

General Information

NMOCD District: Hobbs Incident ID: nAPP2522525572 Landowner: Bureau of Land Management RP Reference: n/a Client: Devon Energy Production Company, LP Site Location: Papas Fritas 27 CTB 2 Date: 25A-04562 October 2, 2025 Proiect #: Jim Raley Client Contact: Phone #: 575.689.7597 Vertex PM: **Kent Stallings** Phone #: 346.814.1413

Objective

The objective of the environmental remediation work plan is to identify exceedances found during the site assessment/characterization activity and propose an appropriate remediation technique to address the release assigned to Papas Fritas 27 CTB 2 (hereafter referred to as the "site"). The incident occurred on site on August 12, 2025, when a leak on the water line from a separator released approximately 6 barrels of produced water onto the production area (pad; Attachment 1). Areas of environmental concern identified and delineated are around the separators and pad to the southwest. An aerial photograph of the site with characterization locations is presented on Figure 1 (Attachment 2).

The nearest depth to ground water reference is 1.28 miles to the northwest of the site. It is an active well that was drilled to 40 feet below ground surface (bgs) with a depth to water at 18 ft bgs. Closure criteria have been selected as per New Mexico Administrative Code 19.15.29. The closure criteria for the site are presented below.

Table 1. Closure Criteria for Soils Impacted by a Release DTGW ≤ 50 feet bgs			
Minimum depth below any point within the horizontal boundary of the release to groundwater			
less than 10,000 mg/l TDS	Constituent	Limit	
	Chloride	600 mg/kg	
< FO foot	TPH (GRO+DRO+MRO)	100 mg/kg	
≤ 50 feet	BTEX	50 mg/kg	
	Benzene	10 mg/kg	

DTGW – depth to groundwater

bgs – below ground surface

TDS – total dissolved solids

 $TPH-total\ petroleum\ hydrocarbons,\ GRO-gas\ range\ organics,\ DRO-diesel\ range\ organics,\ MRO-motor\ oil\ range\ organics$

BTEX - benzene, toluene, ethylbenzene and xylenes

Site Assessment/Characterization

Site characterization was started on August 19, 2025, and concluded on September 17, 2025. A total of nine sample points were established and samples collected for field screening. Samples were obtained at various depths for horizontal and vertical delineation, and samples at the greatest lateral limits below criteria were submitted to the laboratory for analysis. Samples at the deepest vertical distance below criteria were not obtainable at this time and will be completed during remediation. In total, 21 samples were submitted to Hall Environmental Analysis Laboratory, Albuquerque, New Mexico, for analysis. The sample locations are presented on Figure 1 (Attachment 2). Laboratory analysis results have been compared to the above noted closure criteria and the results from the characterization activity are presented in Table 2 (Attachment 3); exceedances to criteria are identified in the table as bold with a grey background. Laboratory data reports are included in Attachment 4. Daily Field Reports are included in Attachment 5. All applicable research as it pertains to closure criteria selection is presented in Attachment 6.

VERSATILITY. EXPERTISE.

Remedial Activities

General

Areas identified with contaminant concentrations above closure criteria will be remediated through excavation. Laboratory results from the site assessment/characterization have been referenced to estimate both the vertical and horizontal limits of the impacts and the volume of soil to be removed. Soil will be excavated to the extents of the known contamination as possible with infrastructure in close proximity. Field screening will be utilized to confirm removal of contaminated soil below the applicable closure criteria. Contaminated soils will be stored on a 30mil liner prior to disposal at an approved facility. Once excavation is complete, confirmatory samples will be collected and laboratory analysis completed to confirm closure criteria guidelines are met. Excavations will be backfilled with clean soil sourced locally.

napp252252572- Release from Separators onto Southwest Side of Production Area

Exceedances to closure criteria were identified at BH25-04, BH25-05 and BH25-08 around the separators and on the southwest area of the pad in the southwest, as shown on Figure 1 (Attachment 2). Impacted areas will be remediated to closure criteria via excavation where access is possible around separators and lines. Soil will be excavated at a planned depth of 4.5 ft within the release area. The excavation will be as close as safely possible to the active separators.

Heavy equipment will be used to complete excavation in areas free of infrastructure or equipment. Hand tools will be utilized to remove contaminated soil in close proximity to equipment, buried utilities, and pipelines. A hydrovac truck will be utilized to identify utility and buried pipelines and complete excavation where necessary. Confirmation samples will be collected as per NMOCD guidance and submitted for laboratory analysis of all applicable parameters. The total remediation area is approximately 3,487 square feet. The total estimated volume to be excavated is approximately 695 cubic yards. Excavation is planned to be completed within 90 days of approval of this Environmental Site Remediation Work Plan.

Sample Point	Excavation Depth	Remediation Method
BH25-04	4.5'	Hand Crew
BH25-05	4.5'	Hand Crew
BH25-08	4.5'	Hand Crew

VERSATILITY. EXPERTISE.

Environmental Site Remediation Work Plan

Should you have any questions or concerns, please do not hesitate to contact Kent Stallings at 346.814.1413 or kstallings@vertexresource.com.

Stephanie McCarty	October 6, 2025	
Stephanie McCarty, B.Sc.	Date	
ENVIRONMENTAL SPECIALIST, REPORTING		
Kent Stallings	October 7, 2025	
Kent Stallings, P.G	Date	

Attachments

Attachment 1. NMODC C-141 Report

PROJECT MANAGER, REPORT REVIEW

 ${\bf Attachment~2.~~Characterization~Sampling~Site~Schematic}$

Attachment 3. Initial Characterization Laboratory Results

Attachment 4. Laboratory Data Reports and Chain of Custody Forms

Attachment 5. Daily Field Reports with Photographs

Attachment 6. Closure Criteria Research

ATTACHMENT 1

Received by OCD: 8/19/2025 6:57 COMtaminated Soil Calculations Page 1 of 5			
How do you want t	o enter area?	Total area fr	om app
Area from app (ft ²)	3294.00		
Depth of impacted soil		0.50 in	
Soil Type		Caliche	
Spilled Material	į.	Produced Water	
Soil Saturation	Moist - some color cha	ange; little to no moistu	re left on hands
Volume of Spill In Soil		5.99	bbls
Rolentestoilmakintente/2025	8:34:22 AM	5.99	bbls ·

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

QUESTIONS

Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116 Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr.		QUESTIONS	
		Action 49693	
	Santa Fe, NM 87	505	
	Santa Fe, NIVI 87	505	
Operator: DEVON ENERGY PRODUCTION	QUESTIONS	OGRID: 6137	
Operator: DEVON ENERGY PRODUCTION 333 West Sheridan Ave. Oklahoma City, OK 73102	QUESTIONS	OGRID:	

Prerequisites	
Incident ID (n#)	nAPP252252572
Incident Name	NAPP2522525572 PAPAS FRITAS 27 CTB 2 @ 0
Incident Type	Produced Water Release
Incident Status	Initial C-141 Received
Incident Facility	[fAPP2123649109] PAPAS FRITAS 27 CTB 2

Location of Release Source		
Please answer all the questions in this group.		
Site Name	PAPAS FRITAS 27 CTB 2	
Date Release Discovered	08/12/2025	
Surface Owner	Federal	

ncident Details		
Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release	
Material(s) released, please answer all that apply below. Any calculations or specific justifications fo	or the volumes provided should be attached to the follow-up C-141 submission.
Crude Oil Released (bbls) Details	Not answered.
Produced Water Released (bbls) Details	Cause: Corrosion Dump Line Produced Water Released: 6 BBL Recovered: 5 BBL Lost: 1 BBL.
Is the concentration of chloride in the produced water >10,000 mg/l	Yes
Condensate Released (bbls) Details	Not answered.
Natural Gas Vented (Mcf) Details	Not answered.
Natural Gas Flared (Mcf) Details	Not answered.
Other Released Details	Not answered.
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole leak on water line of separator allowed release to pad surface.

Initial Response

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

Phone: (505) 476-3441	State of	of New Mexico	QUESTIONS, Page 2
eived by OCD: 8/19/2025 6:57 Sante Fe Main Office Phone: (505) 476-3441 General Information Phone: (505) 629-6116	Energy, Minerals	and Natural Resources	Action 49693:
Online Phone Directory	Oil Cons	ervation Division	
https://www.emnrd.nm.gov/ocd/contact-us	1220 S	St Francis Dr.	
	Santa	Fe, NM 87505	
	OUEST	ONS (continued)	
Operator: DEVON ENERGY PRODUCTION		OGRID: 6137	
333 West Sheridan Ave. Oklahoma City, OK 73102	SOWI ANT, LI	Action Number: 496933	
·		Action Type: [C-141] Initial C-141 (C-141-v-Initial)
QUESTIONS			
Nature and Volume of Release (continued	i)		
Is this a gas only submission (i.e. only s	ignificant Mcf values reported)	No, according to supplied volumes this does not appear to	be a "gas only" report.
Was this a major release as defined by \$	Subsection A of 19.15.29.7 NMAC	No	

With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e. gas only) are to be submitted on the C-129 form.

The respondible party must undertake the remaining detache minimediately amount of each of earlier material and resource in myary.			
The source of the release has been stopped	True		
The impacted area has been secured to protect human health and the environment	True		
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True		
All free liquids and recoverable materials have been removed and managed appropriately	True		
If all the actions described above have not been undertaken, explain why	Not answered.		
Per Paragraph (4) of Subsection B of 19.15.29.8 NMAC the responsible party may commence remediation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of actions to date in the follow-up C-141 submission. If remedial efforts have been successfully completed or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of Subsection A of 19.15.29.11 NMAC), please prepare and attach all information needed for closure evaluation in the follow-up C-141 submission.			
I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.			
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com Date: 08/19/2025		

storage site

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

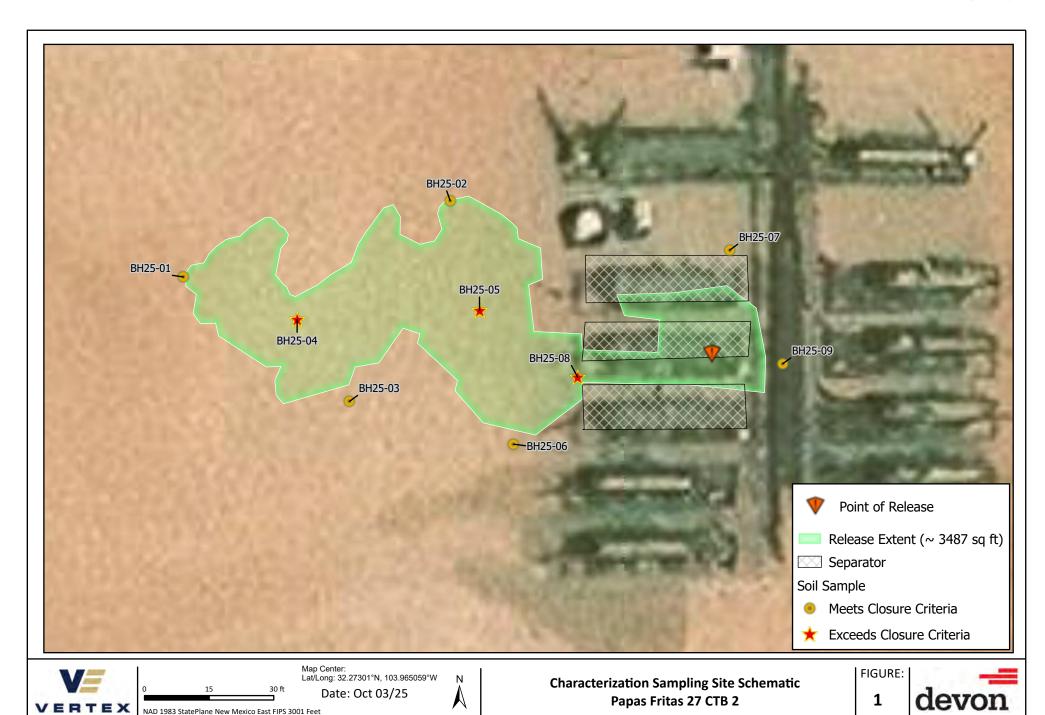
Action 496933

Page 4 of Received by OCD: 11/3/2025 12:50:42 PM

Sante Fe Main Office State C	of New Mexico	QUESTIONS, Pag
Phone: (505) 629-6116 Energy, Minerals	s and Natural Resources	Action 4969
Online Phone Directory Oil Conse	ervation Division	
https://www.emnrd.nm.gov/ocd/contact-us 1220 S	. St Francis Dr.	
Santa	Fe, NM 87505	
QUESTI	ONS (continued)	
Operator:	OGRID:	
DEVON ENERGY PRODUCTION COMPANY, LP 333 West Sheridan Ave.	6137 Action Number:	
Oklahoma City, OK 73102	496933	
	Action Type: [C-141] Initial C-141 (C-	141-v-Initial)
QUESTIONS	[o · · ·] midal o · · · · (o	TTT T IIIICAT)
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Not answered.	
What method was used to determine the depth to ground water	Not answered.	
Did this release impact groundwater or surface water	Not answered.	
What is the minimum distance, between the closest lateral extents of the release an	nd the following surface areas:	
A continuously flowing watercourse or any other significant watercourse	Not answered.	
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Not answered.	
An occupied permanent residence, school, hospital, institution, or church	Not answered.	
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Not answered.	
Any other fresh water well or spring	Not answered.	
Incorporated municipal boundaries or a defined municipal fresh water well field	Not answered.	
A wetland	Not answered.	
A subsurface mine	Not answered.	
An (non-karst) unstable area	Not answered.	
Categorize the risk of this well / site being in a karst geology	Not answered.	
A 100-year floodplain	Not answered.	
Did the release impact areas not on an exploration, development, production, or		

Remediation Plan Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date. Requesting a remediation plan approval with this submission The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

Not answered.


State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. **Santa Fe, NM 87505**

CONDITIONS

Sante Fe Main Office Phone: (505) 476-3441	State of New Mexico	o	CONDITIONS
General Information Phone: (505) 629-6116	Energy, Minerals and Natural	Resources	Action 49693
Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us	Oil Conservation Divis 1220 S. St Francis D		
	Santa Fe, NM 87505		
			
Operator: DEVON ENERGY PRODUCTIO	Santa Fe, NM 87505		
Operator: DEVON ENERGY PRODUCTIO 333 West Sheridan Ave. Oklahoma City, OK 73102	Santa Fe, NM 87505	OGRID:	

Created By	Condition	Condition Date
scott.rodgers	None	8/19/2025

ATTACHMENT 2

Geospatial data presented in this figure may be derived from external sources and Vertex does not assume any liability for inaccuracies. This figure is intended for reference use only and is not certified for legal, survey or engineering purposes.

Note: Georeferenced image from Esri, 2025. Site features from GPS, Vertex, 2025.

ATTACHMENT 3

Client Name: Devon Energy Production Company, LP

Site Name: Papas Fritas 27 CTB 2 NMOCD Tracking #: nAPP2522525572

Project #: 25A-04562

Lab Reports: 885-31491, 885-33327, and 885-33641

		Table 2. Initial Cl	naracteriza	tion Labor	atory Resu	lts - Depth	to Ground	water <50	feet bgs			
	Sample Des	cription	Field Sc	reening			Petrole	um Hydroc	arbons			
					Vol	atile			Extractable			Inorganic
Sample ID	Depth (ft)	Sample Date	Extractable Organic Compounds (PetroFlag)	Chloride Concentration	Benzene	BTEX (Total)	Gasoline Range Organics (GRO)	Diesel Range Organics (DRO)	Motor Oil Range Organics (MRO)	(GRO + DRO)	Total Petroleum Hydrocarbons (TPH)	Chloride Concentration
			(ppm)	(ppm)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)	(mg/kg)
					roundwater	<50 feet bg	,					
BH25-01	0	August 19, 2025	7	152	ND	ND	ND	ND	ND	ND	ND	ND
525 01	1.5	September 12, 2025	40	0	ND	ND	ND	ND	ND	ND	ND	ND
BH25-02	0	August 19, 2025	7	85	ND	ND	ND	ND	ND	ND	ND	74
	1.5	September 12, 2025	21	120	ND	ND	ND	ND	ND	ND	ND	100
BH25-03	0	August 19, 2025	7	0	ND	ND	ND	ND	ND	ND	ND	ND
	1.5	September 12, 2025	32	0	ND	ND	ND	ND	ND	ND	ND	ND
	0	September 16, 2025	15	6,740	ND	ND	ND	ND	ND	ND	ND	6300
BH25-04	1	September 17, 2025	-	6,263	-	-	-	-	-	-	-	-
5.125 0 1	2	September 17, 2025	-	6,675	ND	ND	ND	ND	ND	ND	ND	5900
	3	September 17, 2025	19	4,612	ND	ND	ND	ND	ND	ND	ND	5200
	0	September 16, 2025	28	7,225	ND	ND	ND	ND	ND	ND	ND	7400
BH25-05	1	September 17, 2025	-	5,071	-	-		-	-		-	-
B1123 03	2	September 17, 2025	-	6,112	ND	ND	ND	ND	ND	ND	ND	5700
	3	September 17, 2025	23	4,710	ND	ND	ND	ND	ND	ND	ND	6100
BH25-06	0	September 16, 2025	14	0	ND	ND	ND	ND	ND	ND	ND	ND
B1123 00	2	September 17, 2025	13	0	ND	ND	ND	ND	ND	ND	ND	380
BH25-07	0	September 16, 2025	13	303	ND	ND	ND	ND	ND	ND	ND	230
DI 123-07	2	September 17, 2025	14	0	ND	ND	ND	ND	ND	ND	ND	470
	0	September 16, 2025	23	4,767	ND	ND	ND	ND	ND	ND	ND	7000
BH25-08	2	September 17, 2025	30	2,730	ND	ND	ND	ND	ND	ND	ND	6500
BHZ3-00	3	September 17, 2025	-	3,114	-	-	-	-	-	-	-	-
	4	September 17, 2025	12	2,850	ND	ND	ND	ND	ND	ND	ND	6200
BH25-09	0	September 16, 2025	16	0	ND	ND	ND	ND	ND	ND	ND	120
PU52-03	2	September 17, 2025	15	0	ND	ND	ND	ND	ND	ND	ND	130

[&]quot;ND" Not Detected at the Reporting Limit

Bold and gray shaded indicates exceedance outside of NMOCD Remediation Closure Criteria

[&]quot;-" indicates not analyzed/assessed

ATTACHMENT 4

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Ms. Sally Carttar Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 9/29/2025 10:21:09 AM Revision 1

JOB DESCRIPTION

Papas Fritas 27 CTB 2

JOB NUMBER

885-31491-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 9/29/2025 10:21:09 AM Revision 1

Authorized for release by Jackie Bolte, Project Manager jackie.bolte@et.eurofinsus.com Designee for Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 3

5

7

10

44

Client: Vertex

Laboratory Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	17

Definitions/Glossary

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Glossary

Abbreviation

These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

Percent Recovery

CFL Contains Free Liquid
CFU Colony Forming Unit
CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

EDL Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

NEG Negative / Absent
POS Positive / Present

PQL Practical Quantitation Limit

PRES Presumptive QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Eurofins Albuquerque

1

3

4

5

6

9

10

11

Case Narrative

Client: Vertex Job ID: 885-31491-1

Project: Papas Fritas 27 CTB 2

Job ID: 885-31491-1 **Eurofins Albuquerque**

> Job Narrative 885-31491-1

REVISION

The report being provided is a revision of the original report sent on 8/28/2025. The report (revision 1) is being revised due to Samples changed to BH25 instead of BS25.

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when sitespecific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
 - For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 8/21/2025 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 3.0°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client Sample Results

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-01 at 0ft

Lab Sample ID: 885-31491-1 Date Collected: 08/19/25 08:30 **Matrix: Solid**

Date Received: 08/21/25 07:45

Method: SW846 8015M/D -	Gasoline Rang	ge Organic	s (GRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		08/21/25 14:00	08/23/25 01:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		15 - 150			08/21/25 14:00	08/23/25 01:53	1

Method: SW846 8021B - Vo	olatile Organic Comp	oounds (GC)					
Analyte	Result Qualit	fier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND ND	0.025	mg/Kg		08/21/25 14:00	08/23/25 01:53	1
Ethylbenzene	ND	0.050	mg/Kg		08/21/25 14:00	08/23/25 01:53	1
Toluene	ND	0.050	mg/Kg		08/21/25 14:00	08/23/25 01:53	1
Xylenes, Total	ND	0.10	mg/Kg		08/21/25 14:00	08/23/25 01:53	1
Surrogate	%Recovery Quality	fier Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	86	15 - 150			08/21/25 14:00	08/23/25 01:53	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.1	mg/Kg		08/26/25 12:37	08/27/25 12:46	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		08/26/25 12:37	08/27/25 12:46	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	119		62 - 134			08/26/25 12:37	08/27/25 12:46	1

Method: EPA 300.0 - Anions, Id	on Chromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	50	mg/Kg		08/22/25 07:02	08/22/25 09:58	10

Client Sample Results

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Released to Imaging: 11/19/2025 2:47:42 PM

Client Sample ID: BH25-02 at 0ft

Lab Sample ID: 885-31491-2 Date Collected: 08/19/25 09:00

Matrix: Solid Date Received: 08/21/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		08/21/25 14:00	08/23/25 03:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			08/21/25 14:00	08/23/25 03:04	1
Method: SW846 8021B - Volat	tile Organic	Compound	ds (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		08/21/25 14:00	08/23/25 03:04	1
Ethylbenzene	ND		0.050	mg/Kg		08/21/25 14:00	08/23/25 03:04	1
Toluene	ND		0.050	mg/Kg		08/21/25 14:00	08/23/25 03:04	1
Xylenes, Total	ND		0.099	mg/Kg		08/21/25 14:00	08/23/25 03:04	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		15 - 150			08/21/25 14:00	08/23/25 03:04	1
Method: SW846 8015M/D - Die	esel Range (Organics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
-			9.7	mg/Kg		08/26/25 12:37	08/27/25 12:57	1
	ND		5.1	5 5				
Diesel Range Organics [C10-C28]	ND ND		49	mg/Kg		08/26/25 12:37	08/27/25 12:57	1
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate		Qualifier		0 0		08/26/25 12:37 Prepared	08/27/25 12:57 Analyzed	Dil Fac
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40]	ND	Qualifier	49	0 0				1 Dil Fac
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate	ND **Recovery 93		49 Limits	0 0		Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28] Motor Oil Range Organics [C28-C40] Surrogate Di-n-octyl phthalate (Surr)	%Recovery 93		49 Limits	0 0	D	Prepared	Analyzed	Dil Fac

Client Sample Results

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-03 at 0ft

Lab Sample ID: 885-31491-3 Date Collected: 08/19/25 08:08

Matrix: Solid Date Received: 08/21/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		4.9	mg/Kg		08/21/25 14:00	08/23/25 04:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		15 - 150			08/21/25 14:00	08/23/25 04:16	1
Method: SW846 8021B - Volat	ile Organic	Compound	ds (GC)					
Analyte	_	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		08/21/25 14:00	08/23/25 04:16	1
Ethylbenzene	ND		0.049	mg/Kg		08/21/25 14:00	08/23/25 04:16	1
Toluene	ND		0.049	mg/Kg		08/21/25 14:00	08/23/25 04:16	1
Xylenes, Total	ND		0.099	mg/Kg		08/21/25 14:00	08/23/25 04:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	87		15 - 150			08/21/25 14:00	08/23/25 04:16	1
Method: SW846 8015M/D - Die	esel Range (Organics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		08/26/25 12:37	08/27/25 13:08	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		08/26/25 12:37	08/27/25 13:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	92		62 - 134			08/26/25 12:37	08/27/25 13:08	1
Method: EPA 300.0 - Anions, I	on Chromat	tography						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND		50	mg/Kg		08/22/25 07:02	08/22/25 11:27	10

Dil Fac

Dil Fac

Client: Vertex Job ID: 885-31491-1

RL

5.0

Unit

mg/Kg

D

Prepared

Prepared

%Rec

88

D

Project/Site: Papas Fritas 27 CTB 2

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-32942/1-A **Matrix: Solid**

Analysis Batch: 33040

Result Qualifier Analyte Gasoline Range Organics

(GRO)-C6-C10 %Recovery

Surrogate 4-Bromofluorobenzene (Surr)

Lab Sample ID: LCS 885-32942/2-A **Matrix: Solid**

Analysis Batch: 33040

Gasoline Range Organics (GRO)-C6-C10

Analyte

Surrogate 4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-31491-1 MS

Matrix: Solid

Analysis Batch: 33040

Analyte Gasoline Range Organics

Surrogate

(GRO)-C6-C10

Matrix: Solid

(GRO)-C6-C10

Analyte

Analyte

Benzene

Toluene

Ethylbenzene

4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-31491-1 MSD

Analysis Batch: 33040

Surrogate 4-Bromofluorobenzene (Surr)

Gasoline Range Organics

Matrix: Solid

Analysis Batch: 33039

MB MB

MB MB

90

LCS LCS %Recovery Qualifier

Sample Sample

MS MS

Sample Sample

MSD MSD

%Recovery Qualifier

192

 $\overline{\mathsf{ND}}$

Result Qualifier

Qualifier

ND

173

%Recovery

Result Qualifier

185

ND

Qualifier Limits 15 - 150

Spike

Added

25.0

LCS LCS Result Qualifier 22.0

I imite 15 - 150

Spike

Added

Limits

15 - 150

Spike

Added

24.9

25.0

MS MS Result Qualifier

18.7

MSD MSD

Result Qualifier

Unit mg/Kg

Unit

Unit

mg/Kg

mg/Kg

mg/Kg

mg/Kg

Unit

mg/Kg

75

D

%Rec

91

%Rec D

Limits

70 - 130

%Rec

Client Sample ID: Method Blank

08/21/25 14:00 08/23/25 01:29

08/21/25 14:00 08/23/25 01:29

Client Sample ID: Lab Control Sample

Limits

70 - 130

Client Sample ID: BH25-01 at 0ft

Analyzed

Analyzed

Prep Type: Total/NA

Prep Type: Total/NA

Prep Batch: 32942

Prep Batch: 32942

Prep Type: Total/NA

Prep Batch: 32942

Client Sample ID: BH25-01 at 0ft **Prep Type: Total/NA**

Prep Batch: 32942

%Rec **RPD** Limits RPD Limit

70 - 130 19 20

Limits 15 - 150

22.7

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-32942/1-A

MB MB

ND

Result Qualifier RL ND 0.025 ND 0.050

0.050

Prepared 08/21/25 14:00 08/23/25 01:29

08/21/25 14:00 08/23/25 01:29 08/21/25 14:00 08/23/25 01:29

Analyzed

Client Sample ID: Method Blank

Eurofins Albuquerque

Prep Type: Total/NA

Prep Batch: 32942

Dil Fac

Page 9 of 17

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-32942/1-A **Matrix: Solid**

Analysis Batch: 33039

MB MB

Client Sample ID: Method Blank **Prep Type: Total/NA**

Prep Batch: 32942

Analyte Result Qualifier RL Unit Prepared Analyzed Dil Fac Xylenes, Total ND 0.10 mg/Kg 08/21/25 14:00 08/23/25 01:29

MR MR

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 86 15 - 150 08/21/25 14:00 08/23/25 01:29

Client Sample ID: Lab Control Sample

Lab Sample ID: LCS 885-32942/3-A **Matrix: Solid**

Analysis Batch: 33039

onent cample ib.	Lab Control Cample
	Prep Type: Total/NA
	Prep Batch: 32942

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit %Rec Limits Benzene 1.00 0.976 mg/Kg 70 - 130 98 Ethylbenzene 1.00 0.926 mg/Kg 93 70 - 130 m-Xylene & p-Xylene 2.00 1.95 mg/Kg 97 70 - 130 o-Xylene 1.00 0.929 mg/Kg 93 70 - 130 Toluene 1.00 0.952 95 70 - 130 mg/Kg

LCS LCS

%Recovery Qualifier Surrogate Limits 4-Bromofluorobenzene (Surr) 15 - 150 89

Lab Sample ID: 885-31491-2 MS

Matrix: Solid

Analysis Batch: 33039

Client Sample ID: BH25-02 at 0f	(Client	Sampl	e ID:	BH25-02	at Off
---------------------------------	---	--------	-------	-------	---------	--------

Prep Type: Total/NA

Prep Batch: 32942

Sample Sample Spike MS MS %Rec **Analyte** Result Qualifier Added Result Qualifier %Rec Limits Unit Benzene ND 0.995 1.01 mg/Kg 102 70 - 130 Ethylbenzene ND 0.995 1.01 101 70 - 130 mg/Kg ND m-Xylene & p-Xylene 1.99 2.10 mg/Kg 105 70 - 130o-Xylene ND 0.995 1.02 mg/Kg 103 70 - 130Toluene ND 0.995 1 02 mg/Kg 102 70 - 130

