1RP - 401

1st Semi Annual GW monitoring Report

YEAR(S): 2009

RECEIVED

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 **303-595-3331** 303-605-2226 FAX

June 2, 2009

2009 JUN 3 AM 11 34

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 1st 2009 Semi Annual Groundwater Monitoring Results

DCP C-Line Pipeline Release (1RP-401-0)

Lea County, NM (Unit O Section 31, T19S, R37E)

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, one copy of the 1st 2009 Semi Annual Groundwater Monitoring Results for the DCP C-Line Pipeline Release Site located in Lea County, New Mexico (Unit O Section 31, T19S, R37E, Latitude 32° 31' 29.7" N Longitude 103° 17' 11.7 W).

If you have any questions regarding the report, please call me at 303-605-1718.

Sincerely

DCP Midstream, LP

Stephen Weathers, PG

Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD)

Environmental Files

May 26, 2009

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re:

First 2009 Semiannual Groundwater Monitoring Report

DCP C-Line 50602 Release Location in Lea County New Mexico Unit O, Section 31, Township 19 South, Range 37 East (1RP-401-0)

Dear Mr. Weathers:

This report documents the first semiannual 2009 groundwater monitoring activities completed at the C-Line 50602 release location for DCP Midstream, LP (DCP). Approval to change to semiannual groundwater monitoring was granted by the New Mexico Oil Conservation Division in February 2008. The monitoring activities were completed on March 10, 2009. The site is located in the southwestern quarter of the southeastern quarter (Unit O) of Section 31, Township 19 South, Range 37 East (Figure 1). The approximate coordinates are 32.52500 degrees 3 north, 103.28667 degrees west.

The groundwater-monitoring network includes the nine wells shown on Figure 2. Table 1 summarizes construction information for each well.

SUMMARY OF MONITORING ACTIVITIES

The depth to water and free phase hydrocarbons (FPH), if present, were measured in each well prior to purging and sampling. The calculated groundwater elevations for all monitoring episodes are summarized in Table 2.

None of the wells contained FPH. The historical FPH thickness values for MW-1 and MW-4 are summarized in Table 3. FPH has not been measured in MW-1 since June 2005 and in MW-2 since March 2007.

Eight of the nine wells were purged and sampled. Well MW-6 was not sampled because it is located down gradient from unaffected boundary wells MW-7, MW-8 and MW-9 so it does not provide useful information relative to this study.

The wells were purged using dedicated bailers until a minimum of three casing volumes of groundwater were removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposal of at the DCP Linam Ranch facility.

Mr. Stephen Weathers May 26, 2009 Page 2

Unfiltered samples were collected following well stabilization using the dedicated bailers. All of the samples were placed in an ice-filled chest immediately upon collection and delivered to the analytical laboratory (AccuTest Laboratory) using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX). The anlytical laboratory report is attached.

The quality control QC evaluations completed for this event include:

- The samples were received at an acceptable temperature;
- All of the samples were analyzed within the required holding times;
- The BTEX constituents in the trip blank were all below their method detection limits;
- All of the individual surrogate spikes were within their control limits or were not related to the constituents that were detected;
- The method blank and blank spike evaluations were all acceptable;
- The relative percentage difference (RPD) values for the MW-3 primary and duplicate samples were all less than 10 percent; and
- The matrix spike and matrix spike duplicate results were all within their respective control ranges and exhibited good agreement.

The information above indicates that the data is suitable for evaluating groundwater monitoring data.

RESULTS AND INTERPRETATIONS

The first semiannual 2009 BTEX results are summarized in Table 4. The constituents that exceed the New Mexico Water Quality Control Commission (WQCC) Groundwater Standard are highlighted as bold text. The data for all sampling events are compiled in Table 5 for benzene, Table 6 for toluene, Table 7 for ethylbenzene and Table 8 for xylenes.

Figure 3 includes hydrographs for all site wells. The water table elevations increased in all of the wells. Figure 4 shows the first semiannual 2009 calculated groundwater contours as generated using the Surfer® program with the kriging option. The water table exhibits a consistent gradient toward the southeast. This pattern reflects the historic trends.

Figure 5 depicts the spatial event benzene distribution. Benzene was reported at 0.94 mg/l in MW-1, 5.03 mg/l in MW-3 and 0.0141 mg/l in MW-4. The remaining wells, particularly down-gradient boundary wells MW-7, MW-8 and MW-9, did not contain benzene above the 0.002 mg/l method reporting limit.

The changes in benzene concentrations over time are plotted for wells MW-1 and MW-3 on Figure 6. Sampling in MW-1 began in December 2005 after removal of the FPH was completed. The benzene concentration in MW-1 decreased slightly between September

Mr. Stephen Weathers May 26, 2009 Page 3

2008 and March 2009. The current value remains within the lower part of the historical fluctuation range.

Sampling in MW-3 began in November 2002 at the start of the project. The benzene concentration declined substantially from the September 2008 concentration. The March 2009 benzene concentration was the lowest measured in this well since October 2003 (Table 5).

The benzene concentration in MW-4 of 0.0141 mg/l was slightly above the WQCC Groundwater Standards. This concentration is almost identical to the 1.046 mg/l value that was measured in September 2008. MW-4 lies directly down-gradient from the original release area surrounding MW-1 that was remediated immediately following the spill. The data for MW-4 in Table 5 establishes that natural bioremediation processes are attenuating the BTEX constituents between MW-1 and MW-4.

Benzene has not been detected at or above a 0.001 mg/l concentration in either MW-2 or MW-5 since June 2005. The elevated concentrations in MW-3, a well that lies west of the centerline for the groundwater plume from the pipeline release area, remains anomalous. Wells MW-7 and MW-8 are both located downgradient from this well, and BTEX constituents have not been detected in these wells effectively bounding the down-gradient migration of the dissolved-phase constituents.

The wells are gauged regularly for FPH and the vacuum extraction system is operated as necessary to ensure that no FPH is present in the wells. The system will be stopped (if operating) two weeks before the next sampling event to ensure accurate FPH measurement.

The next monitoring event is scheduled for the second half of 2009. AEC will provide appropriate notification prior to the onset of sampling activities.

Do not he sitate to contact me with any questions or comments on this report.

Respectfully submitted,

AMERICAN ENVIRONMENTAL CONSULTING, LLC

Michael H. Stewart, P.E., C.P.G.

Muchael H. Stewart

Principal Engineer

MHS/tbm

attachments

Table 1 – Summary of Well Construction Information

Well	Top of Casing Elevation	Ground Elevation	Screen Diameter	Screened Interval	Sand Interval	Total Depth
MW-1	3,541.21	3,538.64	4"	82.5-97.5	81-98	98
MW-2	3,540.91	3,537.70	2"	81-101	77-102	102
MW-3	3,541.41	3,539.30	2"	80-100	78-103	103
MW-4	3,541.40	3,538.51	2"	80-100	78-103	103
MW-5	3,541.45	3,538.69	2"	80-100	78-102	102
MW-6	3,543.98	3,540.94	2"	79-99	75-102	102
MW-7	3,542.42	3,540.20	2"	82.5-97.5	77-98*	98
MW-8	3,540.29	3,538.08	2"	82.5-97.5	81-98	98
MW-9	3,539.62	3,537.33	2"	82.5-97.5	81-98	98

