1	STATE OF NEW MEXICO
2	OIL CONSERVATION COMMISSION
3	HEARING DAY 01
4	
5	Agenda No. 11-23
6	
7	
8	Moderated by Dylan Fuge
9	Wednesday, November 8, 2023
10	9:09 a.m.
11	
12	
13	Pecos Hall Hearing Room
14	Wendell Chino Building, 1st Floor
15	1220 South Saint Francis Drive
16	Santa Fe, NM 87505
17	
18	
19	
20	
21	Reported by: James Cogswell
22	JOB NO.: 6304851
23	
2 4	
25	
	Page 1

1	APPEARANCES
2	List of Attendees:
3	Dylan Fuge, Commissioner/Chair - Oil Conservation
4	Commission
5	Greg Bloom, Commissioner - Oil Conservation Commission
6	William Ampomah, Commissioner - Oil Conservation
7	Commission
8	Daniel Rubin, Attorney - Oil Conservation Commission
9	Darin Savage, Attorney, Abadie & Schill PC - Cimarex
10	Energy Company
11	Adam Rankin, Attorney - Colgate Production LLC,
12	Northwind Midstream
13	Jesse K. Tremaine, Attorney - Oil Conservation
14	Division
15	Dana Hardy, Attorney, Hinkle Shanor LLP - Targa
16	Northern Delaware LLC
17	Deana Bennett, Attorney, Modrall Sperling - Chevron
18	Earl DeBrine, Attorney, Modrall Sperling - Chevron
19	Cody Comiskey, Chevron
20	Bryce Taylor, Chevron
21	Jason Parizek, Chevron
22	Tom Merrifield, Chevron
23	
24	
25	

1		CONTENTS	
2			PAGE
3	Ms. Hardy		8, 36
4	Mr. Rankin		9, 22
5	Mr. Savage		12, 19
6	Ms. Bennett		20, 28, 31
7	Mr. Tremaine		23, 34
8			
9			
10			
11			
12			
13			
14			
15			
16			
17			
18			
19			
20			
21			
22			
23			
24			
25			
			Page 3

1			INDEX	
2	EXAMINAT	rion		PAGE
3	Ву	Ms. Ben	nett	39
4	Ву	Mr. Tre	maine	55
5	Ву	Ms. Beni	nett	63
6	Ву	Mr. Tre	maine	102
7	Ву	Ms. Har	dy	106
8	Ву	Mr. DeB	rine	123
9	Ву	Mr. Tre	maine	158
10	Ву	Ms. Har	dy	159
11	Ву	Ms. Har	dy	176
12	Ву	Mr. DeB	rine	178
13	Ву	Mr. Tre	maine	210
14	Ву	Ms. Har	dy	212
15	Ву	Ms. Beni	nett	238
16	Ву	Ms. Beni	nett	313
17				
18			EXHIBITS	
19	NO.		DESCRIPTION	ID/EVD
20	Exhibit	A	C108s	102/102
21	Exhibit	В	Applications	102/102
22	Exhibit	98-108	Slides	102/102
23	Exhibit	109-123	Slides	158/158
24	Exhibit	126-141	Slides	287/287
25	Exhibit	142-162	Slides	209/209
				Page 4

1 PROCEEDINGS 2 MR. FUGE: I'm going to call the meeting, the November 8th and 9th meeting of the New 3 Mexico Oil Conservation Commission to order. 4 5 Welcome, everyone. This is the first 6 meeting in a long time back in the Wendell Chino Building. We are in Pecos Hall. Still working on final tech filled out, but excited to be here. 8 9 Just wanted to cover a couple of administrative things because we're new and we're 10 11 getting to the agenda. If you need to get onto the 12 wi-fi, it's "NMEMNRD public." And the password is 13 "security first," all one word. You will need a 14 pop-up screen that says you agree to the terms and 15 conditions and responsible use. But that should get 16 you on the wi-fi. 17 For parties presenting cases, please log into the Webex meeting. That will enable you to 18 19 share your material in the room on the large screen. 20 With commissioners here and other -- I just ask that 2.1 you mute your audio when you log in with those setups. 22 And then the last item -- and I'll bring this up a little closer to -- because of some 23 2.4 family commitments, I have a very hard stop at five. So I will checking in with parties if we are 25

1	presenting testimony at four to just make sure we can
2	get through it within that hour. Otherwise, we'll
3	continue it to the next day. As everyone saw in the
4	notice, we made allowance for two days given that it
5	originally looked like this was going to be a
6	relatively large docket.
7	And with that, I'm going to send it
8	around to the first item on the agenda, which is
9	approval of the agenda for today.
10	And we'll see with my fellow
11	commissioners. Do you have any comments or changes to
12	the agenda?
13	DR. AMPOMAH: Did you read the roll
14	call already?
15	MR. FUGE: Oh, sorry. Forgot to do the
16	roll call.
17	Commissioner Ampomah.
18	DR. AMPOMAH: Present.
19	MR. FUGE: Commissioner Bloom.
20	MR. BLOOM: Present.
21	MR. FUGE: Let us reflect that the
22	entire Commission is present in person.
23	And then let's go to the agenda. Does
24	anyone have any comments on the agenda or changes?
25	DR. AMPOMAH: No.

1	MR. BLOOM: No. Mr. Chair, I move to
2	adopt the agenda.
3	DR. AMPOMAH: I second.
4	MR. FUGE: Let the record reflect the
5	agenda was adopted unanimously.
6	Have my fellow commissioners had a
7	chance to review the October 12, 2023, meeting
8	minutes?
9	MR. BLOOM: Yes. Mr. Chair, I move to
10	adopt the minutes.
11	DR. AMPOMAH: I second.
12	MR. FUGE: Let the record reflect that
13	the minutes from the October 12th meeting were adopted
14	unanimously.
15	And we will move on to our active
16	docket. We've got some prior cases set for status
17	conference and some new cases for status conference.
18	And I know from Commission Counsel and
19	Commission Clerk that there were some filings that
20	were made, you know, within the last 24 hours. So we
21	may, when your case is called up, just ask the party
22	to kind of walk through some of those in case we
23	didn't have a chance to get through all of the pieces.
24	But the first case that's up is Status
25	Conference in Case Number 23727, Application of Targa

1	Northern Delaware for Rehearing of Order R-13507-E,
2	and specifically a request that the Oil Conservation
3	Commission reconsider conditions included in Order
4	Number R-13507-E.
5	And from our last meeting, the parties
6	including the Division were potentially going to come
7	up with a sort of consensus or unopposed set of
8	condition revisions. So I'll turn it over to the
9	parties.
10	MS. HARDY: Thank you, Mr. Chair.
11	MR. FUGE: Please introduce yourself
12	for the court reporter.
13	MS. HARDY: Dana Hardy with Hinkle
14	Shanor on behalf of Targa Northern Delaware LLC.
15	MR. TREMAINE: Jesse Tremaine with Oil
16	Conservation Division.
17	MR. FUGE: Ms. Hardy.
18	MS. HARDY: Thank you.
19	MR. FUGE: What's the status of the
20	discussion regarding the order conditions?
21	MS. HARDY: We are still working with
22	the Division on the conditions. I suspect we'll be
23	able to reach an agreement. It's just a matter of
24	going back and forth a little bit more and making sure
25	that we have agreement on all the issues.

1	So I don't think we will need a status
2	conference. And I don't think we need a contested
3	hearing date. I think we can just reach agreement on
4	an exhibit that we would attach to propose order,
5	provided the Commission says that's acceptable.
6	MR. FUGE: That's acceptable to me.
7	Do my fellow Commissioners have any
8	other concerns?
9	DR. AMPOMAH: I'm not sure.
10	MR. BLOOM: Yeah. That works.
11	MR. FUGE: Thank you, Ms. Hardy.
12	MS. HARDY: Thank you.
13	MR. FUGE: The next case up, and it's
14	up for final status conference because it's been
15	kicking around the docket for a while, is De Novo
16	Case 21744. And you know, it's in the commission
17	records. It was going to be heard along with Case
18	Number 22018 and 22019. Can I have parties in those
19	cases appear?
20	MR. RANKIN: Morning, Chair. Morning,
21	Commissioners. Adam Rankin, appearing in this case on
22	behalf of Colgate and here to answer any questions.
23	MR. FUGE: Can you give us an update on
24	sort of the status of these cases and I believe a
25	filing that you made last night in the cases?

1	MR. RANKIN: Yes. And I don't know if
2	you want to let Mr. Savage also introduce appearance.
3	MR. FUGE: Oh, Mr. Savage, please go
4	ahead.
5	MR. SAVAGE: Yes. Good morning,
6	Mr. Chair, Commissioners, Counsel. Darren Savage with
7	Abadie and Schill appearing on behalf of Cimarex
8	Energy Company. And I assume you can see me as well
9	hear me?
10	MR. FUGE: Yes, I can.
11	MR. SAVAGE: All right. Thank you.
12	MR. RANKIN: Mr. Chair, good morning.
13	In this case, this case has been pending for some
14	time. It took me a little while to review fully the
15	convoluted procedural history here. There is a matter
16	before the Commission for de novo review. And that
17	case was brought by Cimarex seeking de novo review of
18	an order approving compulsory pooling for Colgate.
19	Parties have had a double hearing in
20	that matter addressing whether or not Colgate was
21	within its rights to proceed and pool Cimarex. That
22	order was entered before the Commission. I believe
23	it's 21629C.
24	Cimarex filed a Motion for Rehearing.
25	Upon the filing and briefing and arguments on that
	Page 10

1	Motion, the Commission issued a Revised Amended
2	Order 21629D. We, subsequently after some time that
3	that case was continued repeatedly Holland and Hart,
4	that entered appearance on behalf of Colgate I believe
5	in May of this year, substituted for counsel for
6	Colgate.
7	Parties have been in discussions since
8	we substituted, Mr. Chair. Mewbourne has filed a case
9	with the Division, Case 23688, in which it seeks to
LO	revoke Colgate's order approving its compulsory
.1	pooling and to pool itself some overlapping acreage
L2	there.
L3	So now we have a case pending before
L4	the Division pursuant, I believe, to the Commission's
L5	order that it should hear all these competing pooling
L6	cases together. And that now is pending before the
L7	Division. So Colgate has been in discussions with
-8	Mewbourne trying to resolve that issue.
L9	And that case is now before the
20	Division. It's set for a status conference on
21	November 16th's docket before the Division. So I'm
22	not sure exactly. I don't have an update on the
23	discussions there for you between Mewbourne and
24	Colgate. My hope is that we can get that resolved.
25	In the meantime, Mr. Chair, you are

1	correct. I did file a Motion to Reconsider the
2	Commission's decision to amend Order 21629C and
3	pointing out that in our view, there were some
4	fundamental errors in the Commission's decision
5	granting the rehearing and modifying Order 21629C.
6	So with that, we had filed that Motion.
7	And it is our hope that the Commission will reconsider
8	its track in this case. We believe that the
9	Commission has gotten a little bit off track in its
10	decision there. In light of that, I think you may see
11	more what's happening here, which is an application by
12	Mewbourne to revoke an order that's been in place for
13	more than two years. And we think that's a little bit
14	off course.
15	So with that, Mr. Examiner I
16	apologize Mr. Chair, I'll let Mr. Savage respond
17	with any questions or concerns he may have.
18	MR. FUGE: Mr. Savage.
19	MR. SAVAGE: Mr. Chair, thank you. I'm
20	glad that Colgate talked about perceived being off
21	course. We feel that the last-minute Motion this
22	status conference was designed and stated as the final
23	status conference. And we were expecting to have a
24	contested hearing date set. All the Motions, all the
25	competing applications have been approved and in

1	place, and they have moved from the Division to the
2	OCC for hearing.
3	Colgate had a substitution of Counsel.
4	That was on March 22, 2023. They have had eight
5	months. They have been in this proceeding for eight
6	months. They have never mentioned in any manner a
7	Motion to Reconsider. They have asked for a number of
8	continuances, which Cimarex has accommodated on every
9	occasion, although expressing our interest in having
LO	an expedited, expedient hearing. We have accommodated
l1	them, and then at the last minute here, the last 24
12	hours, they have filed a 23-page Motion to Reconsider.
L3	Now, Mr. Chair, these issues that the
L4	Motion addresses. I have not had a chance to fully
15	digest everything and analyze everything. But it
16	looks to me like these have been addressed thoroughly
17	by the Commissioners previously in the rehearing
18	setting. And they have made rulings.
19	And these rulings were pursuant to the
20	statute of limitations of Statute 7225, in which we
21	made an application for rehearing within the 20-day
22	limitation period. And we believe Colgate has not
23	abided by that statutory 20 days. They have waited
24	over eight months to file a final Motion.
25	We think that the minimum contested

1	hearing date should be set. We ask that we move
2	forward with these contested hearings based on
3	circumstances. Thank you.
4	MR. FUGE: Maybe a point of
5	clarification. Mr. Rankin, you referenced a case.
6	Mr. Savage suggested that all of the cases are done at
7	the Division with conditional orders up and, you know,
8	his position probably before the Commission.
9	You mentioned there was a Mewbourne
10	case that was set to go up before the Commission next
11	week for same acreage, overlapping acreage, related
12	acreage? Can you provide a little more color on what
13	that pending case is?
14	MR. RANKIN: Sure. The case is Case
15	Number 23638. It is set for a status conference
16	before the Division on November 16th. That case seems
17	to pool some of the acres at issue here. It overlaps
18	partially with the acreage subject to Colgate's order
19	that was on de novo review.
20	So I think potentially it has
21	complicated resolution of the competing pooling cases
22	that have been pending before the Commission.
23	MR. FUGE: So is it your position that,
24	setting aside your Motion that was filed but if it
25	was to go forward, that the Commission would need

1	23688 to go to order before we could hear the de novo
2	hearing if we decided to in this case?
3	MR. RANKIN: So Mr. Chair, when you
4	read the Motion for Reconsideration that we filed, we
5	do believe that there's a fundamental problem with
6	hearing Cimarex's competing pooling cases before the
7	Commission. The only matter before the Commission was
8	Colgate's Case Number 21744 and the order that was
9	issued by the Division, Order R21575.
10	But the Commission has authority.
11	Parties who are adversely affected have the right to
12	seek de novo review for matters that went before the
13	Division and were heard before the Division examiner
14	and are subject to a Division order. That's the case
15	with the Colgate matter.
16	The Commission fully heard that case as
17	a de novo matter and issued an order. So our view is
18	that, as to Mewbourne's case, which is now pending
19	before the Division, if the Commission were to take
20	that up for de novo, it would have to have an order at
21	the Division level first.
22	MR. FUGE: Mr. Savage, do you have a
23	response?
24	MR. SAVAGE: Yes. Since this is a
25	last-minute motion, we don't feel it's appropriate for

1	Mr. Rankin to be arguing this without us having the
2	opportunity to review and respond.
3	But Mr. Chair, it is correct that there
4	is a case pending by Mewbourne. I have talked to
5	counsel from Mewbourne. I don't believe he is here to
6	comment. But as I understand it, that's very close to
7	being settled by the parties.
8	In fact, they were trying to decide
9	whether or not even the case on November 16 was going
10	to go forward. And if it does go forward on November
11	16, I believe that if we do set a contested hearing
12	date that that case could be directly moved to be
13	included as a contested hearing on that particular
14	date, whatever the OCC decides to set.
15	And if it's resolved, which it looks
16	like it will be based on the conversations I've had,
17	then it would be a moot point. And so it wouldn't
18	impact the proceedings. Either way, I don't believe
19	it would impact the proceedings. I believe they could
20	be accommodated within the contested hearing date, or
21	it would be a moot point.
22	MR. FUGE: Looking to my fellow
23	commissioners if they have questions.
24	But maybe Commission Counsel, we got
25	the motion last night. I don't recall in our rules
	Page 16

1	what would be a normal opportunity to respond to a
2	party in it. Do they prescribe that?
3	MR. RUBIN: I don't know offhand if the
4	rules do. But it would be an abundance of caution to
5	allow a written response, I think the point with the
6	Counsel is well taken that we go and set the
7	Commission set a hearing, hear the motion. At that
8	onset of that hearing, there's nothing in the rules
9	that prevents that.
10	MR. FUGE: My fellow commissioners, any
11	questions on this one to the parties?
12	MR. BLOOM: No, Mr. Chair. But I did
13	not have an opportunity to review the materials that
14	were sent last night or yesterday. In addition, this
15	case has been frustrating. No.
16	As far as I knew, Mr. Rankin, you're
17	new to this. But I think in the past we've seen
18	moments where Counsel has struggled to even summarize
19	this case which has gone on for so long. So getting
20	up here and not being able to tell us where this is at
21	is frustrating as a commissioner. So I hope that this
22	is dealt with manner.
23	MR. FUGE: So Dr. Ampomah, do you have
24	any?
25	I mean, hearing the comments from the
	Page 17

1	Commission and advice from Counsel, Mr. Savage, and
2	arguments from both Mr. Savage and Mr. Rankin, we
3	would I guess I'd like to put forward a motion
4	directing Mr. Savage to file a response within two
5	weeks.
6	MR. RUBIN: Mr. Chair, the examiner for
7	today. Of course he came. It was 72-hours advanced
8	notice of the agenda. So this motion was not on the
9	agenda. All we have on the agenda for this matter is
10	the setting of a final hearing.
11	MR. FUGE: Fair.
12	I think to move this case along,
13	because it's been sitting for a while and we've got a
14	Motion, I say we put it for a final hearing. I'm
15	going to Motion to put it on the docket for a final
16	adjudicated hearing at the January 11th meeting.
17	I would just preserve for the record,
18	Mr. Savage, you have an opportunity to respond to
19	filings and other pieces. And the Commission,
20	consistent with its rules, will provide some guidance
21	how it's going to address those in subsequent agendas.
22	Is everyone comfortable with a
23	January 11th date between my fellow commissioners for
24	hearing this case?
25	MR. BLOOM: That will work.

I	
1	MR. FUGE: And I think I can reiterate
2	what we've heard up here. We would like a resolution.
3	This case has been kicking around for a long, long
4	time.
5	Thank you.
6	MR. RUBIN: Mr. Chair, I think this
7	would be better to have a Motion. Is that fair?
8	MR. FUGE: Can I get a Motion to set
9	let's read them out so we've got them. Can I get a
10	Motion to set De Novo Case 21744 and the associated
11	cases 22018 and 22019 for adjudicated final hearing on
12	January 11, 2024.
13	MR. BLOOM: Mr. Chair, I so move.
14	DR. AMPOMAH: Mr. Chair, I second.
15	MR. FUGE: Let the record reflect
16	Motion was approved unanimously.
17	MR. SAVAGE: Mr. Chair, if I may add an
18	additional comment, I would like to respond to the
19	Motion. Mr. Rankin has had months to review the
20	procedural history in the matters of this case. Could
21	I request three weeks as a time period to respond
22	instead of the two weeks that was mentioned?
23	MR. FUGE: I'm going to look at
24	Commission Counsel, but I think that the proceeding
25	was filed. On Motions, we typically consider filing
	Page 19

1	well in advance of the agenda at the next scheduled
2	hearing. So if you get your filing in prior to any
3	deadline there, that should be just fine.
4	MR. SAVAGE: Okay. Thank you.
5	MR. RUBIN: And we request that you
6	guys all arguments on the Motion if it's not on the
7	agenda.
8	MR. FUGE: Yes.
9	So that Motion just consistent with
10	practice is likely to be on the agenda for the
11	December 14th meeting. That would be clear when that
12	agenda comes out. Thank you.
13	I'm going to go to what I think it was
14	mooted by a subsequent filing, but I'm going to look
15	at Case Number 23942, Application of Avant Operating
16	LLC for Hearing De Novo of Case Numbers 23640 through
17	23645. And my understanding is that Avant made a
18	filing earlier that was a week withdrawing that
19	application.
20	MS. BENNETT: Yes. Good morning,
21	Mr. Chair and Commissioners. Deana Bennett on behalf
22	of Avant Operating LLC. And I did file a Motion
23	yesterday, I think it was, requesting dismissal of
24	this de novo application.
25	MR. FUGE: And I'm assuming that

1	request is uncontested?
2	MS. HARDY: Yes, Mr. Chair. Dana Hardy
3	for Colgate Production, and the request is
4	uncontested.
5	MR. FUGE: I think the request is
6	granted then.
7	MR. BLOOM: I'm sorry, Mr. Chair.
8	Which case number is this? The numbers get a little
9	jumbled.
10	MR. FUGE: Case Number 23942.
11	All right. Thank you.
12	MS. BENNETT: Thank you very much.
13	MS. HARDY: Thank you.
14	MR. FUGE: Next up is Case Number
 15	23943, Application of Northwind Midstream Partners LLC
16	for Approval of Redundant Acid Gas Injection Well as
17	Required under Order Number R-20913 as Amended in Lea
18	County, New Mexico.
19	And can I have the parties appearing
20	for Northwind Midstream come up to counsel table?
21	Any other party entering an appearance
22	in this matter?
23	MR. TREMAINE: Jesse Tremaine for the
24	Oil Conservation Division.
25	MR. RANKIN: Mr. Chair, Commission,
	Page 21

1	Adam Rankin appearing on behalf of the applicant in
2	the case of Northwind Midstream.
3	MR. FUGE: Mr. Rankin, for purposes of
4	the status conference and scheduling, can you just
5	give us a brief overview of the filing and kind of a
6	high-level assessment of sort of anticipated hearing
7	time needed?
8	MR. RANKIN: Thank you very much,
9	Mr. Chair, Commissioners.
10	We have been in discussions with the
11	Division on that very matter. We have reviewed the
12	underlying orders that are subject to the proceedings
13	in this case. We filed an application to approve the
14	second AGI Number 2 in this case out of an abundance
15	of caution.
16	Having reviewed the orders, it's a
17	little bit ambiguous. It's a little unclear, but we
18	believe the Commission may have intended to authorize
19	the Division to approve the AGI Number 2
20	administratively. So we have prepared the Motion in
21	discussion with the Division to request clarification
22	and for the Commission to issue an order expressly
23	remanding the AGI Number 2 to the Division for
24	administrative approval.
25	And so essentially, that's where we

1	stand. We don't think it's necessary at this point,
2	unless the Commission disagrees, for this matter to
3	occupy time before the Commission. And we believe the
4	intent was potentially to remand to the Division for
5	administrative approval. This is in line with other
6	recent AGIs where the second AGIs were authorized by
7	an order in the Pinon and Meredith case where the
8	Commission expressly authorized the Division to
9	approve the second AGI administratively.
10	So with that, I'll pass it off to
11	Mr. Tremaine, who can discuss more directly the
12	Division's position on it.
13	MR. TREMAINE: Mr. Chair, I think I
14	agree with what Mr. Rankin said. There's in the order
15	section I don't have the order number up in front
16	of me right now. I apologize. But in the order
17	section, there is a reference to Division approval and
18	there's a reference to Commission approval. I have
19	consulted with the technical team, and the subsequent
20	ST108, for the reference, AGI well.
21	There's two technical changes to that.
22	One is that the surface swell location has moved 125
23	feet. And the second being that they've modified
24	their plan to drill through a zone that was
25	problematic for the previous as well.

1	So based on that review, it's the
2	Division's position that the Commission has already
3	essentially approved this well, and that there are
4	technical changes. So it is appropriate for
5	administrative review of this with one additional
6	clarification. The application was appropriately
7	styled because this well was originally conceived as
8	redundant to I believe it was AGI Number 1, which was
9	Devonian/Silurian well.
10	This is intended, the deeper injection
11	AGI. This one is intended to be the primary injection
12	well. And the DMG well is intended to be redundant or
13	a backup. It will be online first and utilized first,
14	but then at some point, it will be redundant to the
15	deeper injection AGI solely.
16	The application, like I said, was
17	appropriately styled because this has always been
18	called the redundant well. But the USC group wants to
19	clarify to the Commission that it is no longer the
20	redundant well. And so I think we can clarify that in
21	a proposed order submitted to the Division.
22	I have reviewed that proposed order,
23	and I think it's satisfactory. I'll make any final
24	recommendations to that, and I think the parties can
25	submit for admissions approval if the Commission's in

1	agreement that this is given the nature of the
2	modifications to the second AGI's C108 that it is
3	appropriate for administrative approval.
4	MR. FUGE: So it sounds to me, in
5	listening to the presentation of the parties, that
6	there may not be the need for a contested hearing in
7	this matter and that you are close to filing a sort of
8	joint order with the Commission, you know, resolving
9	this matter or at least positioning it appropriately
10	from the Division's and the applicant's perspective.
11	MR. RANKIN: Yes, Mr. Chair. We have
12	prepared a joint motion specifying or outlining the
13	specific language in the order that indicates the
14	intent potentially to authorize the applicant to
15	submit a C108 for the second well to the Division for
16	approval. And that's in Order 20913D, which has been
17	subsequently amended.
18	But those governing portions have
19	remained in full force and effect. And particularly,
20	you'll see Mr. Scherer [ph] and for the record I'll
21	cite to it. But there is a paragraph that
22	Mr. Tremaine referenced. It's ordering paragraph
23	number 1-E in that order. That states that "After
24	OCD's approval of the C108," then it goes on.
25	So the intent appeared to have been to

1	authorize the Division to administratively approve
2	that C108. So after further conferring with
3	Mr. Tremaine and the Division, we will likely be
4	filing a joint motion if that meets with the
5	Commission's approval, requesting that the matter be
6	referred to the Division for administrative approval.
7	And we will propose an order addressing that at the
8	same time.
9	MR. FUGE: Looking at my fellow
10	commissioners if they have any questions.
11	MR. BLOOM: No questions, Mr. Chair.
12	DR. AMPOMAH: No questions.
13	MR. FUGE: Based on the status report
14	from the parties, I don't see the need to set this for
15	hearing. And we will keep it on the docket waiting
16	for that joint motion, but I think that can be
17	resolved just on the papers. So we'll look forward to
18	that from the parties.
19	MR. TREMAINE: Thank you.
20	MR. FUGE: And that moves us through
21	our status conferences. And we now have two cases up
22	for adjudicatory hearing, 23686 and 23687.
23	I'm going to give a short ten-minute
24	recess for the parties to just reconfigure and set up,
25	because this will have witnesses and other components.

1	So I'm just going to put the line on mute but leave
2	the portal open and allow the parties to go.
3	And we will reconvene. Let's call it
4	12 minutes at 9:50.
5	(Off the record.)
6	MR. FUGE: Welcome back, everyone.
7	Next items up on the agenda, and these were both set
8	for adjudicatory hearing, Case Number 23686 and 23687.
9	My understanding is the same parties have entered
10	appearances in both cases. And I'm going to ask a
11	question, but I'm just confirming what it appears from
12	the primary statements and the like that the cases
13	will be presented together as opposed to jointly.
14	Then I'm going to look at Counsel for
15	Chevron first with that question.
16	MS. BENNETT: Thank you. Deana Bennett
17	on behalf of Chevron USA, and we do intend to present
18	the cases together in a consolidated fashion.
19	MR. FUGE: Can I have the parties in
20	the case who are entering an appearance just identify
21	themselves?
22	MR. TREMAINE: Jesse Tremaine for the
23	Oil Conservation Division.
24	MS. HARDY: Dana Hardy on behalf of
25	Mewbourne Oil Company.

1	MR. FUGE: Any other parties either in
2	the room or online entering an appearance?
3	Hearing or seeing none, Ms. Bennett,
4	you're on.
5	MS. BENNETT: Thank you very much.
6	Thank you all for being here. We
7	really appreciate the opportunity. Again, my name is
8	Deana Bennett. And I'm with Modrall Sperling law
9	firm. And I'm here with my colleague Earl DeBrine.
10	And we're here on behalf of Chevron USA, Inc. in these
11	two cases.
12	I did want to just say how great it is
13	to be back in person and in Pecos Hall. I might
14	stutter on the P a little, but it's great to be back.
15	Great to see people in person. Great to have the
16	opportunity to mingle with our colleagues again, so
17	very much appreciated.
18	Chevron and ourselves appreciate the
19	effort you made to present this two-well pilot project
20	to the Commission. And we look forward to a robust
21	discussion with the Commission and the other parties.
22	I do have a few logistical matters that
23	I wanted to talk to before we get started. And some
24	of that may involve the other parties as well in terms
25	of brief opening statements, and I'll get to that in

1	just a minute.
2	So first I did just want to kind of
3	introduce the Chevron team, if that's okay with the
4	Commissioners.
5	MR. FUGE: Yes.
6	MS. BENNETT: We have several people
7	from Chevron here, and I'll just run through that
8	quickly. And some of them are witnesses, and some of
9	them are not. So first, Cody Comiskey, Bryce Taylor,
10	Jason Parizek, Tom Merrifield, Fred Burner [ph], Ochi
11	Achinivu. And we might have some on the phone as well
12	on Zoom, but for now, this is the team that's present.
13	And this is just a handful of the team,
14	though, that worked on this. I just spoke with Cody
15	this morning, and he mentioned to me that over 24
16	subject matter experts have worked together in a
17	collaborative way to put together the presentation and
18	the people behind the project.
19	So the next thing I wanted to just
20	discuss is whether the Commission would like to swear
21	in our witnesses as they testify or as a group before
22	each one testifies.
23	MR. FUGE: Our practice has been to
24	swear them in as they testify. And we'll ask the
25	court reporter to administer an oath when they're

1 ready to go. 2 MS. BENNETT: Great. Thank you. 3 And then I mentioned this briefly to several of the commissioners individually, but just 4 5 for the group's benefit, our pagination that we had put on the exhibit packet that we prepared is likely 6 different than the pagination that appears to the OCD 8 filing system. And so we intend to use the references 9 to the OCD filing system, which is in the upper righthand corner. And so as we're moving through the 10 11 exhibits, we'll be referring to that as the exhibit 12 number. And I did pass out hard copies of the exhibit 13 packets. We did make some revisions to the order 14 15 of our witnesses yesterday, as well as some slight 16 revisions to the order of exhibits. And so what I will do is refer to the exhibit number in the upper 17 righthand corner and wait for everyone to get to the 18 19 same page before we start talking about it. But there 20 will just be some little -- I'd say some ebbs and 2.1 flows in the PowerPoint as we move forward. 22 I did file the exhibits timely, and our 23 exhibit packet contains six tabs. And we'll walk 2.4 through each of those tabs with the Commission. 25 And with that, I think that is all of

1	the logistical items I had to discuss with
2	Commissioners, but I would like to have the
3	opportunity to present a brief opening statement. And
4	I understand that some of the other parties may like
5	the opportunity to do that as well. So I wondered if
6	the Commission is amenable to that.
7	MR. FUGE: I have no concern with that
8	approach, so go ahead, Ms. Bennett, and we'll let the
9	other parties go.
L O	MS. BENNETT: Thank you very much.
L1	So I have on the slide on the screen
L2	the location, the map of this two-well pilot project
L 3	that Chevron is proposing and that we'll be discussing
L 4	today. And the Chevron witnesses will go into more
L 5	detail about the location of the map. But I did to
L6	the location of the two wells before I started my
L 7	opening presentation.
L8	So as I mentioned briefly, this is an
L9	SWD pilot project. It's a two-well pilot project. So
20	Chevron is proposing two wells to target the DMG, so
21	shallow injection.
22	As I alluded to and you as you can see
23	from our team here today, Chevron has undertaken a
24	very extensive review of the surface and subsurface
25	seismic geological factors that are at issue here and

1	that OCD has raised in its materials as well. And
2	Chevron's been working on this project since 2021, so
3	this is a long time in the making to get to the
4	Commission.
5	Chevron has undertaken this
6	investigation of shallow disposable number of
7	reasons, primarily because of the need for additional
8	disposal options to address the high volumes of
9	produced water from the spring and volcanic
LO	formations.
L1	And the goal here is to come up with
L2	disposal options that do not impair correlative rights
L3	and that do prevent waste. So in the testimony you'll
L4	hear today, the areas around these two pilot project
L5	wells are not favorable for DMG production. The DMG
L6	there is either depleted or the geology indicates a
L7	low likelihood of unknown DMG reserves. So taking
L8	into consideration correlative rates and waste, you'll
L9	be hearing a lot of testimony about that today.
20	We'll also be talking about the low
21	potential for induced seismicity from these particular
22	shallow wells based on the geologic studies that the
23	Chevron witnesses have undertaken. And these wells
24	will also be protective underground sources of
25	drinking water.