MS MS

Qualifier Limits Surrogate %Recovery 4-Bromofluorobenzene (Surr) 88 15 - 150

Lab Sample ID: 885-31491-2 MSD

Matrix: Solid

Analysis Batch: 33039

Client Sample ID: BH25-02 at 0ft

Prep Type: Total/NA Prep Batch: 32942

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.996	1.04		mg/Kg		104	70 - 130	3	20
Ethylbenzene	ND		0.996	1.00		mg/Kg		101	70 - 130	0	20
m-Xylene & p-Xylene	ND		1.99	2.11		mg/Kg		106	70 - 130	1	20
o-Xylene	ND		0.996	1.01		mg/Kg		101	70 - 130	1	20
Toluene	ND		0.996	1.01		mg/Kg		101	70 - 130	1	20

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 91 15 - 150

Eurofins Albuquerque

Released to Imaging: 11/19/2025 2:47:42 PM

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-33229/1-A **Matrix: Solid**

Lab Sample ID: LCS 885-33229/2-A

Analysis Batch: 33306

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 33229

MB MB Result Qualifier RL Unit D Analyzed Dil Fac Analyte Prepared Diesel Range Organics [C10-C28] ND 10 mg/Kg 08/26/25 12:37 08/27/25 10:03 Motor Oil Range Organics [C28-C40] ND 50 mg/Kg 08/26/25 12:37 08/27/25 10:03

MB MB

Surrogate %Recovery Qualifier I imite Prepared Analyzed Dil Fac Di-n-octyl phthalate (Surr) 94 62 - 134 08/26/25 12:37 08/27/25 10:03

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 33229

Prep Batch: 32975

Prep Batch: 32975

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: BH25-01 at 0ft

Spike LCS LCS %Rec Added Limits Result Qualifier Unit %Rec Analyte D 50.0 **Diesel Range Organics** 48.5 mg/Kg 97 51 - 148

[C10-C28]

Matrix: Solid

Analysis Batch: 33306

LCS LCS

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 102 62 - 134

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-32975/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid

Analysis Batch: 32973

MB MB

RL Analyzed Dil Fac Analyte Result Qualifier Unit D Prepared 5.0 08/22/25 07:02 08/22/25 08:03 Chloride ND mg/Kg

Lab Sample ID: LCS 885-32975/2-A **Client Sample ID: Lab Control Sample Matrix: Solid Prep Type: Total/NA**

Analysis Batch: 32973

Spike LCS LCS %Rec Added Limits Analyte Result Qualifier Unit D %Rec

Chloride 50.3 47.5 94 90 - 110 mg/Kg

Lab Sample ID: 885-31491-1 MS

Matrix: Solid

Analysis Batch: 32973

Prep Batch: 32975 MS MS %Rec Sample Sample Spike Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits Chloride 50.2 53.4 mg/Kg 106 50 - 150

Lab Sample ID: 885-31491-1 MSD Client Sample ID: BH25-01 at 0ft

Matrix: Solid

Released to Imaging: 11/19/2025 2:47:42 PM

Analysis Batch: 32973 Prep Batch: 32975 %Rec RPD Sample Sample Spike MSD MSD Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Chloride ND 50.5 53.6 mg/Kg NC 50 - 150 n

QC Association Summary

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

GC VOA

Prep Batch: 32942

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-31491-1	BH25-01 at 0ft	Total/NA	Solid	5030C	
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	5030C	
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	5030C	
MB 885-32942/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-32942/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-32942/3-A	Lab Control Sample	Total/NA	Solid	5030C	
885-31491-1 MS	BH25-01 at 0ft	Total/NA	Solid	5030C	
885-31491-1 MSD	BH25-01 at 0ft	Total/NA	Solid	5030C	
885-31491-2 MS	BH25-02 at 0ft	Total/NA	Solid	5030C	
885-31491-2 MSD	BH25-02 at 0ft	Total/NA	Solid	5030C	

Analysis Batch: 33039

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-31491-1	BH25-01 at 0ft	Total/NA	Solid	8021B	32942
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	8021B	32942
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	8021B	32942
MB 885-32942/1-A	Method Blank	Total/NA	Solid	8021B	32942
LCS 885-32942/3-A	Lab Control Sample	Total/NA	Solid	8021B	32942
885-31491-2 MS	BH25-02 at 0ft	Total/NA	Solid	8021B	32942
885-31491-2 MSD	BH25-02 at 0ft	Total/NA	Solid	8021B	32942

Analysis Batch: 33040

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-31491-1	BH25-01 at 0ft	Total/NA	Solid	8015M/D	32942
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	8015M/D	32942
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	8015M/D	32942
MB 885-32942/1-A	Method Blank	Total/NA	Solid	8015M/D	32942
LCS 885-32942/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	32942
885-31491-1 MS	BH25-01 at 0ft	Total/NA	Solid	8015M/D	32942
885-31491-1 MSD	BH25-01 at 0ft	Total/NA	Solid	8015M/D	32942

GC Semi VOA

Prep Batch: 33229

Lab Sample ID 885-31491-1	Client Sample ID BH25-01 at 0ft	Prep Type Total/NA	Matrix Solid	Method SHAKE	Prep Batch
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	SHAKE	
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	SHAKE	
MB 885-33229/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-33229/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Analysis Batch: 33306

Lab Sample ID 885-31491-1	Client Sample ID BH25-01 at 0ft	Prep Type Total/NA	Matrix Solid	Method 8015M/D	Prep Batch 33229
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	8015M/D	33229
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	8015M/D	33229
MB 885-33229/1-A	Method Blank	Total/NA	Solid	8015M/D	33229
LCS 885-33229/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	33229

QC Association Summary

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

HPLC/IC

Analysis Batch: 32973

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-31491-1	BH25-01 at 0ft	Total/NA	Solid	300.0	32975
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	300.0	32975
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	300.0	32975
MB 885-32975/1-A	Method Blank	Total/NA	Solid	300.0	32975
LCS 885-32975/2-A	Lab Control Sample	Total/NA	Solid	300.0	32975
885-31491-1 MS	BH25-01 at 0ft	Total/NA	Solid	300.0	32975
885-31491-1 MSD	BH25-01 at 0ft	Total/NA	Solid	300.0	32975

Prep Batch: 32975

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-31491-1	BH25-01 at 0ft	Total/NA	Solid	300_Prep	
885-31491-2	BH25-02 at 0ft	Total/NA	Solid	300_Prep	
885-31491-3	BH25-03 at 0ft	Total/NA	Solid	300_Prep	
MB 885-32975/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-32975/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-31491-1 MS	BH25-01 at 0ft	Total/NA	Solid	300_Prep	
885-31491-1 MSD	BH25-01 at 0ft	Total/NA	Solid	300 Prep	

Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Client: Vertex

Client Sample ID: BH25-01 at 0ft

Date Collected: 08/19/25 08:30

Date Received: 08/21/25 07:45

Lab Sample ID: 885-31491-1

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8015M/D		1	33040	JP	EET ALB	08/23/25 01:53
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8021B		1	33039	JP	EET ALB	08/23/25 01:53
Total/NA	Prep	SHAKE			33229	BZR	EET ALB	08/26/25 12:37
Total/NA	Analysis	8015M/D		1	33306	DR	EET ALB	08/27/25 12:46
Total/NA	Prep	300_Prep			32975	RC	EET ALB	08/22/25 07:02
Total/NA	Analysis	300.0		10	32973	RC	EET ALB	08/22/25 09:58

Lab Sample ID: 885-31491-2 Client Sample ID: BH25-02 at 0ft

Date Collected: 08/19/25 09:00

Date Received: 08/21/25 07:45

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8015M/D		1	33040	JP	EET ALB	08/23/25 03:04
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8021B		1	33039	JP	EET ALB	08/23/25 03:04
Total/NA	Prep	SHAKE			33229	BZR	EET ALB	08/26/25 12:37
Total/NA	Analysis	8015M/D		1	33306	DR	EET ALB	08/27/25 12:57
Total/NA	Prep	300_Prep			32975	RC	EET ALB	08/22/25 07:02
Total/NA	Analysis	300.0		10	32973	RC	EET ALB	08/22/25 10:09

Client Sample ID: BH25-03 at 0ft

Date Collected: 08/19/25 08:08

Date Received: 08/21/25 07:45

Lab Sample ID: 885-31491-3

Matrix: Solid

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8015M/D		1	33040	JP	EET ALB	08/23/25 04:16
Total/NA	Prep	5030C			32942	KLS	EET ALB	08/21/25 14:00
Total/NA	Analysis	8021B		1	33039	JP	EET ALB	08/23/25 04:16
Total/NA	Prep	SHAKE			33229	BZR	EET ALB	08/26/25 12:37
Total/NA	Analysis	8015M/D		1	33306	DR	EET ALB	08/27/25 13:08
Total/NA	Prep	300_Prep			32975	RC	EET ALB	08/22/25 07:02
Total/NA	Analysis	300.0		10	32973	RC	EET ALB	08/22/25 11:27

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Vertex Job ID: 885-31491-1

Project/Site: Papas Fritas 27 CTB 2

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority New Mexico		ram	Identification Number	Expiration Date 02-27-26			
			NM9425, NM0901				
The following analytes	s are included in this rep	ort, but the laboratory is r	not certified by the governing authori	ty. This list may include analytes			
for which the agency	does not offer certificatio	n.					
Analysis Method	Prep Method	Matrix	Analyte				
300.0	300_Prep	Solid	Chloride				
8015M/D	5030C	Solid	Gasoline Range Organics (GRO)-C6-C10				
8015M/D	SHAKE	Solid	Diesel Range Organics [C10-C28]				
8015M/D	SHAKE	Solid	Motor Oil Range Organic	s [C28-C40]			
8021B	5030C	Solid	Benzene				
8021B	5030C	Solid	Ethylbenzene				
8021B	5030C	Solid	Toluene				
8021B	5030C	Solid	Xylenes, Total				
egon	NELA	ND.	NM100001	09-23-25			

1

-

_

5

7

0

9

10

	P
	ag
	6
	S
	0
	of
-	-
	62
	~

Client:			Istody Record Devon Energy, Jim Raley)	Turn-Around						н	AL	L	ΕN	1V:	IR	ON	IMF		
			Devon Energy, Jim Raley)		X Stand	dard V Rush 50	Zin											110	XXII
Mailing Address: 3101 Boyd Dr			Project Name:			ANALYSIS LABOR www.hallenvironmental.com													
		Carlsba	d, New Mexico 88220	Papas Fritas 27 CTB 2			4901 Hawkins NE - Albuquerque, NM 871									885-31491 COC			
				Project #:				T	el. 50	05-34	15-39	975	F	ax	505-	-345-	4107		
Phone	#:		575.725.5001	25A-04562	Work Order (2	1666767)													
email o	r Fax#:			Project Manager:									4			£			
QA/QC	Package:			Sally Carttar		(8021)	1RO	S		S	1	SO4			sent				
□ Stan	dard		☐ Level 4 (Full Validation)	SCarttar@v	ertexresource.c	<u>com</u>	s (8(1	PCB's		SIM		PO4,			VAb			
Accredi	tation:	□ Az Co	ompliance	Sampler: Sharon Minnix			TMB	/ DRO / MRO))82 F	7	8270SIMS		NO ₂ ,			sen			
□ NEL		□ Othe	r	On Ice:	IA	□ No Aloka		000)8/s	504.		S			(AC	(Pre			
□ EDD	(Type)_			# of Coolers		The same of the sa	MTBE	9	cide	po po	310	etal	NO ₃ ,		j-V	E			
				Cooler Tem	P(including CF): 3.2	-0.2=30-0		1150	esti	/leth	3y 8	× 8	Br,	VO	Sem	olifc			
Date	Time	Matrix	Sample Name	Container Type and #	Preservative Type	HEAL No.	À	TPH:8015D(GRO	8081 Pesticides/8082	EDB (Method 504.1)	PAHs by 8310 or	RCRA 8 Metals		8260 (VOA)	8270 (Semi-VOA)	Total Coliform (Present/Absent)			
8.19.25	8:30	Soil	BS25-01 at 0ft	1, 4oz jar	ICE		X	X	80	Ш	-	Œ	X	∞	80	-		+	\forall
8.19.25	9:00	Soil	BS25-02 at 0ft	1, 4oz jar	ICE		X	X					X			H			
8.19.25	8:00	Soil	BS25-03 at 0ft	1, 4oz jar	ICE		x	х					X						П
						-													
			/																
Date:	Time:	Relinquish	/ ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` ` `	Received by:	Via:	Date Time	1		s: W										ect Bill
20/06	1000	1	mus	acun	min	p/30/32 1000									CC	: Ker	nt Stal	ings	
Date:	Time:	Rélinquish	ned by:	Received by:	ViaCouncy	Date Time: 45			igs@ i@ve						d Sh	haron	Minn	ix	
20 25	LAD MALLE		Permian@vertexresource.com, and Sharon Minni (Sminnix@vertexresource.com) for final report.																

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-31491-1

List Source: Eurofins Albuquerque Login Number: 31491

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>N/A</td> <td></td>	N/A	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Eurofins Albuquerque

Released to Imaging: 11/19/2025 2:47:42 PM

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Kent Stallings Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 9/24/2025 2:20:06 PM

JOB DESCRIPTION

Papas Fritas 27 CTB 2

JOB NUMBER

885-33327-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 9/24/2025 2:20:06 PM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 _

3

4

6

Ω Ω

9

111

Client: Vertex Laboratory Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	9
QC Association Summary	12
Lab Chronicle	14
Certification Summary	15
Chain of Custody	16
Receipt Checklists	17

3

4

6

8

9

10

Definitions/Glossary

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Glossary

EDL

Abbreviation	These commonly used abbreviations may or may not be present in this report.
\$	Listed under the "D" column to designate that the result is reported on a dry weight basis
%R	Percent Recovery
CFL	Contains Free Liquid
CFU	Colony Forming Unit
CNF	Contains No Free Liquid
DER	Duplicate Error Ratio (normalized absolute difference)

Dil Fac Dilution Factor

DL Detection Limit (DoD/DOE)

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin)

LOD Limit of Detection (DoD/DOE)

LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level"

MDA Minimum Detectable Activity (Radiochemistry)

MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit

MDL Method Detection Limit
ML Minimum Level (Dioxin)
MPN Most Probable Number
MQL Method Quantitation Limit

NC Not Calculated

ND Not Detected at the reporting limit (or MDL or EDL if shown)

 NEG
 Negative / Absent

 POS
 Positive / Present

 PQL
 Practical Quantitation Limit

PRES Presumptive
QC Quality Control

RER Relative Error Ratio (Radiochemistry)

RL Reporting Limit or Requested Limit (Radiochemistry)

RPD Relative Percent Difference, a measure of the relative difference between two points

TEF Toxicity Equivalent Factor (Dioxin)
TEQ Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 885-33327-1

Project: Papas Fritas 27 CTB 2

Job ID: 885-33327-1 **Eurofins Albuquerque**

> Job Narrative 885-33327-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when sitespecific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 9/16/2025 7:55 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.1°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-01 1.5

Lab Sample ID: 885-33327-1 Date Collected: 09/12/25 11:00

Matrix: Solid

Date Received: 09/16/25 07:55

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		09/17/25 12:44	09/22/25 12:32	
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	94		15 - 150			09/17/25 12:44	09/22/25 12:32	
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.024	mg/Kg		09/17/25 12:44	09/22/25 12:32	
Ethylbenzene	ND		0.049	mg/Kg		09/17/25 12:44	09/22/25 12:32	,
Toluene	ND		0.049	mg/Kg		09/17/25 12:44	09/22/25 12:32	,
Xylenes, Total	ND		0.097	mg/Kg		09/17/25 12:44	09/22/25 12:32	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	102		15 - 150			09/17/25 12:44	09/22/25 12:32	
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.9	mg/Kg		09/18/25 15:11	09/19/25 15:49	-
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		09/18/25 15:11	09/19/25 15:49	,
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate (Surr)	96		62 - 134			09/18/25 15:11	09/19/25 15:49	

RL

50

Unit

mg/Kg

Prepared

09/18/25 09:14

Analyzed

09/18/25 13:26

Dil Fac

10

Result Qualifier

ND

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-02 1.5

Lab Sample ID: 885-33327-2

Date Collected: 09/12/25 12:00 Matrix: Solid Date Received: 09/16/25 07:55

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		4.9	mg/Kg		09/17/25 12:44	09/20/25 08:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	94		15 - 150			09/17/25 12:44	09/20/25 08:21	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/17/25 12:44	09/20/25 08:21	1
Ethylbenzene	ND		0.049	mg/Kg		09/17/25 12:44	09/20/25 08:21	1
Toluene	ND		0.049	mg/Kg		09/17/25 12:44	09/20/25 08:21	1
Xylenes, Total	ND		0.098	mg/Kg		09/17/25 12:44	09/20/25 08:21	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	102		15 - 150			09/17/25 12:44	09/20/25 08:21	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		09/18/25 15:11	09/19/25 16:00	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/18/25 15:11	09/19/25 16:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	99		62 - 134			09/18/25 15:11	09/19/25 16:00	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-03 1.5

Surrogate

4-Bromofluorobenzene (Surr)

Lab Sample ID: 885-33327-3

Analyzed

09/20/25 08:45

Prepared

09/17/25 12:44

Matrix: Solid

Date Collected: 09/12/25 13:00
Date Received: 09/16/25 07:55

%Recovery Qualifier

99

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	MD		4.8	mg/Kg		09/17/25 12:44	09/20/25 08:45	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		15 - 150			09/17/25 12:44	09/20/25 08:45	1
Method: SW846 8021B - Volati	le Organic Comp	ounds (GC)						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	
				O.I.I.			, <u>,</u>	Dil Fac
Benzene	ND	<u> </u>	0.024	mg/Kg		09/17/25 12:44	09/20/25 08:45	Dil Fac
	ND ND					09/17/25 12:44 09/17/25 12:44		1 1
Benzene Ethylbenzene Toluene		<u> </u>	0.024	mg/Kg			09/20/25 08:45	1 1 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		09/18/25 15:11	09/19/25 16:12	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		09/18/25 15:11	09/19/25 16:12	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	97		62 - 134			09/18/25 15:11	09/19/25 16:12	1

Limits

15 - 150

motilod. El A 000.0 Amono, ion o	in omatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	ND	49	mg/Kg		09/18/25 09:14	09/18/25 14:21	10

Eurofins Albuquerque

2

4

7

9

10

11

Dil Fac

Prep Batch: 34851

Prep Type: Total/NA

Client Sample ID: Lab Control Sample

70 - 130

Client Sample ID: Method Blank

Prep Type: Total/NA

94

Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-34851/1-A Client Sample ID: Method Blank Prep Type: Total/NA

Matrix: Solid Analysis Batch: 35101

MB MB Result Qualifier RL Unit D Prepared Analyzed Dil Fac ND 5.0 mg/Kg 09/17/25 12:44 09/20/25 00:50

mg/Kg

(GRO)-C6-C10

Gasoline Range Organics

Analyte

Client: Vertex

MB MB

%Recovery Limits Qualifier Prepared Dil Fac Surrogate Analyzed 09/17/25 12:44 15 - 150 09/20/25 00:50 4-Bromofluorobenzene (Surr) 98

Lab Sample ID: LCS 885-34851/2-A

Matrix: Solid

Analysis Batch: 35101 Prep Batch: 34851 Spike LCS LCS Analyte babbA Result Qualifier Limits Unit D %Rec

23.5

25.0

Gasoline Range Organics (GRO)-C6-C10

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 196 15 - 150

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-34851/1-A

Matrix: Solid

Analysis Batch: 35102 Prep Batch: 34851 мв мв Qualifier RL D Unit

Dil Fac Analyte Prepared Analyzed Result 0.025 Benzene ND mg/Kg 09/17/25 12:44 09/20/25 00:50 Ethylbenzene ND 0.050 09/17/25 12:44 09/20/25 00:50 mg/Kg Toluene ND 0.050 mg/Kg 09/17/25 12:44 09/20/25 00:50 Xylenes, Total ND 0.10 09/17/25 12:44 09/20/25 00:50 mg/Kg

мв мв

MB MB

Qualifier Limits Prepared Dil Fac Surrogate %Recovery Analyzed 4-Bromofluorobenzene (Surr) 103 15 - 150 09/17/25 12:44 09/20/25 00:50

Lab Sample ID: MB 885-34851/1-A

Matrix: Solid

Analysis Batch: 35162

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 34851

Analyte	Result (Qualifier RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.025	mg/Kg		09/17/25 12:44	09/22/25 13:19	1
Ethylbenzene	ND	0.050	mg/Kg		09/17/25 12:44	09/22/25 13:19	1
Toluene	ND	0.050	mg/Kg		09/17/25 12:44	09/22/25 13:19	1
Xylenes, Total	ND	0.10	mg/Kg		09/17/25 12:44	09/22/25 13:19	1

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 102 15 - 150 09/17/25 12:44 09/22/25 13:19

Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: LCS 885-34851/3-A **Client Sample ID: Lab Control Sample**

Matrix: Solid Analysis Batch: 35102

Client: Vertex

Prep Type: Total/NA Prep Batch: 34851

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	1.00	1.04		mg/Kg		104	70 - 130	
Ethylbenzene	1.00	1.04		mg/Kg		104	70 - 130	
m-Xylene & p-Xylene	2.00	2.05		mg/Kg		103	70 - 130	
o-Xylene	1.00	1.02		mg/Kg		102	70 - 130	
Toluene	1.00	1.04		mg/Kg		104	70 - 130	

LCS LCS

%Recovery Qualifier Limits Surrogate 15 - 150 4-Bromofluorobenzene (Surr) 104

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-34981/1-A Client Sample ID: Method Blank

Analysis Batch: 35013

Matrix: Solid Prep Type: Total/NA Analysis Batch: 35013 Prep Batch: 34981 мв мв

Analyte	Result C	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		10	mg/Kg		09/18/25 15:11	09/19/25 12:12	1
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		09/18/25 15:11	09/19/25 12:12	1
	MB N	ИВ						

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac Di-n-octyl phthalate (Surr) 84 62 - 134 09/18/25 15:11 09/19/25 12:12

Lab Sample ID: LCS 885-34981/2-A Client Sample ID: Lab Control Sample **Matrix: Solid** Prep Type: Total/NA

LCS LCS Spike %Rec Added Qualifier %Rec Result Unit

Analyte Limits 51 - 148 50.0 40.7 81 mg/Kg **Diesel Range Organics**

[C10-C28]

LCS LCS Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 85 62 - 134

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-34924/1-A Client Sample ID: Method Blank **Matrix: Solid** Prep Type: Total/NA

Analysis Batch: 34930 Prep Batch: 34924

MB MB Result Qualifier Analyte RL Unit Prepared Analyzed Dil Fac Chloride ND 4.9 09/18/25 09:14 09/18/25 10:29 mg/Kg

Lab Sample ID: LCS 885-34924/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 34930 Prep Batch: 34924 LCS LCS Spike %Rec

Analyte Added Result Qualifier Unit D %Rec Limits Chloride 49.8 48.4 97 90 - 110 mg/Kg

Eurofins Albuquerque

Prep Type: Total/NA

Prep Batch: 34981

QC Sample Results

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Prep Type: Total/NA

Prep Type: Total/NA

Client Sample ID: BH25-02 1.5

94

Method: 300.0 - Anions, Ion Chromatography (Continued)

Lab Sample ID: 885-33327-2 MS **Matrix: Solid**

Analysis Batch: 34930

Prep Batch: 34924 Sample Sample Spike MS MS Added Result Qualifier Result Qualifier Analyte Unit %Rec Limits

Chloride 100 50.7 149 mg/Kg 50 - 150 Lab Sample ID: 885-33327-2 MSD Client Sample ID: BH25-02 1.5

Matrix: Solid

Analysis Batch: 34930									Pre	p Batch:	34924
	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Chloride	100		50.0	157		mg/Kg		111	50 - 150	5	20

QC Association Summary

Client: Vertex

Job ID: 885-33327-1 Project/Site: Papas Fritas 27 CTB 2

GC VOA

Prep Batch: 34851

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	5030C	
885-33327-2	BH25-02 1.5	Total/NA	Solid	5030C	
885-33327-3	BH25-03 1.5	Total/NA	Solid	5030C	
MB 885-34851/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-34851/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-34851/3-A	Lab Control Sample	Total/NA	Solid	5030C	

Analysis Batch: 35101

Lab Sample ID 885-33327-2	Client Sample ID BH25-02 1.5	Prep Type Total/NA	Solid	Method 8015M/D	Prep Batch 34851
885-33327-3	BH25-03 1.5	Total/NA	Solid	8015M/D	34851
MB 885-34851/1-A	Method Blank	Total/NA	Solid	8015M/D	34851
LCS 885-34851/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	34851

Analysis Batch: 35102

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-2	BH25-02 1.5	Total/NA	Solid	8021B	34851
885-33327-3	BH25-03 1.5	Total/NA	Solid	8021B	34851
MB 885-34851/1-A	Method Blank	Total/NA	Solid	8021B	34851
LCS 885-34851/3-A	Lab Control Sample	Total/NA	Solid	8021B	34851

Analysis Batch: 35161

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	8015M/D	34851

Analysis Batch: 35162

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	8021B	34851
MB 885-34851/1-A	Method Blank	Total/NA	Solid	8021B	34851

GC Semi VOA

Prep Batch: 34981

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	SHAKE	
885-33327-2	BH25-02 1.5	Total/NA	Solid	SHAKE	
885-33327-3	BH25-03 1.5	Total/NA	Solid	SHAKE	
MB 885-34981/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-34981/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	

Analysis Batch: 35013

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	8015M/D	34981
885-33327-2	BH25-02 1.5	Total/NA	Solid	8015M/D	34981
885-33327-3	BH25-03 1.5	Total/NA	Solid	8015M/D	34981
MB 885-34981/1-A	Method Blank	Total/NA	Solid	8015M/D	34981
LCS 885-34981/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	34981

QC Association Summary

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

HPLC/IC

Prep Batch: 34924

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	300_Prep	
885-33327-2	BH25-02 1.5	Total/NA	Solid	300_Prep	
885-33327-3	BH25-03 1.5	Total/NA	Solid	300_Prep	
MB 885-34924/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-34924/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-33327-2 MS	BH25-02 1.5	Total/NA	Solid	300_Prep	
885-33327-2 MSD	BH25-02 1.5	Total/NA	Solid	300_Prep	

Analysis Batch: 34930

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33327-1	BH25-01 1.5	Total/NA	Solid	300.0	34924
885-33327-2	BH25-02 1.5	Total/NA	Solid	300.0	34924
885-33327-3	BH25-03 1.5	Total/NA	Solid	300.0	34924
MB 885-34924/1-A	Method Blank	Total/NA	Solid	300.0	34924
LCS 885-34924/2-A	Lab Control Sample	Total/NA	Solid	300.0	34924
885-33327-2 MS	BH25-02 1.5	Total/NA	Solid	300.0	34924
885-33327-2 MSD	BH25-02 1 5	Total/NA	Solid	300.0	34924

4

6

8

10

Client Sample ID: BH25-01 1.5

Lab Sample ID: 885-33327-1 Date Collected: 09/12/25 11:00

Matrix: Solid

Date Received: 09/16/25 07:55

Client: Vertex

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8015M/D		1	35161	AT	EET ALB	09/22/25 12:32
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8021B		1	35162	AT	EET ALB	09/22/25 12:32
Total/NA	Prep	SHAKE			34981	BZR	EET ALB	09/18/25 15:11
Total/NA	Analysis	8015M/D		1	35013	EM	EET ALB	09/19/25 15:49
Total/NA	Prep	300_Prep			34924	MA	EET ALB	09/18/25 09:14
Total/NA	Analysis	300.0		10	34930	RC	EET ALB	09/18/25 13:26

Client Sample ID: BH25-02 1.5

Lab Sample ID: 885-33327-2 Date Collected: 09/12/25 12:00

Matrix: Solid

Date Received: 09/16/25 07:55

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8015M/D		1	35101	KLS	EET ALB	09/20/25 08:21
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8021B		1	35102	TC1	EET ALB	09/20/25 08:21
Total/NA	Prep	SHAKE			34981	BZR	EET ALB	09/18/25 15:11
Total/NA	Analysis	8015M/D		1	35013	EM	EET ALB	09/19/25 16:00
Total/NA	Prep	300_Prep			34924	MA	EET ALB	09/18/25 09:14
Total/NA	Analysis	300.0		10	34930	RC	EET ALB	09/18/25 13:40

Client Sample ID: BH25-03 1.5

Date Collected: 09/12/25 13:00

Date Received: 09/16/25 07:55

Lab	Sample	ID:	885-33327-3
			Matrix: Solid

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8015M/D		1	35101	KLS	EET ALB	09/20/25 08:45
Total/NA	Prep	5030C			34851	JP	EET ALB	09/17/25 12:44
Total/NA	Analysis	8021B		1	35102	TC1	EET ALB	09/20/25 08:45
Total/NA	Prep	SHAKE			34981	BZR	EET ALB	09/18/25 15:11
Total/NA	Analysis	8015M/D		1	35013	EM	EET ALB	09/19/25 16:12
Total/NA	Prep	300_Prep			34924	MA	EET ALB	09/18/25 09:14
Total/NA	Analysis	300.0		10	34930	RC	EET ALB	09/18/25 14:21

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Vertex Job ID: 885-33327-1

Project/Site: Papas Fritas 27 CTB 2

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	Program		Expiration Date	
New Mexico	State		NM9425, NM0901	02-27-26	
0 ,	are included in this report, but oes not offer certification.	ut the laboratory is not certif	ied by the governing authority. This lis	t may include analytes	
Analysis Method	Prep Method	Matrix	Analyte		
300.0	300_Prep	Solid	Chloride		
8015M/D	5030C	Solid	Gasoline Range Organics	(GRO)-C6-C10	
8015M/D	SHAKE	Solid	Diesel Range Organics [C	10-C28]	
8015M/D	SHAKE	Solid	Motor Oil Range Organics	[C28-C40]	
8021B	5030C	Solid	Benzene		
8021B	5030C	Solid	Ethylbenzene		
8021B	5030C	Solid	Toluene		
8021B	5030C	Solid	Xylenes, Total		
Oregon	NELA	P	NM100001	02-26-26	

0

Remarks: Coche Coche!