All units in feet except as noted

* Well MW-7 has a natural sand pack from 93 to 98 feet

Table 2 – Summary of Corrected Groundwater Elevations

Well Nov. 02 Feb. 03 Apr. 03 Oct. 03 Jan. 04 Jun. 04 Sep. 04 Dec. 04 Mar. 05 Jun. 05 Sep 05 Dec 05 Mar 06	MW-1 3452.01 3451.60 3451.73 3451.35 3451.34 3451.23 3451.19 3450.97 3451.22 3451.99 3451.96 3451.88 3451.96	MW-2 3452.11 3451.97 3451.96 3451.87 3451.84 3451.73 3451.72 3451.91 3452.08 3452.22 3452.19 3452.18	MW-3 3452.25 3451.37 3451.33 3451.27 3451.22 3451.06 3451.01 3451.24 3451.37 3451.51 3451.58 3451.46 3451.52	MW-4 3451.56 3451.32 3451.21 3451.25 3451.19 3451.02 3450.88 3451.19 3451.25 3451.26 3451.38 3450.42 3451.34	MW-5 3451.39 3451.21 3451.09 3451.20 3451.11 3450.86 3450.75 3451.10 3451.14 3451.35 3451.18 3451.32 3451.18	MW-6 3448.77 3448.51 3448.38 3448.46 3448.37 3448.14 3448.03 3448.91 3448.64 3448.62 3448.44 3448.50 3448.26	3450.76 3450.72 3450.57 3450.47 3450.70 3450.80 3450.99 3450.99 3450.86 3450.86	3450.35 3450.22 3450.03 3449.85 3450.21 3450.23 3450.41 3450.24 3450.40 3450.18	3450 21 3450 03 3449 81 3449 67 3450 13 3450 11 3450 38 3450 04 3450 25 3449.99
Dec 05	3451.8	3452.1	3451.4	3450.4	3451.3	3448.5	3450.8	3450.4	3450.2
Sep 05	3451.96	3452.19	3451.58	3451.38	3451.18	3448.44	3450.99	3450.24	3450.04
Jun. 05	3451.99	3452.22	3451.51	3451.26	3451.35	3448.62	3450.99	3450.41	3450.38
Mar. 05	3451.22	3452.08	3451.37	3451.25	3451.14	3448.64	3450.80	3450.23	3450.11
Dec. 04	3450.97	3451.91	3451.24	3451.19	3451.10	3448.91	3450.70	3450.21	3450.13
Sep. 04	3451.19	3451.72	3451.01	3450.88	3450.75	3448.03	3450.47	3449.85	3449.67
Jun. 04	3451.23	3451.73	3451.06	3451.02	3450.86	3448.14	3450.57	3450.03	3449.81
Jan. 04	3451.34	3451.84	3451.22	3451.19	3451.11	3448.37	3450.72	3450.22	3450.03
Oct. 03	3451.35	3451.87	3451.27	3451.25	3451.20	3448.46	3450.76	3450.35	3450.21
Apr. 03	3451.73	3451.96	3451.33	3451.21	3451.09	3448.38			
Feb. 03	3451.60	3451.97	3451.37	3451.32	3451.21	3448.51			
Nov. 02	3452.01	3452.11	3452.25	3451.56	3451.39	3448.77			
Well	MW-1	MW-2	MW-3	MW-4	MW-5	9-MM	MW-7	8-WM	WW-9

Sep-06 D	ec-06 Mar	Well Jun 06 Sep-06 Dec-06 Mar-07 Jun-07 Sep-07 Dec-07 Mar-08 Sep-08 Mar-09	Sep-07	Dec-07	Mar-08	Sep-08	Mar-09
MW-1 3451.88 3451.86 3451.82 3451.83 3451.64 3451.62 3451.74 3452.17 3449.64 3451.57		83 3451.64	3451.62	3451.74	3452.17	3449.64	3451.57
MW-2 3452.13 3452.12 3452.06 3452.07 3452.04 3452.13 3451.91 3451.87 3451.80 3451.87		.07 3452.04	3452.13	3451.91	3451.87	3451.80	3451.87
MW-3 3451.45 3451.43 3451.40 3451.40 3451.21 3451.36 3451.30 3451.14 3451.12 3451.17		.40 3451.21	3451.36	3451.30	3451.14	3451.12	3451.17
MW-4 3451.40 3451.34 3451.33 3451.36 3450.99 3451.07 3451.34 3450.98 3451.02 3451.17		1.36 3450.99	3451.07	3451.34	3450.98	3451.02	3451.17
MW-5 3451.16 3451.16 3451.22 3451.27 3450.87 3451.05 3451.32 3450.87 3450.85 3451.09		.27 3450.87	3451.05	3451.32	3450.87	3450.85	3451.09
MW-6 3448.28 3448.27 3448.30 3448.36 3447.97 3448.15 3448.40 3448.04 3447.96 3448.12		3.36 3447.97	3448.15	3448.40	3448.04	3447.96	3448.12
MW-7 3450.81 3450.83 3450.78 3450.80 3450.52 3450.72 3450.77 3450.51 3450.53 3450.55		0.80 3450.52	3450.72	3450.77	3450.51	3450.53	3450.55
MW-8 3450.14 3450.21 3450.28 3450.35 3449.86 3450.08 3450.32 3449.91 3449.81 3450.10		0.35 3449.86	3450.08	3450.32	3449.91	3449.81	3450.10
MW-9 3449.92 3450.02 3450.15 3450.19 3449.79 3449.95 3450.26 3449.80 3449.62 3450.02		0.19 3449.79	3449.95	3450.26	3449.80	3449.62	3450.02

All units in feet.

Blank cells: wells not installed

The groundwater elevation values for MW-1 and MW-4 were corrected when free phase hydrocarbons were present using the following formula (all values in feet): $GWE_{corr} = MGWE + (PT*PD)$: where

- MGWE is the actual measured groundwater elevation;
- PT is the measured free-phase hydrocarbon thickness, and PD is the free phase hydrocarbon density (assumed 0.7).

Table 3 – C-Line Free Phase Hydrocarbon Thickness Measurements

Date	MW-1	MW-4
11/02/02	3.15	0.00
02/17/03	3.62	0.00
04/16/03	2.92	0.00
10/30/03	3.21	0.00
06/29/04	2.66	0.00
09/28/04	2.16	0.21
12/08/04	0.13	1.18
03/16/05	0.04	3.03
06/06/05	0.02	0.07
09/20/05	0.00	0.16
12/15/05	0.00	0.21
03/21/06	0.00	0.03
06/27/06	0.00	0.00
09/16/06	0.00	0.00
12/11/06	0.00	0.00
03/14/07	0.00	0.06
06/20/07	0.00	0.00
09/26/07	0.00	0.00
12/27/07	0.00	0.00
03/06/08	0.00	0.00
09/17/08	0.00	0.00
03/10/09	0.00	0.00

Units are feet

Table 4 – First Semiannual 2009 Results

		**	The state of the s	Total
Well	Benzene	Toluene	Ethylbenzene	Xylenes
NMWQCC Standards	0.01	0.75	0.75	0.62
N (XX)	0.040	0.224	0.01701	0.0026
MW-1	0.942	0.224	0.0178J	0.0926
MW-2	< 0.002	< 0.002	< 0.002	< 0.006
MW-3	5.25	0.3	2.6	0.907
MW-3 (duplicate)	4.8	0.289	2.4	0.919
MW-4	0.0141	0.0618	0.0178	0.0863
MW-5	0.0005J	< 0.002	< 0.002	< 0.006
MW-6	NS	NS	NS	NS
MW-7	< 0.002	< 0.002	< 0.002	< 0.006
MW-8	< 0.002	< 0.002	< 0.002	< 0.006
MW-9	< 0.002	< 0.002	< 0.002	< 0.006
Trip Blank	< 0.002	< 0.002	< 0.002	< 0.006

Notes: All units mg/l

NS: Well not sampled

NMWQCC Standards: New Mexico Water Quality Control Commission

Groundwater Standards. Bold values exceed their respective

A J value quantifies a constituent that was measured between the method detection limit and the method reporting limit.

Table 5 - Summary of Historical Analytical Results for Benzene

				, ,					
	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
11/15/02	FPH	< 0.001	0.017	0.114	< 0.001	< 0.001			
02/18/03	FPH	0.29	2.52	1.12	0.328	0.001			
04/17/03	FPH	0.175	3.18	0.782	0.128	0.002			
10/28/03	FPH	0.018	5.01	0.077	0.164	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0848	6.06	0.320	0.226	0.00382	< 0.001	0.00139	<0.001
06/29/04	FPH	0.0582	9.84	0.461	0.249	< 0.00019	0.000456	0.00248	< 0.00019
09/28/04	FPH	0.329	11.2	FPH	0.0336	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	0.0355	12.0	FPH	0.0137	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	0.00523	10.9	FPH	0.00371	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	0.0017	8.83	FPH	0.00169	< 0.001	0.000695	0.000955	< 0.001
09/20/05	FPH	< 0.001	10.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	2.14	< 0.001	9.57	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	1.32	< 0.001	6.55	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	2.17	< 0.001	9.67	9.08	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/16/06	4.27	< 0.001	10.55	0.51	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	7.49	0.17	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	5.59	< 0.001	6.41	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	3.82	< 0.001	6.41	1.80	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	1.75	< 0.001	5.54	0.43	< 0.001	NS	< 0.001	< 0.001	< 0.001
12/27/07	1.92	< 0.002	5.89	0.11	< 0.002	NS	< 0.002	< 0.002	< 0.002
03/06/08	0.31	< 0.002	8.36	< 0.002	< 0.002	NS	< 0.002	< 0.002	< 0.002
09/17/08	1.06	< 0.002	6.14	0.0146	0.00073	NS	< 0.002	< 0.002	< 0.002
03/10/09	0.942	< 0.002	5.03	0.0141	0.0005J	NS	< 0.002	< 0.002	< 0.002

- All units mg/l,
- 2. Duplicate results averaged,
 "J" qualifiers are not included in summary
- Wells not installed where blank cells are present,
 FPH: free phase hydrocarbons present so no sample collected
- NS: Well not sampled, see text for explanation

