ě	THE UN	DERSIGN	ED HEREBY C	ERTIFIES T	HAT, TO THE BE	ST OF HIS OR HER KNOWLEDGE AND BELIEF	THE FOREGOING IS	XTRUEA	逆]
SIGNATURE	CORRECT THE PER	T RECOR EMIT HOL	d of the AB Der Within	OVE DESCI 20 DAYS A	CIBED HOLE AND FTER COMPLETION) THAT HE OR SHE WILL FILE THIS WELL REC ON OF WELL DRILLING:		200	*****
NA	n	1 1-	11		,			3 3	7
Sign	111	aul f	tama	wrel		10-22-09		. # **	1 2%
si si	<u></u>	f	SIGNATUR	E OF DRILL	ER	DATE			
						****			لتنتسن

FOR OSE INTERNAL USE WELL RECORD & LOG (
FILE NUMBER C-3432	POD NUMBER	PODI	TRN NUMBER						
LOCATION 23-28.27.2	21/314/		PAGE 2 OF 2						

DMGSTIC

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE quarters are smallest to largest

NAD83 UTM in meters

Well Tag	POD Nbr	Q64	Q16	Q4	Sec	Tws	Rng	X	Y	Мар
	C 03974 POD1	NE	NE	NW	27	23S	28E	587087.1	3572220.9	•

* UTM location was derived from PLSS - see Help

Driller License:	1348	Driller Company:	TAYLOR WATER WELL SERVICE		
Driller Name:	Driller Name: CLINTON E TAYLOR				
Drill Start Date: 2016-08-15		Drill Finish Date:	Plug Date:		
Log File Date:	2016-10-03	PCW Rcv Date:		Source:	Shallow
Pump Type:		Pipe Discharge Size:		Estimated Yield:	100
Casing Size: 5.00		Depth Well:	75	Depth Water:	43

Water Bearing Stratifications:

Тор	Bottom	Description
44	72	Sandstone/Gravel/Conglomerate

Casing Perforations:

Тор	Bottom
55	75

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

10/11/24 10:26 AM MST Point of Diversion Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | <u>Disclaimer</u> | <u>Contact Us</u> | <u>Help</u> | <u>Home</u> |

WELL RECORD & LOG

OFFICE OF THE STATE ENGINEER

www.ose.state.nm.us

f			3.1			. 4.*					
NO	OSE POD NI C-3974	UMBER (WE	LL NUMBER)	·				OSE FILE NU	MBER(S)		
GENERAL AND WELL LOCATION	WELL OWN Javier Sier)					PHONE (OPTI	ONAL)		
	WELL OWN	ER MAILING	GADDRESS					CITY		STATE	ZIP
WEL	R 155 Ash	Rd.						Loving		NM 8	8256
AND	WELL		DI	EGREES	MINUTES	SECON	_				
RAL	LOCATIO (FROM GI	12/1	TITUDE	32	17	0.12]	REQUIRED: ONE TEN' QUIRED: WGS 84	TH OF A SECOND	
ENE		LO	NGITUDE	104	4	30.6		L	·		
DESCRIPTION RELATING WELL LOCATION TO STREET ADDRESS AND COMMON LANDMARKS - PLSS (SECTION, TOWNSHIP, RANGE) WHERE AVAILAL Well is near the paved road at the entrance to the property.											
	LICENSE NI	JMBER	NAME OF LICENSED	DRILLER					NAME OF WELL DR	ILLING COMPANY	
	WD-	1348			inton E Taylor				Taylor	Water Well Serv	ice
	DRILLING S 8/15/2		DRILLING ENDED 8/16/2016	DEPTH OF COM	PLETED WELL (F 75	T)	BORE HO	LE DEPTH (FT) 80	DEPTH WATER FIR:	ST ENCOUNTERED 54	(FT)
ļ	0/13/	2010	0/10/2010		7.5				STATIC WATER LEV		WELL (FT)
Z	COMPLETE	D WELL IS:	ARTESIAN	DRY HOLE	FINED)			42.5	,,,,,,		
CASING INFORMATION	DRILLING FLUID: AIR MUD ADDITIVES – SPECIFY;								<u> </u>		
RM/	DRILLING N	KETHOD:	ROTARY	HAMMER	CABLET	OOL	ОТНЕ	R - SPECIFY:			
OFF	DEPTH	(feet bgl)	T TORE HOLE	CASING M	ATERIAL AND	O/OR			a anya		
	FROM	TO	BORE HOLE DIAM		GRADE			ASING NECTION	CASING INSIDE DIAM.	CASING WAI	
NISI			(inches)		ch casing string, ctions of screen)			YPE	(inches)	(inches)	(inches)
& C	+1.5	55	8 3/4		PVC		S	pline	5	SDR 17	-
ING	55	75	8 3/4	PVC			S	pline	5	SDR 17	.032
DRILLING	<u> </u>										
2. DF	<u> </u>										<u> </u>
			·	1							-
	<u></u>		<u> </u>	<u> </u>					<u> </u>	<u> </u>	<u>. </u>
П	_	(feet bgl)	BORE HOLE DIAM. (inches)	ŀ	`ANNULAR SE EL PACK SIZE-				AMOUNT (cubic feet)		HOD OF CEMENT
ANNULAR MATERIAL	FROM 0	TO 20	8 3/4	UKAYI	20% Bentoni			KVAL	5 Sacks Total		
[ATI	U		8 3/4		20% Bentoni	ie Groat-	Cinps		5 Sacks Total	1 rem	ie+Dump
R						 ,.					
ULA											
AN											
3,					31 :Z Hd	<u>E-10</u>	3019 01				
		<u> </u>	<u> </u>		- -						
	OSE INTER	NAL USE	2001		M.WEYICO	<u> </u>	ROSM		WELL RECORD &	LOG (Version I	0/29/15)
	ATION	<u> </u>	JA14-	7.1-2.2	3011-0 05	MREK!	JIVIS	TRNN	TUMBER 50		CP LOT 2
Luc	AHUN (درم	· OBLIG	1. 1-01'c	۸				LUMUST	PA PA	GE 1 OF 2

PAGE 2 OF 2

	DEPTH (1	eet bgI) TO	THICKNESS (feet)	INCLUDE WATER-BI	PE OF MATERIA EARING CAVITIF Tental sheets to ful	S OR FRAC	TURE ZONES	1	WAT BEARI (YES /	NG?	ESTIMATED YIELD FOR WATER- BEARING
* *								<u> </u>	**		ZONES (gpm)
	0	6	6		Soil	 			Y	✓ N	
	6	10	4		Caliche				Y	✓ N	
	10	44	34		y:rd,smth-slty,sme				Y	✓ N	
1 1	44	72	28	Conglomerate:yel brn,br		 	sand, water at 54	1' '	' Y	N	100.00
	72 80 8 Clay:smth,stky								Y	✓ N	
ŢŢ									Y	N	
WE								_	Y	N	
OF			<u> </u>	<u>,</u>					Y	N	
100									Y	N	
4. HYDROGEOLOGIC LOG OF WELL									Y	N	
070									Y	N	···
GE(Y	N	
)RO									Y	N	
HYI									Y	N	
4									Y	N	
		- -							Y	N	
									Ϋ́	N	
									Y	N	
						,			Y	N	
							· ·		Y	N	
					•				Y	N	
	METHOD U	SED TO ES	STIMATE YIELD	OF WATER-BEARING ST	RATA:			TOTAL	ESTIM	ATED	
	PUMI	P ZA	JR LIFT	BAILER OTHER	R – SPECIFY:			WELL Y	YIELD	(gpm):	100.00
SION	WELL TES			ACH A COPY OF DATA COME, AND A TABLE SHOW							
/ISE	MISCELLA	NEOUS IN	FORMATION: Vi	eld is limited to 100 GPM	by cacing cize	Water is abo	sut 6000 PPM	TDC I	Poor o	nolity	
TEST; RIG SUPERVIS	MISCELLANEOUS INFORMATION: Yield is limited to 100 GPM by casing size. Water is about 6000 PPM TDS. Poor quality.										
T; I											
5. TES	PRINT NAM	IE(S) OF D	RILL RIG SUPER	VISOR(S) THAT PROVIDI	ED ONSITE SUPE	RVISION OF	WELL CONS	TRUCTI	ON OT	HER TH	AN LICENSEE:
SIGNATURE	CORRECT I	RECORD O	F THE ABOVE D	IES THAT, TO THE BEST ESCRIBED HOLE AND TH D DAYS AFTER COMPLE	IAT HE OR SHE	VILL FILE T					
e. SIGN	<	7		CE	Taylor			·	10/1/	2016	·
		SIGNAT	URE OF DRILLE	R / PRINT SIGNEE NAM	íE .	3				DATE	
FOF	OSE INTER	NAL USE		47.4			WR-20 WEL	L RECO	RD & T	OG (Ve	rsion 10/29/2015)
	E NUMBER	C	3974	PO	D NUMBER		TRN NUMBE			151	

LOCATION

0

Click forNews Bulletins

Groundwater levels for the Nation

Important: <u>Next Generation Monitoring Location Page</u>

Search Results -- 1 sites found

Agency code = usgs site_no list =

• 321701104034401

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321701104034401 23S.28E.23.33344 57

Eddy County, New Mexico Latitude 32°17'02.1", Longitude 104°03'52.6" NAD83 Land-surface elevation 3,023 feet above NAVD88 The depth of the well is 150 feet below land surface.

This well is completed in the Other aguifers (N9999OTHER) national aguifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Table of data
Tab-separated data
Graph of data
Reselect period

Date \$	Time \$? Water-level date-time accuracy	? Parameter code	Water level, feet below land surface	Water level, feet above specific vertical datum	Referenced vertical \$\datum\$? Status	? Method of measurement	? Measuring \$\frac{1}{2}\$ agency	? Source of measurement	? Water- level approval status
>=1999			7								
2003-01-28		D	72019	48.22			1	S	USGS	S	А
2013-01-11	19:00 UTC	m	72019	56.17			1	S	USGS	S	А
2018-02-13	17:40 UTC	m	72019	42.85			1	S	USGS	S	Α
2021-02-24	17:43 UTC	m	72019	47.99			1	S	USGS	S	А
2022-01-13	20:03 UTC	m	72019	48.74			1	S	USGS	S	Α
2024-03-08	17:15 UTC	m	72019	47.11			1	S	USGS	S	А

Explanation

Section \$	Code \$	Description
Water-level date-time accuracy	D	Date is accurate to the Day
Water-level date-time accuracy	m	Date is accurate to the Minute
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Help Data Tips Explanation of terms
Subscribe for system changes

Accessibility Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey
Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2024-11-21 16:51:13 EST

0.38 0.24 nadww01

USA.gov

Click forNews Bulletins

Groundwater levels for the Nation

Important: Next Generation Monitoring Location Page

Search Results -- 1 sites found

Agency code = usgs

site_no list =

• 321642104051201

Minimum number of levels = 1

Save file of selected sites to local disk for future upload

USGS 321642104051201 23S.28E.28.232341

Eddy County, New Mexico

Latitude 32°16'42", Longitude 104°05'12" NAD27

Land-surface elevation 3,051 feet above NAVD88

The depth of the well is 162 feet below land surface.

