

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

September 29, 1989

Mr. William LeMay State of New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 97504-2088

Dear Mr. LeMay:

Request for Authorization to Inject in the Langlie Lynn No. 1, Section 22, T23S, R36E RECEIVED

OCT - 6 1989

OIL CONSERVATION DIV.

Conoco Inc. requests administrative approval to inject water into the Langlie Lynn #1, which is within an existing waterflood project (R-4417). Conoco is requesting administrative approval for this conversion to injection of an additional well based on Rule 701-F(4), since the well is necessary to maintain thorough and efficient waterflood injection.

Enclosed is the information required for this Application for Authorization to Inject with the exception of the proof of notice, which will be forwarded to your office as soon as possible. Should you have any questions regarding this matter, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

David L. Wacker Division Manager

KLL:ks:929

STATE OF NEW MEXICO ENERGY AND MINERALS DEPARTMENT

OIL CONSERVATION DIVISION

POST OFFICE BOX 2018

STATE LAND OFFICE BUTCOING

SANTA FE, NEW MEXICO B7501

FORM C-108 Revised 7-1-81

I.	Purpose: Secondary Recovery Pressure Maintenance Dispesal Storage Application qualifies for administrative approval? yes no
II.	Operator: Conoco Inc.
	Address: P.O. Box 460 - Hobbs, NM 88240
	Contact party: Kandy Lawson Phone: (505) 397-5826
III.	Well data: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? \boxed{x} yes \boxed{no} no If yes, give the Division order number authorizing the project $\boxed{R-4417}$.
٧.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review whice penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and If injection is for disposal surposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
111.	Attach appropriate geological data on the injection zone including appropriate lithological, geological name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such source known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
х.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division they need not be resubmitted.)
XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground source of drinking water.
III.	Applicants must complete the "Proof of Notice" section on the reverse side of this form.
XIV.	Certification
	I hereby certify that the information submitted with this application is true and correcto the best of my knowledge and belief.
	Name: David L. Wacker Title Division Manager
	Signature: Main 1. Warker Date: October 5, 1989

III. WELL DATA

- A. The following well data must be submitted for each injection well covered by this application. The data must be both in tabular and schematic form and shall include:
 - (1) Lease name; Well No.; location by Section, Township, and Range; and footage location within the section.
 - (2) Each casing string used with its size, setting depth, sacks of cement used, hole size, top of cement, and how such top was determined.
 - (3) A description of the tubing to be used including its size, lining material, and setting depth.
 - (4) The name, model, and setting depth of the packer used or a description of any other seal system or assembly used.

Division District offices have supplies of Well Data Sheets which may be used or which may be used as models for this purpose. Applicants for several identical wells may submit a "typical data sheet" rather than submitting the data for each well.

- B. The following must be submitted for each injection well covered by this application. All items must be addressed for the initial well. Responses for additional wells need be shown only when different. Information shown on schematics need not be repeated.
 - (1) The name of the injection formation and, if applicable, the field or pool name.
 - (2) The injection interval and whether it is perforated or open-hole.
 - (3) State if the well was drilled for injection or, if not, the original purpose of the well.
 - (4) Give the depths of any other perforated intervals and detail on the sacks of cement or bridge plugs used to seal off such perforations.
 - (5) Give the depth to and name of the next higher and next lower oil or gas zone in the area of the well, if any.

XIV. PROOF (F NOTICE

All applicants must furnish proof that a copy of the application has been furnished, by certified or registered mail, to the owner of the surface of the land on which the well is to be located and to each leasehold operator within one-half mile of the well location.

Where an application is subject to administrative approval, a proof of publication must be submitted. Such proof shall consist of a copy of the legal advertisement which was published in the county in which the well is located. The contents of such advertisement must include:

- (1) The name, address, phone number, and contact party for the applicant;
- (2) the intended purpose of the injection well; with the exact location of single wells or the section, township, and range location of multiple wells;
- (3) the formation name and depth with expected maximum injection rates and pressures; and
- (4) a notation that interested parties must file objections or requests for hearing with the Oil Conservation Division, P. O. Box 2088, Santa Fe, New Mexico 87501 within 15 days.

NO ACTION WILL BE TAKEN ON THE APPLICATION UNTIL PROPER PROOF OF NOTICE HAS BEEN SUBMITTED.

NOTICE: Surface owners or offset operators must file any objections or requests for hearing of administrative applications within 15 days from the date this application was mailed to them.

LANGLIE LYNN UNIT NO. 1

Proposed Convert to Injection

Proposed average and maximum daily rate: 400 BWPD/700 BWPD

System is closed

Proposed average and maximum injection pressure: 400 psi/650 psi

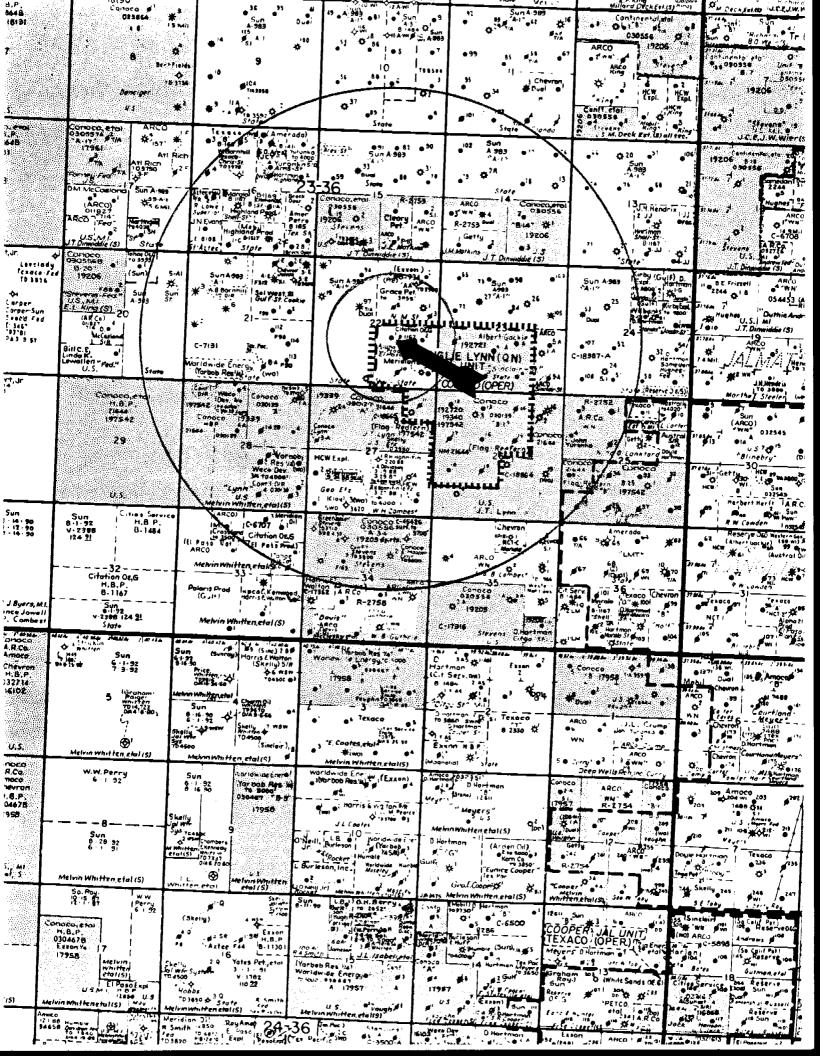
<u>Geological data is as follows</u>: The lithology consists of dolomite, sandstone, and anhydrite. No known sources of underground drinking water are present in the area of review.

