1RP-1728

4th QTR 2010 GW Mon. Results

DATE: 03.31.11

DCP Midstream 370 17th Street, Suite 2500 Denver, CO 80202 **303-595-3331** 303-605-2226 *FAX*

March 31, 2011

Mr. Leonard Lowe Environmental Engineer New Mexico Oil Conservation Division 1220 S. St. Francis Dr. Santa Fe, NM 87505

RE: 4th Quarter 2010 Groundwater Monitoring Results DCP Midstream, LP J-4-2 Pipeline Release (1RP-1728) Unit C, Section 27, Township 19 South, Range 35 East Lea County, New Mexico

Dear Mr. Lowe:

DCP Midstream, LP (DCP) is pleased to submit for your review, a copy of the 4th Quarter 2010 Groundwater Monitoring Results for the DCP J-4-2 Pipeline Release located in Lea County, New Mexico (Unit C, Section 27, Township 19 South, Range 35 East).

If you have any questions regarding the report, please call at 303-605-1718 or e-mail me swweathers@dcpmidstream.com .

Sincerely

DCP Midstream, LP

Stephen Weathers, PG

Principal Environmental Specialist

cc: Larry Johnson, OCD Hobbs District Office (Copy on CD)

Environmental Files

March 23, 2011

Mr. Stephen Weathers DCP Midstream, LP 370 17th Street, Suite 2500 Denver, CO 80202

Re: Summary of the Fourth Quarter 2010 Groundwater Monitoring Results DCP J-4-2 Pipeline Release, Lea County New Mexico (1RP-1728) Unit C, Section 27 Township 19 South, Range 35 East

Dear Mr. Weathers:

This report summarizes the fourth quarter 2010 groundwater monitoring activities that were completed at the J-4-2 release location on December 8, 2010 for DCP Midstream, LP. The site is located in the northeastern quarter of the northwestern quarter (Unit C) of Section 27, Township 19 South, Range 35 East approximately 3 miles south of the of intersection of US Highway 82 and State Highway 483 in Lea County New Mexico (Figure 1). The approximate coordinates are 32.6386 degrees north and 103.4469 degrees west.

The monitoring network includes the seven groundwater monitoring wells shown on Figure 2. Table 1 summarizes construction information for each well. Monitoring well MW-5 was not installed because of drilling refusal. Five wells were sampled. Wells MW-1 and MW-2 were not sampled because they contained free phase hydrocarbons (FPH).

GROUNDWATER SAMPLING

The depth to water and, if present, the free phase hydrocarbons (FPH), were measured in each well prior to completing the purging and sampling activities. The water-table elevations for the wells containing FPH were adjusted using the following formula:

 $GWE_{corr} = MGWE + (PT*PD)$: where

- MGWE is the actual measured groundwater elevation;
- PT is the measured free-phase hydrocarbon thickness; and
- PD is the free phase hydrocarbon density (assumed 0.75)

The fluid measurements for this event are summarized in Table 2. The corrected groundwater elevations for all monitoring episodes are summarized in Table 3. FPH was measured at a thickness of 0.39 feet in MW-1 and 0.25 feet in MW-2. The historic FPH thickness values are summarized in Table 4. The residual FPH thickness of less than 0.5 feet in both wells indicates that the majority of mobile FPH have probably been removed.

Mr. Stephen Weathers DCP J-4-2 March 23, 2011 Page 2

Wells MW-3, MW-4, MW-6, MW-7 and MW-8 were purged and sampled with dedicated bailers. Purging continued until a minimum of three casing volumes of water was removed and the field parameters temperature, pH and conductivity stabilized. The well purging forms are attached. The affected purge water was disposed of at the DCP Linam Ranch facility.

Unfiltered samples were collected following stabilization using the dedicated bailers. All samples were placed in an ice-filled chest immediately upon collection and delivered to Accutest Laboratories using standard chain-of-custody protocol. The samples were analyzed for benzene, toluene, ethylbenzene and total xylenes (BTEX) by method SW846 8260B and chlorides by method SW846 9056. The laboratory report is attached.

RESULTS AND INTERPRETATIONS

A field duplicate sample was collected from MW-4. Matrix spike, matrix spike duplicate samples were collected from MW-7. The QA/QC evaluation included:

- All samples were analyzed within the method holding times.
- All of the individual surrogate spikes were within their control limits.
- The method blanks and blank spikes were all within their respective control limits.
- The matrix spike and matrix spike duplicate results from MW-7 and the laboratory-selected sample were all within their respective control limits.
- There were no BTEX detects in the trip blank or the primary and field duplicate samples from MW-8.
- The 0.8 relative percentage difference for chlorides between the primary and duplicate samples from MW-4 is acceptable.

The above information indicates that the data is suitable for evaluating the quarterly groundwater monitoring data.

The laboratory analyses from this sampling event are summarized in Table 5. The New Mexico Water Quality Control Commission (NMWQCC) groundwater standards are reproduced at the top of Table 5. The constituents that exceed these standards are highlighted as bold text. Tables 6, 7, 8 and 9 summarize all of the data collected during this project for benzene, toluene, ethylbenzene and xylenes respectively. Table 10 summarizes the chloride data.

Mr. Stephen Weathers DCP J-4-2 March 23, 2011 Page 3

Groundwater Flow

Figure 3 shows the hydrographs for the corrected water-table elevations for the site wells. The water table rose slightly in all of the wells.

The calculated water table elevation contours for this event as generated using the Surfer® program with the kriging option are shown on Figure 4. Groundwater flow is toward the southeast at a consistent gradient. The groundwater flow direction has remained constant over the duration of the project.

Groundwater Chemistry

Examination of Table 5 shows that none of the BTEX constituents were detected in wells MW-3 to MW-8.

The benzene concentrations are plotted on Figure 5 along with wells MW-1 and MW-2 that contained FPH. Comparison of Figure 4 with Figure 5 demonstrates that any dissolved-phase BTEX constituents from MW-1 and MW-2 attenuate to concentrations that are below the method reporting limits before reaching MW-7 or MW-8.

It is also important to note that:

- 1. The toluene, ethylbenzene and total xylenes concentrations have never exceeded the NMWQCC standards in wells MW-3 through MW-8;
- 2. Benzene has not been detected in MW-4 since March 2007; and
- 3. Benzene has never been detected in down-gradient wells MW-6, MW-7 and MW-8.

Examination of Table 10 indicates that the chlorides concentrations in all wells exceed the NMWQCC groundwater standard of 250 mg/l except for the fourth quarter 2008 value from MW-4 which is anomalously low. The chloride concentrations are plotted verses the sampling dates on Figure 6 with the anomalous fourth quarter MW-4 value deleted. The chloride concentration decreased in southern down-gradient wells MW-7 and MW-8 and increased slightly in downgradient well MW-6 and interior wells MW-3 and MW-4.

A chloride isopleth map generated from data for this event using the Surfer® program is included as Figure 7. The chloride distribution continues to indicate a source to the west and outside of the DCP release area. This pattern has remained constant throughout the duration of the project.

Mr. Stephen Weathers DCP J-4-2 March 23, 2011 Page 4

CONCLUSIONS AND RECOMMENDATIONS

Based upon the data collected to date, AEC concludes that:

- 1. Groundwater flow remains constant toward the southeast;
- 2. The residual FPH is probably immobile and only a minimal volume remains given the historic remediation activities;
- 3. The presence of dissolved phase BTEX constituents appears to be limited to the original release area as approximately defined by MW-1 and MW-2;
- 4. The chloride data from this event continue to confirm that the chlorides that are present in the groundwater did not originate from the DCP release.