This well is completed in the Other aquifers (N9999OTHER) national aquifer.

This well is completed in the Alluvium, Bolson Deposits and Other Surface Deposits (110AVMB) local aquifer.

Output formats

Tab-separated data											
Graph of data											
Reselect period											
Date \$	Time \$? Water- level	? Parameter code	Water level, feet below land surface	Water level, feet above \$ specific vertical datum	Referenced vertical \$\datum\$? Status	? Method of measurement	? Measuring agency	? Source of measurement	? Water- level approval status
>=1999			7								
2003-01-28		D	72019	21.82			1	S	USGS	S	А

Explanation

Section \$	Code \$	Description \$
Water-level date-time accuracy	D	Date is accurate to the Day
Parameter code	62610	Groundwater level above NGVD 1929, feet
Parameter code	62611	Groundwater level above NAVD 1988, feet
Parameter code	72019	Depth to water level, feet below land surface
Referenced vertical datum	NAVD88	North American Vertical Datum of 1988
Referenced vertical datum	NGVD29	National Geodetic Vertical Datum of 1929
Status	1	Static
Method of measurement	S	Steel-tape measurement.
Method of measurement	Z	Other.
Measuring agency		Not determined
Measuring agency	USGS	U.S. Geological Survey
Source of measurement		Not determined
Source of measurement	S	Measured by personnel of reporting agency.
Water-level approval status	А	Approved for publication Processing and review completed.

Questions or Comments Help Data Tips Explanation of terms
Subscribe for system changes

Accessibility Policies and Notices

U.S. Department of the Interior | U.S. Geological Survey

Title: Groundwater for USA: Water Levels

URL: https://nwis.waterdata.usgs.gov/nwis/gwlevels?

Page Contact Information: <u>USGS Water Data Support Team</u> Page Last Modified: 2024-11-21 16:53:27 EST

0.35 0.23 nadww01

Soil Boring/Temporary Monitor Well BH-1

Company: Mewbourne Oil Company Site: Speedwagon 27 W0PA Fee #2H

NMOCD Reference #: nAPP2126336687

Location: Eddy Co., NM

PLSS: U/L "A", Sec. 34, T23S, R28E

Well/Borehole ID: BH-1

Coordinates (NAD 83): 32.267902,-104.067480

Drilling Date: 6/4/2024 Depth of Boring (ft): 55 Depth to Groundwater (ft): >55 Plugging Date: 6/7/2024

Drilling Company: H&R Enterprises, LLC

Driller: Jim Hawley

Drilling Method: Air Rotary Logged By: Jim Hawley Drafted By: Ben J. Arguijo **Draft Date: 8/15/2024**

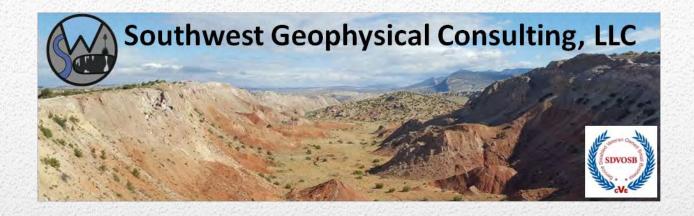
Casing: 2" PVC Screen: 0.020" Slotted

Completion: N/A Comments: N/A

		14// (
Depth (ft)	Groundwater	Lithology	Material Description	Petroleum Odor	Petroleum Stain	PID Reading	Well Construction	
- - - -								
- 0 - - -			Caliche - 100%	N	N	-		
5 			Topsoil 60% - Red Clay 40%	N	N	-		
- 10 			Soapstone 70% - Gypsum 30%	N	N	_		
- 15 			Fine Sand 15% - Clay 85%					
- - 20			Red Clay 100%	N	N	-		
- - - 25			Grey Clay 100%	N	N	-	Open Hole, No Annular Fill	
_ _ _ _ 30			Gley Clay 100 %	N	N	-	ole, No A	
- - -				N	N	-	Open Hc	
35 - - - -				N	N	-		
- - 40 - -				N	N	-		
- 45 -				N	N			
- - 50				N	N	_		
- - - - 55			Notes:	N	N	-		
- - - 60 - - -			 Lines between material types represent approximate boundaries. Actual transitions may be gradual. The exploratory soil boring was left open for over 72 hours. No indications of inflow and/or accumulation of water were noted during the advancement of the soil boring or prior to plugging and abandonment. 					

Disclaimer This bore log is intended for environmental not geotechnical purposes.

Appendix B Pad Liner Installation (2016)



Appendix C Environmental Karst Study Report

Environmental Karst Study Report Mewbourne Layla SWD 27 No. 1 Eddy County, New Mexico

Prepared For:

eTech Environmental & Safety Solutions, Inc.
6309 Indiana Avenue, Suite D
Lubbock, TX 79413

☐ Positive within 200 feet of spill delineation boundary

☑ Negative within 200 feet of spill delineation boundary

☐ Stable ☑ Unstable Ground

☐ Karst Monitor Recommended

May 23, 2025

ETEC-014-20250403

©2025 – Southwest Geophysical Consulting, LLC. All rights reserved.

Published by:

Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 (505) 585-2550 www.swgeophys.com

Prepared by:

Garrett Jorgensen Olague Senior Field Geologist garrett@swgeophys.com

Reviewed by:

David Decker, PhD, PG, CPG CEO, Principal Geologist dave@swgeophys.com

Prepared for:

eTech Environmental & Safety Solutions, Inc. 6309 Indiana Avenue, Suite D Lubbock, TX 79413

> Ben Arguijo (432) 813-1592 bena@etechenv.com

MMXXV

TABLE OF CONTENTS

FRONT MATTER	i
TABLE OF CONTENTS	ii
LIST OF FIGURES	iii
LIST OF TABLES	iii
1.0 INTRODUCTION	1
1.1 Goals of this Study	1
1.2 Summary of Findings	1
1.3 Affected Environment	1
1.4 Limitations of Report	3
2.0 LOCATION AND DESCRIPTION OF STUDY AREA	4
2.1 Description of Site	4
2.2 Local Geology Summary	5
2.3 Description of Survey	6
2.3.1 Surface Karst Survey	6
2.3.2 Geophysical Survey	8
3.0 RESULTS	10
3.1 Surface Karst Survey	10
3.2 Geophysical Survey	12
4.0 DISCUSSION	14
5.0 SUMMARY	16
6.0 DISCLOSURE STATEMENT	16
7.0 REFERENCES	18
8.0 GLOSSARY OF TERMS	19
9 Ο ΔΤΤΕΣΤΔΤΙΩΝ	21

LIST OF FIGURES

Figure 1: Karst occurrence zone overview	2
Figure 2: Land ownership and PLSS overview	4
Figure 3: Geology overview	5
Figure 4: Surface survey overview	7
Figure 5: Geophysical survey overview	8
Figure 6: Surface karst survey results	10
Figure 7: 2D inverted resistivity sections	13
Figure 8: Data overlay	15
LIST OF TABLES	
Table 1: Survey Line Data Table	9
Table 2: Software Information and Settings	9
Table 3: Surface Karst Feature Data Table	11
Table 4: High-Resistivity Anomaly Data Table	12

1.0 INTRODUCTION

This report was commissioned by eTech Environmental & Safety Solutions, Inc. (hereinafter referred to as "the client"), on April 3, 2025, for the purpose of conducting an environmental karst study within an area encompassing the Mewbourne Layla SWD 27 No. 1 release site (hereinafter termed "LS271") centered at N 32.278365° W 104.069891°.

1.1 Goals of this Study

The goals of this study are to conduct a surface karst inventory and provide the client with the location and description of any surface karst features located within 200 feet (61 meters) of the spill delineation boundary (as defined by 19.15.29.12 NMAC^[1]), and to determine whether stable ground exists (as defined by 19.15.2 NMAC Definitions^[2]) within the spill delineation boundary of the Mewbourne Layla SWD 27 No. 1 release site as provided by the client via e-mail (Layla SWD 27 001.kmz) on April 8, 2025, using electrical resistivity imaging^[3].

1.2 Summary of Findings

- No surface karst features exist within the 200-foot (61-meter) perimeter of the spill delineation boundary.
- One recognized surface feature lies within the 200-meter survey boundary. This feature is likely related to soil piping rather than dissolution of bedrock.
- One anomaly consistent with a subsurface air-filled void is located within the LS271 resistivity survey area, indicating a surface collapse risk exists. This anomaly is outside of the 200-foot survey boundary.
- Moderately well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted; however, due to the possible subsurface void a finding of stable ground is not warranted until the anomaly is field checked.

1.3 Affected Environment

The LS271 project site is located in evaporite karst terrain, a landform that is characterized by underground drainage through solutionally enlarged conduits. Evaporite karst terrain may contain sinkholes, sinking streams, caves, and springs. Sinkholes leading to underground drainages and voids are common. These karst features, as well as occasional fissures and discontinuities in the bedrock, provide the primary sources for rapid recharge of the groundwater aquifers of the region. Additionally, karst may develop by hypogene processes involving dissolution by upwelling fluids from depth independent of recharge from the overlying or immediately adjacent surface. Hypogene karst systems may not be connected to the surface and can remain undiscovered unless encountered during drilling or excavation.

Karst features are delicate resources that are often of geological, hydrological, biological, and archeological importance, and should be protected. The four primary concerns in these types of terrain are environmental issues, worker safety, equipment damage, and infrastructure integrity.

The Bureau of Land Management (BLM) categorizes all areas within the Carlsbad Field Office (CFO) zone of responsibility as having either low, medium, high, or critical cave potential based on geology, occurrence of known caves, density of karst features, and potential impacts to freshwater aquifers^[4]. These designations are also recognized by the New Mexico State Land Office (NMSLO). This project occurs within a **MEDIUM** karst occurrence zone (MKOZ)^[5] (**Figure 1**).