<u>Proposed Stimulation Program</u>: Add perforations in the 7R-1 and 7R-2. Re-perforate existing perforated intervals and stimulate with 15% HCL as necessary.

MB:jd LANGLN1.DOC

INJECTION WELL DATA SHEET

Conoco	Langlie Lynn Unit
OPERATOR	LEASE
11	980' FSL & FEL 22 23S 36E
WELL NO.	FOOTAGE LOCATION SECTION TOWNSHIP RANGE
<u>Schematic</u>	<u>Tubular Data</u>
	Surface Casing
	Size $8-5/8$ " Cemented with 280 sx.
	TOC <u>surface</u> feet determined by <u>circ</u>
0.540.000.1550	Hole size11"
8-5/8", 32#, J-55@ 324' w/280 SX(CIRC)	Intermediate Casing N/A
	Size " Cemented with sx.
	TOC feet determined by
	Hole size
	Long String
	Size $4-1/2$ " Cemented with 250 sx.
+118 JTS. 2-3/8*	TOC <u>±1422</u> feet determined by <u>calc.</u>
4.7#, IPC J~55 + TBG W/4~1/2* BAKER MODLE	II-10 -i (2 // II
AD-1 PKR SET @ 3570'	Total depth 3812'
	Injection interval
	3622feet to3740'feet
	(perforated or open-hole, indicate which)
	2-28', 3634-38', 3642-46', 3648-52', 3680-66'
Baker AD-1 (brand and mo	lined withplastic_coatingset in a(material)packer at3570feet del)
(or describe any othe	r casing-tubing seal).
Other Data	
1. Name of the inje	ection formation <u>7-Rivers and Queen</u>
Name of Field or	Pool (if applicable) <u>Langlie Mattix 7-Rivers Queen</u>
3. Is this a new we	ell drilled for injection? Yes No
If no, for what	purpose was the well originally drilled?
<u>Langlie Mattix</u>	7-Rivers Queen oil production
4. Has the well eve	er been perforated in any other zone(s)? List all
such perforated	intervals and give plugging detail (sacks of cement
or bridge plug(s	s) used? <u>No</u>
	to and name of any overlying and/or underlying oil or
gas zones (pools	s) in this area. <u>Jalmat Yates Gas zone top at 3040'</u>


MB:jd INJDATA

WELLS WITHIN 1/2 MILE WHICH PENETRATE ZONE OF INTEREST

Langlie Lynn Queen No. 3 1980' FSL & 660' FWL L-23-23S-36E	Langlie Lynn Queen No. 9 660' FSL & 330' FEL P-22-23S-36E		Conoco Langlie Lynn Queen No. 10 640' FSL & 1650' FEL 0-22-23S-36E		330' FSL & 2310' FWL N-22-23S-36E	Hal J Rasmussen Oper. State A AC-1 No. 1	Lanexco Inc. El Paso State No. 1 1880' FSL & 1650' FEL J-22-23S-36E	Conoco Langlie Lynn Queen No. 1 1980' FSL & EL J-22-23S-36E	OPERATOR, WELL, LOCATION
Inj	Oil	P&A				Gas	Gas	0il	TYPE
3536-3672	3588-3714	0-650 1140-1302 2805-3095 3310-3600 CIBP at 3600	3623-3739 Squeezed: 3770-93			3155-3560	3045-3538	3623-3740	INTERVAL-FT.
8-5/8 4-1/2	7-5/8 4-1/2		7-5/8 4-1/2		8-5/8 7	12-1/2	8-5/8 5-1/2	8-5/8 4-1/2	SIZE-"
241 3790	305 3800		307 3800	PB 3668-5095	2961 4234	314	381 3610	324 3812	CAS DEPTH-FT.
200 1100	275 200	300 50 20 20	225 200 90	200 + 200 sx mud	525 450	313	200 750	280 250	CASING NO. SX
Surface Surface	Surface 1888		Surface 2400		N.A.	Surface	Surface Surface	Surface 1459-Calc	TOC-FT
9-30-60	4-6-63		6-3-63			1-8-29	6-9-79	8-28-60	SPUD <u>DATE</u>
10-25-60	4-21-63		6-24-63			6-5-29	6-30-79	9-22-60	COMPL. DATE
3790/3760	3800/3773		3800/3799			5095/3668	3610/3577	3812/3782	TD/PBD-FT

Conoco Langlie Lynn Queen Unit No. 2 1980' FSL & 660' FEL I-22-23S-36E		Grace Petroleum New Mexico State No. 3 2310' FNL & 330' FEL 22-235-36F		G-22-23S-36E	Grace Petroleum New Mexico State AA No. 5	Hal J. Rasmussen Operating State A AC-1 No. 97 1980' FNL & FWL F-22-23S-36E	D-77-779-70E	Grace Petroleum New Mexico State AA No. 4 660' FNL & 1855' FEL	OPERATOR, WELL, LOCATION
2 011	P&A			P&A		Gas Oil-TA	Oil-TA	Gas	TYPE
3590-3732	0-220 220-328 328-1500 1500-1600 CIBP at 2890 3530-3630	3613-21	170-336 336-2500 2500-2600 3650 BP at 3650	Surface	3713-35	3086-3228 CIBP at 3310' 3568-94	3668-98	3314-3528 BP at 3550	INTERVAL-FT.
8-5/8 5-1/2		7-5/8 2-7/8		27/0	8-5/8 2-7/8	9-5/8 7		7 2-7/8	SIZE-"
330 3761		328 3629			336 3773	333 3645		339 3748	Ct DEPTH-FT.
275 200	15 60 mud 30 4 100-ft	175 200	30 25 mud 50 4	15	200	300 250		175 200	CASING NO. SX
Surface 2242		Surface 2355-Calc		7000-0atc	Surface	Surface 2290		Surface 2820	TOC-FT
2-20-60		12-16-59			7-3-60	10-22-60		6-12-60	SPUD <u>DATE</u>

