# OIL CONSERVATION COMMISSION P. O. BOX 2088 SANTA FE, NEW MEXICO 87501 August 12, 1975 Hiram W. Heith & Dalton Haines Box 844 Kermit, Texas 79745 Re: Administrative Order SWD-170 Gentlemen: Enclosed herewith please find Administrative Order SWD-160 for the following described well: State C Well No. 1 located in Unit J, Section 16, Township 21 South, Range 34 Fast, NMPM, Lea County, New Mexico. Very truly yours, JOE D. RAMEY Secretary-Director JDR/CU/og cc: Oil Conservation Commission Box 1980 Hobbs, New Mexico #### NEW MEXICO OIL CONSERVATION COMMISSION ## APPLICATION TO DISPOSE OF SALT WATER BY INJECTION INTO A POROUS FORMATION | Hiram W. I | Keith & Da | Lton Hai | NOS | Bo | к 844, | Kermit, | , Texa | 15 79745 | | |-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------|------------------|-----------------------------------------------------------|---------------------|----------------------------------|---------------------------------------------------------------------|------------------------------------|-----------------------------------------------------------|--| | State C | | sonta fe | 1 | 1 | st Wil | 5 9 n | | Lea | | | ATION UNIT I | LETTER J | ; WELL IS | LOCATED | 980 FEET FRO | M THE | <b>S</b> | NE AND | 1980 FEET FROM | | | E LINE, | section 16 | TOWNSHIP | | RANGE 34E | NMPI | и. | | | | | NAME OF STRIE | NG SI | ZE SET | CASING . | SACKS CEMEN | <del></del> | OP OF CEME | NT | TOP DETERMINED BY | | | FACE CASING | | 13 2 | 10 | 75 | S | urface | | | | | STRING | | | | | | | | | | | NG | | 7 3 | 850 | 250 | PTH OF TUBIN | 2025 | | Calculations | | | E OF PROPOSED INJEC | TION FORMATION | | | TOP OF FORMA | TION | | воттом о | F FORMATION | | | Seven Rivers & Yates | | | PERFORATIONS | OR OPEN HOLE? PRO | 3936 OPEN HOLE PROPOSED INTERVAL | | 3948<br>JECTION | | | | Casing HIS A NEW WELL DRILL OSAL? NO ALL SUCH PERFORAT | LED FOR | | | E WAS WELL ORIGINA | 3850 <u>∞</u> | 3948 | HAS WELL<br>ZONE OTHE<br>TION ZONE | EVER BEEN PERFORATED IN<br>RY THAN THE PROPOSED INJI<br>P | | | H WATER ZONE IN THIS AREA | | | EPTH OF BOTTOM OF NEXT HIGHER IL OR GAS ZONE IN THIS AREA | | | DEPTH OF TOP OF NEXT LOWER<br>OIL OR GAS ZONE IN THIS AREA<br>NONE. | | | | | 350 ft ES | 180 | 220 | OPEN OR CLOSE | D TYPE SYSTEM | PRESSURE? | TO BE BY GRAV | NO YTIV | APPROX. PRESSURE (PSIO | | | ER YES ON NO WHETHER THE FOLLOWING WATERS ARE N<br>IZED TO SUCH A DEGREE AS TO BE UNFIT FOR DOMESTIC<br>K, IRRIGATION, OR OTHER GENERAL USE<br>AND ADDRESS OF SURFACE OWNER (OR LESSEE, IF STA' | | | 3 | (es | DISPOSED OF NATURAL WATER | | | R ANALYSES ATTACHED? | | | State Land<br>NAMES AND ADDRESS<br>NONE | d SES OF ALL OPERATOR | S WITHIN ONE-HA | LF (1/2) MILE OF | THIS INJECTION WELL | | | | | | | COPIES OF THIS APP | DLICATION REEN SII | RFACE OWNER | | EACH OPERATO | B WITHIN ON | FAMALE MILE | | | | | TO EACH OF THE FOLLOWING ITEM | AS ATTACHED TO PL | NO<br>AT OF AREA | | OF THIS WELL | a athe | r Opera | LOTS | ATIC SKETCH OF WELL | | | APPLICATION (SEE R | ULE 701-B) | Yes | | 1 | made | | !