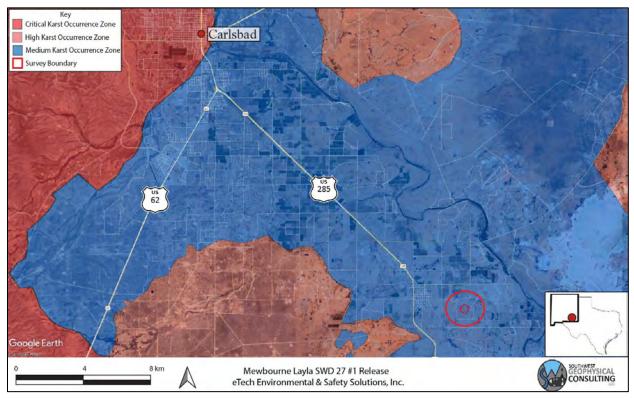


Figure 1: Karst occurrence zone overview. Background image credit: Google Earth. Image date: August 21, 2024. Image datum: WGS-84.

A medium karst occurrence zone is defined as an area in known soluble rock types that may have a shallow insoluble overburden. These areas may contain isolated karst features such as caves and sinkholes. Groundwater recharge may not be wholly dependent on karst features, but the karst features still provide the most rapid aquifer recharge in response to surface runoff [4].

Due to the rapidity with which evaporite karst develops, locations within BLM-CFO designated karst occurrence zones must be assessed on an individual basis to determine the existence of surface karst features and the possibility of sub-surface karst development each time a release occurs.

1.4 Limitations of Report

This report should be read in full. No responsibility is accepted for the use of any part of this report in any other context or for any other purpose or by third parties. This report does not purport to give legal advice. Legal advice can only be given by qualified legal practitioners.

This report has been prepared for the use of eTech Environmental & Safety Solutions, Inc., in accordance with generally accepted consulting practices. Every effort has been made to ensure the information in this report is accurate as of the time of its writing. This report has not been prepared for use by parties other than the client, their contracting party, and their respective consulting advisors. It may not contain sufficient information for the purposes of other parties or for other uses.

This report was prepared upon completion of the associated fieldwork using a standard template prepared by Southwest Geophysical Consulting and is based on information collected prior to fieldwork, conditions encountered on site, and data collected during the fieldwork and reviewed at the time of preparation. Southwest Geophysical Consulting disclaims responsibility for any changes that might have occurred at the site after this time. The interpreted results, locations, and depths noted in this report (if applicable) should be taken as an interpretation only and no decision should be based solely on this information. Physical verification of aerial imagery analysis results in the field should be conducted prior to using this information for remediation planning. Physical verification of geophysical results using geotechnical methods should be conducted.

To the best of our knowledge, the information contained in this report is accurate at the date of issue. Due to the nature of karst terrain, the information in this report shall not be used beyond two years past the date of the field work provided in section *2.3 Description of Survey*. Large weather events can shorten this time period as areas subject to karst development can rapidly form new features subsequent to these events.

2.0 LOCATION AND DESCRIPTION OF STUDY AREA

2.1 Description of Site

The site is located 21.4 kilometers (13.3 miles) southeast of Carlsbad, New Mexico, southeast of the junction of U.S. Highway 285 and West Ash Road. The release site is located within the NE ¼ section of section 27, NM T23S R28E^[6] (**Figure 1** and **Figure 2**). The region has flat-lying terrain with karstification occurring in the gypsite soils and underlying gypsum and dolomite bedrock^[7] (see section **2.2 Local Geology Summary** for further information). The climate in this area of southeast New Mexico is semi-arid with an average annual precipitation of approximately 13 inches, of which about two-thirds falls as rain during summer thunderstorms from June to October. Summers are hot and sunny while winters are generally mild, with an average maximum temperature of 96°F in July and an average minimum temperature of 28°F in January^[8]. This area is within the Chihuahuan Desert Thornscrub as defined by the Southwestern Regional ReGAP Vegetation map^[9] and the vegetation consists mostly of areas of blue grama, nine-awned pappus grass, burro grass and low scrub including yucca. The spill delineation boundary is located within an MKOZ^[5] (**Figure 1**) and within privately managed land^[10] (**Figure 2**).

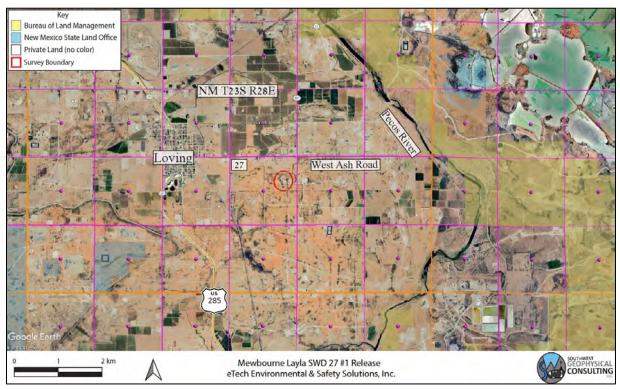


Figure 2: Land ownership and PLSS overview. Background image credit: Google Earth. Image date: July 13, 2024. Image datum: WGS-84.

2.2 Local Geology Summary

The site for the LS271 survey is located at an elevation of 926 meters (3,038 feet), \pm 3 meters (9.8 feet), and is located within a region underlain by the Permian Rustler Formation (Pru). The area is mantled by thin gypsiferous soils (gypsite), Quaternary alluvium (Qal), and piedmont gravels (Qp)^[11] up to 5 meters in depth (**Figure 3**).

The Rustler Formation is an evaporite facies composed mainly of thin siltstones and sandstones interbedded with claystones, dolomite, and gypsum, and contains both karst-forming strata (the Forty-niner and Tamarisk members) and two shallow aquifers (the Magenta and Culebra Dolomite members)^[12].

The Pru overlies the Permian Salado Formation (Psl – not shown), a layer of extremely soluble halite which can readily dissolve to create caves, sinkholes, and other karst features; however, due to its extremely soluble nature, only non-soluble silt and sand remain from the dissolution of this layer at the surface^[12]. The Rustler Formation may be subject to collapse if a void has developed beneath it in the Salado Formation^[13].

The survey area is covered by the easily accessible Geologic Map of New Mexico (2003) at 1:500,000 scale^[14] and the Digital Geologic Map of New Mexico in ARC/INFO Format^[11].

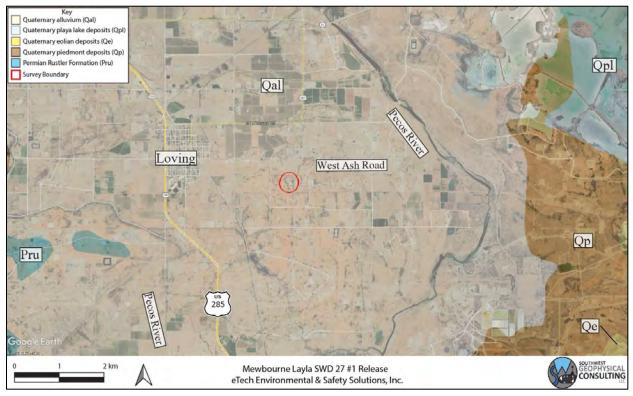


Figure 3: Geology overview. Geology map credit: The Digital Geologic Map of New Mexico in ARC/INFO Format. Background image credit: Google Earth. Image date: July 13, 2024. Image datum: WGS-84.

2.3 Description of Survey

2.3.1 Surface Karst Survey

Southwest Geophysical Consulting, in partnership with SWCA Environmental Consultants, provides surface karst surveys using small, uncrewed aerial systems (sUAS) that are flown by qualified, FAA licensed drone pilots and that meet the stringent Bureau of Land Management – Carlsbad Field Office requirements for both pedestrian and aerial karst surveys.

The surface karst survey includes a desk study prior to the flight which allows us to provide client feedback in the event of any previously known karst features in the area. The desk study is performed out to 305 meters (1,000 feet) from the spill delineation boundary per New Mexico Oil Conservation Division guidance^[1] (**Figure 4**). The study was performed using satellite and aerial imagery from Google Earth Pro dated July 14, 2024 (please note features less than one meter in diameter are generally not visible using this method); the Southwest Geophysical Cave and Karst Database dated April 25, 2025^[15]; the Loving, NM, 1:24,000 quad, 1985, USGS topographic map; and the latest lidar imagery from CalTopo.com. Please note that we use older topographic maps because newer maps have had caves removed from them. These searches and queries returned no results within the survey boundary.

Surface karst surveys are conducted by sUAS at low elevation within 200 meters of the spill delineation boundary^[3] (Figure 4) following a preplanned raster pattern flightpath designed for the purpose of generating at least 75% imagery overlap. The collected high-resolution, georeferenced imagery is stitched together to develop orthomosaic imagery which is further developed into a digital elevation model (DEM); the DEM is then processed into a local relief model (LRM) (Figure 6). This LRM is color coded to enhance differences in elevation of as little as five centimeters. The orthoimagery, DEM, and LRM are uploaded to a server where they are analyzed by an experienced karst geologist. Finally, the data is reviewed by a senior karst geologist for quality assurance and downloaded into a table for inclusion in a written report^[16].

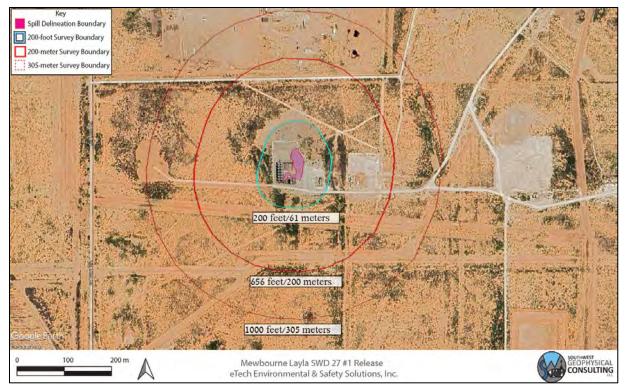


Figure 4: Surface survey overview. Background image credit: Google Earth. Image date: July 13, 2024. Datum: WGS-84.

The resolution of the orthoimagery is clear enough that features as small as 10 centimeters can be positively identified in most circumstances. Occasionally there are ambiguous features identified during an aerial survey that will need to be checked in the field if they are impacted by the proposed remediation efforts. Specifically, it is difficult to tell the difference between solution tubes, abandoned uncased well bores, and some burrows in drone imagery. If an ambiguous feature is located during imagery analysis, it is marked with a yellow dot in **Figure 6**. If a feature of any likelihood is subsequently verified in the field prior to publication of the report, the dot will be changed to a red triangle if confirmed as a karst feature or deleted if not.

The imagery for this study was collected via aerial survey by Pat Lagodney of SWCA on April 11, 2025. Surface karst features may have developed after this date and will not be noted in this report. Imagery analysis was completed by Britt Bommer of Southwest Geophysical Consulting on May 6, 2025.