JS:mjm HALFMILE.DOC

Insert

Color Page/Photo

Here

LANGLIE LYNN UNIT No.10

640 FSL & 1650 FEL	E	(EVATION: 24.00 AT
UNIT 0, SEC 22, T-235, 1		EVATION: 3400 DF
Cellar	4"PEA Mar	3391 GL
>	11 12	
Backfill Cellar	3. 10. 3.	Restored GL Cut Casing Off 3'Below GL.
To Contour	**************************************	CUT LASING OFF 3 DETOW GL.
	AAAA	
300 sx. Class C Coments	75/11	21# (11 5 207) (207)
w/2% (aCl+1/4 #/= E Flocche		, 24# Csg @307 W/2255x (cire
From surface to 650'.	- 点层:7: 医经外形术	n holes 630'-1220'.
(72 sx circulated)	9,0,09	
		ass "C" coment w/2% Cacl
T.Sa.		Flocele From 582 tx 1302!
T. Saft : 1196'		810'. Circ 165x. WOC 3/2hrs.
B. Saft: 3035		OC @ 1140'-ok.)
•	Min TOC	£ ± 2400'
•	A	
·	205x C/a	ess "C" cement w/2% cacl
E. 5a.	12 - 14 #/sk	Flocile From 2805/to
	3095	
	9,000	
	Mud	
	ROSK CA	ass 'C" Coment w/2% Cacl
	+1/4 */sx	Flocele From 3310'to
	3600 (2	
	4/2" PEN	190 CIBP set E 3600'
	1	ations:
		159/71/75/84/85/93/
	1	05/13/15/17/21/22/23/34/35/39
Procedures Completed:		d perfs:
7-1-86	3770'-9	
		#, T-55 (54 @ 3800 W/2005X
		C # 2400)
	PETD: 3754	
	Conaco Inc.	
By <i>TCA</i> sed By	Calculation Sheet	Job No.
	PEA Completion	Field MMF4

15 SX TO SURFACE 35 SX AT 170' 8 5/8' CSG AT 336 25 SX AT 336' W/200 SX, CIRC. MUD FILL AND LOST CIRC MATERIAL 50 SX CMT 2500-2600' CUT 2600' 2 7/8" CSG AT 2600' AND PULLED. 3713-35' PERFS CIBP AT 3650' W/4 SX CMT ON TOP PBTD 3713' 2 7/8" CSG AT 3773' W/200 SX TOC 2500' CALC.

GRACE PETROLEUM CORP.

3770' TD

NEW MEXICO STATE 'AA' NO. 5 1980' FNL & EL 22-235-36E 7 5/8" CSG AT 328 W/175 SX, CIRC. 15 SX CMT TO SURFACE 220-328 60 SX.

1500-328 MUD FILL
30 SX 1600-1500'

CUT OFF 2 7/8' AT 1900. COULD NOT PULL.

CUT OFF 2 7/8' AT 1600' AND PULLED.

CALC.

TOC 2355'

2890' - CIBP W/4 SX CMT ON TOP

3613-21' PERF

2 7/8" AT 3629 W/ 200 SX.

100 FT. PLUG 3530-3630'

GRACE PETROLEUM CORP.

T.D. 3630'

NEW MEXICO STATE "AA" NO. 3 2310' FNL 330' FEL 22-235-36E

707 North Leech

P.O.Box 1499

Hobbs, New Mexico 88240

Company : Conoco

03-10-1989

Date : 03-10-1989 / Perco Sample 1: Langlie Lynn & Jal Water System (on 3-10-89)

Sample 2: (on) Sample 3:-- (on) ----

Specific Gravity: Total Dissolved S pH: IONIC STRENGTH:			1.008 11135 6.71 0.242	Sam	1.009 13194 6.77 0.269	<u>\$am</u>	1.011 15253 6.82 0.296
							•
CATIONS:	•	me/liter	mg/liter	me/liter	mg/liter	me/liter	mg/liter
Calcium	{Ca+2}	27.9	558	25.4	508	22.9	458
Magnesium	$\{Mg^{+2}\}$	52.8	642	46.4	564	40.0	486
Sodium	(Na+1)	108	2490	152	3490_	195	4480
Iron (total)	(Fe ⁺²)	0.076	2.13	0.063	1.75	0.049	1.3
Barium	(Ba+2)	0.022	1.52	0.037	2.55	0.052	3.5
No.				نجي ا		-	
ANIONS:							
Bicarbonate	(HCO3-1)	17.1	1040	18.6	1130	20.1	1230
Carbonate	(CO ₃ -2)	Q	<u>a</u>	0	Q	0	· _ 0
Hydroxide	(OH-1)	១	0	0	0	0	0
Sulfate	(504-2)	23.9	1150	18.7	900	13.5	650
Chloride	(C1-1)	148	5250	186	6600	224	7950
			**** go				
DISSOLVED GASES	(00-)		225	•	200		175
Carbon Dioxide Hydrogen Sulfide	(CO ₂)		270		204		179
Oxygen Sullide	(02)				0		10
	FACE PARTIES	Property Services					
		SCALING IN	DEX (positiv	e value indi	cates scale;		
		Calcium	Calcium	Calcium	Calcium	Calcium	Calcium
Temper	ature	Carbonate	Sulfata	Carponate	Sulfate	Carbonate	Sulfate
36°F	30°C	0.26	-25	0.20	-26	0.25	-32

Compatibility Results

Sample 1 = Langlie Lynn = 25% / Jal Water System = 75%

Sample 2 = Langlie Lynn = 50% / Jal Water System = 50%

Sample 3 = Langlie Lynn = 75% / Jal Water System = 25%

Visual mix - 50.50 - no ppt.