ATTN: JIM RALEY

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Time

Received by:

Received by:

Via:

Via:

Relinguished b

Relinguished by:

Date:

Time:

Time:

200

Sally Cartar (SCARTTAR GUERTEX. CA)

CC: Kent Stallings (KSTALLINGS@VERTGX.CA)

885-33327 COC

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-33327-1

Login Number: 33327 List Source: Eurofins Albuquerque

List Number: 1

Creator: Casarrubias, Tracy

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
Is the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is <6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

Environment Testing

ANALYTICAL REPORT

PREPARED FOR

Attn: Mr. Kent Stallings Vertex 3101 Boyd Dr Carlsbad, New Mexico 88220

Generated 10/1/2025 11:47:59 AM

JOB DESCRIPTION

Papas Fritas 27 CTB 2

JOB NUMBER

885-33641-1

Eurofins Albuquerque 4901 Hawkins NE Albuquerque NM 87109

Eurofins Albuquerque

Job Notes

The test results in this report relate only to the samples as received by the laboratory and will meet all requirements of the methodology, with any exceptions noted. This report shall not be reproduced except in full, without the express written approval of the laboratory. All questions should be directed to the Eurofins Environment Testing South Central, LLC Project Manager.

Authorization

Generated 10/1/2025 11:47:59 AM

Authorized for release by Andy Freeman, Business Unit Manager andy.freeman@et.eurofinsus.com (505)345-3975 9

_

6

8

9

10

11

Released to Imaging: 11/19/2025 2:47:42 PM

Client: Vertex
Laboratory Job ID: 885-33641-1
Project/Site: Papas Fritas 27 CTB 2

T - 1. 1

Table of Contents

Cover Page	1
Table of Contents	3
Definitions/Glossary	4
Case Narrative	5
Client Sample Results	6
QC Sample Results	21
QC Association Summary	27
Lab Chronicle	31
Certification Summary	36
Chain of Custody	37
Receipt Checklists	39

2

2

3

4

6

8

9

Definitions/Glossary

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Qualifiers

GC VOA

Qualifier **Qualifier Description**

Surrogate recovery exceeds control limits, high biased.

HPLC/IC

Qualifier Qualifier Description

MS, MSD: The analyte present in the original sample is greater than 4 times the matrix spike concentration; therefore, control limits are not

applicable.

Glossary

Abbreviation These commonly used abbreviations may or may not be present in this report.

Listed under the "D" column to designate that the result is reported on a dry weight basis

%R Percent Recovery CFL Contains Free Liquid Colony Forming Unit CFU CNF Contains No Free Liquid

DER Duplicate Error Ratio (normalized absolute difference)

Dilution Factor Dil Fac

Detection Limit (DoD/DOE) DL

DL, RA, RE, IN Indicates a Dilution, Re-analysis, Re-extraction, or additional Initial metals/anion analysis of the sample

DLC Decision Level Concentration (Radiochemistry)

Estimated Detection Limit (Dioxin) FDI LOD Limit of Detection (DoD/DOE) LOQ Limit of Quantitation (DoD/DOE)

MCL EPA recommended "Maximum Contaminant Level" MDA Minimum Detectable Activity (Radiochemistry) MDC Minimum Detectable Concentration (Radiochemistry)

MDL Method Detection Limit Minimum Level (Dioxin) MI Most Probable Number MPN Method Quantitation Limit MQL

NC Not Calculated

Not Detected at the reporting limit (or MDL or EDL if shown) ND

NEG Negative / Absent POS Positive / Present PQL **Practical Quantitation Limit**

PRES Presumptive **Quality Control** OC

RER Relative Error Ratio (Radiochemistry)

Reporting Limit or Requested Limit (Radiochemistry) RL

RPD Relative Percent Difference, a measure of the relative difference between two points

TFF Toxicity Equivalent Factor (Dioxin) **TEQ** Toxicity Equivalent Quotient (Dioxin)

TNTC Too Numerous To Count

Case Narrative

Client: Vertex Job ID: 885-33641-1

Project: Papas Fritas 27 CTB 2

Job ID: 885-33641-1 Eurofins Albuquerque

Job Narrative 885-33641-1

The analytical test results presented in this report meet all requirements of the associated regulatory program listed on the Accreditation/Certification Summary Page, unless otherwise noted. Data qualifiers and/or narrative comments are included to explain any exceptions, if applicable. Regulated compliance samples (e.g. SDWA, NPDES) must comply with associated agency requirements/permits.

- Matrix-specific batch QC (e.g., MS, MSD, SD) may not be reported when insufficient sample volume is available or when site-specific QC samples are not submitted. In such cases, a Laboratory Control Sample Duplicate (LCSD) may be analyzed to provide precision data for the batch.
- For samples analyzed using surrogate and/or isotope dilution analytes, any recoveries falling outside of established acceptance criteria are re-prepared and/or re-analyzed to confirm results, unless the deviation is due to sample dilution or otherwise explained in the case narrative.

Receipt

The samples were received on 9/19/2025 7:45 AM. Unless otherwise noted below, the samples arrived in good condition, and, where required, properly preserved and on ice. The temperature of the cooler at receipt time was 0.7°C.

Gasoline Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

GC VOA

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Diesel Range Organics

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

HPLC/IC

No additional analytical or quality issues were noted, other than those described above or in the Definitions/ Glossary page.

Eurofins Albuquerque

2

3

4

5

0

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Date Collected: 09/16/25 10:00

Date Received: 09/19/25 07:45

Client Sample ID: BH25-04 0'

Lab Sample ID: 885-33641-1

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		4.9	mg/Kg		09/23/25 10:50	09/26/25 01:09	1
(2.15) 55 515								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98	·	15 - 150			09/23/25 10:50	09/26/25 01:09	1

Analyte	Result (Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 10:50	09/26/25 01:09	1
Ethylbenzene	ND		0.049	mg/Kg		09/23/25 10:50	09/26/25 01:09	1
Toluene	ND		0.049	mg/Kg		09/23/25 10:50	09/26/25 01:09	1
Xylenes, Total	ND		0.098	mg/Kg		09/23/25 10:50	09/26/25 01:09	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	107		15 - 150			09/23/25 10:50	09/26/25 01:09	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		09/26/25 10:45	09/26/25 13:26	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		09/26/25 10:45	09/26/25 13:26	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	109		62 - 134			09/26/25 10:45	09/26/25 13:26	1

Wethou: EPA 300.0 - Amons, fon C	inomatograpny						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	6300	50	mg/Kg		09/24/25 09:19	09/24/25 11:17	10

Eurofins Albuquerque

2

3

5

9

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Chloride

Client Sample ID: BH25-05 0' Lab Sample ID: 885-33641-2

Date Collected: 09/16/25 10:10

Date Received: 09/19/25 07:45

Matrix: Solid

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.7	mg/Kg		09/23/25 10:50	09/26/25 01:32	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		15 - 150			09/23/25 10:50	09/26/25 01:32	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		09/23/25 10:50	09/26/25 01:32	1
Ethylbenzene	ND		0.047	mg/Kg		09/23/25 10:50	09/26/25 01:32	1
Toluene	ND		0.047	mg/Kg		09/23/25 10:50	09/26/25 01:32	1
Xylenes, Total	ND		0.095	mg/Kg		09/23/25 10:50	09/26/25 01:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	103		15 - 150			09/23/25 10:50	09/26/25 01:32	1
- Method: SW846 8015M/D - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		09/26/25 10:45	09/26/25 14:08	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		09/26/25 10:45	09/26/25 14:08	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	88		62 - 134			09/26/25 10:45	09/26/25 14:08	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						

49

7400

mg/Kg

09/24/25 09:19

09/24/25 11:59

5

3

Ė

6

8

9

4 4

11

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-06 0'

Lab Sample ID: 885-33641-3

Matrix: Solid

Date Collected: 09/16/25 10:20 Date Received: 09/19/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		09/23/25 10:50	09/26/25 01:56	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		15 - 150			09/23/25 10:50	09/26/25 01:56	
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Benzene	ND		0.025	mg/Kg		09/23/25 10:50	09/26/25 01:56	
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 10:50	09/26/25 01:56	1
Toluene	ND		0.050	mg/Kg		09/23/25 10:50	09/26/25 01:56	
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 10:50	09/26/25 01:56	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
4-Bromofluorobenzene (Surr)	105		15 - 150			09/23/25 10:50	09/26/25 01:56	
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		09/26/25 10:45	09/26/25 14:19	•
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		09/26/25 10:45	09/26/25 14:19	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate (Surr)	80		62 - 134			09/26/25 10:45	09/26/25 14:19	
- Di-n-octyl prithalate (Surr)								
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
		ohy Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa

10/1/2025

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-07 0'

Date Collected: 09/16/25 10:30

Lab Sample ID: 885-33641-4

Matrix: Solid

Date Received: 09/19/25 07:45	

Method: SW846 8015M/D - Gas								
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		09/23/25 13:09	09/26/25 16:05	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	96		15 - 150			09/23/25 13:09	09/26/25 16:05	1
Method: SW846 8021B - Volati Analyte	•	ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	Result	. ,	RL		<u>D</u>			Dil Fac
	•	. ,		Unit mg/Kg	<u>D</u>	Prepared 09/23/25 13:09	Analyzed 09/26/25 16:05	Dil Fac
Analyte	Result	. ,	RL		<u>D</u>			Dil Fac
Analyte Benzene	Result ND	. ,	RL 0.024	mg/Kg	<u>D</u>	09/23/25 13:09	09/26/25 16:05	Dil Fac 1 1
Analyte Benzene Ethylbenzene	Result ND ND	. ,	RL 0.024 0.048	mg/Kg	<u>D</u>	09/23/25 13:09 09/23/25 13:09	09/26/25 16:05 09/26/25 16:05	Dil Fac 1 1 1
Analyte Benzene Ethylbenzene Toluene	Result ND ND ND	Qualifier	0.024 0.048 0.048	mg/Kg mg/Kg mg/Kg	<u>D</u>	09/23/25 13:09 09/23/25 13:09 09/23/25 13:09	09/26/25 16:05 09/26/25 16:05 09/26/25 16:05	Dil Fac

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		09/26/25 10:45	09/26/25 14:30	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/26/25 10:45	09/26/25 14:30	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	88		62 - 134			09/26/25 10:45	09/26/25 14:30	1

Method: EPA 300.0 - Amons, fon C	inomatograpny						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	230	50	mg/Kg		09/24/25 09:19	09/24/25 12:56	10

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-08 0'

Lab Sample ID: 885-33641-5

Matrix: Solid

Date Collected: 09/16/25 11:30 Date Received: 09/19/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		09/23/25 13:09	09/26/25 16:27	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	88		15 - 150			09/23/25 13:09	09/26/25 16:27	1
- Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 13:09	09/26/25 16:27	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 13:09	09/26/25 16:27	1
Toluene	ND		0.050	mg/Kg		09/23/25 13:09	09/26/25 16:27	1
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 13:09	09/26/25 16:27	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		15 - 150			09/23/25 13:09	09/26/25 16:27	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		09/26/25 10:45	09/26/25 15:16	1
Motor Oil Range Organics [C28-C40]	ND		47	mg/Kg		09/26/25 10:45	09/26/25 15:16	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	108		62 - 134			09/26/25 10:45	09/26/25 15:16	

RL

50

Unit

mg/Kg

Prepared

09/24/25 09:19

Analyzed

09/24/25 13:39

Dil Fac

10

Eurofins Albuquerque

_

Л

5

7

0

10

11

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier

7000

Analyte

Chloride

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-09 0'

Date Collected: 09/16/25 11:45

Date Received: 09/19/25 07:45

Lab Sample ID: 885-33641-6

Matrix: Solid

JUIIU	

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		09/23/25 13:09	09/26/25 16:49	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	89		15 - 150			09/23/25 13:09	09/26/25 16:49	1
Method: SW846 8021B - Vola	•	, ,			_			D:: 5
	•	ounds (GC) Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Analyte	•	, ,		Unit mg/Kg	<u>D</u>	Prepared 09/23/25 13:09	Analyzed 09/26/25 16:49	Dil Fac
Analyte	Result	, ,	RL		<u>D</u>			Dil Fac
Analyte Benzene	Result ND	, ,	RL 0.024	mg/Kg	<u>D</u>	09/23/25 13:09	09/26/25 16:49	Dil Fac 1 1 1
Analyte Benzene Ethylbenzene	Result ND ND	, ,	RL 0.024 0.048	mg/Kg	<u>D</u>	09/23/25 13:09 09/23/25 13:09	09/26/25 16:49 09/26/25 16:49	Dil Fac 1 1 1 1

_ _								
Method: SW846 8015M/D - Diesel	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fa
Diesel Range Organics [C10-C28]	ND		10	mg/Kg		09/26/25 10:45	09/26/25 15:29	-
Motor Oil Range Organics [C28-C40]	ND		50	mg/Kg		09/26/25 10:45	09/26/25 15:29	
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate (Surr)	111		62 - 134			09/26/25 10:45	09/26/25 15:29	

Wethou. LFA 300.0 - Amons, for C	inomatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	120	50	mg/Kg		09/24/25 09:19	09/24/25 13:53	10

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-04 2'

Lab Sample ID: 885-33641-7

Prepared

09/26/25 10:45

Prepared

09/24/25 09:19

Analyzed

09/26/25 15:41

Analyzed

09/24/25 14:07

Matrix: Solid

Date Collected: 09/17/25 08:40 Date Received: 09/19/25 07:45

Surrogate

Analyte

Chloride

Di-n-octyl phthalate (Surr)

Method: EPA 300.0 - Anions, Ion Chromatography

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.8	mg/Kg		09/23/25 13:09	09/26/25 17:32	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	90		15 _ 150			09/23/25 13:09	09/26/25 17:32	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		09/23/25 13:09	09/26/25 17:32	1
Ethylbenzene	ND		0.048	mg/Kg		09/23/25 13:09	09/26/25 17:32	1
Toluene	ND		0.048	mg/Kg		09/23/25 13:09	09/26/25 17:32	1
Xylenes, Total	ND		0.095	mg/Kg		09/23/25 13:09	09/26/25 17:32	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		15 - 150			09/23/25 13:09	09/26/25 17:32	1
Method: SW846 8015M/D - Diese	Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		09/26/25 10:45	09/26/25 15:41	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/26/25 10:45	09/26/25 15:41	1

Limits

62 - 134

RL

50

Unit

mg/Kg

%Recovery Qualifier

Result Qualifier

106

5900

Eurofins Albuquerque

3

5

9

10

11

Dil Fac

Dil Fac

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-04 3'

Date Collected: 09/17/25 08:50 Date Received: 09/19/25 07:45 Lab Sample ID: 885-33641-8

- ap.	 		
	Ma	triy:	Solid

Method: SW846 8015M/D - Gas	soline Range Org	anics (GRC	O) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		09/23/25 13:09	09/26/25 17:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		15 - 150			09/23/25 13:09	09/26/25 17:54	1

Surrogate	∕₀Recovery	Qualifier	LIIIIIIS			Frepareu	Allalyzeu	DII Fac
4-Bromofluorobenzene (Surr)	95		15 - 150			09/23/25 13:09	09/26/25 17:54	1
- Method: SW846 8021B - Volati	le Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 13:09	09/26/25 17:54	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 13:09	09/26/25 17:54	1
Toluene	ND		0.050	mg/Kg		09/23/25 13:09	09/26/25 17:54	1
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 13:09	09/26/25 17:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	91		15 - 150			09/23/25 13:09	09/26/25 17:54	1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.2	mg/Kg		09/26/25 10:45	09/26/25 15:53	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/26/25 10:45	09/26/25 15:53	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	101		62 - 134			09/26/25 10:45	09/26/25 15:53	1

Method: EPA 300.0 - Anions, Ion Cl	hromatography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	5200	50	mg/Kg		09/24/25 09:19	09/24/25 14:21	10

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-05 2'

Lab Sample ID: 885-33641-9

Matrix: Solid

Date Collected: 09/17/25 09:10 Date Received: 09/19/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		5.0	mg/Kg		09/23/25 16:22	09/26/25 14:37	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			09/23/25 16:22	09/26/25 14:37	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 16:22	09/26/25 14:37	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 14:37	1
Toluene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 14:37	1
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 16:22	09/26/25 14:37	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		15 - 150			09/23/25 16:22	09/26/25 14:37	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.9	mg/Kg		09/26/25 10:45	09/26/25 16:05	1
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		09/26/25 10:45	09/26/25 16:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	110		62 - 134			09/26/25 10:45	09/26/25 16:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	ohy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-05 3'

Lab Sample ID: 885-33641-10

09/24/25 09:19

09/24/25 14:49

Matrix: Solid

Date Collected: 09/17/25 09:20 Date Received: 09/19/25 07:45

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics (GRO)-C6-C10	ND		5.0	mg/Kg		09/23/25 16:22	09/26/25 15:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	95		15 - 150			09/23/25 16:22	09/26/25 15:00	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 16:22	09/26/25 15:00	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 15:00	1
Toluene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 15:00	1
Xylenes, Total	ND		0.099	mg/Kg		09/23/25 16:22	09/26/25 15:00	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	101		15 - 150			09/23/25 16:22	09/26/25 15:00	1
- Method: SW846 8015M/D - Diese	el Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.8	mg/Kg		09/26/25 10:45	09/26/25 14:54	1
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		09/26/25 10:45	09/26/25 14:54	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	88		62 - 134			09/26/25 10:45	09/26/25 14:54	1
Method: EPA 300.0 - Anions, Ior	Chromatograp	hy						

49

mg/Kg

6100

2

3

4

6

8

9

. .

11

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-06 2'

Lab Sample ID: 885-33641-11

Matrix: Solid

Date Collected: 09/17/25 09:30 Date Received: 09/19/25 07:45

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.6	mg/Kg		09/23/25 16:22	09/26/25 15:24	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			09/23/25 16:22	09/26/25 15:24	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.023	mg/Kg		09/23/25 16:22	09/26/25 15:24	1
Ethylbenzene	ND		0.046	mg/Kg		09/23/25 16:22	09/26/25 15:24	1
Toluene	ND		0.046	mg/Kg		09/23/25 16:22	09/26/25 15:24	1
Xylenes, Total	ND		0.092	mg/Kg		09/23/25 16:22	09/26/25 15:24	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	98		15 - 150			09/23/25 16:22	09/26/25 15:24	1
Method: SW846 8015M/D - Diese	l Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		09/26/25 10:45	09/26/25 15:05	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/26/25 10:45	09/26/25 15:05	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	87		62 - 134			09/26/25 10:45	09/26/25 15:05	1
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

4-Bromofluorobenzene (Surr)

Client Sample ID: BH25-07 2'

Lab Sample ID: 885-33641-12 Date Collected: 09/17/25 09:40 Matrix: Solid

Date Received: 09/19/25 07:45

100

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.7	mg/Kg		09/23/25 16:22	09/26/25 15:47	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92	·	15 - 150			09/23/25 16:22	09/26/25 15:47	1
Method: SW846 8021B - Volat					_			5E
		ounds (GC) Qualifier	RL	Unit	<u>D</u>	Prepared	Analyzed	Dil Fac
				Unit mg/Kg	<u>D</u>	Prepared 09/23/25 16:22	Analyzed 09/26/25 15:47	Dil Fac
Analyte	Result		RL		<u>D</u>			Dil Fac
Analyte Benzene	Result ND			mg/Kg	<u>D</u>	09/23/25 16:22	09/26/25 15:47	Dil Fac 1 1
Analyte Benzene Ethylbenzene	Result ND ND		0.023 0.047	mg/Kg	<u>D</u>	09/23/25 16:22 09/23/25 16:22	09/26/25 15:47 09/26/25 15:47	Dil Fac 1 1 1

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.5	mg/Kg		09/26/25 10:45	09/26/25 15:17	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		09/26/25 10:45	09/26/25 15:17	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fa
Di-n-octyl phthalate (Surr)	92		62 - 134			09/26/25 10:45	09/26/25 15:17	1

15 - 150

metriou. El A 000.0 - Amorio, ion o	in officiography						
Analyte	Result Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Chloride	470	49	mg/Kg		09/24/25 09:19	09/24/25 15:18	10

Eurofins Albuquerque

09/23/25 16:22

09/26/25 15:47

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-08 2' Lab Sample ID: 885-33641-13

Date Collected: 09/17/25 09:50 Matrix: Solid

Date Received: 09/19/25 07:45

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		09/23/25 16:22	09/26/25 16:11	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			09/23/25 16:22	09/26/25 16:11	1
Method: SW846 8021B - Volatile	Organic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		09/23/25 16:22	09/26/25 16:11	1
Ethylbenzene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:11	1
Toluene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:11	1
Xylenes, Total	ND		0.098	mg/Kg		09/23/25 16:22	09/26/25 16:11	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		15 - 150			09/23/25 16:22	09/26/25 16:11	1
- Method: SW846 8015M/D - Diese	I Range Organ	ics (DRO) (GC)					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.6	mg/Kg		09/26/25 10:45	09/26/25 15:28	1
Motor Oil Range Organics [C28-C40]	ND		48	mg/Kg		09/26/25 10:45	09/26/25 15:28	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	91		62 - 134			09/26/25 10:45	09/26/25 15:28	1
-								
Method: EPA 300.0 - Anions, Ion	Chromatograp	hy						

50

6500

mg/Kg

Eurofins Albuquerque

09/24/25 09:19

09/24/25 15:32

_

3

ວ

R

9

11

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-08 4' Lab Sample ID: 885-33641-14

6200

Date Collected: 09/17/25 10:10 Matrix: Solid

Date Received: 09/19/25 07:45

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		09/23/25 16:22	09/26/25 16:34	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			09/23/25 16:22	09/26/25 16:34	1
Method: SW846 8021B - Volatile O	rganic Comp	ounds (GC))					
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 16:22	09/26/25 16:34	1
Ethylbenzene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:34	1
Toluene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:34	1
Xylenes, Total	ND		0.098	mg/Kg		09/23/25 16:22	09/26/25 16:34	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	97		15 - 150			09/23/25 16:22	09/26/25 16:34	1
- Method: SW846 8015M/D - Diesel I	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.3	mg/Kg		09/26/25 10:45	09/26/25 15:39	1
Motor Oil Range Organics [C28-C40]	ND		46	mg/Kg		09/26/25 10:45	09/26/25 15:39	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	84		62 - 134			09/26/25 10:45	09/26/25 15:39	1
Surrogate Di-n-octyl phthalate (Surr)	84	<u>·</u>						_
Method: EPA 300.0 - Anions, Ion C	ili olliatogi ap	, iiy						

51

mg/Kg

09/24/25 15:46

09/24/25 09:19

3

4

0

8

10

11

Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-09 2'

Method: EPA 300.0 - Anions, Ion Chromatography

Result Qualifier

130

Lab Sample ID: 885-33641-15

Matrix: Solid

Date Collected: 09/17/25 10:20 Date Received: 09/19/25 07:45

Client: Vertex

Analyte

Chloride

Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Gasoline Range Organics	ND		4.9	mg/Kg		09/23/25 16:22	09/26/25 16:58	1
(GRO)-C6-C10								
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	92		15 - 150			09/23/25 16:22	09/26/25 16:58	1
- Method: SW846 8021B - Volatile (Organic Comp	ounds (GC)						
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.024	mg/Kg		09/23/25 16:22	09/26/25 16:58	1
Ethylbenzene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:58	1
Toluene	ND		0.049	mg/Kg		09/23/25 16:22	09/26/25 16:58	1
Xylenes, Total	ND		0.098	mg/Kg		09/23/25 16:22	09/26/25 16:58	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
4-Bromofluorobenzene (Surr)	99		15 - 150			09/23/25 16:22	09/26/25 16:58	1
- Method: SW846 8015M/D - Diesel	Range Organ	ics (DRO) (GC)					
Analyte		Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Diesel Range Organics [C10-C28]	ND		9.8	mg/Kg		09/26/25 10:45	09/26/25 15:51	1
Motor Oil Range Organics [C28-C40]	ND		49	mg/Kg		09/26/25 10:45	09/26/25 15:51	1
Surrogate	%Recovery	Qualifier	Limits			Prepared	Analyzed	Dil Fac
Di-n-octyl phthalate (Surr)	88		62 - 134			09/26/25 10:45	09/26/25 15:51	

RL

51

Unit

mg/Kg

Prepared

09/24/25 09:19

Analyzed

09/24/25 16:28

Dil Fac

10

Project/Site: Papas Fritas 27 CTB 2

Job ID: 885-33641-1

Method: 8015M/D - Gasoline Range Organics (GRO) (GC)

Lab Sample ID: MB 885-35237/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 35453

Prep Type: Total/NA

Prep Batch: 35237

Analyte Result Qualifier RLUnit D Prepared Analyzed Dil Fac Gasoline Range Organics ND 5.0 mg/Kg 09/23/25 10:50 09/25/25 16:07

(GRO)-C6-C10

Client: Vertex

MB MB

MB MB

%Recovery Limits Qualifier Prepared Dil Fac Surrogate Analyzed 09/23/25 10:50 15 - 150 09/25/25 16:07 4-Bromofluorobenzene (Surr) 93

Lab Sample ID: LCS 885-35237/2-A

Matrix: Solid

Analysis Batch: 35453

Client Sample ID: Lab Control Sample Prep Type: Total/NA

Prep Batch: 35237

Spike LCS LCS Analyte babbA Result Qualifier Unit D %Rec Limits Gasoline Range Organics 25.0 23.5 mg/Kg 94 70 - 130

(GRO)-C6-C10

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 193 15 - 150

Lab Sample ID: MB 885-35254/1-A Client Sample ID: Method Blank **Matrix: Solid**

Analysis Batch: 35458

мв мв

Prep Type: Total/NA

Prep Batch: 35254

Analyte Result Qualifier RL Unit D Prepared Analyzed Dil Fac ND 5.0 mg/Kg 09/23/25 13:09 09/26/25 02:31 Gasoline Range Organics

(GRO)-C6-C10

MB MB Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 95 15 - 150 09/23/25 13:09 09/26/25 02:31

Lab Sample ID: LCS 885-35254/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 35458

Prep Type: Total/NA Prep Batch: 35254

70 - 130

92

Spike LCS LCS %Rec Analyte Added Result Qualifier Unit D %Rec Limits

22.9

mg/Kg

25.0

Gasoline Range Organics

(GRO)-C6-C10

LCS LCS

%Recovery Qualifier Limits Surrogate 4-Bromofluorobenzene (Surr) 194 S1+ 15 - 150

Lab Sample ID: MB 885-35280/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 35512

Prep Type: Total/NA Prep Batch: 35280

MB MB

Result Qualifier Unit Prepared Analyzed Dil Fac Gasoline Range Organics ND 5.0 09/23/25 16:22 09/26/25 14:13 mg/Kg

(GRO)-C6-C10

QC Sample Results

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8015M/D - Gasoline Range Organics (GRO) (GC) (Continued)

Lab Sample ID: MB 885-35280/1-A **Matrix: Solid**

Analysis Batch: 35512

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35280

MB MB

Surrogate %Recovery Qualifier Limits Prepared Analyzed Dil Fac 4-Bromofluorobenzene (Surr) 92 15 - 150 09/23/25 16:22 09/26/25 14:13

LCS LCS

Lab Sample ID: LCS 885-35280/2-A

Matrix: Solid

Analysis Batch: 35512

Client Sample ID: Lab Control Sample

Prep Type: Total/NA Prep Batch: 35280

Spike Analyte Added Result Qualifier Unit D %Rec Limits Gasoline Range Organics 25.0 24.2 mg/Kg 97 70 - 130

(GRO)-C6-C10

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 200 15 - 150

Lab Sample ID: 885-33641-9 MS Client Sample ID: BH25-05 2'