2.3.2 Geophysical Survey

For this survey, an Advanced Geosciences Inc. (AGI) SuperSting™ Wifi R8 with a multi-electrode switchbox, a 42-electrode array of 40-centimeter-long electrodes, and a tablet controller were used to image the subsurface. This survey consisted of three resistivity lines in a dipole-dipole configuration: line LS27101 was laid out south to north, while lines LS27102 and LS27103 were laid out west to east. LS27101 consisted of 42 electrodes, while LS27102 and LS27103 consisted of 28 electrodes, all at 5-meter spacing, resulting in 205-meter-long and 135-meter-long arrays, respectively (**Figure 5**, **Table 1**). Two preconfigured command files were used to run the data collection (DiDi42 and DDSG28). The 42-electrode configuration provided a depth of investigation of 41 meters (135 feet) while the 28-electrode configurations provided a depth of investigation of 27 meters (89 feet), all with a resolution of 2.5 to 3.0 meters (8.2 to 9.8 feet) within the first 5 to 8 meters (16 to 26 feet) from the surface. A Leica GS18 GPS was used to record electrode locations and elevations.

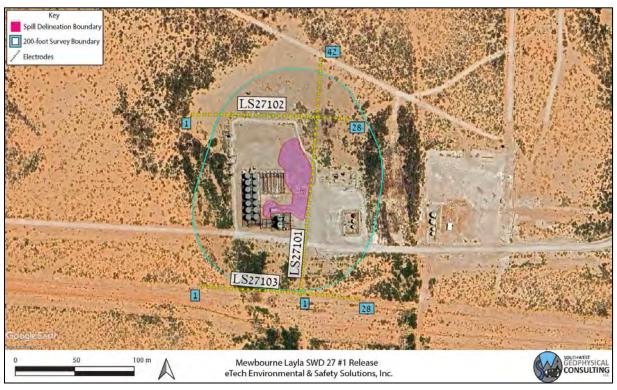


Figure 5: Geophysical survey overview. LS27101 was conducted with 42 electrodes, while LS27102 and LS27103 were conducted with 28 electrodes each; all at 5-meter spacing (yellow dots denoted with blue numbers). Background image credit: Google Earth. Image date: July 13, 2024. Image datum: WGS-84.

Table 1 provides basic line data. Detailed information for each line including electrode number, location in latitude/longitude (decimal degree format), and elevation in meters can be found in the accompanying data files.

Table 1: Survey Line Data Table. The LS271_ERI_Points.kmz file contains all the points for the survey line listed in the file name. These data are available in the accompanying file ETEC-014-20250403_LS271_Data_Files.kmz.

File Name:	Completed By:	Date:
LS27101.kmz	Garrett Jorgensen Olague – Senior Field Geologist	
LS27102.kmz	Britt Bommer – Field Geologist	4/29/2025
LS27103.kmz	Steven Kesler – Field Geologist	

EarthImager™ 2D software was used to download and process the data and to provide the model used to make our interpretations. The design of the survey and the orientation of each of the lines provides the information necessary to make the determination of "stable" or "unstable" ground at this site.

A typical starting model was used for the data processing due to the two-layer model of the geology in the area; specifically, generally high-resistivity gypsum and dolomite at the surface and low-resistivity saturated gypsum and dolomite bedrock at depth. The starting model used was "average apparent resistivity" and a default inversion setting of "surface," with a minimum apparent resistivity set to 0.1 Ohm-meters (Ohm-m or Ω -m) and a max apparent resistivity set to 100,000 Ω -m (**Table 2**).

Table 2: Software Information and Settings

Software Name:	EarthImager [™] 2D
Version:	2.4.4.649
Starting Model:	Average Apparent Resistivity
Default Inversion Settings:	Surface
Changes to Default Inversion Settings:	Max Apparent Resistivity = 100 kΩ-m
	Min Apparent Resistivity = 0.1 Ω-m

Note: Raw data files (.stg files for EarthImager[™] 2D) and processed data (.trn files, terrain files for surface correction in EarthImager[™] 2D and .out files, the processed .stg files) are available upon request.

All field work, including setup, stow, and travel, was completed by Garrett Jorgensen Olague, Britt Bommer, and Steven Kesler on April 29, 2025.

3.0 RESULTS

3.1 Surface Karst Survey

The desk study and surface karst survey located no surface karst features within the 200-foot (61-meter)^[1] survey boundary.

One recognized surface karst feature is located within the 200-meter survey boundary but outside of the 200-foot (61-meter) survey boundary (Figure 6, Table 3). Recognized surface karst features are features that are positively identified in either satellite or aerial imagery as karst features and the features have been visited by a qualified karst professional in the field and fully identified. This feature is a suffosion sinkhole along a pipeline. During the field visit it was determined that too much soil was missing for this to be related to soil compaction along the pipeline and instead is more likely associated with either a void that was intersected during trenching and subsequently buried, or soil piping associated with the arroyo 20 meters south. Based on the geology of this area, it is more likely associated with soil piping and this is pseudokarst rather than karst. Images for the feature are available on request.

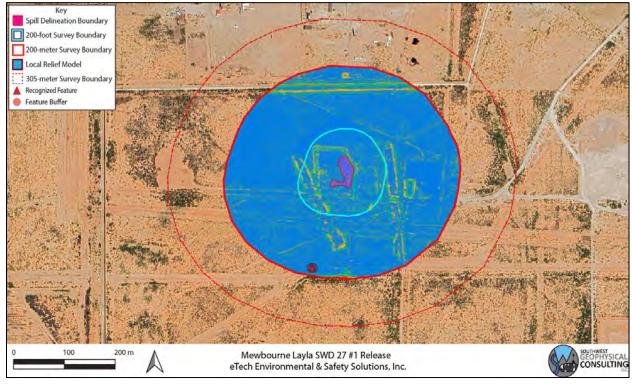


Figure 6: Surface karst survey results. Background image credit: Google Earth. Image date: July 14, 2024. Image datum: WGS-84.

No springs exist within the 1,000-foot (305-meter)^[1] survey boundary.

Caution should be exercised while operating in or around all karst-related features due to the possibility of near-surface voids. Employing a BLM-CFO approved karst monitor on site during these activities should be considered.

Table 3 contains a list of features identified during the surface karst survey and subsequent imagery analysis. Each feature is identified with a feature identification number (Feature ID), the type of feature, estimated size (in meters), recommended buffer (in meters), the likelihood of this feature being a surface karst feature (modifiers H/M for high or medium likelihood, V for field verified), and its location in WGS-84/UTM-13 (EPSG: 32613).

Table 3: Surface Karst Feature Data Table

KF			Size	Buffer			
Status	Feature ID	Туре	(m)	(m)	Mod	Easting	Northing
RKF	250424-D01	Suffosion sinkhole	1.1	10	V	587514.259	3571459.978

NOTE: Location data provided in WGS-84/UTM 13N. RKF - recognized karst feature.

3.2 Geophysical Survey

Electrical resistivity tomography forms images of the subsurface by causing a current to flow through the rock and soil and then measuring the resistance of these materials as the current flows through them. This measurement is taken many times and the resulting data, once processed, is used to produce a model of the subsurface (**Figure 7**). This model is produced using "non-unique" solutions, which means that there are many models and interpretations which will satisfy the data. Using experience and knowledge of the local geology, a high-confidence model can be established and used to develop an accurate understanding of what lies below the surface. This survey was conducted with the express purpose of locating subsurface voids and does not purport to find paleokarst (old, non-active karst features that have been filled in with sand and sediment) or nascent karst features below the resolution limit of the survey.

The results of this study indicate a moderately well-layered geologic system with resistivities between 1.0 and 924 Ohm-m with occasional values to 2,100 Ohm-m (Figure 7). Line LS27103 contains one anomaly (A1, 27,000 Ohm-m) near the surface at the western end of the line (Figure 7, Table 4). Please keep in mind when viewing the 2D inverted resistivity sections that color maps can be widely different for each view. Always check the color map located on the right side of the image when viewing the 2D images to ensure you understand the range of resistivities presented. Distances along the top and depths along the left side are in meters. The color map along the right side is in Ohm-m. Due to the nature of the survey, shallower zones have higher resolution between electrodes than deeper zones; therefore, small features at depth will not be visible.

Table 4 contains a list of subsurface anomalies identified during the geophysical survey and subsequent data analysis. Each anomaly is identified with an identification number (Feature ID), the type of feature, estimated size (in meters), estimated depth (in meters), recommended buffer (in meters), a category modifier for our database (R for resistivity anomaly, V for field verified), and the best location to drill for geotechnical verification in WGS-84/UTM-13 (EPSG: 32613).

Table 4: High-Resistivity Anomaly Data Table

			Size	Depth	Buffer			
KF Status	Feature ID	Type	(m)	(m)	(m)	Mod	Easting	Northing
PKF	250429-A01	ERI anomaly	<5	10	10	R	587539.671	3571574.905

NOTE: Location data provided in WGS-84/UTM 13N. PKF - Possible karst feature.

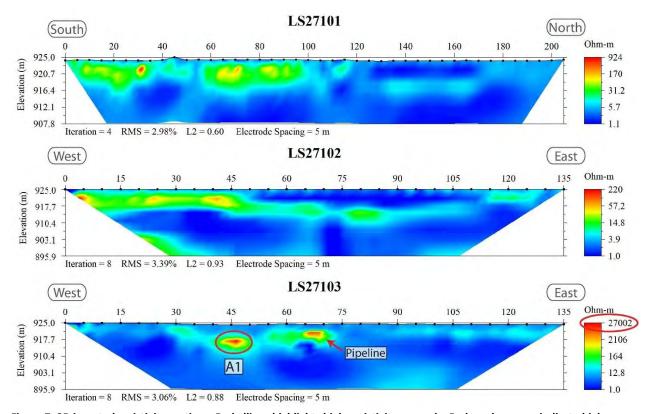


Figure 7: 2D inverted resistivity sections. Red ellipse highlights high-resistivity anomaly. Reds and oranges indicate higher resistivity values. Yellows and greens are medium-resistivity values. Blues are low-resistivity values. Please note that the color scale is relative.

4.0 DISCUSSION

One surface karst feature outside of the 61-meter (200-foot) survey boundary but within the 200-meter (656-foot) survey boundary exists at the project site. This feature could be associated with either a solutional void beneath the pipeline or with soil piping associated with the arroyo to the south. Based on the geology at this location, the latter interpretation is the most likely.

One high-resistivity anomaly (A1) consistent with an air-filled subsurface void is located just outside of the 61-meter (200-foot) survey boundary. This anomaly could also represent a sandstone or dolomite lens, or a gravel layer. The anomaly may represent a small (less than 5-meter diameter) to medium (less than 10-meter) isolated air-filled void in caliche or near-surface solution-enlarged fracture within gypsite or an evaporite layer in the Rustler Formation. Such a feature could be associated with groundwater recharge and may also represent a collapse hazard.