707 North Leech P.O.Box 1499

Hobbs, New Mexico 88240

Company : Conoco

_Date : _03-10-1989

Jal Water System (on 3-10-89)

		Sample 1
Specific Gravity:		1.006
Total Dissolved Solids:		9077
pH:	•	6.65
IONIC STRENGTH:		0.214

CATIONS: Calcium Magnesium Sodium Iron (total) Barium	(Ca ⁺²) (Mg ⁺²) (Na ⁺¹) (Fe ⁺²) (Ba ⁺²)	me/liter 30.4 59.2 65.2 0.090 0.007	mg/liter 608 719 1500 2.50 - 0.500
ANIONS:		•	
Bicarbonate "	(HCO ₃ -1)	15.6	952
Carbonate	(GO3-2-)		O
Hydroxide	(OH-1)	0	0
Sulfate	(504-2)	29.1	1400
Chloride	(C1-1)	110	3900
DISSOLVED GASES			
Carbon Dioxide	(CO ₂)	V	250
Hydrogen Sulfide	(H ₂ S)		255

SCALING INDEX (positive value indicates scale)

Calcium Calcium Temperature 30°C Carbonata Sulfate 0.25 -13

707 North Leech

P.O.Box 1499

Hobbs, New Mexico 88240

Conoco Company:

03-10-1989 Date

Date : 03-10-1989 WF Inj IPDLocation: Langlie Lynn Well # 1 (on 3-10-89)

		Sample 1
Specific Gravity:		1.012
Total Dissolved Solids:	The Control of Special Control of	17311
pH:	•	6.88
IONIC STRENGTH:		0.324

CATIONS:	o in the called the of the sec ond of	maranan anara.	me/liter	mg/liter
Calcium	(Ca ⁺²)	•	20.4	408
Magnesium	(Mg+2) ""		33.6	408
Sodium	(Na ⁺¹)		238	5480
Iron (total)	(Fe ⁺²)	.	0.036	1.00
Barium	(Ba ⁺²)		0.067	4.60
ANIONS:				
Bicarbonate	(HCO3 ⁻¹)		21.6	1320
Cartonate	(CO ₃ -2)		•	0
Hydroxide	(OH-1)		0	0
Sulfate	(504-2)		8.33	400
Chloride	(C1 ⁻¹)		262	9300
DISSOLVED GASES				
Carbon Dioxide	(CO ₂)	18°		150
Hydrogen Sulfide	(H2S)	•		153

and the state of the state of	• • • • • •				
SCAL	ING	INDEX	(positive	value indicates	scale)
Transfer for the control of the cont	2.			Calcium	Calcium

Carbonat : Sulfate Temperature 30°C 0.26 -33

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

September 29, 1989

Mr. William LeMay State of New Mexico Oil Conservation Division P.O. Box 2088 Santa Fe, NM 97504-2088

Dear Mr. LeMay:

Request for Authorization to Inject in the Langlie Lynn No. 1, Section 22, T23S, R36E

Conoco Inc. requests administrative approval to inject water into the Langlie Lynn #1, which is within an existing waterflood project (R-4417). Conoco is requesting administrative approval for this conversion to injection of an additional well based on Rule 701-F(4), since the well is necessary to maintain thorough and efficient waterflood injection.

Enclosed is the information required for this Application for Authorization to Inject with the exception of the proof of notice, which will be forwarded to your office as soon as possible. Should you have any questions regarding this matter, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

David L. Wacker Division Manager

KLL:ks:929

DIL CONSERVATION DIVISION

POST OFFICE BOX 2088
STATE LAND OFFICE BUILDING
BUNTA FE, NEW MEXICO 87501

FORM C-108 Revised 7-1-81

APPLICATION FOR AUTHORIZATION TO INJECT

Ι.	Purpose: Secondary Recovery Pressure Maintenance Disposal Storage Application qualifies for administrative approval? yes no
II.	Operator: Conoco Inc.
	Address: P.O. Box 460 - Hobbs, NM 88240
	Contact party: Kandy Lawson Phone: (505) 397-5826
111.	Well data: Complete the data required on the reverse side of this form for each well proposed for injection. Additional sheets may be attached if necessary.
IV.	Is this an expansion of an existing project? x yes x no If yes, give the Division order number authorizing the project x
٧.	Attach a map that identifies all wells and leases within two miles of any proposed injection well with a one-half mile radius circle drawn around each proposed injection well. This circle identifies the well's area of review.
VI.	Attach a tabulation of data on all wells of public record within the area of review which penetrate the proposed injection zone. Such data shall include a description of each well's type, construction, date drilled, location, depth, record of completion, and a schematic of any plugged well illustrating all plugging detail.
VII.	Attach data on the proposed operation, including:
	 Proposed average and maximum daily rate and volume of fluids to be injected; Whether the system is open or closed; Proposed average and maximum injection pressure; Sources and an appropriate analysis of injection fluid and compatibility with the receiving formation if other than reinjected produced water; and If injection is for disposal purposes into a zone not productive of oil or gas at or within one mile of the proposed well, attach a chemical analysis of the disposal zone formation water (may be measured or inferred from existing literature, studies, nearby wells, etc.).
III.	Attach appropriate geological data on the injection zone including appropriate lithological, geological name, thickness, and depth. Give the geologic name, and depth to bottom of all underground sources of drinking water (aquifers containing waters with total dissolved solids concentrations of 10,000 mg/l or less) overlying the proposed injection zone as well as any such source known to be immediately underlying the injection interval.
IX.	Describe the proposed stimulation program, if any.
х.	Attach appropriate logging and test data on the well. (If well logs have been filed with the Division they need not be resubmitted.)
XI.	Attach a chemical analysis of fresh water from two or more fresh water wells (if available and producing) within one mile of any injection or disposal well showing location of wells and dates samples were taken.
XII.	Applicants for disposal wells must make an affirmative statement that they have examined available geologic and engineering data and find no evidence of open faults or any other hydrologic connection between the disposal zone and any underground source of drinking water.
III.	Applicants must complete the "Proof of Notice" section on the reverse side of this form
XIV.	Certification
	I hereby certify that the information submitted with this application is true and correct to the best of my knowledge and belief.
	Name: David L. Wacker Title Division Manager
	Signature: Haid 1. Waske Date: October 5, 1989

of the earlier submittal. Well logs were submitted upon completion.

