

Production Department Hobbs Division North American Production Conoco Inc. P.O. Box 460 726 East Michigan Hobbs, NM 88240 (505) 393-4141

June 5, 1984

New Mexico Oil Conservation Division P. O. Box 2088
Santa Fe, New Mexico 87501

Attention Mr. Gilbert Quintana

Gentlemen:

Conoco respectfully requests an exception to Division Rule 303-A to allow downhole commingling of the Warren Tubb and Blinebry Oil and Gas pools in 26 wells in the Warren Unit. Prior to this time, the Tubb and Blinebry had different windfall profit tax tiers; it was not possible for us to downhole commingle even though we had several wells which were candidates. Recently, the tax tiers for these pools have become the same; thus, we are submitting these 26 wells together in one application. The wells and their locations are listed on Table No. 1. Also, the following items are attached for each well.

- a) A lease plat.
- b) C-116's showing tests. Due to the large number of wells, all tests are not within a 30 day period; however, they are as recent as possible and will be representative of current and past production rates.
- c) Decline curves for both zones.
- d) Existing and proposed wellbore diagrams.

Bottom-hole pressure tests for these wells were discussed with Jerry Sexton of the Hobbs District Office. He suggested that if reasonably consistent bottom-hole pressures were recorded in each well tested, we could group the wells and get a bottom-hole pressure test from one well in each group. Table No. 2 gives the actual bottom-hole pressures and the attached map shows the wells tested and their groups.

The fluids from the Tubb and Blinebry will not be incompatible in the well-bore. Oil gravity for all wells is 40° API. Also, an analysis was made of the water from each zone to test their compatibility. The results of these tests are attached for your review. Because there is a possibility of downhole scaling indicated, the Tubb will be chemically inhibited to prevent any problems.

The value of the production will not be reduced by the commingling because the oil from both zones is sweet and valued at \$30.00 per bbl.

NMOCD June 5, 1984 Page 2

Our proposed formulas for allocating production to each zone are listed on Table No. 3. These formulas are based on the ratio of production reflected by the wells tests.

By copy of this letter we are notifying the BLM and all offset operators (see attached address list).

Yours very truly,

Donald W. Johnson Division Manager

DDP:cyp

TABLE I
WARREN UNIT WELLS
PROPOSED FOR DOWNHOLE COMMINGLING
TOWNSHIP 20S, RANGE 38E

Well No.	Unit	Section	Well No.	Unit	Section
-31	0	27	 50	В	29
32	P	27	 51	A	29
34	C	34	52	I	29
- 36	D	27	54	E	26
- 37	J	27	55	G	26
- 40	G	27	56	В	26
_43	N	21	- 57	D	26
_44	M	26	- 62	P	20
45سر	N	26	63	0	20
-4 6	К	26	68	A	27
47	н	29	77	J	20
~ 48	F	26	78	I	20
49	J	26	81	L	21

TABLE NO. 2 BOTTOM-HOLE PRESSURES WARREN UNIT

Wells #	Measured BHP at Mid-point of perfs TUBB BLINEBRY	Over/Underbalance of Blinebry BHP corrected to midpoint of Tubb Perforations
31	540 psi 448 psi	+213 psi
40	474 psi 409 psi	+135 psi
45	1011 psi 735 psi	- 60 psi
47	604 psi 370 psi	+ 69 psi
48	941 psi 584 psi	- 78 psi
62	791 psi 367 psi	-164 psi

Preserved are formed wells were on wells are a super surped area.

TABLE 3 RECOMMENDED PRODUCTION ALLOCATION WARREN UNIT

Percent Total Production

	Bli:	nebry	Tu	ıbb
Well No.	<u>0i1</u>	Gas	0i1	Gas
31	24	34	76	66 /
32	58	62	42	38
34	62	76	38	24
36	23	0	77	100
37	53	52	47	48
40	55	33	45	67
43	86	38	14	62
44	48	84	52	16
45	11	55	89	45
46	47	66	53	34
47	56	66	44	34
48	49	31	51	69
49 🗸	39	70	61	30
50 🗸	50	45	50	55
51	21	32	79	68
52	81	89	19	11
54	50	100	50	0
55	58	100	42	0
56	47	100	53	0
57 🗸	54	99	46	1
62 🗸	29	35	71	65
63	22	18	78	82
68	55	80	45	20
77	81	82	19	18
78	41	40	59	60
81	86	100	14	0