The next groundwater-monitoring event is scheduled for the first quarter of 2011. Do not hesitate to contact me if you have any questions or comments on this letter.

Sincerely,

AMERICAN ENVIRONMENTAL CONSULTING, LLC

Michael H. Stewart, P.E., C.P.G.

Mechael H. Stewart

Principal Engineer

MHS/tbm

attachment

Table 1 – Summary of Monitoring Well Completions at the J-4-2 Site

Name	Date Installed	Stickup	Casing Diameter (inches)	Total Depth (btoc)	Screen Interval (ground)	Sand Interval
MW-1	2/06	3.17	2	43.05	19-39	17-39
MW-2	2/06	3.08	4	43.30	19-39	17-39
MW-3	2/06	3.21	2	43.00	19-39	17-39
MW-4	9/06	3.12	2	38.12	20-35	18-35
MW-5		Not in	stalled beca	use of drill	ing refusal	
MW-6	9/06	3.32	2	38.32	20-35	18-35
MW-7	9/06	2.95	2	39.45	21.5-36.5	19.5-36.5
MW-8	9/06	3.32	2	38.32	20-35	18-35

All units are feet except as noted

btoc: Below top of casing

Table 2 - Summary of December 2010 Fluid Measurements

	Depth	Depth to Free Phase	Corrected Groundwater
Well	to Water	Hydrocarbons	Elevation
MW-1	29.08	28.69	3,711.66
MW-2	29.67	29.42	3,711.14
MW-3	28.14		3,711.25
MW-4	28.52		3,711.72
MW-6	29.25		3,710.71
MW-7	32.45		3,708.28
MW-8	30.62		3,706.70

Units are feet

Table 3 - Summary of Water Table Elevations for the J-4-2 Site

Well	2/15/06	9/25/06	12/21/06	3/14/07	6/26/07	9/25/07	11/30/07	3/20/08
MW-1	3713.61	3712.60	3712.63	3712.29	2712 15	3711.86	3712.42	3713.48
MW-2	3713.01	3712.00	3712.03	3712.29		3711.80		3713.40
MW-3	3713.36	3712.57	3712.57	3712.55	3712.79	3711.50	3712.09	3713.30
MW-4		3712.80	3712.82	3712.78	3713.25	3712.98	3713.48	3713.70
MW-6		3711.76	3712.00	3711.96	3711.87	3711.56	3711.92	3712.53
MW-7		3711.03	3710.80	3710.73	3710.50	3709.87	3710.33	3711.38
MW-8		3709.22	3708.95	3708.79	3708.54	3708.06	3708.33	3709.17

Well	6/27/08	9/16/08	12/3/08	3/11/09	5/18/09	9/24/09	12/20/09	3/10/10	6/13/10
MW-1	NM	NM	3711 04	3712 10	3712.05	2711 48	3711.50	3711 <i>1</i> 5	3711.31
MW-2				· · · · · · · · · · · · · · · · · · ·		3711.48			3711.31
MW-3	3713.09	3712.34	3712.25	3712.10	3711.90	3711.35	3711.28	3711.19	3711.01
MW-4	3713.13	3712.18	3712.10	3712.36	3712.13	3711.69	3711.61	3711.56	3711.41
MW-6	3712.20	3711.86	3711.70	3711.57	3711.42	3711.22	3710.72	3710.67	3710.61
MW-7	3710.95	3710.11	3710.00	3709.84	3709.51	3708.55	3708.37	3708.35	3708.11
MW-8	3708.78	3708.23	3708.13	3707.95	3708.10	3706.79	3706.73	3706.71	3707.46

Well	9/28/10	12/8/10
MW-1	3711.65	3,711.66
MW-2	3711.12	3,711.14
MW-3	3711.24	3,711.25
MW-4	3711.64	3,711.72
MW-6	3710.56	3,710.71
MW-7	3708.23	3,708.28
MW-8	3706.62	3,706.70

Units are feet

Blank cells: wells not installed NM: Not measured because of probe malfunction.

Table 4 – Summary of Free Phase Hydrocarbon Thickness Values for MW-1 and MW-2

Date	MW-1	MW-2
02/15/06	0.00	0.57
09/25/06	0.00	0.15
12/21/06	0.09	0.13
03/14/07	0.07	0.10
06/26/07	0.09	0.00
09/25/07	0.09	0.03
11/30/07	0.00	0.00
03/20/08	0.00	0.00
06/27/08	0.04	0.01
09/16/08	0.08	0.02
12/03/08	0.21	0.17
03/11/09	0.32	0.27
05/18/09	0.35	0.26
09/24/09	0.29	0.24
12/20/09	0.00	0.05
03/10/10	0.03	0.04
06/13/10	0.00	0.05
09/29/10	0.40	0.20
12/08/10	0.39	0.25

Units are feet

Table 5 - Summary of December 2010 Groundwater Results

Well	Benzene	Toluene	Ethyl- benzene	Total Xylenes	Chlorides
NMWQCC Groundwater Standard	0.01	0.75	0.75	0.62	250
MW-3	< 0.001	<0.002	<0.002	<0.004	2530
MW-4	< 0.001	< 0.002	< 0.002	< 0.004	2480
MW-4 DUP	< 0.001	< 0.002	< 0.002	< 0.004	2460
MW-6	< 0.001	< 0.002	< 0.002	< 0.004	513
MW-7	< 0.001	< 0.002	< 0.002	< 0.004	1180
MW-8	< 0.001	< 0.002	< 0.002	< 0.004	336
Trip Blank	< 0.001	< 0.002	< 0.002	< 0.004	

Notes:

Units are mg/l,

MW-1 and MW-2 were not sampled because free phase hydrocarbons were present MW-5 was not installed because of drilling refusal

NMWQCC: New Mexico Water Quality Control Commission Values above the NMWQCC standard are highlighted as bold text.

NA: not analyzed

Table 6 - Summary of Benzene Groundwater Data

と

事

Service Control

1000

+

沙桃

京

P. A.

28.05

Vell	2/06	Well 2/06 9/06 12/06 3/07	12/06	3/07	20/6 20/9	20/6	11/07 3/08 6/08 9/08 12/08 3/11/09 5/18/09 9/24/09	3/08	80/9	-80/6	12/08	3/11/09	5/18/09	9/24/09
MW-1	0.139	0.139 0.0487	FPH	FPH	FPH		0.011 0.107	0.037	FPH	FPH	FPH	FPH	FPH	FPH
W-2	0.026	MW-2 0.026 0.0045	0.006	0.188	FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH
MW-3	<0.001	<0.002	<0.002	<0.002	0.003	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MW-4	Z	0.0086	0.025	0.004	<0.001	<0.001	0.004 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9-MM	Z	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.0	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MW-7	Z	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
$\overline{}$	IN	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
MW-8	Z	<0.002	<0.002	<0.002	<0.001	<0.001	<0.0>	02	02 <0.002	02 <0.002 <0.002	02 <0.002 <0.002 <0.002	02 <0.002 <0.002 <0.002 <0.005	02 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0

Well	Well 12/20/09 3/10/10 6/13/10 9/29/10 12/8/10	3/10/10	6/13/10	9/29/10	12/8/10
MW-1	MW-1 <0.002	FPH	0.0016	FPH	FPH
MW-2	FPH	FPH	HdŦ	FPH	FPH
MW-3	MW-3 <0.002 <0.001 <0.0003 <0.001	< 0.001	<0.0003	<0.001	<0.001
MW-4	MW-4 <0.002 <0.001 <0.0003 <0.001	<0.001	<0.0003	<0.001	<0.001
MW-6	MW-6 <0.002	NA	<0.0003	<0.001	<0.001
MW-7	<0.002	<0.001	<0.001 <0.0003	<0.001	<0.001
MW-8	MW-8 <0.002 <0.001 <0.0003 <0.001	<0.001	<0.0003	<0.001	<0.001

Notes:

Table 7 – Summary of Toluene Groundwater Data

基本

A.