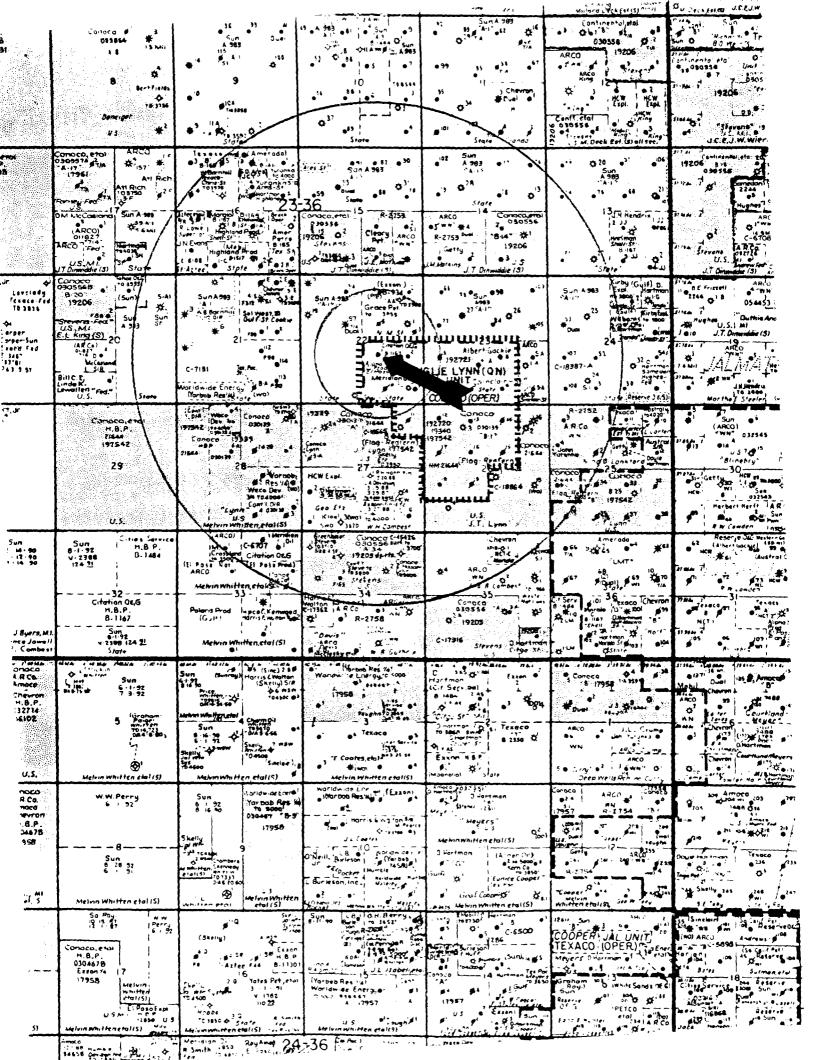
INJECTION WELL DATA SHEET

Conoco OPERATOR			nglie Lynn U ASE	Init
1	1980' FSL & FEL	22	23 s	36E
	FOOTAGE LOCATION	SECTION		RANGE
<u>Schematic</u>		Tubular D	Data	
1 1	<u>Surface Casi</u>	na		
	Size <u>8-5/8</u>	_	ed with 280) sx.
		feet det		
	Hole size			
8-5/8", 32#, J-55@ 324' w/280 SX(CIRC)	<u> Intermediate</u>			
		Cement	ted with	sx.
		 feet det		
			-	
	<u>Long String</u>			
		" Cemen	ted with <u>2</u>	50 sx.
+118 JTS. 2-3/8"		feet de		-
4.7#, IPC J-55 + TBG W/4-1/2* BAKER MODI	E Hcle size _	6-3/4"		
AD-1 PKR SET @ 3570	Total depth	3812'	·	
	Injection in	nterval		
$oldsymbol{oldsymbol{eta}}$	3622	feet	to <u>3740'</u>	feet
	(perforated	or open-hole	e, indicate	which)
4-1/2", 8.5 & 11.6*, J-55	2-708', 3719-24', 3729-32', 3736 + 1422' (GALC.)			
PBTD 3746' Tubing size 2-3/8"		stic coating		set in a
10 3812		(materia	1)	
Baker AD-l (brand and m (or describe any oth	odel)	er at <u>35</u> 1).	70	feet
Other Data	5 0	•		
	ection formation <u>7-R</u>	ivers and O.	seen.	
3	r Pool (if applicabl			zers Oueen
	ell drilled for inje		Yes	No No
	•		· 2	
	purpose was the wel			
	x 7-Rivers Queen oil			ia+ all
	er been perforated i I intervals and give	•		
	s) used? No			
5. Give the depth	to and name of any o	overlying and	l/or underlv	ing oil or
	s) in this area. <u>Ja</u>		•	9
				

LANGLIE LYNN UNIT NO. 1

Proposed Convert to Injection

Proposed average and maximum daily rate: 400 BWPD/700 BWPD


System is closed

Proposed average and maximum injection pressure: 400 psi/650 psi

<u>Geological data is as follows</u>: The lithology consists of dolomite, sandstone, and anhydrite. No known sources of underground drinking water are present in the area of review.

<u>Proposed Stimulation Program</u>: Add perforations in the 7R-1 and 7R-2. Re-perforate existing perforated intervals and stimulate with 15% HCL as necessary.

MB:jd LANGLN1.DOC

WELLS WITHIN 1/2 MILE WHICH PENETRATE ZONE OF INTEREST

Langlie Lynn Queen No. 3 1980' FSL & 660' FWL L-23-23S-36E	Langlie Lynn Queen No. 9 660' FSL & 330' FEL P-22-23S-36E		Conoco Langlie Lynn Queen No. 10 640' FSL & 1650' FEL 0-22-23S-36E	Hal J Rasmussen Oper. State A AC-1 No. 1 330' FSL & 2310' FWL N-22-23S-36E	Lanexco Inc. El Paso State No. 1 1880' FSL & 1650' FEL J-22-23S-36E	Conoco Langlie Lynn Queen No. 1 1980' FSL & EL J-22-23S-36E	OPERATOR, WELL, LOCATION
Inj	0il	Р&А		Gas	Gas	011	TYPE
3536-3672	3588-3714	0-650 1140-1302 2805-3095 3310-3600 CIBP at 3600	3623-3739 Squeezed: 3770-93	3155-3560	3045-3538	3623-3740	INTERVAL-FT.
8-5/8 4-1/2	7-5/8 4-1/2		7-5/8 4-1/2	12-1/2 8-5/8 7	8-5/8 5-1/2	8-5/8 4-1/2	SIZE-"
241 3790	305 3800		307 3800	314 2961 4234 PB 3668-5095	381 3610	324 3812	CAS
200 1100	275 200	300 50 20 20	225 200 90	313 525 450 200 + 200 sx mud	200 750	280 250	CASING NO. SX
Surface Surface	Surface 1888		Surface 2400	Surface N.A. N.A.	Surface Surface	Surface 1459-Calc	TOC-FT
9-30-60	4-6-63		6-3-63	1-8-29	6-9-79	8-28-60	SPUD <u>DATE</u>
10-25-60	4-21-63		6-24-63	6-5-29	6-30-79	9-22-60	COMPL. DATE
3790/3760	3800/3773		3800/3799	5095/3668	3610/3577	3812/3782	TD/PBD-FT

