

Production Department Hobbs Division North American Production Conoco Inc. P.O. Box 460 726 East Michigan Hobbs, NM 88240 (505) 393-4141

June 5, 1984

New Mexico Oil Conservation Division P. O. Box 2088
Santa Fe, New Mexico 87501

Attention Mr. Gilbert Quintana

Gentlemen:

Conoco respectfully requests an exception to Division Rule 303-A to allow downhole commingling of the Warren Tubb and Blinebry Oil and Gas pools in 26 wells in the Warren Unit. Prior to this time, the Tubb and Blinebry had different windfall profit tax tiers; it was not possible for us to downhole commingle even though we had several wells which were candidates. Recently, the tax tiers for these pools have become the same; thus, we are submitting these 26 wells together in one application. The wells and their locations are listed on Table No. 1. Also, the following items are attached for each well.

- a) A lease plat.
- b) C-116's showing tests. Due to the large number of wells, all tests are not within a 30 day period; however, they are as recent as possible and will be representative of current and past production rates.
- c) Decline curves for both zones.
- d) Existing and proposed wellbore diagrams.

Bottom-hole pressure tests for these wells were discussed with Jerry Sexton of the Hobbs District Office. He suggested that if reasonably consistent bottom-hole pressures were recorded in each well tested, we could group the wells and get a bottom-hole pressure test from one well in each group. Table No. 2 gives the actual bottom-hole pressures and the attached map shows the wells tested and their groups.

The fluids from the Tubb and Blinebry will not be incompatible in the well-bore. Oil gravity for all wells is 40° API. Also, an analysis was made of the water from each zone to test their compatibility. The results of these tests are attached for your review. Because there is a possibility of downhole scaling indicated, the Tubb will be chemically inhibited to prevent any problems.

The value of the production will not be reduced by the commingling because the oil from both zones is sweet and valued at \$30.00 per bbl.

NMOCD June 5, 1984 Page 2

Our proposed formulas for allocating production to each zone are listed on Table No. 3. These formulas are based on the ratio of production reflected by the wells tests.

By copy of this letter we are notifying the BLM and all offset operators (see attached address list).

Yours very truly,

Donald W. Johnson Division Manager

DDP:cyp

TABLE I
WARREN UNIT WELLS
PROPOSED FOR DOWNHOLE COMMINGLING
TOWNSHIP 20S, RANGE 38E

Well No.	Unit	Section	Well No.	Unit	Section
-31	0	27	50	В	29
→ 32	P	27		A	29
_ 34	C	34	52	I	29
- 36	D	27	54	E	26
— 37	J	27	55	G	26
- 40	G	27	56	В	26
_43	N	21	- 57	D	26
_44	M	26	— 62	P	20
45سر	N	26	63	0	20
-4 6	K	26	68	A	27
47	н	29	77	J	20
~ 48	F	26	78	I	20
49	J	26	81	L	21

TABLE NO. 2 BOTTOM-HOLE PRESSURES WARREN UNIT

Wells #	Measured BHP at Mid-point of perfs TUBB BLINEBRY	Over/Underbalance of Blinebry BHP corrected to midpoint of Tubb Perforations
31	540 psi 448 psi	+213 psi
40	474 psi 409 psi	+135 psi
45	1011 psi 735 psi	- 60 psi
47	604 psi 370 psi	+ 69 psi
48	941 psi 584 psi	- 78 psi
62	791 psi 367 psi	-164 psi

Preserved are sold with well area on well area on well area on some ed area on sold area on sold area on sold area.

TABLE 3 RECOMMENDED PRODUCTION ALLOCATION WARREN UNIT

Percent Total Production

	Bli	nebry	Tı	ıbb
Well No.	Oil	Gas	0i1	Gas
31	24	34	76	66
32	58	62	42	38
34	62	76	38	24
36	23	0	77	100
37	53°	52	47	48
40	55	33	45	67
43	86	38	14	62
44	48	84	52	16
45	11	55	89	45
46	47	66	53	34
47	56	66	44	34
48	49	31	51	69
49 🗸	39	70	61	30
50 🗸	50	45	50	55
51	21	32	79	68
52	81	89	19	11
54	50	100	50	0
55	58	100	42	0
56 4	47	100	53	0
57 🗸	54	99	46	1
62	29	35	71	65
63	22	18	78	82
68	55	80	45	20
77 🗸	. 81	82	19	18
78	41	40	59	60
81	86	100	14	0