*

4

T.

100

E Was

9/24/09	FPH	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
5/18/09	FPH	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
3/11/09	FPH	НЬН	<0.002	<0.002	<0.002	<0.002	<0.002
12/08	РРН FPH	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
80/6	FPH	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
80/9	FPH FPH 0.003 0.024 0.0155 FPH	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
3/08	0.0155	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
11/07	0.024	FPH	<0.002	<0.002	<0.002	<0.002	<0.002
20/6	0.003	FPH	<0.001	<0.001	<0.001	<0.001	<0.001
20/9	FPH	FPH	0.005	<0.001	<0.001	<0.001	<0.001
3/07	FPH	0.006	<0.002	6E-04	<0.002	<0.002	<0.002
12/06	FPH	0.003	<0.002	0.005	<0.002	<0.002	<0.002
Well 2/06 9/06 12/06 3/07 6/07 9/07 11/07 3/08 6/08 9/08 12/08 3/11/09 5/18/09 9/24/09	MW-1 0.326 0.0058 FPH	<0.001 0.003 0.006 FPH FPH FPH FPH FPH FPH FPH FPH	<0.002 <0.002 <0.002 <0.002 0.005 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	NI 0.00093J 0.005 6E-04 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.000	<0.002 <0.002 <0.002 <0.0001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002
2/06	0.326	MW-2 0.038	MW-3 <0.001	Z		N	Z
Well	MW-1	MW-2	MW-3	MW-4	9-MM	MW-7	MW-8

Well	Well 12/20/09 3/10/10 6/13/10 9/29/10 12/8/10	3/10/10	6/13/10	01/67/6	12/8/10
MW-1	<0.002	FPH	<0.001	FPH	FPH
MW-2	FPH	FPH	FPH	FPH	FPH
MW-3	<0.002	<0.002	<0.001	<0.002	<0.002
MW-4	<0.002	<0.002	<0.001	<0.002	<0.002
MW-6	<0.002	NA	<0.001	<0.002	<0.002
MW-7	<0.002	<0.002	<0.001	<0.002	<0.002
MW-8	<0.002	<0.002	<0.001	<0.002	<0.002
Notes:	Units are mg/l,	mg/l,			

Table 8 -- Summary of Ethylbenzene Groundwater Data

"

The state of

42 20 28

The state of the s

の中

ない

2

(1)

A STATE OF THE STA

Well	2/06	90/6	12/06	3/07	.20/9	20/6	11/07	3/08	80/9	80/6	12/08	Well 2/06 9/06 12/06 3/07 6/07 11/07 3/08 6/08 9/08 12/08 3/11/09 5/18/09 9/24/09	2/18/09	9/24/09
MW-1	0.34	MW-1 0.34 0.0284 FPH FPH FPH 0.004 0.04 0.014 FPH FPH	FPH	FPH	FPH	0.004	0.04	0.014	FPH	FPH	FPH	FPH	FPH	FPH
MW-2	0.04	MW-2 0.04 0.0027 0.003 0.026 FPH FPH FPH FPH FPH FPH	0.003	0.026	FPH	FPH	FPH							
MW-3	<0.001	<0.002	<0.002	<0.002	0.002	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	MW-3 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.001 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002 < 0.002	<0.002	<0.002
MW-4	Z	0.0092	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002
9-MW	Z	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	MW-6 NI <0.002 <0.002 <0.002 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002	<0.002
IN 7-WM	N	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	<0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002	<0.002	<0.002
8-MM	N	<0.002	<0.002	<0.002	<0.001	<0.001	<0.002	<0.002	<0.002	<0.002	<0.002	MW-8 NI <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <	<0.002	<0.002

Well	Well 12/20/09 3/10/10 6/13/10 9/29/10 12/8/10	3/10/10	6/13/10	9/29/10	12/8/10
MW-1	MW-1 0.0014J	FPH	<0.0003	FPH	FPH
MW-2	HdH	FPH	FPH	FPH	FPH
MW-3	<0.002	<0.002	<0.0003 <0.002	<0.002	<0.002
MW-4	<0.002	<0.002	<0.0003	< 0.002	<0.002
9-MW	<0.002	NA	<0.0003	<0.002 <0.002	<0.002
MW-7	<0.002	<0.002	<0.0003 <0.002 <0.002	<0.002	< 0.002
MW-8	MW-8 <0.002	<0.002	<0.0003 <0.002 <0.002	<0.002	<0.002

Notes:

Table 9 - Summary of Total Xylenes Groundwater Data

<0.006	MW-8 NI <0.006 <0.006 <0.006 <0.006 <0.001 <0.001 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <	<0.002	<0.006	<0.006	<0.006	<0.006	<0.006	<0.001	<0.001	<0.006	<0.006	<0.006	IN .	MW-8
<0.006	MW-7 NI <0.006 <0.006 <0.006 <0.006 0.003 <0.001 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.007 <0.000	<0.002	<0.006	>0.006	<0.006	<0.006	<0.006	<0.001	0.003	<0.006	<0.006	<0.006	Z	MW-7
<0.006	MW-6 NI <0.006 <0.006 <0.006 <0.001 <0.001 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.007 <0.007	<0.002	<0.006	>0.006	<0.006	<0.006	<0.006	<0.001	<0.001	<0.006	<0.006	<0.006	Z	MW-6
<0.006	MW-4 NI 0.0061 0.0065 0.003 0.003 < 0.001 < 0.006 < 0.006 0.006 0.00413 < 0.006 < 0.006 < 0.006	<0.002	<0.006	0.0041J	<0.006	<0.006	<0.006	<0.001	0.003	0.003	0.0065	0.0061	Z	MW-4
<0.006	MW-3 <0.002 <0.006 <0.006 <0.006 <0.001 <0.001 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.007 <0.006 <0.006 <0.007 <0.006	<0.002	<0.006	>0.006	0.007	<0.006	<0.006	<0.001	0.01	<0.006	<0.006	<0.006	<0.002	MW-3
FPH	FPH	MW-2 0.335 0.0471 0.0613 0.125 FPH	FPH	FPH	FPH	FPH	FPH	FPH	FPH	0.125	0.0613	0.0471	0.335	MW-2
FPH	MW-1 0.31 0.0694 FPH FPH FPH 0.098 0.39 0.215 FPH FPH FPH FPH FPH FPH	FPH	FPH	FPH	FPH	0.215	0.39	0.098	FPH	FPH	FPH	0.0694	0.31	MW-1
9/24/09	Well 2/06 9/06 12/06 3/07 6/07 9/07 11/07 3/08 6/08 9/08 12/08 3/11/09 5/18/09 9/24/09	3/11/09	12/08	80/6	80/9	3/08	11/07	20/6	20/9	3/07	12/06	90/6	2/06	Well