Conoco Langlie Lynn Queen Unit No. 2 1980' FSL & 660' FEL I-22-23S-36E		Grace Petroleum New Mexico State No. 3 2310' FNL & 330' FEL 22-23S-36E		Grace Petroleum New Mexico State AA No. 5 1980' FNL & FEL G-22-23S-36E	Hal J. Rasmussen Operating State A AC-1 No. 97 1980' FNL & FWL F-22-23S-36E	B-22-235-36E	Grace Petroleum New Mexico State AA No. 4 660' FNL & 1855' FEL	OPERATOR, WELL, LOCATION
011	P&A		P&A		Gas Oil-TA	Oil-TA	Gas	TYPE
3590-3732	0-220 220-328 328-1500 1500-1600 CIBP at 2890 3530-3630	3613-21	Surface 0-170 170-336 336-2500 2500-2600 3650 BP at 3650	3713-35	3086-3228 CIBP at 3310' 3568-94	3668-98	3314-3528 BP at 3550	INTERVAL-FT.
8-5/8 5-1/2		7-5/8 2-7/8		8-5/8 2-7/8	9-5/8 7		7 2-7/8	SIZE-"
330 3761		328 3629		336 3773	333 3645		339 3748	CA DEPTH-FT.
275 200	15 60 mud 30 4 100-ft	175 200	15 35 25 mud 50 4	200 200	300 250		175 200	CASING NO. SX
Surface 2242		Surface 2355-Calc		Surface 2500-Calc	Surface 2290 '		Surface 2820	TOC-FI
2-20-60		12-16-59		7-3-60	10-22-60		6-12-60	SPUD <u>DATE</u>

JS:mjm HALFMILE.DOC

LANGLIE LYNN UNIT No. 10

	•				
640 FSL & 1650 FE	弘		ELEV	ATION: 3400	'NE
UNIT 0, SEC 22, T		/=-	2 2 - 3		_
	cllar		of A. Marilan	339/ [/] -	
		c' Trè	PGA Marker		
		<u> </u>	4302M SZ	Restored GL ut lazing Off:	
Backfill Cellar	2.7	20 (19 (19 (19 (19 (19 (19 (19 (19 (19 (19	$\frac{A(m)(C,m)}{A} = C$	ut Casing Off :	3 Below GL.
To Contour					
		A . A		· · ·	
300 sx. Class C Cent			75/8", 24	1# CSG @307 W	1/225 sx (circ
w/2% cacl+1/4 #/= k	Floceles	A		ing interval 32	
From Swiface to 6	(. ' 1)		. ·	10/c= 630'-122	
(72 sx circulated)	1	9 999		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
		Mud	5054 11	10110	. (= /2
1	T = 14	A	11/4/2 F	"C" coment w	- 1 cacl
TK-4- 1186'	T.Salt_			cele From 58	
T. Saft : 1196'	·		(PCOH to BIO	. Circ 165x. We	oc 3/2 hrs.
B. Saft: 30351		9,995	Taig TOC	@ 1140'-ok.)
· · · · · · · · · · · · · · · · · · ·		Miles	TOCES	2400'	
	`A.``		<u> </u>		
	··· <u>-</u>		205% Class	"c" cement w	12% Call
	E. Salt		+ 1/4 #/=K F/0	ccle From ZB	05/to
	· · · · · · · · · · · · · · · · · · ·	A	3095/ (29		
		9,000	•		** -
		Mud		·	• • • •
			20-11	- 1011 0 - 1	
·			2/1 */- 5/	"c" Coment w	/ 2% Ca.C/
		4 4	3600 (290	pcele From 3	3310° to
			•	•	
	· · · · · · · · · · · · · · · · · · ·			CIEP set e 3	600'
			Perforat.		
•				171,75 ,84,85	
		<u> </u>	. 3700,04,05%	13,15,17,21,22,2	3/34/35/39
Procedure Complete	edi -	h	Squeezed po		•
7-1-86	<u></u>	1	37701-931		
			4/2",954,	-55 (54 @ 3800'	'm'
	72	: 3600'	(TOCE		
		0:3754			
de By <i>TCA</i>		onoco Inc.			
ecked By	C	alculation Sh	eet	Job No.	
e 9-25-69	-:le 725/1	Comple	tion	Field NMEH	
e / / /				State Lea Cour	TEY, NN
				S	237-100

15 SX TO SURFACE

35 SX AT 170'

25 SX AT 336'

8 5/8" CSG AT 336 W/200 SX, CIRC.

MUD FILL AND LOST CIRC MATERIAL

50 SX CMT 2500-2600' CUT 2600' 2 7/8" CSG AT 2600' AND PULLED.

3713-35' PERFS

CIBP AT 3650' W/4_SX CMT ON TOP

2 7/8" CSG AT 3773" W/200 SX TOC 2500" CALC.

1

PBTD 3713'

3770' TD

GRACE PETROLEUM CORP.

NEW MEXICO STATE 'AA' NO. 5 1980' FNL & EL 22-235-36E 7 5/8" CSG AT 328 W/175 SX, CIRC. 15 SX CMT TO SURFACE 220-328 60 SX.

1500-328 MUD FILL

30 SX 1600-1500'
CUT OFF 2 7/8' AT 1900. COULD NOT PULL.
CUT OFF 2 7/8' AT 1600' AND PULLED.

TOC 2355' CALC.

2890' - CIBP W/4 SX CMT ON TOP

3613-21' PERF

2 7/8' AT 3629 W/ 200 SX.

100 FT, PLUG 3530-3630'

GRACE PETROLEUM CORP.

T.D. 3630'

NEW MEXICO STATE 'AA' NO. 3 2310' FNL 330' FEL 22-235-36E

707 North Leech

P.O.Box 1499

Hobbs, New Mexico 88240

Company : Conoco - -/--

Date : 03-10-1989 Texaco

Sample 1: - Langlie Lynn & Jal Water System (on 3-10-89)