An additional high-resistivity anomaly is seen within line LS27103 to the east of A1. However, it aligns with an existing buried pipeline and is interpreted to be noise associated with this infrastructure.

No other anomalies interpreted as large near-surface voids are located within the study area. However, due to the resolution limit of the survey, other small voids at or near the resolution limit (2.5 - 3.0 meters) cannot be ruled out and are quite common in this area. Higher-than-average resistivity areas located less than 10 meters beneath the surface are interpreted as dry caliche or gypsite soils; due to their low resistivity values when compared with significant subsurface voids, these features should not be a concern for remediation activities. Areas of moderate resistivity (yellows and greens) near the surface are interpreted as dry caliche soils and gypsum or dolomite bedrock of the Rustler Formation (**Figure 7** and **Figure 8**).

Resistivity of the survey area drops below 5 Ω -m at approximately 8 meters (26 feet) depth the survey area, indicating a change to clay-rich soils or possibly moist to saturated caliche/gypsite soils or gypsum/dolomite bedrock of the Rustler Formation.

Please remember that these are interpretations made from knowledge of the local subsurface materials and experience. They remain interpretations until verified by geotechnical methods. We recommend drilling anomaly A1 to verify our interpretation, and if confirmed, resolve the type of cavity that exists before using this information for remediation planning purposes.

Within karst terrains like the project site, small air- or sediment-filled voids and/or brecciated zones and solutionally enlarged fractures that are below the resolution limit of the survey may exist; these may be encountered during excavation and if so, should be evaluated by a karst specialist prior to continuation of the excavation. Employing a BLM-CFO approved karst monitor on site during excavation in this area should be considered.

Fracture sets within the subsurface can act as hydrologic pathways to the water table. Rapid dissolution of gypsum can occur along these pathways creating solution-enlarged fractures, and in some cases, voids within months to years. For this reason, this survey is valid only for this remediation event.

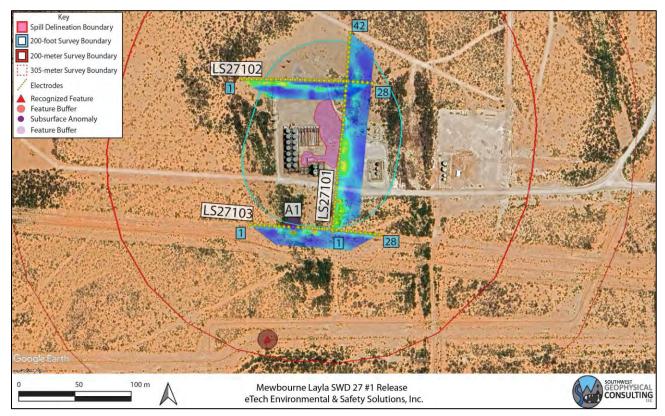


Figure 8: Data overlay. Colored trapezoids are 2D inverted resistivity lines. Background image credit: Google Earth. Image date: July 14, 2024.

5.0 SUMMARY

- The LS271 survey contains no surface karst features within 200 feet (61 meters) of the spill delineation boundary.
- One recognized surface feature exists within the 200-meter survey boundary. This feature is likely related to soil piping and represents a safety hazard, but not a karst hazard.
- The LS271 survey contains one high-resistivity anomaly which we interpret as a subsurface void. This feature exists outside of the 200-foot (61-meter) survey boundary.
 This feature may represent a collapse risk and present a hazard to equipment operators working in that area.
- A moderately well-layered stratigraphy is interpreted to exist beneath the area where the geophysical survey was conducted, indicating stable ground.
- Geophysical interpretations should be field verified by geotechnical methods prior to using this information for remediation planning.
- Employing a BLM-CFO approved karst monitor during excavation at this site should be considered.

6.0 DISCLOSURE STATEMENT

Karst occurrence zones are prone to rapid karst formation and warrant careful planning and engineering to mitigate karst-forming processes that could be accelerated by removal of surface cover or the vibrations associated with heavy equipment used in the remediation process.

Mitigation measures for any karst features revealed during excavation shall be approved by the Bureau of Land Management – Carlsbad Field Office and follow the Natural Resources Conservation Service Conservation Practice Standard for Karst Sinkhole Treatment, Code 527, or the Bureau of Land Management Cave and Karst Management Handbook, H-8380-1.

Vigilance during remediation activities is paramount. If voids are encountered during excavation, contact the Bureau of Land Management Karst Division at (575) 234-5972, the New Mexico State Land Office Surface Resources Division at (505) 827-5768, or a BLM-CFO approved karst contractor and request an on-site investigation from a karst expert if one is not already on site. A karst consultant can generally be available in Eddy County within five hours.

Approved karst monitors should have karst feature identification training, at least two years of supervised experience identifying karst features, wilderness first aid training, SRT training, confined space training, gas monitor training, and a minimum of SPAR cave rescue training through NCRC. They should have with them the proper gear and be prepared both physically and mentally to enter a collapse feature within minutes to perform a rescue if needed.

Monitoring services with qualified karst monitors, as well as cave surveys and geophysical surveys, are available from Southwest Geophysical Consulting.

Under no circumstances should an untrained, inexperienced person enter a cave, pit, sinkhole, or collapse feature. All field employees of Southwest Geophysical Consulting have extensive caving experience and the ability to determine whether entry into a karst feature is safe or presents a hazard. In the event it is necessary to enter a karst feature, Southwest Geophysical Consulting can provide these services on request.

Cave and karst resource inventory reports, karst feature investigations, and geophysical reports (along with the associated data files) commissioned at the request of the land manager should be submitted to BLM-CFO at blm.gov.

Cave and karst resource inventory reports for the NMSLO should be submitted to the respective project manager.

Environmental karst reports should be submitted to the appropriate project manager at the New Mexico Oil Conservation Division.

7.0 REFERENCES

- 1 Division, O. C. *Title 19, Chapter 15, Part 29* (Oil Conservation Division, 2018).
- 2 NMSLO.(ed Oil Conservation Division) (New Mexico State Land Office, Santa Fe, NM, 2018).
- Decker, D. & Jorgensen, G. L. *Environmental Karst Surveys White Paper* (Southwest Geophysical Consulting, LLC, 2024).
- 4 Goodbar, J. R. Vol. BLM Management Handbook H-8380-1 (ed Carlsbad Field Office) 59 (Bureau of Land Management, Denver, CO, 2015).
- Decker, D., Trautner, E. & Palmer, R. (Bureau of Land Management Carlsbad Field Office, 2025).
- 6 Earthpoint. *Earthpoint Tools for Google Earth,* https://www.earthpoint.us/Townships.aspx (2022).
- Decker, D. D., Land, L. & Luke, B. Characterization of Playa Lakes in the Gypsum Karst of Southeastern New Mexico and West Texas, USA. *Oklahoma Geological Survey Circular 113* **113** (2021).
- 8 W.R.C.C. National Climate Data Center 1981-2010 Normal Climate Summary for Carlsbad, New Mexico (291469), 2010).
- 9 Whitehead, W. & Flynn, C. *Plant Utilization in Southeastern New Mexico: Botany, Ethnobotany, and Archaeology.* (Bureau of Land Management, Carlsbad Field Office, 2017).
- 10 NMSLO. Digital overlay (KML) of the surface land ownership in New Mexico (New Mexico State Land Office, Santa Fe, NM, 2024).
- Green, G. N. & Jones, G. E. *The Digital Geologic Map of New Mexico in ARC/INFO Format,* https://mrdata.usgs.gov/geology/state/state.php?state=NM> (1997).
- Austin, G. S. *Geology and mineral deposits of Ochoan rocks in Delaware Basin and adjacent areas.* Vol. Circular 159 (New Mexico Bureau of Mines and Mineral Resources, 1978).
- Johnson, K. S. Evaporite Karst in the United States. *Carbonates and Evaporites* **12**, 2-14 (1997).
- 14 Scholle, P. A. Geologic Map of New Mexico. (2003).
- Decker, D. D., Jorgensen, G. L. & Palmer, R. in *Southwest Geophysical Cave and Karst Database* (ed LLC Southwest Geophysical Consulting) (Albuquerque, NM, 2025).
- Whitehead, W., Bandy, M. & Decker, D. Protocol for Using UAV Photography for Rapid Assessment of Karst Features in Southeast New Mexico. *Proceedings of the 2022 Cave and Karst Management Symposium* (2022).

8.0 GLOSSARY OF TERMS

AGI Advanced Geosciences Inc.

BLM-CFO Bureau of Land Management - Carlsbad Field Office

brecciated Fractured rock caused by faulting or collapse.
caprock-collapse sinkhole Collapse of roof-spanning rock into a cave or void.

cave Natural opening at the surface large enough for a person to enter.

cover-collapse sinkhole Collapse of roof-spanning soil or clay ground cover into a subsurface

void.

ERI Electrical Resistivity Imaging
GPS Global Positioning System

grike A solutionally enlarged, vertical, or sub-vertical joint or fracture.

(H) High confidence modifier for a PKF. This is typically reserved for a

feature that is definitely karst but has not been confirmed in the

field.

HKOZ High Karst Occurrence Zone

karst A landscape containing solutional features such as caves,

sinkholes, swallets, and springs.

(L) Low confidence modifier for a PKF. This is typically a feature that

cannot be ruled out as karst but is most likely NOT karst related.

This modifier may also be used for pseudokarst features.

(M) Medium confidence modifier for PKF. This is an ambiguous

feature that can't be positively identified as karst without a field visit (e.g., burrows, abandoned unlined wells, solution tubes,

pseudokarst).

MKOZ Medium Karst Occurrence Zone
NCRC National Cave Rescue Commission

NKF Non-karst feature. Used for features originally identified as PKF

that have been subsequently identified in the field as non-karst related. This term may also be used for pseudokarst features.

NMSLO New Mexico State Land Office

Ohm-meter, a unit of measurement for resistivity. Sometimes

abbreviated Ω -m.

paleokarst Previously formed karst features that have been filled in by

erosion and/or deposition of minerals.

Pat Permian Artesia Group
Pc Permian Capitan Formation

Pcs Permian Castile Formation

Pdl Permian Dewey Lake Formation

PKF Possible karst feature. This term is reserved for features

identified in satellite or aerial imagery that have NOT been visited in the field. Further modifiers include (H) for high confidence, (M) for medium confidence, and (L) for low confidence. These confidence levels are based on field

experience.