Address List

Tamarack Petroleum Co. P. O. Box 2046 Midland, TX 79701

Adobe Oil & Gas Corp. 1100 Western United Life Bldg. Midland, TX 79701

Amerada Hess P. O. Box 840 Seminole, TX 79360

Bureau of Land Mangagement P. O. Box 1778 Carlsbad, NM 88220

NEW MEXICO OIL CONSERVATION COMMISSION **GAS-OIL RATIO TESTS**

Operator

Address

0

water producedisa ope

Revised 1-1-65

Warren Warren Warren Warren Unit Warren Unit Warren Unit Warren Warren Warren Warren Warren Unit Warren Conoco Inc. Box 460, Unit Unit Unit Unit Unit Unit Unit Unit LEASE NAME Hobbs, New Mexico WELL 47 46 45 44 43 40 <u>v</u> 0 37 36 34 31 32 88240 z z z Ч 0 **_** 29 26 34 LOCATION Warren Tubb 011 20 20 20 20 20 20 20 20 20 38 38 38 38 38 38 38 38 38 38 38 38 IJ 3-04-84 3-18-84 4-01-84 4-14-84 4-07-84 4-19-84 3-23-84 3-19-84 3-23-84 3-04-84 3-28-84 3-20-84 DATEOF TEST TEST - (X)TYPE OF ч ٦ Ч ч Ъ STATUS Ч ħ ч Ъ ы Ч Ъ CHOKE SIZE PRESS TBG. NA NA X NA N X Scheduled DAILY ALLOW-ABLE 27 19 13 10 12 9 County Lea LENGTH TEST HOURS 24 WATER BBLS. Completion ___ PROD. DURING GRAV 9 40 40 *S188 è 16 0 TEST 255 M.C.F. GAS Special X CU.FT/BBL 13,421 10,500 19,600 GAS - OIL 2,727 9,200 5,500 ³8,500 2,857 3,375 7,286 7,100 1,250 RATIO

No well will be assigned an allowable greater than the amount of oil produced on the official test.

Warren Unit Warren Unit

Warren Unit Warren Unit

50 49

20

38 38

38

3-09-84 3-07-84 4-09-84 4-03-84

Ъ ч

34

0

26

20

38

Ч

X

16

Ъ

increased allowables when authorized by the Commission. During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Rule 301 and appropriate pool rules. Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with

> is true and complete to the best of my knowledge and belief. I hereby certify that the above information

2,667 1,474 1,600 2,727

Administrative Supervisor Si Mature) (Title)

1984

(Date)

Operator			Pool	ř						County	nty					,
Conoco Inc.				31inel	ory O	Blinebry Oil and Gas					Lea					
Address						7	٩٩٢	OF								
P. O. Box 460, Hobbs, New	New Mexico	88240	40			1	TEST	ا (×	Sch	Scheduled		Сотр	Completion [٠	Spec	Special 🗓
	WELL		L0C/	LOCATION		DATEOF		CHOKE	TBG.		LENGTH	פַ	ROD. D	PROD. DURING	TEST	GAS - OIL
F E AUGE NAME	NO.	c	s	т	גז	TEST	STA	SIZE	PRESS.	ABLE	TEST Hours	WATER BBLS.	GRAV.	.83188	GAS	CU.FT/BBI
											·	<		•		
Warren Unit	52	Н	29	20	38	3-08-84	ש	ı	NA	21	24	10/	40	13	67	5,154
Warren Unit	54	Ħ	26	20	38	4-02-84	Ħ	ı	NA	2	24	ω,	40	5 <	98	19,600
Warren Unit	55	G.	26	20	38	4-03-84	יט.	ı	NA	9	24	0,	40	₇ ک	70	10,000
Warren Unit	56	В	26	20	38	3-22-84	ъ	ı	NA	ω	24	17	40	8	50	6,250
Warren Unit	. 57	Ð	26	20	38	3-21-84	ъ	1	NA	6	24	534	40	20 🗸	141	7,050
Warren Unit	62	ы	20	20	38	3-24-84	ъ	1	NA	21	24	22	40	7 <	22	3,143
Warren Unit	63	0	20	20	38	3-11-84	ъ	1	NA	11	24	17	40	5 <	13	2,600
Warren Unit	68	Α	27	20	38	4-03-84	ъ	ı	NA	∞	24	, P.	40	6	20	3,333
Warren Unit	77	4	20	20	38	3-13-84	ъ	ı	NA	54	24	<u>'''</u>	40	22	81	3,682
Warren Unit	78	Н	20	20	38	3-01-84	ъ		NA	10	24	- -	40	7	, 17	2,429
Warren Unit	81	L	21	20	38	3-04-84	שׁי	ι	NA	52	24	22/	40	18	35	1,944
								·		·				-		
·.																