Matrix: Solid

Analysis Batch: 35512

Prep Type: Total/NA

Prep Batch: 35280

Sample Sample Spike MS MS Result Qualifier Analyte Added Result Qualifier Unit %Rec Limits Gasoline Range Organics ND 24.9 23.9 mg/Kg 96 70 - 130

(GRO)-C6-C10

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 200 15 - 150

Lab Sample ID: 885-33641-9 MSD Client Sample ID: BH25-05 2'

Matrix: Solid

Analysis Batch: 35512

Prep Type: Total/NA

Prep Batch: 35280

MSD MSD RPD Sample Sample Spike %Rec Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits RPD Gasoline Range Organics ND 24.9 22.0 mg/Kg 88 70 - 130 8

(GRO)-C6-C10

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 195 15 - 150

Method: 8021B - Volatile Organic Compounds (GC)

Lab Sample ID: MB 885-35237/1-A

Matrix: Solid

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35237

	MB	MB						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 10:50	09/25/25 16:07	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 10:50	09/25/25 16:07	1
Toluene	ND		0.050	mg/Kg		09/23/25 10:50	09/25/25 16:07	1
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 10:50	09/25/25 16:07	1

Eurofins Albuquerque

Limit

Analysis Batch: 35454

QC Sample Results

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Lab Sample ID: MB 885-35237/1-A

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Matrix: Solid

Analysis Batch: 35454

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35237

MB MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 99
 15 - 150
 09/23/25 10:50
 09/25/25 16:07
 1

Lab Sample ID: LCS 885-35237/3-A

Matrix: Solid

Analysis Batch: 35454

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35237

ı		Spike	LCS	LCS				%Rec	
	Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
	Benzene	1.00	1.06		mg/Kg		106	70 - 130	
	Ethylbenzene	1.00	1.07		mg/Kg		107	70 - 130	
	m-Xylene & p-Xylene	2.00	2.09		mg/Kg		104	70 - 130	
	o-Xylene	1.00	1.03		mg/Kg		103	70 - 130	
	Toluene	1.00	1.06		mg/Kg		106	70 - 130	
ı									

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 104
 15 - 150

Lab Sample ID: MB 885-35254/1-A

Matrix: Solid

Analysis Batch: 35457

Client Sample ID: Method Blank

Prep Type: Total/NA

Prep Batch: 35254

MB MB

Analyte	Result Qualifie	er RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND	0.025	mg/Kg		09/23/25 13:09	09/26/25 02:31	1
Ethylbenzene	ND	0.050	mg/Kg		09/23/25 13:09	09/26/25 02:31	1
Toluene	ND	0.050	mg/Kg		09/23/25 13:09	09/26/25 02:31	1
Xylenes, Total	ND	0.10	mg/Kg		09/23/25 13:09	09/26/25 02:31	1

 MB

 Surrogate
 %Recovery
 Qualifier
 Limits
 Prepared
 Analyzed
 Dil Fac

 4-Bromofluorobenzene (Surr)
 95
 15 - 150
 09/23/25 13:09
 09/26/25 02:31
 1

Lab Sample ID: LCS 885-35254/3-A

Matrix: Solid

Analysis Batch: 35457

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35254

	Spike	LCS	LCS				%Rec	
Analyte	Added	Result	Qualifier	Unit	D	%Rec	Limits	
Benzene	1.00	0.927		mg/Kg		93	70 - 130	
Ethylbenzene	1.00	0.926		mg/Kg		93	70 - 130	
m-Xylene & p-Xylene	2.00	1.88		mg/Kg		94	70 - 130	
o-Xylene	1.00	0.930		mg/Kg		93	70 - 130	
Toluene	1.00	0.921		mg/Kg		92	70 - 130	

LCS LCS

 Surrogate
 %Recovery
 Qualifier
 Limits

 4-Bromofluorobenzene (Surr)
 95
 15 - 150

Eurofins Albuquerque

3

4

6

8

4.0

11

•

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: MB 885-35280/1-A

Analysis Batch: 35513

Matrix: Solid

MD MD

Client Sample ID: Method Blank Prep Type: Total/NA

Prep Batch: 35280

	IVID	IVID						
Analyte	Result	Qualifier	RL	Unit	D	Prepared	Analyzed	Dil Fac
Benzene	ND		0.025	mg/Kg		09/23/25 16:22	09/26/25 14:13	1
Ethylbenzene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 14:13	1
Toluene	ND		0.050	mg/Kg		09/23/25 16:22	09/26/25 14:13	1
Xylenes, Total	ND		0.10	mg/Kg		09/23/25 16:22	09/26/25 14:13	1

MB MB

Qualifier Limits Dil Fac Surrogate %Recovery Prepared Analyzed 4-Bromofluorobenzene (Surr) 98 15 - 150 09/23/25 16:22 09/26/25 14:13

Lab Sample ID: LCS 885-35280/3-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 35513

Prep Type: Total/NA

Prep Batch: 35280

LCS LCS Spike %Rec Result Qualifier %Rec Analyte Added Unit Limits D Benzene 1.00 0.968 mg/Kg 97 70 - 130 Ethylbenzene 1.00 0.987 99 70 - 130 mg/Kg m-Xylene & p-Xylene 2.00 1.95 mg/Kg 98 70 - 130 o-Xylene 1.00 0.969 mg/Kg 97 70 - 130 Toluene 1.00 0.990 mg/Kg 99 70 - 130

LCS LCS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 101 15 - 150

Lab Sample ID: 885-33641-10 MS

Matrix: Solid

Analysis Batch: 35513

Client Sample ID: BH25-05 3'

Prep Type: Total/NA

Prep Batch: 35280

	Sample	Sample	Spike	MS	MS				%Rec
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits
Benzene	ND		0.996	0.860		mg/Kg		86	70 - 130
Ethylbenzene	ND		0.996	0.883		mg/Kg		89	70 - 130
m-Xylene & p-Xylene	ND		1.99	1.75		mg/Kg		87	70 - 130
o-Xylene	ND		0.996	0.851		mg/Kg		84	70 - 130
Toluene	ND		0.996	0.880		mg/Kg		88	70 - 130

MS MS

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 96 15 - 150

Lab Sample ID: 885-33641-10 MSD

Matrix: Solid

Analysis Batch: 35513

Client Sample ID: BH25-05 3'

Prep Type: Total/NA

Prep Batch: 35280

	Sample	Sample	Spike	MSD	MSD				%Rec		RPD
Analyte	Result	Qualifier	Added	Result	Qualifier	Unit	D	%Rec	Limits	RPD	Limit
Benzene	ND		0.998	0.865		mg/Kg		87	70 - 130	1	20
Ethylbenzene	ND		0.998	0.862		mg/Kg		86	70 - 130	2	20
m-Xylene & p-Xylene	ND		2.00	1.70		mg/Kg		84	70 - 130	3	20
o-Xylene	ND		0.998	0.826		mg/Kg		81	70 - 130	3	20
Toluene	ND		0.998	0.869		mg/Kg		87	70 - 130	1	20

Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Method: 8021B - Volatile Organic Compounds (GC) (Continued)

Lab Sample ID: 885-33641-10 MSD

Matrix: Solid

Client: Vertex

Analysis Batch: 35513

Client Sample ID: BH25-05 3' Prep Type: Total/NA

Prep Batch: 35280

MSD MSD

Surrogate %Recovery Qualifier Limits 4-Bromofluorobenzene (Surr) 95 15 - 150

Method: 8015M/D - Diesel Range Organics (DRO) (GC)

Lab Sample ID: MB 885-35490/1-A Client Sample ID: Method Blank

Matrix: Solid

Analysis Batch: 35478

Prep Type: Total/NA Prep Batch: 35490

> MB MB Result Qualifier RLUnit

Analyte D Prepared Dil Fac Analyzed Diesel Range Organics [C10-C28] 09/26/25 10:45 ND 10 mg/Kg 09/26/25 13:02 Motor Oil Range Organics [C28-C40] ND 50 09/26/25 10:45 09/26/25 13:02 mg/Kg

MB MB

Limits Qualifier Dil Fac Surrogate %Recovery Prepared Analyzed 09/26/25 10:45 Di-n-octyl phthalate (Surr) 114 62 - 134 09/26/25 13:02

Lab Sample ID: LCS 885-35490/2-A Client Sample ID: Lab Control Sample

Matrix: Solid

Analysis Batch: 35478

Prep Batch: 35490 Spike LCS LCS %Rec

Analyte Added Result Qualifier Unit D %Rec Limits Diesel Range Organics 50.0 58.0 116 51 - 148 mg/Kg

[C10-C28]

LCS LCS

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 107 62 - 134

Lab Sample ID: 885-33641-1 MS Client Sample ID: BH25-04 0'

Matrix: Solid

Prep Type: Total/NA **Analysis Batch: 35478** Prep Batch: 35490 Spike MS MS %Rec Sample Sample

Analyte Result Qualifier Added Result Qualifier Unit D %Rec Limits Diesel Range Organics ND 46.9 54.0 mg/Kg 115 44 - 136

[C10-C28]

MS MS

Surrogate %Recovery Qualifier Limits Di-n-octyl phthalate (Surr) 105 62 - 134

Lab Sample ID: 885-33641-1 MSD Client Sample ID: BH25-04 0'

Matrix: Solid

Analysis Batch: 35475

Released to Imaging: 11/19/2025 2:47:42 PM

Prep Type: Total/NA

Sample Sample Spike MSD MSD %Rec Analyte Result Qualifier Added Result Qualifier Unit %Rec Limits RPD Limit Diesel Range Organics ND 47.0 46.7 mg/Kg 99 44 - 136 32 15

[C10-C28]

MSD MSD

%Recovery Qualifier Limits Surrogate Di-n-octyl phthalate (Surr) 96 62 - 134

Eurofins Albuquerque

Prep Type: Total/NA

Prep Batch: 35490

RPD

Dil Fac

QC Sample Results

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Method: 300.0 - Anions, Ion Chromatography

Lab Sample ID: MB 885-35297/1-A Matrix: Solid

Analysis Batch: 35316

Analysis Batch: 35316

Analyte

Chloride

Matrix: Solid

Analysis Batch: 35316

Lab Sample ID: LCS 885-35297/2-A

MB MB

Result Qualifier ____

 RL
 Unit

 5.0
 mg/Kg

Prepared 09/24/25 09:19

D

Analyzed 09/24/25 10:49

Client Sample ID: Method Blank

Client Sample ID: Lab Control Sample

Prep Type: Total/NA

Prep Batch: 35297

Prep Type: Total/NA

Prep Batch: 35297

Spike LCS LCS %Rec Added Result Qualifier Analyte Unit D %Rec Limits Chloride 49.3 52.3 mg/Kg 106 90 - 110

Lab Sample ID: 885-33641-1 MS

Matrix: Solid

Analysis Batch: 35316

Client Sample ID: BH25-04 0' Prep Type: Total/NA

Prep Batch: 35297

MS MS %Rec Sample Sample Spike Result Qualifier Analyte Added Result Qualifier Unit Limits Chloride 6300 49.5 6310 4 50 - 150 mg/Kg

Eurofins Albuquerque

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

GC VOA

Prep Batch: 35237

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-1	BH25-04 0'	Total/NA	Solid	5030C	
885-33641-2	BH25-05 0'	Total/NA	Solid	5030C	
885-33641-3	BH25-06 0'	Total/NA	Solid	5030C	
MB 885-35237/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-35237/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-35237/3-A	Lab Control Sample	Total/NA	Solid	5030C	

Prep Batch: 35254

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-4	BH25-07 0'	Total/NA	Solid	5030C	
885-33641-5	BH25-08 0'	Total/NA	Solid	5030C	
885-33641-6	BH25-09 0'	Total/NA	Solid	5030C	
885-33641-7	BH25-04 2'	Total/NA	Solid	5030C	
885-33641-8	BH25-04 3'	Total/NA	Solid	5030C	
MB 885-35254/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-35254/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-35254/3-A	Lab Control Sample	Total/NA	Solid	5030C	

Prep Batch: 35280

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-9	BH25-05 2'	Total/NA	Solid	5030C	
885-33641-10	BH25-05 3'	Total/NA	Solid	5030C	
885-33641-11	BH25-06 2'	Total/NA	Solid	5030C	
885-33641-12	BH25-07 2'	Total/NA	Solid	5030C	
885-33641-13	BH25-08 2'	Total/NA	Solid	5030C	
885-33641-14	BH25-08 4'	Total/NA	Solid	5030C	
885-33641-15	BH25-09 2'	Total/NA	Solid	5030C	
MB 885-35280/1-A	Method Blank	Total/NA	Solid	5030C	
LCS 885-35280/2-A	Lab Control Sample	Total/NA	Solid	5030C	
LCS 885-35280/3-A	Lab Control Sample	Total/NA	Solid	5030C	
885-33641-9 MS	BH25-05 2'	Total/NA	Solid	5030C	
885-33641-9 MSD	BH25-05 2'	Total/NA	Solid	5030C	
885-33641-10 MS	BH25-05 3'	Total/NA	Solid	5030C	
885-33641-10 MSD	BH25-05 3'	Total/NA	Solid	5030C	

Analysis Batch: 35453

Lab Sample ID 885-33641-1	Client Sample ID BH25-04 0'	Prep Type Total/NA	Solid	Method 8015M/D	Prep Batch 35237
885-33641-2	BH25-05 0'	Total/NA	Solid	8015M/D	35237
885-33641-3	BH25-06 0'	Total/NA	Solid	8015M/D	35237
MB 885-35237/1-A	Method Blank	Total/NA	Solid	8015M/D	35237
LCS 885-35237/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	35237

Analysis Batch: 35454

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-1	BH25-04 0'	Total/NA	Solid	8021B	35237
885-33641-2	BH25-05 0'	Total/NA	Solid	8021B	35237
885-33641-3	BH25-06 0'	Total/NA	Solid	8021B	35237
MB 885-35237/1-A	Method Blank	Total/NA	Solid	8021B	35237
LCS 885-35237/3-A	Lab Control Sample	Total/NA	Solid	8021B	35237

Eurofins Albuquerque

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

GC VOA

Analysis Batch: 35457

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-35254/1-A	Method Blank	Total/NA	Solid	8021B	35254
LCS 885-35254/3-A	Lab Control Sample	Total/NA	Solid	8021B	35254

Analysis Batch: 35458

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
MB 885-35254/1-A	Method Blank	Total/NA	Solid	8015M/D	35254
LCS 885-35254/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	35254

Analysis Batch: 35512

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-9	BH25-05 2'	Total/NA	Solid	8015M/D	35280
885-33641-10	BH25-05 3'	Total/NA	Solid	8015M/D	35280
885-33641-11	BH25-06 2'	Total/NA	Solid	8015M/D	35280
885-33641-12	BH25-07 2'	Total/NA	Solid	8015M/D	35280
885-33641-13	BH25-08 2'	Total/NA	Solid	8015M/D	35280
885-33641-14	BH25-08 4'	Total/NA	Solid	8015M/D	35280
885-33641-15	BH25-09 2'	Total/NA	Solid	8015M/D	35280
MB 885-35280/1-A	Method Blank	Total/NA	Solid	8015M/D	35280
LCS 885-35280/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	35280
885-33641-9 MS	BH25-05 2'	Total/NA	Solid	8015M/D	35280
885-33641-9 MSD	BH25-05 2'	Total/NA	Solid	8015M/D	35280

Analysis Batch: 35513

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-9	BH25-05 2'	Total/NA	Solid	8021B	35280
885-33641-10	BH25-05 3'	Total/NA	Solid	8021B	35280
885-33641-11	BH25-06 2'	Total/NA	Solid	8021B	35280
885-33641-12	BH25-07 2'	Total/NA	Solid	8021B	35280
885-33641-13	BH25-08 2'	Total/NA	Solid	8021B	35280
885-33641-14	BH25-08 4'	Total/NA	Solid	8021B	35280
885-33641-15	BH25-09 2'	Total/NA	Solid	8021B	35280
MB 885-35280/1-A	Method Blank	Total/NA	Solid	8021B	35280
LCS 885-35280/3-A	Lab Control Sample	Total/NA	Solid	8021B	35280
885-33641-10 MS	BH25-05 3'	Total/NA	Solid	8021B	35280
885-33641-10 MSD	BH25-05 3'	Total/NA	Solid	8021B	35280

Analysis Batch: 35532

Γ					
Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-4	BH25-07 0'	Total/NA	Solid	8015M/D	35254
885-33641-5	BH25-08 0'	Total/NA	Solid	8015M/D	35254
885-33641-6	BH25-09 0'	Total/NA	Solid	8015M/D	35254
885-33641-7	BH25-04 2'	Total/NA	Solid	8015M/D	35254
885-33641-8	BH25-04 3'	Total/NA	Solid	8015M/D	35254

Analysis Batch: 35537

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-4	BH25-07 0'	Total/NA	Solid	8021B	35254
885-33641-5	BH25-08 0'	Total/NA	Solid	8021B	35254
885-33641-6	BH25-09 0'	Total/NA	Solid	8021B	35254
885-33641-7	BH25-04 2'	Total/NA	Solid	8021B	35254
885-33641-8	BH25-04 3'	Total/NA	Solid	8021B	35254

Page 28 of 39

Eurofins Albuquerque

10/1/2025

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

GC Semi VOA

Analysis Batch: 35475

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-2	BH25-05 0'	Total/NA	Solid	8015M/D	35490
885-33641-3	BH25-06 0'	Total/NA	Solid	8015M/D	35490
885-33641-4	BH25-07 0'	Total/NA	Solid	8015M/D	35490
885-33641-10	BH25-05 3'	Total/NA	Solid	8015M/D	35490
885-33641-11	BH25-06 2'	Total/NA	Solid	8015M/D	35490
885-33641-12	BH25-07 2'	Total/NA	Solid	8015M/D	35490
885-33641-13	BH25-08 2'	Total/NA	Solid	8015M/D	35490
885-33641-14	BH25-08 4'	Total/NA	Solid	8015M/D	35490
885-33641-15	BH25-09 2'	Total/NA	Solid	8015M/D	35490
885-33641-1 MSD	BH25-04 0'	Total/NA	Solid	8015M/D	35490

Analysis Batch: 35478

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-1	BH25-04 0'	Total/NA	Solid	8015M/D	35490
885-33641-5	BH25-08 0'	Total/NA	Solid	8015M/D	35490
885-33641-6	BH25-09 0'	Total/NA	Solid	8015M/D	35490
885-33641-7	BH25-04 2'	Total/NA	Solid	8015M/D	35490
885-33641-8	BH25-04 3'	Total/NA	Solid	8015M/D	35490
885-33641-9	BH25-05 2'	Total/NA	Solid	8015M/D	35490
MB 885-35490/1-A	Method Blank	Total/NA	Solid	8015M/D	35490
LCS 885-35490/2-A	Lab Control Sample	Total/NA	Solid	8015M/D	35490
885-33641-1 MS	BH25-04 0'	Total/NA	Solid	8015M/D	35490

Prep Batch: 35490

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batcl
885-33641-1	BH25-04 0'	Total/NA	Solid	SHAKE	
885-33641-2	BH25-05 0'	Total/NA	Solid	SHAKE	
885-33641-3	BH25-06 0'	Total/NA	Solid	SHAKE	
885-33641-4	BH25-07 0'	Total/NA	Solid	SHAKE	
885-33641-5	BH25-08 0'	Total/NA	Solid	SHAKE	
885-33641-6	BH25-09 0'	Total/NA	Solid	SHAKE	
885-33641-7	BH25-04 2'	Total/NA	Solid	SHAKE	
885-33641-8	BH25-04 3'	Total/NA	Solid	SHAKE	
885-33641-9	BH25-05 2'	Total/NA	Solid	SHAKE	
885-33641-10	BH25-05 3'	Total/NA	Solid	SHAKE	
885-33641-11	BH25-06 2'	Total/NA	Solid	SHAKE	
885-33641-12	BH25-07 2'	Total/NA	Solid	SHAKE	
885-33641-13	BH25-08 2'	Total/NA	Solid	SHAKE	
885-33641-14	BH25-08 4'	Total/NA	Solid	SHAKE	
885-33641-15	BH25-09 2'	Total/NA	Solid	SHAKE	
MB 885-35490/1-A	Method Blank	Total/NA	Solid	SHAKE	
LCS 885-35490/2-A	Lab Control Sample	Total/NA	Solid	SHAKE	
885-33641-1 MS	BH25-04 0'	Total/NA	Solid	SHAKE	
885-33641-1 MSD	BH25-04 0'	Total/NA	Solid	SHAKE	

HPLC/IC

Prep Batch: 35297

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-1	BH25-04 0'	Total/NA	Solid	300_Prep	
885-33641-2	BH25-05 0'	Total/NA	Solid	300_Prep	

Eurofins Albuquerque

Released to Imaging: 11/19/2025 2:47:42 PM

2

5

7

9

10

1

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

HPLC/IC (Continued)

Prep Batch: 35297 (Continued)

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-3	BH25-06 0'	Total/NA	Solid	300_Prep	
885-33641-4	BH25-07 0'	Total/NA	Solid	300_Prep	
885-33641-5	BH25-08 0'	Total/NA	Solid	300_Prep	
885-33641-6	BH25-09 0'	Total/NA	Solid	300_Prep	
885-33641-7	BH25-04 2'	Total/NA	Solid	300_Prep	
885-33641-8	BH25-04 3'	Total/NA	Solid	300_Prep	
885-33641-9	BH25-05 2'	Total/NA	Solid	300_Prep	
885-33641-10	BH25-05 3'	Total/NA	Solid	300_Prep	
885-33641-11	BH25-06 2'	Total/NA	Solid	300_Prep	
885-33641-12	BH25-07 2'	Total/NA	Solid	300_Prep	
885-33641-13	BH25-08 2'	Total/NA	Solid	300_Prep	
885-33641-14	BH25-08 4'	Total/NA	Solid	300_Prep	
885-33641-15	BH25-09 2'	Total/NA	Solid	300_Prep	
MB 885-35297/1-A	Method Blank	Total/NA	Solid	300_Prep	
LCS 885-35297/2-A	Lab Control Sample	Total/NA	Solid	300_Prep	
885-33641-1 MS	BH25-04 0'	Total/NA	Solid	300_Prep	

Analysis Batch: 35316

Lab Sample ID	Client Sample ID	Prep Type	Matrix	Method	Prep Batch
885-33641-1	BH25-04 0'	Total/NA	Solid	300.0	35297
885-33641-2	BH25-05 0'	Total/NA	Solid	300.0	35297
885-33641-3	BH25-06 0'	Total/NA	Solid	300.0	35297
885-33641-4	BH25-07 0'	Total/NA	Solid	300.0	35297
885-33641-5	BH25-08 0'	Total/NA	Solid	300.0	35297
885-33641-6	BH25-09 0'	Total/NA	Solid	300.0	35297
885-33641-7	BH25-04 2'	Total/NA	Solid	300.0	35297
885-33641-8	BH25-04 3'	Total/NA	Solid	300.0	35297
885-33641-9	BH25-05 2'	Total/NA	Solid	300.0	35297
885-33641-10	BH25-05 3'	Total/NA	Solid	300.0	35297
885-33641-11	BH25-06 2'	Total/NA	Solid	300.0	35297
885-33641-12	BH25-07 2'	Total/NA	Solid	300.0	35297
885-33641-13	BH25-08 2'	Total/NA	Solid	300.0	35297
885-33641-14	BH25-08 4'	Total/NA	Solid	300.0	35297
885-33641-15	BH25-09 2'	Total/NA	Solid	300.0	35297
MB 885-35297/1-A	Method Blank	Total/NA	Solid	300.0	35297
LCS 885-35297/2-A	Lab Control Sample	Total/NA	Solid	300.0	35297
885-33641-1 MS	BH25-04 0'	Total/NA	Solid	300.0	35297

Eurofins Albuquerque

Client: Vertex Project/Site: Papas Fritas 27 CTB 2

Client Sample ID: BH25-04 0'

Lab Sample ID: 885-33641-1

Matrix: Solid

Date Collected: 09/16/25 10:00 Date Received: 09/19/25 07:45

_	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35237	JP	EET ALB	09/23/25 10:50
Total/NA	Analysis	8015M/D		1	35453	KLS	EET ALB	09/26/25 01:09
Total/NA	Prep	5030C			35237	JP	EET ALB	09/23/25 10:50
Total/NA	Analysis	8021B		1	35454	KLS	EET ALB	09/26/25 01:09
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35478	BZR	EET ALB	09/26/25 13:26
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 11:17

Lab Sample ID: 885-33641-2

Matrix: Solid

Date Collected: 09/16/25 10:10 Date Received: 09/19/25 07:45

Client Sample ID: BH25-05 0'

Batch Dilution Batch Batch Prepared **Prep Type** Type Method Run Factor Number Analyst Lab or Analyzed Total/NA 5030C JP EET ALB 09/23/25 10:50 Prep 35237 Total/NA 8015M/D 09/26/25 01:32 Analysis 1 35453 KLS **EET ALB** Total/NA 5030C 09/23/25 10:50 Prep 35237 JΡ **EET ALB** Total/NA Analysis 8021B 1 35454 KLS **EET ALB** 09/26/25 01:32 Total/NA SHAKE 35490 BZR **EET ALB** 09/26/25 10:45 Prep Total/NA Analysis 8015M/D 1 35475 BZR **EET ALB** 09/26/25 14:08

10

Client Sample ID: BH25-06 0'

Prep

Analysis

300_Prep

300.0

Date Collected: 09/16/25 10:20

Date Received: 09/19/25 07:45

Total/NA

Total/NA

Lab Sample ID: 885-33641-3

09/24/25 09:19

09/24/25 11:59

EET ALB

EET ALB

35297 MA

35316 EH

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35237	JP	EET ALB	09/23/25 10:50
Total/NA	Analysis	8015M/D		1	35453	KLS	EET ALB	09/26/25 01:56
Total/NA	Prep	5030C			35237	JP	EET ALB	09/23/25 10:50
Total/NA	Analysis	8021B		1	35454	KLS	EET ALB	09/26/25 01:56
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 14:19
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 12:42

Client Sample ID: BH25-07 0'

Date Collected: 09/16/25 10:30

Date Received: 09/19/25 07:45

Lab Sam	ple ID:	885-33641	-4
---------	---------	-----------	----

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8015M/D		1	35532	AT	EET ALB	09/26/25 16:05

Eurofins Albuquerque

Client: Vertex

Client Sample ID: BH25-07 0'

Date Collected: 09/16/25 10:30 Date Received: 09/19/25 07:45 Lab Sample ID: 885-33641-4

Matrix: Solid

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8021B		1	35537	AT	EET ALB	09/26/25 16:05
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 14:30
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 12:56

Client Sample ID: BH25-08 0' Lab Sample ID: 885-33641-5

Date Collected: 09/16/25 11:30 Date Received: 09/19/25 07:45

Batch Batch Dilution Batch Prepared Prep Type Туре Method Run Factor **Number Analyst** Lab or Analyzed Total/NA Prep 5030C 35254 JP **EET ALB** 09/23/25 13:09 Total/NA 8015M/D 09/26/25 16:27 35532 AT **EET ALB** Analysis 1 Total/NA 5030C 35254 JP **EET ALB** 09/23/25 13:09 Prep 09/26/25 16:27 Total/NA Analysis 8021B 35537 AT **EET ALB** 1 Total/NA **EET ALB** 09/26/25 10:45 Prep SHAKE 35490 BZR Total/NA Analysis 8015M/D 1 35478 BZR **EET ALB** 09/26/25 15:16 Total/NA 300 Prep **EET ALB** 09/24/25 09:19 Prep 35297 MA Total/NA 09/24/25 13:39 Analysis 300.0 10 35316 EH **EET ALB**

Client Sample ID: BH25-09 0' Lab Sample ID: 885-33641-6 Date Collected: 09/16/25 11:45 Matrix: Solid

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8015M/D		1	35532	AT	EET ALB	09/26/25 16:49
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8021B		1	35537	AT	EET ALB	09/26/25 16:49
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35478	BZR	EET ALB	09/26/25 15:29
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 13:53

Client Sample ID: BH25-04 2' Lab Sample ID: 885-33641-7 Date Collected: 09/17/25 08:40

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8015M/D		1	35532	AT	EET ALB	09/26/25 17:32
Total/NA	Prep	5030C			35254	JP	EET ALB	09/23/25 13:09
Total/NA	Analysis	8021B		1	35537	AT	EET ALB	09/26/25 17:32

Eurofins Albuquerque

Matrix: Solid

Client Sample ID: BH25-04 2'

Date Collected: 09/17/25 08:40 Date Received: 09/19/25 07:45

Client: Vertex

Lab Sample ID: 885-33641-7

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35478	BZR	EET ALB	09/26/25 15:41
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 14:07

Client Sample ID: BH25-04 3'

Date Collected: 09/17/25 08:50

Date Received: 09/19/25 07:45

Lab Sample ID: 885-33641-8

Matrix: Solid

Batch Batch Dilution Batch Prepared **Prep Type** Туре Method Run Factor Number Analyst Lab or Analyzed Total/NA 5030C 35254 JP EET ALB 09/23/25 13:09 Prep Total/NA 8015M/D Analysis 35532 AT **EET ALB** 09/26/25 17:54 1 Total/NA Prep 5030C 35254 JP **EET ALB** 09/23/25 13:09 8021B Total/NA 35537 AT **EET ALB** 09/26/25 17:54 Analysis 1 Total/NA SHAKE **EET ALB** 09/26/25 10:45 Prep 35490 BZR 8015M/D Total/NA Analysis 35478 BZR **EET ALB** 09/26/25 15:53 1 Total/NA **EET ALB** 09/24/25 09:19 Prep 300 Prep 35297 MA Total/NA Analysis 300.0 10 35316 EH **EET ALB** 09/24/25 14:21

Client Sample ID: BH25-05 2'

Date Collected: 09/17/25 09:10

Date Received: 09/19/25 07:45

Lab Sample ID: 885-33641-9

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 14:37
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 14:37
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35478	BZR	EET ALB	09/26/25 16:05
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 14:35

Client Sample ID: BH25-05 3'

Date Collected: 09/17/25 09:20

Date Received: 09/19/25 07:45

Lab Sample ID: 885-33641-10

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 15:00
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 15:00
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 14:54

Eurofins Albuquerque

Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Client: Vertex

Client Sample ID: BH25-05 3'

Date Collected: 09/17/25 09:20 Date Received: 09/19/25 07:45 Lab Sample ID: 885-33641-10

Matrix: Solid

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 14:49

Client Sample ID: BH25-06 2' Lab Sample ID: 885-33641-11

Date Collected: 09/17/25 09:30 **Matrix: Solid**

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C		- -	35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 15:24
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 15:24
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 15:05
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 15:03

Client Sample ID: BH25-07 2' Lab Sample ID: 885-33641-12

Date Collected: 09/17/25 09:40 **Matrix: Solid**

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 15:47
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 15:47
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 15:17
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 15:18

Client Sample ID: BH25-08 2' Lab Sample ID: 885-33641-13

Date Collected: 09/17/25 09:50 **Matrix: Solid**

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 16:11
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 16:11
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 15:28
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 15:32

Eurofins Albuquerque

Client: Vertex

Client Sample ID: BH25-08 4'

Lab Sample ID: 885-33641-14

Matrix: Solid

Date Collected: 09/17/25 10:10 Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Type	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 16:34
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 16:34
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 15:39
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 15:46

Client Sample ID: BH25-09 2' Lab Sample ID: 885-33641-15

Date Collected: 09/17/25 10:20 Matrix: Solid

Date Received: 09/19/25 07:45

	Batch	Batch		Dilution	Batch			Prepared
Prep Type	Туре	Method	Run	Factor	Number	Analyst	Lab	or Analyzed
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8015M/D		1	35512	KLS	EET ALB	09/26/25 16:58
Total/NA	Prep	5030C			35280	KLS	EET ALB	09/23/25 16:22
Total/NA	Analysis	8021B		1	35513	KLS	EET ALB	09/26/25 16:58
Total/NA	Prep	SHAKE			35490	BZR	EET ALB	09/26/25 10:45
Total/NA	Analysis	8015M/D		1	35475	BZR	EET ALB	09/26/25 15:51
Total/NA	Prep	300_Prep			35297	MA	EET ALB	09/24/25 09:19
Total/NA	Analysis	300.0		10	35316	EH	EET ALB	09/24/25 16:28

Laboratory References:

EET ALB = Eurofins Albuquerque, 4901 Hawkins NE, Albuquerque, NM 87109, TEL (505)345-3975

Accreditation/Certification Summary

Client: Vertex Job ID: 885-33641-1

Project/Site: Papas Fritas 27 CTB 2

Laboratory: Eurofins Albuquerque

Unless otherwise noted, all analytes for this laboratory were covered under each accreditation/certification below.