<br>!<br>! | NO | | | | | | | | to the best | of my knowl | adae and | belief | | | n | hereby certify the | at the informat | _ | wher & Op | | or my known | | •1•75 | | NOTE: Should waivers from the surface owner and all operators within one-half mile of the proposed injection well not accompany this application, the New Mexico Oil Conservation Commission will hold the application for a period of 15 days from the date of receipt by the Commission's Santa Fe office. If at the end of the 15-day waiting period no protest has been received by the Santa Fe office, the application will be processed. If a protest is received, the application will be set for hearing, if the applicant so requests. SEE RULE 701. WINLSON William Brander . ... TOH L KINNEY . 20 OF A COLDER STORY TRETOLITE: DIVISION 369 Marshall Avenue / Saint Lewis, Missouri 63119 (314) WD 1-3500/TWX 910-780-1660/Talex 44-2417 ### WATER ANALYSIS REPORT | JRCE | OMPANY Keith - Haines State #1 (Discharge Fump) | | ADDRESS Lea, Few Mexic | | | CO DATE: 2/21/74 × | | | |-----------------------|--------------------------------------------------|---------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------|--------------------|---------------|--| | | Analysis | marke rumb) | DATE SAM | Mg/L | | NO | | | | | | 6.9 | | • " 👙 💃 | | ,,,ed, e | | | | | H _ | Pos. | | | | | | | | | 1 <sub>2</sub> S (Qualitative) _ | 1.005 | | | - | | Lip | | | | ipecific Gravity | 1.00) | | | | St | <b>9</b> | | | | Dissolved Salids | | | _11,922 | | | Ž. | | | 5. \$ | uspended Solids | | • | <del>lakitana alikita</del> n <del>ayayyiii da</del> n <del>yayy</del> a a <del>qa</del> ya | | | | | | . <b>6.</b> P | henolphthalain Alka | linity (CaCO <sub>3</sub> ) | , | 990 | | | | | | 7. M | Methyl Orange Alkalin | alty (CaCO <sub>3</sub> ) | , | 1,209 | • | 20.0 | | | | | licarbonate (HCO <sub>3</sub> ) | ) | HCO <sub>3</sub> | Mariant standard programment and an artist and a second | 61 | 19.8 | HC <b>O</b> ; | | | 9. C | Chlorides (CI) | | CI | 4,150 | - 25.5 | 117 | C) | | | | ietfares (SO <sub>4</sub> ) | • | so. | 2,579 | - 48 | 54 | 50; | | | | Calcium (Ca) | | * Ca | 1,000<br>316 | <b>-20</b> | 5 <u>0</u> | Ca | | | 12. A | Magnesium (Mg) | | Mg | Commercial desiration of the Commercial Comm | .÷12.2 | <u> </u> | Mg | | | 13. T | Total Hardness (Ca | (O <sub>1</sub> ) | | 3,800 | 7 | | •. | | | 14. T | Total Iron (Fe) | | | 7,0 ppm | ~ | | | | | | | | | | | | | | | *Milli | equivalents per lite | | E MINERAL COM | POSITION | | , | | | | · . | equivalents per lite | PROBABL | Cardoui | er saar van jamen van de seen verden van de seen v | 7. j <b>Y</b> | | Wg/L | | | o C | 0 | PROBABL | Cardoui | · Equire. | ार <b>१</b><br>१७ | Arrs 1<br>(),8 | 1,604 | | | C. | | PROBABL | Composit | <sup>3</sup> हैन्दर्शत<br>1 <sub>2</sub> 31 | | | 1,604 | | | 0 C | 0 | PROBABL | 6 Caraoui 6 Caraoui 7 Cara | * - Egeire.