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psis and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oll Conservation Commission in accordance with Rule 301 and appropriate pool rules.

is true and complete to the best of my knowledge and belief. I hereby certify that the above information

Administrative Supervisor (Tide) June 1, 1984

Revised 1-1-65

Operator			Pool	.01						-Co	County	į				
Conoco Inc.				Warre	Warren Tubb Oil	b 011					Lea					
							JAAL	OF					ı	ļ		
P. O. Box 460, Hobbs, New	New Mexico	88240	40				TEST	۱ (x)	Scl	Scheduled		Com	Completion [Spec	Special X
İ	WELL		Loc	LOCATION		DATEOF	TUS	CHOKE	TBG.	DAILY	LENGTH	7	ROD.	٦ĕ	TEST	GAS - OIL
	NO.	C	s	7	מ	TEST	STA	SIZE	PRESS.	ABLE	HOURS	BBLS.	OIL	BBL S.	M.C.F.	CU.FT/BBL
Warren Unit	54	Ħ	26	20	ယ 8	4-02-84	ъ	1	NA	ر. ت	24	0		٠٠ ٠	TSTM	ı
Warren Unit	55	G	26	20	38	4-03-84	P	1	NA	6	24	0	40	56	TSTM	
Warren Unit	56	В	26	20	38	3-22-84	P	I	NA	25	24	7/	40	ષ્	MIST	1
Warren Unit	57	D	26	20	38	3-05-84	P	ı	NA	14	24	3	40	17~	2	118
Warren Unit	62	P	20	20	38	3-10-84	ъ	ı	NA	24	24	0	40	17	40	2,353
	63	0	20	20	38	3-13-84	Ъ	ı	NA	28	24	9	40	18	61	3,389
Warren Unit	68	A	27	20	38	3-17-84	P	ı	NA	10	24	2/	40	5	۲	1,000
Warren Unit	77	Ų	20	20	38	3-14-84	Ъ	ı	AN	15	24	0	40	5 4	18	3,600
	78	Н	20	20	38	4-06-84	ָ ש	ı	NA	10	24		4 6	10 <	25	2,500
Warren Unit	81	Ι	21	20	38	3-09-84	면	. 1	NA	7	24	~	40	٠ ٠	TSTM	1
			: -	· · ·											-	
		,,	-													

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oll Conservation Commission in accordance with Rule 301 and appropriate pool rules.

Administrative Supervisor (Tide) June 1. 1984	(Sig dture)	Savid S. Luar	ledge and belief.	I hereby certify that the above information is true and complete to the best of my know-
--	-------------	---------------	-------------------	--

(Date)