Well	12/20/09	Well 12/20/09 3/10/10 6/13/10 9/29/10 12/8/10	6/13/10	01/67/6	12/8/10
MW-1	MW-1 0.0418	FPH	0.0095 FPH	FPH	FPH
MW-2	MW-2 FPH	FPH	FPH	FPH	FPH
MW-3	MW-3 <0.006	<0.004	<0.004 <0.0006 <0.004 <0.004	<0.004	<0.004
MW-4	MW-4 <0.006	<0.004	<0.004 <0.0006 <0.004 <0.004	<0.004	<0.004
9-MM	MW-6 <0.006	NA	<0.0006 <0.004 <0.004	<0.004	<0.004
MW-7	MW-7 <0.006	<0.004	<0.0006 <0.004 <0.004	<0.004	<0.004
MW-8	MW-8 <0.006	<0.004	<0.0006 <0.004 <0.004	<0.004	<0.004

Notes:

Table 10 - Summary of Chlorides Groundwater Data

学事息

事がま

星线

8

は種

では東

*

D. T.

12/8/10		0 2,530				
9/29/10	FPH	2,220	2,130	445	1,210	347
6/13/10	1.800	(``	533	1,280	415
3/10/10	_	3,030			1,230	
5/18/09 9/24/09 12/20/09 3/10/10	2,680		1,740	1,090	1,440	308
9/24/09		3,195				
5/18/09		3,270				378
3/11/09		2,860		363		417
12/3/08	_	2,625		391	1,	
9/16/08		4,070				
3/14/07 6/26/07 9/16/08 12/3/08 3/11/09	FPH	10,800	1,380	544	1,150	617
3/14/07	FPH	7,800	1,300	699	1,230	609
Well	MW-1	MW-3	MW-4	9-MM	MW-7	MW-8

Notes:

Units are mg/l
Duplicates are averaged together
NA: Not analyzed due to well obstruction

17.00

1

Separate .

A STATE OF

WELL SAMPLING DATA AND LABORATORY ANALYTICAL REPORT

	CLIENT:	DC	P Midstre	am		WELL ID:	
S	ITE NAME:		J 4 2			DATE:	12/8/2010
PRO	DJECT NO.				. S	AMPLER:	N. Quevedo
PURGINO	METHOD:		Hand Bai	led 🗌 Pur	mp If Pur	np, Type:	
SAMPLIN	G METHOD):	☐ Disposab	le Bailer	Direct f	rom Disch	narge Hose 🗌 Other: None
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATIO	ON METHO	D BEFO	RE SAMP	LING THE WELL:
Glove	s 🗌 Alcono	x Distill	ed Water Rir	nse 🗌 O	ther:		
DEPTH T HEIGHT (O WATER: OF WATER AMETER:	COLUMN: 2.0	14.22 Inch	Feet		7.0	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP.	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	TOROLD		morani		IIIgiL		TALIWI (I KO
				. <u>_</u>			
				 _			
							
				•			
				-		<u> </u>	
				<u></u>			
				,, ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,			
	0.0	: Total volu	me purged				
SAMF	LE NO.:	MW-1					
ANAI	_YSES:	 N/A				1	
COM	MENTS:		free phase h	nydrocarboi	ns preser	n¦	
						1	

	CLIENT:	DC	Pivilastre	am	_ '	WELL ID:	IVIVV-2
S	ITE NAME:		J 4 2		_	DATE:	12/8/2010
						AMPLER:	N. Quevedo
PURGING	METHOD	:	☐ Hand Ba	iled 🗌 Pu	mp If Pui	тр, Туре:	
SAMPLIN	G METHO	D:	☐ Disposab	ole Bailer [Direct f	rom Disch	narge Hose 🗌 Other: None
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMP	PLING THE WELL:
Glove	s 🗌 Alcond	x Distill	ed Water Ri	nse 🔲 C	ther:		
DEPTH T HEIGHT (O WATER: OF WATER	COLUMN: 4.0	43.05 29.48 13.57 Inch	Feet		26.6	Minimum Gallons to purge 3 well volumes (Water Column Height x 1.96)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO	Turb	PHYSICAL APPEARANCE AND REMARKS
	PURGED		111 S/CIII		mg\L		REWARRS
					<u> </u>		
						,	
······································							
						" " " " " " " " " " " " " " " " " " " "	
	<u></u>			· · · · · · · · · · · · · · · · · · ·			
	0.0	: Total volui	me purged				
SAMPI	LE NO.:	MW-2					
ANAL	YSES:						
COMM	MENTS:	No sample	free phase h	ydrocarbor	ns presen	15.01	

	CLIENT:	DC	<u>P Midstre</u>	am	. ,	WELL ID:	MW-3
S	ITE NAME:		J 4 2			DATE:	12/8/2010
PRO	DJECT NO.				. SA	AMPLER:	N. Quevedo
PURGING	METHOD:		☑ Hand Bai	led 🗌 Pur	mp If Pur	пр, Туре:	
SAMPLIN	G METHOD):	☑ Disposab	le Bailer [Direct f	rom Disch	narge Hose 🗌 Other:
DESCRIB	E EQUIPME	ENT DECO	NTAMINATIO	ON METHO	D BEFO	RE SAMP	LING THE WELL:
☑ Gloves	s 🗌 Alcono	x Distille	ed Water Rir	nse 🔲O	ther:		
DEPTH TO	O WATER:	COLUMN: 2.0	14.86 Inch	Feet		7.3	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	2.5	15.2	>4.4	6.89			
	5.0	14.8	>4.4	6.91			
8:45	7.5	14.9	>4.4	6.89			
						1	
						<u> </u>	
	7.5	: Total volu	me purged				
		MW-3					
		BTEX (826	0)			1	
COM	MENTS:					· ·	
						!	

S. C.

	CLIENT:	DC	P Midstre	am	_	WELL ID:	MW-4
S			J 4 2			DATE:	12/8/2010
							N. Quevedo
					_		
PURGING	METHOD:	:	☑ Hand Bai	led 🗌 Pu	mp If Pui	тр, Туре:	
SAMPLIN	G METHOD) :	☑ Disposab	le Bailer	Direct f	rom Disch	narge Hose Other:
DESCRIB	E EQUIPMI	ENT DECO	NTAMINATI	ON METHO	OD BEFO	RE SAMP	LING THE WELL:
✓ Glove	s 🗹 Alcono	x	ed Water Rii	nse 🔲 C	Other:		
HEIGHT (O WATER: OF WATER	COLUMN: 2.0		reet		4.7	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED		COND. mS/cm	pН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.6	15.7	>4.4	7.01			
	3.2	14.9	>4.4	6.93			
9:10	4.8	14.9	>4.4	6.95			and the same of th
				*******	,		
					ļ		
							·
	4.8	: Total volu	me purged				
SAMP	LE NO.:	MW-4	·····	***			
ANAL	YSES:	BTEX (826	0)				
COM	MENTS:	Duplicate s	ample collec	ted			

を

No.