Table 6 - Summary of Historical Analytical Results for Toluene

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
	14144 1	112 17 22	11111		212 (1	11211			
11/15/02	FPH	< 0.001	0.005	0.039	< 0.001	< 0.001			
02/18/03	FPH	0.014	0.634	0.436	0.056	< 0.001			
04/17/03	FPH	0.007	0.513	0.45	0.007	< 0.001			
10/28/03	FPH	0.001	0.275	0.029	0.048	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.0350	0.506	0.169	0.064	0.00140	< 0.001	0.00109	< 0.001
06/29/04	FPH	0.000219	0.0917	0.0202	0.00172	< 0.00014	< 0.00014	< 0.00014	< 0.00014
09/28/04	FPH	0.0174	0.0218	FPH	0.00281	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	0.0017	0.0438	FPH	0.00318	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.013	FPH	.00038	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.056	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
9/20/05	FPH	< 0.001	0.1355	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	1.37	< 0.001	0.414	FPH_	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	0.931	< 0.001	1.575	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	1.42	< 0.001	2.93	5.73	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/16/06	0.508	< 0.001	3.48	0.0415	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	3.35	0.139	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	0.232	< 0.001	2.75	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.43	< 0.001	3.49	0.98	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	0.097	< 0.001	2.555	0.35	< 0.001	NS	< 0.001	< 0.001	< 0.001
12/27/07	0.0372	< 0.002	2.81	0.145	< 0.002	NS	< 0.002	< 0.002	< 0.002
03/06/08	0.07	< 0.002	4.36	< 0.002	< 0.002	NS	< 0.002	< 0.002	< 0.002
09/17/08	0.0555	< 0.002	3.3	0.0068	0.0007	NS	< 0.002	< 0.002	< 0.002
03/10/09	0.0178J	< 0.002	2.5	0.0178	< 0.002	NS	< 0.002	< 0.002	< 0.002

- All units mg/l, 1.

- All units mg/l,
 Duplicate results averaged,
 "J" qualifiers are not included in summary
 Wells not installed where blank cells are present,
 FPH: free phase hydrocarbons present so no sample collected
 NS: Well not sampled, see text for explanation

Table 7 – Summary of Historical Analytical Results for Ethylbenzene

	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
	101 00 - 1	101 00 -2	101 00 -3	147.44 - 4	101 00 - 3	141 44 +0	101 00 - 7	141 44 -0	101 00 - 5
11/15/02	FPH	<0.001	< 0.001	0.002	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.021	0.022	0.004	< 0.001			
04/17/03	FPH	< 0.001	0.028	0.029	< 0.001	< 0.001			
10/28/03	FPH	< 0.001	0.031	0.002	0.002	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00292	0.0679	0.0203	0.00404	0.00133	< 0.001	0.00112	< 0.001
06/29/04	FPH	0.00534	0.0873	0.352	0.0603	< 0.00013	< 0.00013	0.000633	< 0.00013
09/28/04	FPH	< 0.001	0.105	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	< 0.001	0.154	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.150	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH	< 0.001	0.1535	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.288	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/15/05	0.313	< 0.001	0.173	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	0.419	< 0.001	0.4085	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	0.534	< 0.001	0.0333	1.03	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/16/06	0.153	< 0.001	0.288	0.21	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	0.391	0.111	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	0.453	< 0.001	0.3185	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.40	< 0.001	0.52	0.61	< 0.001	NS	< 0.001	< 0.001	< 0.001
09/26/07	0.37	< 0.001	0.35	0.19	< 0.001	NS	< 0.001	< 0.001	< 0.001
12/27/07	0.278	<0.002	0.316	0.0837	< 0.002	NS	< 0.002	< 0.002	< 0.002
03/06/08	0.94	< 0.002	0.57	< 0.002	< 0.002	NS	< 0.002	< 0.002	< 0.002
09/17/08	0.239	< 0.002	0.386	0.0703	< 0.002	NS	< 0.002	< 0.002	< 0.002
03/10/09	0.224	< 0.002	0.2945	0.0618	< 0.002	NS	< 0.002	< 0.002	< 0.002

- All units mg/l, 1.
- 2.
- Duplicate results averaged,
 "J" qualifiers are not included in summary
- 4.
- Wells not installed where blank cells are present, FPH: free phase hydrocarbons present so no sample collected 5.
- NS: Well not sampled, see text for explanation

Table 8 – Summary of Historical Analytical Results for Xylenes

,	MW-1	MW-2	MW-3	MW-4	MW-5	MW-6	MW-7	MW-8	MW-9
					-				
11/15/02	FPH	< 0.001	< 0.001	0.003	< 0.001	< 0.001			
02/18/03	FPH	0.001	0.064	0.032	0.004	< 0.001			=-
04/17/03	FPH	< 0.001	0.1	0.055	< 0.001	< 0.001			
10/28/03	FPH	< 0.001	0.083	0.008	0.004	< 0.001	< 0.001	< 0.001	< 0.001
01/29/04	FPH	0.00474	0.0849	0.053	0.0074	0.00194	< 0.001	0.00217	< 0.001
06/29/04	FPH_	0.001	0.02404	0.074	0.004	< 0.0002	< 0.0002	< 0.0002	< 0.0002
09/28/04	FPH	< 0.001	0.0213	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/06/04	FPH	< 0.001	0.0237	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/16/05	FPH	< 0.001	0.02842	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/06/05	FPH_	< 0.001	0.0502	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/20/05	FPH	< 0.001	0.221	FPH	< 0.001	< 0.001	< 0.001	< 0.001	0.00105
12/15/05	1.334	< 0.001	0.177	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/21/06	1.379	< 0.001	0.9015	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/26/06	1.722	< 0.001	0.414	5.69	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
09/16/06	0.323	< 0.001	0.384	1.028	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
12/11/06	< 0.001	< 0.001	0.557	0.466	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
03/14/07	0.27	< 0.001	0.501	FPH	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
06/20/07	0.79	< 0.002	0.78	2.65	< 0.002	NS	< 0.002	< 0.002	< 0.002
09/26/07	0.47	< 0.002	0.515	0.93	< 0.002	NS	< 0.002	< 0.002	< 0.002
12/27/07	0.0736	< 0.006	0.4615	0.425	< 0.006	NS	< 0.006	< 0.006	< 0.006
03/06/08	1.58	< 0.006	0.99	< 0.006	< 0.006	NS	< 0.006	< 0.006	< 0.006
09/17/08	0.0751	< 0.006	0.674	0.081	< 0.006	NS	< 0.006	< 0.006	< 0.006
03/10/09	0.0926	< 0.006	0.913	0.0863	< 0.006	NS	< 0.006	< 0.006	< 0.006

- All units mg/l, ١.

- Duplicate results averaged,
 "J" qualifiers are not included in summary
 Wells not installed where blank cells are present,
 FPH: free phase hydrocarbons present so no sample collected
- NS: Well not sampled, see text for explanation

WELL SAMPLING DATA AND ANALYTICAL LABORATORY REPORT

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-1
SI	TE NAME:		C Line		_	DATE:	3/10/2009
PRC	JECT NO.				_		M Stewart/A Taylor
PURGING	METHOD	:	☑ Hand Bai	led □ Pu	ımp If Pui	тр, Туре:	
SAMPLIN	G METHO	D:	☑ Disposab	le Bailer [☐ Direct f	from Disch	arge Hose 🔲 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:
☑ Glove	s□ Alcond	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		
DEPTH TO HEIGHT (O WATER: OF WATER AMETER:	COLUMN: 4.0	20.4	Minimum Gallons to purge 3 well volumes (Water Column Height x 1.96)			
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	20		moren		IIIg (L		-
						_	

			-::	-			
						_	
	20.0	:Total Vol	(gal)				
SAMP	LE NO.:	MW-1		_			
ANAL	YSES:	BTEX (826	0)				
COM	MENTS:	No field par	rameters bed	cause of hi	gh BTEX	concentrat	on

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-2
S	ITE NAME:		C Line	-	_		3/10/2009
		-					M Stewart/A Taylor
	•						
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pui	тр, Туре:	
SAMPLIN	IG METHOE	D :	☑ Disposab	le Bailer	Direct t	from Discha	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPL	ING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		
TOTAL D DEPTH T HEIGHT	EPTH OF V	VELL:	100.94 89.04 11.90	Feet		5.8	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME		COND.	pН	DO	Turb	PHYSICAL APPEARANCE AND REMARKS
	PURGED 2.0	° F 19.7	<i>m</i> S/cm 2.75	7.19	mg\L		KLIVIANNO
	4.0	19.7	2.74	7.19			
620	6.0	19.7	2.75	7.10			
- 020	0.0	10.7	2.70				
	·			_			
	6.0	:Total Vol (gal)				
SAMF	LE NO.:	MW-2					
ANA	LYSES:	BTEX (826	0)				
COM	MENTS:						