NEW MEXICO OIL CONSERVATION COMMISSION GAS-OIL RATIO TESTS

9113 Revised 1-1-65

Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	Warren Unit	ר ח ממת עמת		P. O. Box 460 Hobbs.	Address		Contractor
 																	New Me			
51	50	49	48	47	46	45	44	43	40	37	36	34	32	31	NO O	WELL	Mexico			
A	В	٦	1 43	Ħ	×	z	.≍	z	ଦ	٠ در	IJ	C	ъ	0	c		88240	.		
29	29	26	26	29	26	26	26	21	27	27	27	34	27	27	s	LOC*	Ó	-	ri (Pool
20	20	20	20	20	20	20	20	20	20	20	20	20	20	20	-	LOCATION		1-1-1-1		-
38	38	38	38	38	38	38	38	38	38	38	38	38	38	38	20			7 2		
3-07-84	3-06-84	4-03-84	3-23-84	4-25-84	3-19-84	3-17-84	3-01-84	3-05-84	4-08-84	3-17-84	3-04-84	3-23-84	3-28-84	3-30-84	TEST	DATEOF	1	T. OHE YOU	Blinchry Oil and Can	
 Ą	P	ħ	Ъ	P	Ą	P	ъ	יַּש	P	٣	ъ	ъ	ъ	ъ	1	TUS	TEST .	JAPE		
1	ı	I	ı	1 ·	ı	ı	ı	1	ı	1	ı	i	ı	!	SIZE	CHOKE	- (X)	OF		
NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	NA	PRESS.	TBG.	Sch			
21	Ċτ	16	17	13	٥	9	∞		į.	6	2	10	11	10	ABLE	DAILY	Scheduled		-1	County
24	24	24	24	24	24	24	24	24	24	24	24	24	24	24	HOURS	LENGTH		i i		ntv
3/	2	1	°	21	7	。 •	9	7		_	, ,		11	0	BBLS.	<u>.</u>	Comp			
40	40	40	40	40	40	40	40	40	40	40	, 40	40	40	40	סור	30D. [Completion			
5 <	10 4	74	18	9 <	7 <	1	10 🗸	12	6		3		11	5 <	BBL S.	PROD. DURING				
13	13	70	114	38	52	12	154	13	49	56	TSTM	149	72	71	M.C.F.	TEST	Spec			
2,600	1,300	10,000	6,333	4,222	7,429	12,000	15,400	1,083	8,167	7,000	ı	18,625	6,545	14,200	CU.FT/BBL	GAS - OIL	Special X			

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with Rule 301 and appropriate pool rules.

is true and complete to the best of my knowledge and belief. I hereby certify that the above information

Administrative Supervisor (Tide)

June 1, 1984 (Date)

HOBBS, NEW MEXICO 88240

(505) 393-7726

March 30, 1984

Conoco, Inc. Post Office Box 460 Hobbs, New Mexico 88240 Attn: Elma Winter

Dear Ms. Winter:

Water samples of the Warren Unit #55 from the Tubb and Blinebry were mixed at 3 ratios. The production figures indicate that the waters will mix close to half and half.

The waters were combined at 75-25, 50-50, and 25-75%; Tubb and Blinebry respectively. The water mixtures were observed immediately after mixing and showed no haziness.

Millipores were run on each mixture and the 2 separate waters after 2 weeks. The results follow:

	Tubb	Blinebry	75-25	50-50	25-75
CaCO3	77%	82.5%	87%	67%	70.5%
Acid Insol.	23%	8%	0%	9.6%	0%

These numbers show that the co-mingling of the two at the above ratios should not cause any worse conditions as the each water separate.

If you have any questions, please contact us.

Regards,

Joe Edwards

Tech Service Representative

(505) 393-7726

April 9, 1984

Conoco, Inc.
Post Office Box 460
Hobbs, New Mexico 88240
Attention: Elma Winter

Dear Ms. Winter:

Attached are the results of the water compatibility study on the Warren Unit #55 Tubb-Blinebry. The waters were caught, mixed and analyzed in the field initially. They were then brought to the lab and kept at 120°F for 72 hours. At 24, 48, and 72 hours, the waters were again analyzed. At the end of the 72 hour period, a millipore was run on each water.

These results are comparable to the first millipore run on March 30, 1984. It appears there will be no significant change in the scaling tendency by co-mingling the two waters.

If you have any questions, please contact us.