	CLIENT:	DC	P Midstre	am	٠ _ ١	NELL ID:	MW-6
S	ITE NAME:		J 4 2		_	DATE:	12/8/2010
PRO	DJECT NO.				SA	AMPLER:	N. Quevedo
PURGING	METHOD:		☑ Hand Bai	led 🗌 Pur	mp If Pur	np, Type:	
SAMPLIN	G METHOD): ·	☑ Disposab	le Bailer [Direct f	rom Disch	narge Hose 🗌 Other:
DESCRIB	E EQUIPME	ENT DECO	NTAMINATI	ON METHO	D BEFO	RE SAMP	LING THE WELL:
✓ Glove	s 🗌 Alconox	x □Distill	ed Water Rir	nse 🔲 O	ther:		
DEPTH T HEIGHT (EPTH OF W O WATER: OF WATER AMETER:	COLUMN: 2.0	29.25 5.10	Feet		2.5	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.4	16.5	1.38	6.62			
	2.8	16.5	1.38	6.61		<u> </u>	
9:55	4.2	15.7	1.38	6.58			
·							,
						 -	
					-		
		· · · · · · · · · · · · · · · · · · ·			<u> </u>		
		: Total volu	me purged				
SAMP	PLE NO.:						
	•	BTEX (826	0)				
COM	MENTS:						

	CLIEN I:	DC	P Milastre	am		WELL ID:	IVI VV - /
S	ITE NAME:		J 4 2		_	DATE:	12/8/2010
PRO	DJECT NO.				_ S	AMPLER:	N. Quevedo
PURGING	METHOD	:	☑ Hand Bai	led □Pu	mp If Pui	тр, Туре:	
SAMPLIN	G МЕТНО[D:	✓ Disposab	le Bailer [Direct f	rom Disch	narge Hose 🗌 Other:
DESCRIB	E EQUIPM	ENT DECO	NTAMINATI	ON METHO	DD BEFO	RE SAMP	LING THE WELL:
☑ Glove:	s 🗌 Alcond	ox Distill	ed Water Ri	nse 🔲 C	ther:		
DEPTH TO	O WATER: OF WATER AMETER:	COLUMN:		Feet		3.4	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	1	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.2	18.5	2.5	6.36	<u>g.z</u> _		
	2.4	18.5	2.50	6.36			
10:30	3.6	18.4	2.50	6.34			
				_			
	3.6	: Total volui	me purged				
SAMPI	E NO.:	MW-7	······		-		
ANAL	YSES:	BTEX (826)	 0)		- 41		
COMM		Collected M					
					_		

	CLIENT:	DC	P Midstre	am	_ \	WELL ID:	MW-8
s	ITE NAME:		J 4 2			DATE:	12/8/2010
PRO	DJECT NO.				. SA	AMPLER:	N. Quevedo
				•			
PURGING	METHOD:		☑ Hand Bai	led 🗌 Pui	mp If Pun	np, Type:	
SAMPLIN	G METHOD):	☑ Disposab	le Bailer	Direct f	rom Disch	narge Hose 🔲 Other:
DESCRIB	BE EQUIPME	ENT DECO	NTAMINATIO	ON METHO	D BEFOR	RE SAMP	LING THE WELL:
☑ Glove	s 🗌 Alcono	x	ed Water Rir	nse 🔲 O	ther:		
HEIGHT (OF WATER AMETER:	COLUMN: 2.0		Feet Feet Feet		3.8	Minimum Gallons to purge 3 well volumes (Water Column Height x 0.49)
TIME	VOLUME PURGED	TEMP. °C	COND. mS/cm	рН	DO mg\L	Turb	PHYSICAL APPEARANCE AND REMARKS
	1.3	18.1	1.20	6.62			
	2.6	18.1	1.20	6.61			
	3.9	18.5	1.19	6.60			
	<u> </u>				<u> </u>		
[
					<u> </u>		
	ļ						
					<u> </u>		
	<u> </u>	<u> </u>	<u> </u>	<u> </u>			
	3.9	: Total volu	me purged				
	PLE NO.:	MW-8					
	LYSES:	BTEX (826	(0)				
COM	MENTS:						

Technical Report for

DCP Midstream, LP

AECCOL: J-4-2 Proj#390660601

GN00

Accutest Job Number: D19658

Sampling Date: 12/08/10

Report to:

DCP Midstream, LP 6885 South Marshall Suite 3 Littleton, CO 80128

swweathers@dcpmidstream.com; mhstewart@gmail.com

ATTN: Stephen Weathers

Total number of pages in report: 29

Test results contained within this data package meet the requirements of the National Environmental Laboratory Accreditation Conference and/or state specific certification programs as applicable.

John Hamilton Laboratory Director

Client Service contact: Amanda Kissell 303-425-6021

Certifications: CO, ID, NE, NM, ND (R-027) (PW) UT (NELAP CO00049)

This report shall not be reproduced, except in its entirety, without the written approval of Accutest Laboratories. Test results relate only to samples analyzed.

Sections:

Table of Contents

Section 1: Sample Summary	3
Section 2: Case Narrative/Conformance Summary	4
Section 3: Sample Results	5
3.1: D19658-1: MW-3	6
3.2: D19658-2: MW-4	8
3.3: D19658-3: MW-6	10
3.4: D19658-4: MW-7	12
3.5: D19658-5: MW-8	14
3.6: D19658-6: DUPLICATE	16
3.7: D19658-7: TRIP BLANK	18
Section 4: Misc. Forms	
4.1: Chain of Custody	20
Section 5: GC/MS Volatiles - QC Data Summaries	21
5.1: Method Blank Summary	
5.2: Blank Spike Summary	23
5.3: Matrix Spike/Matrix Spike Duplicate Summary	24
Section 6: General Chemistry - QC Data Summaries	25
6.1: Method Blank and Spike Results Summary	26
6.2: Duplicate Results Summary	27
6.3: Matrix Spike Results Summary	
•	

Sample Summary

DCP Midstream, LP

AECCOL: J-4-2 Proj#390660601 Project No: GN00

Job No: D19658

Sample Number	Collected Date	Time By	Received	Matr Code		Client Sample ID
D19658-1	12/08/10	08:45 NQT	12/10/10	AQ	Ground Water	MW-3
D19658-2] 12/08/10	09:10 NQT	12/10/10	AQ	Ground Water	MW-4
D19658-3	12/08/10	09:55 NQT	12/10/10	AQ	Ground Water	MW-6
D19658-4	12/08/10	10:30 NQT	12/10/10	AQ	Ground Water	MW-7
D19658-4D	12/08/10	10:30 NQT	12/10/10	AQ	Water Dup/MSD	MW-7
D19658-4M	12/08/10	10:30 NQT	12/10/10	AQ	Water Matrix Spike	MW-7
D19658-5	12/08/10	10:50 NQT	12/10/10	AQ	Ground Water	MW-8
D19658-6	12/08/10	00:00 NQT	12/10/10	AQ	Ground Water	DUPLICATE
D19658-7	12/08/10	00:00 NQT	12/10/10	AQ	Trip Blank Water	TRIP BLANK

CASE NARRATIVE / CONFORMANCE SUMMARY

Client: DCP Midstream, LP Job No

D19658

Site:

AECCOL: J-4-2 Proj#390660601

Report Dat

12/21/2010 3:41:46 PM

On 12/10/2010, six (6) samples, one (1) Trip Blank, and 0 Field Blanks were received at Accutest Mountain States (AMS) at a temperature of 2.2°C. The samples were intact and properly preserved, unless noted below. An AMS Job Number of D19658 was assigned to the project. The lab sample IDs, client sample IDs, and dates of sample collection are detailed in the report's Results Summary.

Specified quality control criteria were achieved for this job except as noted below. For more information, please refer to the analytical results and QC summary pages.

Volatiles by GCMS By Method SW846 8260B

Matrix AQ

Batch ID: V3V446

- All samples were analyzed within the recommended method holding time.
- The method blank for this batch meets method specific criteria.
- Samples D19658-4MS and D19658-4MSD were used as the QC samples indicated.