<br>12 - 31 | (N) | | 1,604 | | | 0<br>6<br>15 | ic 4 | PROBABLE HCO <sub>3</sub> 15 SC <sub>4</sub> 24 | E Condour 6 Ua (HCO3) | . Б.дайг.<br>12 31<br>49<br>25 | 190<br>1 <b>07</b> | | 1,604 | | | 0 C M<br>6 M<br>15 N | ic 4 | PROBABLE HCO <sub>3</sub> 19 SG <sub>4</sub> 24 C! 11 Ted V/arer 20°C 13 Mg/4 | Condour 8 Ua (HCO3) Co 50, The Co 50 of | . Б.дайг.<br>12 31<br>49<br>25 | 00<br>.07<br>.50<br>.50 | 0.8 | 1,450 | | | 0 G M<br>6 M<br>15 N | ia Values | PROBABL HCO <sub>0</sub> 19 SO <sub>4</sub> 94 CI 11 Ped V/arer 20°C 13 Mg/L 2,090 Mg/L | Condour 8 | . Бдайк.<br>12 31<br>09<br>55 | 190<br>197<br>199<br>17 | | 1,604 | | | 0 G<br>6 M<br>15 N | ic description Values of Ca CO <sub>3</sub> | PROBABLE HCO <sub>3</sub> 19 SG <sub>4</sub> 24 C! 11 Ted V/arer 20°C 13 Mg/4 | Condour<br>E La (HCO <sub>3</sub> ,<br>Co SC <sub>4</sub><br>Co SC <sub>4</sub><br>Wy (HCO <sub>2</sub> )<br>Mg SO <sub>4</sub> | f Equito<br>f2 31<br>69<br>25<br>1. 73 | 00<br>.07<br>.50<br>17<br>18 | 0.8 | 1,450 | | | 0 G M<br>6 M<br>15 N | ia Values | PROBABL HCO <sub>0</sub> 19 SO <sub>4</sub> 94 CI 11 Ped V/arer 20°C 13 Mg/L 2,090 Mg/L | Composition 8 | : Equiro<br>: 31<br>: 35<br>: 73<br>: 37<br>: 37 | 00<br>07<br>30<br>17<br>15<br>42 | 0.8 | 1,450<br>95 | | | 0 6 M<br>15 N | ic to values of a Co CO3 Co SO4 • 2H2C Mg (1.0) | PROBABL HCO <sub>3</sub> 19 SG <sub>4</sub> 24 CI 11 Ted V/arer 20°C 13 Mg/4 2,090 Mg/4 103 Mg/4 | Composition Composition Co (HCO <sub>3</sub> ) Co SO <sub>4</sub> Co SO <sub>4</sub> We (HCO <sub>3</sub> ) Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> No SO <sub>4</sub> | 1 5quire<br>12 31<br>13 73<br>25<br>47<br>84<br>71 | 00<br>.07<br>.09<br>17<br>19<br>34<br>00 | 0.8 | 1,450<br>95 | | | 50 C. M. M. N. Satura | ic to values of a Co CO3 Co SO4 • 2H2C Mg (1.0) | PROBABL HCO <sub>0</sub> 19 SO <sub>4</sub> 94 CI 11 Ped V/arer 20°C 13 Mg/L 2,090 Mg/L | Composition 8 | 1 5quire<br>12 31<br>13 73<br>25<br>47<br>84<br>71 | 00<br>.07<br>.09<br>17<br>19<br>34<br>00 | 0.8 | 1,450<br>95 | | | 0 | ic to values of a Co CO3 Co SO4 • 2H2C Mg (1.0) | PROBABL HCO <sub>3</sub> 19 SG <sub>4</sub> 24 CI 11 Ted V/arer 20°C 13 Mg/4 2,090 Mg/4 103 Mg/4 | Composition Composition Co (HCO <sub>3</sub> ) Co SO <sub>4</sub> Co SO <sub>4</sub> We (HCO <sub>3</sub> ) Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> No SO <sub>4</sub> | 1 5quire<br>12 31<br>13 73<br>25<br>47<br>84<br>71 | 00<br>.07<br>.09<br>17<br>19<br>34<br>00 | 0.8 | 1,450 | | | O C. M. M. N. Satura | ic to values of a Co CO3 Co SO4 • 2H2C Mg (1.0) | PROBABL HCO <sub>3</sub> 19 SG <sub>4</sub> 24 CI 11 Ted V/arer 20°C 13 Mg/4 2,090 Mg/4 103 Mg/4 | Composition Composition Co (HCO <sub>3</sub> ) Co SO <sub>4</sub> Co SO <sub>4</sub> We (HCO <sub>3</sub> ) Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> Mg SO <sub>4</sub> No SO <sub>4</sub> | 1 5quire<br>12 31<br>13 73<br>25<br>47<br>84<br>71 | 190<br>197<br>17<br>19<br>19<br>19<br>19<br>19<br>19 | 0.8 | 1,450<br>95 | |