Sample 2: (on)
Sample 3: -- (on) --

Specific Gravity Total Dissolved : pH: IONIC STRENGTH:	•	<u>Sam</u>	1.008 11135 6.71 0.242	San	1.009 13194 6.77 0.269	<u>Şan</u>	1.011 15253 6.82 0.296
*************************************	· 	====================================					
CATIONS:	Tak Zu un geg	me/liter	mg/liter	me/liter	ma/litan	me/liter	mg/lite
Calcium	(Ca+2)	27.9	558	25.4	mg/liter 508	22.9	458
Magnesium	(Mg+2)	52.8	642	46.4	564	40.0	486
Sodium	(Na+1)	108	2490	152	3490	195	4480
Iron (total)	(Fe ⁺²)	0.076	2.13	0.063	1.75	0.049	1.
Barium	(Ba+2)	0.022	1.52	0.037		0.052	3.
:		0.022	1.52	7.007	2.33		· · ·
ANIONS:						•	
Bicarbonate	(HCO1-1)	17.1	1040	18.6	1130	20.1	1230
Carbonate	(CO3-2)	0	0	a	0	0	_0
Hydroxide	(OH-1)	8	0	G G	ū	ō	. 0
Sulfate	(504 ⁻²)	23.9	1150	18.7	900	13.5	650
Chloride	(C1 ⁻¹)	148	5250	186	6600	224	7950
DISSOLVED GASES			east for	* 0=	- *		
Carbon Dioxide	(CO ₂)		225	•	200		175
Hydrogen Sulfide	-		230		204		179
Oxygen	(Oz)		0	and the first of the second of	0	***	0
TO THE CONTROL OF THE PARTY OF T	学 可以2017年	To to the state of the	The state of the s	The state of the s	A Company of the Company	The second second	A. C.
10000 · 10000		The state of the same			· · · · · · · · · · · · · · · · · · ·		- 1
	-						
						į	
				<u>e value indi</u>			
		Calcium	Calcium	Calcium	Calcium	Calcium	Calciu
Temper		Carbonate	Sulfate	Carponate	<u>Sulfate</u>	Carbonate	Sulfate
36°F	30°C	0.26	-20	0.20	-26	0.25	-35

Compatibility Results

Sample 1 = Langlie Lynn = 25% / Jal Water System = 75%

Sample 2 = Langlie Lynn = 50% / Jal Water System = 50%

Sample 3 = Langlie Lynn = 75% / Jal Water System = 25%

Visual mix - 50.50 - no apt.

787 North Leech P.O.Box 1499

Hobbs, New Mexico 88240

Company : Conoco

Date : 03-10-1989 Location: Jal Water System (on 3-10-89)

	29111DIE I
Specific Gravity:	1.006
Total Dissolved Solids: "	9077
Hq:	6.65
IONIC STRENGTH:	0.214

CATIONS: Calcium Magnesium Sodium Iron (total) Barium	(Ca ⁺²) (Mg ⁺²) (Na ⁺¹) (Fe ⁺²) (Ba ⁺²)	me/liter 30.4 59.2 65.2 0.090	mg/liter 608 719 1500 2.50 0.500
ANIONS: Bicarbonate Carbonate Hydroxide Sulfate Chloride	(HCO ₃ -1) (GO ₃ -2) (OH-1) (SO ₄ -2) (C1-1)	15.6 0 0 29.1 110	952 0 0 1400 3900
DISSOLVED GASES Carbon Dioxide Hydrogen Sulfide	(CO ₂) (H ₂ S)		250 255

		A Company of the Company of the Company
SCALING INDEX	(positive value	indicates scale)

Calcium Calcium <u>Carbonate</u> Sulfate 30°C 0.25 -13

707 North Leech

P.O.Box 1499

Hobbs, New Mexico 88240

Company: Conoco

Date : 03-10-1989

Date: 03-10-1989 WF IN IPD Location: Langlie Lynn Hell # 1 (on 3-10-89)

Specific Gravity:		1.012
Total Dissolved Solids:	TO THE COMMENT OF THE COMMENT OF	17311
:Ha	,	6.88
IONIC STRENGTH:		0.324

CATIONS:	and the second of the second o	in equation or expension	me/liter	mg/liter
Calcium	(Ca ⁺²)	•	20.4	408
Magnesium	(Mg+2) "- "		33.6	408
Sodium	(Na ⁺¹)		238	5480
Iron (total)	(Fe ⁺²)	.	0.036	1.00
Barium	(Ba ⁺²)		0.067	4.60
ANIONS:	•			
Bicarbonate	(HCO ₃ -1)		21.6	1320
Carbonate	(CO ₃ -2)		0	0
Hydroxide	(OH-1)		0	٥
Sulfate	(SO4 ⁻²)		8.33	400
Chloride	(C1-1)		262	9300
DISSOLVED GASES				
Carbon Dioxide	(CO ₂)	- 18-7 · · · · · · · · · · · · · · · · · · ·		150
Hydrogen Sulfide	(H2S)			153

AND THE RESERVE OF THE PARTY OF

SCALING	INDEX (positive	value indicate	s scale)
	•	Calcium	Calcium
enuteneameT		<u>Canbonata</u>	Sulfate
36°F 30°C		0.25	-33

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800 CALICOTISE AVIAGON DIVISION RECEIVED

'89 NOV 15 AM 9 04

November 9, 1989

Mr. William LeMay State of New Mexico Oil Conservation Division P. O. Box 2088 Santa Fe, NM 87504-2088

Dear Mr. LeMay:

Request for Authorization to Inject in the Langlie Lynn No. 1, Section 22, T23S, R36E

Attached are copies of the proof of notice for the subject application which was submitted to your office on September 29, 1989.

If you have any questions regarding this application, please contact Ms. Kandy Lawson at $(505)\ 397-5826$.

Yours very truly,

David L. Wacker Division Manager

Enc. KLL:jc

AFFIDAVIT OF PUBLICATION

State of New Mexico, County of Lea.

I, George W. M	<u>oore</u>
of the Hobbs Daily N daily newspaper pu Hobbs, New Mexico, swear that the clippi hereto was published in the regular and en	News-Sun, a ublished at do solemnly ng attached once a week
said paper, and not a	
thereof for a period	
of	
One	weeks.
Poginning with the	icena datad

Beginning with the issue dated

October 8 , 19 89 and ending with the issue dated

____. 19_89

Sworn and subscribed to before

day of

Notary Public.

My Commission expires_____

____ 19_93 (Seal)

This newspaper is duly qualified to publish legal notices or advertisements within the meaning of Section 3, Chapter 167, Laws of 1937, and payment of fees for said publication has been made.

LEGAL NOTICE October 8, 1989 Convert Well to

Water Injection
Conoco Inc., 726 E.
Michigan, P.O. Box 460,
Hobbs, New Mexico,
Phone: (505) 397-5800, Mr.
D. L. Wacker, Division
Manager of Production, intends for the purpose of secondary recovery, to convert the following well in Lea County to a water injection well.

Well Name Langlie Lynn No. 1

Location 1980' FSL & FEL **Total Depth** 3812"

Formation 7-Rivers & Queen

Operator plans to inject produced water at a rate of approximately 400 barrels per day with an approx imate surface pressure of 650 psi. Any objections to this intent or request for hearing must be filed with the New Mexico Oil Con-servation Division, P.O. Box 2088, Santa Fe, New Mexico, 87501 within 15 days from the date of this publication.