Authority	Progr	am	Identification Number	Expiration Date
New Mexico	State		NM9425, NM0901	02-27-26
,	are included in this report, but	ut the laboratory is not certif	ied by the governing authority. This lis	t may include analytes
Analysis Method	Prep Method	Matrix	Analyte	
300.0	300_Prep	Solid	Chloride	
8015M/D	5030C	Solid	Gasoline Range Organics	(GRO)-C6-C10
8015M/D	SHAKE	Solid	Diesel Range Organics [C	10-C28]
8015M/D	SHAKE	Solid	Motor Oil Range Organics	[C28-C40]
8021B	5030C	Solid	Benzene	
8021B	5030C	Solid	Ethylbenzene	
8021B	5030C	Solid	Toluene	
8021B	5030C	Solid	Xylenes, Total	
)regon	NELA	P	NM100001	02-26-26

3

4

5

Q

9

10

1900

If necessary, samples submitted to Hall Environmental may be subcontracted to other accredited laboratories. This serves as notice of this possibility. Any sub-contracted data will be clearly notated on the analytical report.

Relinquished by: Date: Time: Received by: Remarks: 0700 Relinquished by: Received by: Time:

(Cidixon Overtex resource.com

Login Sample Receipt Checklist

Client: Vertex Job Number: 885-33641-1

Login Number: 33641 List Source: Eurofins Albuquerque

List Number: 1

Creator: McQuiston, Steven

Question	Answer	Comment
Radioactivity wasn't checked or is = background as measured by a survey meter.</td <td>True</td> <td></td>	True	
The cooler's custody seal, if present, is intact.	True	
Sample custody seals, if present, are intact.	True	
The cooler or samples do not appear to have been compromised or tampered with.	True	
Samples were received on ice.	True	
Cooler Temperature is acceptable.	True	
Cooler Temperature is recorded.	True	
COC is present.	True	
COC is filled out in ink and legible.	True	
COC is filled out with all pertinent information.	True	
s the Field Sampler's name present on COC?	True	
There are no discrepancies between the containers received and the COC.	True	
Samples are received within Holding Time (excluding tests with immediate HTs)	True	
Sample containers have legible labels.	True	
Containers are not broken or leaking.	True	
Sample collection date/times are provided.	True	
Appropriate sample containers are used.	True	
Sample bottles are completely filled.	True	
Sample Preservation Verified.	N/A	
There is sufficient vol. for all requested analyses, incl. any requested MS/MSDs	True	
Containers requiring zero headspace have no headspace or bubble is 6mm (1/4").	True	
Multiphasic samples are not present.	True	
Samples do not require splitting or compositing.	True	
Residual Chlorine Checked.	N/A	

ATTACHMENT 5

Client: Devon Energy Incident ID #:

Corporation

Site Location Name: Papas Fritas 27 CTB 2

Inspection Date: 8/19/2025

-

Summary of Times

API#:

Arrived at Site 8/19/2025 9:42 AM

Departed Site 8/19/2025 1:18 PM

Field Notes

13:09 JSA has been filled out by Vertex Env Tech

13:09 One call: Northwest Corner: 32.273173, -103.965557 Northeast Corner: 32.273220, -103.964467 Southwest Corner: 32.272704, -103.965553 Southeast Corner: 32.272712, -103.964437

Next Steps & Recommendations

1

Site Photos

Viewing Direction: Southwest

Site view of release from the Northeast side near the tanks

Viewing Direction: Southeast

Site view of the release from the Southwest One Call corner

Viewing Direction: Southeast

Site view of the release from the Northwest One Call Corner

Viewing Direction: East

Image showing one call marking. Marked with white paint and flagging

Site view of the Southeast One Call Corner

Site view of the Northeast one call corner

Image of the release extent. Boundary of the release is clearly seen on site

Site view of the release from the Northwest corner

Site view of the release from the Southwest corner

Site view of the release from the East end before entering the tank area

Site view from the tank area looking inside point is source locations related to the release

Viewing Direction: Southwest

Site view from between the tanks looking towards the west

Daily Site Visit Signature

Inspector: Sharon Minnix

Signature: 5

Client: **Devon Energy** Incident ID #:

Corporation

Site Location Name: Papas Fritas 27 CTB 2

Inspection Date: 9/12/2025 API#:

Summary of Times

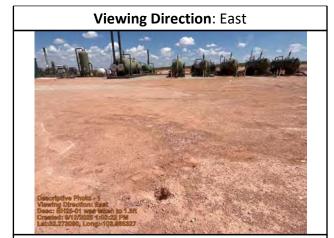
Arrived at Site 9/12/2025 8:45 AM

Departed Site 9/12/2025 1:45 PM

Field Notes

13:02 Completed saftey paperwork upon arrival

13:04 811 was remarked


13:05 811 personal were talked to and the area was shrunk

Next Steps & Recommendations

1

Site Photos

BH25-01 was taken to 1.5ft

Viewing Direction: South

BH25-02 was taken to 1.5ft

Souther release area

Daily Site Visit Signature

Inspector: Katrina Taylor

Signature:

	V	
V	ERTE	×

Client: Devon Energy Corporation

Site Location Name: Papas Fritas 27 CTB 2 API #:

Inspection Date: 9/16/2025

 Summary of Times

 Arrived at Site
 9/16/2025 9:12 AM

 Departed Site
 9/16/2025 3:30 PM

Field Notes

- 9:13 Completed safety paperwork on site
- 9:14 On site to obtain surface samples as one call clears tomorrow
- **14:31** Obtained today: BH25-04 to 09 all at zero foot depth.
- **16:29** Safety Environmental Services Inc on site digging/scraping area of point of release. Told them to hold off digging on release before sampling was conducted.

Next Steps & Recommendations

1 Vertical delineation

Site Photos

Viewing Direction: Northwest

BH25-04 West area of release in middle, which will be revisited for vertical delineation

Viewing Direction: Northeast

BH25-05 in middle of release area, immediately west of separators.
Point will be revisited for vertical delineation.

BH25-07 north of POR.

BH25-08 in middle of separators slightly west of POR.

Will be revisited for vertical delineation.

BH25-06, slightly southwest of 08.

BH25-09 immediately east of POR.
Release seemed to stop right at the pipe rack and not leech under.

Containment left by Safety Environmental Solutions Inc.

Daily Site Visit Signature

Inspector: Austin Harris

Signature:

Client: Devon Energy Incident ID #:

Corporation

Site Location Name: Papas Fritas 27 CTB 2

Inspection Date: 9/17/2025

Summary of Times

API#:

Arrived at Site 9/17/2025 7:54 AM

Departed Site 9/17/2025 3:30 PM

Field Notes

7:54 Completed safety paperwork on site

7:54 On site to vertical delineate release extent

13:26 Obtained today:

-BH25-04 @ 1, 2 & 3' depth. Refusal @ 3'.

-BH25-05 @ 1, 2 & 3' depth.

Refusal @ 3'.

-BH25-06 @ 2' depth.

-BH25-07 @ 2' depth.

-BH25-08 @ 2, 3 & 4' depth.

Refusal @ 4'.

-BH25-09 @ 2' depth.

- **13:29** According to Notice of Release and C-141, the chloride concentration of produced water at this facility exceeds 10,000 mg/l. This may explain high concentrations at 3-4' vertical depths.
- 13:31 Hitting refusal at 3-4' vertical sampled areas due to a cemented caliche, red sand layer.

 New 811 in these specific sampling areas will need to be issued due to Safety Environmental Solutions Inc. running over all of the paint and pin flag locates with backhoe.

Next Steps & Recommendations

- 1 Submit new 811 for vertical delineation.
- 2 Send samples to lab.

Site Photos

BH25-04 furthest west vertical delineation sample.

Total samples obtained here @ 0, 1, 2, & 3' depths.

Refusal @ 3' depth.

Viewing Direction: East

BH25-05, middle vertical delineation sample just west of separators.

Total samples obtained here @ 0, 1, 2, and 3' depths.

Refusal @ 3' depth.

BH25-06, South side in center for horizontal delineation purposes.

Total sample obtained here @ 0 & 2' depths.

BH25-08 in middle of separators slightly west of POR.

Total samples obtained here @ 0, 2, 3, & 4' depths.

Refusal @ 4' depth.

BH25-07 immediately north of separator 331H. Samples obtained here @ 0, 1 & 2' depths.

BH25-09 immediately east of POR on opposite side of pipe rack skid.

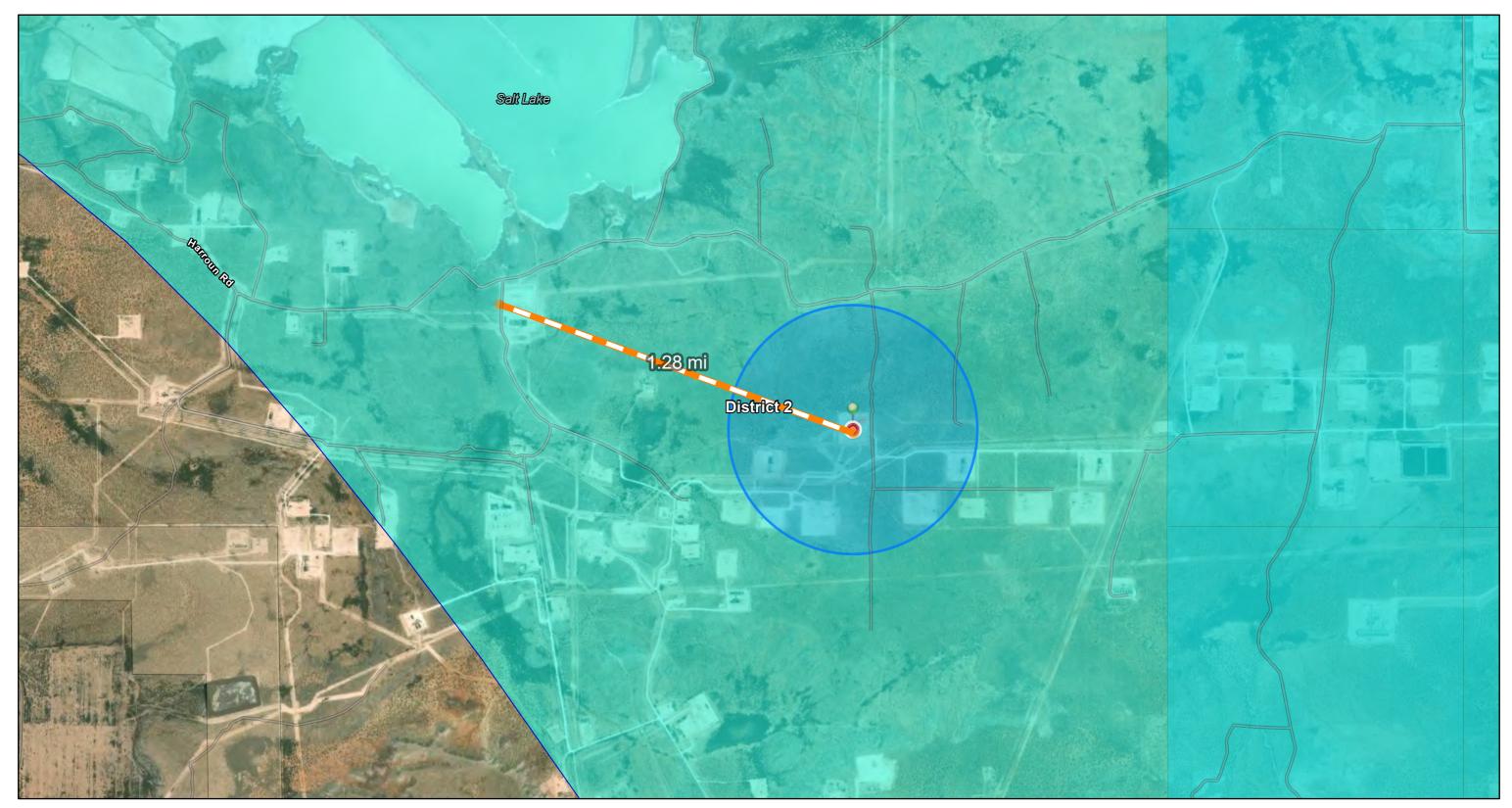
Total samples obtained here @ 0, 1 and 2' depths.

New locate area needed around BH25-04

Viewing Direction: Southeast

New locate area needed around BH25-05

Daily Site Visit Signature


Inspector: Austin Harris

Signature:

ATTACHMENT 6

	e: Papas Fritas 27 CTB 2		
ill Coo	dinates: 32.273285,-103.964982	X: 597474	Y: 3571198
e Spec	ific Conditions	Value	Unit
	Depth to Groundwater (nearest reference)	18	feet
1	Distance between release and nearest DTGW reference	6,755	feet
1	Distance between release and nearest brow reference	1.28	miles
	Date of nearest DTGW reference measurement	06	/09/2000
2	Within 300 feet of any continuously flowing watercourse or any other significant watercourse	10,919	feet
3	Within 200 feet of any lakebed, sinkhole or playa lake (measured from the ordinary high-water mark)	5,623	feet
4	Within 300 feet from an occupied residence, school, hospital, institution or church	20,460	feet
5	i) Within 500 feet of a spring or a private, domestic fresh water well used by less than five households for domestic or stock watering purposes, or	12,788	feet
	ii) Within 1000 feet of any fresh water well or spring	45,619	feet
6	Within incorporated municipal boundaries or within a defined municipal fresh water field covered under a municipal ordinance adopted pursuant to Section 3-27-3 NMSA 1978 as amended, unless the municipality specifically approves	No	feet
7	Within 300 feet of a wetland	5,400	feet
	Within the area overlying a subsurface mine	No	feet
8	Distance between release and nearest registered mine	39,274	feet
9	Within an unstable area (Karst Map)	Medium	Critical High Medium Low
	Distance between release and nearest unstable area	0	feet
	Within a 100-year Floodplain	>500	year
10	Distance between release and nearest FEMA Zone A (100 year Floodplain)	5,571	feet
11	Soil Type		SM
12	Ecological Classification	R070BD0021	NM - Shallow Sandy
13	Geology		Qe/Qp
	NMAC 19.15.29.12 E (Table 1) Closure Criteria	<50'	<50' 51-100' >100'

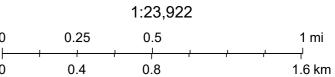
Site is 6,755ft (1.28 mi) to C-02707 DTGW Reference

9/4/2025, 2:03:06 PM Water Right Regulations

Artesian Plan Area

OSE District Boundary
New Mexico State Trust Lands

Subsurface Estate


Both Estates
World Imagery

Low Resolution 15m Imagery
High Resolution 60cm Imagery

High Resolution 30cm Imagery

Citations

4.8m Resolution Metadata

Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community Mayar

Point of Diversion Summary

quarters are 1=NW 2=NE 3=SW 4=SE quarters are smallest to largest

NAD83 UTM in meters

Well Tag	POD Nbr	Q64	Q16	Q4	Sec	Tws	Rng	X	Υ	Мар
	C 02707			NE	28	23S	29E	595535.0	3571868.0 *	

* UTM location was derived from PLSS - see Help

Driller License:	1348	Driller Company:	TAYLOR WATER WELL SERVICE
Driller Name			

Drill Start Date:	2000-06-09	Drill Finish Date:	2000-06-09	Plug Date:	
Log File Date:	2000-08-28	PCW Rcv Date:		Source:	Shallow
Pump Type:		Pipe Discharge Size:		Estimated Yield:	700
Casing Size:	2.38	Depth Well:	40	Depth Water:	18

Water Bearing Stratifications:

Тор	Bottom	Description
36	78	Limestone/Dolomite/Chalk

Casing Perforations:

Тор	Bottom
35	40

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

9/4/25 2:10 PM MST **Point of Diversion Summary**

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

New Mexico Office of the State Engineer

Water Column/Average Depth to Water

(A CLW##### in the POD suffix indicates the POD has been replaced & no longer serves a water right file) (R=POD has been replaced, O=orphaned, C=the file is

(quarters are smallest to

& no longer serves a water right file.)	C=the file is closed)			smalle larges									(meters)		(In feet)	1
POD Number	Code	Sub basin	County	Q64	Q16	Q4	Sec	Tws	Range	x	Y	Мар	Distance	Well Depth	-	Water Column
C 04326 POD16		CUB	ED	NE	SE	SW	23	23S	29E	598209.2	3572664.1	•	1640	64	54	10
C 04326 POD14		CUB	ED	SE	NE	SW	23	23S	29E	598190.6	3572765.6	•	1723	58	54	4
<u>C 01627</u>		С	ED	NW	SE	SE	28	23S	29E	595649.0	3570959.0 *	•	1840	170		
<u>C 02797</u>		CUB	ED		NE	SW	22	23S	29E	596540.0	3572895.0 *	•	1937	200		
<u>C 02707</u>		C	ED			NE	28	23S	29E	595535.0	3571868.0 *	•	2051	40	18	22
<u>C 02721</u>		CUB	ED		NE	SW	21	23S	29E	594915.0	3572879.0 *	•	3061	150		
C 04597 POD2		CUB	ED	NW	NW	SE	24	23S	29E	600122.2	3572959.1	•	3180			
<u>C 04597 POD4</u>		CUB	ED	NW	NW	SE	24	23S	29E	600158.9	3572947.2	•	3204			
C 04597 POD1		CUB	ED	NW	NW	SE	24	23S	29E	600124.4	3573002.9	•	3206			
C 04597 POD5		CUB	ED	NE	NW	SE	24	23S	29E	600198.3	3572931.9	•	3229			
C 04597 POD3		CUB	ED	NW	NW	SE	24	23S	29E	600171.6	3572991.0	•	3239			
<u>C 02716</u>		CUB	ED	SE	SE	SE	16	23S	29E	595818.0	3574002.0 *	•	3256	400		
<u>C 02715</u>		CUB	ED	SE	NW	SW	15	23S	29E	596221.0	3574411.0 *	•	3448	400		
C 04481 POD1		CUB	ED	NW	SW	SE	03	24S	29E	596798.8	3567778.6	•	3485	135		
C 04481 POD3		CUB	ED	NE	SE	SW	03	24S	29E	596798.8	3567778.6	•	3485	120		
C 04481 POD2		CUB	ED	NW	SW	SE	03	24S	29E	596851.5	3567748.3	•	3505	120		
<u>C 04481 POD5</u>		CUB	ED	NE	SE	SW	03	24S	29E	596746.8	3567747.3		3526	120		
<u>C 02720</u>		CUB	ED		NE	NW	21	23S	29E	594911.0	3573690.0 *	•	3574	150		
<u>C 04481 POD4</u>		CUB	ED	NE	SE	SW	03	24S	29E	596747.4	3567685.7		3586	150		
C 04481 POD8		CUB	ED	NW	SW	SE	03	24S	29E	596852.3	3567655.9	•	3596	125		
<u>C 04481 POD7</u>		CUB	ED	NE	SE	SW	03	14S	29E	596800.0	3567655.4		3606	110		
<u>C 02717</u>		CUB	ED	SE	NE	SE	16	23S	29E	595817.0	3574407.0 *	•	3611	400		
<u>C 04481 POD6</u>		CUB	ED	NE	SE	SW	03	24S	29E	596747.7	3567654.9	•	3616	120		
C 03057 EXPLORE		CUB	ED	SE	NW	NW	21	23S	29E	594605.0	3573586.0 *		3732	150		
<u>C 01217 S</u>		CUB	ED	SE	NW	SE	16	23S	29E	595413.0	3574403.0 *	•	3810	350		
<u>C 02613</u>		CUB	ED	SE	SE	NE	20	23S	29E	594203.0	3573176.0 *	•	3822	400		
<u>C 02718</u>		CUB	ED	SE	SE	NE	16	23S	29E	595816.0	3574812.0 *	•	3976	400		
<u>C 03587 POD1</u>		CUB	ED	NW	SE	SW	29	23S	29E	593337.5	3570754.8		4160	99	44	55
<u>C 02486</u>		С	ED	SW	NE	SW	19	23S	30E	601304.0	3572832.0 *	•	4163	350		
<u>C 02808</u>		CUB	ED		NE	SW	16	23S	29E	594909.0	3574501.0 *	•	4181	100		
<u>C 02809</u>		CUB	ED		NE	SW	16	23S	29E	594909.0	3574501.0 *	•	4181	100		
<u>C 04905 POD1</u>		CUB	ED	NE	NE	SW	31	23S	30E	601621.7	3569779.0	•	4383	101		
<u>C 04903 POD1</u>		CUB	ED	NE	SW	SW	29	23S	29E	593048.1	3571296.6		4426	45	26	19
<u>C 02794</u>		CUB	ED		SE	SW	10	23S	29E	596518.0	3575731.0 *	•	4632	100		
<u>C 02795</u>		CUB	ED		SE	SW	10	23S	29E	596518.0	3575731.0 *	•	4632	200		
<u>C 04472 POD1</u>		CUB	ED	NE	NE	SE	13	23S	29E	600639.0	3574619.0	•	4660		37	
C 03058 EXPLORE		CUB	ED	SE	NW	NW	16	23S	29E	594605.0	3575206.0 *	•	4929	150		

Average Depth to Water: 38 feet

Minimum Depth: 18 feet

Record Count: 37

UTM Filters (in meters):

Easting: 597474 Northing: 3571198 Radius: 5000

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, usability, or suitability for any particular purpose of the data.

Water Right Summary

C **Cross Reference: WR File Number:** C 02707 **Subbasin: Primary Purpose: Primary Status: PMT Permit Total Acres: Subfile: Header: Total Diversion:** 0.000 Cause/Case: **Owner Class:** Owner: IMC KALIUM Owner **Contact:** SCOTT VAIL

Documents on File

(acre-fe

Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion
get images	<u>466312</u>	72121	2000-05-15	PMT	LOG	C 02707	Т		3.000

Current Points of Diversion

POD Well Number Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	X	Υ	Мар	Other Location Desc
<u>C 02707</u>	Shallow			NE	28	23S	29E	595535.0	3571868.0 *		

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.

9/4/25 1:58 PM MST Water Rights Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | <u>Disclaimer</u> | <u>Contact Us</u> | <u>Help</u> | <u>Home</u> |

Received

STATE ENGINEER OFFICE

Section 1. GENERAL INFORMATION

Revised June 1972

44431J

WELL RECORD

Street or	Post Office Ac	idressb	JX / 1						
Well was drille	d under Permit	No. C-2	707		and is locate	ed in the:			
					3 Township_		Range	29E	N.M.P.M.
					the		_		
	loivision, recorde				the				
d. X= _		_ feet, Y=	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	feet	, N.M. Coordinate				
(B) Drilling	Contractor	<u> Favlor Wa</u>	ater We	11 Serv	rice	License No	o. <u>WD-</u>	1348	
Address7	317 Etch	everry Ro	i., Car	lsbad,	NM 88220				·
Drilling Began	6/9/	OO Comp	oleted 6/	9/00	Type tools_	Rotary	S	Size of hole	6in,
Elevation of la	nd.surface or _			at	well is IIK	ft. Total d	epth of we	1140_	ft.
Completed we	ll is 🔀 sl	hallow 🗀 a	rtesian.		Depth to wate	er upon comple	etion of w	e[11	8ft.
		Sec	tion 2. PRIN	CIPAL WA	TER-BEARING S	STRATA		`	
	in Feet	Thickness in Feet	.]	Description	of Water-Bearing	Formation		Estimated gallons per	
From	To	_					\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		minute)
36	40	4	Limes	stone:	orn, vfn xl	n,dolo		700	
-, ·							,		
					p. 1111.			-	
 	1	<u> </u>	Sectio	n 3. RECO	RD OF CASING	<u> </u>		2-3	emain () () () () () () () () () (
Diameter	Pounds	Threads	Depth	in Feet	Length	Type of	Shoe	Perf	orations
(inches)	per foot	per in.	Тор	Bottom			•	From	To
2 3/8	Sch 40	Flush	+2	40	42	Caj	<u> </u>	35	40
		7							
		,		<u> </u>				<u></u>	
		Secti	on 4. RECO	RD OF MU	DDING AND CE	MENTING			
Depth From	in Feet To	Hole Diameter	Sacl of M		Cubic Feet of Cement	М	ethod of	Placement	
		,				·			
						···			
e e			Sectio	on 5. PLUG	GING RECORD				
	actor			· · · · · · · · · · · · · · · · · · ·		Dont	n in Feet		Notice Food
Plugging Metho	od				No.	Тор	Bott		Cubic Feet of Cement
Date Well Plug Plugging appro	ged ved by:				1 2		- -		
	· ————	State Eng	ineer Repres	entative	3 4				
,		111	FOR USE	OF STATE	E ENGINEER ON	LY			
Date Received	08-28-20	000			ıad		7T.:	LG.	r.
File No. C-	-2707				onitor	Location No.	235	29E.28.2	

		· · · · · · · · · · · · · · · · · · ·	Secuol 6, LOG OF HOLE
	in Feet	Thickness in Feet	Color and Type of Material Encountered
From	То		
	2	2	Soil
2 ,	8	6	Loose cobble+gravel
8	16	8	Caliche
16	36	20	Clay:pnk,sndy
36	40	4	Limestone:brn,vfn-micxln,very dolomitic,fractured
	-		
			
		···-	

Section 7. REMARKS AND ADDITIONAL INFORMATION

Air drilled to 40'. Sand packed from 30-40'. Grouted from 30' to surface.