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-3
S	ITE NAME:		C Line		_	DATE:	3/10/2009
						SAMPLER:	M Stewart/A Taylor
					_		
PURGING	G METHOD	:	☑ Hand Bai	iled 🗆 Pu	ımp If Pur	mp, Type:	
SAMPLIN	IG METHOI	D:	☑ Disposab	le Bailer [☐ Direct f	rom Disch	arge Hose 🔲 Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗆 Distill	led Water Ri	nse 🗆 🤇	Other:		
DEPTH T HEIGHT	O WATER: OF WATER		12.20	Feet		6.0	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.0	20.2	2.32	7.47			
	4.0	20.2	2.32	7.42			
345	6.0	20.1	2.32	7.44			
	<u>-</u> -				••••••••••••••••••••••••••••••••••••••		
						1	
	6.0	:Total Vol (gal)				
SAMF	PLE NO.:	MW-3					
ANA	LYSES:	BTEX (826	0)			-	
СОМІ	MENTS:		Duplicate Sa	mple			
				-			
							······································

CLIENT: DCP Midstream		am					
SITE NAME: C		C_Line		_		3/10/2009	
							M Stewart/A Taylor
	•				-		
PURGINO	METHOD:	:	☑ Hand Bai	led □ Pu	mp If Pui	тр, Туре:	
SAMPLIN	IG METHOL	D:	☑ Disposab	le Bailer [☐ Direct f	rom Disch	arge Hose 🔲 Other:
DESCRIB	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	LING THE WELL:
☑ Glove	s 🗆 Alcond	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:		
DEPTH T HEIGHT (O WATER: OF WATER		103.42 90.23 13.19 Inch	Feet		6.5	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.3	20	2.69	7.57			
	4.6	20.0	2.73	7.54			
520	6.9	19.9	2.74	7.53			
							
						-	
				-			
			-				
<u> </u>	<u> </u>	-		***			
					<u> </u>		
			-				
	6.9	:Total Vol (dal)				
SAMP	PLE NO.:	MW-4	3-··/		·		
	LYSES:	BTEX (826			-		
	MENTS:	2.2. (020	<u>~,</u>				
COIVII	LITIO.	· ·					
			· · · · · · · · · · · · · · · · · · ·			<u></u>	

	CLIENT: DCP Midstream				WELL ID:	MW-5		
SITE NAME:					3/10/2009			
						SAMPLER:	M Stewart/A Taylor	
	•							
PURGINO	METHOD:		☑ Hand Bai	led □ Pur	np If Pu	тр, Туре:		
SAMPLIN	G METHOE):	☑ Disposab	le Bailer □	Direct	from Disch	arge Hose 🔲 Other:	
DESCRIE	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	D BEFC	RE SAMPI	LING THE WELL:	
☑ Glove	s 🗆 Alcono	x 🗆 Distill	ed Water Ri	nse 🗆 O	ther:			
DEPTH T HEIGHT (O WATER: OF WATER AMETER:	COLUMN: 2.0	102.05 90.36 11.69 Inch	Feet		5.7	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)	
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS	
-	2.0	20.2	3.16	7.37	mg\L_	-	TALIFI WAY	
<u> </u>	4.0	19.7	3.1	7.48				
530	6.0	19.7	3.07	7.46				
				-				
 								
		<u></u>						
								
		_						
	6.0	:Total Vol (gal)			_		
SAMP	LE NO.:	MW-5						
ANAI	_YSES:	BTEX (826	0)					
COM	MENTS:							

CLIENT:		DC	P Midstre	am	_	WELL ID:	MW-6		
SITE NAME:		C Line			_	DATE:	3/10/2009		
						M Stewart/A Taylor			
PURGING	METHOD:		☑ Hand Bai	led 🗆 Pu	ımp If Pur	mp, Type:	<u> </u>		
SAMPLIN	G METHOD	D:	☑ Disposab	le Bailer [☐ Direct f	rom Disch	arge Hose Other:		
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:		
☑ Glove	s 🗆 Alcono	x 🗌 Distill	ed Water Ri	nse 🗆 (Other:				
TOTAL D DEPTH T HEIGHT (WELL DIA	EPTH OF W O WATER: OF WATER AMETER:	VELL: COLUMN: 2.0	103.20 95.86 7.34 Inch	Feet Feet Feet		3.6	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	FORGLD		111 3/CIII	. =	IIIg\L		TREMARKO		
							2000		
					<u> </u>				
	0.0	:Total Vol (gal)			L			
SAMP	LE NO.:	MW-6							
ANAL	YSES:	BTEX (826	0)						
COM	MENTS:	Did Not Pu	rge & Samp	le					
			. <u>-</u>						

and the State of

CLIENT:		DC	P Midstre	am	_	WELL ID:	MW-7		
SITE NAME:		C Line			_	DATE:	3/10/2009		
							M Stewart/A Taylor		
					-				
PURGING	3 METHOD:	:	☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:			
SAMPLIN	IG METHOD	D:	☑ Disposab	le Bailer [☐ Direct f	rom Disch	arge Hose 🔲 Other:		
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMPI	ING THE WELL:		
☑ Glove	s 🗆 Alcond	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:				
DEPTH T HEIGHT	O WATER: OF WATER	VELL: COLUMN: 2.0	100.40 91.87 8.53 Inch	Feet Feet Feet		4.2	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)		
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS		
	1.6	20.2	2.24	7.58					
	3.2	20.2	2.24	7.56					
340	4.8	20.3	2.24	7.49					
<u> </u>									
	4.8	:Total Vol (gal)						
SAMF	PLE NO.:	MW-7							
	LYSES:	BTEX (826	0)						
	MENTS:								
				·		, .			

1

	CLIENT: DCP Midstream			am	_	WELL ID	: MW-8				
SITE NAME: C Line						DATE: 3/10/2009					
	PROJECT NO.						: M Stewart/A Taylor				
PURGING	METHOD	:	☑ Hand Bai	led □ Pu	mp If Pur	mp, Type:					
SAMPLIN	G METHO	D:	☑ Disposab	le Bailer	Direct f	rom Disch	narge Hose 🔲 Other:				
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:				
☑ Glove	s □ Alcond	x 🗆 Distill	ed Water Ri	nse 🗆 C	Other:						
TOTAL DEPTH OF WELL: 100.50 Feet DEPTH TO WATER: 90.19 Feet HEIGHT OF WATER COLUMN: 10.31 Feet WELL DIAMETER: 2.0 Inch						5.0	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)				
TIME	VOLUME PURGED	1	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS				
	1.7	20.0	2.70	7.55							
	3.4	19.9	2.70	7.50							
440	5.1	19.8	2.70	7.49							
						!					
					-						
				_							
	5.1	:Total Vol (gal)								
SAMP	LE NO.:	MW-8									
ANAL	YSES:	BTEX (826	0)								
COM	MENTS:	MS / MSD	sample colle	cted							

	CLIENT: DCP Midstream		WELL ID: MW-9				
S	ITE NAME:	C Line			_		3/10/2009
						SAMPLER:	M Stewart/A Taylor
					_		
PURGING	METHOD:		☑ Hand Bai	led □ Pu	mp If Pur	np, Type:	
SAMPLIN	IG METHOD):	☑ Disposab	le Bailer	☐ Direct f	rom Disch	arge Hose Other:
DESCRIE	BE EQUIPM	ENT DECO	NTAMINATI	ON METH	OD BEFO	RE SAMP	LING THE WELL:
☑ Glove	s 🗆 Alcono	x 🗌 Distill	ed Water Ri	nse 🗆 C	Other:		
DEPTH T HEIGHT (O WATER:	COLUMN:	100.50 89.60 10.90 Inch	Feet		5.3	_Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.0	19.6	2.89	7.50	, , , , , , , , , , , , , , , , , , ,		
	4.0	19.8	2.89	7.48	!		
445	6.0	19.8	2.91	7.47			
		-					
				·			
	6.0	:Total Vol (gal)		İ	,	
SAMP	PLE NO.:	MW-9					
ANAI	_YSES:	BTEX (826	0)				
COM	MENTS:		<u> </u>				

03/23/09

Technical Report for

DCP Midstream, LLC

DCP Midstream C Line Site

Accutest Job Number: T26002

Sampling Date: 03/10/09

Report to:

American Environmental Consulting

mstewart@aecdenver.com

ATTN: Mike Stewart

Total number of pages in report: 29

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

Paul Canevaro **Laboratory Director**

Paul K Carrevard

Client Service contact: William Reeves 713-271-4700

Certifications: TX (T104704220-06-TX) AR (88-0756) FL (E87628) KS (E-10366) LA (85695/04004) OK (9103) UT(7132714700)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Gulf Coast • 10165 Harwin Drive • Suite 150 • Houston, TX 77036 • tel: 713-271-4700 • fax: 713-271-4770 • http://www.accutest.com

Sections:

Table of Contents

-1-

Section 1: Sample Summary	3
Section 2: Sample Results	4
2.1: T26002-1: MW-1	5
2.2: T26002-2: MW-2	6
2.3: T26002-3: MW-3	7
2.4: T26002-4: MW-4	8
2.5: T26002-5: MW-5	9
2.6: T26002-6: MW-7	10
2.7: T26002-7: MW-8	11
2.8: T26002-8: MW-9	12
2.9: T26002-9: DUP	13
2.10: T26002-10: TRIP BLANK	14
Section 3: Misc. Forms	15
3.1: Chain of Custody	16
Section 4: GC/MS Volatiles - QC Data Summaries	20
4.1: Method Blank Summary	21
4.2: Blank Spike Summary	24
4.3: Matrix Spike/Matrix Spike Duplicate Summary	

Sample Summary

DCP Midstream, LLC

DCP Midstream C Line Site

Job No:

T26002

Sample	Collected	A SECTION OF THE PROPERTY OF T	Donnieu- d	Matr		Client
Number	Date	Time By	Received	Code	1 ype	Sample ID
T26002-1	03/10/09	18:10 MS	03/13/09	AQ	Ground Water	MW-1
T26002-2	03/10/09	18:20 MS	03/13/09	AQ	Ground Water	MW-2
T26002-3	03/10/09	15:45 MS	03/13/09	AQ	Ground Water	MW-3
T26002-4	03/10/09	17:20 MS	03/13/09	AQ	Ground Water	MW-4
T26002-5	03/10/09	17:30 MS	03/13/09	AQ	Ground Water	MW-5
T26002-6	03/10/09	15:40 MS	03/13/09	AQ	Ground Water	MW-7
T26002-7	03/10/09	16:40 MS	03/13/09	AQ	Ground Water	MW-8
T26002-7D	03/10/09	16:40 MS	03/13/09	AQ	Water Dup/MSD	MW-8 MSD
T26002-7S	03/10/09	16:40 MS	03/13/09	AQ	Water Matrix Spike	MW-8 MS
T26002-8	03/10/09	16:45 MS	03/13/09	AQ	Ground Water	MW-9
T26002-9	03/10/09	00:00 MS	03/13/09	AQ	Ground Water	DUP
T26002-10	03/10/09	00:00 MS	03/13/09	AQ	Trip Blank Water	TRIP BLANK

Sample Results	The second
Report of Analysis	

Page 1 of 1

Report of Analysis

Client Sample ID: MW-1

Lab Sample ID: Matrix:

T26002-1

AQ - Ground Water

SW846 8260B

Date Sampled: Date Received:

03/10/09 03/13/09

Percent Solids: n/a

Method: Project:

DCP Midstream C Line Site

Prep Date Prep Batch

Analytical Batch

Run #1

Z0048743.D

File ID

DF 10 Analyzed By RR 03/15/09

n/a

n/a

VZ2435

Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3	Benzene Toluene	0.942 0.0178	0.020 0.020	0.0046 0.0048	mg/l mg/l	J
100-41-4	Ethylbenzene	0.224	0.020	0.0045	mg/l	•
1330-20-7	Xylene (total)	0.0926	0.060	0.014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	its	
1868-53-7	Dibromofluoromethane	113%		79-13	22%	
17060-07-0	1,2-Dichloroethane-D4	114%		75-13	21%	
2037-26-5	Toluene-D8	119%		87-1	19%	
460-00-4	4-Bromofluorobenzene	103%		80-1	33%	

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Ву

RR

Analyzed

03/15/09

Page 1 of 1

Client Sample ID: MW-2

Lab Sample ID: Matrix:

T26002-2

Date Sampled: Date Received:

File ID

F014746.D

AQ - Ground Water SW846 8260B

03/10/09 03/13/09

Method: Project:

DCP Midstream C Line Site

DF

1

Percent Solids: n/a

Prep Date n/a

Prep Batch n/a

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	104% 108% 106% 111%		79-12 75-12 87-11 80-13	21% 19%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ву

RR

Analyzed

03/16/09

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: Matrix:

T26002-3

AQ - Ground Water

DF

50

Date Sampled: Date Received:

03/10/09 03/13/09

Method:

SW846 8260B

Prep Date

n/a

n/a

Percent Solids:

Project:

DCP Midstream C Line Site

Prep Batch n/a

Analytical Batch VZ2436

Run #1 Run #2

Purge Volume

Z0048754.D

File ID

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	5.25 2.60 0.300 0.907	0.10 0.10 0.10 0.30	0.023 0.024 0.023 0.068	mg/l mg/l mg/l mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	89% 92% 93% 78%		79-12 75-12 87-11 80-13	21% 1 9 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Page 1 of 1

Client Sample ID: MW-4

Lab Sample ID: Matrix:

T26002-4

AQ - Ground Water

SW846 8260B

03/10/09 Date Sampled: Date Received: 03/13/09

Percent Solids: n/a

DCP Midstream C Line Site Project:

File ID Run #1 F014747.D

DF 1

Ву Analyzed 03/15/09 RR Prep Date n/a

Prep Batch n/a

Q

Analytical Batch VF3319

Run #2

Method:

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No. Compound		Result	RL	MDL	Units
71-43-2	Benzene	0.0141	0.0020	0.00046	mg/l
108-88-3	Toluene	0.0178	0.0020	0.00048	mg/l
100-41-4	Ethylbenzene	0.0618	0.0020	0.00045	mg/l
1330-20-7	Xylene (total)	0.0863	0.0060	0.0014	mg/l
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	s
1868-53-7	Dibromofluoromethane	103%		79-122	2%
17060-07-0	1,2-Dichloroethane-D4	118%		75-12	1%
2037-26-5	Toluene-D8	101%		87-119	9%
460-00-4	4-Bromofluorobenzene	109%		80-133	3%

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

By

RR

Page 1 of 1

Client Sample ID: MW-5

Lab Sample ID:

T26002-5

AO - Ground Water

Date Sampled: Date Received:

03/10/09 03/13/09

Matrix: Method:

SW846 8260B

Percent Solids: n/a

Project:

DCP Midstream C Line Site

DF

1

Prep Date n/a

Prep Batch n/a

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

File ID

F014748.D

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	0.00050 ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	J
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	101% 98% 105% 107%		79-12 75-12 87-11 80-13	21% .9%	

Analyzed

03/15/09

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

Ву

RR

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

T26002-6

File ID

F014749.D

AQ - Ground Water

DF

1

SW846 8260B

Date Sampled: Date Received:

03/10/09 03/13/09

Percent Solids: n/a

Method: Project:

Matrix:

DCP Midstream C Line Site

Prep Date n/a

Prep Batch n/a

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 104% 106% 109%		79-12 75-12 87-13 80-13	21% 19%	

Analyzed

03/15/09

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID: Matrix:

T26002-7 AQ - Ground Water

Date Sampled: Date Received:

03/10/09 03/13/09

Method:

SW846 8260B

DF

1

Percent Solids: n/a

Project: DCP Midstream C Line Site

File ID Run #1 Z0048738.D

Analyzed 03/15/09

By RR Prep Date n/a

Prep Batch

Q

Analytical Batch

VZ2435 n/a

Run #2

Pur ge Volume

Run #1 Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL Units	
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 mg/l 0.00048 mg/l 0.00045 mg/l 0.0014 mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limits	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	114% 106% 124% ^a 106%		79-122% 75-121% 87-119% 80-133%	

(a) Outside of control limits biased high. Only ND results are acceptable.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

By

RR

Analyzed

03/15/09

Page 1 of 1

Client Sample ID: MW-9

Lab Sample ID: Matrix:

T26002-8

AQ - Ground Water

Date Sampled: Date Received:

03/10/09 03/13/09

Method:

SW846 8260B

Percent Solids: n/a

Project:

DCP Midstream C Line Site

DF

1

Prep Date n/a

Prep Batch n/a

Analytical Batch VF3319

Run #1 Run #2

Purge Volume

F014750.D

File ID

Run #1 Run #2

5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4 1330-20-7	Benzene Toluene Ethylbenzene Xylene (total)	ND ND ND ND	0.0020 0.0020 0.0020 0.0060	0.00046 0.00048 0.00045 0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limit	ts	
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	103% 101% 105% 111%		79-12 75-12 87-11 80-13	21% 9%	