1	So Chevron has presented this plan to a
2	number of stakeholders and a number of operators. And
3	the operators from whom Chevron has received feedback
4	are supportive of the project. In fact we submitted
5	several letters of support for the project in the
6	exhibits that we submitted.
7	So there are letters from Coterra, and
8	yesterday we submitted letters from OXY supporting the
9	project. We just received those letters yesterday.
10	And then Mewbourne, I understand from their
11	pre-hearing statement, is supportive of the project.
12	But I'll leave that to them to also discuss.
13	Chevron's also met with the New Mexico
14	State Land Office and the New Mexico OC.
15	So I'm going to skip some of these so
16	we can get to the meat of our presentation with the
17	subject matter experts. But I did just want to also
18	highlight that Chevron, you'll be hearing a lot about
19	data gathering and data analysis today, because that's
20	the key element of the pilot project.
21	Chevron intends and is proposing a
22	request data gathering system or protocol and then
23	intends to share that data with the Division and other
24	operators, not just in the spirit of transparency, but
25	in the spirit of collaboration to make sure that this

1	is a thoughtful approach to DMG disposal,
2	understanding that there are historic concerns about
3	DMG disposal. But Chevron's witnesses will address
4	that.
5	And just so we're all on the same
6	terminology, DMG is Delaware Mountain Group, just to
7	make sure. So that's that. And we'll have some
8	exhibits that show exactly where the Delaware Mountain
9	Group is within the geologic strata.
10	So Chevron is also proposing monitoring
11	programs to address any impacts to their rise to
12	correlative rights and waste. And so this is a
13	thoughtful, multidisciplinary approach to the request
14	to have this two-well pilot project approved by the
15	Commission.
16	And so with that, I look forward to the
17	discussion with the commissioners today and with the
18	Chevron witnesses. And we look forward to any
19	questions that the Division and Mewbourne may have for
20	our witnesses.
21	Thank you very much.
22	MR. FUGE: Mr. Tremaine?
23	MR. TREMAINE: Thank you.
24	This is Jesse Tremaine on behalf of the
25	Conservation Division. Good morning, Mr. Chair,

1 Commissioners. The Oil Conservation Division 2 intervened in this case. And it does not oppose the 3 applications. But regarding the nature of the geology 4 5 and summarizing the Delaware Mountain Group, OCD 6 believes that certain safequards for these wells are required above and beyond what might be typical for 8 saltwater disposal wells that are injecting into other 9 zones. 10 We'll get to that in quite a bit of 11 detail once we get into the Exhibit 11 and 12. But 12 very briefly, as we've gotten in the pre-hearing 13 statement, OCD's concerns relate primarily to 14 projection of correlative rights, prevention of waste, 15 and identifying a very key need that Ms. Bennett has 16 already identified, the need for additional data 17 regarding injection into the DMG. This is an area where I believe the 18 19 Commission will be informed today the geological 20 information and our understanding of the Delaware Mountain Group is evolving over time. And there's 2.1 22 quite a bit of additional information that is 23 necessary and prudent prior to, you know, a rather 2.4 increased injection development within that zone. 25 The Oil Conservation Division will

1	present three witnesses today. First will be Brandon
2	Powell [ph], deputy director for Brushy Canyon.
3	Next, we will have Phillip Goetze [ph], the UIC Bureau
4	chief. Then we will have Mr. Million Gebremichael
5	[ph] testify.
6	We anticipate OCD's presentation taking
7	approximately an hour and a half. Try to stick to
8	that.
9	Basically, that's a brief outline of
10	OCD's concerns and where we're going with the
11	presentation. So I'll leave it there for now.
12	MR. FUGE: Ms. Hardy, do you have any
13	opening remarks you'd like to make on behalf of
14	Mewbourne?
15	MS. HARDY: Yes, thank you, very
16	briefly, Mr. Chair.
17	As set out in Mewbourne's pre-hearing
18	statement, Mewbourne's reports, Chevron's
19	applications, as long as appropriate conditions are
20	imposed on the injection and monitoring occurs to
21	ensure the protection of correlative rights.
22	And we did cite in our pre-hearing
23	statement the Commission and Division objection rule,
24	Rule 26, which requires that be maintained in such
25	a manner that allows the fluids to be confined to the

1	injection interval. So that's critically important
2	here to Mewbourne.
3	And in addition regarding OCD's
4	recommendations, Mewbourne fully supports OCD's
5	proposed procedures regarding the administrative
6	approval of DMGSTWD permits that are set out in OCD
7	Exhibit 11. Mewbourne believes these procedures will
8	minimize the risk of waste and protect correlative
9	rights.
L O	Mewbourne also has some other
L1	recommendations that I will ask OCD's witnesses about.
L2	Really, they are that OCD seek the support of NMOGA,
L3	its DMG disposal capacity reexamination workgroup, to
L 4	create a DMG type log and stratigraphic cross sections
L 5	to ensure consistent DMG layer picks across the basin
L6	and also that OCD consider the requirement to perform
L7	a new SRT test, a step-rate test, any time the tubing
L8	diameter on the well is upgraded or additional DMG
L9	preparations are added below the current disposal
20	interval.
21	So with the proposed conditions,
22	Mewbourne does support the applications. Thank you.
23	MR. FUGE: And I just want to check
24	before we go through just to make sure. I believe the
25	State Land Office entered an appearance, but I don't
	Page 37

1	see counsel for the State Land Office here or online.
2	But just want to open up that ask in case they have
3	opening remarks. Give a second.
4	UNIDENTIFIED SPEAKER: Mr. Jared Levy
5	[ph] will not be in attendance today.
6	MR. FUGE: Ms. Bennett, then. I'll
7	turn it over to you.
8	MS. BENNETT: Thank you very much.
9	At this time, I would like to call our
10	first witness, Mr. Cody Comiskey.
11	MR. FUGE: Can I have the court
12	reporter to administer an oath to Mr. Comiskey?
13	Think he's ready.
14	THE REPORTER: Will the witness please
15	raise your right hand.
16	WHEREUPON,
17	CODY COMISKEY,
18	called as a witness and having been first duly sworn
19	to tell the truth, the whole truth, and nothing but
20	the truth, was examined and testified as follows:
21	MR. FUGE: Thank you.
22	MS. BENNETT: Mr. Comiskey is lucky,
23	because he's going to be testifying for y'all twice.
24	So he is going to be giving an initial overview of the
25	pilot project and, like, the 30,000-foot view but as

1	well as some information on the detailed analysis that
2	has gone into this pilot project. And then he's going
3	to come back later in the day to discuss seismicity.
4	So you will be seeing him again later today.
5	EXAMINATION
6	BY MS. BENNETT:
7	Q So Mr. Comiskey, please state your name for
8	the record.
9	A Cody Comiskey.
10	Q And for whom do you work?
11	A Chevron.
12	Q And how long have you worked for Chevron?
13	A Four years.
14	Q What are your responsibilities at Chevron?
15	A So I'm a subservice advisor for Chevron's
16	primary business unit mainly focused on water disposal
17	operations planning, seismicity analysis, reservoir
18	modeling, engagement with various stakeholders,
19	regulators, academia. Things of that nature.
20	Q And what is your well, have you
21	previously testified before the Oil Conservation
22	Division or the Commission?
23	A No, I have not.
24	Q Have you previously testified before another
25	administrative body?

1	A Yes, I have.
2	Q And is that the Texas Railroad Commission?
3	A Yes, it was.
4	Q And were your credentials accepted as a
5	matter of record?
6	A Yes.
7	Q Can you provide a summary of your
8	educational background?
9	A I have a Bachelor's of Science degree from
10	Texas Tech University focused on geophysics and
11	tectonics. I graduated cum laude from Texas Tech. I
12	have a Master's of Science degree from Baylor
13	University in geophysics, earthquake seismology, and
14	crust tectonics and kinematics.
15	Q And do your responsibilities at Chevron
16	include a review of seismic review?
17	A Yes, they do.
18	Q And do your responsibilities include SWD
19	development and permitting?
20	A Yes, they do.
21	Q Before you worked at Chevron, where did you
22	work?
23	A Anadarko Petroleum Corporation.
24	Q And what did you do for Anadarko?
25	A Had a variety of roles. I worked in our
	Page 40

1	sales, shareholder development for a period of time.
2	I also worked in our global exploration group. I
3	worked in it was focused on West development
4	exploration, raw mechanics. I came back to work on
5	our global technology group. Started to focus on more
6	unconventional resource development technology,
7	production management, and then seismicity and water
8	management. That became more of a topic.
9	Q Thank you. Did you include a brief overview
10	of your qualifications as a resume in this matter?
11	A I did, yes.
12	Q And is that resume behind Tab E?
13	A Yes, it is.
14	Q Does your area of responsibility at Chevron
15	include the areas of Southeastern New Mexico?
16	A Yes, it does.
17	Q Does your area excuse me. Are you
18	familiar with the application that Chevron filed in
19	these two cases?
20	A Yes, I am.
21	Q Are you familiar with the saltwater disposal
22	wells that are the subject of the two applications?
23	A Yes, I am.
24	MS. BENNETT: At this time I'd like to
25	tender Mr. Comiskey as an expert in SWD development
	Page 41

1	and geophysics.
2	MR. FUGE: So recognized.
3	MS. BENNETT: Thank you.
4	BY MS. BENNETT:
5	Q Let's talk about your initial testimony that
6	we're about to go through this morning, setting aside
7	the seismicity testimony from later on today. What is
8	the purpose of your testimony this morning?
9	A So the purpose is to present an overview of
10	Chevron's view on water produce water management
11	optionality in the Permian Basin. We recognize that
12	there's a growing concern around produced water
13	management. See the rise in seismicity. Induced
14	seismicity has been attributed to to produced water
15	management as a growing concern amongst many.
16	So Chevron's view is looking at this pilot
17	program as a component of water optionality within the
18	state of New Mexico. To be able to continue to
19	develop the resources that are critical to the world,
20	doing it in an environmentally responsible manner, and
21	being forthcoming on information data about so that
22	everybody can understand, you know, the issues and
23	finally the opportunities that we have.
24	Q Great. And earlier today I mentioned that
25	Chevron's been working on this pilot project since
	Page 42

1	2021. Have you been working on the pilot project
2	since 2021?
3	A Yes, I have.
4	Q I have on the screen the location map of the
5	Chevron pilot project wells. Do you see that?
6	A Yes, I do.
7	Q And can you just briefly orient the
8	Commission to where the wells are supposed to be
9	located?
10	A So the Papa Squirrel well is in very
11	Southern Lea County, New Mexico close to the Texas-New
12	Mexico state border. And it's at Veritas 2 State
13	SWD 1 that's located Eddy County, again, proximal to
14	the Texas-New Mexico border.
15	Q And these wells, are they located within
16	development areas that Chevron has surface control
17	over?
18	A Yes, they are.
19	Q And actually, I meant to ask you before we
20	even got to this slide. But if you can briefly give
21	an overview of Chevron's operations and its presence
22	in the Delaware Basin?
23	A Absolutely. So the the map in the upper
24	left is just a broad Permian Basin map I think
25	everybody's probably familiar with. The bottom right

1	shows Chevron's acreage within the Permian Basin. So
2	we have a very large acreage position that Chevron
3	either operates or has has daily working interest
4	in. So we're very broad broad organization
5	operating in both Southeastern New Mexico, the Texas
6	portion of the Delaware Basin, and also the Midland
7	Basin as well.
8	Bottom right shows a forecast from our
9	report from 2020, second quarter of 2023, just showing
10	on a half sheet. And it's important to note that we
11	have a significant vested interest in the State of New
12	Mexico and are committed to the State of New Mexico
13	operating.
14	Q Thank you. So let's talk about why Chevron
15	chose these two specific locations for the pilot
16	wells. And again, this is on page 98 of the materials
17	and using the upper righthand corner pagination. So
18	page 98 of the materials.
19	If you can just briefly describe why Chevron
20	chose these two specific locations?
21	A So the two it shows two locations in
22	general. We want to accelerate our pace of learning.
23	So we know that geology does vary across the Basin.
24	And so one of the locations in the Papa Squirrel is
25	located in what you would call more of a core portion

1	of the Basin within the Delaware Mountain Group, the
2	DMG.
3	There's there's a tremendous amount of
4	shallow disposal just adjacent to it south along the
5	Texas-New Mexico border. The basin roughly produces
6	about 30 million barrels of water a day. And roughly
7	about 17 million of that are injected. And roughly
8	about 60 to 70 percent of that is injected just along
9	the state line. And so it's very practical then in
10	New Mexico.
11	As mentioned earlier, we have considerable
12	operations along along the within the Papa
13	Squirrel AOI. So it gives us a lot of leverage to
14	collect data. We also have existing service
15	facilities there that we can leverage. So it reduces
16	our service impact. We don't have to go out and build
17	new facilities to support this location.
18	The Severitas too is a little more on the
19	western edge of the Basin. So the the geology is
20	just different. And we'll we'll show those through
21	exhibits. It's a little shallower.
22	But again, some of the similar things.
23	There's a considerable amount of injection just to the
24	south of it in the Delaware Mountain Group. It's an
25	area where Chevron has also been drilling shallow

1	disposal wells in Texas and operating. And again, it
2	allows us to leverage our footprint from service
3	facilities we have already existing in the area as
4	well as operational synergies that we have.
5	Q Thank you. When you say existing service
6	facilities, are you talking about existing SWDs?
7	A Yes, I am.
8	Q And are those deep SWDs?
9	A Yes, they are.
10	Q So what I think you're getting at is that
11	you will be able to use some of those existing service
12	facilities for these SWDs rather than having to start
13	fresh?
14	A That's correct. Yes.
15	Q I think we talked about this a little bit,
16	about why there's a need for SWDs generally, which is
17	for disposal options. But why is there a need, in
18	your opinion, for Delaware Mountain Group SWDs?
19	A So through the last several years, there's
20	been a considerable rise in the number of earthquakes
21	associated with deep disposal. In in Southern New
22	Mexico, most of the disposal is deep.
23	And so looking at optionality, if we have
24	concerns on deep disposal longevity, continuing to
25	face a large amount of produced water, shallow

1	disposals, one of the options we're looking at to be
2	able to continue to develop the resources but also
3	mitigate the potential concerns around seismicity.
4	Q One thing I meant to ask you earlier about
5	is that these wells are not proposed for commercial
6	wells; right? These are just for Chevron's use?
7	A That is correct, yes.
8	Q I mentioned earlier that Chevron has been
9	assessing the viability of these pilot projects since
10	2021, and you've been involved in that assessment?
11	A That's correct, yes.
12	Q And can you briefly restate or in your own
13	words state for the Commission what that assessment
14	has taken into consideration?
15	A It's taken to further review both surface
16	and subsurface considerations. Looking at the geology
17	in the area. Broadly speaking, looking at the
18	geology, looking at some of the reservoir parameters,
19	looking at opposite operations, looking at own
20	operations in areas again where you can, you know,
21	actively collect more data that we have control over
22	instead of having to work in a field with maybe 20 or
23	30 operators within an area that limits our ability to
24	kind of have control.
25	Again, leveraging our service facilities as

1	much as we can to reduce any more service impact and
2	and areas where we have future operations, so we
3	can leverage the wells for use as well. So taking a
4	multitude of considerations into account was was
5	kind of a driving factor for these two locations. So
6	it's a it's a hybrid of multiple factors that went
7	into selection.
8	Q And as part of your proposals, have you met
9	with other operators in this area?
LO	A Yes, we have.
L1	Q And what has been the response of the other
L2	operators?
L3	A As noted, we received positive feedback from
L4	a few operators who have issued support for this pilot
L5	program. Late last year, there was a DMG working
L6	group that I believe was mentioned earlier that was
L7	stood up and had numerous companies to operate the
L8	state of New Mexico.
L9	And we presented our plan for the pilot
20	program back in I believe March of of this year on,
21	you know, leveraging, going through the work that
22	we've gone over to look at these locations.
23	And believe the feedback was positive in our
24	ability to not only accelerate our learning as an
25	industry, provide data publicly, collect a lot of

1	information to accelerate our learning for some of the
2	issues. But the but the feedback was positive from
3	the industry group that has been working on this.
4	Q Is part of the reason that you or I
5	understand from speaking with Chevron that there was
6	an earlier working group that had expressed that the
7	OCD and OCC should take greater care when considering
8	disposal in the Delaware Mountain Group. Are you
9	familiar with that working group?
10	A I am familiar with it, yes.
11	Q And what is your understanding of that
12	working group's goal or recommendations?
13	A My understanding is that group was was
14	looking at, you know, the the potential impacts
15	from Avalon and and Brushy Canyon production
16	potentially associated with with shallow disposal
17	impacts.
18	And and I believe the the view of the
19	group was to, again, look at more care for permitting
20	future disposal wells within within an area that
21	was established, noted as DMG restricted area or DMGRA
22	that that was established. I think most people are
23	aware of.
24	But I think the view of the group was not
25	necessarily to ban shallow disposal but to look at
	Page 49

1	additional data and more care provided on permitting
2	process and execution of such wells.
3	Q And has that been kind of your driving force
4	is to exercise that care and gather the additional
5	data to demonstrate that disposal within the DMGRA is
6	appropriate under certain circumstances?
7	A Yes. Chevron Chevron is committed to
8	to safely operating and acquiring a multitude of data,
9	disseminating it to to everybody, to to the OCD,
10	to industry, for us to learn about the potential risk,
11	be able to monitor, educate ourselves on more dynamic
12	nature to support future operations.
13	Q Let's see. I think we've talked a lot
14	about the Permian produced water reduction, so I'm
15	going to skip some of those questions. But I did want
16	to ask you about Chevron's use of recycled water and
17	why recycling the produced water isn't the solution.
18	A So as I mentioned, the Basin roughly
19	produces about 30 million barrels a day roughly of
20	produced water. You know, Chevron, within its
21	operations, recycles as much produced water as it can
22	through further operations.
23	However, there's just more produced water
24	than we can recycle. And so the delta is is mainly
25	taken to disposal wells for for disposals. And in
	Page 50

1	New Mexico today, there's roughly about a 3 million
2	barrel a day imbalance from produced water.
3	So based on the oil production in the
4	injected water in Southeast New Mexico, there's
5	roughly about a 3-million-barrel delta, and most of
6	that water is moving across the state line into Texas
7	to be disposed.
8	Q One of the things you and I have talked
9	about in the past is the potential implications of the
10	water being transmitted or being transported into
11	Texas and how that can potentially impact New Mexico
12	oil and gas operations.
13	A Yes.
14	Q Could you provide a little more detail on
15	that? Or did you just do that?
16	A I believe I just did.
17	Q And then so earlier a moment ago, Counsel
18	for Mewbourne mentioned the OCD Exhibit 11. And have
19	you reviewed OCD's Exhibit 11, which is
20	A Yes, I have.
21	Q And do you feel comfortable that Chevron's
22	applications are consistent with the conditions of
23	approval in OCD's Exhibit 11?
24	A Yes, I am.
25	Q And has Chevron, in your opinion, undertaken
	Page 51

1	the analysis that would support a careful review of
2	whether these two type wells are appropriate for
3	disposal in the DMG?
4	A Yes, I do.
5	Q In your opinion is the Papa Squirrel SWD
6	Well Number 1 appropriate for disposal in the DMG?
7	A Yes, I believe so.
8	Q And in your opinion, is the Severitas 2 SWD
9	Number 1 appropriate for disposal in the DMG?
10	A Yes, I believe so.
11	Q Based on the work that you and your team
12	have done and that we'll hear about more later today,
13	do you think that the pilot project will negatively
14	impact correlative rates?
15	A No, I do not.
16	Q And based on your analysis and Chevron's
17	analysis, do you think that the project will result in
18	waste?
19	A I believe not.
20	Q Do you think that the risk of waste is I
21	know that other witnesses will talk about this a
22	little bit more. But is the risk of waste and the
23	protection of correlative rights even more evident
24	here because of the lack of DMG offset producers in
25	these two areas?

1	A Can you state
	_
2	Q Sure. So if part of the concern is the
3	potential impact on DMG producers, has Chevron
4	undertaken a review of the impact on DMG producers in
5	the area?
6	A Yes, we have.
7	Q And is Chevron's conclusion that these two
8	pilot projects or these two wells would not negatively
9	impact those DMG producers within the area of the
10	A Yes.
11	Q Have Chevron considered whether its shallow
12	disposal will impact drilling and completion at a
13	deeper strata?
14	A Yes, we have.
15	Q And will there be a witness who will testify
16	about that later?
17	A Yes, there will be.
18	Q So before we move onto our next witness,
19	I'll open you up for questions from the other lawyers
20	and the Commission. Do you have any final takeaways
21	that you want to say about the pilot project since
22	you've been working on it for so long, and it's sort
23	of your baby?
24	A Yes, I do. This is this is part of a
25	broader position from Chevron looking more optionality
	Page 53

1	in produced water. The amount of water again that's
2	produced on a daily basis in the Permian is unlike any
3	other unconventional plate ever in the history of oil
4	and gas. And it poses unique challenges that faces
5	everybody in this room.
6	So one of the components of Chevron's
7	approach on on environmentally safe produced water
8	management is the expansion of optionality within not
9	on the state of New Mexico but across the Permian.
10	And one component of that is re-looking at shelves
11	within Southeast New Mexico.
12	We feel that these locations provided an
13	opportunity for not only Chevron, the industry, the
14	OCD and everybody involved to learn about potential
15	consequences and concerns, understand those,
16	understand the opportunities that could be there that
17	will allow for development of the resource within the
18	state of New Mexico and across the Permian to support,
19	you know, the the of that.
20	MS. BENNETT: Thank you. Those are all
21	the questions I have for you at this time. And I open
22	the floor for other questions from the Commission or
23	other counsel.
24	MR. FUGE: Mr. Tremaine, do you have
25	any cross?

MR. TREMAINE: I do have a couple
questions. Thank you.
EXAMINATION
BY MR. TREMAINE:
Q So I believe during your testimony, you
stated that this pilot project was considered kind of
a broader view of development of injection activity in
the DMG. Is that a fair assessment?
A Yes.
Q If this pilot project is successful, what's
the scope of Chevron's anticipated injection
development within the DMG in this area?
A I think with that, our scope is is going
to be tactical. It's going to be "What does the data
tell us?" From from future projects, when we look
at these, really, it's a case-by-case basis. We look
at these in review of all the technical information
and also too our our pace of development,
locations, many different factors.
But we look at this as a key component to
understanding what our the future of produced water
management may look like. But we are utterly
dependent on "What does the data tell us operationally
from the subsurface, from the facilities, which we'll
speak to later, how they can maybe potentially be

1	expanded upon down the road given the information is
2	disseminated and reviewed in a proper manner.
3	Q Thank you. I believe that you mentioned
4	that Chevron performed a review of potential impacts
5	on current production within this area; right?
6	A Yes.
7	Q Did you look at potential future production,
8	or did Chevron focus on current, existing production
9	within the area?
10	A We looked at both. We looked at existing
11	legacy production what's in the area and also a
12	geological review that could lead to future production
13	areas as well.
14	Q So is it my understanding then that that
15	Chevron review of production in the area well, how
16	would you describe a future potential production in
17	the area potentially impacted by this development?
18	A So we looked at the different benches that
19	could that potentially are productive. We looked
20	at a geological review that'll be that'll be talked
21	on more in future testimony on, you know, geological,
22	you know, ingredients, which could lead to future
23	development, obviously historical development, things
24	like that. But that will be discussed in the in
25	future testimony.

1	Q And just one other topic really quickly. It
2	sounds like you've had an opportunity to review OCD
3	Exhibits 11 and 12; correct? Administrative approval,
4	processing conditions, and the separator tests. You
5	may get to this later, but does Chevron have any
6	specific concerns for items to address in those
7	exhibits?
8	A Yes, we do. And I I believe we will
9	address those questions later in some other testimony,
10	but we do have a few questions we would like to ask.
11	MR. TREMAINE: I'll reserve the
12	questions then. Thank you.
13	MR. FUGE: Ms. Hardy, do you have any
14	questions for the witness?
15	MS. HARDY: I don't at this time. I
16	expect to have some questions for Mr. Comiskey on the
17	seismicity testimony, but I have no questions right
18	now.
19	MR. FUGE: Looking at my Commissioners,
20	Dr. Ampomah, do you have any questions for the
21	witness.
22	DR. AMPOMAH: Yeah, a quick one.
23	So can you clarify the use of the word
24	"pilot"?
25	MR. COMISKEY: Yes.

1	DR. AMPOMAH: And the application.
2	MR. COMISKEY: So I think when we
3	that's a great question. Thank you, Commissioner, on
4	that. Think the our view on a pilot project is
5	that, you know, we're acquiring a lot of data that's
6	not normally acquired in in DMG wells. I would
7	argue this is probably one of the most science DMG
8	disposal permit in the Basin.
9	So from that perspective, we look at
LO	these as as an opportunity to learn. We look at
L1	these as as just like any other disposal well, as
L2	an opportunity to dispose as well. But from the pilot
L3	perspective and the way we voice this to not only to
L4	the OCD or the State Land Office but to industry is we
L5	want feedback. We want to be able to to
L6	incorporate that from a broad perspective and include
L7	that in our operations.
L8	And so that's kind of a a typical
L9	that's atypical from a traditional development plan,
20	which is very, you know, thought out and executed.
21	This is something that that I think we're going to
22	have a little more flexibility on. So that that's
23	kind of where the pilot is coming from.
24	DR. AMPOMAH: So your testimony talked
25	about how Chevron talked to multiple counties in the

1	area and they received approval. So with their
2	concerns, some of the written social reason how you
3	were able to address those?
4	MR. COMISKEY: Yes, there there were
5	concerns. We did have a few protests on those wells,
6	which we've they've been dropped and removed
7	through the ongoing discussions. And I think the
8	biggest thing from our perspective is we want to be
9	open. We we're collecting a lot of data.
10	We recognize there's concerns.
11	Obviously, there's been historical testimony. It's
12	been presented as exhibits and something that Chevron
13	was was involved in. We're not shying away from
14	those, so we recognize there's concerns.
15	But we also recognize this is an
16	industry issue. Produced water management is not just
17	a Chevron issue. This is an industry issue. So we
18	need to work together. And so we look at this as an
19	opportunity for us to, you know we're going to put
20	capital in these projects.
21	We're going to take data, collect data,
22	provide it, and we hope through this and through the
23	ongoing through the New Mexico work group that was
24	mentioned earlier, that we can collectively work
25	together to understand any issues, understand

1	opportunities, things like that. So that's that's
2	something we'll find out.
3	DR. AMPOMAH: My last question will be
4	I just want to know if these two proposed wells are
5	the area where the more or less after the data as a
6	protected area.
7	MR. COMISKEY: These wells are within
8	the area, yes.
9	DR. AMPOMAH: Thank you, Mr. Chair.
10	MR. FUGE: Mr. Bloom?
11	MR. BLOOM: No questions at this time,
12	Mr. Chair.
13	MR. FUGE: I had a couple questions I
14	wrote down, but I think you already covered them when
15	you talked about seismicity, so I'll reserve to there.
16	I did have two, though, other
17	questions. You indicated that one of the reasons why
18	you chose this location is for Chevron's interest in
19	the area. What proportion of the area around, meaning
20	surface and subsurface, does Chevron currently
21	control?
22	MR. COMISKEY: Which area?
23	MR. FUGE: Around the Severitas and
24	Papa Squirrel wells.
25	MR. COMISKEY: I don't know off the top
	Page 60

1	of my head what percentage. I know that we operate
2	production wells in the Avalon and the Wolfcamp below
3	the Papa Squirrel location. And we operate production
4	wells and and the Bone Spring Wolfcamp below the
5	Severitas location. So both those sections, Chevron
6	operates and has has license to operate. And those
7	are lease agreements to operating those.
8	So within the sections, a hundred
9	percent. But I don't know within the within the
10	area the exact percentage. I I think we have a few
11	slides open a little further that will show a little
12	bit more detail.
13	MR. FUGE: Did I hear correctly that
14	Chevron is the owner of some DMG offset wells in the
15	area around Papa Squirrel and Severitas or?
16	MR. COMISKEY: We are and and we are
17	in the case of the Severitas.
18	MR. FUGE: And then I think building
19	off Commissioner Ampomah's questions about the pilot
20	nature, maybe I'll provide a little context for my
21	question. When thinking about pilots and other
22	pieces, are there any dates proposed in Chevron's
23	application to either come back into the Commission or
24	others to revisit what you're learning about? Or is
25	this a standard kind of 30-year term SWD permit with

1	the feedback?
2	MR. COMISKEY: No, it is not a standard
3	30-year term permit. We have and I will speak to
4	in in my later testimony on on response
5	framework that was developed with support of the
6	working group on on signpost on data dissemination.
7	We we hope to have ongoing engagement with the OCD
8	and industry on this as we collect and learn
9	information. So we hope this will be very open-ended
10	and and very collaborative.
11	MR. FUGE: I don't think there are any
12	other further questions from the Commission, so you
13	may be excused. Thank you.
14	MS. BENNETT: Thank you.
15	MR. FUGE: All right. Call your next
16	witness.
17	MS. BENNETT: Thank you. I'd like to
18	call Mr. Tom Merrifield.
19	MR. FUGE: Can I ask the court reporter
20	to swear in Mr. Merrifield?
21	THE REPORTER: Will the witness please
22	raise their right hand?
23	//
24	//
25	//
	Page 62

1	WHEREUPON,
2	TOM MERRIFIELD,
3	called as a witness and having been first duly sworn
4	to tell the truth, the whole truth, and nothing but
5	the truth, was examined and testified as follows:
6	MR. FUGE: Thank you.
7	Proceed.
8	MS. BENNETT: Thank you.
9	EXAMINATION
10	BY MS. BENNETT:
11	Q Mr. Merrifield, would you please state your
12	full name for the record?
13	A Yes. My name is Tom Merrifield.
14	Q And where do you work?
15	A I work for Chevron.
16	Q And how long have you worked for Chevron?
17	A Eleven years.
18	Q What are your responsibilities at Chevron?
19	A My primary primary responsibilities for
20	Chevron are to assist in permitting saltwater disposal
21	wells, to plan saltwater disposal wells, and to
22	execute saltwater disposal wells, and primarily in the
23	Delaware Basin, which includes Southeast New Mexico.
24	Q And so your responsibilities include
25	designing SWD, saltwater disposal wells?

1	A That is correct.
2	Q And operation of saltwater disposal wells?
3	A That is correct.
4	Q And have you previously testified before the
5	Oil Conservation Commission or the Oil Conservation
6	Division?
7	A No, I have not.
8	Q Did you provide a resume with your
9	materials?
10	A Yes, I did.
11	Q And is that behind Tab E?
12	A Yes.
13	Q If you could, could you briefly summarize
14	your educational background for the commissioners?
15	A Yeah. I have a Bachelor of Science degree
16	from Texas A&M in geology, and I have a Master of
17	Science degree from Southern Illinois University at
18	Carbondale.
19	Q And you mentioned that you worked at Chevron
20	for 11 years. Where did you work before Chevron?
21	A Various places. I worked in the water
22	resource, you know, sector for approximately 16 years.
23	I've also worked in the Permian Basin previously for
24	ARCO as well as Exxon. And I've worked I also did
25	work somewhat with the Hershey building program for

1	about six years.
2	Q One of the things you and I talked about a
3	bit when we were talking about your professional
4	experience was the number of UIC wells that you've
5	been involved with in terms of design, permitting,
6	operation. If you had to guess, what is the number of
7	UIC wells that you've been involved with?
8	A Just for clarification, I worked for oil and
9	gas at UIC wells. I've worked both water flood as
10	well as well disposal wells. And somewhere in the
11	order of a hundred.
12	Q And again, that's both water flood DOR wells
13	and SWDs?
14	A That's correct.
15	Q If you were to limit that to just saltwater
16	disposal wells, about how many saltwater disposal well
17	projects would you say you worked on?
18	A About 20.
19	Q So your background, you've done a lot of
20	work with saltwater disposal wells and other injection
21	wells? Is that a fair statement?
22	A Yes.
23	Q Does your area of responsibility at Chevron
24	include the areas of Southeastern New Mexico?
25	A Yes.

1	Q Are you familiar with the application that
2	Chevron filed in these matters?
3	A Yes.
4	Q Have you been working with Chevron on this
5	particular project since 2022?
6	A Yes.
7	Q And are you familiar with the wells, then,
8	that are the subject of the applications?
9	A Absolutely.
10	MS. BENNETT: At this time I would like
11	to tender Mr. Merrifield as an expert in UIC
12	terminating and operation matters and petroleum
13	geology.
14	MR. FUGE: The witness is so
15	recognized.
16	MS. BENNETT: Thank you.
17	BY MS. BENNETT:
18	Q So I'm going to start sharing my screen
19	again, and we'll start with the applications that
20	Chevron submitted to matters. So Mr. Merrifield,
21	before I turn to the applications, though, what is the
22	purpose of your testimony today?
23	A Really to just kind of walk through the C108
24	application first. Also to touch on the geology of
25	the injection intervals and how favorable they are

1	and also to address some of the their indicators of
2	the likelihood of DMG reserves in in both of these
3	areas.
4	Q Great. So let's start with the discussion
5	of the C108s. Are the C108s included with the
6	applications that I filed on Chevron's behalf?
7	A Yes.
8	Q And turning to Tab A, which is at page 3 of
9	267, does that look to you like the application that I
10	filed along with the C108 that you provided to me to
11	include with the application?
12	A Yes, it does.
13	Q And Tab A is the application in Case 23686
14	for Papa Squirrel; is that right?
15	A Yes.
16	Q And Tab B is the application in Case 23687,
17	which is for the Severitas well?
18	A Yes, it is.
19	Q Did you compile the materials? Well, let's
20	focus on Papa Squirrel for a moment.
21	A Sure.
22	Q Did you compile the materials that were
23	submitted as the Papa Squirrel C108?
24	A Yes.
25	Q And did you submit that material to me?
	Page 67

1	A Yes, I did.
2	Q And in your opinion, does the C108 for the
3	Papa Squirrel well include all of the information and
4	documentation required by the C108 and by the
5	Commission?
6	A That was my understanding, yes.
7	Q Did you review OCD's, the Oil Conservation
8	Division's pre-hearing statement in this matter?
9	A Yes.
10	Q And did you see in the OCD's pre-hearing
11	statement where the Division noted that the C108s
12	comply with the current construction? Or the well
13	bore side, I should say, comply with current standards
14	for UIC Class 2 well?
15	A Yes, I did see that.
16	Q And did you see where both the wells were
17	designed for the area of review to be adequate?
18	A Yes, I did see that.
19	Q So with that initial stamp of approval
20	although I'm not trying to go too far with what OCD
21	said in its pre-hearing statement. But I think that
22	does narrow our inquiry a bit and discussion on C108.
23	So with your permission, I'd like to go through the
24	C108s rather quickly.
25	A Okay.