Regards,

Joe Edwards

One Elicabe

Technical Services Representative

JE/gr

attachments

WATER ANALYSIS REPORT

CONOCO, INC. HOBBS DIVISION HOBBS, NEW MEXICO

IDENTIFICATION	· · · · · · · · · · · · · · · · · · ·	Warre	n Unit ∄55			·	
POOL			FOI	MATION	Tubb	•	
SAMPLE POINT				DEPT	H		
DATE COLLECTED_		···		ON SITE	ANALYSIS	Partial	
BOTTOM HOLE TEMP	°F			ANALYSIS		Edwards A	
		AN	ALYSIS RE	SULTS	Chan	pion Chemic	cals, Inc.
SPECIFIC GRAVITY_	·	1.10	9	рН	7.12		
RESISTIVITY AT_				_*F		OHM 1	ETER
	Meq/	1	Mg/1			Meq/l	Mg/1
TOTAL SALTS		ثنے	152,548	SODIUM (N	Ra)	2,046	47,063
HYDROGEN SULFIDE	0.3		5.1	MAGNESIUM	(Mg)	179	2,187
CHLORIDE (C1)	2,620	· .	93,000	CALCIUM ((Ca)	430	8,600
SULFATE (SO4)	34		1,625	BARIUM (E	sa)		
CARBONATE (CO3)				IRON (Mg/	1) TOTAL	DIS	s. 10.5
BICARBONATE (HCO3)	12	· ·	7.3_	SUSPENDED	SOLIDS		
EYDROXYL (OH)			·				
	•	SCA	LING TEND	ENCIES			
CaCO3	<u>N</u>	T°F	CaSO, INTERPRI		<u>T°F</u>	BaSO ₄ INTERPRETA	TION
60 +0.38	yes	60		'es	60		
80 +0.60	yes	80		· ·es	80		•
00 +0.85	yes	100	n	0 '	100		
40 +1.49	yes	140	<u> </u>	es	140		
+1.87	yes	160	У	es	160		

WATER ANALYSIS REPORT

CONOCO, INC. HOBBS DIVISION HOBBS, NEW MEXICO

IDEN	TIFICATION_	warren	זוחט	<i>∓5</i> 5				
POOL			 -	FOR	MATION	Blinet	ory	
SAMP	LE POINT			·	DEPTH	·		
DATE	COLLECTED		······		ON SITE AN	ALYSIS_	Partial	
BOTT	OM HOLE TEMP	F			ANALYSIS B	y Joe Edv	iards جا	
	•		AN	ALYSIS RE	SULTS	Champ I (on Chemical:	s, inc.
SPEC	IFIC GRAVITY	1.10			pH	7.44		
RESI	STIVITY AT				*F		OHM	METER
		Meq/	1 📡	Hg/1			Meq/l	Mg/l
TOTA	L SALTS	. •	_	139,249	SODIUM (Na))	1,899	43.682
HYDR	OGEN SULFIDE	0.3	<u> </u>	5	MAGNESIUM ((Mg)	191	2,333
CHLO	RIDE (C1)	2,366		84,000	CALCIUM (Ca	a) .	330	6,600
SULF.	ATE (SO ₄)	52		2,500	BARIUM (Ba))		0
CARB	ONATE (CO3)				IRON (Mg/1)	TOTAL	pi	ss. <u>3</u>
BICA:	RBONATE (HCO3)	2.2		134	SUSPENDED S	SOLIDS	·	
HYDR	OXYL (OH)					•		
			SCA	LING TEND	ENCIES			·
T*F	CaCO3 INTERPRETATIO	<u>N</u>	T*F	CaSO, INTERPRI	4 ETATION	<u>T°F</u>	BaSO4 INTERPRETA	ATION
60	+0.74	yes	60	у	es -	60		·
80	+0.94	yes	80	у	es	80	***************************************	•
100	+1.17	yes	100	у	es	_ 100		
40	+1.80	yes	140	y	es	_ 140		
.60	+2.17	yes	160	<u>y</u>	es	160		

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-Q863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMPLED 4/2/84	
СС	Jerry Skidmore	DATE REPORTED 4/9/84	
		FIELD, LEASE, OR WELL Blinebry/Tubb: 50/50	
cc		COUNTY STATE N.M.	
MPANY	Conoco, Inc.	FORMATION.	
DRESS		DEPTH	
MICE ENGINEER	Jay Brown	SUBMITTED BY. Jay Brown	