Address List

Tamarack Petroleum Co. P. O. Box 2046 Midland, TX 79701

Adobe Oil & Gas Corp. 1100 Western United Life Bldg. Midland, TX 79701

Amerada Hess P. O. Box 840 Seminole, TX 79360

Bureau of Land Mangagement P. O. Box 1778 Carlsbad, NM 88220

NEW MEXICO OIL CONSERVATION COMMISSION

GAS-OIL RATIO TESTS

County

production op Revised 1-1-65

Operator Address Conoco Inc. Warren Unit 0 Box 460, LEASE NAME Hobbs, New Mexico 88240 WELL 46 45 44 49 48 40 36 34 32 <u>v</u> 0. Z Z G 0 c U a Ч LOCATION 26 26 29 29 26 29 26 27 27 27 27 s Warren Tubb Oil 20 20 20 20 20 20 20 20 20 20 20 20 20 20 4 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 38 3-09-84 3-07-84 4-09-84 4-03-84 3-23-84 3-04-84 3-19-84 3 - 18 - 844-01-84 4-14-84 3-23-84 4-07-84 3-04-84 4-19-84 3-28-84 3-20-84 DATEOF TEST TYPE STATUS Ч ч ы CHOKE ı X 0 SIZE PRESS TBG. M NA NA NA NA NA NA NA NA NA Scheduled ALLOW-DAILY ABLE 13 16 19 13 10 27 12 9 6 9 HOURS TEST 24 24 24 24 WATER BBL S. Completion [PROD. DURING GRAV. 40 \$788 OIL 16 5 10 TEST 255 136 M.C.F. GAS 16 20 46 Spectal 🔀 10,500 19,600 CU.FT/BBL 13,421 GAS - OIL 2,727 2,667 1,474 1,600 2,727 2,857 3,375 1,250 7,286 7,100 9,200 5,500 8,500 RATIO

No well will be assigned an allowable greater than the amount of oil produced on the official test.

increased allowables when authorized by the Commission. During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing

Rule 301 and appropriate pool rules. Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with

> is true and complete to the best of my knowledge and belief. I hereby certify that the above information

(Tide) (dature)

Administrative Supervisor

1984

(Date)

Operator			Pool	٦						Co	County					
Conoco Inc.				Bline	bry 0	Blinebry Oil and Gas					Lea					
60 ustra	Now Would	00370				 	TYPE	X X	 a	School and I		ĵ	Come lotton		r I	
	E I	- 4	LOC	LOCATION			_	D K E	1	DAILY	LENGTH	U		DURING .	TEST	GAS - OIL
LEASE NAME	NO.	С	s	4	70	TEST	STATE	SIZE	PRESS	ALLOW-	TEST	WATER	GRAV.	ST88	GAS	RATIO CU.FT/BBL
	·											<				
Warren Unit	52	Н	29	20	38	3-08-84	ㅂ	i	NA	21	24	/ 01	40	13	67.	5,154
Warren Unit	54	ম	26	20	38	4-02-84	P	ı	NA	2	24	ω,	40	٠ اح	98	19,600
Warren Unit	55	ଦ	26	20	38	4-03-84	ק.	ı	NA	9	24	°,	40	7	70	10,000
Warren Unit	56	В	26	20	38	3-22-84	ъ	ı	NA	ω	24	17	40	8	, 50	6,250
Warren Unit	57	D	26	20	38	3-21-84	ъ	1	NA	6	24	53	40	20 🗸	, 141	7,050
Warren Unit	.62	P	20	20	38	3-24-84	ъ	1	NA	21	24	2 •	40	7 <	22	3,143
Warren Unit	63	0	20	20	38	3-11-84	ъ	ι	NA	11	24		40	54	13	2,600
Warren Unit	68	A	27	20	38	4-03-84	ъ	ı	NA	∞	24	2	40	6	, 20	3,333
Warren Unit	77	ŗ	20	20	38	3-13-84	Þ	ı	NA	54	24	, <u>'</u> ',	40	22	81	3,682
Warren Unit	78	Н	20	20	38	3-01-84	Þ		NA	10	24		40	7.	, 17	2,429
Warren Unit	81	Ľ	21	20	38	3-04-84	Ъ	i	NA	52	24	22/	40	18	35	1,944
														·		
\$.						,					_					

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with Rule 301 and appropriate pool rules.