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

E = Indicates value exceeds calibration range

Page 1 of 1

Report of Analysis

Client Sample ID: DUP
Lab Sample ID: T26002-9
Matrix: AQ - Ground Water Date Received: 03/13/09
Method: SW846 8260B Percent Solids: n/a
Project: DCP Midstream C Line Site

Analytical Batch File ID DF By Prep Date Prep Batch Analyzed Run #1 VZ2435 Z0048742.D 50 03/15/09 RR n/a n/a RR VZ2436 Run #2 Z0048755.D 50 03/16/09 n/a n/a

Purge Volume
Run #1 5.0 ml
Run #2 5.0 ml

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	4.80	0.10	0.023	mg/l	
108-88-3	Toluene	2.40	0.10	0.024	mg/l	
100-41-4	Ethylbenzene	0.289	0.10	0.023	mg/l	
1330-20-7	Xylene (total)	0.919	0.30	0.068	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Lim	its	
1868-53-7	Dibromofluoromethane	114%	90%	79-1	22%	
17060-07-0	1,2-Dichloroethane-D4	114%	95%	75-1	21%	
2037-26-5	Toluene-D8	124%	94%	87-1	19%	
460-00-4	4-Bromofluorobenzene	103%	79% a	80-1	33%	

(a) Outside of control limits biased low. There were no target compounds associated with this surrogate.

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

N = Indicates presumptive evidence of a compound

Ву

RR

Analyzed

03/16/09

Client Sample ID: TRIP BLANK

File ID

Lab Sample ID: Matrix:

T26002-10

AQ - Trip Blank Water SW846 8260B

03/10/09 Date Sampled:

Prep Date

n/a

Date Received: 03/13/09 Percent Solids: n/a

Method: Project:

DCP Midstream C Line Site

DF

1

Analytical Batch Prep Batch VZ2436 n/a

Run #1 Run #2

Purge Volume

Z0048753.D

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3 100-41-4	Benzene Toluene Ethylbenzene	ND ND ND	0.0020 0.0020 0.0020	0.00046 0.00048 0.00045	mg/l	
1330-20-7	Xylene (total)	ND	0.0020	0.0014	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
1868-53-7	Dibromofluoromethane	90%	t	79-12	22%	
17060-07-0	1,2-Dichloroethane-D4	90%		75-12	21%	
2037-26-5	Toluene-D8	97%		87-11	.9%	
460-00-4	4-Bromofluorobenzene	78% a		80-13	3%	

(a) Outside of control limits biased low. There were no target compounds associated with this surrogate.

MDL - Method Detection Limit

RL = Reporting Limit

J = Indicates an estimated value

E = Indicates value exceeds calibration range

۸./	lisc.	Fo	rm	
W	HSC.	- FO	Ш	S

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

 ■ AC	CL	JTE:	5 T.

CHAIN OF CUSTODY

,	10165 Harwin, Suite 150 - Houst	an TV 7	7026	712 27	1 47	00 fa	v. 7	12	271	4*	770												
	ivios marwin, suite 150 - moust	оп, 1А /	7030 -	/13-2/	1-4/	00 18	:X: /	13-	4/1		70		Accutest						et Job #	7		600)Z
ale mail	Client / Reporting Information	Contract de	O Market	100 1 De	olect In	formatio	n 13				er engage	i SirCie		1210,000 mg	- FT-1			ested A			SOUTH A	1.700 FIGURE	Matrix Codes
Company Na		500 Jackson, 200	Project Na		OJUCE IN	iormatic	ea L:		1.35 24	22.2	3 4 24	1000	9.50 27.5	W-11 - 1 - 1 - 1	1 2 2 2 2 2		Kequ	7	utatyso	" —	-	-	DW - Drinking Water
DCP Mids			1 -	dstream C	Line	Cito									i	-	i				1		GW - Ground Water
Project Cont			Bill to	usu earri	Lille	3110	In	voice	AHn.						- 1					-			WW - Westewater
Stephen \		troom com	Same												-		1			1			80 - Sull
Address	veatileis Syvveatileis@dcpitilds	u eam.com	Address							_					-		!			1			St Sludge
	nteenth Street, Suite 2500														1	ŀ	i i	1		1			OI - O#
City	State	Zip	City				State				Zip	_	i I				1			1			LiQ - Liquid
Denver	CO	80202													- 1					1			SOL - Other Solid
Phone No.	Fa	x No.	Phone No							Fe	x No.		1		ı	1 .							
303-605-]												Ì								
Samplere's I			Client Pur	chase Order	*								8260B										
Accutest	l l		Collection	n			Nun	nber (of pre	Serv	ed bot	tes	ž		- 1		1		1			Į	.=-
Sample #	Field ID / Point of Collection		ațe	Time	Matrix	# of bottles	<u>ş</u>	F S	VC30	ENGON II	Nerson	Š	BTE					L	<u> </u>				LAB USE ONLY
1	MW-1	3/10	109	610	ĠW	3	1		1 1	- 1		1	X	- 1					1	1 "			
2	MW-2		14.	620	GW	3							Х			1	—	1	1				
3	MW-3			345	GW	3	Ш		Ц	\Box	ightharpoons		х										
4	MW-4	\rightarrow		520	GW	3	Ш	┸	Ш	4		L	х	_	_					Ш			
5	MW-5			536	GW	3	\sqcup	\bot	\perp	4		<u> </u>	X			_	_	_	<u> </u>	Ш	4	_	
د	MW-7			340	GW	3	ш	┸	Ш	\Box		乚	Х				<u>L</u>						
٦	8-WM			440	GW	7	Ш	\perp	Ш	\Box			Х										
છ	MW-9			445	GW	3	Ш	1	Ш	4	_	L	X			_				Ш			
9	DUP			000	GW	3	-	╁.	1	_		L	X		_	4	↓		<u> </u>				
10	Trip Blank	1	<u> </u>	LAB		LAB			Ш		L_	L	Х						<u> </u>				
	Turnaround Time (Business days)				Data I	Deliverabl			1		2 <u></u>	: :	125 -			Л	Co	omments	/ Rema	erks	- 1	4. 10	Section 1997
	10 Day STANDARD Approved: 7 Day 4 Day RUSH 3 Day EMERGENCY	3y:/ Date:		X Comm	nercial "/ nercial "I sed Tier ata Pack	B- 1	\equiv	RRP- DD F	ormat														
	2 Day EMERGENCY 1 Day EMERGENCY Other					" = Resul	-	ndaro	4 QC														· · ·
	ime analytical data available via Lablink	SEV MISSES																					
Deline 1-1	SAMPLE CUST	Date Time:	JUCUMENT	Received By:		IL SAMP	LES CH	ANGE			iON, INC ed By:	LUDI	NG COU		_			Davi.	ad D				
Keunquisi	ed by Sampler:	Date Hime:		naceived By:					Keekin	quish	eu By:			D	ite Time:			Receiv	eq Hy;				
1 Relinquist	and hur	Date Time:		Received By:					2		ed By.				its Time:			2					
	wo vy.	Crate 1 (me:		neceived By					Kestin	yursh	eu By.			Di	ice time:			Receiv	ea By:				
3 Relinguist		Date Time:		3		1			4			_						14					
Relinquisi 5	FEDEX	I -	309	Received By:	x-1	ـــــ			Cust	ody S	eal#			Preserved	where ap	picable				On lo	•	Cooler	(*mp.
			300																			_	