1	Q So did Chevron submit a map that identifies
2	all wells within 2 miles of the Papa Squirrel well?
3	A Yes.
4	Q And is that Attachment 1 to the C108?
5	A Yes.
6	Q Did Chevron attach data within the AOR, so
7	the area of review for the wells, if there are any,
8	which penetrate the proposed injection zone?
9	A Yes.
10	Q And was that Attachment 2?
11	A Yes.
12	Q And in your materials, is there a plugged
13	well within the AOR for Papa Squirrel?
14	A Yes.
15	Q And did you submit the plugging information
16	from the well files?
17	A Yes.
18	Q Did you include information regarding the
19	requirements for showing how much volume or the daily
20	rate of injection and the proposed pressure?
21	A Yes. The operational part, yes.
22	Q And I just want to take a quick look at
23	that. That's Attachment 3; right?
24	A Yes.
25	Q And so on Attachment 3 for Papa Squirrel,
	Page 69

1	what maximum rate of injection or barrels of water per
2	day is Chevron requesting in the application?
3	A For Papa Squirrel, 20,000 barrels a day.
4	Q And what is the average daily rate?
5	A 15,000 barrels per day.
6	Q And what is the max permit pressure that
7	Chevron is seeking for Papa Squirrel?
8	A 125 psi.
9	Q And how about the average pressure?
10	A 750 psi.
11	Q Thank you. Did you submit geologic data
12	with your C108s?
13	A Yes, I did.
14	Q And is that Attachment 4?
15	A Yes, it was.
16	Q Did you provide information on the proposed
17	stipulation program?
18	A Yes, I did.
19	Q And is that Attachment 5?
20	A Yes, it was.
21	Q Did you provide logging and test data on the
22	well?
23	A Yes, I did. But this well has not been
24	through what I what I showed in that just in
25	that attachment was what we were planning to what
	Page 70

1	kind of data we were going to gather after an oil
2	spill.
3	Q So because it is not an existing well, no
4	wells have been run. But this Attachment 6 does show
5	some of the logging that Chevron is proposing to do?
6	A Yes, it does.
7	Q So I'm just going to skip Attachment 7.
8	There were no wells within the area of review for Papa
9	Squirrel; is that right?
10	A Yes.
11	Q Attachment 8 is what I call in shorthand the
12	affirmative statement. And it's an affirmative
13	statement signed by you; is that right? Is that your
14	signature?
15	A Yes.
16	Q And did you submit the statement saying that
17	you, on behalf of Chevron, had examined the available
18	geologic and engineering data, and you found no
19	evidence of open faults or other hydrologic
20	connections to underground sources of drinking water?
21	A Yes, I did.
22	Q And that's based on your review of the
23	materials?
24	A That's correct.
25	Q And is that still your conclusion today that
	Page 71

1	there is no connectivity? Or you have not found any
2	connectivity?
3	A Yes.
4	Q Let's turn to the Severitas C108. And I'm
5	not going to walk through that in any level of detail
6	except to ask you about the rates and pressure. But
7	did you provide all of the same information for the
8	Severitas C108?
9	A Yes, I did.
10	Q And if we turn to page 66 of 267, which I'm
11	showing on the screen, is that the operational data
12	information that's required by the C108?
13	A Yes, it is.
14	Q And what is the maximum rate that Chevron is
15	requesting for the Severitas 2 state well?
16	A 15,000 barrels per day.
17	Q And what is the average daily rate?
18	A 12,500 barrels per day.
19	Q And Chevron is requesting lower psi, is that
20	right, for this well?
21	A Yes, it is.
22	Q And what is the max pressure that Chevron's
23	requesting?
24	A 468 psi.
25	Q And the average pressure?
	Page 72

1	A 400 psi.
2	Q Did you prepare an affirmative statement for
3	the Severitas well as well regarding the evidence of
4	open faults or other hydrologic connections to your
5	SDWs?
6	A Yes, I did.
7	Q And is that Attachment 8?
8	A Yes, it is.
9	Q If you could just read this last paragraph
10	here, starting with "Both the Papa Squirrel"?
11	A Okay. "Both the Papa Squirrel 781 and the
12	Severitas 2 State SWD 1 are are locations which we
13	find" excuse me.
14	Q Yeah, I know. It's so small.
15	A "Find no indication of open faults at the
16	surface or in the subsurface. No indication of
17	hydrologic connection between the proposed injection
18	zone, Bell Canyon and Cherry Canyon, and the
19	underground source of drinking water. Both locations
20	have low potential for offset and reduce substance."
21	Q Thank you. And is that still your
22	conclusion today for both wells?
23	A Yes, it is.
24	Q Are you familiar with the stimulation
25	program that Chevron is proposing for these two wells?

1	Or is that a question better for someone later in the
2	day?
3	A I'm familiar with it enough to answer a
4	brief statement on it. But yes, there is someone else
5	later today that can address that more more.
6	Q Well, let's start with you. And if we need
7	to defer, we can. So have you looked at the OCD's
8	Exhibit 11?
9	A Yes.
L O	Q And just do you recall that in Exhibit 11,
L1	OCD was proposing a limitation on how shallow DMG SWDs
L2	are stimulated?
L3	A Yes.
L4	Q And in your opinion is your proposed
L5	stimulation program consistent with what OCD is
L6	looking for in terms of a stimulation program?
L7	A Yes. And it's just a it's just an acid
L8	job. That's that's the stimulation.
L9	Q Do you recall what OCD was suggesting would
20	not be an appropriate stimulation method?
21	A It's my recollection I think what they were
22	concerned about mostly is is this one would
23	hydraulic fraction with and with profit without
24	hydraulic stimulated fracture. This this proposal
25	is not going to utilize either one of those methods of

1	stimulation.
2	Q So having reviewed OCD's conditions of
3	approval, it's your opinion that your stimulation
4	program is consistent with OCD's request?
5	A It's my understanding, yes.
6	Q Thank you. One thing that you and I have
7	spoken about is a potential need in the future to
8	microsite. To make some micro siting changes, I'll
9	call them, to the location of the Severitas well?
LO	A Yes.
L1	Q And why would Chevron perhaps need to move
L2	the service location of the Severitas well a few feet
L3	here or there?
L4	A Currently, the location that's in the
L5	application is in our lay down yard in the area. It
L6	would there's still a chance that that may work.
L7	We have to make sure that the the footprint can fit
L8	in there without going across roads and things of that
L9	nature.
20	There's another location that's about 200
21	feet away that we we think we can move to. And we
22	will make that decision after hearing.
23	Q But before coming here today, you and I
24	talked about whether that change in location would
25	change any of the parties who were entitled to notice

1	of the hearing. Did we talk about that?
2	A Yes, we did.
3	Q And what was your conclusion?
4	A We we evaluated that a few weeks back.
5	And there is not going to be any change in the
6	entities that need to be notified if we move it to
7	that location.
8	Q Now, the applications and the C108s discuss
9	injecting into the Brushy Canyon. But just to be
10	perfectly clear, Chevron does not intent to inject
11	into the Brushy Canyon; is that right?
12	A We are not planning to operationally inject
13	produced water into the Brushy Canyon formation. In
14	fact, after we've logged the route in the Brushy
15	around defects, we plan to plug off that Brushy
16	Brushy Canyon and only inject into the Cherry Canyon
17	and Bell Canyon. And we are not drilling into the
18	hollow part of the Brushy either.
19	Q So let's kind of take that statement and
20	unlock it just a little bit.
21	A Sure.
22	Q So what is a DFIT?
23	A DFIT is a diagnostic fracture injection
24	test. So we actually do inject fluid into that
25	formation. It's usually fresh water or some very

1	compatible formation fluid. But it's usually fresh
2	water. And so they're very short-term injection
3	tests, very minor, but they are injection tested going
4	to the formation.
5	Q And is this DFIT test part of Chevron's data
6	collection protocol?
7	A For these wells, it is part of the our
8	protocol.
9	Q And my understanding though is that the sole
10	reason that you had included the Brushy Canyon in your
11	applications at all is to authorize this DFIT test?
12	A It it's to authorize the DFIT test, but
13	also to conduct open hole logging within this portion
14	of Brushy Canyon. And the open hole logs are going
15	to be resistivity, gamma-ray, sonic, and neutron
16	density. We'll also be running image logs as well.
17	Q So maybe I was too narrow saying it was just
18	for DFIT. But really it is just for testing purposes,
19	and then you'll be cementing it off?
20	A That's correct.
21	Q And so it's a very limited purpose?
22	A That's correct.
23	Q And the targeted just to clarify, it is
24	not a targeted injection interval?
25	A We are not targeting for reduced water
	Page 77

1	injection.
2	Q Thank you. And so with that, I did want to
3	turn into the well bore designs. Now, these were in
4	your C108s, but you also inserted them side by side in
5	a slide for our convenience. And that is on Slide
6	Number 101. So if we could move to Slide 101, I
7	wanted to talk through the casing designs a little
8	bit, the well bore designs.
9	A Okay.
10	Q And as we talked about earlier, the Division
11	has already said that the well bore designs are
12	consistent with the construction standards these days
13	for UIC Class 2 wells?
14	A That is my understanding.
15	Q But what I liked about your well bore
16	designs is that they give us a little bit more
17	information about where the closest aquifers are and
18	some of the formations that provide above and below
19	the targets.
20	So I was wondering if you could walk us
21	through the Severitas State SWD Number 1 casing design
22	or well bore design first, and then we can move to
23	Papa Squirrel. And I might have some questions for
24	you as you're walking through it.
25	A Okay. Both wells are a three-strand casing
	Page 78

1	design. And the Severitas well, we have a very we
2	don't have much of an aquifer present in that
3	location. But we do have a very thin, less than 100
4	foot aquifer in that location. And that extends
5	down to about 400 feet.
6	The second string as you enter is the
7	intermediate. It will be set in Lamar formation. And
8	then we have a third string, which will be set in
9	the about 500 feet above the basin Brushy Canyon
10	formation.
11	Q And so in your opinion, is the three-string
12	casing design protective of underground sources of
13	drinking water?
14	A Yes, because if essentially, that design
15	will have a two-string two layers of containment
16	protecting the aquifer.
17	Q And I see on these two slides that Chevron's
18	proposing to use 5 1/2-inch tubing; is that right?
19	A That is correct.
20	Q And did you notice in the OCD's Exhibit 11
21	that OCD was also recommending 5 1/2-inch tubing?
22	A I think they're saying that they would not
23	approve anything larger than 5 1/2 inches around.
24	Yes, it is consistent.
25	Q Great. And then the other thing I wanted to
	Page 79

1	talk about on her is the upper containment zone and
2	the lower containment. So let's start with upper
3	containment, which is noted right here. What can you
4	tell us about the upper containment?
5	A The Lamar limestone is considered the upper
6	containment zone for the projection for the Severitas
7	well. The lower containment zone of the well is the
8	limestone, which is shown at the base.
9	Q And Chevron has other witnesses today that
LO	will talk about some pressure tests and things that
L1	were done on those two containment zones later today;
L2	is that right?
L3	A That is correct.
L4	Q But one thing I did want to talk about with
L5	you because I find it to be quite interesting was you
L6	and I had talked about the presence of anhydrites and
L7	how those can act as a seal or sort of reinforce the
L8	seal for containment zones. Are there anhydrites
L9	present here?
20	A Yes, there are. Anhydrites are are a
21	part of basically the whole component of what's shown
22	here on the diagram as the Castile formation.
23	Q And the Castile formation is this upper area
24	above the line?
25	A And correct. Well, it's right above the
	Page 80

1	line.
2	Q And when you and I spoke, what I found to be
3	interesting was that Castile and Lamar together
4	interact in a way because of the anhydrites to create
5	an even greater seal?
6	A That is correct. The essential what's
7	interesting about the anhydrites in Castile is when we
8	assess the mechanics of those units that the high
9	density Castile lies on top adds to the fracture
10	screens of the Lamar. And Bryce Taylor will talk a
11	little bit more about that later today.
12	Q Thank you. I just find that to be quite
13	interesting that in aggregate, that together they're
14	stronger than they would be individually?
15	A That's correct.
16	Q Let's see. What is the vertical distance
17	between injection and the rustler in the Papa
18	Squirrel? Is that noted on here or have you done
19	the
20	A It it's not shown on here. I think the
21	question is what's the vertical difference between the
22	top of injection and the shallow aquifer. And that
23	distance is about 2200 feet in the Severitas well.
24	Q And have you calculated the same thing for
25	Papa Squirrel?
	Page 81

1	A Yes. That distance is about 3700 feet.
2	And and in that case, it we do have rustler
3	present. And so it's really from the top of injection
4	at the top of the bell right below the Lamar to the
5	base of the rustler in the Papa Squirrel well.
6	Q But there are multiple thousands of feet of
7	vertical separation?
8	A Correct.
9	Q And earlier we were talking about the DFIT
LO	test and cementing back. And do these show the
L1	cementing back to prevent injection of produced water
L2	into the Brushy?
L3	A Yes, they do. It to touch on the Papa
L4	Squirrel, there's an additional language that's left
L5	over from a diagram that went back and forth between
L6	myself and and wells, but really, the cement is
L7	the cement plug in the within the Brushy Canyon is
L8	what we're planning for both wells.
L9	Q Now I wanted to turn to a study that you
20	prepared to show the porosity of each of the two wells
21	and their favorability or the geology as an injection
22	interval. And here I'm going slightly out of order.
23	So at this time, I'd like to turn to Slide 103 of the
24	material. And again, that is the number of the top
25	righthand side.

1	A Okay.
2	Q The substance starts on page 104. So the
3	slide I'm looking at now says, "Bell Canyon High
4	Porosity: Papa Squirrel." Are you there with me?
5	A Yes. Yes.
6	Q What is the purpose of the analysis that you
7	undertook in this slide?
8	A The purpose of this analysis was really a
9	prelude to identifying what where the optimal
10	locations are in both of these development areas. The
11	Salado Draw. And that's what he was talking about,
12	the Salado Draw here in the Papa Squirrel well as
13	as proposed.
14	Q And let's maybe take a moment and walk
15	through these. Before we do that, what is your
16	conclusion from the study that you undertook in terms
17	of whether the injection interval is favorable in the
18	Bell Canyon for the Papa Squirrel?
19	A Our our determination is the Bell Canyon
20	is is very favorable for injection in this area,
21	and it's primarily due to the stacked thickness of
22	high porosity sands within the Bell Canyon in this
23	area.
24	Q And did you reach this same conclusion in
25	the next slide, which we'll turn to in a moment, for
	Dage 83

1	the upper area?
2	A Yes.
3	Q And did you prepare the same analysis or a
4	similar analysis for the Severitas well?
5	A Yes. I think and you'll find that the
6	the slides are slightly the diagrams are slightly
7	different, but they're they're made by other
8	geologists that were involved in this process, and
9	they just took slightly different approaches, but they
10	came to the same conclusion regarding the net
11	thickness of porosity within the two areas.
12	Q And is that conclusion that that thickness
13	is favorable for injection?
14	A Yes, it is.
15	Q Let's start then on this slide, which is
16	number 104 of 267. And let's start with an
17	orientation of the slide for the commissioners and the
18	other parties. What is this right here that I'm
19	highlighting?
20	A This is an inset that shows where that
21	portion of the map is located relative to the Delaware
22	Basin that's shown where the tan lines are kind of
23	projected into the map the second map.
24	Q And if you had to guess about I mean, if
25	you had to identify on this map where the Papa

Squirrel well is, is my hand more or less?
_
A That is approximately where it's located,
yes.
Q And so what does A to A prime mean on this
slide?
A This is a line of the projection, the
cross-section that's shown on the left.
Q And does A correlate to the first
cross-section that you have there?
A Yes, on the left side.
Q And then A prime is the second cross-
section?
A Yeah, it's A prime is just the other side
of the cross-section.
Q And what about the red box? What is the
significance of the red box?
A The red box just identifies the location of
the Bell Canyon formation.
Q So this is an outline of where the Bell
Canyon formation falls within these cross-sections?
Q And what is your conclusion that you draw
from this slide?
A The conclusion. The the porosity in
in this cross-section that's shown in the kind of red
Page 85

1	pinkish curve, and when you see a movement of that
2	curve to the left, that means that there's high
3	there's going to be higher porosity in that area. And
4	what's what's done on the right in each each
5	well, where you see the column with the blue, thick
6	units identified, those are are thicknesses of
7	of sediments that are greater than 14 percent
8	porosity.
9	Q So you filtered out anything below 14
10	percent or Chevron filtered out anything below 14
11	percent?
12	A Greater than 14 percent. Greater than 14.
13	Q Oh, greater than 14. This is why I don't do
14	math. Less than, greater than. Challenging.
15	But these dark blue areas indicate units
16	that are favorable for injection based on their
17	porosity levels?
18	A Yeah. The lighter color blocks are really
19	greater than 14 percent. The darker blue is for
20	actually greater than 18 percent porosity, which is a
21	higher threshold. But it still shows that in both
22	you know, both of those wells, we see, you know, a lot
23	of neck thickness of porosity. Which and Bryce
24	will talk about this later. But when we look at model
25	of of injection in the in the DMG, that porosity
	Page 86

1	is really a key fact. And that's why we come in and
2	we looked to identify areas where we want to target
3	placing the SWD wells.
4	Q And just for the record, the Papa Squirrel
5	well is about halfway down or a third of the way down
6	the line from A to A prime?
7	A Right over here.
8	Q So let's turn to the next slide then, unless
9	there was anything else on that slide you wanted to
10	touch on.
11	A No, that's all.
12	Q So this next slide is page 105. And this
13	slide, again, are these the same two logs that we
14	reviewed on the last time?
15	A They are the same two logs. Same two wells.
16	Q And so in this leg you're just focusing
17	further down in the geologic formation?
18	A Right. In the upper Cherry Cherry
19	Canyon.
20	Q And did you undertake this study again to
21	understand the net porosity in this area?
22	A Yes, I did.
23	Q And what was your conclusion?
24	A This is still favorable. It's it's less
25	favorable, but it's still favorable.

1	Q This area would still take water in theory?
2	
	A Exactly.
3	Q Is there anything else you wanted to mention
4	about this slide before I move onto the next slide?
5	A No, I think that covers everything I wanted
6	to cover on the slide.
7	Q So turning to the next slide, this is the
8	geologic analysis that you undertook for the Severitas
9	well to understand the porosity in that area; is that
10	right?
11	A That is correct, yes.
12	Q And this is page 106 of 267. And so can you
13	orient the Commission again? What is the inset map
14	here on the righthand side of the slide?
15	A The inset inset map shows is a net
16	porosity map that's color coded for an area that
17	covers this development area that's known as Harris,
18	New Mexico.
19	Q And I see on here you have some legends.
20	Worst net porosity, better net porosity. And the
21	shading, the dark purple, does that correlate to worse
22	net porosity?
23	A Yes, it does.
24	Q And then this sort of turquoise or greenish
25	blue is better net porosity?

1	A That is correct.
2	Q And the Severitas well is approximately
3	halfway between the A and A prime on this?
4	A Yeah. And the and the arrow point is
5	shown pretty correctly. So the point of the arrow is
6	really where the Severitas well is.
7	Q And do these logs have the same data as the
8	prior logs that we looked at in terms of gamma?
9	A Yes, they do. And the difference is that
L O	these were plotted in Petra. The other others were
L1	we used a different software package.
L2	Q But they contained the same material.
L3	A Same basic material. Just different
L 4	programming.
L 5	Q And what conclusions did you draw from this
L6	analysis?
L7	A Well, as as Cody Comiskey noted earlier,
L8	you know, we we've looked at two areas where we had
L9	slightly different variations in stratigraphy. One,
20	you know, the the stratigraphic thickness of the
21	of the Delaware Mountain Group is thicker in the Papa
22	Squirrel area to the east.
23	It's thinner to the west where the Severitas
24	is. So we would naturally expect that the the
25	reservoir character in this well would be less

1	favorable than that in the Papa Squirrel just because
2	of stratigraphic thickness thickness variations.
3	It's thinner over here. And we're actually seeing
4	less net porosity thickness in in this area.
5	But from a standpoint of what we're trying
6	to do within, you know, the scope of this these two
7	pilot wells, it's important for us to kind of evaluate
8	these areas where we may not have as great a
9	thickness, but at least, you know, crossing some sort
10	of threshold coming from the well before us, and this
11	one does.
12	Q So if I'm understanding you, your choice of
13	wells is intentional, because you want to test the
14	reaction of these different thicknesses?
15	A That is correct, yes.
16	Q And Dr. Ampomah asked Mr. Comiskey a
17	question about the pilot nature of these wells, and it
18	seems to me that at least one answer to that question
19	is that you are trying to go get data from different
20	reservoir thicknesses to enable Chevron to interpret
21	that data?
22	A That is correct, yes.
23	Q And then move forward with other projects or
24	not.
25	A Exactly. And it should give us some insight
	Page 90

1	about what the opportunities are, you know, moving
2	forward in the future. It's also going to give us
3	this data in a collaborative way where we can kind of
4	share in with both the OCD as well as other
5	operators and and kind of help out with the
6	decision-making process moving forward.
7	Q Great. Well, we're going to switch gears a
8	little bit and turn to a study that he did regarding
9	DMG productivity in the area of the two wells. So I
10	am going to switch now to page 99 of the materials.
11	MS. BENNETT: Give everybody a chance
12	to catch up with me. You there?
13	BY MS. BENNETT:
14	Q So on page 99, can you describe to the
15	commissioners what this exhibit is and your intentions
16	behind this exhibit?
17	A Yeah, in in this exhibit, this is the
18	the diagram on the right and the the table that's
19	shown are really part of the C108 application. And
20	and what I did was just to kind of combine both
21	components that are included in the C108 application
22	into one slide. It just makes it
23	Q And what
24	MR. FUGE: Give it a second.
25	BY MS. BENNETT:

1	Q One of the primary takeaways I had from this
2	slide was or questions I had was whether there are any
3	DMG, Delaware Mountain Group wells within a half mile
4	of the Papa Squirrel?
5	A The answer is no.
6	Q Where are the closest Delaware Mountain
7	Group producers from Papa Squirrel?
8	A They're they're about one and a half to
9	two miles away to the southeast.
10	Q And will Mr. Taylor be discussing those
11	wells?
12	A Yes, he will. Yes, he will.
13	Q Great. And then the next slide, which is
14	slide 100 of 267, is this the same information but for
15	the Severitas well?
16	A Yes. Again, these are these two tables
17	as well as the the map are both components that are
18	submitted with the C108 application.
19	Q And one thing I wanted to ask you about,
20	actually. I'm going to turn back to page 99. Chevron
21	operates wells within the Papa Squirrel AOR; accurate?
22	A That is correct.
23	Q And so you have your own wells that are
24	currently in production within the area of the Papa
25	Squirrel well?

1	A That is correct.
2	Q And is that true for the Severitas well
3	also, which is on page 100?
4	A Yes, it is.
5	Q So Chevron, as part of the pilot nature of
6	this project, you are able to test whether these wells
7	impact your "these wells," I mean SWDs impact
8	your existing wells?
9	A Correct. We we essentially don't have to
10	worry about going out and asking another operator to
11	to monitor horizontal wells in these areas because
12	we have some. And we can evaluate those impacts if
13	they exist directly.
14	Q So you would have both the you manage the
15	existing production wells, but you'll also be able to
16	manage the proposed SWDs?
17	A That is correct.
18	Q And again, I think we might have talked
19	about this, but there's no DMG wells within the
20	half-mile radius of the Severitas well; is that right?
21	A That that is correct.
22	Q Now I want to turn to a slide you prepared
23	about the drill stem tests, and that's page 107 of
24	267. Give everybody a second to catch up there.
25	So first of all, what is a drill stem test?
	Page 93

1	A A drill stem test is a test that's run open
2	hole within a vertical well normally, and which there
3	is a packer that is engaged, and a pressure suction on
4	the well that allows oil or any kind of fluids that
5	are in the units where the packer isolates in in
6	the well. And it's able to to evaluate both
7	pressures as well as the fluid types that come into
8	the into the test testing device, the drill stem
9	test.
LO	Q And so what does the drill stem test, what
L1	kind of data does it provide you or provide Chevron
L2	through you?
L3	A It essentially can indicate to us or any
L 4	operator whether or what kind of potential there is
L5	for hydrocarbons within the zones that you're testing.
L6	Q And these drill stem tests aren't tests that
L7	you undertook though; right? They're existing tests?
L8	A These were publicly available drill stem
L9	tests. And the way we approach this data gathering
20	was to assess, you know, the the large resource of
21	public data available in both areas and determine
22	which which drill stem test was conducted within a
23	radius of these wells within the the Delaware
24	Mountain Group.
25	Q And so let's just knock out Papa Squirrel

1	really quickly. You noted that there were no drill
2	stem tests taken in the DMG within two or three miles
3	of the Papa Squirrel?
4	A That's correct, yes.
5	Q And so there was no data for you to analyze
6	there?
7	A There was no data to analyze. Correct.
8	Q So how about for the Severitas? What did
9	you find for the Severitas?
LO	A In the Severitas well there were there
L1	were no DSTs within two miles of the Severitas well.
L2	We did have two DSTs within two to three miles of the
L3	Severitas well.
L4	Q And were those two DSTs the two that you
L5	identified here?
L6	A That is correct, yes.
L7	Q And in your review of the data, what did you
L8	glean from the data in terms of DMG productivity in
L9	and around Severitas 2 State SWD Number 1?
20	A Well, the fact that they were two to three
21	miles away told me that that basically there's a
22	low risk of impact production in and around the
23	Severitas well.
24	Q Let's turn now to the structure map that you
25	prepared. And the way I was looking at your was

1	sort of a yeah, looking to see if there were
2	existing wells, which there weren't any. And then
3	looking to see if you could find any drill stem tests
4	on the existing wells, which there weren't any within
5	two or three miles.
6	A Right. Correct.
7	Q And then you focused then even on the
8	geology of the area to see what the geology says about
9	the presence of DMG and reservoirs in the area?
LO	A That's correct. So so really
L1	fundamentally both these slides, what we were trying
L2	to do to establish was to take a stab at this question
L3	of of, you know, the future reserves. What what
L 4	is you know, how can you come up with some sort of
L 5	assessment on how or whether or not there are future
L6	reserves within the DMG in these areas. And and
L 7	these were two approaches that we came up with.
L8	We felt that the drill stem test was the
L9	preferred way of assessing whether or not existing
20	hydrocarbons are in the area. Because when a when
21	the operator drills a well or looking for oil, you
22	know, a drill stem test is is a very cheap way to
23	determine whether or not it's worthwhile running
24	casing and producing from that zone.
5	And then this second man was really designed

1	to say, "Okay. If I'm an exploration geologist, what
2	would I do?" Well, in the previous slide where we had
3	stratigraphic units shown within the Bell Canyon and
4	the Cherry Canyon formation, we showed that the
5	stratigraphic units seemed to have some sort of
6	continuity across all those areas.
7	So then the question is, okay. Given the
8	fact that you don't have any obvious stratigraphic
9	pinch outs in these areas, then what else would you
10	look at? And the solution was, okay. I wanted to
11	take a look at the structure map in both of these
12	areas, and that's what I did.
13	Because the structure map would define if
14	there were no pinch outs of stratigraphy, then you
15	would have to have some sort of tracking mechanism in
16	addition to that, and that would be structural
17	closure. And the bottom line in both of these series,
18	I didn't see them.
19	Q Thanks for that. You know you and I talked
20	a lot about this because structural closure and
21	trapping is, you know, over my head. But what I
22	appreciated about it was that you went you were
23	using actual information to test your theory about the
24	lack of DMG reserves in this area.
25	A Yes, I got to be an exploration geologist,

1	and yeah, so.
2	Q Yeah. And I really appreciate what you just
3	said about the drill stem test, because I don't think
4	before today I actually understood that, that is
5	a mechanism by which operators consider whether it's
6	worth it to continue to explore for it's a
7	preliminary step in an exploration for reserves; is
8	that right?
9	A It's a very cheap preliminary step to make
10	that evaluation, yes.
11	Q And so if that that's incredible. Thank
12	you.
13	On these, we've talked a lot about traffic
14	in the area. And you know, you ad I talked about an
15	inverted bowl. And is that sort of where the
16	hydrocarbons would be trapped such that there could be
17	future reserves in this area? Would that be an
18	indicator of that?
19	A Yes, that's correct.
20	Q And did you see anything that would indicate
21	the potential of unknown reserves in these two
22	structure maps?
23	A No, I did not.
24	Q Did you see any fault in the lower
25	containment zone?