I hereby certify that the above information is true and complete to the best of my knowledge and belief.

Land S. Sugar

(Signarde)

Administrative Supervisor

(Title)

June 1, 1984

NEW MEXICO OIL CONSERVATION COMMISSION **GAS-OIL RATIO TESTS**

۱۱

Revised 1-1-65

Operator			Pool							Cou	County					
Conoco Inc.				Varrei	Warren Tubb 0il) 0il					Lea					
Address							J AYT	OF					l			
P. O. Box 460, Hobbs, New	w Mexico	88240	40			7	TEST	ı X	Sch	Scheduled		Comp	Completion		Spec	Special X
	WELL		L0C/	LOCATION		DATEOF		CHOKE	TBG.	DAILY	LENGTH	7	ROD. I	URING	TEST	GAS - OIL
T R	Z O	c	s	7	70	TEST	STA	SIZE	PRESS.	ABLE	HOURS	WATER BBLS.	GRAV.	BBLS.	M.C.F.	CU.FT/BBL
Warron Init	54	되	36	90	<u>م</u> د	4-02-84	U	l	ZI >	л	3 /		<u>`</u>	л 🔨	MEST	
			,		((7			
Warren Unit	55	G	26	20	38	4-03-84	P	ı	NA	6	24	्	40	5 4	TSTM	i
Warren Unit	56	В	26	20	38	3-22-84	ъ	1 ·	NA	25	24	7/	40	જ્	MIST	ı
Warren Unit	57	ם	26	20	38	3-05-84	P	ı	NA	14	24	ω \	40	17~	, 2	118
Warren Unit	62	P	20	20	38	3-10-84	P	ı	NA	24	24	0,	40	17	40	2,353
Warren Unit	63	0	20	20	38	3-13-84	Ą	ļ	NA	28	24	2	40	18 🗸	61	3,389
Warren Unit	68	Α	27	20	38	3-17-84	Ъ	1	NA	10	24	. 21	40	5 <	5	1,000
Warren Unit	77	۲	20	20	38	3-14-84	P	1	NA	15	24	0	40	5 <	18	3,600
Warren Unit	78	Н	20	20	38	4-06-84	P	ı	NA	10	24		40	10 <	25	2,500
Warren Unit	81	۲	21	20	38	3-09-84	P	ı	NA	7	24	0	40	ω χ	TSTM	ı
			; .					-								
											,					
													•			
												•	·			
-																

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

will be 0.60. Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with Rule 301 and appropriate pool rules.

ledge and belief. is true and complete to the best of my know-Administrative Supervisor I hereby certify that the above information

(Date)

Revised 1-1-65

Operator			<u>"</u>	Pool						County	nty				. !	
Conoco Inc.				Bline	bry 0	Blinebry Oil and Gas	:				Lea					
Address						Т	3 d A	OF								
P. O. Box 460 Hobbs Nev	New Mexico	88240	40			7	TEST	(X)	Sch	Scheduled		Comp	Completion [Spec	Special X
	₩ELL		۲00	LOCATION	_	DATEOF		CHOKE	TBG.		LENGTH	<u>a</u>	OD. C	PROD. DURING	TEST	GAS - OIL
L ELASE NAME	NO.	c	s	4	20	TEST	STA	SIZE	PRESS.	ABLE ABLE	TEST HOURS	WATER BBLS.	GRAV.	BBL2. OIL	GAS M.C.F.	CU.FT/BBL
Warren Unit	<u>3</u>	0	27	20	38	3-30-84	ъ	1	NA	10	24	0	40	ъ	71	14,200
Warren Unit	32	ħ	27	20	38	3-28-84	Ъ	ı	NA	11	24	1	40	11	/ .72	6,545
Warren Unit	34	C	34	20	38	3-23-84	ъ	ı	NA	10	24		40	<u>«</u> ر	, 149	18,625
Warren Unit	36	U	27	20	38	3-04-84	ъ	1	NA	2	24	°,	40	ω V	TSTM	ı
Warren Unit	37	4	27	20	38	3-17-84	ъ	1	NA	6	24	-	40	∞ ~	56	7,000
Warren Unit	40	ص -	27	20	38	4-08-84	ъ		NA	1 -	24	-	40	6	49	8,167
Warren Unit	43	z	21	20	38	3-05-84	ש	1	NA	8	24	7	40	12	13	1,083
Warren Unit	44	×	26	20	38	3-01-84	ש	1	NA	8	24	Ŝ	40	10	154	15,400
Warren Unit	45	z	26	20	38	3-17-84	ъ	1	NA	9	24	0	40	1	/ 12	12,000
Warren Unit	46	×	26	20	38	3-19-84	ъ	I	NA	5	24	1	40	ر ح	52	7,429
Warren Unit	47	Ħ	29	20	38	4-25-84	ъ	1 ·	NA	13	24	21	40	9 <	38	4,222
Warren Unit	48	描	26	20	38	3-23-84	Ы	1	NA	17	24	°	40	18	114	6,333
Warren Unit	49	-	26	20	38	4-03-84	P	1	NA	16	24	-	40	75	70	10,000
Warren Unit	50	Б	29	20	38	3-06-84	ש	1	AN	Сī	24	۲	40	10	13	1,300
Warren Unit	51	A	29	20	38	3-07-84	ъ	1	NA	21	24	3/	40	. 5 ر	13	2,600
						-					,			,		