PLSS Public Land Survey System

Pqg Permian Queen/Greyburg Formation

Pru Permian Rustler Formation

pseudokarst Karst-like features (sinkholes, conduits, voids etc.) that are not

formed by dissolution. These types of features include soil piping, lava tubes, and some cover-collapse and suffosion sinkholes.

Psl Permian Salado Formation

Psr Permian Seven Rivers Formation

Pt Permian Tansill Formation
Py Permian Yates Formation
Qal Quaternary alluvium

Qe Quaternary eolian deposits
Qp Quaternary piedmont deposits
Qpl Quaternary playa lake deposits

RKF Recognized karst feature. This term is reserved for karst features

that have been physically verified in the field.

SPAR Small Party Assisted Rescue sUAS Small, uncrewed aerial system

suffosion sinkhole Raveling of soil into a pre-existing void or fracture.

swallet A natural opening in the surface, too small for a person, that drains

water to an aquifer. Some are "open," meaning a void can be seen

below; some are "closed, "meaning they are full of sediment.

SWG Southwest Geophysical Consulting, LLC

UTM Universal Transverse Mercator (projected coordinates)

(V) Field verified modifier for a RKF. This indicates that the feature has

been visited by a qualified karst professional in the field and fully

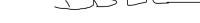
identified

WGS World Geodetic System (geographic coordinates)

9.0 ATTESTATION

David D. Decker, PhD, PG, CPG

Chief Executive Officer, Principal Geologist Southwest Geophysical Consulting, LLC 5117 Fairfax Dr. NW Albuquerque, NM 87114 dave@swgeophys.com (505) 585-2550


CERTIFICATE OF AUTHOR

I, David D. Decker, a Licensed Professional Geologist and a Certified Professional Geologist, do certify that:

- I am currently employed as a consulting geologist in the specialty of caves and karst with an office address of 5117 Fairfax Dr. NW, Albuquerque, NM, USA, 87114.
- I graduated with a Master of Science in Applied Physics with a specialization in Sensor Systems from the Naval Post Graduate School in Monterey, California, in 2003, and a Doctor of Philosophy in Earth and Planetary Sciences from the University of New Mexico, Albuquerque, New Mexico, in 2018.
- I am a Licensed Professional Geologist in the State of Texas, USA (PG-15242) and have been since 2021. I am a Certified Professional Geologist through the American Institute of Professional Geologists (CPG-12123) and have been since 2021.
- I have been employed as a geologist continuously since 2016. I was previously employed as a Fire Controlman, Naval Flight Officer, and Aerospace Engineering Duty Officer in the U.S. Navy and operated, maintained, and installed various sensor systems including magnetic, electromagnetic, radar, communications, and acoustic systems in various capacities from 1986 through 2010.
- I have been involved in various aspects of cave and karst studies continuously since 1985, including exploration, mapping, and scientific studies.
- I have read the definition of "qualified karst professional" set out in the ASTM Standard Practice for Preliminary Karst Terrain Assessment for Site Development (ASTM E-1527). I meet the definition of "qualified professional" for the purposes of this standard.
- I am responsible for the content, compilation, and editing of all sections of report number ETEC-014-20250403 entitled, "Environmental Karst Study Report, Mewbourne Layla SWD 27 No. 1, Eddy County, New Mexico." I or a duly authorized and qualified representative of Southwest Geophysical Consulting, LLC, have personally visited this site and/or reviewed the aerial imagery on the date or dates mentioned in section 2.3 Description of Survey.

• I have no prior involvement nor monetary interest in the described property or project, save for my fee for conducting this investigation and providing the report.

Dated in Albuquerque, New Mexico, June 4, 2025.

David D. Decker PhD, CPG-12123

Appendix D Regulatory Correspondence

From: OCDOnline@state.nm.us < OCDOnline@state.nm.us >

Sent: Friday, January 10, 2025 1:43:54 PM **To:** Connor Walker < <u>cwalker@mewbourne.com</u>>

Subject: [EXT] The Oil Conservation Division (OCD) has rejected the application, Application ID: 411424

To whom it may concern (c/o Connor Walker for MEWBOURNE OIL CO),

The OCD has rejected the submitted *Application for administrative approval of a release notification and corrective action* (C-141), for incident ID (n#) nAPP2428849677, for the following reasons:

• The Remediation Plan is denied. The site assessment has not been delineated horizontally or vertically. Horizontal delineation must meet the requirements of the reclamation standards 19.15.29.13 NMAC (600 mg/kg Cl, 100 mg/kg TPH, 50 mg/kg BTEX, 10 mg/kg benzene) or OCD approved "background" values for the upper 4 feet of the impacted area. Soil standards below 4 feet must be delineated/remediated to Table I Closure Criteria for the approved site-specific depth to groundwater. A surface visual footprint alone is not sufficient when assessing the horizontal extent of the release. Laboratory data must be provided as evidence of delineation efforts. Depth to ground water is inadequate per 19.15.29.11A (2). Please included POD1 04830 in the dtgw determination.

The rejected C-141 can be found in the OCD Online: Permitting - Action Status, under the Application ID: 411424.

Please review and make the required correction(s) prior to resubmitting.

If you have any questions why this application was rejected or believe it was rejected in error, please contact me prior to submitting an additional C-141.

Thank you, Scott Rodgers Environmental Specialist - A 505-469-1830 scott.rodgers@emnrd.nm.gov

New Mexico Energy, Minerals and Natural Resources Department 1220 South St. Francis Drive Santa Fe, NM 87505

Appendix E Field Data

Sample Log

					Date:		
Project:	Layla SWD 2	7 #001					
Project Nu	mber:	21279	Latitude:	32.278289	Longitude:	-104.070126	

Sample ID	PID/Odor	Chloride Conc.	GPS
77-1 @ SUMER		26416	
7-101		HH16 3952	
17-2 e suoce		26416	
7.261		5024	
7-2021		2564	
7-261' 7-261' 7-363'		254 1640	
7-30 Surve		21416	
7-301		2836	
17-362		2044	
TT-363'		1996	
17-40 Surale		26416	
17-461		2,484	
T-U@2'		1640	
77-4@3' VH EH		1224	
VH			
Н			
5 H			
VH.			

Sample Point = SP #1 @ ## etc

Floor = FL #1 etc

Sidewall = SW #1 etc

Test Trench = TT #1 @ ##

Refusal = SP #1 @ 4'-R

Soil Intended to be Deferred = SP #1 @ 4' In-Situ

Resamples= SP #1 @ 5b or SW #1b

Stockpile = Stockpile #1

GPS Sample Points, Center of Comp Areas

Appendix F Photographic Log

Photo Number:

1

Photo Direction: Southeast

Photo Description:

View of the affected area.

Photo Number:

2

Photo Direction: South-Southeast

Photo Description:

View of the affected area.

Photo Number:

3

Photo Direction:Southeast

Photo Description:

View of the affected area.

Photo Number:

4

Photo Direction:

Southeast

Photo Description:

Photo Number:

5

Photo Direction: East-Northeast

Photo Description:

View of the affected area.

Photo Number:

6

Photo Direction:

Northeast

Photo Description:

View of the affected area.



Photo Number: 8 Photo Direction: Southeast Photo Description:

View of test trench TT 2 and liner.

Photo Number:
9
Photo Direction:
South

Photo Description:

View of test trench TT 3 and liner.

Photo Number:

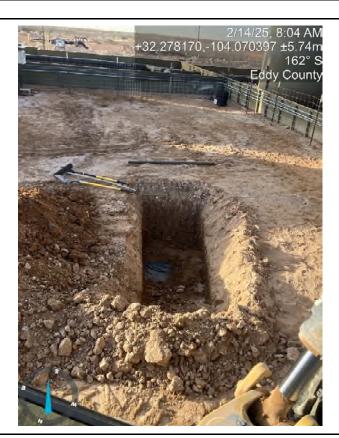

10

Photo Direction:

South-Southeast

Photo Description:

View of test trench TT 4 and liner.

Appendix G Liner Integrity Inspection Report

Liner Integrity Inspection Report

Company: Mewbourne Oil Co	mpany	Site Name:	La	Layla SWD #001						
Project #: 21279 Inspection	Tech:	David Robinson		Date: 2/14/2025						
	Visual Ir	nspection								
Type of Secondary Contain	ıment	Containment Status								
Earthen X Cement Lined X Coated Fabrics/Lamina		Free Fluid Intermittent Pooli		Traces of	Leak Inside					
Steel Other		Intact	×	Dry	×					
Environmental Damage Damage from animals or vegetation compromising liner integrity Discoloration, erosion, or chemical degradation of the liner Degradation from the storm water flow or erosion of containment	Obser	ents	N/A							
Physical Damage Cracks, holes, bulges, stains, chips, or seepages in the liner system Improper or deferred maintenance of the liner system	Commo	ents *Please take picti	ures of any N/A	type of dam	nage (holes, etc.)					
Dike wall, foundation, or embankment movement, settlement, or deterioration compromising liner integrity										
Degradation of the liner system at penetrations (piping, supports, wells, foundations, pads, etc.)										
Damage to the liner system from equipment, vehicles, foot traffic, etc. Evidence of foundation movement, settlement, or deterioration										
settlement, or deterioration			V							

Appendix H Laboratory Analytical Reports

February 21, 2025

LANCE CRENSHAW

Etech Environmental & Safety Solutions
2617 W MARLAND

HOBBS, NM 88240

RE: LAYLA SWD 27 #001

Enclosed are the results of analyses for samples received by the laboratory on 02/17/25 13:09.

Cardinal Laboratories is accredited through Texas NELAP under certificate number TX-C24-00112. Accreditation applies to drinking water, non-potable water and solid and chemical materials. All accredited analytes are denoted by an asterisk (*). For a complete list of accredited analytes and matrices visit the TCEQ website at www.tceq.texas.gov/field/ga/lab accred certif.html.

Cardinal Laboratories is accreditated through the State of Colorado Department of Public Health and Environment for:

Method EPA 552.2 Haloacetic Acids (HAA-5)
Method EPA 524.2 Total Trihalomethanes (TTHM)
Method EPA 524.4 Regulated VOCs (V1, V2, V3)

Accreditation applies to public drinking water matrices.

Celey D. Keine

This report meets NELAP requirements and is made up of a cover page, analytical results, and a copy of the original chain-of-custody. If you have any questions concerning this report, please feel free to contact me.