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

October 19, 1989

Mr. Hal J. Rasmussen P.O. Box 10317 Midland, TX 79702

Dear Mr. Rasmussen:

In accordance with New Mexico Oil Conservation Division regulations, you, as an offset operator, are hereby notified of Conoco's application to convert the Langlie Lynn No. 1 to a water injection well. This well is located 1980' FSL & FEL of Section 22, T23S, R36E, Lea County, New Mexico.

If you have no objections, please execute one copy of this letter and return it in the enclosed self-addressed stamped envelope to the attention of Ms. Kandy Lawson. The second copy may be retained for your files.

Thank you for your cooperation in this matter. If you have any questions, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

David L. Wacker Division Manager

KLL: tm

Executed	the _	day	of	,	1989.
Ву					
Mr	Hal J	. Rasmussen			

SENDER: Complete items 1 and 2 when additional 3 and 4. Put your address in the "RETURN TO" Space on the reverence of from being returned to you. The return receipt fee will provide to and the date of delivery. For additional fees the following for fees and check box(es) for additional service(s) requests. Show to whom delivered, date, and addressee's acceptable.	rse side. Failure to do this will prevent this rovide you the name of the person delivered g services are available. Consult postmaster ted.
3. Article Addressed to: Mr. Hal J. Rasmussen P.O. Box 10317 Midland, TX 79702	4. Article Number 1
5. Signature - Address X 6. Signature - Agent X 7. Date of Delivery	8. Addressee's Address (ONLY if requested and fee paid)

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

October 19, 1989

Lanexco Inc. P.O. Box 1206 Jal, NM 88252

Gentlemen:

In accordance with New Mexico Oil Conservation Division regulations, you, as an offset operator, are hereby notified of Conoco's application to convert the Langlie Lynn No. 1 to a water injection well. This well is located 1980' FSL & FEL of Section 22, T23S, R36E, Lea County, New Mexico.

If you have no objections, please execute one copy of this letter and return it in the enclosed self-addressed stamped envelope to the attention of Ms. Kandy Lawson. The second copy may be retained for your files.

Thank you for your cooperation in this matter. If you have any questions, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

Lanexco Inc.

Lanexco Inc.

SENDER: Complete items 1 and 2 when addit 3 and 4. Put your address in the "RETURN TO" Space on the card from being returned to you. The return receipt fee to and the date of delivery. For additional fees the following fees and check box(es) for additional service(s) respectively. Some support of the service of the ser	will provide you the name of the person delivered lowing services are available. Consult postmaster equested.
(Extra charge)	(Extra charge)
3. Article Addressed to:	4. Article Number P 175117907
Janesco Inc.	Type of Service:
PO. Box 1206	Registered Insured Cortified COD Express Mail Perchandise
Gal, nm 88252	Always obtain signature of addressee or agent and DATE DELIVERED.
5. Signature - Address	8. Addressee's Address (ONLY if
x / Constore	requested and fee paid)
6. Signature - Agent	
x /	No.
7. Date of Delivery	

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

October 19, 1989

Commissioner of Public Lands State Land Office P.O. Box 1148 Santa Fe, NM 87504-1148

Dear Commissioner:

In accordance with New Mexico Oil Conservation Division regulations, you, as the surface owner, are hereby notified of Conoco's application to convert the Langlie Lynn No. 1 to a water injection well. This well is located 1980' FSL & FEL of Section 22, T23S, R36E, Lea County, New Mexico.

If you have no objections, please execute one copy of this letter and return it in the enclosed self-addressed stamped envelope to the attention of Ms. Kandy Lawson. The second copy may be retained for your files.

Thank you for your cooperation in this matter. If you have any questions, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

David L. Wacker
David L. Wacker
Division Manager

KLL:tm

Executed the _____ day of _____, 1989.

By______ Commissioner of Public Lands

SENDER: Complete items 1 and 2 when additional services are desired, and complete items 3 and 4. Put your address in the "RETURN TO" Space on the reverse side. Failure to do this will prevent this card from being returned to you. The return receipt fee will provide you the name of the person delivered to and the date of delivery. For additional fees the following services are available. Consult postmaster for fees and check box(es) for additional service(s) requested. 1. Show to whom delivered, date, and addressee's address. 2. Restricted Delivery (Extra charge)				
3. Article Addressed to:	4. Article Number			
Commissioner of Public Lan	1P175167906			
State Sand Office	Type of Service:			
State Land Office P-D. Box 1148	Cortifled COD Return Receipt for Merchandise			
Santa Fe, nm 87504-1148	Always obtain signature of addressee or agent and DATE DELLVERED.			
5. Signature Address	8. Addressee's Address (QNLY) frequested and fee fault)			
xy//URO	1989			
6. Signature — Agent				
7. Date of Delivery	USPO			
7. Date of Delivery	建			

Conoco Inc. 726 East Michigan P.O. Box 460 Hobbs, NM 88241 (505) 397-5800

October 19, 1989

Grace Petroleum Corp. Drawer 2358 Midland, TX 79702

Gentlemen:

In accordance with New Mexico Oil Conservation Division regulations, you, as an offset operator, are hereby notified of Conoco's application to convert the Langlie Lynn No. 1 to a water injection well. This well is located 1980' FSL & FEL of Section 22, T23S, R36E, Lea County, New Mexico.

If you have no objections, please execute one copy of this letter and return it in the enclosed self-addressed stamped envelope to the attention of Ms. Kandy Lawson. The second copy may be retained for your files.

Thank you for your cooperation in this matter. If you have any questions, please contact Ms. Kandy Lawson at (505) 397-5826.

Yours very truly,

David L. Wacker Division Manager

KLL: tm

Executed	the		_ day	of		_,	1989.
Ву							
Gr	ace	Petroleum	Corp.		_		

SENDER: Complete items 1 and 2 when additional services are desired, and complete items 3 and 4.

Put your address in the "RETURN TO" Space on the reverse side. Failure to do this will prevent this card from being returned to you. The return receipt fee will provide you the name of the person delivered to and the date of delivery. For additional fees the following services are available. Consult postmaster for fees and check box(es) for additional service(s) requested.

1. Show to whom delivered, date, and addressee's address.

2. Restricted Delivery (Extra charge) (Extra charge) 3. Article Addressed to: 4. Article Number Grace Petroleum Type of Service: Tower Park North, Suite 620 Insured
COD
Return Receipt
for Merchandise Registered Certified 10700 N. FREEWay Express Mail Always obtain signature of address or agent and DATE DELIVERED. 8. Addressee's Address (ONLY if requested and fee paid) 5. Sign