No well will be assigned an allowable greater than the amount of oil produced on the official test.

During gas-oil ratio test, each well shall be produced at a rate not exceeding the top unit allowable for the pool in which well is located by more than 25 percent. Operator is encouraged to take advantage of this 25 percent tolerance in order that well can be assigned increased allowables when authorized by the Commission.

Gas volumes must be reported in MCF measured at a pressure base of 15.025 psia and a temperature of 60° F. Specific gravity base will be 0.60.

Report casing pressure in lieu of tubing pressure for any well producing through casing.

Mail original and one copy of this report to the district office of the New Mexico Oil Conservation Commission in accordance with Rule 301 and appropriate pool rules.

I hereby certify that the above information is true and complete to the best of my knowledge and belief.

Laurid X. Sugar.

(Signdure)

Administrative Supervisor

(Tide)

June 1, 1984

(Dare)

(505) 393-7726

March 30, 1984

Conoco, Inc.
Post Office Box 460
Hobbs, New Mexico 88240
Attn: Elma Winter

Dear Ms. Winter:

Water samples of the Warren Unit #55 from the Tubb and Blinebry were mixed at 3 ratios. The production figures indicate that the waters will mix close to half and half.

The waters were combined at 75-25, 50-50, and 25-75%; Tubb and Blinebry respectively. The water mixtures were observed immediately after mixing and showed no haziness.

Millipores were run on each mixture and the 2 separate waters after 2 weeks. The results follow:

•	Tubb	Blinebry	75-25	50-50	25-75
CaCO3	77%	82.5%	87%	67%	70.5%
Acid Insol.	23%	8%	0%	9.6%	0%

These numbers show that the co-mingling of the two at the above ratios should not cause any worse conditions as the each water separate.

If you have any questions, please contact us.

Regards,

Joe Edwards

Tech Service Representative

(505) 393-7726

April 9, 1984

Conoco, Inc.
Post Office Box 460
Hobbs, New Mexico 88240
Attention: Elma Winter

Dear Ms. Winter:

Attached are the results of the water compatibility study on the Warren Unit #55 Tubb-Blinebry. The waters were caught, mixed and analyzed in the field initially. They were then brought to the lab and kept at 120°F for 72 hours. At 24, 48, and 72 hours, the waters were again analyzed. At the end of the 72 hour period, a millipore was run on each water.

These results are comparable to the first millipore run on March 30, 1984. It appears there will be no significant change in the scaling tendency by co-mingling the two waters.

If you have any questions, please contact us.