1	A No. No faults at the at the level of
2	Bone Spring limestone. We evaluated seismic data in
3	in both areas and determined that there were no
4	nearby faults within a two-mile radius of of the
5	Severitas and the Papa Squirrel well.
6	Q How about any faults in an upper containment
7	zone, which is the little Lamar limestone? Were you
8	looking for faults there too?
9	A We did. And the challenge in Lamar kind of
10	touched on the challenge with that, because if you
11	remember in the Castile formation where you have
12	anhydrite, you also have salt in in these areas.
13	And there are some problems with depth conversion of
14	the seismic data when you have these velocity changes
15	that occur laterally within the section above the zone
16	that you're trying to map.
17	The zone we're trying to map is determined
18	it's really the Lamar limestone. Do we see faults
19	and seismic data with the Lamar? Because of these
20	velocity problems what we have as a as a result of
21	the the salts and anhydrites in the Castile.
22	We get some anomalies that are really
23	difficult to sort through, and you have to have really
24	good velocity data to to make accurate
25	interpretations of that that surface. But from
	Page 99

1	what we could tell, given all that, we don't have any
2	faults in both areas.
3	Q And will one of Chevron's other witnesses
4	today talk about the Lamar limestone and the amount of
5	pressure it would take to break that or the
6	sufficiency of the Lamar as a containment zone?
7	A Yes, Bryce Taylor will discuss that further.
8	Q Great. So to summarize, in your opinion is
9	the Papa Squirrel well, does it have the potential to
10	in your opinion and just focusing on the slide and
11	your work with Chevron, does it have the potential in
12	your opinion to negatively impact correlative rates?
13	A Not in my opinion.
14	Q And in your opinion, do you think that there
15	is a low likelihood of hydrocarbons in the DMG within
16	the AOR of each of these two wells?
17	A Not in my opinion.
18	Q But it's your opinion that
19	A It's my opinion that that is correct, yes.
20	Sorry.
21	Q That there is a low likelihood?
22	A That there is a low likelihood.
23	Q And that's based on the drill stem tests?
24	A The drill stem test coupled with the with
25	all the structural closure and the fact that there's
	Page 100

1	continuity in the stratigraphic units across both
2	areas.
3	Q And the continuity in the stratigraphic
4	units, if there was a pinch out, that would be a place
5	where hydrocarbons could collect?
6	A That's correct. And the other factor is
7	that we have a number of wells that then drill
8	through, you know, in these areas, and we haven't
9	today seen any evidence that there's from those
10	wells that there's potential for for hydrocarbons.
11	Q Not to dwell on the stratigraphic uniformity
12	any longer, but I did just think of a really great
13	analogy for me, which is a stream, and the fish tend
14	to gather, you know, in eddies or along the bank or
15	rocks within a stream. And so if the hydrocarbons are
16	fish, we're looking for some anomalies in the stream
17	where they might gather and enjoy their day when we go
18	fishing?
19	A That might be an analogy, yes.
20	Q Well, it works for me. And I'm going to go
21	fishing this weekend now that I've thought about it.
22	Any last things you'd like to say or tell me
23	not to draw analogies ever again?
24	A No, I really don't have any other comments
25	to add.
	Page 101

1	MS. BENNETT: Thank you very much.
2	And with that, I would move the
3	admission of Exhibits A and B, which are the
4	applications and the included C108s. And I would also
5	move admission of the slides numbered 98 through 108.
6	MR. FUGE: Any objections?
7	They're admitted.
8	(Exhibit A, Exhibit B, and Exhibit 98
9	through Exhibit 108 were marked for
10	identification and admitted into
11	evidence.)
12	MS. BENNETT: Thank you.
13	MR. FUGE: Mr. Tremaine, do you have
14	any questions for the witness.
15	MR. TREMAINE: I do have some
16	questions. Thank you, Mr. Chair.
17	EXAMINATION
18	BY MR. TREMAINE:
19	Q Mr. Merrifield, I'm hoping to clarify a
20	response that you provided to Ms. Bennett. You used
21	very specific language when you were talking about the
22	produced water injection. I believe what you said was
23	Chevron was not targeting the Brushy Canyon for
24	produced water injection. Is that correct?
25	A That is correct, yes.
	Page 102

1	Q Is it Chevron's expectation that produced
2	water that is targeted to be injected into the Bell or
3	the Cherry Canyon, will a communicator migrate down to
4	the Brushy Canyon?
5	A At this point in time, we do not think so.
6	Okay. Now, the the part of the surveillance
7	process program we've been putting together
8	Q Believe it or not, it's better than it was.
9	A is to further evaluate their their
LO	questions about reversal and frac gradient as we get
L1	deeper in the DMG. And that program hinges on the
L2	sonic data that we're going to be collecting in these
L3	wells.
L4	And we're also going to just just to get
L5	into detail a little bit, we're going to be collecting
L6	monopole, dipole, and sonar data. We'll also be
L7	collecting triple-combo data as well throughout the
L8	Bell Canyon, Cherry Canyon, and that that one upper
L9	portion of the Brushy Canyon and we drill through.
20	And then we'll also be collecting the DFIT data.
21	Now, all of those will be coming together
22	with several different analyses on frac gradients.
23	And and that is from in my opinion, it's the
24	most exhaustive approach. It's really important to
25	take that gather that kind of data to make the most

1	accurate assessments of frac gradients in these two
2	wells.
3	Q Thank you. And bear with me. Likewise, I'm
4	not a geologist. So when you are done with the DFIT,
5	when the lower zone is cemented off, how are you going
6	to be able to tell whether injected produced water in
7	the higher zone migrated down to the Brushy to the
8	Brushy Canyon?
9	A We should have some indication with the
LO	analysis of the data. So the data should tell us
L1	something about frac gradients and whether they
L2	linearly increase with depth or if there is a
L3	reversal. So there should be a theoretical indication
L4	before, you know, any migration fluid occurs, it
L5	but it will tell us about the possibility.
L6	Q So you're going to see it before or as it
L7	happens rather than after the fact?
L8	A It's we're going to yes, correct.
L9	It's it's really part of the data analysis. Now,
20	mind you, the you know, after we collect the data,
21	we're going to start injecting. Okay. There's going
22	to before any any potential migration were to
23	move into the Brushy, it would have to collect some
24	sort of threshold pressure and volume that we've
25	injected into the Bell and Cherry before we see any
	Page 104

injection of migration downward into the Brushy. So I
think there's going to be time where we would
determine could determine from a theoretical
standpoint that's a possibility or know it's probably
unlikely.
Q Thank you for that clarification. One more
quick question here, Mr. Merrifield. In terms of the
assessment of reserves from the DMG, was that focus on
the Bell, Cherry, and Brushy Canyon zones? Or is that
A So yes, we looked at in fact, I the
search criteria was very exhaustive. I looked for
Delaware Mountain Group. I looked for Delaware
Canyon, Cherry Canyon, Ranchy Sand. I went through
all of the possible names to kind of extract from the
AHS database to assess that.
Q And did that include the Lower Brushy within
Avalon or just focus on the three zones we discussed?
A It it included all of Brushy. And you
know, I did not get into that one. No, I did not.
'Cause the the whole assumption there is that I was
going to carry it down to the which is really the
base of the Delaware Mountain Group. And then I
stopped at that point.
Q Are you aware of any reserve assessment that
Page 105

1	was a problem at any other operators?
2	A No.
3	MR. TREMAINE: No further questions.
4	MR. FUGE: Ms. Hardy?
5	MS. HARDY: I do have a couple of
6	questions.
7	MR. FUGE: If you could just come up,
8	it will make it easier to hear.
9	MS. BENNETT: I can switch too if you
10	want.
11	MS. HARDY: That would be great. Thank
12	you.
13	This will be quick. Sorry.
14	EXAMINATION
15	BY MS. HARDY:
16	Q Mr. Merrifield, I just have a couple
17	questions for you. With respect to your well bore
18	diagram that we were looking at, which was page 101
19	using the file page number, you had discussed with
20	Ms. Bennett the DFIT test and how they will impact or
21	how they will be performed at Brushy Canyon.
22	A Yes.
23	Q Will the Brushy Canyon DFIT be performed
24	only in the open-hole section?
25	A It will not be performed in the open-hole
	Page 106

1	section. And and maybe that was not clear. It
2	it will DFITs, the diagnostic fracture injection
3	test will be done through case toll. And that's
4	one of the advantages of doing that is that the
5	chances of success are greatly enhanced when you have
6	packers that are actually in contact with
7	Q Then looking at your slide 108, which is the
8	structure map, what is the contour interval on those
9	maps?
10	A I think it's 100. It could be 50 feet.
11	It's 100 or 50 for sure.
12	Q 100 or 50?
13	A Yes.
14	Q Is it correct the down dip is to the right?
15	A It is correct.
16	MS. HARDY: Those are my questions.
17	MR. FUGE: Dr. Ampomah, do you have any
18	questions for the witness?
19	DR. AMPOMAH: Yes, I do. So let's go
20	over the C108.
21	MR. MERRIFIELD: Okay.
22	DR. AMPOMAH: So on page 23.
23	MR. MERRIFIELD: Okay.
24	DR. AMPOMAH: You show the schematic of
25	the well.
	Dago 107
	Page 107

1	MR. MERRIFIELD: Okay. This is a
2	this is one of the abandoned ones.
3	DR. AMPOMAH: Yeah, one of them.
4	MR. MERRIFIELD: I remember this.
5	Yeah.
6	DR. AMPOMAH: So looking at this, how
7	they procced it, do you believe that it was plugged in
8	a good way to prevent any potential complication with
9	the oil breaching?
10	MR. MERRIFIELD: So I don't recall the
11	exact date. I'm looking at the way that they plugged
12	this well. It's an it's an older plugging
13	approach. And and the reason I know that is
14	because they use kind of these intermittent cement
15	plug and then match
16	And then it that is a standard
17	approach back in the kind of the 70s or the 80s and
18	sometimes even into the 90s depending on what state
19	you're in. They they will still allow. Today,
20	that's not, you know, the best way to do it, but it
21	was acceptable at that day and time.
22	Now, having said that, we were talking
23	about mud slurry. That's usually a thick slurry
24	usually. So it's it is still So yes, I it
25	is an approved approach, but historically, I think,

1	you know, that there's historical context.
2	DR. AMPOMAH: So it's still workable?
3	MR. MERRIFIELD: It's still what?
4	DR. AMPOMAH: Is it workable? Like you
5	believe there should be some sort of highlight on this
6	particular well?
7	MR. MERRIFIELD: All I'm saying is that
8	it's it's not the standard practice. But bentonite
9	is a very impermeable material. When it's mixed with
10	mud, basically the mud portion of that well as well as
11	the cement portion are considered impermeable barriers
12	within that well.
13	DR. AMPOMAH: So let's talk a little
14	bit about
15	MR. MERRIFIELD: Did that answer your
16	question?
17	DR. AMPOMAH: Yeah. I'm sure OCD knows
18	more to make sure that there will be no problem with
19	that. And I just wanted to know that. On page 10 of
20	the C108 1B application.
21	MR. MERRIFIELD: Okay.
22	DR. AMPOMAH: So you have on saying
23	Brushy Canyon is included as a potentially the
24	Brushy is not intentionally targeted for injection.
25	Now, but you're also going to do a DFIT in this
	Page 109

1	project; right?
2	MR. MERRIFIELD: Correct. That's
3	that's the key point.
4	DR. AMPOMAH: So I just want to know is
5	there no any other alternative? Other than more like
6	bridging the Brushy Canyon, knowing very well that you
7	are not going to do any injection. So is there any
8	other alternative to collect the data that you're
9	looking for without actually performing the DFIT in
10	this position?
11	MR. MERRIFIELD: The purpose of the
12	DFIT and is to really calibrate the interpretation
13	of the frac gradients that are determined from loss.
14	And the only way that you can do that is by having
15	some type of injection test. A DFIT in my opinion is
16	the best approach to get the most accurate and and
17	best chance at getting data than any other data that
18	you can do.
19	But all the data that you can in
20	order to to calculate the frac gradients, you have
21	to you have to have some sort of injection test.
22	And and Bryce will touch on this a little bit
23	later, but he what he'll show is, you know, what
24	the pressure buildup looks like and what it comes back
25	down to and and what part of the curve you actually

1	have to measure in order to assess, you know, what the
2	frac closure stress or fracture is when you when
3	you run that test.
4	DR. AMPOMAH: So are you saying that
5	let's say the DFIT that you're going to do in this
6	hurricane land in the creek formation. There was two.
7	MR. MERRIFIELD: Mm-hmm.
8	DR. AMPOMAH: You don't have right now
9	datapoints to be able to calibrate your entire project
10	gradient, but you still have can you do a DFIT in
11	the Brushy?
12	MR. MERRIFIELD: What we'll have after
13	we collect this data is we'll have DFIT data in the
14	Brushy Canyon, the Cherry Canyon, and the Bell Canyon
15	formations. We'll have a continuous curve of what the
16	frac gradient looks like.
17	DR. AMPOMAH: Yeah. But my
18	MR. MERRIFIELD: And to calibrate that,
19	we have to have certain datapoints that require some
20	sort of injection test. And the injection test that
21	we're proposing is a DFIT.
22	DR. AMPOMAH: So you said you have to
23	do how much percent of if we are not going to use
24	this formation for injection, why do we have to
25	perforate it, you know, in the first place, and then

1	coming back to fill it out? You know, so that is my
2	concern.
3	MR. MERRIFIELD: Yeah. So the reason
4	why we have to I think I understand where you're
5	coming from is we actually have or are forced into
6	injecting into the formation.
7	So we actually have to cut a hole
8	through casing and inject into the formation and
9	monitor the pressure buildup and decline in order to
10	gather this datapoint that's going to be used as a
11	calibration point. There's no other way to do it from
12	my standpoint. I don't I don't know of any other
13	way to do it. You could do it open hole.
14	DR. AMPOMAH: Mini-frac, yeah.
15	MR. MERRIFIELD: But it but what I'm
16	saying is the chance of success with the mini-frac of
17	getting the data is about 40 percent. Okay. And
18	and with this, it's about 95 percent.
19	DR. AMPOMAH: So, like, 104 actually?
20	MR. MERRIFIELD: Yeah. Yeah.
21	DR. AMPOMAH: So page 104 on the
22	application. I want to know how many wells you used
23	in analyzing the petrophysics to obtain results.
24	MR. MERRIFIELD: Okay. Yeah. And so
25	the the amount of wells, I don't have that number
	Page 112

1	in hand. But the we had probably on the order of
2	at least a hundred datapoints to create that map
3	that's on that's color-coded on the righthand side
4	right there. At least a hundred. Maybe 200. Maybe
5	500 to create do you want me to point at it?
6	DR. AMPOMAH: No, I can see.
7	MR. MERRIFIELD: Okay. Yeah. But
8	the all those datapoints are not shown here.
9	DR. AMPOMAH: So you show a porosity 20
10	percent going in there, but probability 0.4 to 3 so my
11	question is what does it show? Or how did you compute
12	permeability?
13	MR. MERRIFIELD: How how did we
14	compute permeability? We did not actually calculate
15	permeability. So in if you in the Delaware
16	Mountain Group, because these are sandstones, there
17	is there are a number of authors that have
18	evaluated the permeability-porosity relationship and,
19	you know, plot how linear that relationship is. But
20	we have not we did not go in and calculate
21	permeability in in these for our study.
22	DR. AMPOMAH: So on page 98, you talk
23	about how the two wells, there is an extent of geology
24	between these two wells, two locations. Right. We
25	talked about that from the other testimony. Now, you

1	are using upper relation to
2	MR. MERRIFIELD: Yes, exactly.
3	DR. AMPOMAH: Let me ask. So do you
4	have any plans to offer a quarry program to be able to
5	get the actual call because you want to build a
6	database right now really dependent on more or less a
7	correlation?
8	MR. MERRIFIELD: We we did have that
9	in some of our initial evaluations of all the
10	surveillance that we were going to gather. But
11	because of the coring I think ended up being a
12	minor component just because we did not feel that that
13	would add as much value as the cost, and it was really
14	just to when we evaluated all the different
15	surveillances that we were going to do, we just felt
16	that was a lower priority. Yeah, we did we did
17	entertain that. That I'm letting you know that.
18	DR. AMPOMAH: But why would that be a
19	low priority?
20	MR. MERRIFIELD: It was a lower
21	priority. That's all.
22	DR. AMPOMAH: Yeah, but we want to know
23	how Pinon water formation was, had it done just
24	relying on no map relation, no
25	MR. MERRIFIELD: Well, see part of the
	Page 114

1	assessment was we actually pulled the existing core
2	data that was available from the DMG and incorporated
3	that into the analysis.
4	DR. AMPOMAH: Thank you. I appreciate
5	that.
6	MR. MERRIFIELD: Yeah.
7	DR. AMPOMAH: Help me understand. On
8	your well design for the Papa Squirrel well.
9	MR. MERRIFIELD: Mm-hmm.
10	DR. AMPOMAH: So I'm trying to
11	correlate that to the well correlation that you're
12	showing on page 104. Is the Papa Squirrel well the
13	one that that one is in the total vertical depth;
14	right?
15	MR. MERRIFIELD: Is it I'm sorry.
16	What was your
17	DR. AMPOMAH: Total vertical depth.
18	MULTIPLE SPEAKERS: Total vertical
19	depth.
20	MR. MERRIFIELD: Yes. Right.
21	DR. AMPOMAH: Yeah. So I see the Bell
22	Canyon is about 4,655 feet.
23	MR. MERRIFIELD: Uh-huh.
24	DR. AMPOMAH: Now, when I cross-check
25	that to you, the well correlation that you have on
	D== 11F
	Page 115

1	page 104. So from A to A prime, you have your well.
2	It's going to be in the middle. And maybe the well
3	correlation is in a different depth to me?
4	MR. MERRIFIELD: It it is. It's
5	subsurface 2DD.
6	DR. AMPOMAH: Okay. I just wanted to
7	clarify that.
8	MR. MERRIFIELD: Yeah.
9	DR. AMPOMAH: And maybe if we can
10	because it's not
11	MR. MERRIFIELD: It's not. And
12	that's you know, that's something that should have
13	been caught, but it wasn't.
14	DR. AMPOMAH: Because I was totally
15	lost.
16	MR. MERRIFIELD: No, valid question.
10 17	DR. AMPOMAH: I do have further
18	questions. So how in your application you showed on a
19	structure map that you did place all the well
20	correlations. But I don't see that on the side, so I
21	don't base, you know, but I just want to know why
22	did you not include any interpretation from the
23	seismic?
24	MR. MERRIFIELD: The the question
25	about seismicity and showing that is really has to

1	go through IP review process. And and we, you
2	know, in the process of going through this, I felt
3	that interpretation, it was based upon interpretation
4	of our SME.
5	And to go through that, we would
6	probably there would have been a lot more that
7	needed to be addressed other than just this group. We
8	would have had to been gotten into a lot of detail
9	on that evaluation. And we just didn't see that that
10	added as much value.
11	DR. AMPOMAH: So you took the You
12	were not able to identify any in the Castile. Now,
13	when you talked about how there was some sort of
14	anomaly because of salt and then the presence of
15	anhydrites in there, so you were not able to build a
16	very good velocity forward to really interpret those.
17	MR. MERRIFIELD: Right.
18	DR. AMPOMAH: Now, I just want to know,
19	did you try any different options to see if there are
20	no geological features that could impede any potential
21	pathway?
22	MR. MERRIFIELD: Other than the seismic
23	data? Is that what you're saying?
24	DR. AMPOMAH: So for the seismic data,
25	there are multiple options that you can run. You see

1	where under any given seismic faults, anything. So
2	I'm just asking just a normal interpretation. Did you
3	go further to use attributes?
4	MR. MERRIFIELD: We yeah. And the
5	person that did this actually looked at a couple of
6	different ways of looking at the data, but it it
7	boiled down to one fundamental criteria, how you
8	define fault using seismic data.
9	And that there it's a very
10	traditional way of looking at it, and that is if you
11	really need to be able to define separation of
12	stratigraphic units across a discontinuity that can be
13	seen at the scale of the observation that you're
14	making.
15	'Cause it's that discontinuity between
16	two horizons across some plan of discontinuity, which
17	is defined as a fault, where you actually see
18	separation of layers. So he was really looking for
19	that characteristic to define a fault.
20	MS. BENNETT: And I don't mean to
21	interrupt here, but Mr. Comiskey will also be able to
22	address some of the questions on seismicity if that's
23	useful for you later today as well.
24	DR. AMPOMAH: Yeah, I was mostly
25	talking about the seismic interpretation, not

seismicity. I know that one. Yeah.
Can you talk a little bit about the
stimulation? Do you plan to do stimulation in this
well?
MR. MERRIFIELD: After we complete the
well, after we drill the well and then we run casing
and then we perforate the casing and then we set the
tubing in the packer in the well and we put a well
head on it, we will conduct an acid job.
And that really is to clean out, you
know, the perforations, clean out anything near well
bore so that when we actually go in and and inject
into the formation that we know that the the
formation is as clean as possible and the near well
bore is as clean as possible to enhance injectivity.
So that's going to be, you know, the primary reason
for doing an acid job. And by when we say
stimulation, an acid job is a form of stimulation.
DR. AMPOMAH: Thank you.
MR. FUGE: Mr. Bloom?
MR. BLOOM: Yeah, just a couple quick
questions about the location and some of the wells.
You mentioned I think with respect to the Severitas
well that there were three nearby Bone Springs wells?
MR. COMISKEY: Yes.

1	MR. BLOOM: And do you do any extra
2	sort of particular monitoring of those wells in your
3	proposal?
4	MR. COMISKEY: I'll have to defer that
5	to someone later, I think. Surveillance plan.
6	MS. BENNETT: Mr. Comiskey will be
7	discussing the data and monitoring plan in detail.
8	MR. BLOOM: Yeah, I was interested in
9	the monitoring too.
10	And then I don't know if this would be
11	a question for you or perhaps someone else well. But
12	regarding the location of the Severitas well, looks
13	like that's in the SCADA. That's the state federal
14	unit.
15	MR. COMISKEY: Yes, it is.
16	MR. BLOOM: Yeah. I don't know if that
17	unit's formations include the salt water disposal
18	target formations. Do you know?
19	MR. COMISKEY: So this is within the
20	SCADA unit. This well is actually going to be located
21	on State Land Office land. And it's it's from
22	from our assessment land assessment of this, we
23	we have the right to inject into the DMG, if that's
24	your question.
25	MR. BLOOM: That's where I was going.
	Page 120

1	Yes. And similarly if you move that, I think there
2	was a mention of a micro-move of a couple hundred
3	feet?
4	MR. COMISKEY: Mm-hmm.
5	MR. BLOOM: You'd still be on State
6	Trust Land?
7	MR. COMISKEY: Yes. Yes.
8	MR. BLOOM: You may want to check with
9	the Land Office and see if that unit actually includes
LO	the DMG formation. And I believe have you filed
L1	that application for the easement yet, salt water
L2	easement with the Land Office?
L3	MR. COMISKEY: I don't know if we have
L4	or not to be honest. Well, but I but I will tell
L5	you this. The person that is evaluating that is
L6	actually over at the State Land Office right now
L7	having a discussion with them about some some
L8	things.
L9	And I know that that the question
20	that you're asking is is something that and he
21	he's aware of both locations. I've been having
22	these these ongoing discussions with him about this
23	and and he understands fully the need to have the
24	own the right to inject disposal water within the
25	DMG on either location.

1	MR. BLOOM: Yeah. Thank you. And you
2	know, that might be a little bit beyond the scope of
3	this today. But I just wanted to ask about those
4	practicalities there so.
5	MR. COMISKEY: Exactly.
6	MS. BENNETT: Thank you.
7	MR. BLOOM: Yeah. Thank you for the
8	presentation. No further questions.
9	MR. FUGE: And I've got no questions
10	for the witness.
11	So you may be excused.
12	MR. MERRIFIELD: Thank you.
13	MS. BENNETT: Thank you.
14	Mr. Chair, I did want to and I
15	should have been well, I don't need to with
16	Mr. Comiskey. But with Mr. Merrifield, I would like
17	to reserve the right to call him for a rebuttal
18	witness if necessary.
19	MR. FUGE: Okay.
20	MS. BENNETT: Thank you.
21	MR. FUGE: I think in the interest of
22	time, and I think that the next witness will be
23	relatively long. I say we adjourn for a relatively
24	brief-ish lunch break and resume at 12:45.
25	(Off the record.)

1	MR. FUGE: Make sure I've re-initiated
2	the recording. Good.
3	I think we're ready to have you call
4	your next witness.
5	MS. BENNETT: Thank you very much. And
6	Mr. DeBrine is going to handle the next two witnesses.
7	MR. FUGE: Okay.
8	MR. DEBRINE: Good afternoon,
9	Mr. Chair.
10	Chevron would like to call its next
11	witness, Jason Parizek.
12	MR. FUGE: Can I ask the court reporter
13	to swear in Mr. Parizek please?
14	THE REPORTER: Please raise your right
15	hand.
16	WHEREUPON,
17	JASON PARIZEK,
18	called as a witness and having been first duly sworn
19	to tell the truth, the whole truth, and nothing but
20	the truth, was examined and testified as follows:
21	MR. FUGE: Thank you. You may take a
22	seat.
23	EXAMINATION
24	BY MR. DEBRINE:
25	Q Please state your name.
	Page 123

1	A Jason Parizek.
2	Q Who do you work for, Mr. Parizek?
3	A Chevron.
4	Q How long have you worked for Chevron?
5	A Just over ten years.
6	Q And if you could for the Commission just
7	give a shorthand background with regard to the
8	evolution of your duties and responsibilities for any
9	jobs with Chevron during that period?
10	A Yes. I started off working in San Joaquin
11	Valley, California, as an acid development geologist.
12	My duties there were planning and overseeing execution
13	of both horizontal and vertical well bores.
14	Following that, I went out to a field office
15	working with the production operations group on
16	technical team. Duties in that role were setting up
17	and establishing reservoir management and surveillance
18	programs for both a sour gas disposal project and
19	water injection projects. I was also responsible for
20	overseeing and planning side tracks of both vertical
21	and horizontal wells.
22	2018 I moved out up to Midland, Texas
23	working the Permian Basin. I started off working in
24	the production office group as a technical team
25	geologist. Duties on that team involved evaluating

1	some of our deep disposal wells, looking at different
2	performance between the wells. I was responsible for
3	a re-frac project that we conducted in the basin and
4	oversaw some technology projects such as gas
5	reinjection.
6	I'm currently working as a development
7	geologist in New Mexico. Have responsibilities in
8	that role involved planning and overseeing execution
9	of horizontal wells.
10	Q Could you give a brief summary of your
11	educational background?
12	A I have a master or a bachelor's degree, a
13	Bachelor's in Science from San Diego State University.
14	Graduated summa cum laude. And a master's degree from
15	San Diego State University. Both of them are in
16	geological sciences.
17	Q Have you previously specified before the New
18	Mexico Oil Conservation Commission or Division?
19	A I have testified before the Division in
20	February of 2020.
21	Q Were your credentials accepted as a matter
22	of record
23	A Yes, they were.
24	MR. DEBRINE: We would tender
25	Mr. Parizek as an expert in petroleum geology.

1	MR. FUGE: So tendered.
2	BY MR. DEBRINE:
3	Q Are you familiar with the applications that
4	Chevron filed in these two cases?
5	A Yes.
6	Q Are you familiar with the two saltwater
7	disposal wells that are the subject of the present
8	project?
9	A Yes.
10	Q Before we start reviewing the exhibits you
11	prepared as part of your study, if you could give the
12	Commission just a brief summary of what inquiry you
13	undertook and the subject of your testimony today?
14	A Yes, my testimony will be exploring in
15	further detail some of the case studies that were
16	identified in the map that was referenced I believe in
17	the opening statements regarding one of the products
18	of the 2016 work group that was taking place.
19	What I'm going to show is that several
20	observations of looking at watercut changes can be
21	explained in different ways by establishing some of
22	the understanding that we have developed with DMG and
23	fracture driven interactions between various ventures
24	within the Permian Basin.
25	With those learned, we can now apply those

1	that same level of assessment back to those case
2	studies and potentially come up with different or more
3	more robust interpretations for the root cause.
4	MR. DEBRINE: And to the benefit of the
5	commissioners, the exhibits we're going to discuss
6	with Mr. Parizek start at page 109. If we can turn to
7	the first slide.
8	BY MR. DEBRINE:
9	Q Could you just briefly explain what this
LO	slide represents and the work that went into it?
L1	A Yes. This slide really the the core of
L2	the slide is I want to demonstrate that watercut alone
L3	is not a definitive test for salt water disposal's
L4	interference of producing wells.
L5	So just some of the background in going into
L6	this. I mentioned the 2016 work group. That work
L7	group shared observations of both Delaware Mountain
L8	Group production wells and Avalon production wells
L9	that were seeing increased watercut over time.
20	And on the map on the right side, I've got
21	a an example of what what those maps had looked
22	like that was within that slide deck. And that slide
23	deck is I believe Exhibit 8 in the the OCD's
24	exhibits.
25	But on that on that map, you'll see kind
	Page 127

1	of a locator map. And within that, there are sections
2	that are highlighted in purple or red. And those
3	sections represent areas that were suggested to have
4	had DMG interactions with underlying Avalon producers.
5	And the way that they're identified, if you
6	look at the circles, you'll see a larger light-colored
7	circle and kind of a smaller dark circle. Well, the
8	smaller dark circle represents a cumulative watercut
9	over the life of the producing well and the larger
10	light-colored circle would represent the last six
11	months' watercut.
12	And when you would see an increase in the
13	last six months' watercut over the lifetime watercut
14	of the well, that would indicate that that well is now
15	producing a higher watercut than it was historically,
16	suggesting that something has changed reading that
17	that production change.
18	Q So is it fair to say that your study was to
19	look into whether there were other potential causes to
20	explain the increased watercuts that were reported in
21	those case cuttings?
22	A It was it was part of the work that I've
23	done. And I'll show in future exhibits that we've
24	learned a lot about our development areas that are
25	located proximal to the example I've shown. And we

1	would apply those learnings and revisit in some of
2	these cases and and come up with different, and I
3	would argue in my opinion, stronger hypotheses as to
4	what's going on with the watercut changes.
5	Q If you could turn to your next slide what
6	does this represent?
7	A The map shown on this exhibit represents a
8	locator map for the case studies that I had evaluated
9	as part of this assessment. And it's a subset of
10	them. Also shown on the they're represented by the
11	colored circles, and I'll describe those shortly.
12	Also shown on this map in stars, yellow star
13	represents a location of the Papa Squirrel saltwater
14	disposal well that's part of this case. And the blue
15	star on the left side of the map represents the
16	location of the Severitas 2 State SWD 1, also part of
17	this this case.
18	And the pink or purple polygons that are
19	scattered across this map represent locations or areas
20	that Chevron operates.
21	The colored circles shown on this map
22	I've got a legend off to the upper right. But the
23	the green circles represent an area where we've
24	identified Wolfcamp completions affecting the Avalon
25	and resulting in similar observations that we had seen

1 in the previous exhibit that I've shared regarding 2. Exhibit 8 that the OCD has entered. 3 The blue circles represent areas where Chevron is operating Avalon wells either directly 4 5 under or adjacent to Delaware Mountain Group saltwater 6 disposal. And we are not seeing any impact from those operations. 8 The red circle represents an area where 9 there is identifiable geologic features that trend between Delaware Mountain Group injectors and Delaware 10 11 Mountain Group producers that may have a driver on why 12 some of the -- the potential communication was seen in 13 those areas. 14 And then lastly, the orange circles 15 represent areas where there are geologic features that 16 trend between Avalon producers and Delaware Mountain 17 Group saltwater disposal wells that again could -- it may indicate why some of those observations were made. 18 19 Let's turn to the potential exhibits 0 20 prepared for inspection and study. The first one is just identified in the next slide, "Wolfcamp 2.1 22 Completions Affect Avalon Production." Just the title 23 and the actual first exhibit representative of these 24 studies on page 112, "Wolfcamp Completions Result in

Avalon Production Interaction."

25

1 If you could explain for the Commission what 2 you did in your study and what's represented by this exhibit? 3 4 Α Yes. Chevron operates in the vicinity of 5 the Papa Squirrel saltwater disposal well we're 6 proposing. We operate several sections that are fully developed with Avalon producers. And those Avalon 8 producers in the northern part of Salado Draw have 9 produced for three to four years from the time we drill till the time I'm showing on this slide with 10 11 very stable production traits, very stable declines. 12 We've seen predictable gas -- through the 13 time, the life of those wells. And the only 14 particular upsets that we've seen with those well 15 during the production periods were when were 16 developing an offset add directly adjacent to those 17 wells. We would typically see fracture-driven interactions that would result in a short-term 18 19 gas-oil-ratio trend change or increase in water 20 production. 2.1 So in roughly 2019 into 2020, we started to 22 see pretty significant changes in our -- our Avalon 23 wells. And -- and by changes I am referring to the 2.4 diagram that's on the right side of the -- the exhibit 25 If we look at -- at that diagram, what we're here.

1	showing here is both oil production rate and the gas
2	oil producing gas-oil-ratios for a sample of the
3	Avalon producers on the northeast side of our Salado
4	Draw development area.
5	Q And what colors are represented in that
6	chart for each?
7	A The green circles represent the oil rate,
8	and the yellow circles represent the solution
9	gas-oil-ratio. What you'll observe on here as I
10	discuss is there's been relatively consistent or let
11	me say stable declines through the oil rate and
12	increases in gas-oil-ratio. What we observed at at
13	that time was increases in production.
	-
14	If you'll look at where the vertical dash
	_
14	If you'll look at where the vertical dash
14 15	If you'll look at where the vertical dash black line is on that plot, and this is prior to us
14 15 16	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to
14 15 16 17	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and
14 15 16 17	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio.
14 15 16 17 18	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio. These Avalon wells are approximately 3,000
14 15 16 17 18 19	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio. These Avalon wells are approximately 3,000 feet TBD shallower than our Wolfcamp pads. And at the
14 15 16 17 18 19 20 21	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio. These Avalon wells are approximately 3,000 feet TBD shallower than our Wolfcamp pads. And at the time of the study, we didn't have a precedent for
14 15 16 17 18 19 20 21 22	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio. These Avalon wells are approximately 3,000 feet TBD shallower than our Wolfcamp pads. And at the time of the study, we didn't have a precedent for for Wolfcamp completions interacting with Avalon
14 15 16 17 18 19 20 21 22 23	If you'll look at where the vertical dash black line is on that plot, and this is prior to us really understanding what was going on. We started to see significant increases in oil production and significant decreases in gas-oil-ratio. These Avalon wells are approximately 3,000 feet TBD shallower than our Wolfcamp pads. And at the time of the study, we didn't have a precedent for for Wolfcamp completions interacting with Avalon wells.

facilities bottlenecking. We looked at a wide
spectrum of drivers, but the only one that really
correlated to what we've observed here were our
underlying Wolfcamp A fracs. And the and the frac
date is shown by that vertical dashed black line. So
that was our first our first indication that we had
an interaction.

2.1

2.4

Following that, I've got another diagram here shown on the left -- the lower left corner of the slide. Practically 3 miles west of -- of the first example, we had another pad. This is our second pad of Wolfcamp A wells that was being completed in the area. And we observe again another interaction in those Avalon wells that's highlighted here in the lower left corner.

So let me describe what this chart represents. I've got the time on the -- on the X axis and on the Y axis of showing water rate shown in blue and the gas-oil-ratio shown in black. We see a stable decline in producing water rate, but up until the first black line that's shown with a callout that says "Avalon Frac Interaction Event." This was an offset -- directly offset pad where we saw the completions from that pad interacting with this particular well, and the result was a drop in the producing GOR and an

increase in the water production.

2.1

2.4

You'll see another stable decline from that first event down until the point where there's a vertical red solid line and then a second vertical dash line. What this window represents is the start to the end of the Wolfcamp A completion that was being conducted below the -- this Avalon well.

So this is two examples. Following this, we had strong hypothesis that these Wolfcamp completions were interacting with Avalon. So we took a surveillance -- we conducted a surveillance study on a third pad where we showed it in two Avalon wells. We ran down whole memory pressure gauges.

We conducted water samples from both the -predicted the Avalon well as a baseline. Collected
water samples from an offset Wolfcamp pad as a
baseline, and we took our water samples from our
completions. And what we observed when that
underlying Wolfcamp A well or the pad was completed,
2,000-psi increase in one of our Avalon wells.