T26002: Chain of Custody

Page 1 of 4

ىن --

1		
CCL	JTE	ST

CHAIN OF CUSTODY

_	Laboratorios													FED-EX Tracking # Bottle Order Control #										
1	10165 Harwin, Suite 150 - Housto	n, TX	7036 -	713-27	1-476)() fa	x :	713	3-27	1-4	\$ 77	0		Accutest					Acci	rtest Job A	T	Z CA	007	-
State of the	Client / Reporting Information	ม่องเก็บ สหรั	water species	rate in the	alast Int	ormatic	- 1	elete i	<u></u>	25	1	940.0	121471							Analys		100 M	3	Matrix Codes
Company Na			Project Na		OJOCE SIL	OTHERO								24.344	100			T	T	1	Ť		-	DW - Drinking Water
DCP Mids			DCP MI	dstream C	Line S	ite											- 1	1				H		GW - Ground Water
Project Cont			Bill to				1	Invok	ce Att	١.					'							1		WW - Wastewater
Stephen V	Veathers SWWeathers@dcpmidst	ream.com	Same																	1	1		ı	50 - Sall
Address			Address													i 1			- 1		1	l I	i	SL - Studge
370 Seve	nteenth Street, Suite 2500																				I		- 1	OI - OI
City	State	Zip	City				State					Zìp							- 1			1	- 1	LJQ - Llquid
Denver	co	80202	2																1	- 1		i l	i	SOL - Other Solid
Phone No.	Fax	No.	Phone No								Fax	No.				l	- 1		- 1		ĺ	1 1		
303-605-1	1718				,												- !	- 1		- i		1 1	- 1	
Samplers's I	Stewart A. Taylor	AEC	Client Pur	chase Order	4									8260B										
Accutest	· · · · · · · · · · · · · · · · · · ·		Collection	n			Nu	mbe	r of p				les	×			1		1		1		Ļ	
Sample #	Field ID / Point of Collection		ate	Time	Metrix	# of bottles	ĝ	ğ	NON S	000	S S	VE OH	HOME	втех										LAB USE ONLY
7	MW-8 MS/MSD	3/10	009	440	GW	3				L	L			×					_1_					
									1		-								-			ll	ļ	
-							П	7	\top	T	T	1									_		$\neg \tau$	
		_			<u> </u>		-	+		+	+	+	H		\vdash	\vdash	-	-	+	+		-	\dashv	
							Ц	_		┸	1	<u> </u>					<u>_</u> ,				4	 		
		İ					H		- [П					į			- 1	1		1	H		
					-		\Box	T	\neg	\top	7	\top			-						1	1		
					<u> </u>	<u> </u>	┝╼┤	-		+	+	┿~	 —	<u> </u>	⊢				-	_	+	 - 		
					L				i_				_								1_			
							П			Т		Ţ	[1			
				_			Н	\dashv		+	╁	+	\vdash						-+-	-	+	+		
		_				L		_	_	+	<u> </u>	_	_		Ь	\vdash		_			+			
							lΙ		- 1	П		1											l	
with the same	Turnaround Time (Business days)	, No. 1	3 37 5	5 .5 57	Data (Deliverabl	e Info	rmatic	on .			•			72		\equiv		Camme	nts / Rem	arks		55.5	1877 1 1875
	10 Day STANDARD Approved B	y:/ Date:		Comn	nercial "/	۸-		TRR	₹P-13						1									
X	7 Day			X Comn	nercial "l	3"		EDD	Form	at_														
	4 Day RUSH			Redu	ted Tier	1		Oth	ér						1									
	3 Day EMERGENCY			Full D	ata Pack	age									<u> </u>									
	2 Day EMERGENCY														l									
	1 Day EMERGENCY			Comm	ercial "A"	' = Resul	ts On	ly							1									
	Other			Comm	ercial "B	= Resul	ts & 5	Stand	ard Q	;														
Real t	ilme analytical data available via Lablink			<u></u>											<u> </u>									
	SAMPLE CUSTO	DY MUST BE		Received By		E SAMP	LESC	CHAN			S5IC		LUD	NG COL	JKIER I	Datu Ti			9	eived By:				
Relinquisi	hed by Sampler:	Date (Inse		neceived By					n	unqu	, snec	-sy:				Jan 11			2	vec by:				
1 Relinguisi	had bus	Date Time		Received By			-			llne	ilshed	Bur				Date Ti	me:		R	sived By:				
	•	Date 14me		2	•				[]							Jane 11			1					
3 Reflective		Date Yime		Received By	. ,				- 4		y Sea		_	-	Pres	ad who	re applic	thio .	4		On	lre	Cooler	Temp
- scoundales	T-T-N/4		1.09	1 1	- 1	\mathcal{L}			٦	0	,	-			. 14081									مي. ص
5	TEDEX.			5 VC	100				Щ.		_												- ı `	7
		_	800		,																			

T26002: Chain of Custody

Page 2 of 4

SAMPLE INSPECTION FORM

Accutest Job Number: T2602	Client: DCP Mids	tream	_ Date/Time Receiv	/ed: 3-13.09	0900
# of Coolers Received: The	rmometer #:	110 Ter	nperature Adjustm	ent Factor:	3
Cooler Temps: #1: 1.6 #2:	#3:#4:	#5:	#6:#	7: #8:	<u> </u>
Mcthod of Delivery: FEDEX UPS	Accutest Courier	Greyhound		her	
Airbill Numbers:	868732	716132		-+ *	
COOLER INFORMATION Custody seal missing or not intact Temperature enteria not met Wet ice received in cooler CHAIN OF CUSTODY Chain of Custody not received Sample D/T unclear or missing Analyses unclear or missing COC not properly executed Summary of Discrepancies:	SAMPLE INF Sample containers rece VOC vials have headsp Sample labels missing ID on COC does not in D/T on COC does not in Sample/Bottles revd bits sample listed on COC, Bottles missing for req Insufficient volume for Sample received Impro	ORMATION tived broken with the sace or illegible attch label(s) match label(s) tut no analysis on COC but not received uested analysis analysis perly preserved	Trip Blar Trip Blar Trip Blar Received Received Number of End Number of Jab	ores? 5 kits? filtered metals?	ed OC
TECHNICIAN SIGNATURE/DATE: VANION AND SAMPLE LABELING VE	2 12 9 CORRE	CTIVE ACTION	<u>ا</u>	• • •	***************************************
Client Representative Notified:			Date:		
By Accutest Representative: Client Instructions:				hone Email	
Armweiker/formsamplemanagement					

T26002: Chain of Custody

Page 3 of 4

SAMPLE RECEIPT LOG

IOB #:		T26002		DATEITIME	RECEIVED:	3	13-09	900	
CLIENT:	·	DCP Milstream	· · · · · · · · · · · · · · · · · · ·		INITIALS:			17	
COOLER#	SAMPLE ID	FIELD ID	DATE.	MATRIX	VOL	BOTTLE#	LOCATION	PRESERV	PH
	1	nw-1	310.09 616	Gw	Home	1-3	VIZ	1 (2) 3 4 5 8 7 8	<2 >12
	2	mr. 2	620		1.			5 6 7 8	<2 , >12
	3	ju-3	345					1 (2) 3 4 5 6 7 8	<2 >12
	Ч	· MW-4	520					1 (2) 3 4 5 6 7 8	<2 >12
	5	mu-5	550					1 (2) 3 4 5 6 7 8 1 (2) 3. 4	<2 >12
	Ļ	Mw-7	340			\ \V		5 8 7 8	<2 >12
	7	mw &	. 440	1 1		1-6		1 C2 3 4 5 6 7 8	<2 >12
	8	ru-9	445		,	1-3		1 (2) 3 4 5 6 7 8 1 (2) 3 4	<2 >12
	. 9	CAR .	3.10.07	V		V		5 6 7 8	<2 >12
	16	Trip Black		DI		1-2	Ţ	1 (2) 3 4 5 6 7 8	<2 >12
								5 6 7 8	<u></u>
		17 3.13.09	•					1 2 3 4 5 6 7 B	<2 >12
								1 2 3 4 5 6 7 8 1 2 3 4	<2 >12
								5 6 7 8	<2 >12
					,			1 2 3 4 5 6 7 8	· <2 .>12
								1 2 3 4 5 6 7 8	<2 >12
								1 2 3 4	<2 >12
	<u> </u>	The same of the sa						1 2 3 4 5 6 7 8	<2 >12
		-						1 2 3 4	<2 >12
								1 2 3 4 5 6 7 8 1 2 3 4	<2 >12
								1 2 3 4 5 6 7 8	<2 '>12
	1			1				1 2 3 4	<2 >12

T26002: Chain of Custody

Page 4 of 4

<u>د</u> وي

3

GC/MS Volatiles

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Method Blank Summary

Job Number: T26002

Account:

DUKE DCP Midstream, LLC

Project:

DCP Midstream C Line Site

Sample	File ID	DF	A
VF3319-MB	F014731.D	1	03

nalyzed Ву RR 03/15/09

Prep Date n/a

Prep Batch n/a

Analytical Batch

Page 1 of 1

VF3319

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-2, T26002-4, T26002-5, T26002-6, T26002-8

CAS No.	Compound	Result	RL	MDL	Units Q
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND	2.0 2.0 2.0 6.0	0.46 0.45 0.48 1.4	ug/l ug/l ug/l ug/l
CAS No.	Surrogate Recoveries		Limits		
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	110% 114% 111% 114%	79-122 75-121 87-119 80-133	% 1%	

Method Blank Summary

Job Number: T26002

DUKE DCP Midstream, LLC Account: Project: DCP Midstream C Line Site

DF Sample File ID Analyzed By Prep Date Prep Batch VZ2435-MB Z0048723.D 1 03/15/09 RR

Analytical Batch

n/a n/a VZ2435

Q

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-1, T26002-7, T26002-9

CAS No.	Compound	Result	RL	MDL	Units
71-43-2	Benzene	ND	2.0	0.46	ug/l
100-41-4	Ethylbenzene	ND	2.0	0.45	ug/l
108-88-3	Toluene	ND	2.0	0.48	ug/l
1330-20-7	Xylene (total)	ND	6.0	1.4	ug/l

CAS No.	Surrogate Recoveries		Limits
17060-07-0	Dibromofluoromethane 1,2-Dichloroethane-D4		79-122% 75-121%
	Toluene-D8	120%* a	87-119%
460-00-4	4-Bromofluorobenzene	104%	80-133%

(a) Outside control limits biased high. Only ND results are acceptable.