		CHEMICAL A	NALYSIS HAS PARTS	TR MUUDON)	字30.800 20	
				se, or Wel		•
Chemical Component	Theoretical B/T 50/50	Initial	24 hrs.	48 hrs.	72 hrs.	
ride (CI)	88,500	88,000	84.000	88,000	90.000	
(Fe)						
i Hardness (Ca CO ₃)						
ium (Ca)	7,600	6,880	6.640	6.520	6.960	
nesium (Mg)	2,260	2,309	2.697	2.673	2,600	
roonate (HCO ₃)	104	12.2	24	24	24	
onate (CO ₃)						
ate (SO ₄)	2.063	1.450	1,175	1,425	1,925	
rogen Sulfide (H ₂ S)						
ific Gravity	1.10	1.10	1 10	1.10	1.11	
sity, Ib./gal.						
Beckman [] Strip []		7.00	6.8	6.6	7.0	
DS	145,899	144,104	136,796	143,823	147,840	
			-			
		·	 	1		

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0963 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMPLED 4/2/84
cc	Jerry Skidmore	DATE REPORTED4/9/84
cc		FIELD, LEASE, OR WELL Blinebry/Tubb: 10/90
cc		COUNTYSTATE_ N.M.
MPANY	Conoco, Inc.	- FORMATION
PESS	1 Jan Brand	DEPTH
VICE ENGINEER	Jay Brown	SUBMITTED BY Jay Brown

		CHEMICAL	INALYSIS (AS PARIS	PER MULTON)			
	Field, Lease, or Well						
Chemical Component	Theoretical B/T 10/90	Initial	24 hrs.	48 hrs.	72 hrs.		
ride (CI)	92,100	91,000	89,000	92,000	96,000		
(Fe)							
Hardness (Ca CO3)							
ium (Ca)	8,400	8,400	7,200	7,040	7,160		
nesium (Mg)	2,202	1,823	2,527	2,843	2.697		
rbonate (HCO3)	79	24	37	24	24		
onate. (CO ₃)							
ste (SO ₄)	1,713	1,750	1,250	1.375	1.725		
rogen Sulfide (H ₂ S)	·						
lfic Gravity	1.10	1.11	1.10	1.11	7.77	· · · · · · · · · · · · · · · · · · ·	
ity, Ib./gal.							
Beckman [] Strip []		7.00	6.7	6.8	6.8		
rds .	151,218	149,696	145,246	150,119	157,318		
					-		

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMPLED 4/2/84	
cc_	Jerry Skidmore	DATE REPORTED. 4/9/84	
		FIELD, LEASE, OR WELL Warren Unit #55 Klinebry	
cc		COUNTYSTATE_N.M.	
PANY	Conoco, Inc.	FORMATION	
RESS	<u> </u>	DEPTH	
ICE ENGINE	Jay Brown	submitted by Jay Brown	

	1			PERMILION	
···········	<u> </u>		rieia, Lei	ase, or Well	
Chemical Component	24 hrs.	48 hrs.	72 hrs.		
riae (CI) :	1 78,500	83,000	86,000		
(Fe)					
mardness (Ca CO ₃)					
um (Ca)	6,280	6,240	6,320		
esium (Mg)	2,381	2,381	2,527		
ponate (HCO3)	24	37	18		
onate (CO3)					
rte (SO ₄)	1,600	1,525	1,600		•
ogen Sulfide (H ₂ S)					
fic Gravity	1.09	1.10	1.10		
ity, ib./gal.		•	·		
Beckman [] Strip []	7.2	7.0	7.05		
S	128,699	136.046	140,931		

BOX 4513 ODESSA, TEXAS 79760

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0963 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2581 PLANT: Odessa, Texas Phone (915) 337-0055

ort for Elma V cc Jerry cc CC CC CC CONDOC	Skidmore		COUNTY	4/9/84 * weu <u>Warre</u>		Tubb TE N.M.
DRESS	·					
MICE ENGINEER JAY BY	own		SUBMITTED BY_	Jay Brown		
		; CHEMICAL	ANALYSIS (AS PARTS)	PER MILLION)		
			Field, Le	ase, or Well		•
Chemical Component	24 hrs.	48 hrs.	72 hrs.		·	
ide (CI)	88,000	95,000	96,000			
(Fe)						
Marchess (Ca CO ₃)						
ım (Ca)	7,240	7,240	7.320			
esium (Mg)	2,527	2.527	2,649			
onate (HCO3)	31	24	18			
nate (CO ₃)		·				
te (SO ₄)	1,125	1.425	1.875			
ogen Sulfide (H ₂ S)						
ic Gravity	1.10	1.11	7.11			
ty, ib./gal.						
Beckman [] Strip []	6.6	6.6	6.9			
TDS	143.394	155.376	157,549			
	<u> </u>					