Wet Chemistry By Method EPA 300/SW846 9056

Matrix AQ

Batch ID: GP3454

- All samples were prepared and analyzed within the recommended method holding time.
- The method blank for this batch meets method specific criteria.
- Samples D19658-4DUP, D19658-4MS, and D19658-4MSD were used as the QC samples for the anion analysis.

AMS certifies that data reported for samples received, listed on the associated custody chain or analytical task order, were produced to specifications meeting AMS's Quality System precision, accuracy and completeness objectives except as noted.

Estimated non-standard method measurement uncertainty data is available on request, based on quality control bias and implicit for standard methods. Acceptable uncertainty requires tested parameter quality control data to meet method criteria.

AMS is not responsible for data quality assumptions if partial reports are used and recommends that this report be used in its entirety. This report is authorized by AMS indicated via signature on the report cover.

Sample Results	· · · · · · · · · · · · · · · · · · ·	_
Report of Analysis		

Page 1 of 1

Client Sample ID: MW-3

Lab Sample ID: D19658-1

Matrix: Method:

Project:

AQ - Ground Water

SW846 8260B

AECCOL: J-4-2 Proj#390660601

Date Sampled: 12/08/10

Date Received: 12/10/10

Percent Solids: n/a

File ID Analytical Batch DF Analyzed $\mathbf{B}\mathbf{y}$ Prep Date Prep Batch Run #1 3V08113.D 12/13/10 DC V3V446 1 n/a n/a

Run #2

Purge Volume

5.0 ml

Run #1 Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	94%	Section 1	63-13	30%	
2037-26-5	Toluene-D8	88%	·	68-13	30 %	
460-00-4	4-Bromofluorobenzene	84%	Í	61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-3 Lab Sample ID:

D19658-1

Matrix:

AQ - Ground Water

Date Sampled: 12/08/10

Date Received: 12/10/10

Project:

AECCOL: J-4-2 Proj#390660601

Percent Solids: n/a

General Chemistry

Analyte

Chloride

Result

2530

RL

¹² 25

Units

mg/l

DF 50

Analyzed

12/17/10 15:32 GH

Method Ву

EPA 300/SW846 9056

RL = Reporting Limit

Ву

DC

Page 1 of 1

Client Sample ID: MW-4

File ID

3V08114.D

Lab Sample ID:

D19658-2

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260B

Date Sampled: Date Received:

Prep Date

n/a

12/08/10 12/10/10

Percent Solids: n/a

Project:

AECCOL: J-4-2 Proj#390660601

Analyzed

12/13/10

Prep Batch n/a

Analytical Batch V3V446

Run #1 Run #2

Purge Volume

Run #1 5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	97%		63-13	30%	
2037-26-5	Toluene-D8	89%		68-13	30%	
460-00-4	4-Bromofluorobenzene	86%		61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank N = Indicates presumptive evidence of a compound

Client Sample ID: MW-4

Lab Sample ID:

D19658-2

AQ - Ground Water

Date Sampled: 12/08/10

Date Received: 12/10/10

Percent Solids: n/a

Project:

General Chemistry

Analyte

Matrix:

Result

AECCOL: J-4-2 Proj#390660601

RL

Units

mg/l

DF

Analyzed By Method

Chloride

2480 25

50

12/17/10 16:13 GH

EPA 300/SW846 9056

Ву

DC

Analyzed

12/13/10

Page 1 of 1

Client Sample ID: MW-6

Lab Sample ID:

D19658-3

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260B

SW846 8260B AECCOL: J-4-2 Proj#390660601 Date Sampled: Date Received:

12/08/10 12/10/10

Percent Solids: n/a

Percent

n/a

Prep Date Prep Batch Analytical Batch

n/a V3V446

Run #1 Run #2

Project:

Purge Volume

File ID

3V08115.D

Run #1

5.0 ml

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	95%		63-13	30%	
2037-26-5	Toluene-D8	89%		68-13	30%	
460-00-4	4-Bromofluorobenzene	85%		61-13	30 %	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-6

Lab Sample ID:

D19658-3

Matrix:

AQ - Ground Water

Date Sampled: 12/08/10

Date Received: 12/10/10

Percent Solids: n/a

Project:

Analyte

AECCOL: J-4-2 Proj#390660601

General Chemistry

Result RLUnits DF Analyzed Ву Method

513 5.0 Chloride mg/l 10 12/17/10 16:27 GH EPA 300/SW846 9056

Ву

DC

Page 1 of 1

Client Sample ID: MW-7

File ID

5.0 ml

3V08110.D

Lab Sample ID:

D19658-4

Matrix: Method: AQ - Ground Water

DF

1

SW846 8260B

Date Sampled: 12/08/10 Date Received:

12/10/10

Percent Solids: n/a

Project:

AECCOL: J-4-2 Proj#390660601

Analyzed

12/13/10

Prep Date n/a

Prep Batch n/a

Analytical Batch V3V446

Run #1 Run #2

Purge Volume

Run #1

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	96%		63-13	30%	
2037-26-5	Toluene-D8	87%		68-13	30%	
460-00-4	4-Bromofluorobenzene	84%		61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

• E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: MW-7

Lab Sample ID:

D19658-4

AQ - Ground Water

Date Sampled: 12/08/10

Date Received: 12/10/10

Percent Solids: n/a

General Chemistry

Analyte

Matrix:

Project:

Result

AECCOL: J-4-2 Proj#390660601

RL

25

Units

mg/l

DF

Analyzed

By Method

Chloride

1180

50

12/17/10 13:30 GH

EPA 300/SW846 9056

RL = Reporting Limit

Page 1 of 1

Client Sample ID: MW-8

Lab Sample ID:

D19658-5

Matrix: Method: AQ - Ground Water

SW846 8260B

Date Sampled:

12/08/10 12/10/10

Date Received:

Percent Solids: n/a

Project: AECCOL: J-4-2 Proj#390660601

File ID Run #1 3V08118.D DF 1

Analyzed 12/13/10

Ву DC Prep Date n/a

Prep Batch n/a

Analytical Batch

V3V446

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	85%		63-13	30%	
2037-26-5	Toluene-D8	87%		68-13	30%	
460-00-4	4-Bromofluorobenzene	82%		61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Client Sample ID: MW-8 Lab Sample ID:

Matrix:

D19658-5 AQ - Ground Water Date Sampled: 12/08/10

Date Received: 12/10/10

Project:

AECCOL: J-4-2 Proj#390660601

Percent Solids: n/a

General Chemistry

Analyte

Result

RL

Units

mg/l

DF

Analyzed

Method Ву

Chloride

336

., 25

50

12/17/10 13:57 GH

EPA 300/SW846 9056

RL = Reporting Limit

Ву

DC

Page 1 of 1

Client Sample ID: DUPLICATE

Lab Sample ID:

D19658-6

Matrix:

AQ - Ground Water

DF

1

SW846 8260B

Date Received: 12/10/10

n/a

Date Sampled: 12/08/10

Percent Solids: n/a

Method: Project:

AECCOL: J-4-2 Proj#390660601

Analyzed

12/13/10

Prep Date

Prep Batch Analytical Batch

n/a V3V446

Run #1 Run #2

Purge Volume

Run #1

5.0 ml

File ID

3V08119.D

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2	Benzene	ND	0.0010	0.00030	mg/l	
108-88-3	Toluene	ND	0.0020	0.0010	mg/l	
100-41-4	Ethylbenzene	ND	0.0020	0.00030	mg/l	
	m,p-Xylene	ND	0.0040	0.00060	mg/l	
95-47-6	o-Xylene	ND	0.0020	0.00060	mg/l	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0	1,2-Dichloroethane-D4	89%	1	63-13	30%	
2037-26-5	Toluene-D8	87%	İ	68-13	30%	
460-00-4	4-Bromofluorobenzene	82%		61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Accutest Laboratories

Report of Analysis

Page 1 of 1

Client Sample ID: DUPLICATE Lab Sample ID:

D19658-6

AQ - Ground Water

Date Sampled: 12/08/10

Date Received: 12/10/10

Project:

Matrix:

AECCOL: J-4-2 Proj#390660601

Percent Solids: n/a

General Chemistry

Analyte

Result

RL

Units

mg/l

DF

Analyzed

Method By

Chloride

2460 25

50

12/17/10 14:11 GH

EPA 300/SW846 9056

RL = Reporting Limit

Page 1 of 1

Client Sample ID:

TRIP BLANK

Lab Sample ID:

D19658-7

Matrix:

AQ - Trip Blank Water

SW846 8260B

Date Sampled:

12/08/10

Date Received:

12/10/10

Method: Project:

AECCOL: J-4-2 Proj#390660601

Percent Solids: n/a

Run #1

File ID 3V08120.D DF 1

Analyzed 12/13/10

Ву DC Prep Date n/a

Prep Batch n/a

Analytical Batch

V3V446

Run #2

Purge Volume

5.0 ml

Run #1

Run #2

Purgeable Aromatics

CAS No.	Compound	Result	RL	MDL	Units	Q
71-43-2 108-88-3	Benzene Toluene	ND ND	0.0010	0.00030 0.0010	mg/l mg/l	
100-41-4	Ethylbenzene m,p-Xylene	ND	0.0020	0.00030 0.00060	mg/l	
95-47-6	o-Xylene		0.0020	0.00060	~	
CAS No.	Surrogate Recoveries	Run# 1	Run# 2	Limi	ts	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	92% 88% 81%		63-13 68-13 61-13	30%	

ND = Not detected

MDL - Method Detection Limit

RL = Reporting Limit

E = Indicates value exceeds calibration range

J = Indicates an estimated value

B = Indicates analyte found in associated method blank

Misc. Forms

Custody Documents and Other Forms

Includes the following where applicable:

• Chain of Custody

	M ACCUTEST:				CHAI	N O	FC	CUST	ГО	DY	Z					T) ic	76	5	بخ		PA	GE	1		
	Laboratories				2235	Route 130	, Dayton,	NJ 08816)					[FED-EX	Tracking	2 15				Bottle O	Order Cort	trot#			
					TEL. 732-3	29-0200		2-329-349)				ļ	Accutes	4 Quote t	-				Accides	d Job#				
	Client / Reporting Information	多温 4	P12-1-	100 W.	Project			100		E.	額:		Siring.	1	精 5	Req	uestec	Analy	/sis (see T	EST C	ODE s	heet)	ž	4	Matrix Codes
Compar	y Name	I	Project Name:																							
DCF	Midstream	Į,	DCP J-4-2											ļ			ļ			ļ	ļ :		(- [!	DW - Orlnking Water GW - Ground Water
Street A	ddress		Street			學家科	10004	大大	***	CP 53	783	w#2	OF W	e:ico									1		. 1	WW - Water SW - Surface Water
370	17th Street, Suite 2500				State	Billing	nformatio	on (If diffe	rent f	rom R	sport	to)						! !		1		[]	l l	Į		SO - Soil
City	-	1	City		State	Compan	Same							i						ŀ	'		1 1	1	. 1	SL-Sludge SED-Sediment
Den Project		80202 -mail	Project #	GN00		Street Ac					_	_		{							'			ļ		QI - Oil LIQ - Other Liquid
			midstream.cor	TD.										1		1	'	1]	1	1	1 1	1	. 1	AIR - Air
Phone #			Client Purchase (City			- 5	State	_	_	Zip							ĺ			1 1		.	SOL - Other Solid WP - Wipe
	605-1718															1	82			l		1	1 1	- 1	. 1	FB-Field Blank EB-Equipment Bank
Sample	(s) Name(s)	Phone #	Project Manager			Attention											ă			1			1 1			RB- Rinse Blank TB-Top Blank
		\longrightarrow			Collection	Step	ben We	athers	,	Nureh	ec al es	D400	d Bottle		89		MSAMSD For BTEX 8260B			ļ		[[(ļ	ļ	. a-inp swalfs
		- 1				Г			Н	T	П	\neg	T	TT-	976		GSI						(I	ĺ	. 1	
Apouteet Sumple #	Field ID / Point of Collection		MECH/DI Viei #	Date	Time	Sampled by	Matrix	# of bottles	호	N S	¥280	NON E	MEGH	5 Exce	BTEX 8260B	Chloride	MSM			_						LAB USE ONLY
	MW-1			12/8	1/2	NET	GW	4	×		Ш				X	х				<u>.</u>		L!		_1	10	SAMPLE
	MW-3			RIS	845	1	GW	4	×		П	Т		17	X	x						Ţ	{ }			01
	MW-4			12/6	910		GW	4	×	丅		┪	TT	\sqcap	x	х								\neg		02
	MW-6			142	755	\coprod	GW	4	×				П		х	х										<i>u</i> 3
	MW-7			12/8	10 30		gw	4	×	Ι		\perp			х	х							\Box			4
	MW-8			12/8	1250	11	GW	4	×			1	\coprod	\square	х	х										05
	Duplicate			12/a	000	Ш	GW	4	x		Ш		\coprod	\perp	х	х	L_			L_		Ш				UG
	Trip Blank						GW	2	×		Ш				х	x										67
	MW-7 MS/MSD			12/9	1030	1	GW	6	x	_	Ц	Ţ	\prod	\Box	<u> </u>	L_	x				igsqcut			\exists	0	4 MS/50
-						1		 -	\vdash	+	Н	+	H	+-			<u> </u>			<u> </u>		-			\dashv	
					 	-			+	+	╁	+	+	+i	-	\vdash		\vdash		-	╁	├─┤	\vdash		\dashv	
A Artico	Turnaround Time (Business days)		A STATE OF THE PARTY OF	2 1950 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	40. 00	1.00	Ļ	Data	Delive	aldste	Inform	nation	┸┸	4	13E-81 4	1	olegie (villa)	7 He - 12 H	THE A	Com	ments /	Specia	Instructi	ons	7400	
	Std. 15 Business Days		Approved By (Acc)				Commer	clai "A" (i					YASP			ME. 7/3							PDF) ∞r			
	Std. 10 Business Days (by Contract onl	y)					Commen	cial "B" (L	evel :	2)			YASP				Steph	en We	ather	s at 13	CP (SV	∧vv eat	tners@d	ертіс	astrea	m.com)
	10 Day RUSH					. —		(Level 3+	4)				tate Fo													
	☐ 5 Day RUSH ☐ 3 Day EMERGENCY						NJ Redu Commer				_	_	DD Fo				 								—	
	3 Day EMERGENCY 2 Day EMERGENCY						Commen	Commerc	del "A"	's Rec	-		ther_													
l i	1 Day EMERGENCY					1		Commen				-	ummar	y			\Box									
Eme	rgency & Rush T/A data available VIA Lablink				at the day			NJ Redu									<u> </u>				1: 5886	, 200 A	246	table a	-comment	Consequence of the second
	Tirelfelt by Sampler	ata Time:		mple Custody mi					mple:	ouist-	ge po	03565	sion,	includ	ing co	ourier d	elivery		ne:				Service Control	1000	C. C.	
Polity	Topulat by Sampler:	Tate Time:	(4) 157-	Received By:	D.A.	1		1030	Relin	quishe	d By:							Date Tin	ne:		Receive	ad By:				