We saw the water chemistry change from the time that -- from the time prior to the completion to during the completion and then reverted back to this baseline after the completion. So we -- we then had, again, more data now that supports this hypothesis

1 that our Wolfcamp wells were interacting with Avalon. 2 Could you turn to your next exhibit on page It's talking about "Wolfcamp Completions Have 3 Extended Periods of Water Influx in Nearby Avalon 4 Wells." And what did you do for this study in order to reach these analysis and conclusions? 6 Α Yes. So I've got on the bottom righthand corner just a locator map showing the -- the 8 9 development, the Salado Draw development area just in the vicinity of where we were observing these 10 11 Wolfcamp A interactions with our Avalon wells. 12 And highlighted in the blue rectangles, each 13 of those blue rectangles represents an individual pad 14 of Wolfcamp A wells where we have seen an interaction 15 with the overlying Avalon wells. And the only reasons 16 that -- that 13 and 24 aren't highlighted is that they 17 were completed after I conducted his study. So I have not evaluated any -- whether those -- those pads have 18 interacted with Avalon. 19 20 At the top -- at the top half of this exhibit, I'm showing three different production plots. 21 22 And this is again a sample of -- of Avalon wells from across our -- our field as -- as highlighted in the 23 24 bottom right locator map. 25 But on the spot, again, the X axis is timed, Page 135

1	and the Y axis represents in blue, water rate; in red,
2	gas rate; and in green, the oil rate. And you
3	looking at these I'll kind of walk through one of
4	them.
5	Looking at the one on the left, you'll see a
6	very subtle increase around the the first callout
7	that says "Avalon Frac," the left of the two. There's
8	a small increase in the water change. And this
9	represents the pad of Avalon wells that were completed
10	two well spaces over from the the well that's shown
11	here or two pad spaces over.
12	The second Avalon frac callout represents an
13	offset Avalon pad that was fracked. You'll see a more
14	significant increase in water production, a drop in
15	the producing in the gas production, and then an
16	increase in oil production after the the well
17	recovers from that frac-driven interaction.
18	But we'll also refer to those as fracture
19	stimulation interference, FSI or FDI. We're using
20	those. I'm using those terms analogously.
21	Q And you may have covered it, but which ones
22	are you referring to when you're talking about water?
23	I mean which color on the graphs?
24	A The blue. So the water the water rate
25	itself, the water production rate is blue. But when I
	Page 136

1 refer to the water cut, what I'm observing is that the 2 oil rate drops down to roughly the zero line as the water rate increases from the base line. So that 3 would have indicated that the water cut's increasing 4 5 at that point. 6 So I've stepped through the two examples 7 from Avalon fracs. Now I want to show that the 8 Wolfcamp fracs are the next two vertical lines on this 9 plot. And both of those -- the first Wolfcamp frac 10 figurative interaction that we observe, we'll see an 11 increase again in -- in the -- the water production 12 rate in blue and the oil production rate in green. 13 And again, that well recovers back to a baseline within about six months, just estimating based on 14 15 the -- the graph. 16 And then lastly, if you move over to roughly 17 where it says Year 6, you'll see that -- that next Wolfcamp A completion that took place resulted in an 18 increase in water production in this well. But this 19 20 increase in water production rate is extended at least nine months based on the data that's shown on this 2.1 22 plot. 23 And that's really the key that I want to

And that's really the key that I want to demonstrate with these plots here is if you look over to the middle plot where that Wolfcamp A frac is shown

2.4

25

1 around Year 5, you see that production upset or that 2. change in water production rate extends almost a year 3 on this plot to the end of the data. 4 And lastly, in the -- in the last example, 5 again, that -- that that water rate increases for 6 the -- the limit of the data that's shown on this 7 plot. 8 So the key to -- the key to what I'm showing 9 here is that the fracture-driven interactions or frac interactions between completions and offset wells are 10 11 generally short term in duration, that these Wolfcamp 12 interactions that we've observed and kind of 13 established are hurting in our area can lead to 14 long-term changes in the -- the water production rate 15 for the -- the Avalon wells. 16 If you could turn to your next slide on 17 page 114. And what does this slide represent? 18 Α This slide represents a reevaluation of one 19 of the case studies that -- that we had taken a look 20 And I want to draw attention to the locator map 2.1 on the left side. What's shown here in yellow 22 highlight on that locator map is the western extent of 23 our Salado Draw development area. And in the middle 2.4 of Section 21, and I've -- I've got a blue well stick located. And that is the Avalon producer that we're 25

1 going to be looking at here in this example. 2. So this was multiple other case studies and now Exhibit 8? 3 This is -- that's correct. 4 Α 5 Also shown on the map in Section 16 north of 6 Section 21 is a blue triangle in the southeast corner. This represents the location of a Delaware Mountain 8 Group saltwater disposal well. And -- and that same 9 -- on the eastern side of Section 16, I've got two well sticks that are difficult to discern. 10 11 But the callouts on the top represent those 12 being the locations of one-third Bone Spring well with 13 the completion date shown to be between May and June of 2015. And a stack of three Wolfcamp wells with the 14 15 completions to be between July and August of 2015. 16 Looking at the -- the production on the 17 right side of -- of the X axis, we're looking at time. And on the Y axis, we're looking at monthly volumes on 18 19 the logarithmic scale. Shown in blue on this plot is 20 the water production rate. Green is oil rate. Red is 2.1 the gas rate for the producer that I have called out 22 on Section 21. 23 Also shown on this plot is the injection 2.4 rate in monthly volumes again up for the saltwater 25 disposal well that's shown in the southeast corner of Page 139

1	Section 16. In this example in the documents that
2	were shared in Exhibit 8, the the thought or the
3	hypothesis is that breakthrough occurred due to
4	increasing injection rate on that saltwater disposal
5	well, causing the increase in water production in that
6	well located in Section 21.
7	Given the learnings that we had in our
8	development area, I had taken the completion dates for
9	those third Bone Spring well and those Wolfcamp wells
10	and and overlay those onto that production file.
11	And what I've noticed is where that purple vertical
12	line is representing the date of the Wolfcamp A
13	completions, that's when we see the significance
14	change in water production on this particular well.
15	So while I'm not ruling out that the
16	saltwater disposal well may have been the driver in
17	it, my in my opinion, the Wolfcamp A completions is
18	likely a more robust or superior explanation of the
19	kind of the the two hypotheses that we're looking
20	at here.
21	Q If you could turn to your next exhibit on
22	page 115, "Wolfcamp completions impact Avalon
23	production." And what does this slide show?
24	A This is looking at looking at the locator
25	map on the left. We're looking at the same general

1	area, but I've moved the subject well one well spacing
2	to the to the east of the the previous example.
3	Located in Section it's located roughly in the
4	center of Section 21.
5	Also in Section 21, there are two light blue
6	well sticks on the left side representing two Wolfcamp
7	A wells. There are four well sticks kind of in the
8	center of this section representing another set of
9	Wolfcamp A wells and set of purple or I guess purple
10	well sticks on the east side, again representing
11	Wolfcamp A wells.
12	So I've taken the completion dates for those
13	wells and overlaid those onto a production plot from
14	that particular well. And those are shown with the
15	vertical dash lines on the production plot on the
16	right side of this exhibit.
17	I want to note that this one is looking at
18	daily rate versus rather than monthly monthly
19	rate that we have seen on the last slide. So the
20	first pad of the first two Wolfcamp A completions
21	that took place don't show a a significant step
22	change. You could argue that the if you look at
23	the vertical blue dash line that there's a small
24	increase in water production.
25	But what I really want to call out on this

1	example is that the two pad, the Wolfcamp A wells that
2	are directly underlying that Avalon producer are
3	plotted with a red dash line and a purple dash line.
4	And this well sees a significant change in oil, gas,
5	and water rate coincident with that with those
6	completion dates.
7	And this is similar to the example that I
8	had shown in my previous exhibit. One on page 112,
9	where we saw increased oil production following an
10	underlying Wolfcamp A completion.
11	Q So your bottom line including with respect
12	to the analysis of the Wolfcamp and Bone Spring
13	completions on oil and gas?
14	A So the the key takeaway for my for
15	this section is that the observations that we've seen
16	in Exhibit 8 can have alternative alternative
17	explanations. Chevron has consistently seen
18	Wolfcamp A completions interacting with our Avalon
19	wells in this particular section of Lea County.
20	And again, the just looking at water cut
21	alone in proximity to saltwater disposal wells, it
22	is it is not conclusive in determining root cause.
23	With the additional data we have, we really need to do
24	more thorough examinations of to rule out which the
25	leading hypothesis is.

1	Q Let's turn to the next aspect of your study,
2	which begins on page 116, looking at whether Avalon
3	wells were affected by DMG disposal. And the first
4	substantive slide is on page 117. If you could
5	explain to the Commission what we're looking at here
6	and what conclusions were reached.
7	A Yes. This example is in a location that's
8	similar to I believe Exhibit 7 that the the OCD has
9	submitted. And this is an a an area where in 2014
LO	and into 2015, the Bran SWD 1 and the Heavy Metal 12 1
L1	were two open-hole saltwater disposal wells.
L2	And the operator of the the green well
L3	sticks that were shown on this map where it says "DMG
L4	producers," I noted an increase in water production
L5	and reached out to the operator of those those two
L6	saltwater disposal wells, showed them the the
L7	observations that they had, and they came to an
L8	agreement that that they were going to shut those
L9	wells in due to suspected communication.
20	Q If you could just identify the location of
21	those two wells that you managed to modify on the map?
22	A Those two wells are indicated by a blue
23	circle with a cross in the middle of it.
24	Also shown on this map are two other just
25	open circles, smaller circles. And those represent

1	two others, the Delaware Mountain Group saltwater
2	disposal wells. One of them was one of the SDS 11
3	Fed 1 was injecting into only the the Bell Canyon.
4	Lotos 11 Fed 2 was injecting into the Bell Canyon and
5	Cherry Canyon.
6	But the really the key that I want to
7	demonstrate here is despite the potential
8	communication between the the two saltwater
9	disposal wells over to those Delaware Mountain Group
10	producers, Chevron operates Avalon wells that are
11	underlying or between those two locations shown by the
12	the DMG wells and the saltwater disposal wells.
13	And we had not seen any indication of water and influx
14	or abnormal production from those underlying Avalon
15	wells.
16	Q Where are the Avalon wells shown on the map?
17	A They're shown by the tan or pink color
18	that's in the tan polygon representing the development
19	area.
20	Q If you could turn to the next slide on
21	page 118 and explain what your study looked at here
22	and the conclusions that you reached.
23	A This this study demonstrates again what
24	I'm going to highlight on the locator map shown on the
25	bottom right of the of the slide with a blue

1	what we're looking at here is our again, our
2	Chevron Salado Draw development area, the wells that
3	are showing up on the map in Sections 15, 14, 13, 18,
4	19, 24, 23.
5	These are Avalon producers within that area.
6	The northeast corner of our development area is a
7	saltwater disposal well that was completed in the Bell
8	Canyon and the Cherry Canyon.
9	Q And just to clarify, Chevron's Avalon
LO	producers here are in a different area than what we
L1	looked at in the prior exhibit?
L2	A Correct. This is this is south of that
L3	prior exhibit.
L 4	Also on this map is a is a SHMax
L5	orientation. This this is the maximum horizontal
L6	stress direction. And it was derived from image
L7	image logs looking at four-hole breakouts as well as
L8	micro-seismic that was conducted in Sections 18 and 19
L9	on this on this map.
20	But what I'm going to demonstrate here is
21	that that saltwater disposal well was active from the
22	time that we drilled those wells all the way to
23	February of 2019. And we were on strike to that SHMAx
24	
4 4	orientation of that well, and we did not see any

1	that time aside from the known completions that we had
2	in the Avalon wells that are called out on the
3	production plot that's shown on the left side here.
4	Q You said it runs; correct?
5	A Yes. What I mean by that is if you take the
6	SHMAx orientation from the and lay overlay it on
7	the saltwater disposal well, that orientation
8	direction points directly into our Avalon wells.
9	Q So the conclusion you've reached is
10	demonstrated by the slide as well?
11	A In part. The other the other point that
12	I want to make regarding this this area is that
13	these wells produced roughly a 50 percent water cut
14	over their over their well life up until we started
15	to see interactions with the Wolfcamp completions. We
16	were able to draw down.
17	We conducted a a pressure study in
18	Sections 18 and 19. We were able to draw down
19	bottomhole pressures to where we cut conducted
20	those pressure surveys. We were seeing 500 psi to 800
21	psi on those surveys. And over the course of that
22	that time when that well was actively injecting, we
23	didn't see any indication of a water pressure change.
24	Q Let's take a look at the next aspect of your
25	study when you looked at possible causes of faulting
	Page 146

1	or the lineaments that begins on page 119 and then for
2	subsequent slides on page 120. If you could explain
3	to the Commission the work you did here and what the
4	slide demonstrates.
5	A So now now we I've stepped back up to
6	the previous example that I've shown where our Avalon
7	wells do not interact with overlying and offset
8	saltwater disposal in the Delaware Mountain Group.
9	But we're we're focused now on the Delaware
LO	Mountain Group producers in relation to the Delaware
L1	Mountain Group injectors that are that are shown on
L2	this map on the right with the DMG producers being in
L3	green, DMG injectors being in blue.
L4	Q This is again looking at those wells
L5	depicted on Exhibit 11 or 7, I mean?
L6	A That is correct.
L7	On the the well that has a callout
L8	labeled PLU 401H, I've got a pink dot that indicates
L9	where on a pressure I'm sorry production logging
20	tool. Basically a production log that was run on that
21	well. They observed 1,520 barrels of water coming in
22	at one perforation cluster. That point on this well
23	represents that inflow point.
24	We had a, as Tom mentioned, our geophysicist
25	map out and look for potential faults, potential

1	lineaments in our different development areas. And
2	not being aware of this particular case study, I took
3	the work that that geophysicist had done, and I
4	integrated it into this example.
5	And on that map shown in green represent a
6	potential lineament that was that was mapped out
7	from seismic. And the location of that lineament
8	trends between the the heavy metal well, the Bran
9	well. And the projection of that extends through
10	where you see that PLT inflow point on that 401H
11	producer.
12	Q So you're talking about the green diagonal
13	line that runs from the southwest to the northeast?
14	A That that's correct. And the
15	significance of that with regard to the SHMax
16	orientation that's shown with the double red arrow on
17	the the bottom of the slide here is that a you
18	know, any kind of fracture, lineament, fault, anything
19	that's oriented parallel to the SHMax direction is
20	going to be under an an opening mode or it's going
21	to be in an orientation.
22	I would enhance or enable potential fluid
23	migration through it versus an an orientation such
24	as shown on the bottom of this slide. I guess there's
25	two there's two little cartoons on the bottom of

the slide. 1 2 The one on the left would represent an orientation of the lineament relative to the -- the 3 SHMax and SHMin. That would give the opening mode. 4 5 The one on the right shows that that lineament is now 6 perpendicular to SHMax, so it would be under an orientation that would be preferentially closed or 8 restricted fluid movement. But having lineaments, faults, any kind of 9 feature like that in the vicinity of the injection 10 11 would be unfavorable. And this is a potential 12 explanation as to why that -- that area has reserved 13 the effects that were -- that were noted in here. 14 0 So is it fair to say that your conclusion as 15 to the lineament is a possible pathway for the 16 migration of fluids were observed? 17 Α That's correct. If you could turn to your next slide on 18 0 page 121, this looks like a little bit deeper analysis 19 20 of the same issue. 2.1 Α That's correct. 22 So what I want to first call out is the locator map that's shown on the left side of this 23 slide here. 2.4 The blue box on that locator map 25 represents generally the general area that we're

1	looking at with this particular example. Looking at
2	the the larger map in the center of the exhibit,
3	there are several different colored lines here. And I
4	want to describe what those are.
5	First are the green there's a green well
6	location, a green well stick on the southern part or
7	the the lower half of this map. That represents a
8	well that was included in the case study. I believe
9	that was Exhibit 8 as a well that had watered out or
10	seen an increase in water production.
11	As part of the review of that case study, I
12	did not observe any offset Wolfcamp A or Avalon or
13	Bone Spring completions that occurred around the time
14	of that well. Seeing increased water production, so
15	we were able to exclude that as a potential driver.
16	But the on the right side of the map
17	there are two triangles that represent the locations
18	of two Delaware Mountain Group producer injectors that
19	were completed in the Cherry Canyon and in the Brushy
20	Canyon. Those were thought to be the potential driver
21	to the the events that were observed and the vents
22	being the increased water production in the in the
23	Avalon well that's shown on the the map here.
24	I again integrated the work of our
25	geophysics team. The blue lines on the map

1	represent these are deep Woodford or deeper faults.
2	And you'll notice that there's one that trends
3	southwest/northeast across this map. And the the
4	red lines indicate the red lines indicate a
5	potential Delaware Mountain Group lineaments that the
6	geophysicist had identified in that seismic volume.
7	And what I want to note here is two things.
8	The first is that the DMG lineaments are roughly
9	parallel to the deep faults that we that are
10	interpreted in the area. And both of those are
11	parallel or sub-parallel to the SHMax orientation
12	here.
13	So again, this is a potential geologic
14	control on why two saltwater disposal wells could
15	potentially interact with the producing well that's
16	over four miles away. So you know, looking at it from
17	an interpretation standpoint, this would be an
18	unfavorable location group to to put it in
19	saltwater disposal wells.
20	Q Did you also take a step in regard to the
21	lower containment for detecting influx?
22	A Yes.
23	Q And that begins on page 122, with a
24	supplement slide on page 123 where you analyze the
25	Bone Spring Lime thickness across the basin?

1	A Yes. This this study went to evaluate
2	the the strength or the ability of the Bone Spring
3	Lime to prevent fracture growth from Avalon producers
4	up through it. So one of the hypotheses that we
5	identified early on is that these Avalon wells are
6	potentially seeing water production production
7	higher than than expected because they were
8	breaching through the Bone Spring Lime.
9	So I've got a a map on the lower left
10	side here, a map showing the Bone Spring Lime gross
11	interval thickness. And this area covers the New
12	Mexico portion of the Delaware Basin. Also on the
13	slide is the Delaware Mountain Group risk area
14	outline, but it's truncated at the Texas-New Mexico
15	border, and that's shown in black.
16	There's a yellow star near the near the
17	Texas-New Mexico border that represents the Madera
18	Malcolm R ET 1 well. And the significance of this
19	well is that in evaluating the Bone Spring Lime
20	throughout this area, the although the gross
21	thickness was roughly 30 feet thick, the net carbonate
22	thickness within this well was was only
23	representative of two beds that were approximately
24	8 feet thick. So this was a pessimistic case showing

the thin or low side case for what the Bone Spring

25

1 Lime thickness would be at the area. 2 Lastly, on the -- on the map shown on the 3 left side, I've got the -- the starred locations in orange of the Papa Squirrel, the Severitas wells. And 4 in white are callouts showing the -- the thickness of the Bone Spring Lime at 42 feet at the Papa Squirrel 6 and 87 feet thick at -- at the Severitas location. 8 And what does it show on the right? 0 9 А On the right is the -- showing the log on the Madera Malcolm, the well that I had mentioned 10 11 previously. And we're looking at -- in a -- in terms 12 of the tracks, the first track is the gamma ray. Then 13 you'll see the depth track with depth indicated in both TBD and TBD sub C. 14 15 The -- the next log frac is the resistivity, 16 and there is ferocity along with the PE, 17 photoelectric. And then lastly is just a lithology, -- lithology on the -- the right track. 18 19 If you could turn to your next slide on 0 20 page 124 where you dug deeper with regard to the Bone Spring Lime being breached? 2.1 22 Α Yes. And what are you showing here? 23 2.4 Α What's showing here was a -- a modeling exercise that had taken place to understand whether 25

1	our baseline Avalon completions could potentially
2	breach through the Bone Spring Lime at this location.
3	So what was done is we took the base case completion
4	with slurry volume per cluster basis and started out
5	with 69,000 gallons per cluster.
6	We also studied sensitivities of 79,000
7	gallons per cluster and 91,000 gallons per cluster.
8	And in doing that, we were looking at the potential
9	that you weren't seeing the great cluster efficiency,
10	meaning that not all the clusters were receiving
11	fluid.
12	And in all three of those scenarios, we did
13	not observe the Bone Spring Lime. Or let me, well,
14	rephrase. We did not observe the the Avalon
15	completions propagating up through the Bone Spring
16	Lime. But we also undertook a study to understand
17	what it would take.
18	So we we increased the the volumes
19	for of it volume per cluster basis. And it took
20	over 109,000 gallons per cluster in order to start to
21	breach the 8-foot-thick Bone Spring Lime. But I want
22	to emphasize that over our development area and over
23	the the locations of our saltwater disposal wells
24	that the Bone Spring Lime is significantly thicker

25

than this.

1	And then one final note. You know, this is
2	a model, so we want to calibrate it to field data.
3	And as I mentioned previously, we were able to draw
4	down our Avalon wells to less than a thousand psi
5	bottomhole pressure, which suggests to us that we are
6	not seeing influx of water from the overlying Delaware
7	Mountain Group, meaning that those completions did not
8	breach through the the Bone Spring Lime.
9	Q Can you turn to the next slide, which is
10	just a summary of your conclusions? If you can go
11	through them and express your opinions based on your
12	study?
13	A Yes. To summarize, you know, looking at
14	looking back at the case studies that were shared, I
15	it's shown that water cut can have multiple drivers
16	in unconventional wells. And really, we need data and
17	we need to do more exhaustive analyses on these case
18	studies to identify what the root cause is just
19	because water cut alone in proximity to saltwater
20	disposal is not a conclusion of interference.
21	We've seen consistently within our
22	development area in South Lea County that we've had
23	Wolfcamp completions interacting with Avalon wells.
24	And often the response that we see those Avalon wells

is -- the observation is similar to what was noted in

25

1 Exhibit 8 from the OCD map in the previous study. 2 We have two cases of complete development 3 areas where we're able to produce our Avalon wells in proximity to Delaware Mountain Group injection without 4 5 seeing indications of communication. 6 When the SHMax orientation of features such 7 as lineaments or faults is parallel to the -- when the 8 strikes of the lineaments or fault are parallel to 9 SHMax, those locations are -- that orientation's 10 potentially enabling to fluid migration through them 11 as opposed to when they're orthogonal to SHMax or 12 perpendicular to it where the -- the lineament will be 13 under enclosing mode. And Chevron analyzed the areas around the 14 Q 15 two wells that are the subject of the pilot project to 16 determine if they're lineaments? 17 They have investigated it, and they have not Α any evidence within 2 miles of the locations. 18 And finally, what does the --19 Q 20 In conclusion, the -- the Bone Spring Lime 2.1 is -- is not being breached during Avalon completions. 22 And the saltwater disposal wells are operating in a 23 manner not to frac the reservoir. Whereas our Avalon 2.4 completion is the intent of those was to break down the reservoir. So we were trying to stimulate frac of 25

1	the the reservoir below them, and we were not
2	breaching through the Bone Spring Lime.
3	Q In your opinion, will the Chevron wells that
4	were subject to the pilot project negatively impact
5	DMG existing or future projects in the area?
6	A No.
7	Q In your opinion will the Chevron wells
8	negatively impact Avalon's wellspring production into
9	the area?
10	A No.
11	Q In your opinion will the wells actively
12	impact relevant rights of producers of Avalon or Bone
13	Spring or DMG?
14	A No.
15	Q Were the exhibits we discussed today
16	prepared by your or under your direction?
17	A Yes.
18	MR. DEBRINE: We would move the
19	admission of Exhibits I believe it's 109 through 123.
20	MR. FUGE: Any objections?
21	MR. TREMAINE: Yes, Mr. Chair. Thank
22	you.
23	MR. FUGE: Any objections?
24	Exhibits have been admitted.
25	//
	Page 157
	raye 137

1	(Exhibits 109 through Exhibit 123 were
2	marked for identification and admitted
3	into evidence.)
4	MR. FUGE: Mr. Tremaine?
5	MR. TREMAINE: Making sure I understand
6	the formulation of the questions.
7	EXAMINATION
8	BY MR. TREMAINE:
9	Q We're going back to slide 120. This is a
10	clarifying question. What is the distance between the
11	injection wells that you're referring to and the
12	producing wells that were affected on the slide?
13	A Approximately two and a half miles.
14	Q And I want to make sure I'm understanding
15	the summary of your presentation here. Is it
16	Chevron's conclusion that the Wolfcamp wells are
17	communicating with Avalon producing wells?
18	A They are. That is our conclusion, yes.
19	Q And can you speak to whether that
20	communication is negatively affecting or damaging
21	production in those Avalon wells?
22	A We have seen cases where it has where it
23	has taken longer to recover in those wells. I can't
24	speak to the the economic value of that.
25	Q And is my understanding also true that you
	Page 158

1	cannot eliminate the Mesquite well SWD wells as the
2	source of the interference for the wells?
3	A No, I'm not. I'm not suggesting that
4	they're not.
5	Q In the area where the observed influence for
6	the Wolfcamp completion was observed in the Avalon,
7	were there any similar observations in the Bone Spring
8	horizontal wells and the Avalon and Wolfcamp?
9	A I have not investigated that in that area.
10	MR. TREMAINE: No further questions.
11	MR. FUGE: Ms. Hardy, any questions?
12	MS. HARDY: I do have some questions.
13	Thank you.
	T
14	EXAMINATION
14 15	BY MS. HARDY:
15	BY MS. HARDY:
15 16	BY MS. HARDY: Q Good afternoon. I've got a few questions
15 16 17	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little
15 16 17	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the
15 16 17 18	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the application file.
15 16 17 18 19	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the application file. A Yes.
15 16 17 18 19 20	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the application file. A Yes. Q So it looks like this exhibit addresses or
15 16 17 18 19 20 21	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the application file. A Yes. Q So it looks like this exhibit addresses or references six case studies; is that right?
15 16 17 18 19 20 21 22	BY MS. HARDY: Q Good afternoon. I've got a few questions for you, and I'm going to be jumping around a little bit here. If you can look at page 110 of the application file. A Yes. Q So it looks like this exhibit addresses or references six case studies; is that right? A Yes.

1	A Yeah.
2	Q Is there still what is happening with the
3	sixth case study?
4	A Yeah. The sixth case is the orange circle
5	that's shown on the near the state line on this
6	map. And it's it represents the area where Chevron
7	drilled eight Avalon wells, and since the beginning of
8	those wells, they've seen high watercut and high
9	pressure.
10	Across the state line difficult to
11	explain. I guess across the state line and one
12	section to the west, so approximately 1 mile to the
13	southwest of that location, there is a saltwater
14	disposal well that's completed in the in the
15	Delaware Mountain Group.
16	We identified between that saltwater
17	disposal well and our Avalon wells some potential
18	localized faulting. And it's our it's our leading
19	hypothesis that those wells are being influenced by
20	saltwater disposal in that in that area. But
21	that's the last case. I did not have an exhibit on it
22	and did not discuss it.
23	Q And what's the current production status for
24	the Avalon wells included in this case study?
25	A I don't know the current status of the
	Page 160

1	wells.
2	Q You can what is the approximate vertical
3	separation between the Wolfcamp and the Avalon shale?
4	A 3,000 feet.
5	Q And what do you think is the mechanism or
6	the pathway that is allowing Wolfcamp fracs to
7	communicate with Avalon?
8	A I don't know. But but the hypothesis is
9	either existing potential existing open networks or
10	the stimulation networks. But we we do not think
11	that we are propagating the Wolfcamp fractures up all
12	the way to the Avalon.
13	Q Is the frac being comprised or vertically
14	through the pole rod section or is the communication
15	occurring through natural fractures or faults?
16	A I think that's what I answered in the last
17	question.
18	Q Those are that it's growing vertically
19	through the?
20	A Oh, we don't we don't believe that it's
21	growing vertically 3,000 feet.
22	Q You don't know. Have you checked the oil
23	gravity to determine whether it's changed?
24	A We have not.
25	Q And let's see the next slide. Can you look
	Page 161

1	at Slide 113? And there are three production rate
2	versus time lapse on this page; correct?
3	A Yes.
4	Q And are these composite graphs for all of
5	the Avalon well drilled in a path?
6	A These are not. These these represent a
7	sample of wells primarily taken from the the east
8	side of the of the Salado Draw development area, so
9	Sections 18 and 19.
10	Q And what are the dates for the data that's
11	shown on these graphs?
12	A The dates indicate I don't have the
13	the dates listed on here but these represent from the
14	start of the well shown on the left side of the data
15	all the way through just the years I've shown on here.
16	Q So you don't have an idea or you don't know
17	what the timeframes were?
18	A Roughly 216 would would be the start of
19	the plots, the times on here.
20	Q And were any of these sections at least
21	including the original production areas caused by DMG
22	injections?
23	A Can you rephrase the question?
24	Q Yeah. Were any of these sections included
25	in the original production areas that were influenced
	Page 162

1 by DMG injection? 2 Α Not sure I understand the question. Let me ask this. Did the other Avalon pad 3 0 4 show similar production performance or are there some 5 that are showing water influx? 6 Yes. The -- the paths that are shown on the 7 -- the map on Exhibit 113 showed stable production. 8 The -- the two sections that I've noted in that case 9 study in sections 29 and 32 that are cropped off on this map are the wells that have showed increased 10 11 influx from these early production wells. 12 So back on page 112, the exhibit indicates 0 13 that Chevron observed significant production changes in Avalon wells overlying Wolfcamp A fracs; right? 14 15 Overlying and your -- directly overlying and 16 in proximity to the pad. So it did not have to be 17 directly underlying the -- the Avalon wells impactor did not need to be directly overlying the Wolfcamp 18 19 fracs. So even if there were a couple well spacings 20 offset, we still would see the -- the influence of 2.1 them. 22 And then on page 114, are you attributing the watering out of the Section 21 Avalon well to 23 fracs that were completed approximately a half-mile 2.4 25 away?

1	A That that's the best bit of data we have,
2	so we're looking at the fracs that are roughly a
3	half-mile away, but we're also looking at the
4	saltwater disposal well to that same distance and
5	spacing where the Wolfcamp wells were, again,
6	intentionally trying to break break down the rock,
7	whereas the saltwater disposal well was was not.
8	It was supposed to be injected under a frac gradient.
9	So that's the conclusion that we lead to is that the
10	Wolfcamp completions that are a a superior
11	hypothesis.
12	Q And the Wolfcamp completions are several
13	thousand feet deeper; correct?
14	A That's correct.
15	Q What typical half fracked length does
16	Chevron target?
17	A I don't know.
18	Q Do you have any examples in this
19	presentation where Chevron has performed targeted
20	surveillance and Wolfcamp frac water traveled over a
21	half-mile?
22	A Not in this presentation, no.
23	Q And has Chevron done that analysis other
24	than in this presentation?
25	A Can you rephrase the question?