Regards,

Joe Edwards

Technical Services Representative

JE/gr

attachments

WATER ANALYSIS REPORT

CONOCO, INC. HOBBS DIVISION HOBBS, NEW MEXICO

IDENTIFICATION	· · · · · · · · · · · · · · · · · · ·	warren	Unit #5	<u> </u>		· · · · · · · · · · · · · · · · · · ·	
POOL			FOI	RMATION	Tubb	•	
SAMPLE POINT	· ·			DEPTH		·	
DATE COLLECTED		···		ON SITE A	NALYSIS	Partial	•
BOTTOM HOLE TEMP	°F		·	ANALYSIS	BY Joe	Edwards &	<u>کی</u>
		AN	ALYSIS RE	SULTS	Char	npion Chemi	cals, Inc.
SPECIFIC GRAVITY	·	1.109		pH	7.12		
RESISTIVITY AT	*, ·1, ·23**			*F	:	OHM	METER
· • ·	Meq/	1	Mg/l			Meq/l	Mg/1
TOTAL SALTS		_1	52,548	SODIUM (Na	a)	2,046	47,063
HYDROGEN SULFIDE	0.3		5.1	MAGNESIUM	(Mg)	179	2,187
CHLORIDE (C1)	2,620	· 	3,000	CALCIUM (Ca)	430	8,600
SULFATE (SO ₄)	34	1	,625	BARIUM (Ba	ı)		
CARBONATE (CO3)				IRON (Mg/1	.) TOTAL	DI	ss. 10.5
BICARBONATE (HCO3)	12	. <i>7</i>	3_	SUSPENDED	SOLIDS		
HYDROXYL (OH)			•				
		SCAL	ING TEND	ENCIES	•		
CaCO3	<u>N</u>	T°F	CaSO INTERPR	- 7	<u>T*F</u>	BaSO4 INTERPRETA	ATION .
60 +0.38	yes	60		/es	60		
80 +0.60	yes	80		/es	80		·
.00 +0.85	yes	100	ì	10	100		
40+1.49	yes	140	١	/es	140		
+1.87	yes	160)	/es	160		

WATER ANALYSIS REPORT

CONOCO, INC. HOBBS DIVISION HOBBS, NEW MEXICO

IDEN	TIFICATION	Warren	Unit	#55		<u></u>		
POOL			·	FOR	ATION	Bline	ory	
SAMP	LE POINT			·	DEPTH			
DATE	COLLECTED				ON SITE ANA	LYSIS_	Partial	• ,
BOTI	OM HOLE TEMP *	F			ANALYSIS BY	Joe Edv	vards fin	
•	•	•	AN	ALYSIS RES		Champ (o, inc.
SPEC	IFIC GRAVITY	1.10	. -		рН	7.4		
RESI	STIVITY AT				•F		онм	METER
		Meq/1	L	Mg/1			Meq/l	Mg/l
TOTA	L SALTS			139,249	SODIUM (Na)		1,899	43.682
HYDR	OGEN SULFIDE	0.3		5	MAGNESIUM ()	(B)	191	_2,333
CHLO	RIDE (C1)	2,366		84,000	CALCIUM (Ca)	1	330	6,600
SULF.	ATE (SO ₄)	52		2,500	BARIUM (Ba)	٠.		0
CARB	ONATE (CO ₃)				IRON (Mg/1)	TOTAL	DI	ss. <u>3</u>
BICA	rbonate (HCO3)	2.2		134	SUSPENDED SO	LIDS		
HYDR	OXYL (OH)					•		
			SCAI	LING TENDE	NCIES			
T°F	CaCO3 INTERPRETATION	<u>N</u>	T*F	CaSO ₄ INTERPRE	TATION	T°F	Baso ₄ Interpreta	ATION
60	+0.74	yes	60	ye	<u>s</u>	60	·	· .
80	+0.94	yes	80	ye	S	80	 	•
100	+1.17	yes	100	уе	S	100		
140	+1.80	yes	140	уе	S	140		
60	+2.17	yes	160	ye-	S	160	*	

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0663 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561

PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMPLED4/2/84	
cc	Jerry Skidmore	DATE REPORTED	_
çc		FIELD, LEASE, OR WELL Blinebry/Tubb: 50/50	_
сс		COUNTYSTATEN.M.	
MPANY	Conoco,Inc.	FORMATION	
DRESS		DEPTH	
VICE ENGINEER	Jay Brown	SUBMITTED BY Jay Brown	_