The undersigned here by certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this fact is used as a plugging record, only Section 1(a) Section 5 need be completed.

STATE ENGINEER OFFICE WELL RECORD

444312

Section 1. GENERAL INFORMATION

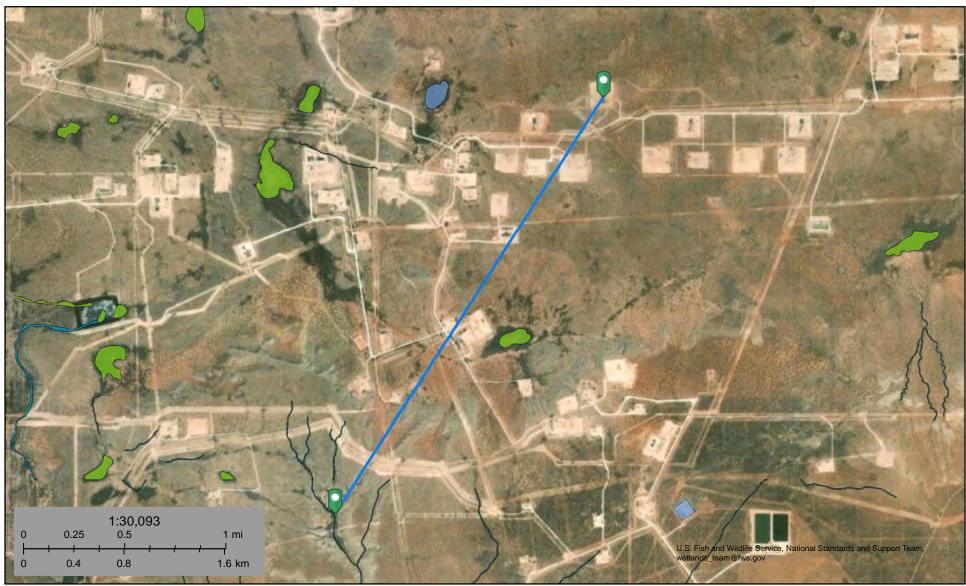
36 78 42 Limestone:brn,off wht,pnk,mic 700 x1n,fractured Section 3. RECORD OF CASING Threads per foot per in. Top Bottom (feet) Type of Shoe From To Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Diameter of Mud of Cement Section 5. PLUGGING RECORD Section 5.	Street or P	well <u>IMC</u> ost Office Ad	dress Box	<u>c 71</u>				Owner's		
a. NE %	City and S	tate <u>Carl</u>	lsbad, NM	88220				<u></u>		
b. Tract No. of Map No. of the Subdivision, recorded in County. d. X= feet, Y= feet, N.M. Coordinate System Zone in County. d. X= feet, Y= feet, N.M. Coordinate System Zone in Grant. Drilling Contractor Taylor Nater Well Service License No. WD=1348 ess 7317 Etcheverry Rd., Carlshad, NM.88220 ng Began 5/27/00 Completed 6/2/00 Type tools Rotary Size of hole 6 in. gleted well is 52 shallow artesian. Depth to water upon completion of well. Rt. Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Thickness From To in Feet Description of Water-Bearing Formation (galloms per minute) 36 78 42 Limestone: btn, off wht, pnk, mic 700 xln, Fractured Section 3. RECORD OF CASING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 6. PLUGGING RECORD Section 7. PLUGGING RECORD Section 8. PLUGGING RECORD Section 9. PLUGGING RECORD FOR USE OF STATE ENGINEER ONLY	l was drilled i	under Permit	No. <u>C-27</u> ()7	,	and is	located i	n the:		
c. Lot No. of Block No. of the Subdivision, recorded in County. d. X= feet, Y= feet, N.M. Coordinate System Zone in the Grant. Drilling Contractor Taylor Nater Well Service License No. WD=134B ess 7317 Etcheverry Rd., Carlsbad, NM. 88220 ng Began 5/27/00 Completed 6/2/00 Type tools Rotary Size of hole 6 in. glocked well is \$\overline{\text{Size}}\$ shallow attesian. Depth to water upon completion of well fi. Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet Tool in Feet Description of Water-Bearing Formation (gallous per minute) Section 3. RECORD OF Will. Type of Shoe Perforations Section 3. RECORD OF CASING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Of Med of Cement Method of Placement Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD ging Contractor ress in No. Depth in Feet Cubic Feet Of Med of Cement Top Bottom of Cement Section 5. State Engineer Representative 4 Top Bottom of Cement FOR USE OF STATE ENGINEER ONLY Fig. 5. State Engineer Representative 4 Fig. 5. Fig.	a. <u>NE</u>	1/4 1/4	¼	¼ of Sect	ion <u>28</u>	Tow	nship <u>2</u>	Range	29E	N.M.P.M
Subdivision, recorded in	b. Tract N	lo,	of Map No		of t	the				
Drilling Contractor Taylor Kater Well Service License No. MD=1348 ess. 7317 Etcheverry Rd., Carlsbad, NM 88220 ng Began 5/27/00 Completed 6/2/00 Type tools Rotary Size of hole 6 in faction of land surface or at well is UK ft. Total depth of well ft. Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet To in Peet Description of Water-Bearing Formation (gallons per minute) 36 78 42 Limestone:brn, off wht, pnk, mic 700 x1n, fractured Section 3. RECORD OF CASING Section 3. RECORD OF CASING Section 5. RECORD OF CASING Section 6. Threads Depth in Feet Length (feet) Type of Shoe From To To Depth in Feet Olimeter of Mudd of Cement Method of Placement of Cement Section 5. PLUGGING RECORD Districtor Section 7. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Cubic Feet Olimeter of Cement Method of Placement of Cement Section 5. PLUGGING RECORD Districtor Top Bottom 7. Top Bottom of Cement Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 6. Top Bottom of Cement Section 6. Top Bottom of Cement Section 7. Top Bottom of Cement Section 8. State Engineer Representative 3. Section 7. Top Bottom of Cement Section 8. State Engineer Representative 3. Section 7. Top Bottom of Cement Section 8. State Engineer Representative 3. Section 7. Top Bottom of Cement Section 8. State Engineer Representative 7. Section 8. Section 8. State Engineer Representative 7. Section 8. S										
ess 7317 Etcheverry Rd., Carlsbad, NM 88220 ng Began 5/27/00										
Completed 6/2/00 Type tools Rotary Size of hole 6 in	Drilling Co	ontractor	raylor Wa	ter Wel	1 Serv	ice	·	_ License NoW	D-1348	
tion of land surface or	Iress7.3	17 Etch	everry Rd	., Carl	sbad,	NM 882	220	· · · · · · · · · · · · · · · · · · ·		
Section 2. PRINCIPAL WATER-BEARING STRATA Depth in Feet	lling Began	5/27/00	Comple	eted <u>6/</u>	2/00	Туре	toolsE	Rotary	Size of ho	le_6in
Section 2. PRINCIPAL WATER-BEARING STRATA	vation of lan	d surface or _			at v	well isI	JK	_ ft. Total depth o	f well	ft.
Section 2. PRINCIPAL WATER-BEARING STRATA	npleted well	is 🔀 si	hallow 🔲 art	esian.		Depth	to water i	upon completion o	of well	ft
Depth in Feet					IPAL WAT				,	
Section 3. RECORD OF CASING Section 3. RECORD OF CASING Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Diameter of Mud of Cement Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD Section 6. Section 6. Section 6. Section 7. Section 7. Section 7. Section 7. Section 7. Section 8. Secti	Depth is		Thickness							
Section 3. RECORD OF CASING Section Secti		78	42	Limes	tone:b	rn,of	wht,	pnk,mic	700)
Section 3. RECORD OF CASING				x1n,	fractu	red				
Section 3. RECORD OF CASING										200 CO 201 CO
Section 3. RECORD OF CASING									Printed From March 1 - March 1 - All Land 1 - All Land 1 - All Land	
Section Form Section			<u> </u>	Section	3 RECOL	RD OF CA	SING		24.3	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet	Diameter					Le	ngth	Type of Shoe	P	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Diameter of Mud of Cement Method of Placement Section 5. PLUGGING RECORD ging Contractor ress ging Method Top Bottom of Cement Well Plugged ging approved by: State Engineer Representative Top Bottom of Cement FOR USE OF STATE ENGINEER ONLY Quad FWL FSL	(inches)	per foot	per in.	Тор	Bottom	(1	eet)		From	
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet Hole Sacks Or Cubic Feet of Method of Placement From To Diameter of Mud of Cement Method of Placement Section 5. PLUGGING RECORD ging Contractor ress No. Depth in Feet Cubic Feet of Top Bottom of Cement Well Plugged 1 1			_							
Section 4. RECORD OF MUDDING AND CEMENTING Depth in Feet										
Depth in Feet	,			<u></u>						
Section 5. PLUGGING RECORD Section 5. PLUGGING RECORD			Sectio	n 4. RECOR	D OF MU	DDING A	ND CEM	ENTING		
Section 5. PLUGGING RECORD ging Contractor			······································		- 1			Method	i of Placeme	nt
State Engineer Representative State Engineer Representative Quad FWL FSL	rrom	10	Diameter	OI III						
State Engineer Representative Popular Stat			,							
State Engineer Representative State Engineer Representative Quad FWL FSL										
No. Depth in Feet Cubic Feet				Section	n 5. PLUG	GING RE	CORD		•.	
ging Method No Top Bottom of Cement e Well Plugged 1								Denth in F	Teet .	Cubic Feet
State Engineer Representative FOR USE OF STATE ENGINEER ONLY e Received 08-28-2000 Quad FWL FSL	igging Metho	d					No.			
State Engineer Representative FOR USE OF STATE ENGINEER ONLY e Received 08-28-2000 Quad FWL FSL			·							
FOR USE OF STATE ENGINEER ONLY e Received 08-28-2000 Quad FWL FSL	00 0 FF- 0		State Fra	neer Remeas	entative		3			
Quad FWL FSL			Diate Digi	noor represe	- ALLGERTY C		4		<u> </u>	
	ate Received	08-28-	-2000	FOR USE						
File No. C-2707 Use Monitor Location No. 23S.29E.28.2					Q	uad		FWL _		FSL
, ,	File No	C-2707			UseM	lonitor		Location No	23S.29E.	28.2

Section 6. LOG OF HOLE

			Section 6. LOG OF HOLE
	in Feet	Thickness in Feet	Color and Type of Material Encountered
From O	то 3	3	Soi1
3	86	5 >	Loosedlime+dolo gravel+cobble
8 ô	36	28	Clay:rd,sme sndy
36	46	. 10	Ls:brn,vfn-micxln,dolomitic,losing returns
46	52	6	Ls:off wht,pnk,vfm xln,vry dolomitic,losing return
52	56	4	Shale:rd,sme anhy
56	78	32	LS:1t gry,dns,vry dolomitic,sme 1t gry+ch1ky
78	142	64	Clay:rd,smth,sme wht anhy,sme gry siltstone
142	182	60	Clay:blu gry,sft,smth
182	208	26	Clay:rd,sme wht anhy,tr gry siltstone,sme rd anhy
208	213.5	5.5	Anhy:wht,gry,sme gyp
1			
			Steel of a May be provided in the control of the co

Section 7. REMARKS AND ADDITIONAL INFORMATION

Drilled with mud to 213.5!. Packer tested. Plugged well back with cement grout. Brought grout up too far and plugged water zone. Drilled new hole with air 10' from this hole.


The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When the form is used as a plugging record, only Section 5 need be completed.

2.07 mi away to nearest watercourse

September 4, 2025

Wetlands

Estuarine and Marine Deepwater

Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Forested/Shrub Wetland

Freshwater Pond

Lake

011

Other

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

5,623ft (1.05 mi) to nearest lake

September 4, 2025

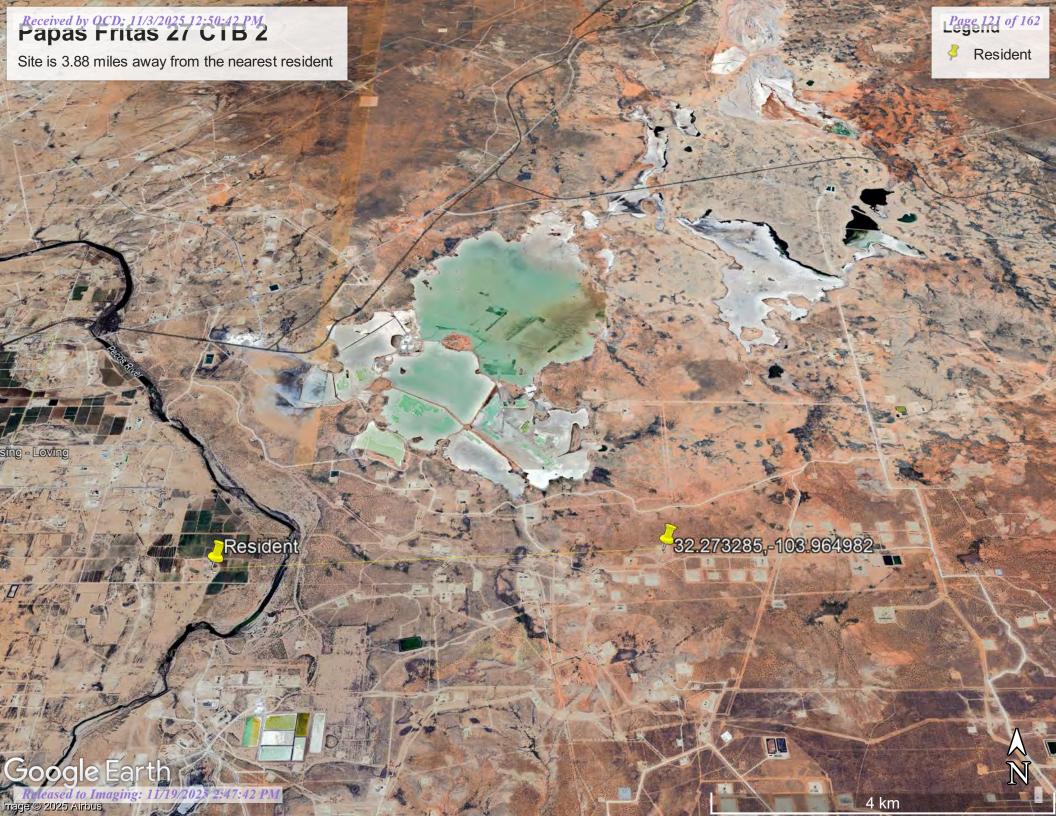
Wetlands

Estuarine and Marine Deepwater

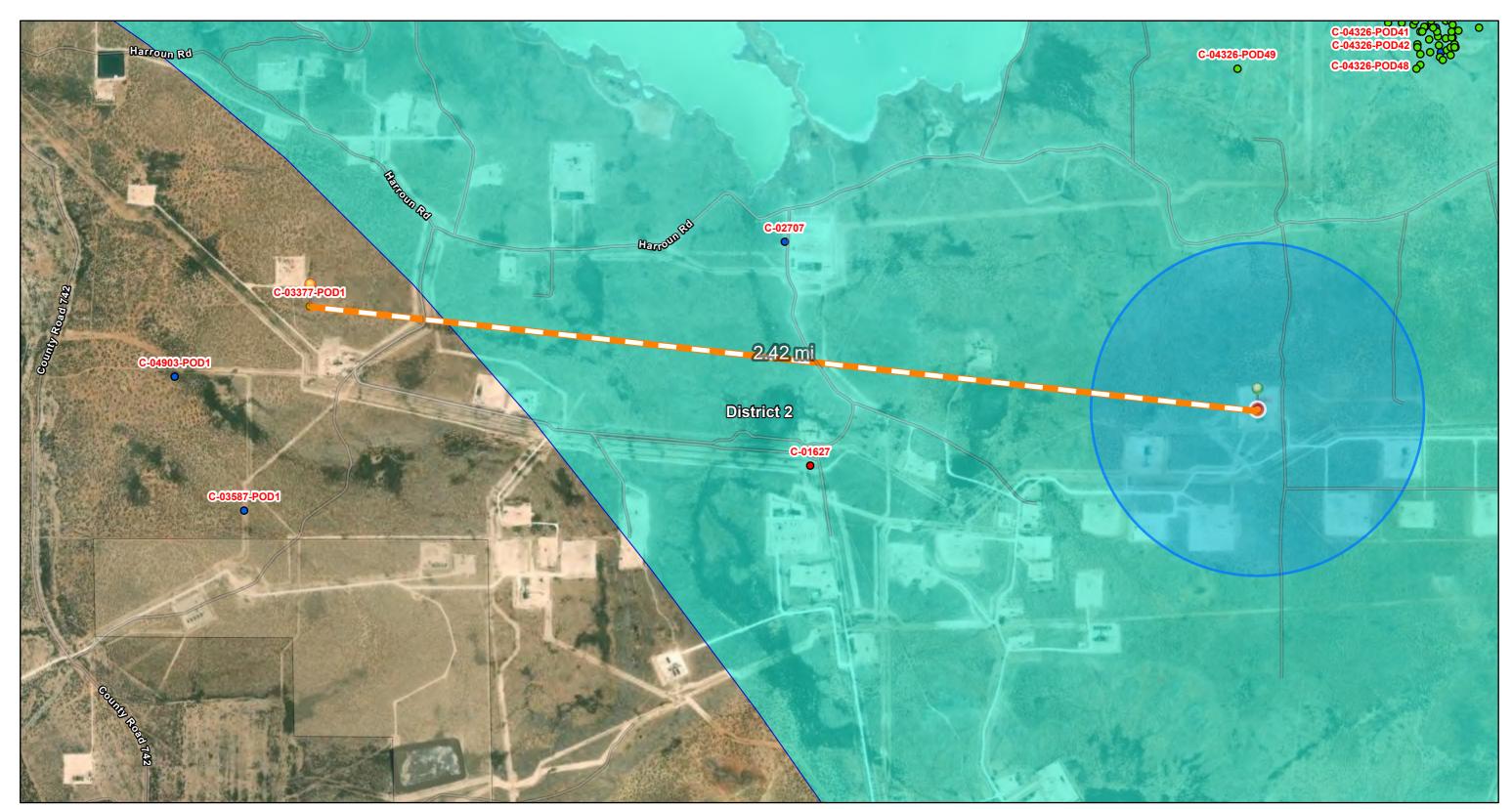
Estuarine and Marine Wetland

Freshwater Emergent Wetland

Freshwater Pond


Freshwater Emergent Wetland
Freshwater Forested/Shrub Wetland

Other


Lake

Riverine

This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Site is 12,788 (2.48 mi) to C-03377 STK Well

9/4/2025, 3:33:49 PM

GIS WATERS PODs Water Right Regulations

Active

Artesian Plan Area

OSE District Boundary

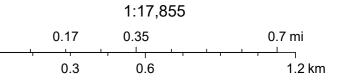
Pending

Plugged

New Mexico State Trust Lands

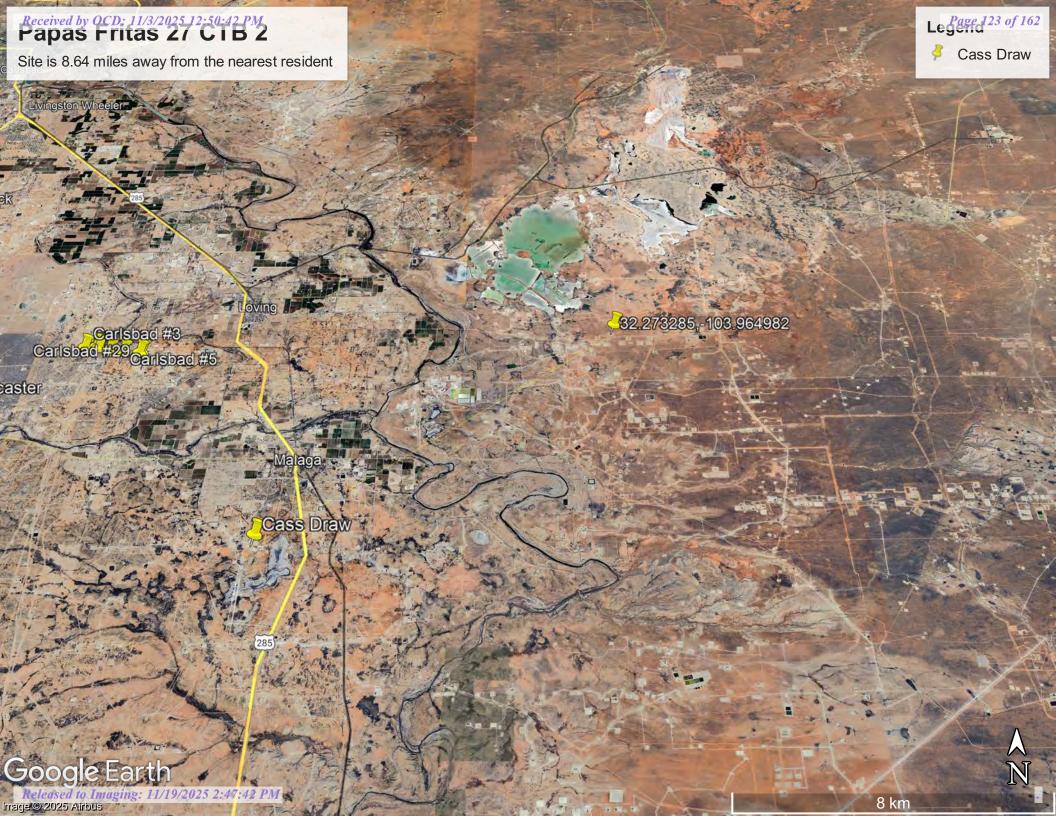
Subsurface Estate

World Imagery


Low Resolution 15m Imagery

High Resolution 60cm Imagery

High Resolution 30cm Imagery


Citations

4.8m Resolution Metadata

Sources: Esri, TomTom, Garmin, FAO, NOAA, USGS, (c) OpenStreetMap contributors, and the GIS User Community, Maxar

Water Right Summary

<u>get image</u> <u>list</u>

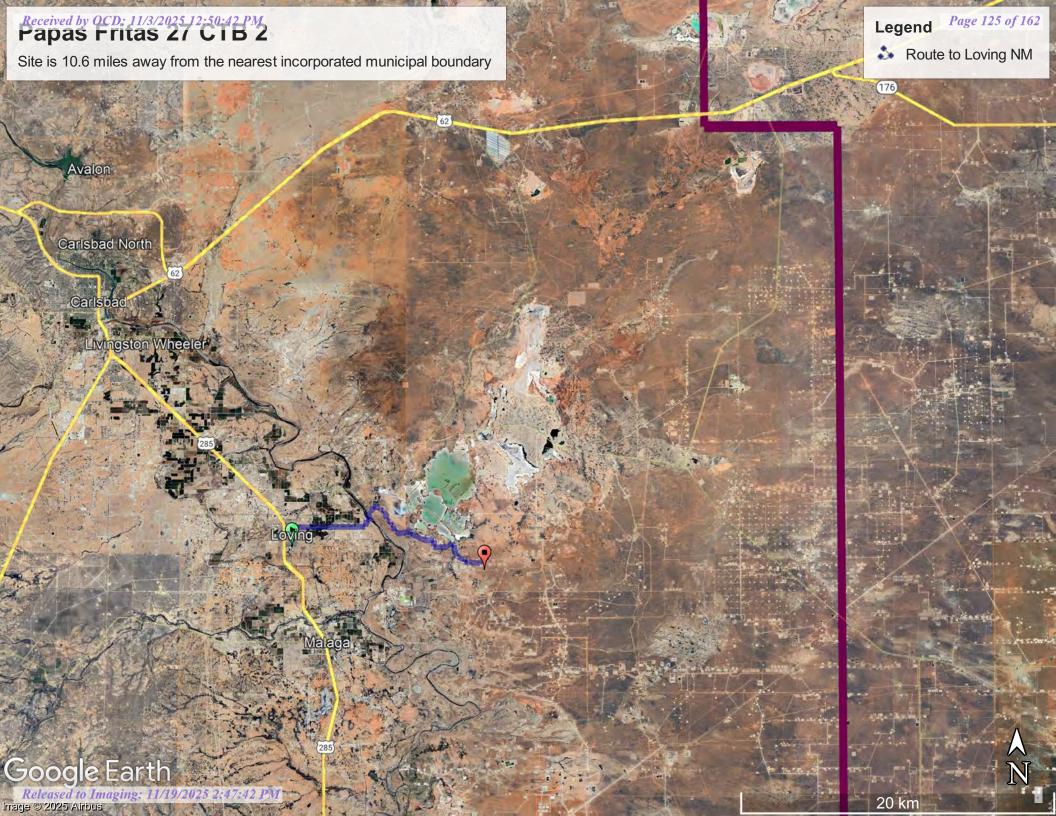
C 03377 C **WR File Number: Subbasin: Cross Reference:** STK 72-12-1 LIVESTOCK WATERING **Primary Purpose: Primary Status: PMT Permit Subfile: Total Acres: Header:** 3.000 **Total Diversion:** Cause/Case: **Owner:** BF&GFARMS **Owner Class:** Owner **Contact:** JIM GIBSON

Documents on File

(acre-fe

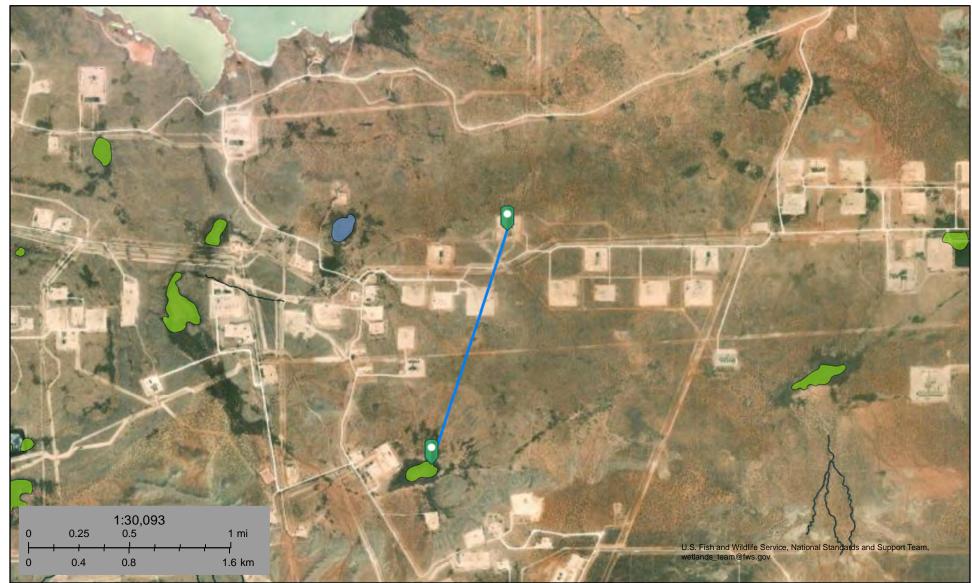
Transaction Images	Trn #	Doc	File/Act	Status 1	Status 2	Transaction Desc.	From/To	Acres	Diversion
get images	<u>469618</u>	72121	2008-04-16	PMT	APR	C 03377	Т		3.000

Current Points of Diversion


POD Number	Well Tag	Source	Q64	Q16	Q4	Sec	Tws	Rng	X	Y	Мар	Other Location Desc
C 03377 POD1			SW	SW	NE	29	235	29E	593596.0	3571587.0		

* UTM location was derived from PLSS - see Help

The data is furnished by the NMOSE/ISC and is accepted by the recipient with the expressed understanding that the OSE/ISC make no warranties, expressed or implied, concerning the accuracy, completeness, reliability, or suitability for any particular purpose of the data.