1	Q Sure.
2	A Or restate that.
3	Q Sure. Has Chevron performed targeted
4	surveillance of the Wolfcamp frac that has shown the
5	Wolfcamp frac water has traveled over a half-mile?
6	A We have vertically. So we have seen
7	indications it's not conclusive, but we have seen
8	indications where a Wolfcamp to Avalon water mixing
9	relationship is a valid solution to the observations
10	that we have.
11	Q That's vertical?
12	A That's vertical.
13	Q But not horizontal?
14	A Not that I'm aware of. No.
15	Q Do you have the 3D seismic in this area?
16	A We do.
17	Q And have you been able to determine the
18	location or trend of these fractions or faults that
19	are allowing this fracture stimulation's appearance?
20	A Not in not in the vicinity of this area,
21	no.
22	Q If you'll look at page 118 please. And this
23	is a production rate versus time graph; correct?
24	A Yes.
25	Q And is this plot a single Avalon well?
	Page 165

1	A This is, yes.
2	Q And where is the well located?
3	A Roughly in the center of Section 18.
4	Q And the data on the graph ends in late 2021;
5	is that correct?
6	A That's correct.
7	Q Has there been any change in the production
8	performance of this well since then?
9	A There has, yes.
10	Q And what has that shown?
11	A That's shown a Wolfcamp completion that
12	was there was two paths of Wolfcamp wells that were
13	completed on the west half of Sections 18 and 19. And
14	this well has seen a response to that frac gradient
15	interaction in both wells. And I believe that this
16	well is actually one of the examples shown on another
17	exhibit that has all this data.
18	Q And on the lower right side, the Mesa B SWD
19	is highlighted; correct?
20	A Yes.
21	Q And is that a DMG SWD?
22	A It is.
23	Q And do you have any information about the
24	history of that well?
25	A Other than what's located on the or
	Page 166

1	indicated on the slides, that's the the history
2	that I have on it.
3	Q If you can please look at page 124.
4	Actually, sorry, 121. What is the name of the well
5	that is labeled 24/8/2011? Sort of the lower part of
6	the
7	A I I do not recall. And that that date
8	represents the completion date for that well.
9	Q And do you know what zone that well is
10	completed in?
11	A I believe it's Avalon.
12	Q What's the significance of these DMG
13	lineaments that are shown on this exhibit?
14	A That it could that the orientation of
15	those lineaments is parallel to the SHMax orientation
16	and that they trend between the disposal wells and
17	the the producer that's shown on the map.
18	Q Do they provide a vertical connection
19	between different layers?
20	A We don't know.
21	Q On which path does Chevron believe the water
22	moved between the SWDs and the producer?
23	A One hypothesis is since these lineaments are
24	parallel to the deep basement faults that are shown
25	here is that potential movement or even minor movement

1	of those those features could reach through the
2	Bone Spring Lime providing a conduit. We don't have
3	data that to support those hypotheses.
4	Q Were the two DMG SWDs shown on this exhibit
5	good disposal wells?
6	A I don't know the the rates that went into
7	those wells.
8	Q Does Chevron believe there could be a
9	correlation between the presence of faults and
LO	injectivity?
L1	A I wouldn't be able to answer that. I don't
L2	have the background in that. It's not my area of
L3	expertise.
L4	Q Let's look at page 124. And you indicated
L4 L5	Q Let's look at page 124. And you indicated earlier in your testimony that your frac predictions
L5	earlier in your testimony that your frac predictions
L5 L6	earlier in your testimony that your frac predictions were based on the models; is that correct?
L5 L6 L7	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was
L5 L6 L7 L8	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes.
L5 L6 L7 L8	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes. Q And can you confirm that you won't be able
L5 L6 L7 L8 L9	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes. Q And can you confirm that you won't be able to predict the shape of the actual fracs until the
15 16 17 18 19 20	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes. Q And can you confirm that you won't be able to predict the shape of the actual fracs until the models are calibrated?
15 16 17 18 19 20 21	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes. Q And can you confirm that you won't be able to predict the shape of the actual fracs until the models are calibrated? A The the frac model, the, like, details of
15 16 17 18 19 20 21 22 23	earlier in your testimony that your frac predictions were based on the models; is that correct? A In part, yes. They were the modeling was a test. Yes. Q And can you confirm that you won't be able to predict the shape of the actual fracs until the models are calibrated? A The the frac model, the, like, details of the frac models, Cody Comiskey will be able to answer

1	A Yes.
2	Q Did that analysis agree with your simulation
3	results?
4	A It did.
5	MS. HARDY: Those are all of my
6	questions. Thank you.
7	MR. FUGE: Dr. Ampomah?
8	DR. AMPOMAH: Thank you, Chair. I do
9	have some few questions.
10	So beyond the tunnel fracture model
11	that you did, has there been any actual done to
12	test some of these hypotheses?
13	MR. PARIZEK: We not to my
14	knowledge.
15	DR. AMPOMAH: And is there any plans?
16	MR. PARIZEK: To there may be. And
17	perhaps one of the other witnesses can discuss that.
18	I'm not aware of what the entirety is of what 25 folks
19	did, but I don't know the answer to that.
20	DR. AMPOMAH: Someone needs how do I
21	put this? Based on the testimony it's more like some
22	of them are still inconclusive.
23	MR. PARIZEK: In I think that's a
24	great question and part of the basis of our pilot is
25	to collect the data in order to really rule out and
	Page 169

1	understand what the root causes are so we're not in a
2	situation where we have multiple working hypotheses
3	but no way to test them.
4	DR. AMPOMAH: So what about the trace
5	test?
6	MR. PARIZEK: That's that's a key
7	part of surveillance. However, it's difficult to
8	convince an operator of a saltwater disposal well to
9	run a tracer in their well when it may prove that that
10	well connects to one of your producers. So having an
11	operator operate the saltwater disposal and the
12	producer, it helps to test those types of scenarios.
13	DR. AMPOMAH: And I know that's
14	something that you want to do as part of the pilot
15	program.
16	MR. PARIZEK: Yes. And we discussed by
17	another witness, but that is part of our results, yes,
18	is that.
19	DR. AMPOMAH: So the Avalon and the
20	Wolfcamp, these are open and producing results; right?
21	MR. PARIZEK: That's correct.
22	DR. AMPOMAH: So where is the water
23	coming from?
24	MR. PARIZEK: We we don't have a
25	conclusive answer to that, where that water is coming
	Page 170

1	from. We've seen well, what we have seen with the
2	the surveillance that we have done is that we in
3	the east half of the field, we have seen a valid
4	mixing relationship between Wolfcamp water and Avalon
5	water, meaning that multiple constituents show an
6	increase in in enrichment. And in the west half of
7	the field, we've seen a valid mixing relationship
8	between frac water and Avalon water, suggesting that
9	we were seeing migrated frac fluid up.
10	But again, we don't have water samples
11	for all of the different benches, so we don't know
12	whether that's potentially coming from another bench
13	that we don't have to sample for. But we again,
14	valid mixing relationships in those cases.
15	DR. AMPOMAH: So let me ask you this on
16	your experience in this area. Why does it take
17	induction rates for in this area?
18	MR. PARIZEK: The only example that I
19	have knowledge of is the one that I shared on
20	DR. AMPOMAH: [Unintelligible response]
21	MR. PARIZEK: Yes. I believe it
22	that is
23	DR. AMPOMAH: 118?
24	MR. PARIZEK: 118. That the typical
25	rate for that well is between 2,000 and 4,000 barrels
	Page 171

1	per day.
2	DR. AMPOMAH: So is it a general
3	representation of the typical rates in this area?
4	MR. PARIZEK: In New Mexico, that's the
5	example. Across the state line, approximately half a
6	mile south of the state line, there is a well that has
7	injected I want to say to the best of my knowledge
8	over 10,000 barrels a day, potentially higher.
9	DR. AMPOMAH: So you talk about a
L O	geological feature like the lineament or send out
L1	potential communication, so have those been marked,
L2	you know, in this area, especially where you are,
L3	because of the pilot?
L4	MR. PARIZEK: It has. The geophysicist
L5	has gone in investigation for DMG lineaments kind of
L6	mapping the way that they had done in the other
L7	examples that I have shown. And they have not
L8	
	identified any within 2 miles.
L9	identified any within 2 miles. DR. AMPOMAH: And I just want to
L9 20	_
	DR. AMPOMAH: And I just want to
20	DR. AMPOMAH: And I just want to confirm. So you showed the thin thickness of the Bone
20	DR. AMPOMAH: And I just want to confirm. So you showed the thin thickness of the Bone Spring Lime. So I just want to confirm that in your
20 21 22	DR. AMPOMAH: And I just want to confirm. So you showed the thin thickness of the Bone Spring Lime. So I just want to confirm that in your area it's much thicker than in that 8?
20 21 22 23	DR. AMPOMAH: And I just want to confirm. So you showed the thin thickness of the Bone Spring Lime. So I just want to confirm that in your area it's much thicker than in that 8? MR. PARIZEK: That's correct. So that

1	the Salado Draw, and across the Texas state line. So
2	it's outside of where we're going to be operating or
3	potentially operating these two wells. At the
4	locations of the wells noted it's 42 feet thick at
5	Papa Squirrel and 87 feet thick at Severitas.
6	DR. AMPOMAH: Are there any extra
7	fractures in this area that you're aware of?
8	MR. PARIZEK: That
9	DR. AMPOMAH: Multiple fractures?
10	MR. PARIZEK: In the in the Bone
11	Spring Lime?
12	DR. AMPOMAH: In the Bone Spring. Also
13	the Brushy Canyon, and also the actual injection zones
14	that you target?
15	MR. PARIZEK: Not that I'm aware of.
16	DR. AMPOMAH: So you don't believe
17	could there be a possibility that there could be an
18	existent fracture is causing some of the
19	communications?
20	MR. PARIZEK: The the image logs
21	that have been acquired over the area generally show
22	and I'm speaking just in general in the Permian
23	that the vast majority of fractures are are healed
24	or sealed.
25	DR. AMPOMAH: So there's no need to get
	Page 173
	1490 173

1	a
2	MR. PARIZEK: The I think it would
3	be I don't I don't know the answer to that.
4	DR. AMPOMAH: Thank you.
5	MR. PARIZEK: Thank you.
6	MR. FUGE: Mr. Bloom?
7	MR. BLOOM: No questions. Ms. Hardy
8	and Dr. Ampomah asked my questions there. Thank you.
9	MR. FUGE: I just had one, and it goes
LO	back to your testimony. 2016, if I was understanding
L1	it correctly, you referred to re-looking at some of
L2	the case studies there that the operator group came up
L3	with. And at the time they'd attributed to SWD. But
L4	in looking at it more closely, you know, it at least
L 5	equally attributed in your testimony of kind of the
L6	Wolfcamp A completion.
L7	Why wasn't some of that analysis
L8	done in 2016? Was the data not available? I'm just
L9	curious of the change in sort of the conclusions and
20	the source.
21	MR. PARIZEK: I I wasn't part of the
22	work group in 2016. But I will I would suspect
23	that seeing Wolfcamp fractured interactions with
24	Avalon was probably something that they weren't
25	considering at that time. And having experienced that

in our area, that's what prompted us to to revisit
that.
And in fact, when I started out here in
the Permian Basin, that was you know, that study
was kind of a foundation that that I use in
evaluating Solada Draw area in general. And when we
started to see the the production changes in our
Avalon wells around the time that we were completing
the Wolfcamp fracs, we did test water and we were
seeing different water chemistry that we had observed
in the wells that we suspected to be watered out by
the DMG.
So that suggested to us that that SWD
to Avalon model wasn't an explanation for what we were
observing and caused us to to investigate other
other causes being built at Wolfcamp A.
MR. FUGE: No further questions.
MS. HARDY: Mr. Chair?
MR. FUGE: Yes, I'm sorry.
MS. HARDY: I apologize. Would it be
possible for me to ask a couple more questions
following Dr. Ampomah's questions?
MR. FUGE: Yeah, that's fine.
MS. HARDY: Thank you. I'll be quick.
//
Page 175

1 EXAMINATION 2. BY MS. HARDY: Can you confirm that for a Wolfcamp frac 3 0 that you'd give with an Avalon producer, there would 4 5 have to be a breach in the Bone Spring Lime? 6 Α There would not. There would not have to be a breach? 0 8 So Avalon lies below the Bone Spring Lime as Α 9 does the Wolfcamp, so it would not require a breach. And I think you said this earlier, but can 10 11 you confirm that you're not able to identify the 12 fracture pathways that allowed the communication 13 that's a result of the 3D seismic analysis? 14 Α That's correct. 15 Based on Chevron's experience with 16 stimulation appearance between Wolfcamp fracs and 17 Avalon producers, have you seen an immediate response in the producer while stimulation operations are 18 19 occurring? 20 Α We have with pressure. We did see pressure 2.1 response increase during the Wolfcamp completion. 22 Does Chevron shut in its Avalon producers 0 while fracturing the live Wolfcamp horizontal wells? 23 2.4 Α We do not. 25 Does Chevron surface commingle its Avalon 0 Page 176

1	Wolfcamp wells?
2	A I don't know.
3	Q What if your graphs shows water production
4	versus gas-oil-ratio? That should be on slide 112.
5	And is that a plot of the production from a pad or
6	from an individual well?
7	A The which plot?
8	Q The water production versus gas-oil-ratio?
9	A That's an individual well.
L O	Q Would Chevron consider this a tight curve
L1	for Wolfcamp frac to Avalon producer interference?
L2	A Can you rephrase?
L3	Q Sure. I'll ask it again. Would Chevron
L4	consider this plot a tight curve for Wolfcamp frac to
L5	Avalon producer interference?
L6	A We we have not seen this type of response
L7	everywhere. Some of them were positive
L8	fracture-driven interactions. This represents a
L9	negative fracture-driven interaction. So there is not
20	a a single response to those interactions. So no.
21	Q And is the entire production history of that
22	well, that shelf on the
23	A I don't recall.
24	MS. HARDY: That's all my questions.
25	Thank you.

1	MR. FUGE: I think the witness is
2	excused.
3	MR. DEBRINE: Yeah, no further
4	questions. We'll reserve the opportunity to call on
5	him for rebuttal.
6	MR. FUGE: Okay.
7	MR. DEBRINE: Chevron calls its next
8	witness Bryce Taylor.
9	MR. FUGE: May I ask the court reporter
10	to swear in the witness?
11	THE REPORTER: Please raise your right
12	hand.
13	WHEREUPON,
14	BRYCE TAYLOR,
15	called as a witness and having been first duly sworn
16	to tell the truth, the whole truth, and nothing but
17	the truth, was examined and testified as follows:
18	MR. FUGE: Thank you.
19	You may begin.
20	EXAMINATION
21	BY MR. DEBRINE:
22	Q Could you please state your name for the
23	record?
24	A Yes, my name is Bryce Taylor.
25	Q Who do you work for, Mr. Taylor?
	Page 178

1	A I work for Chevron.
2	Q How long have you worked for Chevron?
3	A I've worked for Chevron for approximately 11
4	years.
5	Q If you could give the commissioners a brief
6	summary of your background and experience with Chevron
7	as well as your educational experience?
8	A Yes, I'd be happy to. So I graduated in
9	2012 with a Bachelor's of Science degree in Mechanical
10	Engineering, magna cum laude, from Brigham Young
11	University. Subsequently hired on with Chevron. And
12	while working full-time for Chevron, I also had the
13	opportunity to work on a master's degree with the
14	University of Southern California in petroleum
15	engineering with emphasis in smart oilfield
16	technologies.
17	I started off my career in Chevron working
18	in in California in San Joaquin Valley assets as a
19	reservoir engineer primarily focused on developing
20	steam flood projects for steam floods. That's
21	enhanced recovery. We'll inject steam instead of
22	water to heat up the heavy oil.
23	I also did that for about two and a half
24	years. And I stayed within California in those heavy
25	oil assets but moved to a new team working as a

1	production engineer for about two and a half years.
2	Following that, I transferred out here to the Permian
3	Basin as a reservoir engineer.
4	I get into our asset development groups who
5	do drilling or do horizontal wells. My primary area
6	of focus was in the Midland Basin where I was at
7	had the opportunity to bring online approximately 200
8	unconventional wells across my tenure there. That
9	lasted about four and a half years.
LO	And then at the beginning of 2022, I moved
L1	into my current role, which is our water strategies
L2	senior petroleum engineering advisor for the entire
L3	Permian. And this role is primarily focused on
L4	long-term water produced water handling strategy.
L5	It's focused on their program and really the
L6	subsurface reservoir engineering related tasks and
L7	analyses as they relate to our produced produced
L8	water.
L9	Q You said your responsibility includes the
20	entire Permian, which obviously is part of New Mexico?
21	A That is correct.
22	Q Have you ever testified before the Oil
23	Conservation Commission or Division?
24	A I have not.
25	Q Are you familiar with the applications that
	Page 180

1	Chevron has filed in these two cases?
2	A I am.
3	Q Are you familiar with the two wells that are
4	the subject of Chevron's pilot project underlying
5	these applications?
6	A Yes.
7	MR. DEBRINE: We would tender the
8	witness as an expert in operations and engineering.
9	MR. FUGE: Accepted for those purposes.
LO	BY MR. DEBRINE:
L1	Q If you could briefly summarize, Mr. Taylor,
L2	the work that you did as a part of Chevron's pilot
L3	project that we're considering here today?
L4	A Yeah, so be happy to. So my my testimony
L5	will cover several aspects of my first focus was on
L6	our looking at the the assessment of the
L7	remaining reserve potential in the Delaware Mountain
L8	Group talked about here today. In Tom Merrifield's
L9	analysis, there are some offset wells, and so I
20	analyze those for their remaining potential.
21	I'm also going to speak today about a
22	little bit more about containment. Jason just shared
23	with us the the lower containment strength of that
24	Bone Spring Lime. I'll be sharing an analysis of the
25	upper containment, that upper seal of the of the

1 Lamar limestone. 2 I also have an assessment of some modeling 3 work, how we identify analogs for the SWD wells, and applying those analogs to these -- these two wells in 4 5 question, the Papa Squirrel and Severitas to modeled 6 their -- the potential performance over their life, which will include what their radius of impact will 8 be, what their total storage would be, and how the 9 reservoir pressures could react over time as we inject water into these SWDs. 10 11 And finally, I'll give a brief overview of 12 our -- our surface operations of our SWDs and the 13 associated facilities. 14 MR. DEBRINE: For the benefit of the 15 commissioners and the parties, the exhibits we're 16 going to discuss begin on page 142. BY MR. DEBRINE: 17 And the first substantive slide is on 18 19 page 143. If you could just lay the background for 20 that slide for the commissioners. Be happy to. So this slide is intended to 2.1 22 orient everyone. You can see our Papa Squirrel SWD up 23 there is Section 13 at the top of the -- the top of 2.4 the map. As I mentioned already there early a -- two or three active DMG producers within a 2-mile radius 25

of that well.

2.1

2.4

Those wells are located within the El Mar Field. The El Mar Field extends south across the state line actually into Texas. And as previously mentioned, there's no active DMG producers within the 2-mile radius of the Severitas well. So that this analysis, which I share with you here, is this exhibit and subsequent exhibits as focused on the DMG in the vicinity of the Papa Squirrel.

Q If you could turn to the next on page 144.

And is this the beginning of the analysis of the three wells that were in this produce line?

A Yes, it is. Just to walk everyone through this analysis. So we have here in a plot on the right the production history of the Sahara Fed-Littlefield DR 1 well as you can see that the production history dates back to, you know, 1960s, 1970s. This is the entire production history of the well, so this includes its primary production and secondary recovery portions of its life.

The analysis -- the decline analysis that I conducted took into account approximately -- and each dot here -- sorry, on the chart. Green dot represents the oil production for a given month. And that's -- that oil production has been calculated in terms of

1 barrels per day over that month. 2 The decline portion of the analysis covers an area or a timeframe of approximately five to ten 3 years, as you can see indicated there by the straight 4 5 line through the production points on the right to -which is a sufficient amount of data to establish a 6 long-term trend for this producer well. I did choose 8 a cutoff rate. 9 As you can see there in the table on the This is an extremely 10 left of one barrel per month. 11 low -- low amount of production for any well just to 12 really give this well the most benefit of the doubt to 13 calculate its remaining potential. 14 As you can see the decline is -- is in my 15 opinion extremely steep for a conventional producer at 16 33.67 percent per year. Extrapolating that decline 17 out to that cutoff rate, it shows this well's potential item life would happen in June of 2026 with 18 only 96 barrels of oil remaining to be recovered. 19 20 Like to emphasize that most of the current production for this well is much less than one barrel a day. And 2.1 22 in my opinion, this well is depleted. 23 Did you sit and want to analyze the other two wells? 2.4

A Yes, I did.

25

1	Q And is that analysis on page 145 and 146?
2	A That is correct. A similar process was
3	followed. Both of these wells, again, are producing
4	much less than a barrel a day. One of the wells had
5	that ringing assessment of only 11 barrels and there
6	were only a few barrels remaining. And so again these
7	wells appear to be depleted.
8	Q What conclusions did you draw with respect
9	to the potential impact of the pilot project wells on
10	the future production from these declining producers?
11	A My conclusion is that there will be no
12	impacts to the trend the production trend that
13	we're seeing since these wells
14	Q Did you also conduct a decline analysis for
15	the remaining reserves in the entire field?
16	A Yes, that's correct.
17	Q And I believe that begins on page 147?
18	A Yes, it does.
19	Q If you could just explain to the
20	commissioners what you did and what you found out
21	about this exhibit.
22	A Yes. So this is a very similar methodology.
23	The only difference being this is rolling up and
24	sending all of the wells together. You could see the
25	decline there represented in the straight line at the
	Page 185

1	right part of the plot. Over that defined period
2	there have been a the well count of about 20 wells,
3	which continued through 2022. Declining out those 20
4	wells also resulted in a 33.82 percent annual decline
5	rate against a very high ceiling. Had the three
6	individual wells examined.
7	The cutoff rate I chose for this analysis
8	was 30 barrels a month for the entire field. That's a
9	very small amount of a very small rate for a field.
10	This is projecting with that cutoff rate of the field
11	to potentially in the next year with only 1300 barrels
12	of oil remaining.
13	I'd also like to apologize on the exhibit.
14	We have a box there. We have kind of a blank there
15	for "Most recent well drilled." The the year of
16	the of those 20 wells, the youngest one was drilled
17	in 1977. So these were old wells. You know, we kind
18	of produced for a long life and are depleted.
19	Q And so what conclusions did you draw from
20	your analysis with respect to the impact of the wells
21	on the remaining reserves to the El Mar Fields?
22	A My conclusion is that there would be not
23	be an impact due to the fact that the build it
24	should be depleted.
25	Q So it's your analysis and conclusions as far

1	as the Division's concerned that express with regard
2	to potential impacts to the wells on either existing
3	DMG production or future DMG production?
4	A Yes.
5	Q And what conclusions did you reach?
6	A Reached that there could you restate the
7	question?
8	Q Yeah. With regard to their concerns with
9	respect to those effect of the pilot wells on existing
10	and future DMG productions in the area?
11	A My conclusion is that that due to the
12	highly depleted nature of this field and the projected
13	short life remaining that our wells would not have any
14	impact on recoverable hydrocarbon.
15	Q Let's now turn to your analysis with regard
16	to the upper containment zone, which begins on
17	page 148 of the exhibits. The first substantive
18	exhibit is on page 149, where you discuss a leak-off
19	test. And could you explain to the commissioners what
20	that consists of, the work you did, and the
21	conclusions that you reached?
22	A Sure. I'd be happy to. So first it's,
23	like, for those who are not familiar with the with
24	an extended leak-out test just to walk us through it,
25	the typical behavior of leak-off tests, what kind of

1	data we we get. So you can see there there's a
2	a couple of plots. The the central plot there on
3	the on the slide is a representation of typical
4	behavior as we conduct these tests.
5	So the first portion labeled by FIT there
6	stands for formation integrity test. This is
7	typically done to evaluate the strength and integrity
8	of the new formation. And it's the first step after
9	drilling a casing shoot.
10	Q And you're referring to the first graph on
11	the left?
12	A That's correct. After the formation and
13	access, the small amounts of fluid will be pumped into
14	the formation over a period of time. As that fluid is
15	pumped, the pressure is monitored. And the plot
16	there, the blue line sorry and the green there
17	down line at the bottom, that is the pump rate. The
18	blue line is the pump pressure.
19	So that first portion gives us our formation
20	integrity test. If we continue to pump oil and build
21	up pressure, we enter a reason designated by LOT on
22	that line, which is stands for leak-off test. So
23	this is a test to determine that the the fracture
24	pressure of the open formation. So again, it's
25	conducted after drilling right below a new casing shoe

typically.

2.1

2.4

We continue to pump there. We'll actually reach a point there at the apex of the graph, which is the formation breakdown pressure. Again, just a regular leak-off test is when that formation first starts to take fluid. That formation breakdown pressure is when it is completely compromised. You will then see a relaxation in the pressure.

Q And that's shown there with the stars?

A That is correct. You'll see that relax of that pressure. If you continue the test beyond that, continue pumping, that's when you enter into the range of the extended leak-off test or XLOT. And this enables us to identify fracture closure -- closure pressure, which is commonly referred to as fracture parting pressure in a lot of the documentation that we -- that we typically see in the industry.

- O Well, when did you conduct this test?
- A Yes, I'll get to that in just a second.

What will happen with the XLOT is eventually you stop the pump rate and watch the pressure decay. There are some -- some transforms that we can do with the pressure data and time in order to find some trends. Not going to go into detail on that specific analysis today, as this is just a summary of the -- of

the test.

2.1

2.4

But you will be able to find a point, which is indicative of the fracture closure pressure. And that's how we get that datapoint. And as to your question, we conducted a test on -- in October of 2022 on a well in Texas. It'd be 174WA. That is in our Delaware Ranch Field, which is if you think where the Severitas location is, it's approximately 25 to 30 miles southwest that -- over in Texas.

The reason why we decided on a location is that the DMG gets a lot shallower as you go to the west. The -- the overburden thins, and due to how much shallower the Lamar is at this point, less of an overburden, this was considered a good spot test in a conservative nature what the strength of that, that Lamar is.

We expected it to be much stronger as it gets deeper, and the overburden grows to the east as is where our Severitas and Papa Squirrel wells were located. So I mean, this kind of represents a more conservative estimate of the strength of that -- of the Lamar. You can see there that graph -- graph in the top right of the chart or the slide, this is the behavior of the actual XLOT test that we noted as well. And you can see we saw the leak-off point, but

1	we never actually reached formation breakdown
2	pressure.
3	The the formation was so strong that our
4	pump capacity was reached in the pump tricks before we
5	were able to actually see the the formation
6	breakdown. That's a very good good information
7	that we have a very, very strong pump at Castile. The
8	surface pressure at that point was 2200 psi.
9	As you will recall from our request for
10	pressure for the Severitas and the Papa Squirrel,
11	we're we're talking, you know, 460 psi for the
12	Severitas and then the 925 psi for the Papa Squirrel.
13	So much lower than this 2200 psi.
14	Q Let's take a look at your next exhibit on
15	page 150.
16	A Yes.
17	Q There's a lot of data on here, but if you
18	could just briefly summarize it for the Commission?
19	A Yes. Yes, I would be happy to. So this is
20	the summary of our XLOT test. We actually did three
21	cycles of the tests on the Lamar and just collecting
22	more data there. You can see here a lot of the
23	details. Like our casing shoe depth was just at 1584
24	feet, so very shallow.
25	If I can sorry. If I can point you to
	Page 191

1	the red outlined boxes and the table there out of that
2	second one up from the bottom on the leftmost is,
3	like, 1.22. That was the minimum stress gradient or
4	the fracture closure pressure identified in Cycle 1
5	was 1.22 psi.
6	But Cycle 2, we would expect it to be weaker
7	since we've already fractured the rock in the first
8	cycle. It dropped down to 1.15. And then the
9	Cycle 3, a little bit hard to interpret, but it was
10	between 1.1 and 1.14. So we figured that's our
11	that fracture parting pressure or that fracture
12	closure stress.
13	The other point that is interesting is that
14	we look at the at the other red box there, the
15	leak-out pressure and pounds per gallon. And actually
15	leak-out pressure and pounds per gallon. And actually
15 16	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per
15 16 17	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot.
15 16 17	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that
15 16 17 18	<pre>leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that right side, I I calculated when that ppg would be</pre>
15 16 17 18 19	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that right side, I I calculated when that ppg would be and psi per clip, to identify that leak-off point,
15 16 17 18 19 20	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that right side, I I calculated when that ppg would be and psi per clip, to identify that leak-off point, which again is that point at which the the
15 16 17 18 19 20 21	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that right side, I I calculated when that ppg would be and psi per clip, to identify that leak-off point, which again is that point at which the the formation first starts to become compromised and
15 16 17 18 19 20 21 22	leak-out pressure and pounds per gallon. And actually all it is, it's not actually in the table in psi per foot. But on the the third bullet down on that right side, I I calculated when that ppg would be and psi per clip, to identify that leak-off point, which again is that point at which the the formation first starts to become compromised and starts taking fluid. And that wasn't until 1.5 to

1 right? 2 I believe it's third bullet on the -- on the Α 3 right. Yep. 4 So if we take that -- yeah. So again, just 5 another -- another datapoint to share how strong this 6 formation is. Now, if we look at actual injection operation in -- in the state of New Mexico -- and as 8 we know the initial estimate for maximum surface 9 injection pressure is determined by taking the top of our injection interval. We multiply that by .2 psi 10 11 per foot. 12 So that gives us the maximum surface 13 pressure. We -- in order to understand what the 14 bottomhole pressure will be for the well, we need to 15 add the weight of the fluid and there's -- taking out 16 effects for a minute. If we -- to be a typical 17 injection water is roughly .5 psi per foot. And just from its weight, you know, it can be a little bit 18 19 lower than that, a little bit higher. 20 But .5's a good -- good estimate. We take that .5 and add it to the .2, you're looking at your 2.1 -- at the bottom of the well, approximately .7 psi per 22 foot. And again, leak-off -- leak-off pressure for 23 24 the Lamar is 1.5 psi per foot. 25 And then if we even look at the minimum

1	stress
2	range
3	that -
4	summaı
5	gives
6	if you
7	minimu
8	So all
9	don't
10	normal
11	Ç
12	the tw
13	where
14]
15	that t
16	it's s
17	overbu
18	rock k
19	
20	testir
21	expert

22

23

2.4

25

stress gradient, it's at the -- yeah, that 1.1 to 1.2 range, that parting pressure, again much higher. So that -- I'll just direct you to the -- kind of the summary box there on the bottom of the slide. This gives us a safety factor of 1.57 to 1.74 depending on if you're looking at the -- that 1.1 psi per foot for minimum stress gradient or one of the higher numbers. So all this to say that seal is very confident and we don't see any chance of really breaking it down during normal injection operations.

Q And again, it's much thicker in the areas of the two wells of the pilot project than the wells where you conducted the leak-off test?

A The Lamar itself, I'm not sure. I do know that the -- relatively it's going to be the same. But it's similar in thickness. The -- the question is the overburden, since we're much deeper, there's just more rock between the -- the Lamar and the surface.

And as Tom Merrifield pointed out in his testimony earlier, we did see our subject matter experts when they were analyzing this data did see additional -- a lot of this additional strength. And part of the Lamar was due to that Castile and the overburdened formations that were right there. So do expect it to be stronger to where we have our -- our

1	two wells pumped.
2	Q We can turn now to the injection modeling
3	that you did with respect to the two wells?
4	A Yes.
5	Q It begins on page 151. And let's turn to
6	page 152, which is the locator data.
7	A Yes. So in this next section, I'm going to
8	talk a little bit about rate transient analysis, what
9	that is, and how we used it for our to figure out
10	our analogs to then be able to stimulate the the
11	performance of the Severitas and Papa Squirrel.
12	Though just to orient everyone, you can see
13	on the map the Severitas well in green with the
14	green star and Papa Squirrel with the blue star. And
15	then there's these markers across the state line down
16	to Texas. Those represent wells that were were
17	used as our analogs, so those are all DMG SWD wells.
18	The reason why we were able to use these
19	wells is because they publicly reported data on these
20	wells on daily rates and daily pressures, which for
21	RTA analysis is what we would like to see.
22	Q And just for laymen's terms, what is rate
23	transient analysis?
24	A Rate transient analysis. So I will actually
25	get to get into it's a good segue to the next
	Page 195

1	slide. So what rate transient analysis is, is it lets
2	us take the rate data and pressure data from either
3	producer or injector in this case an injector
4	and transform that data through derivatives, pressure
5	differences, different ways to look at time.
6	And we can plot out those those
7	transforms. And then we know that there's several
8	analytical solutions, the models of reservoirs that
9	will match the characteristics we see in that data.
10	And so what we're able to do is kind of pick and
11	choose these different reservoir models, match it to
12	the data, and and then finetune different
13	parameters such as our permeability, porosity,
14	thickness, the injection radius, or what how big
15	your big your reservoir is.
16	You can find it there's other parameters
17	we can we can tune. But we can do all of that and
18	essentially match the data to one of those reservoir
19	models. And that gives us a a good approximation
20	of what the reservoir looks like that the well is
21	injecting into.
22	Q And the parameters you described, are those
23	all shown on page 153?
24	A Yeah, these are some of the parameters, the
25	ones we we thought were most useful for the

1	subsequent steps of modeling. So again, with with
2	the rate transient analysis, the you know, we
3	mentioned earlier that, you know, permeability in the
4	hearing was a was a question. How can we
5	understand permeability?
6	So one way to major that is is through
7	this rate transient analysis, which you get
8	permeability goes directly into how much our wells
9	will improve from a rate standpoint. The other really
LO	important thing when it comes to SWDs is how far do
L1	they inject.
L2	Most of these injectors can be described by
L3	a relatively simple model. It is a essentially, a
L 4	radial flow model with the steady state radial flow
L5	model. An easy way to think about that is I have got
L6	a cylinder with my well right at the center of the
L7	cylinder, and that cylinder represents my reservoir so
L8	the it represents the storage tank.
L9	And so at the edges of the cylinder and the
20	model, we have what is called a new flow boundary.
21	Just a point where the really, the end of the
22	influence of the the specific injector. We'll see
23	pressure influence beyond that or the the long-term
24	fluid influence beyond that, you know, flow boundary.
25	So we're trying to determine the how the

1	R2SWD wells will impact the surrounding reservoir, how
2	far out will the injection go. This was a way to
3	understand statistically what SWDs typically do. And
4	you can see there in the table kind of the summary of
5	those calculated values where kind of the median
6	the calculated value for injection radius was 8,979
7	feet. Permeability was the in that median value
8	was about 13 millidarcy.
9	And then the other thing to to point out
10	is the cumulative injection number. So the other
11	thing rate transient analysis lets us do is forecast
12	the well out beyond his production history. So once

the well out beyond his production history. So once we've got -- or injection history in this case. So once we have a good match on the -- for our model. We're able to match that -- those actual rate and

pressure datas with the -- with the model.

13

14

15

16

17

18

19

20

2.1

22

23

24

25

We can then use that -- use the program to
- the computer program we're using to do this. It's

called Kappa, and it's got multiple different software

suites. So let -- let's us do the rate transient

analysis and other things. Anyway the -- the software

will then allow us to forecast out the -- just what

the performance at this well or these injectors will

be like over a number of years.

And so we can essentially forecast that out

1	to the end of life by setting the maximum allowed
2	surface injection pressure, which is our constraint,
3	and then letting the model run and the driver behind
4	the decline that we see in the injectors is the
5	reservoir pressure within that no-flow boundary
6	increasing.
7	Eventually, that reservoir pressure will
8	increase such that it equalizes with the bottomhole
9	injection pressure with the well, and at that point
10	more fluid can go into the reservoir. And so that
11	that tells us what the total storage is of the DMG
12	injector.
13	Q Let's now take a look at the actual modeling
14	you did for the two wells pilot project.
15	A Yes.
16	Q The first one begins on page 154 for the
17	Severitas well.
18	A Yes.
19	Q Would you just tell the commissioners what
20	this shows and the data and the conclusions you
21	reached?
22	A Yes, I will.
23	So the Severitas the is the headlining.
24	And the headline for this for this well is the
25	cumulative storage at this location is 28.8 million

1	barrels of water over the life of the well. The
2	and that cumulative storage, as we'll see in a second,
3	it's really dependent on depth. And that's mostly
4	because the depth is directly tied to the maximum
5	allowable surface injection pressure.
6	So this well in particular, again, at that
7	location, you know, just under 29 million barrels, I
8	have here in the chart at the top right the outputs of
9	the great profiles for this well with the the three
-0	different scenarios reflecting different
L1	permeabilities.
L2	So we set the model with the parameters of
L3	the injection into the Bell and the Cherry with that
_4	8,979-foot boundary radius, which correlates to about
L5	1.7 miles. And with the corresponding porosity values
L6	that we we got from our geologic assessments of the
L7	area and then we applied the different permeability
L8	here to understand what are low, mid, and high cases.
L9	And you could see those by the blue line,
20	orange line, and gray line for this location. And so
21	we have a, you know, expected range of anywhere
22	between just under 4,000 barrels of water per day to
23	just over 12,000 barrels of water per day for this
24	well.
25	Q Did you also look at the effect of the

1 injection reservoir over time? 2. Α Yes, we did. If you could turn to page 155. 0 So this assessment is to show how that 4 Α 5 reservoir pressure within that no-flow boundary radius 6 will increase over time. So as you can see there, on the plot and the Y axis, we have pressure that is --8 represents the reservoir pressure taken at the top of 9 the Bell Canyon, which would be the top of our injection interval, and then the X axis is the depth 10 11 of the investigation. So like depending on spatially 12 how far away I am from that injector what -- what I 13 would expect the reservoir pressure to be. 14 And you can see that travels out to just 15 below that 9,000 foot mark. So we end up using that 16 same kind of median injection radius there. Each line 17 represents a different amount of cumulative injection. And this model was based on darcy radial flow, --18 radial flow. 19 20 And so the bottom line conclusion that you 0 2.1 reached? 22 Α So you can see there in the gray box after years there even the colors are corresponding to 23 that low, mid, and high permeability cases that we 2.4 looked at on the previous charts. Just speaking to 25 Page 201

1 the mid-case, which was that 13 millidarcy. You can 2 see how long it would take for this swell to pressure 3 up as a -- as this time goes by. And so to get to that, that orange line 4 5 there, which represents 200 billion barrels injected 6 and roughly 300 psi increase from starting conditions would take 13 years. 8 So we're looking at over a decade before 9 that, even a 300-psi increase would be realized in the 10 reservoir. But that is -- that's not very fast. A 11 lot of that's due to how -- how large the injection 12 radius as at that 1.7 mile approximate radius. 13 Let's turn to your analysis of the Papa Q 14 Squirrel well, which begins on page 156. 15 Α Yes. So for the Papa Squirrel well, I 16 mentioned earlier, this well is much deeper. You get 17 a higher surface pressure, and in turn you get more 18 cumulative storage. 19 We've -- we've kept the same -- same size 20 reservoir, but you know, 8,979-foot boundary radius 21 using the thicknesses of the Bell and Cherry and the 22 corresponding porosities at this location. And then 23 we simulated the injection rates for the low and high 24 cases again, represented by the blue, orange, and gray curves there on that run plot there at the top right. 25

1	Should have data correspond to 6 millidarcy, 13
2	millidarcy, or 30 millidarcy.
3	You can see the the predicted rates for
4	this well vary between as low as 9,000 barrels of
5	water per day to just about 20,000 barrels of water
6	per day. And yes, the storage here again is just
7	under 73 million barrels.
8	Q And if you see the same slow increase of
9	pressure of the reservoir on time?
10	A Yes, that yes, it this well for a
11	similar time period, in this case to inject 40 million
12	barrels, get sent to that green line. And that
13	represents about 450 psi increase. It took about 11
14	years. You know, it's just a little bit higher than
15	the increase of 300 psi in the previous well.
16	And that's just due to higher rates, higher
17	pressure, better rock quality due to increased
18	thickness and other items that we've talked about
19	already so far, so that rate pressure increase are
20	similar timeframe is slightly higher. That's still
21	relatively slow, only 450 psi over a decade.
22	Q The next subject of your testimony is
23	labeled "Surface Systems."
24	A Yes.
25	Q And what do you mean by that? What did you
	Page 203

look into?