D19658: Chain of Custody

Page 1 of 1

GC/MS Volatiles

હ

QC Data Summaries

Includes the following where applicable:

- Method Blank Summaries
- Blank Spike Summaries
- Matrix Spike and Duplicate Summaries

Account:

Job Number: D19658

Project:

DCPMCODN DCP Midstream, LP AECCOL: J-4-2 Proj#390660601

Sample V3V446-MB1

File ID DF 3V08108.D 1

Analyzed 12/13/10

By

DC

Prep Date n/a

Prep Batch n/a Analytical Batch

V3V446

The QC reported here applies to the following samples:

Method: SW846 8260B

D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6, D19658-7

CAS No. Compound

71-43-2 Benzene
100-41-4 Ethylbenzene

100-41-4 Ethylbenzen 108-88-3 Toluene m,p-Xylene

95-47-6 o-Xylene

Result RL MDL Units Q

ND 1.0 0.30ug/1 ND. 2.0 0.30 ug/l 2.0 ND : 1.0 ug/l ND 4.0 0.60ug/l ND 2.0 0.60ug/l

Limits

CAS No. Surrogate Recoveries

es

17060-07-0 1,2-Dichloroethane-D4

2037-26-5 Toluene-D8

460-00-4 4-Bromofluorobenzene

86% 63-130%

87% 68-130% 83% 61-130%

Blank Spike Summary Job Number: D19658

Account:

DCPMCODN DCP Midstream, LP

Project:

AECCOL: J-4-2 Proj#390660601

Sample	File ID	DF	Analyzed	By	Prep Date	Prep Batch	Analytical Batch
V3V446-BS1	3V08109.D	1	12/13/10	DC	n/a	n/a	V3V446

The QC reported here applies to the following samples:

Method: SW846 8260B

D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6, D19658-7

CAS No.	Compound	Spike ug/l	BSP ug/l	BSP %	Limits
71-43-2	Benzene	50	48.7	97	70-130
100-41-4	Ethylbenzene	50	51.5	103	70-130
108-88-3	Toluene	50	49.0	98	70-140
	m,p-Xylene	50	46.0	92	55-134
95-47-6	o-Xylene	50	45.7	91	55-134
CAS No.	Surrogate Recoveries	BSP	Lin	nits	
17060-07-0 2037-26-5 460-00-4	1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	89% 87% 87%	68-	130% 130% 130%	

Matrix Spike/Matrix Spike Duplicate Summary Job Number: D19658

Account: Project:

DCPMCODN DCP Midstream, LP AECCOL: J-4-2 Proj#390660601

Sample D19658-4MS D19658-4MSD	File ID 3V08111.D 3V08112.D	DF 1 1	Analyzed 12/13/10 12/13/10	By DC DC	Prep Date n/a n/a	Prep Batch n/a n/a	Analytical Batch V3V446 V3V446
D19658-4	3V08110.D	1	12/13/10	DC	n/a	n/a	V3V446

The QC reported here applies to the following samples:

Method: SW846 8260B

Page 1 of 1

D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6, D19658-7

CAS No.	Compound	D19658-4 ug/l Q	Spike ug/l	MS ug/l	MS %	MSD ug/l	MSD %	RPD	Limits Rec/RPD
71-43-2 100-41-4 108-88-3 95-47-6	Benzene Ethylbenzene Toluene m,p-Xylene o-Xylene	ND ND ND ND ND	50 50 50 50 50	48.4 51.6 48.7 45.7 46.0	97 103 97 91 92	50.1 53.8 50.0 47.8 47.1	100 108 100 96 94	3 4 3 4 2	59-132/30 68-130/30 56-142/30 36-146/30 36-146/30
CAS No.	Surrogate Recoveries	MS	MSD	D1	9658-4	Limits			
17060-07-0 2037-26-5 460-00-4) 1,2-Dichloroethane-D4 Toluene-D8 4-Bromofluorobenzene	93% 88% 87%	90% 89% 90%	879	***	63-130 ^o 68-130 ^o 61-130 ^o	%		

General Chemistry

QC Data Summaries

Includes the following where applicable:

- Method Blank and Blank Spike Summaries
- Duplicate Summaries
- Matrix Spike Summaries

METHOD BLANK AND SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D19658
Account: DCPMCODN - DCP Midstream, LP
Project: AECCOL: J-4-2 Proj#390660601

Analyte	Batch ID	RL	MB Result Units	Spike Amount	BSP Result	BSP %Recov	QC Limits
Chloride	GP3454/GN7638	0.50	0.0 mg/l	20	18.6	93.0	90-110%
Fluoride	GP3454/GN7638	0.20	0.0 mg/l	10	9.70	97.0	90-110%
Sulfate	GP3454/GN7638	0.50	0.0 mg/l	30	28.8	96.0	90-110%

Associated Samples: Batch GP3454: D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6 (*) Outside of QC limits

DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D19658 Account: DCPMCODN - DCP Midstream, LP Project: AECCOL: J-4-2 Proj#390660601

Analyte	Batch ID	QC Sample	Units	Original Result	DUP Result	RPD	QC Limits	
Chloride	GP3454/GN7638	D19658-4	mg/l	1180	1190	0.8	0-20%	
Fluoride	GP3454/GN7638	D19658-4	mg/l	0.0	0.0	0.0	0-20%	
Sulfate	GP3454/GN7638	D19658-4	mg/l	60.3	66.9	10.4	0-20%	

Associated Samples:

Batch GP3454: D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6

(*) Outside of QC limits

MATRIX SPIKE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D19658
Account: DCPMCODN - DCP Midstream, LP
Project: AECCOL: J-4-2 Proj#390660601

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MS Result	Q %Rec L	C imits
Chloride	GP3454/GN7638	D19658-4	mg/l	1180	500	1710		0-120%
Fluoride	GP3454/GN7638	D19658-4	mg/l	0.0	125	130	1040 8	0-120%
Sulfate	GP3454/GN7638	D19658-4	mg/l	60.3	500	543	96.5	0-120%

Associated Samples:
Batch GP3454: D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

MATRIX SPIKE DUPLICATE RESULTS SUMMARY GENERAL CHEMISTRY

Login Number: D19658

Account: DCPMCODN - DCP Midstream, LP Project: AECCOL: J-4-2 Proj#390660601

Analyte	Batch ID	QC Sample	Units	Original Result	Spike Amount	MSD Result	RPD	QC Limit
Chloride	GP3454/GN7638	D19658-4	mg/l	1180	500	1730	1.2	20%
Fluoride	GP3454/GN7638	D19658-4	mg/l	0.0	125	130	0.0	20%
Sulfate	GP3454/GN7638	D19658-4	· mg/l	60.3	500	542	0.2	20%

Associated Samples:
Batch GP3454: D19658-1, D19658-2, D19658-3, D19658-4, D19658-5, D19658-6
(*) Outside of QC limits
(N) Matrix Spike Rec. outside of QC limits