		ECHEMICAL A	NALYSIS (ASTARIS)	TRAMILITON)		
				se, or Wel		
Chemical Component	Theoretical B/T 50/50	Initial	24 hrs.	48 hrs.	72 hrs.	
ride (CI)	88,500	88,000	84,000	88,000	90.000	
(Fe)						
i Hardness (Ca CO ₃)						
um (Ca)	7,600	6.880	6.640	6.520	6,960	
nesium (Mg)	2,260	2.309	2,697	2.673	2,600	
ponate (HCO3)	104	12.2	24	1 24	24	
onate (CO ₃)						
ste (SO ₄)	2,063	1.450	1,175	1,425	1,925	
ogen Sulfide (H ₂ S)						
ific Gravity	1.10	1_10	1.10	1.10	1.11	
ity, Ib./gal.		•				
Beckman [] Strip []		7.00	6.8	6.6	7.0	
DS	145,899	144,104	136,796	143,823	147,840	
		 				
	1	·			<u>.i.</u>	•

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561

PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR	Elma Winter	DATE SAMMED4/2/84
cc	Jerry Skidmore	DATE REPORTED 4/9/84
cc		FIELD, LEASE, OR WELL Blinebry/Tubb: 10/90
cc		COUNTYSTATEN.M.
MPANY	Conoco, Inc.	FORMATION
DRESS		DEPTH
VICE ENGINEER	Jay Brown	SUBMITTED BY Jay Brown

	Training to his parties.	And the second s			n	
			rieia, Le	ase, or We		•
Chemical Component	Theoretical B/T 10/90	Initial	24 hrs.	48 hrs.	72 hrs.	•
ride (CI)	92,100	91,000	89,000	92,000	96,000	
(Fe)						
Hardness (Ca CO ₃)						
um (Ca)	8,400	8,400	7,200	7,040	7.160	
esium (Mg)	2,202	1,823	2,527	2,843	2,697	
ponate (HCO3)	79	24	37	24	24	
onate. (CO ₃)						
te (SO ₄)	1,713	1.750	1,250	1.375	1.725	
ogen Sulfide (H ₂ S)						
fic Gravity	1.10	1.11	1.10	1.11	1.11	
ity, lb./gal.						
Beckman [] Strip []		7.00	6.7	6.8	6.8	
DS	151,218	149,696	145,246	150,119	157,318	
						
			 			
	 			 		

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561

PLANT: Odessa, Texas Phone (915) 337-0055

Elma Winter	DATE SAMPLED 4/2/84
Jerry Skidmore	DATE REPORTED 4/9/84
	DATE REPORTED Warren Unit #55 Blinebry FIELD, LEASE, OR WELL
	COUNTYSTATE_N.M.
Conoco, Inc.	FORMATION
•	DEPTH
Jay Brown	SUBMITTED BY Jay Brown

4 hrs. 8,500	48 hrs.	Field, Led	ise, or	Well			•
		1					
8,500	83,000		_1				
		86,000					
,280	6,240	6,320					
,381	2,381	2,527					
4	37	18					
,600	1,525	1,600				·	
.09	1.10	1.10					
.2	7.0 ·	7.05					
28,699	135,046	140,931					
							
			 		 		
	,381 4 ,600 ,09	381 2,381 4 37 .600 1,525 .09 1.10	381 2,381 2,527 4 37 18 ,600 1,525 1,600 ,09 1,10 1,10 2 7,0 7,05	381 2,381 2,527 4 37 18 600 1,525 1,600 .09 1.10 1.10 .2 7.0 7.05	381 2,381 2,527 4 37 18 ,600 1,525 1,600 ,09 1.10 1.10 2 7.0 7.05	381 2,381 2,527 4 37 18 600 1,525 1,600 .09 1.10 1.10 .2 7.0 7.05	381 2,381 2,527 4 37 18 ,600 1,525 1,600 ,09 1.10 1.10 ,2 7.0 7.05

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0065 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