2.1

2.4

A Yeah, so I -- this is to share with the Commission and others present, just our -- how we typically operate our SWDs. This is related to our facilities and operations teams, and I'm relaying that to you. So typically, how we -- and Davis reflects that we operate shallow SWDs today out over Texas as well as the deep SWDs that we still have here in New Mexico and the -- the ones we saw over in Texas.

So typically, we have the central facility or SWD facilities which process the water and, well, talk about it. It's -- they also have filtered well and clean it up at skim well off of the water to send back for processing.

And then eventually the water is sent to H pumps or horizontal pumps, positive displacement pumps where it is pushing high pressure flow lines, which carry it to a network of SWD wells. Each well is controlled by locally by a production log controller or PLC at the well site, they have two chokes which can be sit to determine the max pressures and the -- or the rates that we would like to send to each individual well.

The flow rates are constantly monitored onsite by flow meters. We typically set -- put our

_	Injection pressure set point at about 25 psid before
2	the permit maximum allowable or whatever set point
3	we we choose. You know, we won't go up. We won't
4	set it above the permit, but we have it at a lower set
5	point for whatever reason that would have a similar
6	target.
7	We have automated processes and alarms so
8	that if the pressure increases above that permit for
9	more than 30 seconds above the set point, yeah, a call
LO	is sent out to an operator. The operators that we
L1	have are are based on our our field locations
L2	and our yeah, our offices out onsite in the fields.
L3	We also have a removed monitoring group in in our
L 4	Midland, Texas office, which monitors all of this data
L5	in real time for all of our operations.
L6	So anyway the that alarm triggers and no
L7	one goes to visit the well within a half-hour, it will
L8	automatically shut in until someone can get out there
L9	and fix the issue. We also have a high-case scenario
20	where pressure goes greater than 110 percent pressure
21	for more than 30 seconds, the mobile off will shut in.
22	Q I think you mentioned data monitoring. If
23	you turn to example on the page 130, is that example
24	the data that you collect?
25	A Yeah, this is yeah, so this is a just
	Page 205

1	an example for the types of data that we look at in
2	real time. The shortlist data real time by our SCADA
3	units that and all of it's pulled into our
4	integrated operations center.
5	And so it data such as flow rate,
6	injection pressure, downhole pressures, control valve
7	pressures, casing pressure, temperatures, et cetera,
8	are a lot more monitoring that I'm not sure here that
9	we have at the actual facilities and the tanks favor
10	themselves. But I just wanted to give everyone a
11	sense of the the type of real time data collection
12	that we we have in place already, we plan to
13	implement on this new SWDs.
14	THE REPORTER: And by SCADA, what is
15	that acronym?
15 16	that acronym? MR. TAYLOR: Sorry. I do not know. I
16	MR. TAYLOR: Sorry. I do not know. I
16 17	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head.
16 17 18	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either.
16 17 18 19	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either. BY MR. DEBRINE:
16 17 18 19 20	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either. BY MR. DEBRINE: Q If you could turn to the next line, the page
16 17 18 19 20 21	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either. BY MR. DEBRINE: Q If you could turn to the next line, the page 161 where it says, "Discusses the handling of solids
16 17 18 19 20 21	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either. BY MR. DEBRINE: Q If you could turn to the next line, the page 161 where it says, "Discusses the handling of solids to improve the quality of the alarms."
16 17 18 19 20 21 22	MR. TAYLOR: Sorry. I do not know. I cannot remember off the top of my head. MR. DEBRINE: I don't remember either. BY MR. DEBRINE: Q If you could turn to the next line, the page 161 where it says, "Discusses the handling of solids to improve the quality of the alarms." A Yes. So that makes sure that everything

1	as clean as possible. That would mean they don't want
2	to frac and solids are are particles that are so
3	big it will plug up the either the perforations or
4	once it gets out into the reservoir, the pour space.
5	And so to do that, we have a couple
6	filtration devices, which will collect one or two
7	particles. I think the current design is a hundred
8	mesh filters. It's always being looked at to be
9	optimized. It's the the toilets are flushed to the
LO	point of tank where the solids settle out. On the
L1	comb bottom foots, it's constantly monitored.
L2	And then once it now solid that solids
L3	that accumulate reach a certain level. I work will
L4	be sent to operators. And then they can operate a
L5	truck to come pull the solids off the off that
L6	tank.
L7	Which the solids are then removed to solid
L8	waste facilities much like we could remove drill
L9	cuttings or other other items left over from oil
20	and gas operations. And then all of the water in that
21	flush tank after it's rattled back to the charge cost
22	of the inject went through the cycle again.
23	Q And if I'm on page 162, is that a summary of
24	the conclusions that you reached as a result of your
25	study?

1	A Yes.
2	Q If you could just walk through this with the
3	Commission?
4	A Yes, I will.
5	So first and foremost, our our proposed
6	SWD wells are in the best interests of conservation,
7	prevention of waste, and will not impair our
8	correlative rights. The nearest DMG producers and
9	fields whose injectors are depleted, that Lamar
L O	limestone is a very confident seal of the DMG which to
L1	provide their containment looking for production
L2	numbers that are associated with the SWD operations do
L3	not come anywhere close to that fracture closures,
L 4	leak-off pressures, or breakdown pressures of Lamar.
L5	Our DMG SWD analogs show that SWDs at the
L6	DMG tend to influence the reservoir after about 1.7
L 7	miles, and reservoir pressure in that radius is
L8	expected to increase slowly during the the
L9	operation of our wells.
20	And and here you can see the great
21	summarized with Severitas and Papa Squirrel.
22	Severitas anywhere between 4 and 12,000 barrels of
23	water per day and 29 million barrels in total storage,
24	while Papa Squirrel, a deeper, better location
25	anywhere between about 9,000 to 20,000 barrels of
	Page 208

1	water per day and 73 million barrels of storage.
2	Chevron does our standard operations for
3	SWDs feature active monitoring and control logic to
4	ensure safe operations, with real-time and
5	real-time data collection. And finally, our our
6	SWD facilities are fitted with filtration systems to
7	improve injected water quality, utility, and life of
8	these SWDs with all solids removed to appropriate
9	solid waste facilities.
10	Q Were the exhibits we discussed on page 142
11	to 162 prepared by you or under your supervision?
12	A Yes.
13	MR. DEBRINE: Moving to the admission
14	of Exhibits 142 to 162.
15	MR. FUGE: Any objection?
16	They're admitted.
17	(Exhibit 142 through Exhibit 162 were
18	marked for identification and admitted
19	into evidence.)
20	MR. DEBRINE: And we'll pass the
21	witness for question.
22	MR. FUGE: Mr. Tremaine, do you have
23	cross?
24	MR. TREMAINE: I do have a couple
25	questions, Mr. Chair.
	Page 209

1 EXAMINATION 2. BY MR. TREMAINE: Looking at the slide 143, map slide of --3 0 producer producing wells in the El Mar Oil Field? 4 5 Α Yes. 6 Can you provide any more detail as to which 0 7 part or zone out the DMG those wells are completed in? 8 Α I do not recall. That topic -- I can defer 9 that to -- to Tom Merrifield. That's what we need. 10 11 MR. FUGE: We can do it now. 12 Mr. Merrifield. Ask that question now and bring it 13 back. MR. TREMAINE: Since he's already sworn 14 15 in, I think we'd be comfortable having him just answer 16 the question. 17 MR. BLOOM: No objection. MR. FUGE: Yeah, no objection. 18 19 MR. TREMAINE: Thank you. 20 BY MR. TREMAINE: 2.1 And just a clarification here. It sounds like from your exhibits and your testimony that there 22 23 is that proposed wells, you conceive a 1.7-mile 2.4 injection radius? 25 Yes. Α

1	Q So the total area of impact would be
2	approximately 3.4 miles across?
3	A Yes.
4	Q Remind us what the radius was that Chevron
5	enjoys for its area of
6	A So I know I know before our we used
7	that half-mile radius as dictated in the the rules
8	for notifications and then the internally, one of
9	the reasons why you kept seeing 2 miles kind of up
10	there as we were looking for offset producers was
11	partially because of this obtain analysis just to
12	give us a little bit extra of a buffer and just say
13	that they do not recall the exact radius for the
14	for the AOR.
15	Q Thank you. And then I want to one more
16	question. I want to look at slide 159. Can you
17	explain the reason for the 30-minute delay for that
18	shutoff?
19	A That's yeah, that's just something to
20	call out. Standard practice, I guess. I'm intimately
21	familiar with the exact reason why my part of the
22	reason, though, is to give the operator time to
23	physically travel to the well site, which are which
24	are kind of the somebody has to drive out there.
25	I again, I'm not I don't know the
	Page 211

1	reason behind why 30 minutes was the number agreed
2	upon, if there would be a you know, a longer or
3	shorter duration that would be more optimal. It's
4	just our current current control logic.
5	Q Are you aware, according to the current
6	proposal, how much volume could be pumped during that
7	period?
8	A Could be calculated. It would depend on the
9	the time, the at what stage of the well's life
10	we're in where that could happen. They did they do
11	like to their rates looked I declined them
12	I'd say more rapidly than we would like, so I I
13	don't have that number off the top of my head, but it
14	could calculated from the the plots shown in the
15	exhibits.
16	MR. TREMAINE: Thank you. No further
17	questions. Thank you.
18	MR. FUGE: Ms. Hardy, do you have any
19	questions for this witness?
20	MS. HARDY: I have a couple of
21	questions.
22	EXAMINATION
23	BY MS. HARDY:
24	Q Hello. I just have a few questions for you.
25	If you can look at page 152. That's the
	Page 212

1	"Location of Wells with Sufficient Data for Rate
2	Transient Analysis"; right?
3	A Yes.
4	Q Can you confirm that Chevron's drilled DMG
5	SWD wells on its Texas acreage?
6	A Yes, we have.
7	Q And did Chevron perform similar testing as
8	that proposed in Mexico pilot in those wells?
9	A As far as rate transient analysis is
LO	concerned?
L1	Q Right. Who's out there testing and
L2	monitoring this?
L3	A So yes. The one of the reasons why we
L 4	didn't include our our own data in these areas is
L5	that, you know, number one, due to the timing of this
L6	analysis also our wells are relatively new and only
L7	been put online in the last few months. And you we
L8	typically like to see several months of of
L9	continuous data before we can properly analyze a well
20	with rate transient analysis.
21	The really the shortest amount of time
22	I've seen is approximately four months or six months
23	to read is a lot better. It also depends on how high
24	quality your data is. Downhole pressure will just
25	make the process that much easier when you have

1	downhole pressure gauges and are Severitas and Papa
2	Squirrel well.
3	We do have Chevron wells, but then just you
4	had had some other operational issues that have
5	prevented them from operating that consistently that
6	first available to conduct that type of analysis. So
7	these wells that we we used for our analog study
8	again have the the sufficient history and the data
9	and the the daily orthographs to conduct your
10	transit analysis.
11	The shorter enrollment you have for your
12	datapoints, the better for this analysis. Daily is
13	we would like to go more than daily. So there are a
14	lot of wells out there that report monthly data.
15	However, it takes four to five months to even see the
16	initial cycle of monthly data. You'd only have four
17	to five datapoints. You wouldn't be able to interpret
18	
19	Q And so in Texas DMG SWDs, do you know what
20	intervals are being tested?
21	A Yes. All of these are either they're all
22	DMG shallow wells that we looked at. Don't recall if
23	it's some of these might have Brushy Canyon
24	targeted at or just just Bell and Cherry. These
25	wells in particular fall within some of the Texas

1	seismic review areas, which is why they're required to
2	report daily rate submissions.
3	Q And do you know what the bottomhole fracture
4	gradient in those wells has been?
5	A So there's a range. Part of the reason why
6	we conduct separate tests is to determine that
7	individual wells and say for our own wells we've seen
8	anywhere from, you know, .62, .65 psi per foot up to
9	.72 psi per foot. So that really does does vary.
10	I mean, those numbers sound like they're close, but
11	when the you're talking about the injection rates
12	that there can be a you know, a fairly have
13	fairly wide implications there.
14	And so again, that's a reason why we we
15	have agree with the OCD's direction to conduct a
16	separate test, find that fracture gradient, and then
17	face our maximum pressures alphabetically.
18	Q And I think you testified earlier the
19	average fluid gradient is .5 psi per foot?
20	A Yes.
21	Q And then if you add New Mexico service
22	pressure and gradient on .2 psis but you'd see a
23	bottle operating at .7.
24	A Yeah, and that remember is at the highest
25	possible case where you forced to not water down
	Page 215

1	against a a close pipe essentially. And and
2	since you actually do have flow that will go out into
3	the reservoir that will actually be the maximum
4	pressure that's slightly lower than that, but it's a
5	good rule of thumb for yeah, I have a whole lot of
6	some safety factors just to just to see how close
7	we're coming to to fracture pressures.
8	Q And if the bottomhole gradient was .7 psi,
9	is it correct that then you'd be fracturing the DMG?
10	A Yes, but according to the rules that, yeah,
11	we agreed with from the OCD, once we found that
12	that fracture gradient, I think there's a, like, 90
13	percent safety factor that's applied to that. And so
14	our max surface pressure would be in you know, that
15	safety factor's set the load for that fracture.
16	MS. HARDY: Those are all of my
17	questions. Thank you.
18	MR. FUGE: Dr. Ampomah?
19	DR. AMPOMAH: Let's start with slide
20	147. So you've presented about why you believe that
21	Chevron believes that the DMG group is not ready for
22	that.
23	MR. TAYLOR: Yeah.
24	DR. AMPOMAH: So what is the typical
25	residual saturation for these areas that you analyzed?
	Page 216

1	MR. TAYLOR: I do not know. But that
2	is not not something that we had the current log
3	especially if you want your current log data to be
4	able to analyze it.
5	DR. AMPOMAH: Yeah. So you're saying
6	that we're meeting in place right now is a 1.3?
7	MR. TAYLOR: Yes.
8	DR. AMPOMAH: So if I want to believe
9	that we cannot produce any amount of I want to
10	know the vertical saturation right there. So you
11	talked about this going through primary, secondary.
12	So were there water injections earlier?
13	MR. TAYLOR: Yes, the in the 80s, as
14	I recall, there was a water flood. An injection was
15	implemented at the at the El Mar Field.
16	DR. AMPOMAH: Do you know the
17	injectivity of those injection wells?
18	MR. TAYLOR: I do not. I do not.
19	DR. AMPOMAH: And you did not analyze
20	that as part of your analysis?
21	MR. TAYLOR: No. Most of the wells, we
22	looked at from an injector standpoint. And we wanted
23	to look at modern day SWD wells. Typically, we would
24	look at these enhanced well recovery wells. They
25	inject at much smaller intervals. They're just
	Page 217

1	targeting, you know, tens of feet. We want to target,
2	you know, thousands of feet for injection.
3	We also noticed that the rates that
4	they see it and the maximum rates on their permits and
5	then at least on the Texas side and some of the
6	pressure that we've seen in New Mexico or or very
7	low so you're looking at, you know, typical injection
8	rates, about a thousand barrels a day.
9	The SWDs have their purposes to put
10	away a lot more water, to enable the oil productions
11	in the fields, and to much steadier intervals at much
12	higher rates for an SWD to be successful. So yeah,
13	really, the wells I presented for the from the RGA
14	standpoint, were the best analogs we can find in the
15	vicinity of modern day DMG SWD wells.
16	DR. AMPOMAH: So now Chevron owns these
17	wells that were analyzed?
18	MR. TAYLOR: No.
19	DR. AMPOMAH: And then the companies
20	that own these wells didn't already did you support
21	the analysis that you did?
22	MR. TAYLOR: I am not aware of any
23	feedback from those companies. But we we based
24	this of, like, data.
25	DR. AMPOMAH: Let's go to slide number
	Page 218

1	or page number 150. So I do have quite a number of
2	questions on this page. So the first one is what is a
3	stress gradient here?
4	MR. TAYLOR: Can you clarify?
5	DR. AMPOMAH: Yeah. Where is the
6	stress gradient in this area?
7	MR. TAYLOR: You mean in terms of the
8	SHMax?
9	DR. AMPOMAH: Yeah. But depending on
10	whether the SHMax lays on the SV, then there
11	MR. TAYLOR: So the the stress
12	orientation is to put and I don't have my slides,
13	but in the other exhibits we've seen today, including
14	the ones that Jason shared, that's that's a stress
15	orientation of the southwest for these.
16	DR. AMPOMAH: No, I mean, I just want a
17	clear answer to what is the force of G in this area?
18	MR. TAYLOR: I I'm not the right
19	person to answer that question then.
20	DR. AMPOMAH: Can someone respond to
21	that?
22	MS. BENNETT: Mr. Comiskey can. Do you
23	want him to give input now?
24	DR. AMPOMAH: Yeah. It's very
25	important to all my other questions.

1	MR. FUGE: You can just walk up, just
2	get a little closer to the mic.
3	MR. COMISKEY: So if I believe I
4	understood the question correctly, it was what is
5	DR. AMPOMAH: Based on the Anderson
6	theory.
7	MR. COMISKEY: Yeah. So and this is a
8	normal faulting environment. So what this means with
9	the vertical stress is greater than the horizontal
10	stretch beginning in the minimal stress. So it's a
11	it's a normal faulting environment.
12	That's mostly dominated in the in
13	the Delaware Basin. It just needs to move into the
14	Midland Basin to get a little bit more of a of a
15	strike slip type in my slide my testimony it will
16	force that that theory as well.
17	DR. AMPOMAH: Yeah. So if it's a
18	normal routine, you do have SV all the same as your
19	minimum stress. So now I don't understand.
20	MR. COMISKEY: So we've seen in in
21	this area that minimum horizontal stress is somewhere
22	around .65 and .75 psi, which puts the magic number
23	horizontal stress around .9 and the vertical stress
24	around 1. And then formal breakouts also looked
25	at focal mechanism aversion for a moment just for

1	short breaks that tied that into the roughly
2	values. And they quarterly head back to as well.
3	DR. AMPOMAH: So let's say would that
4	be more like related to a normal reservoir? Because I
5	didn't know what that meant. Lamar is more like a
6	right. So I just want to understand how the minimum
7	stress point is about 1.2 psi before, and then the
8	too.
9	MR. TAYLOR: Yeah. I think part of
10	that might just come from mislabeling minimum stress
11	here. This is not to communicate that the minimum
12	stress is that work well. I guess it it's really
13	the minimum fracture closure pressure that we got from
14	the XLOT.
15	DR. AMPOMAH: So I don't take that as a
16	minimum result of stress?
17	MR. COMISKEY: Correct. Correct.
18	That's that's the closure stress gradient, not
19	not the actual instance you stress test for.
20	DR. AMPOMAH: So do we need to do it to
21	make any adjustments to this? Because it's confusing
22	to me actually.
23	MR. TAYLOR: That you're requesting,
24	I guess, an update to the exhibit here?
25	DR. AMPOMAH: Yeah. Because, like,
	Page 221

1	let's say if someone takes your data then use that in
2	future, you don't see that little permission more or
3	less, agree to a minimum result of stress. Let's say
4	1.32 psi compared to SV of 1.2 psi. That would be
5	I don't want to agree to that.
6	MR. TAYLOR: Understood that. Date the
7	update the label?
8	MS. BENNETT: Yeah, but you can do
9	that update the label. And I also need to fix a
10	typo in the slide about the last date drilled over DMG
11	so we can submit those two together.
12	DR. AMPOMAH: Okay. Thank you.
13	So on slide number or page number 152,
14	so I just want to clarify that the blue locations are
15	where you have the wells that you use for the
16	analysis?
17	MR. TAYLOR: Yes. Those are the
18	locations of the analog wells.
19	DR. AMPOMAH: Okay. The analog wells.
20	And all of these are in Texas?
21	MR. TAYLOR: Correct.
22	DR. AMPOMAH: So my first question is
23	what is the distance between the closest one to the
24	Papa Squirrel well?
25	MR. TAYLOR: Yeah, that's a good
	Daga 222
	Page 222

1	question. There's not a scale on this map, so I
2	can't.
3	DR. AMPOMAH: I do live very close to
4	the
5	MR. TAYLOR: Severitas?
6	DR. AMPOMAH: Yeah. I don't want to be
7	that close. But near Papa Squirrel. And I do see
8	also that he brings the analysis to propose 20,000
9	daily rate and a 50,000 daily rate. These are
10	analogous, each well analysis; right?
11	MR. TAYLOR: Yeah. So coming back to
12	what was submitted in the C108 versus the analogs
13	here. So the C108 analysis was done prior to having
14	this dataset completed. So we actually used it, no
15	one else's software and then a a much smaller
16	subset of of the analog SWDs to figure out what a
17	the productivity index or injectivity index would
18	be for the reservoir, where you applied that to the
19	the well bore and depth conditions in both the
20	Severitas and Papa Squirrel to then calculate what the
21	rate would be.
22	And that was what was submitted into
23	the C108. You notice that that agreed quite well with
24	the Papa Squirrel range the Severitas, the analog well
25	that we used was a little bit optimistic in that case

1	and smaller subset at the time. So it had and
2	our and our filings are requested some rates that
3	were a little bit on the high side of the estimated
4	range from the numerical model. It was based on this
5	rate transient analysis.
6	DR. AMPOMAH: Yeah, so my biggest
7	concern is about the 20,000 and then the 15,000. So I
8	just want to be clear. Are you saying that let's
9	see. Is it your testimony today that your rate is
10	more or less comparable to the amount or analysis
11	from the 20,000?
12	MR. TAYLOR: So I think that notable
13	analysis of the C108s represent the high side cases.
14	And and yet if we turn to page 156, you'll see that
15	that high case peak of these Veritas wells, 20,000
16	barrels of water per day, in one case 50,000 barrels
17	of water per day, which agreed exactly with our our
18	assessment there on the C108. Or as noted on the
19	Severitas well, we we had our maximum at 15,000
20	barrels per day with our average at about 12,500
21	barrels a day.
22	You can see here from this plot on page
23	154 that the simulation is showing a the high case
24	at that 12,500 barrels a day. So you see why it may
25	be overstating the amount of injection that we can

1 potentially see in this location. 2 DR. AMPOMAH: Yeah, so that is my 3 Because let's say we agree to 20,000 barrels concern. per day. Now, before I move on, let me ask. So these 4 were there to analyze what is the maximum injection rate for either the maximum? I cannot recall. 6 7 MR. TAYLOR: So what I recall, I think 8 between 20 and 30,000 barrels of water per day. 9 DR. AMPOMAH: So I asked this question earlier to your colleague. And then he told me -- he 10 11 told the Commission that in New Mexico, it is very 12 small. But the maximum he has seen in Texas has been 13 about 10,000. Yeah, that was part of the testimony. MR. TAYLOR: Yeah, I -- I know there 14 15 are some wells that have injected 10,000 barrels a 16 day. Our Chevron wells and one of the ones that we had actually has a similar maximum rate on it as -- as 17 what we would see in that -- I think in the Severitas 18 19 well. And it's a shallow one in Texas. It's been averaging about 12,000 barrels a day. 20 2.1 So it -- it really depends on where you 22 are in the -- and there's a lot of wells there more towards the -- the east closer to the Papa Squirrel 23 24 location that will put away 20 to 30,000 barrels a day, some even higher than that just depending on the 25

1	permits that have been granted.
2	But important to keep in mind Texas has
3	a much higher maximum surface pressure that actually
4	results in the injection of bone fracture gradient.
5	DR. AMPOMAH: Yeah, not in New Mexico.
6	MR. TAYLOR: Right.
7	DR. AMPOMAH: So I just want to clarify
8	that the people said, you know, two to 4,000
9	barrels a day. And at the maximum that they see based
10	on the experience of our 10,000, that's been outside
11	the state lines. So I don't know. Because I feel
12	like 20,000 barrels a day, and there were based on
13	your analysis, you are not that close to that number;
14	right?
14 15	right? So my thought is would you agree to
15	So my thought is would you agree to
15 16	So my thought is would you agree to what NMOCD's saying and then probably be granted a
15 16 17	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that?
15 16 17 18	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no
15 16 17 18	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no objections to the rules that were were pointed out
15 16 17 18 19 20	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no objections to the rules that were were pointed out by the use the separate test to guide the maximum
15 16 17 18 19 20 21	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no objections to the rules that were were pointed out by the use the separate test to guide the maximum injection pressure. You know, the the rate, the
15 16 17 18 19 20 21 22	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no objections to the rules that were were pointed out by the use the separate test to guide the maximum injection pressure. You know, the the rate, the injection rates.
15 16 17 18 19 20 21 22 23	So my thought is would you agree to what NMOCD's saying and then probably be granted a lower rate and then the step-rate test down with that? MR. TAYLOR: Yeah. We have no objections to the rules that were were pointed out by the use the separate test to guide the maximum injection pressure. You know, the the rate, the injection rates. You know, there's a lot more wells than

1	lot of publicly available data we can look up and
2	pull. But there's dozens and dozens of wells that are
3	injecting about 20,000, 30,000 barrels a day in Texas.
4	So the the DMG is capable of taking
5	a lot of water. However, as this you were pointing
6	out a lot of that then Texas is above the fracture
7	parting pressure, and so we're we are expecting
8	much lower rates here in New Mexico due to the the
9	guidelines set by the OCD.
LO	DR. AMPOMAH: Let me ask. What about
L1	your assumptions that you utilize in their key
L2	analysis?
L3	MR. TAYLOR: Can you be more specific
L4	about the which assumptions?
L5	DR. AMPOMAH: So the first one that I
L6	saw is that there is a general system. So even that
L7	one, how does that translate to, let's say, a highly
L8	heterogenous system that you are used to dealing with.
L9	You know, and if you are using that, you search more
20	like you explain more just why that conversation
21	ran that higher rate. You know, how is that shaping
22	up in terms of if they had continuous and then
23	MR. TAYLOR: Yeah. Thank you for that
24	question. So the the approach that we're that I
25	like taking for these is the the simplest possible

1	for what would explain the data that we're seeing.
2	That and that's just to avoid a creative yet super
3	convoluted model that might match the data but not
4	really reflect reality.
5	And in a lot of cases, most every
6	every case for RTA that we've looked at, they that
7	simple model that explains the dataset is a
8	homogeneous radial flow meshed with a cylindrical
9	boundary. The part of the reason why we're that
10	model shows up a lot is due to some of the noise in
11	the data.
12	So a lot of these are surface pressure
13	readings that we then have to convert into bottomhole
14	pressures. And using the the rate data that to
15	then be able to perform this rate transient analysis.
16	So the yeah, so that's why that homogeneous
17	assumption makes the most sense as our starting point
18	and that explains most of the data. I think you can
19	see some of that potential heterogeneity in the
20	reservoir reflected in the permeabilities that we
21	calculate.
22	As you recall, that core permeability
23	shared on an earlier side showed less than 1
24	millidarcy. We're seeing a rate transient analysis
25	arranged with that 6 millidarcy up to 30 millidarcy.

1	So what what could be the cause of that?
2	Sometimes natural fractures that
3	that you asked about in a previous question that could
4	be present taking some some additional fluid out
5	here on these Texas wells. Specifically, it could be
6	due to induced fracturing from the high rates of
7	pressures that are present in the Texas. So those are
8	not that's kind of all reflected in this composite
9	permeability calculation that we get out of the data.
0	Some of the other assumptions that
1	we're using yeah, we're not really. Sometimes
_2	we'll model these with well bore storage most of the
_3	time. It doesn't really make much of a difference in
_4	the final answer, so we tend to leave that off. We
_5	well, in these cases, some of them have time dependent
-6	skin. That's when operations happen.
.7	They and they'll do acid jobs
-8	throughout the life of the well and see the skin
_9	factors change. On all of our numerical simulations
20	that we're showing here on the exhibits today, we're
21	sending zero skins to represent the brand new well,
22	cleaned up a better casing
23	DR. AMPOMAH: So nothing really that
24	different from the alternatives that you think is
25	helping to understand your two cases?