9/4/25 3:30 PM MST Water Rights Summary

©2024 New Mexico Office of the State Engineer, All Rights Reserved. | Disclaimer | Contact Us | Help | Home |

1.02 mi to nearest wetland

September 4, 2025

Wetlands

Estuarine and Marine Deepwater

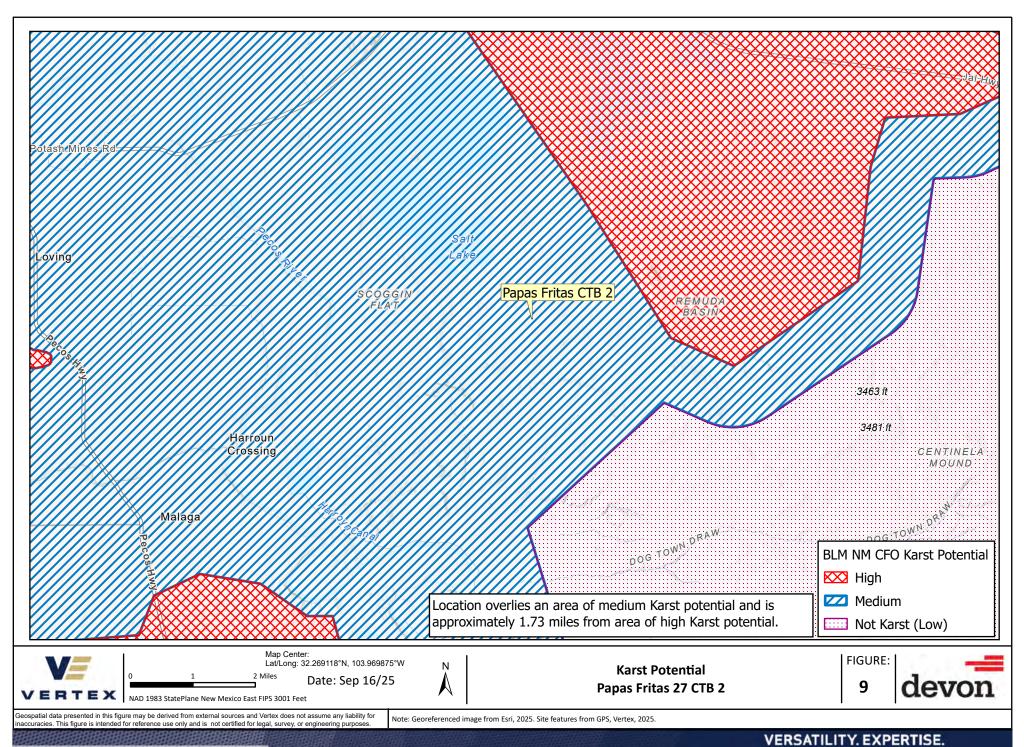
Estuarine and Marine Wetland

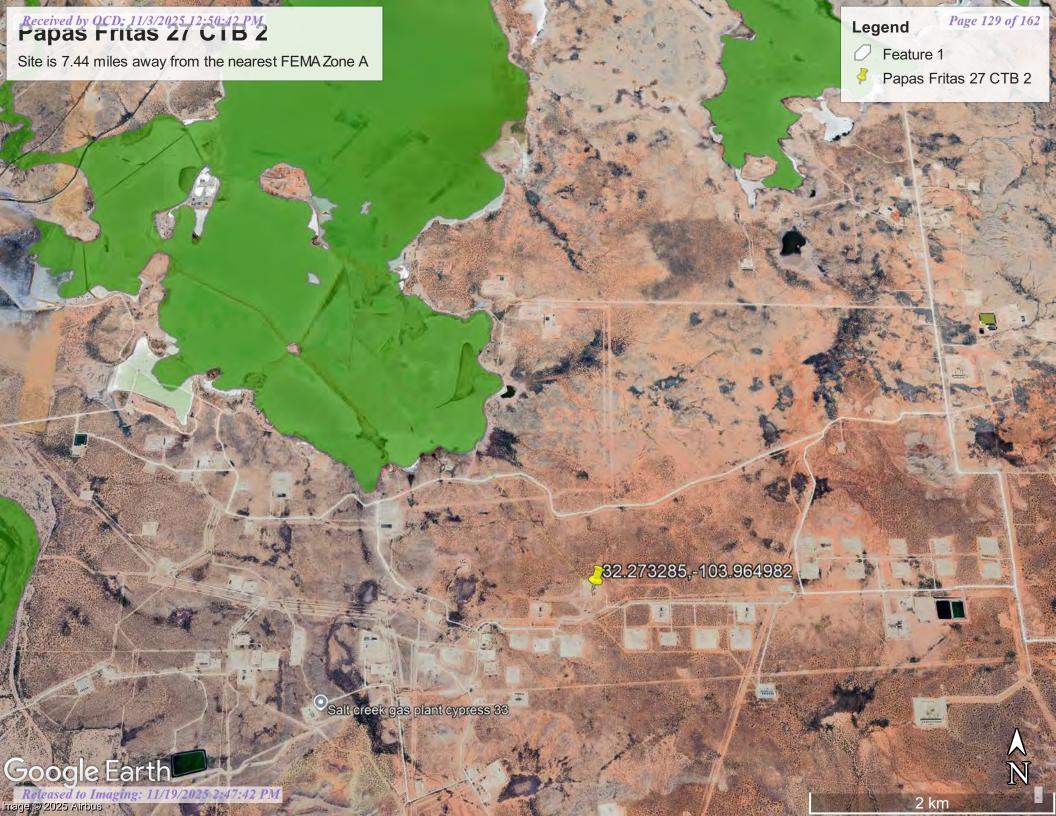
Freshwater Emergent Wetland

Freshwater Pond

Lake

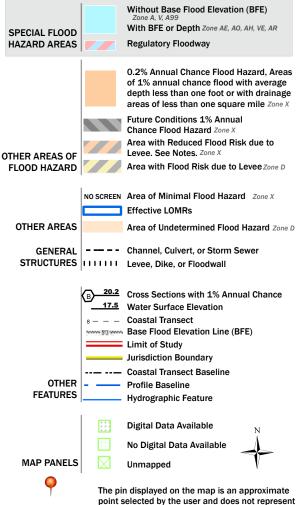
Freshwater Forested/Shrub Wetland


Riverine


Other

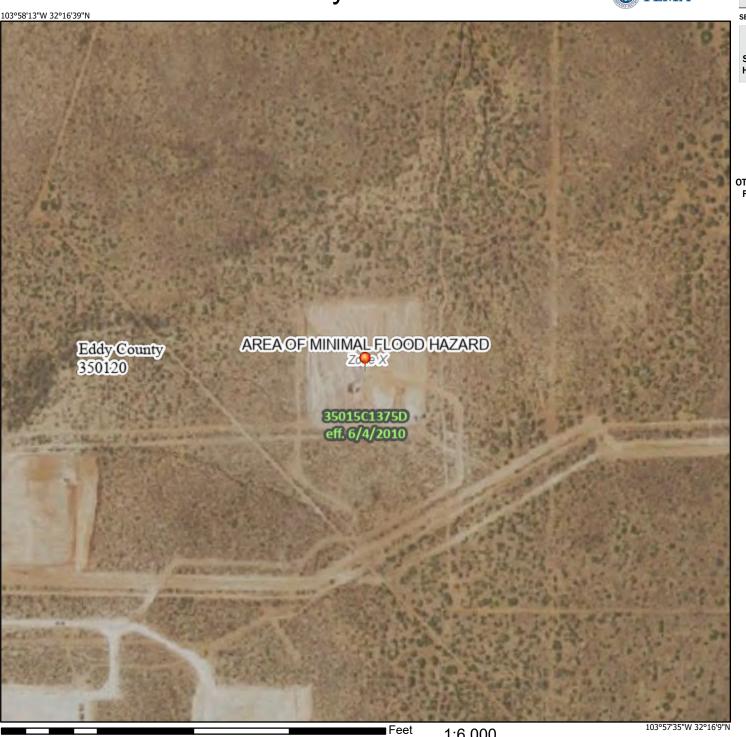
This map is for general reference only. The US Fish and Wildlife Service is not responsible for the accuracy or currentness of the base data shown on this map. All wetlands related data should be used in accordance with the layer metadata found on the Wetlands Mapper web site.

Site is 39,274ft from Mine

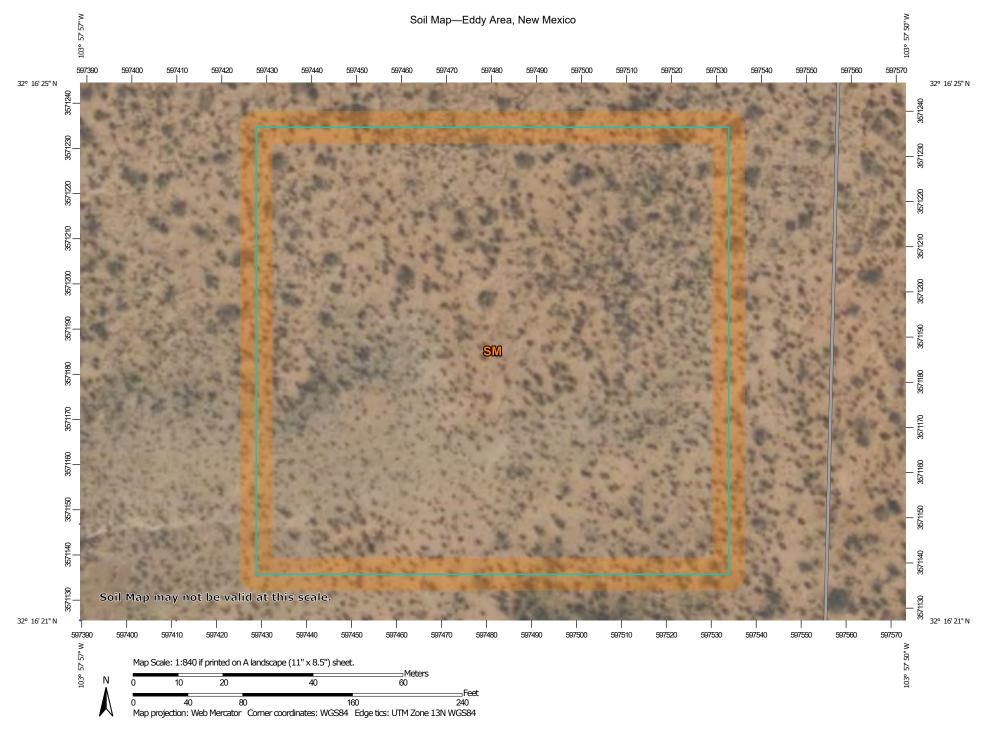


National Flood Hazard Layer FIRMette

SEE FIS REPORT FOR DETAILED LEGEND AND INDEX MAP FOR FIRM PANEL LAYOUT



This map complies with FEMA's standards for the use of digital flood maps if it is not void as described below. The basemap shown complies with FEMA's basemap accuracy standards


an authoritative property location.

The flood hazard information is derived directly from the authoritative NFHL web services provided by FEMA. This map was exported on 9/2/2025 at 9:36 PM and does not reflect changes or amendments subsequent to this date and time. The NFHL and effective information may change or become superseded by new data over time.

This map image is void if the one or more of the following map elements do not appear: basemap imagery, flood zone labels, legend, scale bar, map creation date, community identifiers, FIRM panel number, and FIRM effective date. Map images for unmapped and unmodernized areas cannot be used for regulatory purposes.

2,000

MAP LEGEND

Area of Interest (AOI)

Area of Interest (AOI)

Soils

Soil Map Unit Polygons

Soil Map Unit Lines

Soil Map Unit Points

Special Point Features

Blowout \odot

Borrow Pit

Clay Spot

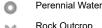
Closed Depression

Gravel Pit

Gravelly Spot

Landfill

Lava Flow


Marsh or swamp

Mine or Quarry

Miscellaneous Water

Rock Outcrop

Saline Spot

Sandy Spot

Severely Eroded Spot

Sinkhole

Slide or Slip

Sodic Spot

Spoil Area

Stony Spot

Very Stony Spot

Wet Spot

Other Special Line Features

Water Features

Streams and Canals

Transportation

Rails

Interstate Highways

US Routes

Major Roads

Local Roads

Background

Aerial Photography

MAP INFORMATION

The soil surveys that comprise your AOI were mapped at 1:20.000.

Warning: Soil Map may not be valid at this scale.

Enlargement of maps beyond the scale of mapping can cause misunderstanding of the detail of mapping and accuracy of soil line placement. The maps do not show the small areas of contrasting soils that could have been shown at a more detailed

Please rely on the bar scale on each map sheet for map measurements.

Source of Map: Natural Resources Conservation Service Web Soil Survey URL:

Coordinate System: Web Mercator (EPSG:3857)

Maps from the Web Soil Survey are based on the Web Mercator projection, which preserves direction and shape but distorts distance and area. A projection that preserves area, such as the Albers equal-area conic projection, should be used if more accurate calculations of distance or area are required.

This product is generated from the USDA-NRCS certified data as of the version date(s) listed below.

Soil Survey Area: Eddy Area, New Mexico Survey Area Data: Version 20, Sep 3, 2024

Soil map units are labeled (as space allows) for map scales 1:50.000 or larger.

Date(s) aerial images were photographed: Feb 7, 2020—May 12. 2020

The orthophoto or other base map on which the soil lines were compiled and digitized probably differs from the background imagery displayed on these maps. As a result, some minor shifting of map unit boundaries may be evident.

Map Unit Legend

Map Unit Symbol	Map Unit Name	Acres in AOI	Percent of AOI
SM	Simona-Bippus complex, 0 to 5 percent slopes	2.6	100.0%
Totals for Area of Interest		2.6	100.0%

Ecological site R070BD002NM Shallow Sandy

Accessed: 09/02/2025

General information

Provisional. A provisional ecological site description has undergone quality control and quality assurance review. It contains a working state and transition model and enough information to identify the ecological site.

Figure 1. Mapped extent

Areas shown in blue indicate the maximum mapped extent of this ecological site. Other ecological sites likely occur within the highlighted areas. It is also possible for this ecological site to occur outside of highlighted areas if detailed soil survey has not been completed or recently updated.

Associated sites

R070BD004NM	Sandy
	Sandy sites often occur in association or in a complex with Shallow Sandy
	Sites.

Similar sites

R070BD004NM	Sandy
	Sandy ecological sites are similar to Shallow Sandy sites in species
	composition and Transition pathways.

Table 1. Dominant plant species

Tree	Not specified
Shrub	Not specified
Herbaceous	Not specified

Physiographic features

This site occures on plains, alluvial fans, uplands, or fan piedmonts. The parent material consists of mixed loamy alluvium or eolian material derived from igneous and sedimentory bedrock. The petrocalcic layer is at a depth of 10 to 25 inches and undulating.

Slopes are nearly level to undulating, usually less than 9 percent. Elevations range from 2,842 to 4,500 feet.

Table 2. Representative physiographic features

Landforms	(1) Plain(2) Fan piedmont(3) Alluvial fan
Elevation	2,842–4,500 ft
Slope	1–9%
Aspect	Aspect is not a significant factor

Climatic features

The average annual precipitation ranges from 8 to 13 inches. Variations of 5 inches, more or less, are common. Over 80 percent of the precipitation falls from April through October. Most of the summer precipitation comes in the form of high intensity – short duration thunderstorms.

Temperatures are characterized by distinct seasonal changes and large annual and diurnal temperature changes. The average annual temperature is 61 degrees with extremes of 25 degrees below zero in the winter to 112 degrees in the summer. The average frost-free season is from 207 to 220 days. The last killing frost is in late March or early April, and the first killing frost is in late October or early November. Temperature and rainfall both favor warm season perennial plant growth. In years of abundant spring moisture, annual forbs and cool season grasses can make up an important component of the site. The vegetation of this site can take advantage of the moisture and the time it falls. Because of the soil profile, little moisture can be stored in the soil for any length of time. Moisture is readily available to the plants from the time it falls. Strong winds from the southwest blow from January through June which rapidly dries out the soil profile during a critical period for plant growth.

Climate data was obtained from http://www.wrcc.sage.dri.edu/summary/climsmnm.html web site using 50% probability for freeze-free and frost-free seasons using 28.5 degrees F and 32.5 degrees F respectively.

Table 3. Representative climatic features

Frost-free period (average)	221 days
Freeze-free period (average)	240 days
Precipitation total (average)	13 in

Influencing water features

This site is not influenced from water from wetlands or streams.

Soil features

Soils are very shallow to shallow, less than 20 inches in depth. Surface and subsurface textures are gravelly loamy sand, gravelly fine sandy loam or fine sandy loam.

An indurated calache layer occurs at depths of 6 to 25 inches and is at an average of 15 inches from the surface. Underlying material textures are very gravelly fine sandy loam, very gravelly sandy loam, gravelly fine sandy loam. Gravels are calcium carbonate concretions, calcium carbonate content ranges from 30 to 65 percent.

The indurated caliche layer typically holds water up in the profile for short periods within the root zone of plants. These soils will blow if left unprotected by vegetation.

Minimum and maximum values listed below represent the characteristic soils for this site.

Characteristic soils are:

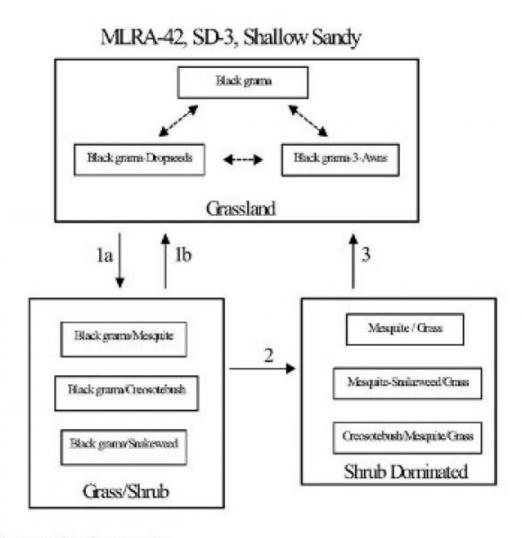
Simona

Jerag

Table 4. Representative soil features

Surface texture	(1) Fine sandy loam (2) Loamy fine sand (3) Gravelly fine sandy loam
Family particle size	(1) Loamy
Drainage class	Well drained to moderately well drained
Permeability class	Moderately slow to moderate
Soil depth	7–24 in
Surface fragment cover <=3"	5–25%
Surface fragment cover >3"	0%
Available water capacity (0-40in)	1–2 in
Calcium carbonate equivalent (0-40in)	5–15%
Electrical conductivity (0-40in)	0–4 mmhos/cm

Sodium adsorption ratio (0-40in)	0
Soil reaction (1:1 water) (0-40in)	7.4–8
Subsurface fragment volume <=3" (Depth not specified)	5–25%
Subsurface fragment volume >3" (Depth not specified)	0%


Ecological dynamics

Overview

The Shallow Sandy site occurs on upland plains, and tops of low ridges and mesas, associated with Sandy, Loamy Sand, and Shallow sites. Coarse to moderately coarse soil surface textures, shallow depth (<20 inches) to an indurated caliche layer (petrocalcic horizon), and an overwhelming dominance by black grama help to distinguish this site. The historic plant community of the Shallow Sandy site is a black grama dominated grassland sparsely dotted with shrubs. Shrubs, especially mesquite and creosotebush can increase or colonize due to the dispersal of shrub seeds by livestock or wildlife. This increase in mesquite and colonization of creosotebush may be enhanced by proximity to areas with existing high shrub densities. Fire suppression, and the loss of grass cover due to overgrazing or drought may facilitate the increase and encroachment of shrubs. Persistent loss of grass cover, competition for resources by shrubs, and periods of climate with increased winter precipitation and dry summers, may initiate the transition to a shrubdominated state.

State and transition model

Plant Communities and Transitional Pathways (diagram)

- la. Seed dispersal, drought, overgrazing, fire suppression.
- Prescribed fire, brush control, prescribed grazing.
- Persistent loss of grass cover, resource competition, increased winter precipitation.
- Brush control, range seeding, prescribed grazing.

State 1 Historic Climax Plant Community

Community 1.1 Historic Climax Plant Community

Grassland: This site responds well to management and is resistant to state change, due to the shallow depth to petrocalcic horizon and sandy surface textures. The sandy surface textures allow rapid water infiltration and the petrocalcic horizon helps to keep water

perched and available to shallow rooted grasses. Black grama is the dominant species in the historic plant community, averaging 50 to 60 percent of the total production for this site. Bush muhly, blue grama, and dropseeds are present as sub-dominants. Typically, yucca, javalinabush, range ratany, prickly pear, and mesquite are sparsely dotted across the landscape. Leatherweed croton, cutleaf happlopappus, wooly groundsel, and threadleaf groundsel are common forbs. Continuous heavy grazing or extended periods of drought will cause a loss of grass cover characterized by a decrease in black grama, bush muhly, blue and sideoats grama, plains bristlegrass, and Arizona cottontop. Dropseeds and or threeawns may increase and become sub-dominant to black grama. Continued loss of grass cover in conjunction with dispersal of shrub seeds and fire suppression is believed to cause the transition to a state with increased amounts of shrubs (Grass/Shrub state). Diagnosis: Black grama is the dominant grass species. Grass cover uniformly distributed. Shrubs are a minor component averaging only two to five percent canopy cover. Litter cover is high (40-50 percent of area), and litter movement is limited to smaller size class litter and short distances (<. 5m). Other grasses that could appear on this site would include: six-weeks grama, fluffgrass, false-buffalograss, hairy grama, little bluestem, bristle panicum, cane bluestem, Indian ricegrass, tridens spp., and red lovegrass. Other woody plants include: pricklypear, cholla, fourwing saltbush, catclaw mimosa, winterfat, American tarbush and mesquite. Other forbs include: globemallow, verbena, desert holly, senna, plains blackfoot, trailing fleabane, fiddleneck, deerstongue, wooly Indianwheat, and locoweed.

Table 5. Annual production by plant type

Plant Type	Low (Lb/Acre)	Representative Value (Lb/Acre)	High (Lb/Acre)
Grass/Grasslike	474	652	830
Forb	78	107	136
Shrub/Vine	48	66	84
Total	600	825	1050

Table 6. Ground cover

Tree foliar cover	0%
Shrub/vine/liana foliar cover	0%
Grass/grasslike foliar cover	30-35%
Forb foliar cover	0%
Non-vascular plants	0%
Biological crusts	0%
Litter	40-50%
Surface fragments >0.25" and <=3"	0%
Surface fragments >3"	0%

Bedrock	0%
Water	0%
Bare ground	15-25%

Figure 5. Plant community growth curve (percent production by month). NM2802, R042XC002NM-Shallow Sandy-HCPC. SD-3 Shallow Sandy - Warm season plant community.

Jan	Feb	Mar	Apr	May	Jun	Jul	Aug	Sep	Oct	Nov	Dec
0	0	3	5	10	10	25	30	12	5	0	0

State 2 Grass/Shrub

Community 2.1 Grass/Shrub

Grass/Shrub: This state is characterized by the notable presence of shrubs, especially mesquite, broom snakeweed, and/or creosotebush, however grasses remain as the dominant species. Black grama is the dominant grass species. Threeawns and or dropseeds are sub-dominant. The susceptibility of the Shallow Sandy site to shrub encroachment may be higher when located adjacent to other sites with high densities of mesquite or creosotebush. Retrogression within this site is characterized by decreases in grass cover and increasing densities of shrubs. Diagnosis: Black grama remains as the dominant grass species. Grass cover varies in response to the amount of shrub increase, ranging from uniform to patchy. Shrubs are found at increased densities relative to the grassland state, especially mesquite, creosotebush, or broom snakeweed. Transition to Grass/Shrub (1a) Historically fire may have kept mesquite and other shrubs in check by completely killing some species and disrupting seed production cycles and suppressing the establishment of shrub seedlings in others. Fire suppression combined with seed dispersal by livestock and wildlife is believed to be the factors responsible for the establishment and increase in shrubs.1, 3 Loss of grass cover due to overgrazing, prolonged periods of drought, or their combination, reduces fire fuel loads and increases the susceptibility of the site to shrub establishment. Key indicators of approach to transition: Increase in the relative abundance of dropseeds and threeawns Presence of shrub seedlings Loss of organic matter—evidenced by an increase in physical soil crusts 8 Transition back to Grassland (1b) Brush control is necessary to initiate the transition back to the grassland state. If adequate fuel loads remain, possibly the reintroduction of fire as a management tool will assist in the transition back, however, mixed results have been observed concerning the effects of fire on black grama grasslands.6 Prescribed grazing will help ensure adequate rest following brush control and will assist in the establishment and maintenance of grass cover capable of sustaining fire.

State 3 Shrub Dominated

Community 3.1 Shrub Dominated

Shrub-Dominated: Across the range of soil types included in the Shallow Sandy site, mesquite is typically the dominant shrub, but it does occur as a co-dominant or subdominant species with creosotebush or broom snakeweed. Mesquite tends to dominate when the Shallow Sandy site occurs as part of a complex or in association with Sandy or Loamy Sand sites. Creosotebush tends to dominate on Shallow Sandy sites that occur as part of, or adjacent to Shallow Sites. Broom snakeweed increases in response to heavy grazing, but tends to cycle in and out depending on timing of rainfall. However, once the site is dominated by shrubs and snakeweed becomes well established, it tends to remain as a major component in the shrub dominated state. Diagnosis: Mesquite, creosotebush, or snakeweed cover is high, exceeding that of grasses. Grass cover is patchy with large connected bare areas present. Black grama, threeawns, or dropseeds may be the dominant grass. Evidence of accelerated wind erosion in the form of pedestalling of plants, and soil deposition around shrub bases may be common. Transition to Shrub-Dominated (2) Persistent loss of grass cover and the resulting increased competition between shrubs and remaining grasses for dwindling resources (especially soil moisture) may drive this transition.5 Additionally periods of increased winter precipitation may facilitate periodic episodes of shrub expansion and establishment. 4 Key indicators of approach to transition: Increase in size and frequency of bare patches. Loss of grass cover in shrub interspaces. Increased signs of erosion, evidenced by pedestalling of plants, and soil and litter deposition on leeward side of plants. 7 Transition back to Grassland (3) Brush control is necessary to reduce competition from shrubs and reestablish grasses. Range seeding may be necessary if insufficient grasses remain, The benefits, and costs, will vary depending upon the degree of site degradation, and adequate precipitation following seeding.

Additional community tables

Table 7. Community 1.1 plant community composition

Group	Common Name	Symbol	Scientific Name	Annual Production (Lb/Acre)	Foliar Cover (%)			
Grass/Grasslike								
1	Warm Season	413–495						
	black grama	BOER4	Bouteloua eriopoda	413–495	-			
2	Warm Season	41–83						
	bush muhly	MUPO2	Muhlenbergia porteri	41–83	_			
3	Warm Season			41–83				

	•	ı	1	1			
	blue grama	BOGR2	Bouteloua gracilis	41–83			
4	Warm Season	_		25–41			
	sideoats grama	BOCU	Bouteloua curtipendula	25–41	_		
5	Warm Season	Warm Season					
	spike dropseed	SPCO4	Sporobolus contractus	41–83	_		
	sand dropseed	SPCR	Sporobolus cryptandrus	41–83	_		
	mesa dropseed	SPFL2	Sporobolus flexuosus	41–83	_		
6	Warm Season			17–41			
	threeawn	ARIST	Aristida	17–41	_		
7	Warm Season	-	-	41–83			
	Arizona cottontop	DICA8	Digitaria californica	41–83	_		
	plains bristlegrass	SEVU2	Setaria vulpiseta	41–83	_		
8	Warm Season	Warm Season					
	mat sandbur	CELO3	Cenchrus longispinus	41–83	_		
	hooded windmill grass	CHCU2	Chloris cucullata	41–83	_		
9	Other Perennial Grass	25–41					
	Grass, perennial	2GP	Grass, perennial	25–41	_		
Shru	ıb/Vine	•					
10	Shrub			8–25			
	javelina bush	COER5	Condalia ericoides	8–25	_		
11	Shrub	'		8–25			
	yucca	YUCCA	Yucca	8–25			
12	Shrub	8–25					
	jointfir	EPHED	Ephedra	8–25			
	littleleaf ratany	KRER	Krameria erecta	8–25			
13	Shrub	8–25					
	featherplume	DAFO	Dalea formosa	8–25			
14	Shrub	Shrub					
	broom snakeweed	GUSA2	Gutierrezia sarothrae	8–25	_		
15	Other Shrubs	25–41					
	Shrub (>.5m)	2SHRUB	Shrub (>.5m)	25–41			
Forb)		ı	<u> </u>			
16	Forb	Forb					
	leatherweed	CRPOP	Croton pottsii var. pottsii	17–41			
	+	+	 	+			

	Goodding's tansyaster	MAPIG2	Machaeranthera pinnatifida ssp. gooddingii var. gooddingii	17–41	-
17	Forb	17–41			
	woolly groundsel	PACA15	Packera cana	17–41	_
	threadleaf ragwort	SEFLF	Senecio flaccidus var. flaccidus	17–41	-
18	Forb	8–25			
	whitest evening primrose	OEAL	Oenothera albicaulis	8–25	-
19	Other Forbs	8–25			
	Forb (herbaceous, not grass nor grass-like)	2FORB	Forb (herbaceous, not grass nor grass-like)	8–25	_

Animal community

This site provides habitats which support a resident animal community that is characterized by pronghorn antelope, swift fox, black-tailed jackrabbit, spotted ground squirrel, Ord's kangaroo rat, northern grasshopper mouse, coyote, horned lark, meadowlark, lark bunting, scaled quail, morning dove, side-blotched lizard, round-tailed horned lizard, marbled whiptail, prairie rattlesnake and ornate box turtle.

Hydrological functions

The runoff curve numbers are determined by field investigations using hydraulic cover conditions and hydrologic soil groups.

Hydrologic Interpretations Soil Series Hydrologic Group Jarag D Simona D

Recreational uses

This site offers recreation for hiking, horseback riding, nature observation and photography, and quail and dove hunting. During years of abundant spring moisture, this site displays a riot of color from wildflowers during May and June. A few summer and fall flowers also occur.