Sincerely,

Celey D. Keene

Lab Director/Quality Manager

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE 32.278289-104.070126

mg/kg

Sample ID: TT - 1 @ SURF (H250938-01)

BTEX 8021B

	91	9							
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.85	92.5	2.00	2.64	
Toluene*	<0.050	0.050	02/18/2025	ND	2.06	103	2.00	1.17	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.21	111	2.00	2.29	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	6.76	113	6.00	1.46	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	ed By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	36400	16.0	02/18/2025	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	127	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	131	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 1 @ 1' (H250938-02)

BTEX 8021B	mg/	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	QR-03
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	QR-03
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	117 9	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		Analyze	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	8000	16.0	02/18/2025	ND	432	108	400	0.00	
TPH 8015M	mg/	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	130 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	132 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: 21279 Sample Received By: Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 2 @ SURF (H250938-03)

BTEX 8021B	mg	/kg	Analyzed By: JH						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		Analyze	Analyzed By: AC						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	34400	16.0	02/18/2025	ND	432	108	400	0.00	
TPH 8015M	mg	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	66.7	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	17.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	123	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	129	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 2 @ 1' (H250938-04)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		/kg	Analyze	d By: AC					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	7000	16.0	02/18/2025	ND	432	108	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	129	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	133	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: 21279 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 2 @ 2' (H250938-05)

BTEX 8021B

	<u> </u>								
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	107	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3520	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	Analyzed By: MS					S-04
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	135	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	139	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 2 @ 3' (H250938-06)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	119	% 71.5-13	4						
Chloride, SM4500CI-B	/kg	Analyze	d By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	3040	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	110	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	115	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 3 @ SURF (H250938-07)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110 %	6 71.5-13	4						
Chloride, SM4500CI-B	I-B mg/kg		Analyzed By: HM						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	21600	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	137	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	53.6	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	97.2 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	102 %	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 3 @ 1' (H250938-08)

RTFY 8021R

B1EX 8021B	mg	/ kg	Anaiyze	а ву: ЈН					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	113	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4080	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	Analyzed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	104	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Analyzed By: 14

Reported: 02/21/2025

Project Name: LAYLA SWD 27 #001

Project Number: 21279

Project Location: MEWBOURNE 32.278289-104.070126

02/17/2025

Sampling Date: 02/14/2025

Sampling Type: Soil

Sampling Condition: Cool & Intact Sample Received By:

Shalyn Rodriguez

Sample ID: TT - 3 @ 2' (H250938-09)

Received:

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B mg/kg		/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	2920	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyzed By: MS						
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	119	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil
Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact

Project Number: 21279 Sample Received By: Shalyn Rodriguez

Applyzod By: 14

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 3 @ 3' (H250938-10)

RTFY 8021R

Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
<0.300	0.300	02/18/2025	ND					
107	% 71.5-13	4						
mg,	/kg	Analyze	d By: HM					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
2680	16.0	02/18/2025	ND	416	104	400	0.00	
mg,	/kg	Analyze	d By: MS					
Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
<10.0	10.0	02/18/2025	ND					
109	% 48.2-13	4						
110 9	% 49.1-14	8						
	<0.050 <0.050 <0.050 <0.150 <0.300 107 9 mg/ Result 2680 mg/ Result <10.0 <10.0 <10.0	 <0.050 <0.050 <0.050 <0.050 <0.050 <0.150 <0.300 0.300 107 % 71.5-13 mg/ky Result Reporting Limit 2680 16.0 mg/ky Result Reporting Limit <10.0 10.0 <10.0 10.0 <10.0 10.0 <10.0 10.0 	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celeg & Freene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 4 @ SURF (H250938-11)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109 9	71.5-13	4						
Chloride, SM4500CI-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	60000	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	51.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	11.6	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	110 %	6 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113 9	6 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 4 @ 1' (H250938-12)

BTEX 8021B	mg/	kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	< 0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	106 9	71.5-13	4						
Chloride, SM4500Cl-B	mg/	kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	4960	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	119 9	6 48.2-13	4						
Surrogate: 1-Chlorooctadecane	123 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 4 @ 2' (H250938-13)

BTEX 8021B	mg/	/kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	113 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg/	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1490	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg/	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	127 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	132 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Sample Received By:

Shalyn Rodriguez

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

 Received:
 02/17/2025
 Sampling Date:
 02/14/2025

 Reported:
 02/21/2025
 Sampling Type:
 Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact

Project Number: 21279

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: TT - 4 @ 3' (H250938-14)

BTEX 8021B	mg	/kg	Analyze	ed By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	108	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	1250	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	122	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	126	% 49.1-14	8						

Cardinal Laboratories

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Celey D. Keene, Lab Director/Quality Manager

*=Accredited Analyte

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact Sample Received By: Project Number: 21279 Shalyn Rodriguez

Project Location: MEWBOURNE 32.278289-104.070126

Sample ID: EH - 1 (H250938-15)

BTEX 8021B	mg,	'kg	Analyze	d By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	112 9	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	'kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	528	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	'kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	114 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	117 9	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whatsoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

 Received:
 02/17/2025
 Sampling Date:
 02/14/2025

 Reported:
 02/21/2025
 Sampling Type:
 Soil

Reported: 02/21/2025 Sampling Type: Soil
Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact

Project Number: 21279 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE 32.278289-104.070126

mg/kg

Sample ID: EH - 2 (H250938-16)

BTEX 8021B

	9,	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	105	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	448	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	102	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	105	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240

Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

ma/ka

Sample ID: WH - 1 (H250938-17)

RTFY 8021R

B1EX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	114	% 71.5-13	4						
Chloride, SM4500CI-B	mg	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	48.0	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	111 5	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	114	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: 21279 Sample Received By: Shalyn Rodriguez

Analyzed By: JH

Project Location: MEWBOURNE 32.278289-104.070126

mg/kg

Sample ID: WH - 2 (H250938-18)

BTEX 8021B

	9,	9	7	7: 5::					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	ed By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	32.0	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	ed By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	104	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	107	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results related only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keine

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

 Received:
 02/17/2025
 Sampling Date:
 02/14/2025

 Reported:
 02/21/2025
 Sampling Type:
 Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

ma/ka

Sample ID: NH (H250938-19)

RTFY 8021R

BIEX 8021B	mg	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	110	% 71.5-13	4						
Chloride, SM4500CI-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	368	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	108	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	113	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Analytical Results For:

Etech Environmental & Safety Solutions LANCE CRENSHAW 2617 W MARLAND HOBBS NM, 88240 Fax To:

Received: 02/17/2025 Sampling Date: 02/14/2025

Reported: 02/21/2025 Sampling Type: Soil

Project Name: LAYLA SWD 27 #001 Sampling Condition: Cool & Intact
Project Number: 21279 Sample Received By: Shalyn Rodriguez

Analyzed By: 14

Project Location: MEWBOURNE 32.278289-104.070126

ma/ka

Sample ID: SH (H250938-20)

RTFY 8021R

B1EX 8021B	mg,	/кд	Anaiyze	a By: JH					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Benzene*	<0.050	0.050	02/18/2025	ND	1.86	92.9	2.00	0.201	
Toluene*	<0.050	0.050	02/18/2025	ND	2.11	106	2.00	2.81	
Ethylbenzene*	<0.050	0.050	02/18/2025	ND	2.34	117	2.00	2.92	
Total Xylenes*	<0.150	0.150	02/18/2025	ND	7.12	119	6.00	3.29	
Total BTEX	<0.300	0.300	02/18/2025	ND					
Surrogate: 4-Bromofluorobenzene (PID	109	% 71.5-13	4						
Chloride, SM4500Cl-B	mg,	/kg	Analyze	d By: HM					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
Chloride	416	16.0	02/18/2025	ND	416	104	400	0.00	
TPH 8015M	mg,	/kg	Analyze	d By: MS					
Analyte	Result	Reporting Limit	Analyzed	Method Blank	BS	% Recovery	True Value QC	RPD	Qualifier
GRO C6-C10*	<10.0	10.0	02/18/2025	ND	198	99.1	200	1.71	
DRO >C10-C28*	<10.0	10.0	02/18/2025	ND	186	93.2	200	4.44	
EXT DRO >C28-C36	<10.0	10.0	02/18/2025	ND					
Surrogate: 1-Chlorooctane	118 9	% 48.2-13	4						
Surrogate: 1-Chlorooctadecane	119	% 49.1-14	8						

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Notes and Definitions

S-04 The surrogate recovery for this sample is outside of established control limits due to a sample matrix effect.

QR-03 The RPD value for the sample duplicate or MS/MSD was outside of QC acceptance limits due to matrix interference. QC batch

accepted based on LCS and/or LCSD recovery and/or RPD values.

ND Analyte NOT DETECTED at or above the reporting limit

RPD Relative Percent Difference

** Samples not received at proper temperature of 6°C or below.

*** Insufficient time to reach temperature.

- Chloride by SM4500Cl-B does not require samples be received at or below 6°C

Samples reported on an as received basis (wet) unless otherwise noted on report

Cardinal Laboratories *=Accredited Analyte

PLEASE NOTE: Liability and Damages. Cardinal's liability and client's exclusive remedy for any claim arising, whether based in contract or tort, shall be limited to the amount paid by client for analyses. All claims, including those for negligence and any other cause whistoever shall be deemed waived unless made in writing and received by Cardinal within thirty (30) days after completion of the applicable service. In no event shall Cardinal be liable for incidental or consequential damages, including, without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of the services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated reasons or otherwise. Results relate only to the samples identified above. This report shall not be reproduced except in full with written approval of Cardinal Laboratories.