Page 1 of 1

Method Blank Summary Job Number: T26002

Account:

DUKE DCP Midstream, LLC

Project:

DCP Midstream C Line Site

Sample VZ2436-MB File ID DF Z0048752.D 1

Analyzed 03/16/09

Ву RR Prep Date n/a

Prep Batch

Analytical Batch

Page 1 of 1

n/a VZ2436

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-3, T26002-9, T26002-10

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	2.0	0.46	ug/l	
100-41-4	Ethylbenzene	ND	2.0	0.45	ug/l	
108-88-3	Toluene	ND	2.0	0.48	ug/l	
1330-20-7	Xylene (total)	ND	6.0	1.4	ug/l	
CAS No.	Surrogate Recoveries		Limi	te		
CAID ING.	Builtogute Recoveries		Liiii			
1868-53-7	Dibromofluoromethane	94%	79-12	22%		
17060-07-0	1,2-Dichloroethane-D4	87%	75-12	21%		
2037-26-5	Toluene-D8	96%	87-11	19%		
460-00-4	4-Bromofluorobenzene	84%	80-13	33%		

Blank Spike Summary Job Number: T26002

Account:

DUKE DCP Midstream, LLC

Ву

ŔŔ

Prep Date

n/a

Project:

DCP Midstream C. Line Site

Troject.	DCI Wildsti	——————————————————————————————————————				
Sample	File ID	DF	Analyzed			
VF3319-BS	F014729.D	1	03/15/09			

The QC reported here applies to the following samples:

Method: SW846 8260B

Prep Batch

n/a

T26002-2, T26002-4, T26002-5, T26002-6, T26002-8

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	24.3	.97	76-118
100-41-4	Ethylbenzene	25	24.2	97	75-112
108-88-3	Toluene	25	23.7	95	77-114
1330-20-7	Xylene (total)	75	72.9	97	75-111
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	105%	79-1	22%	
17060-07-0	1,2-Dichloroethane-D4	106%	75-1	21%	
2037-26-5	Toluene-D8	108%	87-1	19%	
460-00-4	4-Bromofluorobenzene	108%	80-1	33%	

Page 1 of 1

Analytical Batch

VF3319

Blank Spike Summary

Job Number: T26002

Account:

DUKE DCP Midstream, LLC

By

RR

Prep Date

n/a

Project:

DCP Midstream C Line Site

	DOI Whase						
Sample	File ID	DF	Analyzed				
VZ2435-BS	Z0048721.I	O 1	03/15/09				

Prep Batch Analytical Batch n/a

VZ2435

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-1, T26002-7, T26002-9

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	25.3	101	76-118
100-41-4	Ethylbenzene	25	24.4	98	75-112
108-88-3	Toluene	25	23.9	96	77-114
1330-20-7	Xylene (total)	75	69.6	93	75-111
CAS No.	Surrogate Recoveries	BSP	Lim	its	
1868-53-7	Dibromofluoromethane	116%	79-1	22%	
17060-07-0	1,2-Dichloroethane-D4	106%	75-1	21%	
2037-26-5	Toluene-D8	115%	87-1	19%	
460-00-4	4-Bromofluorobenzene	101%	80-1	33%	

Account:

DUKE DCP Midstream, LLC

Project:

DCP Midstream C Line Site

Sample VZ2436-BS
VZ2436-BS

File ID DF Z0048749.D 1

Analyzed 03/16/09

By RR Prep Date n/a

Prep Batch

Analytical Batch

VZ2436 n/a

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-3, T26002-9, T26002-10

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	25	25.4	102	76-118
100-41-4	Ethylbenzene	25	24.4	98	75-112
108-88-3	Toluene	25	24.6	98	77-114
1330-20-7	Xylene (total)	75	68.4	91	75-111

CAS No.	Surrogate Recoveries	BSP	Limits
17060-07-0 2037-26-5	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	116% 112% 122%* 96%	79-122% 75-121% 87-119% 80-133%

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T26002

Page 1 of 1

Account:

DUKE DCP Midstream, LLC

DCP Midstream C Line Site Project:

Sample File ID DF Analyzed By Prep Date Prep Batch Analytical Batch T26000-2MS F014735.D 1 03/15/09 RR n/a n/a VF3319 T26000-2MSD F014736.D 1 03/15/09 RR n/a n/a VF3319 T26000-2 F014734.D 1 03/15/09 RR n/a n/a VF3319
--

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-2, T26002-4, T26002-5, T26002-6, T26002-8

CAS No.	Compound	T26000-2 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 1330-20-7	Benzene Ethylbenzene Toluene Xylene (total)	ND ND ND ND	25 25 25 75	24.9 24.5 23.8 73.5	100 98 95 98	23.9 23.4 22.9 70.2	96 94 92 94	4 5 4 5	76-118/16 75-112/12 77-114/12 75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T26	000-2	Limits			
1868-53-7 17060-07-0 2037-26-5 460-00-4	Dibromofluoromethane 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	105% 111% 104% 102%	111% 120% 109% 105%	107° 111° 106° 110°	% %	79-122% 75-121% 87-119% 80-133%	, , ,		

Matrix Spike/Matrix Spike Duplicate Summary

Job Number: T26002

DUKE DCP Midstream, LLC Account: DCP Midstream C Line Site Project:

Sample	File ID	1	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
T26002-7MS	Z0048739.D		03/15/09	RR	n/a	n/a	VZ2435
T26002-7MSD	Z0048740.D		03/15/09	RR	n/a	n/a	VZ2435
T26002-7	Z0048738.D		03/15/09	RR	n/a	n/a	VZ2435

Page 1 of 1

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-1, T26002-7, T26002-9

CAS No.	Compound	T26002-7 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	26.0	104	25.9	104	. 0	76-118/16
100-41-4	Ethylbenzene	ND	25	25.2	101	24.6	98	2	75-112/12
108-88-3	Toluene	ND	25	24.5	98	24.5	98	0	77-114/12
1330-20-7	Xylene (total)	ND	75	69.7	93	69.6	93	0	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T26	6002-7	Limits			
1868-53-7	Dibromofluoromethane	115%	116%	114	1%	79-1229	%		
17060-07-0	1,2-Dichloroethane-D4	115%	118%	106	%	75-1219	%		
2037-26-5	Toluene-D8	119%	117%	124	%* a	87-1199	%		
460-00-4	4-Bromofluorobenzene	102%	99%	106	5 %	80-1339			

⁽a) Outside of control limits biased high. Only ND results are acceptable.

Matrix Spike/Matrix Spike Duplicate Summary Job Number: T26002

Page 1 of 1

Account:

DUKE DCP Midstream, LLC

Project:

DCP Midstream C Line Site

Sample File ID DF T26011-3MS Z0048763.D 1 T26011-3MSD Z0048764.D 1 T26011-3 Z0048762.D 1	Analyzed By 03/16/09 RR 03/16/09 RR 03/16/09 RR	Prep Date Prep Batch n/a n/a n/a n/a n/a n/a	Analytical Batch VZ2436 VZ2436 VZ2436
--	--	--	--

The QC reported here applies to the following samples:

Method: SW846 8260B

T26002-3, T26002-9, T26002-10

CAS No.	Compound	T26011-3 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2	Benzene	ND	25	25.7	103	25.5	102	1	76-118/16
100-41-4	Ethylbenzene	ND	25	24.4	98	22.9	92	6	75-112/12
108-88-3	Toluene	ND	25	24.0	96	21.9	-88	9	77-114/12
1330-20-7	Xylene (total)	ND	75	66.8	89	64.3	86	4	75-111/12
CAS No.	Surrogate Recoveries	MS	MSD	T26	6011-3	Limits			
1868-53-7	Dibromofluoromethane	92%	92%	909	%	79-1229	%		
17060-07-0	1,2-Dichloroethane-D4	94%	92%	879	%	75-1219	%		
2037-26-5	Toluene-D8	95%	91%	939	%	87-119°	%		
460-00-4	4-Bromofluorobenzene	69%* a	70%* a	749	%*·	80-1339	%		

⁽a) Outside control limits biased low. There were no target compounds assciated with this surrogate.