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

cc Elma W	inter		DATE SAMPLED	4/2/	′ 84	
Jerry	Skidmore		DATE REPORTE	4/9/	84	
· · · · · · · · · · · · · · · · · · ·			FIELD, LEASE, C	R WELL Blineby	ry/Tubb : 90/1	0
cc					STAT	
Conoco	, Inc.		FORMATION_			
PORESS Jay B	rown		DEPTHSUBMITTED BY_	Jay Brown		
		ACHEMICAL		ase, or We		
<u> </u>			Field, Le	use, or tre	B	
Chemical Component	Theoretical B/T 90/10	Initial	24 hrs.	48 hrs.	72 hrs.	
*'ae (Ci)	84,900	86,000	81,500	84,000	89,000	
(Fe)	3.75	2				
. Hátoness (Ca CO ₃)						
ਪੂਜ਼ (Ca)	6,159	7,200	6,200	6.640	7,240	
acium (Ma)	2 210	1 020	0 777	2 200	2 7 07	

raonate (HCO3) 30 24 128 ionate (CO3) ste (SO₄) 2.025 2.413 1.850 1.450 1.625 rogen Sulfine (H2S) ific Gravity 1.095 1.099 1.10 7.10 sity, 15./gal. Beckman [] Strip [] 7.21 6.8 6.95 6.9 137,833 140.579 141 862 133,475 146,669

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

RT FOR	Elma Winter	DATE SAMPLED 4/2/84
cc '	Jerry Skidmore	DATE REPORTED 4/9/84
cc		HELD, LEASE, OR WELL Blinebry/Tubb: 70/30
cc	•	COUNTY STATE N.M.
NY	Conoco, Inc.	FORMATION
ک		DEPTH
ENGINEER	Jay Brown	SUBMITTED BY Jay Brown
	•	

		. CHEMICAL A	NALYSIS LAS PARIS F	ER MULION)		1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	
	CHEMICAL ANALYSIS (AS PARTS PER MULIDN) Field, Lease, or Well						
Chemical Component	Theoretical B/T J0/30	Initial	24 hrs.	48 hrs.	72 hrs.	,	
ride (Ci)	86,700	87,000	82.000	85,000	89.000		
(Fe)	5.2	4					
i Hardness (Ca CO3)							
ium (Ca)	7.200	7,600	6.480	6,600	6.520		
nesium (Mg)	2,289	7.580	2.552	2.527	2.697		
rbonate (HCO3)	116	134	24	37	24		
onste (CO ₃)		·					
ste (SO ₄)	2.238	1,900	1,475	1,475	1,875		
rogen Sulfide (H ₂ S)							
ific Gravity	1.10	1 10	1 10	1.10	1.10		
sity, 16./gal.							
Beckman [] Strip []		7.19	6.7	6.8	6.8		
DS	143,239	143,828	134,124	137,433	146,117		

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561

PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMPLED 4/2/84	
cc	Jerry Skidmore	DATE DEPOSITED 4/9/84	
		FIELD, LEASE, OR WELL Blinebry/Tubb: 30//0	
cc		COUNTYSTATE_N_M	
MPANY	Conoco, Inc.	FORMATION	
DRESS		DEPTH	
VICE ENGINEER.	Jay Brown	SUBMITTED BY Jay Brown	

			Field, Le	ase, or Wel		•
Chemical Component	Theoretical B/T 30/70	Initial	24 hrs.	48 hrs.	72 hrs.	
ride (CI)	90,300	90.,000	87,500	91,000	93,000	
(Fe)						
Hardness (Ca CO3)						
um (Cs)	8,000	7,640	7,040	7,000	7.000	
esium (Mg)	2,231	2,211	2,454	2,552	2.673	
ponate (HCO ₃)	91	37	24	37	12.2	
onate (CO ₃).						
te (SO ₄)	1.888	1.525	1,250	1.250	1.925	
ogen Sulfide (H ₂ S)						
fic Gravity	1.11	1.11	1.10	1.71	1.11	
ity, Ib./gal.		•				
Beckman [] Strip []		7.13	6.7	6.75	6.8	
DS.	748.558	147.528	142.851	148,543	152.708	
	·					

Elma Winter

Jerry Skidmore

Conoco, Inc.