Celey D. Keene

Released to Imaging: 11/14/2025 2:45:16 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAY (575) 393-2476

Company Name											BI	LL TO					Δ	NALY	SIS	REO	IIES	т		
Project Manage	er: Lance Crensha	W							P.O.	#:							Ť	T		T	ULJ			
Address: 261	17 W Marland Blvd								Com	pany	r	Mewbourne		1						- 1				
City: Hobbs		State: NM	Zi	o:	8824	10			Attn		-	memodalie		1	1					- 1				
Phone #: (57	5) 264-9884	Fax #:							Addı					1										- 1
roject#: 212	279	Project Owner:	M	lawhr	urne (Oil Co		2011	City:					1										
	Layla SWD 27 #001		19	CWD	unie	JII U	Jinpa	ally				_		1						- 1				
	n: GPS:(32.27828								State			Zip:		1						- 1				
ampler Name:		9, -104.070126)					_	-	Phor					1										
FOR LAB USE ONLY	Adion Rios		Т			MA	TRIX	_	Fax a	F: RESE	DV.	SAMPLI	NO	4						- 1				
			ē.	П	T	mo	INIZ		ľ	KESE	KV.	SAMPLI	NG	1						- 1				
Lab I.D.	Sample	e I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	SOIL	OIL	SLUDGE	OTHER:	ICE / COOL	OTHER:	DATE	TIME	Chloride	ТРН	BTEX 8021								
1	TT - 1 @ SURF		G	1		x			Ť	x	Ĭ	2/14/25		x	×	x		\rightarrow	\rightarrow	\rightarrow	\neg		+	\rightarrow
3	TT - 1 @ 1'		G	1		x				x		2/14/25		x	x	x	_	+	+	-			+	-
	TT - 2 @ SURF		G	1		x				x		2/14/25		x	x	x		+	+	-			-	\dashv
	TT - 2 @ 1'		G	1		x				x		2/14/25		x	x	×		1	\pm	\pm				\rightarrow
5	TT - 2 @ 2'		G	1		X				x		2/14/25		x	x	x		\top		+	\rightarrow		_	
4	TT - 2 @ 3'		G	1		x				x		2/14/25		×	x	x				_				-
	TT - 3 @ SURF		G	1		x				x		2/14/25		x	x	x				1				-
8	TT - 3 @ 1'		G	1		x				х		2/14/25		x	x	x				1	\neg			+
	TT - 3 @ 2'		G	1		х				х		2/14/25		х	x	x				1				-
10	TT - 3 @ 3 ^t d Damages. Cardinal's liability and		G	1		x				x		2/14/25		x	x	x		-	-	-	\rightarrow	-	-	-

affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is bas

Relinquished By: Tamarah Kendrick	Date: 2/17/2025	Received By:	Phone Result: ☐ Yes ☐ No Add'l Phone #:
Relinquished By:	Date:	Stadkiguey Received By:	REMARKS: Email copy of COC and results to: PM@etechenv.com
	-8.2: #140	Yes Yes No No	KED BY: itials)
† Cardinal cannot accept verbal cl	hanges. Please fax v	written changes to 575-393-2476	

FORM-006 R 2.0

Released to Imaging: 11/14/2025 2:45:16 PM

CHAIN-OF-CUSTODY AND ANALYSIS REQUEST

101 East Marland, Hobbs, NM 88240 (575) 393-2326 FAX (575) 393-2476

	e: Etech Environmental									BI	LL TO					Al	NALYS	SIS R	FQUE	FST		_
Project Manage	nager: Lance Crenshaw				P.O.	#:									1	1	<u> </u>	T	Т			
Address: 26	17 W Marland Blvd							Con	pany	y:	Mewbourne		1			1 1						
City: Hobbs	State: NM	Zi	p:	882	40			Attn					1	1								
Phone #: (57	75) 264-9884 Fax #:							Add	ress:				1									П
Project #: 21	279 Project Owner:		/lewb	oume	Oil Co	omo	anv	City:					1					1				
Project Name:	Layla SWD 27 #001					· iiip	,	State			Zip:		1									
	n: GPS:(32.278289, -104.070126)							Pho			Zip.		1									
Sampler Name:								Fax					1									
FOR LAB USE ONLY		Т	Т		MA	TRI	(RESE	RV.	SAMPLI	NG	1									
Lab I.D.	Sample I.D.	(G)RAB OR (C)OMP	# CONTAINERS	GROUNDWATER	SOIL	OIL	SLUDGE	OTHER:	ICE / COOL	OTHER:	DATE	TIME	Chloride	ТРН	BTEX 8021							
11	TT - 4 @ SURF	G	1		X				X		2/14/25		х	х	х							\vdash
13	TT - 4 @ 1'	G	1		X				х		2/14/25		х	х	x							
-	TT - 4 @ 2'	G	1		X				x		2/14/25		х	х	X							
14	TT - 4 @ 3'	G	1		Х		1		x		2/14/25		X	х	х							
15	EH - 1	G	1		X				X		2/14/25		х	х	х							
16	EH - 2	G	1		X				х		2/14/25		х	х	x							
12	WH - 1	G	1		X				x		2/14/25		x	X	х							
	WH - 2	G	1		X				x		2/14/25		x	х	х							
	NH	G	1		X				х		2/14/25		х	X	x							
20	SH	G			x		- 1		x		2/14/25						-	_	-	_	-	-

service. In no event shall Cardinal be liable for incidental or consequental damages, including without limitation, business interruptions, loss of use, or loss of profits incurred by client, its subsidiaries, affiliates or successors arising out of or related to the performance of services hereunder by Cardinal, regardless of whether such claim is based upon any of the above stated re-

Relinquished By: Tamarah Kendrick	Date: 2/17/2025	Received By:		Phone Result: Fax Result:	☐ Yes ☐	No Add'l Phone #: No Add'l Fax #:
Relinquished By:	Time 1309 Date:	Stocking Received By:	lly	REMARKS:	Email copy	of COC and results to: PM@etechenv.com
Delivered By: (Circle One) Sampler - UPS - Bus - Other:	8.5:) C+0	Sample Condition Cool Intact Tes Tes	CHECKED BY:			
† Cardinal cannot accept verbal ch			76			

FORM-006 R 2.0

Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 488012

QUESTIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	488012
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2428849677
Incident Name	NAPP2428849677 LAYLA 27 SWD #1 @ 30-015-22638
Incident Type	Produced Water Release
Incident Status	Remediation Plan Received
Incident Well	[30-015-22638] LAYLA 27 SWD #001

ocation of Release Source						
Please answer all the questions in this group.						
Site Name	Layla 27 SWD #1					
Date Release Discovered	10/05/2024					
Surface Owner	Private					

Incident Details					
Please answer all the questions in this group.					
Incident Type	Produced Water Release				
Did this release result in a fire or is the result of a fire	No				
Did this release result in any injuries	No				
Has this release reached or does it have a reasonable probability of reaching a watercourse	No				
Has this release endangered or does it have a reasonable probability of endangering public health	No				
Has this release substantially damaged or will it substantially damage property or the environment	No				
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No				

Nature and Volume of Release						
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.						
Crude Oil Released (bbls) Details	Not answered.					
Produced Water Released (bbls) Details	Cause: Equipment Failure Flow Line - Injection Produced Water Released: 305 BBL Recovered: 250 BBL Lost: 55 BBL.					
Is the concentration of chloride in the produced water >10,000 mg/l	Yes					
Condensate Released (bbls) Details	Not answered.					
Natural Gas Vented (Mcf) Details	Not answered.					
Natural Gas Flared (Mcf) Details	Not answered.					
Other Released Details	Not answered.					
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Not answered.					

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS, Page 2

Action 488012

QUESTI	ONS (continued)				
Operator: MEWBOURNE OIL CO P.O. Box 5270 Hobbs, NM 88241	OGRID:				
HUDDS, NW 00241	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)				
QUESTIONS					
Nature and Volume of Release (continued)					
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.				
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	Yes				
Reasons why this would be considered a submission for a notification of a major release	From paragraph A. "Major release" determine using: (1) an unauthorized release of a volume, excluding gases, of 25 barrels or more.				
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.				
Initial Response The responsible party must undertake the following actions immediately unless they could create a s The source of the release has been stopped	safety hazard that would result in injury.				
The impacted area has been secured to protect human health and the environment	True				
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True				
All free liquids and recoverable materials have been removed and managed appropriately	True				
If all the actions described above have not been undertaken, explain why	Not answered.				
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.				
to report and/or file certain release notifications and perform corrective actions for releating the OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or				
I hereby agree and sign off to the above statement	Name: Connor Walker Title: Senior Engineer Email: cwalker@mewbourne.com Date: 10/14/2024				

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 488012

QUESTIONS (continued)

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	488012
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization					
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the				
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Between 26 and 50 (ft.)				
What method was used to determine the depth to ground water	NM OSE iWaters Database Search				
Did this release impact groundwater or surface water	No				
What is the minimum distance, between the closest lateral extents of the release and the following surface areas:					
A continuously flowing watercourse or any other significant watercourse	Between 300 and 500 (ft.)				
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between ½ and 1 (mi.)				
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)				
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1000 (ft.) and ½ (mi.)				
Any other fresh water well or spring	Between 300 and 500 (ft.)				
Incorporated municipal boundaries or a defined municipal fresh water well field	Between 1 and 5 (mi.)				
A wetland	Between 300 and 500 (ft.)				
A subsurface mine	Greater than 5 (mi.)				
An (non-karst) unstable area	Between 500 and 1000 (ft.)				
Categorize the risk of this well / site being in a karst geology	Low				
A 100-year floodplain	Between 1 and 5 (mi.)				
Did the release impact areas not on an exploration, development, production, or storage site	No				

Remediation Plan					
Please answer all the questions that apply or are indicated. This information must be provided to	o the appropriate district office no later than 90 days after the release discovery date.				
Requesting a remediation plan approval with this submission Yes					
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contamination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.					
Have the lateral and vertical extents of contamination been fully delineated	Yes				
Was this release entirely contained within a lined containment area	Yes				
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes complete which includes the anticipated timelines for beginning and completing the remediation.	ed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC,				
On what estimated date will the remediation commence	08/25/2025				
On what date will (or did) the final sampling or liner inspection occur	09/15/2025				
On what date will (or was) the remediation complete(d)	09/22/2025				
What is the estimated surface area (in square feet) that will be remediated	15596				
What is the estimated volume (in cubic yards) that will be remediated	2934				
These estimated dates and measurements are recognized to be the best guess or calculation at t	he time of submission and may (be) change(d) over time as more remediation efforts are completed.				

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 488012

QUESTIONS (continued)

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	488012
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)				
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.				
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:				
(Select all answers below that apply.)				
Is (or was) there affected material present needing to be removed	Yes			
Is (or was) there a power wash of the lined containment area (to be) performed	No			
OTHER (Non-listed remedial process)	No			
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC				

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

I hereby agree and sign off to the above statement

Name: Connor Walker Title: Senior Engineer Email: cwalker@mewbourne.com

Date: 08/20/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Operator:

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

MEWBOURNE OIL CO

Requesting a remediation closure approval with this submission

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 488012

QUESTIONS (continued)

OGRID:

14744

P.O. Box 5270 Hobbs, NM 88241		Action Number: 488012	
		Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS			
Liner Inspection Information			
Last liner inspection notification (C-141L) recorded	{Unavailable	J	
Was all the impacted materials removed from the liner	Unavailable.		
Remediation Closure Request			

No

Only answer the questions in this group if seeking remediation closure for this release because all remediation steps have been completed.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 488012

CONDITIONS

Operator:	OGRID:
MEWBOURNE OIL CO	14744
P.O. Box 5270	Action Number:
Hobbs, NM 88241	488012
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	The Remediation Plan is conditionally approved. The variance request to go to 10,000 mg/kg for chlorides is denied. OCD requests material impacted above the 600 mg/kg level as required under part 29 must be excavated to the maximum extent practicable to protect the existing liner, minimally 3' bgs. Be advised at site closure a ground water investigation will be required due to being unable to inspect the existing liner.	11/14/2025