Elma Winter

	linter	,	DATE SAMPLED_	4/2/84		
ccJerry	Skidmore		DATE REPORTED	4/9/84		
cc			BIFLD I FASE OR	weu_ Warren	Unit #55 Tul	bb
			COUNTY		CTATE	N.M.
	o, Inc.					
	·					
DORESS		· · · · · · · · · · · · · · · · · · ·			 	
ERVICE ENGINEER Jay BI	<u>rown</u>		SUBMITTED BY	Jay Brown		
December of the dealers		S. L. Company		والمرابع المراجع والمراجع والمراجع والمرابع والمراجع والم	September 1997 In the subsequence	
		EHEMICAL	ANALYSIS (AS PARTS P	FE MILLION)		
			Field, Lea	ise, or Well		•
Chemical						
Component	24 hrs.	48 hrs.	72 hrs.			•
oride (CI)	88,000	95,000	96,000			
(Fe)						
i Hardness (Ca CO ₃)						
ium (Ca)	7,240	7,240	7.320			
nesium (Mg)	2,527	2.527	2.649			
rbonate (HCO ₃)	31	24	18			
oonste (CO ₃)		·				
ate (SO ₄)	1,125	1.425	1.875			
rogen Sulfide (H ₂ S)						
olfic Gravity	1.10	1.71	1.11			
sity, lb./gal.	<u> </u>					
Beckman [] Strip []	6.6	6.6	6.9			
TDS	143,394	155,376	157,549			
	<u> </u>					
					·	
	1	ı	1	1 1		, , , , , , , , , , , , , , , , , , ,

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

		
PORT FOR	Elma Winter	DATE SAMPLED 4/2/84
cc	Jerry Skidmore	9/9/84
		FIELD, LEASE, OR WELL Blinebry/Tubb: 90/10
cc		COUNTY STATEN.M.
WFANY	Conoco, Inc.	FORMATION
223SC	Jay Brown	Jay Brown
NICE ENGINE		SUBMITTED BY

			Field, Le	ase, or Wel	1	• .
Chemical Component	Theoretical B/T 90/10	Initial	24 hrs.	48 hrs.	72 hrs.	
fice (Ci)	84,900	86,000	81,500	84,000	89,000	
(Fe)	3.75	2				
. riziraness (Ca CO ₃)						
ium (Ca)	6,159	7,200	6.200	6,640	7,240	
tesium (Mg)	2,318	1,920	2.333	2,309	2,187	
rponate (HCO3)	128	122	12.2	30	24	
onate (CO ₃)						
ste (SO ₄)	2.413	1.850	1.450	1.625	2.025	
rogen Sulfice (H ₂ S)				•		
ific Gravity	7.10	1.70	7.095	1.099	1.10	
ity, 15./gal.		•				
Beckman [] Strip []		7.21	6.8	6.95	6.9	
DS.	140,579	141,862	133,475	137,833	146,669	
	1					

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863 RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561 PLANT: Odessa, Texas Phone (915) 337-0055

Elma Winte	<u>r</u>	DATE SAMPLED 4/2/84	· · · · · · · · · · · · · · · · · · ·	
Jerry Skid	more	DATE REPORTED 4/9/84	•	_
		HELD, LEASE, OR WELL Bline	ebry/Tubb : 70/30	
•		COUNTY		N.M.
Conoco, In	с.	FORMATION		
·		DEPTH		_
Jay Brown		SUBMITTED BY Jay Bro)WN	

	Field, Lease, or Well						
Chemical Component	Theoretical B/T JQ/30	Initial	24 hrs.	48 hrs.	72 hrs.		
ride (CI)	86,700	87,000	82.000	85,000	89.000		
(Fe)	5.2	4					
Hardness (Ca CO3)							
ບກາ (Ca)	7.200	7,600	6.480	6,600	6-520		
esium (Mg)	2.289	1.580	2.552	2.527	2,697		
bonate (HCO3)	116	134	24	37	24		
onate (CO ₃)							
te (SO ₄)	2.238	1,900	1.475	1,475	1,875		
ogen Sulfide (H ₂ S)							
fic Gravity	1.10	1 10	1 10	1.10	1.10		
ty, Ib./gal.							
Beckman [] Strip []		7.19	6.7	6.8	6.8		
),	143,239	143,828	134,124	137,433	146,117		
	<u> </u>						
			1				

TECH SERVICE LABORATORY: Odessa, Texas Phone (915) 337-0055 & 563-0863
RESEARCH LABORATORY: Houston, Texas Phone (713) 431-2561
PLANT: Odessa, Texas Phone (915) 337-0055