Wood products

The natural potential plant community of this site affords little or no wood products. Where the site has been invaded by mesquite or cholla cactus the roots and stems of these plants provide attractive material for a variety of curiosities, such as lamps and small furniture.

Other products

This site is suitable for grazing by all kinds and classes of livestock during all seasons of the year. Because of the sandy textures and shallow profile, this site will respond rapidly to management. As this site deteriorates, plants such as black grama, bush muhly, blue and sideoats grama, plains bristlegrass and Arizona cottontop, will decrease and be replaced by plants such as threeawns, mesquite, creosote bush, and broom snakeweed. This also causes a decrease in ground cover, leaving the soil to blow. This site responds best to a system of management that rotates the season of use.

Other information

Guide to Suggested Initial Stocking Rate Acres per Animal Unit Month Similarity Index Ac/AUM

100 - 762.5 - 3.5

75 - 513.2 - 4.6

50 - 264.5 - 7.5

25 - 07.6 +

Inventory data references

Data collection for this site was done in conjunction with the progressive soil surveys within the Southern Desertic Basins, Plains and Mountains, Major Land Resource Areas of New Mexico. This site has been mapped and correlated with soils in the following soil surveys. Eddy County, Lea County, and Chaves County.

Other references

Literature References:

- 1. Brooks, M.L. and D.A. Pyke. 2001. Invasive plants and fire in the deserts of North America. Pages 1–14 in K.E.M. Galley and T.P. Wilson (eds.). Proceedings of the Invasive Species Workshop: the Role of Fire in the Control and Spread of Invasive Species.
- 2. Hennessy, J.T., R.P. Gibbens, J.M. Tromble, and M. Cardenas. 1983. Water properties of caliche. J. Range Manage. 36: 723-726.
- 3. Humphrey, R.R. 1974. Fire in the deserts and desert grassland of North America. In:

Kozlowski, T. T.; Ahlgren, C. E., eds. Fire and ecosystems. New York: Academic Press: 365-400.

- 4. Moir, W.H., and J. A. Ludwig. 1991. Plant succession and changing land features in desert grasslands. P. 15-18. In P.F. Ffolliott and W.T. Swank (eds.) People and the temperate region: a summary of research from the United States Man and the Biosphere Program 1991. U.S. Dept. State, Publ No. 9839, Nat. Tech. Info. Serv., U.S. Dept. Commerce, Springfield, Illinois. 63 p.
- 5. Tiedemann, A. R. and J. O. Klemmedson. 1977. Effect of mesquite trees on vegetation and soils in the desert grassland. J. Range Manage. 30: 361-367.
- 6. U.S. Department of Agriculture, Forest Service, Rocky Mountain Research Station, Fire Sciences Laboratory (2002, September). Fire Effects Information System, [Online]. Available: http://www.fs.fed.us/database/feis/ [accessed 2/10/03].
- 7. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Wind Erosion. Rangeland Sheet 10 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html
- 8. U.S. Department of Agriculture, Natural Resources Conservation Service. 2001. Soil Quality Information Sheets. Rangeland Soil Quality—Physical and Biological Soil Crusts. Rangeland Sheet 7 [Online]. Available: http://www.statlab.iastate.edu/survey/SQI/range.html

Contributors

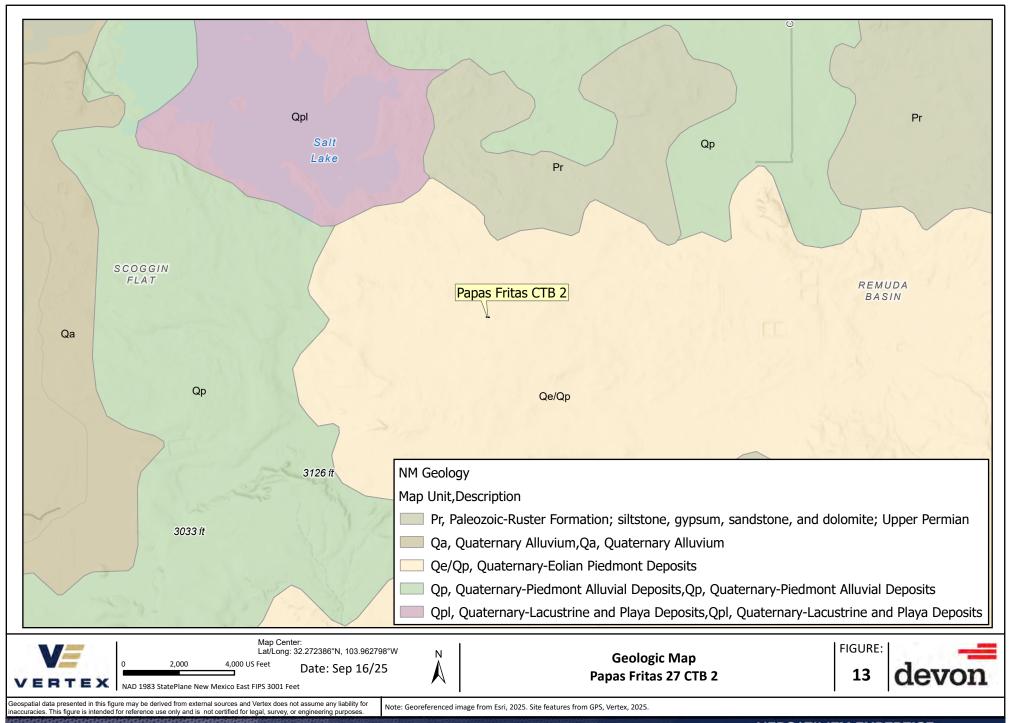
David Trujillo
Don Sylvester

Rangeland health reference sheet

Interpreting Indicators of Rangeland Health is a qualitative assessment protocol used to determine ecosystem condition based on benchmark characteristics described in the Reference Sheet. A suite of 17 (or more) indicators are typically considered in an assessment. The ecological site(s) representative of an assessment location must be known prior to applying the protocol and must be verified based on soils and climate. Current plant community cannot be used to identify the ecological site.

Author(s)/participant(s)	
Contact for lead author	
Date	

Approved by	
Approval date	
Composition (Indicators 10 and 12) based on	Annual Production


Indicators

1.	Number and extent of rills:
2.	Presence of water flow patterns:
3.	Number and height of erosional pedestals or terracettes:
4.	Bare ground from Ecological Site Description or other studies (rock, litter, lichen, moss, plant canopy are not bare ground):
5.	Number of gullies and erosion associated with gullies:
6.	Extent of wind scoured, blowouts and/or depositional areas:
7.	Amount of litter movement (describe size and distance expected to travel):
8.	Soil surface (top few mm) resistance to erosion (stability values are averages - most sites will show a range of values):
9.	Soil surface structure and SOM content (include type of structure and A-horizon color and thickness):

10.	10. Effect of community phase composition (relative proportion of different function groups) and spatial distribution on infiltration and runoff:	
11.	Presence and thickness of compaction layer (usually none; describe soil profile features which may be mistaken for compaction on this site):	
12.	Functional/Structural Groups (list in order of descending dominance by above-ground annual-production or live foliar cover using symbols: >>, >, = to indicate much greater than, greater than, and equal to):	
	Dominant:	
	Sub-dominant:	
	Other:	
	Additional:	
13.	Amount of plant mortality and decadence (include which functional groups are expected to show mortality or decadence):	
14.	Average percent litter cover (%) and depth (in):	
15.	Expected annual annual-production (this is TOTAL above-ground annual-production, not just forage annual-production):	
16.	Potential invasive (including noxious) species (native and non-native). List species which BOTH characterize degraded states and have the potential to become a dominant or co-dominant species on the ecological site if their future establishment and growth is not actively controlled by management interventions. Species that become dominant for only one to several years (e.g., short-term response to drought or wildfire) are not invasive plants. Note that unlike other indicators, we are describing	

what is NOT expected in the reference state for the ecological site:

17. Perennial plant reproductive capability:

IPaC

U.S. Fish & Wildlife Service

IPaC resource list

This report is an automatically generated list of species and other resources such as critical habitat (collectively referred to as *trust resources*) under the U.S. Fish and Wildlife Service's (USFWS) jurisdiction that are known or expected to be on or near the project area referenced below. The list may also include trust resources that occur outside of the project area, but that could potentially be directly or indirectly affected by activities in the project area. However, determining the likelihood and extent of effects a project may have on trust resources typically requires gathering additional site-specific (e.g., vegetation/species surveys) and project-specific (e.g., magnitude and timing of proposed activities) information.

Below is a summary of the project information you provided and contact information for the USFWS office(s) with jurisdiction in the defined project area. Please read the introduction to each section that follows (Endangered Species, Migratory Birds, USFWS Facilities, and NWI Wetlands) for additional information applicable to the trust resources addressed in that section.

Location

Eddy County, New Mexico

Local office

New Mexico Ecological Services Field Office

\((505) 346-2525

(505) 346-2542

2105 Osuna Road Ne

Endangered species

This resource list is for informational purposes only and does not constitute an analysis of project level impacts.

The primary information used to generate this list is the known or expected range of each species. Additional areas of influence (AOI) for species are also considered. An AOI includes areas outside of the species range if the species could be indirectly affected by activities in that area (e.g., placing a dam upstream of a fish population even if that fish does not occur at the dam site, may indirectly impact the species by reducing or eliminating water flow downstream). Because species can move, and site conditions can change, the species on this list are not guaranteed to be found on or near the project area. To fully determine any potential effects to species, additional site-specific and project-specific information is often required.

Section 7 of the Endangered Species Act **requires** Federal agencies to "request of the Secretary information whether any species which is listed or proposed to be listed may be present in the area of such proposed action" for any project that is conducted, permitted, funded, or licensed by any Federal agency. A letter from the local office and a species list which fulfills this requirement can **only** be obtained by requesting an official species list from either the Regulatory Review section in IPaC (see directions below) or from the local field office directly.

For project evaluations that require USFWS concurrence/review, please return to the IPaC website and request an official species list by doing the following:

- 1. Draw the project location and click CONTINUE.
- 2. Click DEFINE PROJECT.
- 3. Log in (if directed to do so).
- 4. Provide a name and description for your project.
- 5. Click REQUEST SPECIES LIST.

Listed species¹ and their critical habitats are managed by the <u>Ecological Services Program</u> of the U.S. Fish and Wildlife Service (USFWS) and the fisheries division of the National Oceanic and Atmospheric Administration (NOAA Fisheries²).

Species and critical habitats under the sole responsibility of NOAA Fisheries are **not** shown on this list. Please contact <u>NOAA Fisheries</u> for <u>species under their jurisdiction</u>.

- Species listed under the <u>Endangered Species Act</u> are threatened or endangered; IPaC also shows species that are candidates, or proposed, for listing. See the <u>listing status page</u> for more information. IPaC only shows species that are regulated by USFWS (see FAQ).
- 2. <u>NOAA Fisheries</u>, also known as the National Marine Fisheries Service (NMFS), is an office of the National Oceanic and Atmospheric Administration within the Department of Commerce.

The following species are potentially affected by activities in this location:

Birds

NAME STATUS

Northern Aplomado Falcon Falco femoralis septentrionalis

No critical habitat has been designated for this species.

https://ecos.fws.gov/ecp/species/1923

EXPN

Piping Plover Charadrius melodus

There is **final** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/6039

Threatened

Clams

NAME STATUS

Texas Hornshell Popenaias popeii

Texas Horristicii i openalas popel

Wherever found

There is **proposed** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/919

Endangered

Insects

NAME STATUS

Monarch Butterfly Danaus plexippus

Wherever found

There is **proposed** critical habitat for this species. Your location does not overlap the critical habitat.

https://ecos.fws.gov/ecp/species/9743

Proposed Threatened

Critical habitats

Potential effects to critical habitat(s) in this location must be analyzed along with the endangered species themselves.

There are no critical habitats at this location.

You are still required to determine if your project(s) may have effects on all above listed species.

Bald & Golden Eagles

Bald and Golden Eagles are protected under the Bald and Golden Eagle Protection Act ² and the Migratory Bird Treaty Act (MBTA) ¹. Any person or organization who plans or conducts activities that may result in impacts to Bald or Golden Eagles, or their nests, should follow appropriate regulations and implement required avoidance and minimization measures, as described in the various links on this page.

The <u>data</u> in this location indicates that no eagles have been observed in this area. This does not mean eagles are not present in your project area, especially if the area is difficult to survey. Please review the 'Steps to Take When No Results Are Returned' section of the <u>Supplemental Information on Migratory Birds and Eagles document</u> to determine if your project is in a poorly surveyed area. If it is, you may need to rely on other resources to determine if eagles may be present (e.g. your local FWS field office, state surveys, your own surveys).

Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds
 https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds
- Nationwide avoidance and minimization measures for birds
 https://www.fws.gov/sites/default/files/documents/nationwide-standard-conservation-measures.pdf
- Supplemental Information for Migratory Birds and Eagles in IPaC
 https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action

Bald & Golden Eagles FAQs

What does IPaC use to generate the potential presence of bald and golden eagles in my specified location?

The potential for eagle presence is derived from data provided by the <u>Avian Knowledge Network (AKN)</u>. The AKN data is based on a growing collection of <u>survey, banding, and citizen science datasets</u> and is queried and filtered to return a list of those birds reported as occurring in the 10km grid cell(s) which your project intersects, and that have been identified as warranting special attention because they are an eagle (<u>Bald and Golden Eagle Protection Act</u> requirements may apply).

Proper interpretation and use of your eagle report

On the graphs provided, please look carefully at the survey effort (indicated by the black vertical line) and for the existence of the "no data" indicator (a red horizontal line). A high survey effort is the key component. If the survey effort is high, then the probability of presence score can be viewed as more dependable. In contrast, a low survey effort line or no data line (red horizontal) means a lack of data and, therefore, a lack of certainty about presence of the species. This list is not perfect; it is simply a starting point for identifying what birds have the potential to be in your project area, when they might be there, and if they might be breeding (which means nests

Migratory birds

The Migratory Bird Treaty Act (MBTA) ¹ prohibits the take (including killing, capturing, selling, trading, and transport) of protected migratory bird species without prior authorization by the Department of Interior U.S. Fish and Wildlife Service (Service).

- 1. The Migratory Birds Treaty Act of 1918.
- 2. The Bald and Golden Eagle Protection Act of 1940.

Additional information can be found using the following links:

- Eagle Management https://www.fws.gov/program/eagle-management
- Measures for avoiding and minimizing impacts to birds
 https://www.fws.gov/library/collections/avoiding-and-minimizing-incidental-take-migratory-birds
- Nationwide avoidance and minimization measures for birds
- Supplemental Information for Migratory Birds and Eagles in IPaC
 https://www.fws.gov/media/supplemental-information-migratory-birds-and-bald-and-golden-eagles-may-occur-project-action

Measures for Proactively Minimizing Migratory Bird Impacts

Your IPaC Migratory Bird list showcases <u>birds of concern</u>, including <u>Birds of Conservation</u> <u>Concern (BCC)</u>, in your project location. This is not a comprehensive list of all birds found in your project area. However, you can help proactively minimize significant impacts to all birds at your project location by implementing the measures in the <u>Nationwide avoidance and minimization</u> <u>measures for birds</u> document, and any other project-specific avoidance and minimization measures suggested at the link <u>Measures for avoiding and minimizing impacts to birds</u> for the birds of concern on your list below.

Ensure Your Migratory Bird List is Accurate and Complete

If your project area is in a poorly surveyed area, your list may not be complete and you may need to rely on other resources to determine what species may be present (e.g. your local FWS field office, state surveys, your own surveys). Please review the <u>Supplemental Information on Migratory Birds and Eagles document</u>, to help you properly interpret the report for your specified location, including determining if there is sufficient data to ensure your list is accurate.

For guidance on when to schedule activities or implement avoidance and minimization measures to reduce impacts to migratory birds on your list, see the "Probability of Presence Summary" below to see when these birds are most likely to be present and breeding in your project area.

Review the FAQs

The FAQs below provide important additional information and resources.

NAME BREEDING SEASON

Survey Effort ()

Vertical black lines superimposed on probability of presence bars indicate the number of surveys performed for that species in the 10km grid cell(s) your project area overlaps.

No Data ()

A week is marked as having no data if there were no survey events for that week.

Survey Timeframe

Surveys from only the last 10 years are used in order to ensure delivery of currently relevant information. The exception to this is areas off the Atlantic coast, where bird returns are based on all years of available data, since data in these areas is currently much more sparse.

Facilities

Wildlife refuges and fish hatcheries

Refuge and fish hatchery information is not available at this time

Wetlands in the National Wetlands Inventory (NWI)

Impacts to <u>NWI wetlands</u> and other aquatic habitats may be subject to regulation under Section 404 of the Clean Water Act, or other State/Federal statutes.

For more information please contact the Regulatory Program of the local <u>U.S. Army Corps of Engineers District</u>.

This location did not intersect any wetlands mapped by NWI.

NOTE: This initial screening does **not** replace an on-site delineation to determine whether wetlands occur. Additional information on the NWI data is provided below.

Data limitations

The Service's objective of mapping wetlands and deepwater habitats is to produce reconnaissance level information on the location, type and size of these resources. The maps are prepared from the analysis of high altitude imagery. Wetlands are identified based on vegetation, visible hydrology and geography. A margin of error is inherent in the use of imagery; thus, detailed on-the-ground inspection of any particular site may result in revision of the wetland boundaries or classification established through image analysis.

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116
Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS

Action 521811

QUESTIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	521811
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Prerequisites	
Incident ID (n#)	nAPP2522525572
Incident Name	NAPP2522525572 PAPAS FRITAS 27 CTB 2 @ FAPP2123649109
Incident Type	Produced Water Release
Incident Status	Remediation Plan Received
Incident Facility	[fAPP2123649109] PAPAS FRITAS 27 CTB 2

Location of Release Source	
Please answer all the questions in this group.	
Site Name	PAPAS FRITAS 27 CTB 2
Date Release Discovered	08/12/2025
Surface Owner	Federal

Incident Details		
Please answer all the questions in this group.		
Incident Type	Produced Water Release	
Did this release result in a fire or is the result of a fire	No	
Did this release result in any injuries	No	
Has this release reached or does it have a reasonable probability of reaching a watercourse	No	
Has this release endangered or does it have a reasonable probability of endangering public health	No	
Has this release substantially damaged or will it substantially damage property or the environment	No	
Is this release of a volume that is or may with reasonable probability be detrimental to fresh water	No	

Nature and Volume of Release		
Material(s) released, please answer all that apply below. Any calculations or specific justifications for the volumes provided should be attached to the follow-up C-141 submission.		
Crude Oil Released (bbls) Details	Not answered.	
Produced Water Released (bbls) Details	Cause: Corrosion Dump Line Produced Water Released: 6 BBL Recovered: 5 BBL Lost: 1 BBL.	
Is the concentration of chloride in the produced water >10,000 mg/l	Yes	
Condensate Released (bbls) Details	Not answered.	
Natural Gas Vented (Mcf) Details	Not answered.	
Natural Gas Flared (Mcf) Details	Not answered.	
Other Released Details	Not answered.	
Are there additional details for the questions above (i.e. any answer containing Other, Specify, Unknown, and/or Fire, or any negative lost amounts)	Pinhole leak on water line of separator allowed release to pad surface.	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 2

Action 521811

QUESTIONS (continued)

Operator: DEVON ENERGY PRODUCTION COMPANY, LP	OGRID: 6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	521811
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)
QUESTIONS	
Nature and Volume of Release (continued)	
Is this a gas only submission (i.e. only significant Mcf values reported)	No, according to supplied volumes this does not appear to be a "gas only" report.
Was this a major release as defined by Subsection A of 19.15.29.7 NMAC	No
Reasons why this would be considered a submission for a notification of a major release	Unavailable.
With the implementation of the 19.15.27 NMAC (05/25/2021), venting and/or flaring of natural gas (i.e.	e. gas only) are to be submitted on the C-129 form.
F. 11. 12	
Initial Response	
The responsible party must undertake the following actions immediately unless they could create a s	
The source of the release has been stopped	True
The impacted area has been secured to protect human health and the environment	True
Released materials have been contained via the use of berms or dikes, absorbent pads, or other containment devices	True
All free liquids and recoverable materials have been removed and managed appropriately	True
If all the actions described above have not been undertaken, explain why	Not answered.
	ation immediately after discovery of a release. If remediation has begun, please prepare and attach a narrative of ted or if the release occurred within a lined containment area (see Subparagraph (a) of Paragraph (5) of valuation in the follow-up C-141 submission.
to report and/or file certain release notifications and perform corrective actions for releathe OCD does not relieve the operator of liability should their operations have failed to a	knowledge and understand that pursuant to OCD rules and regulations all operators are required ases which may endanger public health or the environment. The acceptance of a C-141 report by adequately investigate and remediate contamination that pose a threat to groundwater, surface t does not relieve the operator of responsibility for compliance with any other federal, state, or
I hereby agree and sign off to the above statement	Name: James Raley Title: EHS Professional Email: jim.raley@dvn.com

Sante Fe Main Office Phone: (505) 476-3441 General Information

Phone: (505) 629-6116

Online Phone Directory
https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 3

Action 521811

QUESTIONS (continued)

ı	Operator:	OGRID:
ı	DEVON ENERGY PRODUCTION COMPANY, LP	6137
ı	333 West Sheridan Ave.	Action Number:
ı	Oklahoma City, OK 73102	521811
ı		Action Type:
ı		[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Site Characterization	
Please answer all the questions in this group (only required when seeking remediation plan approva release discovery date.	l and beyond). This information must be provided to the appropriate district office no later than 90 days after the
What is the shallowest depth to groundwater beneath the area affected by the release in feet below ground surface (ft bgs)	Less than or equal 25 (ft.)
What method was used to determine the depth to ground water	NM OSE iWaters Database Search
Did this release impact groundwater or surface water	No
What is the minimum distance, between the closest lateral extents of the release ar	nd the following surface areas:
A continuously flowing watercourse or any other significant watercourse	Between 1 and 5 (mi.)
Any lakebed, sinkhole, or playa lake (measured from the ordinary high-water mark)	Between 1 and 5 (mi.)
An occupied permanent residence, school, hospital, institution, or church	Between 1 and 5 (mi.)
A spring or a private domestic fresh water well used by less than five households for domestic or stock watering purposes	Between 1 and 5 (mi.)
Any other fresh water well or spring	Greater than 5 (mi.)
Incorporated municipal boundaries or a defined municipal fresh water well field	Greater than 5 (mi.)
A wetland	Between 1 and 5 (mi.)
A subsurface mine	Greater than 5 (mi.)
An (non-karst) unstable area	Zero feet, overlying, or within area
Categorize the risk of this well / site being in a karst geology	Medium
A 100-year floodplain	Between 1 and 5 (mi.)
Did the release impact areas not on an exploration, development, production, or storage site	No

Remediation Plan	
Please answer all the questions that apply or are indicated. This information must be prov	vided to the appropriate district office no later than 90 days after the release discovery date.
Requesting a remediation plan approval with this submission	Yes
Attach a comprehensive report demonstrating the lateral and vertical extents of soil contain	mination associated with the release have been determined, pursuant to 19.15.29.11 NMAC and 19.15.29.13 NMAC.
Have the lateral and vertical extents of contamination been fully delineated	Yes
Was this release entirely contained within a lined containment area	No
Soil Contamination Sampling: (Provide the highest observable value for each	n, in milligrams per kilograms.)
Chloride (EPA 300.0 or SM4500 Cl B)	7400
TPH (GRO+DRO+MRO) (EPA SW-846 Method 8015M)	0
GRO+DRO (EPA SW-846 Method 8015M)	0
BTEX (EPA SW-846 Method 8021B or 8260B)	0
Benzene (EPA SW-846 Method 8021B or 8260B)	0
Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes co which includes the anticipated timelines for beginning and completing the remediation.	ompleted efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC
On what estimated date will the remediation commence	11/20/2025
On what date will (or did) the final sampling or liner inspection occur	12/10/2025
On what date will (or was) the remediation complete(d)	01/26/2026
What is the estimated surface area (in square feet) that will be reclaimed	0
What is the estimated volume (in cubic yards) that will be reclaimed	0
What is the estimated surface area (in square feet) that will be remediated	3487
What is the estimated volume (in cubic yards) that will be remediated	350

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 4

Action 521811

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	521811
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Remediation Plan (continued)		
Please answer all the questions that apply or are indicated. This information must be provided to the appropriate district office no later than 90 days after the release discovery date.		
This remediation will (or is expected to) utilize the following processes to remediate / reduce contaminants:		
(Select all answers below that apply.)		
(Ex Situ) Excavation and off-site disposal (i.e. dig and haul, hydrovac, etc.)	Yes	
Which OCD approved facility will be used for off-site disposal	fEEM0112334510 HALFWAY DISPOSAL AND LANDFILL	
OR which OCD approved well (API) will be used for off-site disposal	Not answered.	
OR is the off-site disposal site, to be used, out-of-state	Not answered.	
OR is the off-site disposal site, to be used, an NMED facility	Not answered.	
(Ex Situ) Excavation and on-site remediation (i.e. On-Site Land Farms)	Not answered.	
(In Situ) Soil Vapor Extraction	Not answered.	
(In Situ) Chemical processing (i.e. Soil Shredding, Potassium Permanganate, etc.)	Not answered.	
(In Situ) Biological processing (i.e. Microbes / Fertilizer, etc.)	Not answered.	
(In Situ) Physical processing (i.e. Soil Washing, Gypsum, Disking, etc.)	Not answered.	
Ground Water Abatement pursuant to 19.15.30 NMAC	Not answered.	
OTHER (Non-listed remedial process)	Not answered.	
0 0 1 11 0 140 15 00 11 11 11 11 11 11 11 11 11 11	7	

Per Subsection B of 19.15.29.11 NMAC unless the site characterization report includes completed efforts at remediation, the report must include a proposed remediation plan in accordance with 19.15.29.12 NMAC, which includes the anticipated timelines for beginning and completing the remediation.

I hereby certify that the information given above is true and complete to the best of my knowledge and understand that pursuant to OCD rules and regulations all operators are required to report and/or file certain release notifications and perform corrective actions for releases which may endanger public health or the environment. The acceptance of a C-141 report by the OCD does not relieve the operator of liability should their operations have failed to adequately investigate and remediate contamination that pose a threat to groundwater, surface water, human health or the environment. In addition, OCD acceptance of a C-141 report does not relieve the operator of responsibility for compliance with any other federal, state, or local laws and/or regulations.

Name: James Raley Title: EHS Professional I hereby agree and sign off to the above statement Email: jim.raley@dvn.com Date: 11/03/2025

The OCD recognizes that proposed remediation measures may have to be minimally adjusted in accordance with the physical realities encountered during remediation. If the responsible party has any need to

significantly deviate from the remediation plan proposed, then it should consult with the division to determine if another remediation plan submission is required.

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 5

Action 521811

QUESTIONS (continued)

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	521811
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

QUESTIONS

Deferral Requests Only	
Only answer the questions in this group if seeking a deferral upon approval this submission. Each of the following items must be confirmed as part of any request for deferral of remediation.	
Requesting a deferral of the remediation closure due date with the approval of this submission	No

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

QUESTIONS, Page 6

Action 521811

QUESTIONS (continued)

Operator: DEVON ENERGY PRODUCTION COMPANY, LP	OGRID: 6137	
333 West Sheridan Ave. Oklahoma City, OK 73102	Action Number: 521811	
	Action Type: [C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)	
QUESTIONS		
Sampling Event Information		
Last sampling notification (C-141N) recorded	{Unavailable.}	
Remediation Closure Request		
Only answer the questions in this group if seeking remediation closure for this release because all re	mediation steps have been completed.	
Requesting a remediation closure approval with this submission	No	

General Information Phone: (505) 629-6116

Online Phone Directory https://www.emnrd.nm.gov/ocd/contact-us

State of New Mexico Energy, Minerals and Natural Resources Oil Conservation Division 1220 S. St Francis Dr. Santa Fe, NM 87505

CONDITIONS

Action 521811

CONDITIONS

Operator:	OGRID:
DEVON ENERGY PRODUCTION COMPANY, LP	6137
333 West Sheridan Ave.	Action Number:
Oklahoma City, OK 73102	521811
	Action Type:
	[C-141] Site Char./Remediation Plan C-141 (C-141-v-Plan)

CONDITIONS

Created By	Condition	Condition Date
scott.rodgers	The Remediation Plan is Conditionally Approved. Please fully vertically delineate BH25-4, BH25-5 and BH25-8. All samples must be analyzed for all constituents listed in Table I of 19.15.29.12 NMAC. Floor confirmation samples should be delineated/excavated to meet closure criteria standards for site assessment/characterization/proven depth to water determination. Sidewall samples should be delineated/excavated to 600 mg/kg for chlorides and 100 mg/kg for TPH to define the edge of the release. Confirmation samples should be collected every 200 ft2. The work will need to occur in 90 days after the work plan has been reviewed	11/19/2025