E ENGINEER.

Jay Brown

SERVICE LABORATORY: Odessa, Texas • Ph.: 362-2353 & 563-0863 RESEARCH LABORATORY: Houston, Texas • Ph.: (713) 433-6771 PLANT: Odessa, Texas • Ph.: 362-2353 & 563-0863

Marren Unit #55 Tubb and
Blinebry

STATE N. M.

. OTHER DESCRIPTION

DATE SAMPLED.

DATE REPORTED_

FORMATION...

SUBMITTED BY_

DEPTH.

. FIELD, LEASE OR WELL.

Millipore analysis of 5 ratio blends of the waters from the ${\it Trabb}$ and ${\it Blinebry}$ formations from Warren Unit #55

PAGE #1

4/2/84

4/6/84

Joe Edwards

	CHEMIC	altanalysis a	SOMEIGHT PERCENT);	74774	
	,	Fi	eld, Lease, or	Well	·
SCALE COMPONENT	Blinebry	Tubb	B/T 90%/10%	B/T 70%/30%	B/T 50%/50%
CaCO3	50%	57.2%	68.3%	69.9%	73.4%
FeS	18.4%	42.8%	28.3%	25.8%	26.6%
Acid Insolubles	31.6%	0	3.4%	4.3%	0
Suspended Solids (Mg/L)	213	180	145	186	194
TOTAL	100%	100%	100%	100%	100%

REMARKS AND RECOMMENDATIONS

SERVICE LABORATORY: Odessa, Texas • Ph.: 362-2353 & 563-0863 RESEARCH LABORATORY: Houston, Texas • Ph.: (713) 433-6771 PLANT: Odessa, Texas • Ph.: 362-2353 & 563-0863

CHEMICALS. INC.

BOX 4513 • ODESSA, TEXAS

CHEMICAL WITH SERVICE

Elma Winter	4/2/84 DATE SAMPLED
Jerry Skidmore	DATE REPORTED 4/6/84
	FIELD, LEASE OR WELL Warren Unit #55 Tubb and Blinebry
	Blinebry STATE N.M.
Conoco, Inc.	FORMATION
	DEPTH
Jay Brown	Joe Edwards SUBMITTED BY

OTHER DESCRIPTION

Millipore analysis of 5 ratiox blends of the waters from the Tubb and Blinebry formations from Warren Unit #55

PAGE #2

	Field, Lease, or Well									
SCALE COMPONENT	B/T 30%/70%	B/T 10%/90%								
CaC03	67.1%	52.4%								
FeS	32.9%	47.6%								
Acid Insolubles	0	0								
Suspended Solids (Mg/	_) 146	145								
			<u>-</u>	-						
TOTAL	100%	100%								

REMARKS AND RECOMMENDATIONS

86

88

85

KSXK ®

No. Se. 2644

1980

81

82

83

84

<u> </u>					le en en en			WARRI	IN ON	III NC	7. UZ		
6		The second secon						J-					
7													
		MCF											
, ,													
117													
													-
		11.5	1 1										
		V 1											
	圳走												
	†Y	量道量											
													111
MAN. JUNE SEPT. DEC.		WAR JUNE SEPT				LONE	MAR. JUNE SEFT.	MAN SEPT.		MAR. JUNI SEPT.	MAR. JUNE SEFT.	Hijair :	MAR
# Z C U			- 2 - 1	 , - 2 - 0	- 2	, , , , ,	, , , , ,) <u> </u>	MAR	V E Z & L		;	حة عان

NU. ST. ZULZ (CYOXOLE)XX O GRAPH PAPER (CYOXOLE)XX

WARREN UNIT NO. 62 660' FSL & 660' FEL Sec. 20, T-20-S, R-38-E

TD: 6795'