ORT FOR E I III d W	inter		DATE SAMPLED.	4/2/84		
cc Jerry	Skidmore		DATE REPORTED	4/9/84	•	
cc			SIELD LEASE C	Bline	ebry/l ubb : 30/70)
					STATE_N	
CC						М
MPANYCONOCO	. Inc.		FORMATION			
DRESS			DEPTH	Jan Drane	<u> </u>	
DRESS WICE ENGINEER Jay	y Brown		SUBMITTED BY_	Jay Brown		
					Maria de Caracteria de Car	
		E HEMICAL A				
			Field, Le	ase, or Wei	1	•
Chemical Component	Theoretica		0.4 5	40 h	70.1	
	B/T 30/70		24 hrs.	48 hrs.	72 hrs.	
ride (CI)	90,300	90.,000	87,500	91,000	93,000	
(Fe)						
Hardness (Ca CO3)						
um (Ca)	8,000	7,640	7,040	7,000	7,000	
esium (Mg)	2,231	2,211	2,454	2,552	2.673	
ponate (HCO3)	91 !	37	24	37	12.2	
enste (CO ₃)	-					
te (SO ₄)	1.888	1.525	1,250	1.250	1.925	
ogen Sulfide (H ₂ S)						
fic Gravity	1.11	1.11	1.10	1.11	1.11	
ty, Ib./gal.						
Beckman [] Strip []		7.13	6.7	6.75	6.8	
)S	148,558	147,528	142,851	148,543	152,708	
		·				
		_	i	1		

SERVICE LABORATORY: Odessa, Texas • Ph.: 362-2353 & 563-0863 RESEARCH LABORATORY: Houston, Texas • Ph.: (713) 433-6771 PLANT: Odessa, Texas • Ph.: 362-2353 & 563-0863

CHEMICAL S. INC.

BOX 4513 • ODESSA, TEXAS

CHEMICAL WITH SERVICE

OR	Elma Winter	4/2/84 DATE SAMPLED.
cc	Jerry Skidmore	DATE REPORTED 4/6/84
α		FIELD, LEASE OR WELL Warren Unit #55 Tubb and Blinebry
œ	•	COUNTY STATE_N_M
WYY	Conoco, Inc.	FORMATION
<u> </u>	•	DEPTH
E ENGINEER	Jay Brown	SUBMITTED BYJoe Edwards

.. OTHER DESCRIPTION

Millipore analysis of 5 ratio blends of the waters from the ${\bf Trabb}$ and ${\bf Bline}$ formations from Warren Unit #55

PAGE #1

	CHEMIC	AL ANALYSIS A	PWEIGHT PERCENT)		
			eld, Lease, or		
SCALE COMPONENT	Blinebry	Tubb	B/T 90%/10%	B/T 70%/30%	B/T 50%/50%
CaCO3	50%	57.2%	68.3%	69.9%	73.4%
FeS	18.4%	42.8%	28.3%	25.8%	26.6%
Acid Insolubles	31.6%	0	3.4%	4.3%	0
Suspended Solids (Mg/L)	213	180	145	186	194
· · · · · · · · · · · · · · · · · · ·	·			·	
TOTAL	100%	100%	100%	100%	100%

REMARKS AND RECOMMENDATIONS

CHEMICALS. INC.

CHEMICALS. INC.

CHEMICAL S. INC.

CHEMICAL WITH SERVICE

SERVICE LABORATORY: Odessa, Texas • Ph.: 362-2353 & 563-0863 RESEARCH LABORATORY: Houston, Texas • Ph.: (713) 433-6771

PLANT: Odessa, Texas • Ph.: 362-2353 & 563-0863

Elma Winter	4/2/84 DATE SAMPLED
Jerry Skidmore	DATE REPORTED 4/6/84
	FIELD, LEASE OR WELL Warren Unit #55 Tubb and
	COUNTYSTATEN.M.
Conoco, Inc.	FORMATION
	DEPTH
Jay Brown	Joe Edwards

OTHER DESCRIPTION

Millipore analysis of 5 ratiox blends of the waters from the Tubb and Blinebry formations from Warren Unit #55

PAGE #2

	A CONTRACTOR OF THE PARTY OF TH	(AUL JIL				
SCALE COMPONENT	Field, Lease, or Well					
	B/T 30%/70%	B/T 10%/90%				
CaCO3	67.1%	52.4%				
FeS	32.9%	47.6%				
Acid Insolubles	0	0				
	·					
Suspended Solids (Mg/	_) 146	145				
		·				
TOTAL	100%	100%		·		

REMARKS AND RECOMMENDATIONS

BLINEBRY POOL WARREN UNIT #77

TD: 6790'