1	MR. TAYLOR: Yes, yes.
2	DR. AMPOMAH: So now what? If you look
3	at the testimony now presented in your analysis in the
4	area that you are proposing, you have the radial
5	.32 millidarcy?
6	MR. TAYLOR: Yeah.
7	DR. AMPOMAH: So I am expecting around
8	lower end. Should a range reflect that?
9	MR. TAYLOR: Yeah. And I and I do
10	understand that that concern. I think that these
11	models are very easy to to rerun with permeability
12	assumptions. It's the we wanted to honor the
13	analog data since we don't have, you know, really any
14	analogs in New Mexico under that pressure, where you
15	know, we have to use the Texas wells, which do have
16	some different operational conditions.
17	You know, part of the reason why we
18	want this pilot, they're requesting this pilot program
19	is to actually get that data in New Mexico operating
20	under the OCD guidelines to understand more about how
21	the rock is reacting to the to an injection. What
22	are we really seeing in terms of permeability?
23	You know, the the few core samples
24	that we do have, are those reflective of the entire
25	reservoir or not. And so there there's a lot of
	Page 230

1	unanswered questions that we have right now. A lot of
2	uncertain data we are hoping to resolve in this pilot
3	project.
4	DR. AMPOMAH: So in the modeling that
5	you did for the two wells, do you know whether the
6	formation really took most of the water?
7	MR. TAYLOR: So since these models are
8	ultimately homogeneous and ultimately simple, it
9	really just comes down to it's mostly collated with
10	their thickness. We think upper, which is a Y, and
11	injection rate is correlated to to thickness.
12	So the thicker one would take more
13	more water in the models, so in this case it would be
14	the the Cherry. The porosities do do impact
15	that a little bit. But being as how close these are
16	with these models, it's they give a thicker
17	interval tends to hold more water.
18	DR. AMPOMAH: Just so I understand, so
19	before the true potential injection zones, you
20	assigned the same porosity?
21	MR. TAYLOR: No. As you'll see on
22	slides 154 and 156 on the tables, those are the inputs
23	into the model so that you have different porosities
24	based on the from the geology at those locations.
25	DR. AMPOMAH: So what were the fracture

1	pressure ingredients that you utilized in this one for
2	either of the wells?
3	MR. TAYLOR: So this model did not take
4	into account fracture pressure. This is the very
5	simple radial flow homogeneous model.
6	DR. AMPOMAH: So in my mind, I'm trying
7	to correlate the significance of the arms to the rate
8	that you want So it sounds to me like this is a
9	very simplistic model. And looking at how simple-
10	looking it is, you know, maximum injection rate, it's
11	not really up to answering our question.
12	MR. TAYLOR: This I can agree that I
13	can thank the the rates that we requested were on
14	the high side and then we wanted to socialize those
15	those high in potential numbers based on what we're
16	seeing in Texas and how this is possible in the DMG.
17	And just so that we're not we didn't
18	want to come in and request 5,000 barrels a day and
19	then have well, the potential for 20,000 barrels a
20	day. We thought it would be better to err on the
21	conservative side of requesting for more, higher rate
22	at these given pressures and then learn through this
23	pilot what is actually possible in in New Mexico.
24	There's just there's a lot of
25	uncertainty on the rates. Much more confident in

1	the the pressure assumptions and the total storage
2	in real life as well. But the rate is really a big
3	question. That just comes down to that that
4	uncertainty and permeability to have all these tracks
5	going forward.
6	What does the permeability really look
7	like on a macro level as the well accesses the
8	reservoir? And we won't understand that until we have
9	some injectors in the ground and we can do a similar
LO	analysis on them.
L1	DR. AMPOMAH: So I'm going to ask you
L2	based on the analysis that you've done, in your
L3	experience, you know, how is the high volume injection
L4	in the shallower areas that you are proposing, how
L5	will the impact you're going to build a pressure
L6	pit. So how is that going to impact future injection
L7	
L8	MR. TAYLOR: I I think this is why
L9	it's important to space wells properly. I do agree
20	with the proposal that the OCD put forth that the
21	wells be at least a mile apart. You know, Chevron, we
22	see a lot of operators out there on the side in Texas.
23	They'll pack their wells really close
24	together in whatever position they have are being
25	that's wasted. The capital or really this here have

1	been injected into the exact same container. So we
2	our view is to space our wells out appropriately right
3	now I think in the in our entire Harris, New Mexico
4	field, where Severitas is, we have a potential three
5	more locations we've identified with proper spacing
б	and which I think is at least about a mile and a half
7	to two miles apart.
8	But this is something that I don't
9	recall exactly off the top of my head, but I think
10	that's you know, relative to the the range of it
11	over in the near Papa Squirrel and our Salado Draw
12	field, we have two additional locations identified and
13	properly spaced out.
14	It's not our intention to pack these
15	wells in closer. I think I'm, you know, kind of
16	extrapolating your question a little bit. If if we
17	pack a lot of wells too closely, then the water
18	pressures will increase it a lot quicker. It's not
19	something we want to see, and we want to be able to
20	efficiently use the the reservoir in that storage
21	capacity. From my from my perspective, that
22	cumulative storage number is the most important
23	number. How much is this well going to be able to
24	take over its its entire life?
25	DR. AMPOMAH: So on page 157, you apply

1	the pressure showing us how the pressure needs to be
2	away from the well bore, but I really wanted to see
3	how the pressure is building up with regard to time.
4	You know, in the more, like, pressure so I can really
5	see how the pressure is building up based on the rates
6	that you are using. I'm sure you have that.
7	MR. TAYLOR: Yeah. Yeah, we can we
8	can for transform it into that. The way we
9	presented it here was the time is really represented
10	by those those different curves that we had. They
11	all go up on the chart. That's the time. And then I
12	tried to give a sense to that on the in the box
13	there, the be calculated that timing there, that
14	four-year, 11-year, 23-year et cetera.
15	Again, we the way we should have
16	presented this data was more in terms of distance, as
17	you said, rather than through time.
18	DR. AMPOMAH: Can you comment on the
19	boundary conditions? So I know that in your
20	application you said it's the closest.
21	MR. TAYLOR: Yeah.
22	DR. AMPOMAH: So is it really closed.
23	MR. TAYLOR: So based on the RT8 data
24	that we've seen, these wells really are our closest.
25	We haven't found one yet that is in the DMG that has

1	an arbitrarily large boundary. They all all of the
2	boundaries tend to just show up within a few months.
3	So we got to it's a finite here. They gave us each
4	model followed by that circular reducing on the wells
5	quite well.
6	In reality, the shapes get, you know,
7	oblong. They could be rectangular. We don't really
8	know. But the the important thing is that they are
9	finite and we can represent that finite, that
10	potential area of impact quite well through a
11	cylindrical reservoir model.
12	DR. AMPOMAH: Yeah. And you obviously
13	did hard work. You did an amazing analysis. So thank
14	you.
15	MR. TAYLOR: Yeah. Thank you for your
16	round of questioning.
17	MR. FUGE: Now, I take it there are no
18	questions?
19	MR. FUGE: I only have one. And it may
20	just be implied from the analysis here. But I'm
21	assuming when you did your sort of individual well
22	decline and then the El Mar Field remaining reserves,
23	a check was done. There are no pending applications
24	that would suggest any interest in this area or these
25	formations?

1	MR. TAYLOR: I don't recall. I I
2	did not do that exact that check even with the
3	outlines. We're back to look at that.
4	MR. FUGE: Yes, please.
5	MR. TAYLOR: So yesterday, we were I
6	went back some questions and just went back to see
7	when the last was and so it kind of tells me in
8	in short what I think OCD kind of first of all, she
9	went with these Cherry Canyon behaviors didn't
10	even didn't even require we don't have an exact
11	I think there is some some
12	MR. FUGE: Any other questions for the
13	witness?
14	MR. TREMAINE: No.
15	MR. FUGE: You may be excused.
16	I think I'm going to order to adjourn
17	for a short break. We will reconvene at 3:30.
18	Then you have one more witness?
19	MS. BENNETT: Right.
20	MR. FUGE: Mr. Tremaine, how long do
21	you expect you'll need for your first witness?
22	MR. TREMAINE: Our first witness will
23	be pretty quick, so maybe 15 minutes.
24	MR. FUGE: So at least coming in, just
25	sitting in, and so you know this at the outset.

1	Somebody had a harder stop at five today. But at
2	minimum, we're going to do Chevron's last remaining
3	witness and OCD's first. If we have some additional
4	time, we can discuss that as we're moving forward.
5	So we will return at 3:15. I mean at
6	3:30.
7	(Off the record.)
8	MR. FUGE: Let's get back going, folks.
9	And I know it's a little toasty in here. I have
10	submitted some request to central, wherever that is
11	located, to drop the temperature a little bit to the
12	extent they can.
13	But we will go ahead and get started
14	with Chevron's last witness.
15	MS. BENNETT: Thank you.
16	MR. FUGE: And since, Mr. Comiskey,
17	we've already sworn and recognized this, I think we
18	can just go into the substance of his testimony.
19	MS. BENNETT: Thank you very much.
20	EXAMINATION
21	BY MS. BENNETT:
22	Q Yes. Mr. Comiskey, you remember that you
23	were sworn in? Do you agree to tell the truth?
24	A Yes.
25	Q So this morning you gave us an overview of
	Page 238

1	the pilot projects and some of the work that's been
2	done. And now we're transitioning to a different part
3	of your testimony. And so what's the purpose of the
4	testimony you're about to give?
5	A So a part of my own projects, one of the
6	things you'll notice, we did a and took a very
7	thorough review of seismicity at the Permian Basin.
8	This is one of the cornerstones of of, you know,
9	why we're looking into this kind of project for
10	produced water optionality. It's partly due to the
11	fact of the increase of induced seismicity
12	attributable to somewhere across the Permian Basin.
13	So through these pilot reviews we undertook
14	and we'll go through the review that I undertook to
15	assess seismicity risk for these two pilots and just
16	an overall setting of seismicity through the Permian
17	Basin.
18	Q Thanks. And let's start out with your first
19	slide, which is a seismicity review slide.
20	MS. BENNETT: And for the Division
21	I'm sorry for the Commission, for reference, and
22	for our other parties, we're starting on page 126 of
23	the materials.
24	BY MS. BENNETT:
25	Q So let's start with page 126. And if you
	Page 239
20 21 22 23 24	MS. BENNETT: And for the Division I'm sorry for the Commission, for reference, and for our other parties, we're starting on page 126 of the materials. BY MS. BENNETT:

could orient the Commission to the slide.

2.4

A Yeah. So again, the map on the right is just the map you've seen probably a dozen times already today of the two locations, so I won't harp on those. The thing on the left is modified from Zhai, et al. And it's -- it's focusing on Permian Basin. So what I did is just -- it does a good job of explaining, I think, the major operational practices going on on today's Permian Basin.

And so if you look at that, we start with the caprock, which we touched on a little bit. And then we get into the -- the shallow disposal layer, which in this case is the DMG. Below that are the Avalon, Bone Spring, and the Wolfcamp production intervals. And then you go further below that into a deeper disposal interval, which is typically referred to as the slurry or admission carbonates or deep disposal. And then below that is a basement.

And so what I've annotated on there are kind of three colored blocks, a pinkish, reddish that looks a the shallow injection. And roughly the depths here in Southeast New Mexico of about five to 7,000 feet. Production again that's referring to major unconventional development and production of roughly about 6500 to 12,500 feet.

1	And then deep injection is roughly about
2	17,000 feet to about 20,000 feet. And then what I've
3	labeled there below is that seismicity, which I'll
4	show in the in Southeast New Mexico it's roughly
5	located about 20,000 feet or greater.
6	So you can see just the vertical
7	differentiation between shallow disposal in the
8	Permian and then the deep earthquakes that have been
9	attributed to deep disposal. And so this kind of just
10	sets the you can see the schematic there kind of a
11	little bit on the left side.
12	You've got, you know, disposal and pressure
13	front perturbation, which my colleague Bryce mentioned
14	on just a minute ago. You've got production, which
15	also creates a a pressure response and then deep
16	disposal again. So your you have various sources
17	and sinks of pressure as fluid is withdrawn or or
18	molecules are withdrawn or rejected, given a a
19	specific operation.
20	Q One last turn to your next slide, which is
21	slide 127. And can you briefly describe this slide,
22	and in particular where this information comes from
23	and what it represents?
24	A Yeah. So this comes from the OCD oil and
25	gas map. So what I've labeled here obviously this is

the locator. I've -- I've labeled the -- the two locations for the pilots there with the blue stars, and then the colored bullseyes represent the current seismic response areas or SRAs in Southeast New Mexico.

So the colors there represent different radius around that, so the also yellow and/or red or

2.1

2.4

radius around that, so the also yellow and/or red or orange circles, if you look. The small circles are earthquakes of a certain magnitude. Those are either 2.5 to 2.9 magnitude. That's 3 to 3.4. So 2 to 2.9 are yellows, the oranges are a 3 to 3.4, and then the reds -- there's two reds -- are above the magnitude 3.5.

Those levels are defined by the OCD's seismicity protocol that was announced back in 2021. The associated colored bands of red and orange and yellow represent different radiuses around those events, representing red for 3 miles, orange for 6 and yellow for 10. And again, those are derived from the OCD's seismicity protocol from 2021.

And so what this is trying to show about the various seismicity protocols within Southeastern New Mexico, and we'll go through some of the slides and looking at in particular one of the SRAs, which I've labeled a county line, state line SRA, which is --

1	borders Eddy and Lea County and also Loving and Lea
2	County.
3	Q And so those depict the Papa Squirrel as it
4	is within one of the SRAs?
5	A Yes, it does depict Papa Squirrel as to be
6	within one of the SRAs. However, as I'll show in
7	future slides, the SRAs focused only on deep injection
8	and not shallow.
9	Q Let's turn to the next slide then. And can
10	you orient the commissioners to what this slide is
11	then and what you're showing here?
12	A Yes. Again, so here's an inset map looking
13	at Eddy and Lea County, and also the northern part of
14	the Delaware Basin of Texas. Again, I've highlighted
15	the two proposed titled SWD locations with blue stars.
16	I've also highlighted the county line/state line SRA
17	and a and a black oval.
18	The earthquakes on this map are are
19	colored circles represented from a magnitude 2.5 to a
20	magnitude 5.0. So what I'll go on this is the source
21	of this information is the USGS website. They are the
22	authoritative source on earthquakes in Southern New
23	Mexico. They're not in Northern Texas. That is the
24	TexNet, but TexNet or USGS reports of Texas. So the
25	USGS is essentially now the a one-stop shop.

1	So those earthquakes are colored by
2	magnitude. Most of those earthquakes occurred from
3	2019 onward. The two plots on the right if you look
4	on the the histogram, you'll notice the label is
5	depth of the event over time. So it's depth in feet
6	from surface level. And so the top of hot is
7	referencing just the events within the county
8	line/state line SRA.
9	The bottom is year, and you can see the
10	events with the necessary started within 2019, kind of
11	regressed since then. It started to pick up really in
12	late 2020 and has progressed fairly consistently until
13	late 2022/2023 where we saw a a reduction, and I'll
14	show that in a future slide.
15	The bottom plot is is looking at the
16	Northern Culberson/Reeves SRA, Texas. The reason for
17	showing this is it's also an area of seismicity that's
18	been attributed to deep disposal operations. And you
19	can see the number of earthquakes there. There's

S obviously quite a few more earthquakes over time in this plot.

20

21

22

23

24

25

But again, it just relates to the depths of the event. So both plots, you can see the depths are well over 18 to 20,000 feet. That is many thousands of feet deeper than -- than conventional development

1 and/or shallow disposal, which I'll show in a future 2. slide. 3 But the main purpose of this is just to orientate everybody with the seismicity that's going 4 5 on within the area of interest, the magnitudes, and 6 the trends over time and the depths. And so turning to the next slide, because 0 you've taken a closer look at some of the events that 8 have occurred in the area? 9 10 Yes. Α 11 Why don't you walk us through this slide? 0 12 So I'll start on the -- on the right of the 13 slide first so that -- this is a depth of operations versus seismicity. The depths that you'll see here 14 15 from the formations are derived from well tops. 16 there's a fairly accurate -- so the step goes from 0 to roughly 30,000 feet, again from surface. 17 18 So the first color block on there is -- is 19 relation to the Papa Squirrel. So the proposed injection interval that you've seen is the Bell and 20 21 Cherry Canyon formations, roughly 4600 feet to 7,000 22 feet. 23 Below that, you'll see the Avalon 24 production, roughly about 9,000 feet, the Bone Spring 25 production, roughly about 10,000 feet, the Wolfcamp

1	production, roughly about 11,000 feet. And then below
2	that again are deep injection. And that's again
3	roughly 17 to 20,000 feet.
4	Even below that again are earthquakes. So
5	the earthquakes that occurred and you referenced the
6	map on the left to see the location of the earthquakes
7	in XY. The location of earthquakes are again well
8	below the proposed DMG location interval and again
9	below the the deep SWD interval.
10	If you look on the map on the left, you see
11	the earthquakes again colored by magnitude. That
L2	magnitude scale is consistent through all the slides,
13	I should note. The the red dash outline is roughly
14	the the county line/state line SRA.
15	And then the blue boxes are deep disposal
16	wells. As I've mentioned this the SRA did not
17	impact any shallow disposal wells. It was only
18	focused on deep disposal wells given the preponderance
19	of information that was put forth a couple years ago
20	from those the industry.
21	So all the blue wells in that area have been
22	impacted by the SRA either through enhanced data
23	reporting, curtailments, or shut-ins depending on the
24	distance from the earthquakes. The reference there,
25	there's that orange/reddish circle right there. Yes,

1	that is a magnitude 4.0 event that occurred in July of
2	2021. That was really the catalyst for the the
3	SRAs and the the change in the protocol in
4	establishing this SRA.
5	I'll talk a little more about the the
6	evolution of this SRA over time. But the main purpose
7	of this slide is just to orient to begin within the
8	county line SRA and in particular the Papa Squirrel as
9	it is in the SRA. The depth of the proposed injection
10	interval, the depth of the production, the depth of
11	the deep injection, and when the seismicities occur.
12	Q Thanks. And down here, this is the part?
13	A The Papa Squirrel, yes. The Papa Squirrel
14	is the black diamond on the map label.
15	Q Right. Anything else you want to tell about
16	the slide? If not, we can move on.
17	A No.
18	Q So the next slide discusses curtailments,
19	which you were just alluding to, so why don't you take
20	it away and talk a little bit more about curtailments
21	and why that's relevant to today's discussion?
22	A So when we look at seismicity, the question
23	is what's inducing the earthquakes; right? And
24	there's a multitude of hypotheses that can be looked
25	at with inducing earthquakes. Not just on the in
	Page 247

1 the Permian Basin, but anything due to anthropogenic 2 events. And anthropogenic meaning human caused. So when we looked at seismicity in Southeast 3 New Mexico as it began to -- to take an uptick, we're 4 5 starting to look at -- see the correlation between, you know, analog studies, correlation between deep 6 injection and the seismicity, things like that. 8 So there's a couple key things on this that I think add -- give us a better understanding of the 9 correlation between deep disposal and the seismicity. 10 11 So the same map on the -- that was on the previous 12 slide is shown. However, there's a blue kind of 13 colored in circle-ish oval. And what that's depicting 14 is just the initial seismic response around the 15 initial magnitude 4.0. 16 The reason why the red area is much larger 17 is that's incorporating events that trend up towards the south, southwest over time towards the state line. 18 19 That's created a much broader polygon. But the 20 initial kind of AOI was that -- that shaded -- roughly 2.1 shaded curtailment area. And so if you look down below, you see the 22 magnitude 2.0. That's within the initial 4.0 23 24 response. And again, it's just magnitude 2.5 and above on the USGS. And you can see the events over 25

1 time.
2

2.1

2.4

The dashed line that is noted on that plot on the bottom with OCD becomes labeled is the point at which the OCD enacted their response, thus curtailing deep disposal within that area. If you look up at the plot above, this is a plotted SRA. The county line/state line SRA deep volumes and barrels of water per month from the OCD website dating back to January of 2017 essentially through reporting in October roughly.

And you can see that trend continuing up over time, reaching a max of nearly 8 million barrels a month in early 2021. However, you can see a sharp drop after that OCD curtailment in essentially December of -- of 2021, January of 2022.

And so if you look at that OCD curtailment drop and you look at the -- go back to the bottom plug. You can see the seismicity before the curtailment and the seismic reactive curtailments are -- are very different.

And you notice that there's only one event on that bottom plot kind of after that April 13 date.

We -- I pulled the date up until just a few weeks ago. There just haven't been any events. So that's why the plot stops. There just haven't been any earthquakes

in that -- in that oval.

2.1

2.4

If you go and look now on the county line SRA earthquakes over 2.5, this is taking into account the whole county line SRA. Again, I note the OCD curtailments. You still see seismicity has continued. You could probably say it's probably equal to what it was before. Again, that's representative of the seismicity has migrated. Again, the curtailments have only impacted a certain area, not the whole, broad area.

The -- but the key to this slide though is that within the area curtailments on the deep disposal volumes only -- and I want to reiterate there was no shallow curtailments in this -- there seems to be a strong correlation between the curtailments of the volumes from the OCD and the seismicity within that immediate response area.

And this is analogous to other areas globally that have seen responses in injection due to seismicity, curtailments, or shut-in, and the mitigation of seismicity over time.

Q So this preserved -- that we intended to talk about earlier, but it's here as well, so why don't you describe this slide to the commissioners, and why was it included in here as well?

1	A So this is this is somewhat a cornerstone
2	of the pilot program. It just kind of relates to
3	to, you know, where this water's going. So you've
4	seen curtailments. Production has continue to go.
5	I'm sure, you know, New Mexico should be very proud of
6	being the second largest oil-gas producer in the
7	United States.
8	So the plot on the bottom this is just
9	focused on Southeast New Mexico, so this isn't
LO	representative of the entire state, just focusing on
L1	Southeast New Mexico in the Permian.
L2	You can see an increase in - in green. That
L3	shows up as green. But oil production, that's BOE
L4	equivalent per day. 2019 obviously till 2023 when
L5	pulled the data, and that's roughly about 3 million
L6	barrels a day or so. BOEs again.
L7	The darker blue line, that is average water
L8	injection. Again, this is Southeast New Mexico. And
L9	so you can see that premise is roughly flat, but did
20	come up a little bit in 2022, then it's roughly been
21	flat. However, you know, for every BOE that's
22	produced in the Permian Basin, roughly it's anywhere
23	between two and a half to five bags of water.
24	So and you expect to see that trend
25	increase relative to production. So if you look up

1	the total water production trend, seems to you
2	know, kind of relates to that. So you can see that
3	Delta is roughly about 2.5 to 3.5 four to one. So
4	where is that water going?
5	You have increased oil production, and the
6	injections here will be flat. Most of that water is
7	moving across the state line. It's being injected
8	into Texas roughly to the tune of about 3 to 3 1/2
9	million barrels a day is being injected.
LO	And I I would argue that probably 90
L1	percent if not 95 percent of that water is being
L2	injected into DMG disposal wells. So when we think
L3	about, you know, reductions in in, you know, we've
L4	we've talked about limited DMG disposal and
L5	Southeast New Mexico as we document its today, talk
L6	about predominantly deep disposal in Southeast New
L7	Mexico.
L8	However, the rise of seismicity has
L9	curtailed several areas of deep disposal. It's put
20	more more pressure pun intended on the
21	disposal network. And there's been a big move to move
22	a lot of that water across the state line into Texas.
23	Q Thanks. This slide is entitled "Chevron
24	Undertook In-Depth Technical Review." And this slide
25	isn't designed to go through that technical review,

1	but maybe more or less to be a summary of the
2	technical review?
3	A Yes. This is just a graphical
4	representation of the technical review. And so the
5	previous slides talked about the seismicity, where
6	it's occurring and operational things. Things that we
7	can observe, things that we can we can see.
8	This is trying to look at, you know, what's
9	causing the earthquakes and what are the earthquakes
10	telling us about the earth? What are they telling us
11	about the relationship to stress, relationship to many
12	different properties we look at.
13	And so all red everybody to the again,
14	the plot on the right the figure on the right is
15	the same figure again on and I'll talk about that
16	dash line here in a second.
17	But if you go to the figure on the left, the
18	map, you can see that this is again a map of roughly
19	the same area of Lea and Eddy County and Northern
20	Texas and the Delaware Basin. And then I've I've
21	labeled several things on here, so I'll walk through
22	that.
23	If you notice the the blue triangles
24	here, those blue triangles are seismic monitoring
25	stations. This is Chevron's and the industry's

operator network that many companies have subscribed into. And essentially, it's a -- a very robust network of seismic monitoring stations.

2.1

2.4

Across the Permian overall, Chevron has access to over 220 seismic monitoring stations, which gives us a very robust understanding of where the earthquakes are occurring. Space and time, but also very highly accurate understanding of the depth, which is very consistent.

A lot of the times, you'll see the -- either through other public reporting agencies the depths are off. They could be off by 10,000 feet because they don't have enough stations to detect the earthquakes accurately. And this has been around for several years, and it's actually expanded into Mexico more frequently in the last couple years because of the increase in seismicity.

The second thing I want to note on this are the colored -- we call them beach balls in -- in seismology. They're actually moment tensor focal mechanism solutions. But you can see they're colored. They're colored according to the magnitude scale. And I apologize that it's hard to read. But the -- the darker colors are lower magnitude starting at about a magnitude 2. The warmer colors go up to I believe a

1	magnitude 3.8 or 9 on this map. And so that's just
2	the magnitudes, so the beach balls are colored by
3	magnitude.
4	What the beach balls tell us and how you can
5	see they're slightly different shaded and again on
6	the scale it might be difficult to see. But you can
7	also if you take a glance at the map on the middle,
8	you can see similar kind of gray beach balls. And
9	what these moment tensor beach ball solutions tell us
10	is how faults are moving.
11	So when an earthquake occurs, there's
12	different different stations to detect different
13	first motions and locate the earthquake. And that
14	amplitude either up or down tells us how the fault
15	moves each direction.
16	The the very key component to this, it
17	tells us the geomechanical orientation of the fault on
18	the subsurface. And so for several representative
19	focal mechanisms, what I've done is I've labeled the
20	spike, dip, and the rake. And those are key
21	components of structural geology.
22	But what these tells us is which way's the
23	fault leaning, so which direction is the fault? Which
24	way is it dipping? And those can tell us about so log
25	information, about the stress information in the

1	subsurface. Is it a normal faulting environment based
2	on the orientation of these mechanisms? Is it a
3	reverse fault environment? Things like that.
4	But it's very critical understanding the
5	stress 'cause that tells us how faults are stable and
6	subsurface unstable. Some faults are stable. You
7	could you could increase the "rosavar" [ph]
8	pressure to a million psi and it'll never move.
9	Some faults are unstable. You could
10	increase the "rosavar" [ph] pressure by one psi and
11	they will move. So understanding that in relation
12	to to the geometry is very important when we're
13	thinking about induced seismicity and what may or may
14	not cause it. So that that's a key component.
15	The figure on the top is just a
16	representation of Andersonian faulting. And this is
17	just a broad representation of the fault, this roughly
18	dipping that we've interpreted here. They kept kind
19	of becoming SRA area. The deep fault moved. And it's
20	roughly dipping about 50 degrees, striking about 65
21	degrees, which is roughly parallel to SHMax.
22	So the the red lines on this map are
23	interpreted based on many different types of data, but
24	the SHMax in the direction's roughly about 70 degrees.
25	So 65 degrees for the strike. Background stress is

1 roughly 70, so they're very well aligned. 2 So in a normal faulting environment, when 3 you have a fault that's probably parallel to SHMax, it's more prone to slip, meaning it's more likely for 4 5 movement to occur than fault let's say on an orthogonal map and I'll show a simplistic model on the 6 next slide on -- on that. The -- the map in the 8 middle is a publication from Jens, et al., and Mark 9 Zoback at Stanford. This was 2016. There's been a 10 subsequent update to this. 11 But this just shows a very good example the 12 stress direction accomplished of multiple data, some 13 of which -- a lot of which industry provided, including Chevron, to this. And this just gives a --14 a good understanding of the stress direction. 15 16 the -- the cue in the map in the background is colored 17 by normal to strike with faulting environment. And then the -- the indicators that 18 19 directional arrows on the map roughly indicates a 20 stress direction, the maximum horizontal stress direction, again, which is very critical to 2.1 22 understanding fault. 23 So if you -- if you look at all that, the -the kind of the dash line is something we've 2.4 interpreted on this as a deep basement fault that 25

1 And so that's just kind of based on all this 2 information, we're able to ascertain from the geology ascertain the strike and the fault, the dip, the 3 background stretch direction, the stretch direction of 4 5 the fault, and those two limitations, what's prone to 6 slip, what's not prone to slip. 7 So when we think about how we manage new 8 seismicity, this is a very critical component to 9 constructing your risk management plan when you think 10 about, you know, disposal operations or anything in 11 particular that has a -- a net change on the reservoir 12 or pressure change. 13 So the next two slides to go through are just basic seismicity reviews of -- of two locations. 14 15 So the -- the Papa Squirrel. There's a 10-mile area 16 of review on that. You can see the earthquakes again. 17 We've talked about this before. You know, the earthquakes are -- are deep. Again, the injection 18 19 interval for the Papa Squirrel's about 4500 to 7,000 20 feet. Earthquakes here are well over, you know, 20,000 feet or so, so there's significant separation 21 22 between the two. 23 I should note that the separation between

I should note that the separation between those are many thousands of feet at very tight on impermeable rock. Obviously, we have to use

2.4

25

1	hydraulics to stimulate the out of commission
2	reservoirs. They won't flow on their own. So there's
3	a lot of impermeable rock between the shallow
4	injection or goal and where these deeper quakes are
5	occurring. And then Papa Squirrel, the closest neck
6	to two and a half is roughly 5 1/2 miles away from
7	that bed.
8	The next slide is probably one of the more
9	boring slides we'll see today. Thankfully there is
10	no there are no events in New Mexico within the
11	10-mile AOR. I did pull up some events in Texas.
12	Those are pretty small magnitude events. I did label
13	again, as reference, this is again just the numbers
14	have changed here relative to the Severitas 2 State
15	SWD 1 location.
16	In the depths you could see the depths of
17	the earthquakes here very deep. You will note that
18	the plot stops in 2022. It's not because I didn't
19	I didn't want to pull anything more recent. It's just
20	there were no there had been no earthquakes within
21	this 10-mile AOR over that timespan.
22	So that was kind of a review of kind of the
23	seismicity review around this. I I will be remiss
24	if I didn't talk about shallow DMG disposal. And
25	based on the exhibits from OCD, I'm glad I brought

this -- this paper up.

2.1

2.4

And so there -- are there -- there is earthquakes in Permian Basin attributable to shallow disposal. Absolutely. And I will go through a very good case study from Horne, et al., that was published a year ago and looked into this in much detail.

So the map on the left has a lot of information on here, the reference is there and all the references I've used are -- are cited. I would recommend that Commissioners go and -- and look at this if more interested. There's a lot of information on it, so I'm not going to go through every component of that. But what I'll note is I did the zoom in and you can see the red arrow. And this is looking at Southern Reeves County.

Southern Reeves County, the earthquakes here are -- are much shallower. They are in the Delaware Mountain Group. And so, you know, the question had come up, you know, we have earthquakes due to shallow injection here. Why not, you know, in Southern New Mexico or other areas? And the answer is geology and stress.

So as I mentioned before, faults that are oriented roughly parallel to the stress direction are more prone to slip. And at Permian Basin, the stress

1	orientation rotates. See down here, it's roughly
2	the stress direction is roughly north/northwest to
3	south/southeast. So it's roughly if you look at
4	it, it's roughly oriented about, you know, 330
5	degrees. Whereas as I just showed you recently in
6	Southern New Mexico the stress orientation is about 70
7	degrees.
8	The stress rotates. It is very unique to
9	the Permian Basin. There are a lot of scholars out
10	there that are trying to understand exactly why it
11	rotates. There's a lot of hypotheses I'm not going to
12	get into today. But it does rotate. Which means
13	its one fault in a certain area may be stable. One
14	fault in the other area, same direction may be
15	unstable.
16	Look at the faults in Southern Reeves. You
17	can see their trend on the seismic cross sections.
18	The two slides there. One is black and white. The
19	other is colored. Just looking at a deaf slice and a
20	coherent slice of seismic data. And you can see those
21	faults are roughly trending about 330 degrees, right,
22	north/northwest. They are they are oriented and
23	they have it makes them prone to slip.
24	The the bottom plot and the colored
25	
23	scheme down marked E shows numerous shallow injection

wells in the yellow and green intervals. Those are the -- oh, sorry, the -- in the light green colored interval, those are active shallow injection wells that are injecting into the Delaware Mountain Group where those stalls are posted.

2.

2.1

2.4

And the likely hypothesis there is that those are increasing the far pressure reservoir, which reduces the effective stress on a fault. And that -- when that happens, it becomes unstable, and it moves, generating earthquake.

So this is the unique set of circumstances, we talked about faults. And you'll note that we have -- we have not shown any slides like this because when you go in and interpret these, these faults in Southern Reeves County are -- are very obvious in seismic data.

When you move to other parts of the basin, we cannot see these structures. And there's likely just because of the different faulting and the different stress domain when the basin was formed, these are thin-skinned faults. These are young.

These do not connect into the basement. They tip out into the Wolfcamp. It's likely because the timing of the basin range extension those dates, the deposition of the Wolfcamp.

1	But they are there, but we cannot see these
2	similar type structures in Southern New Mexico, at
3	least on the on the distribution on the scale that
4	we see down here in Southern Reeves County. That's a
5	very distinct also cannot see these in the Midland
6	Basin either.
7	Q So when you say we don't see them or you
8	can't see them in the Permian or Midland, what does
9	that mean exactly? Does that mean that you literally
10	can't see them or they don't exist or you don't have
11	to be as concerned about them?
12	A We can't see them with this fidelity.
13	They're not as they're not as clear-cut. These
14	are these are very clear. They offset
15	stratigraphy. You can see them very blatant in the
16	seismic data.
17	You could bring a lineup from ten
18	geophysicists and eight of them would agree. You
19	can't get all ten. But eight would agree that you
20	could see those. If you brough up a similar cross
21	section in Southern New Mexico or other parts of the
22	Permian Basin, it's much more harder to distinguish
23	them.
24	And the thought is it's there's a change
25	in the structural geological in this area. There's

1 definitely change in the stress direction as well. 2 We're about to move off. Well, we have a 0 3 couple more slides on there. 4 Α Yes. So let's talk about those, and then I think 5 what I would like for us to discuss is your 6 conclusions based on these slides once we finish up 8 with this, the orienting on this one. So the next slide, which is I believe 136 in 9 Α the packet, this again looks at that. So this is from 10 11 the same study. At least the figures on the left are. 12 And so again, we're looking at SHMax, the direction 13 here again is roughly 330 or 140 degrees, depending on which way you look at it. Northwest-southeast. 14 15 And again, the -- the researchers here took 16 the fault planes. They interpreted those two figures 17 in the panel next to the rose diagram, and you can see that these are almost vertical faults. The different 18 19 values are colored roughly 60 to 70 degrees, even 20 higher. And these are oriented roughly parallel to 2.1 SHMax, so again making it more prone to slip. 22 But down the right is using a model. This is from FFP, some publicly available program. 23 24 it's very simplistic, but it does a very good job of visualizing the differences in how important stress 25 Page 264

1 direction is. 2 And so I've drawn two orthogonal faults with each other. And its stress direction here again is 3 roughly about 140 or 330 degrees. And you can see 4 5 that the yellow fault, just based on its orientation, the core pressure model for it to slip is about 6 300 psi. 8 A fault orthogonal to it is roughly about 9 900 psi. And so just based on those two conditions alone, you can see the difference -- the difference in 10 the two and how important just the stress direction is 11 12 on fault stability. 13 Again, one of the things I want to note here I think is a very good part of the articles. If you 14 15 look at the Coalson events that are colored on the 16 bottom plot with the -- the beach ball diagrams again, that actually is today where the -- where the 17 magnitude 5 reoccurred as well in this area. 18 19 You can see the colors of those events. 20 Those events are roughly -- the beach balls are 2.1 roughly light to medium and dark green. The bottom 22 plot of that corresponds to the depth of about 7 to 23 9 kilometers in depth from the surface. If you look down further into Southern 2.4 Reeves County, you can see that the beach balls were 25

1	numbered 11, 12, 13, 23, 5, 17, and 16. They're
2	roughly orange-ish color, which means they're roughly
3	about 3 to 4 kilometers in depth.
4	So there's a strong depth differentiation
5	between larger earthquakes you see in the Culberson
6	SRA, which I noted before, and the events in in
7	Southern Reeves County. These are shallower. They're
8	not as large, and there's a depth depreciation I'm
9	getting off initially.
LO	The plot on the right is modified from
L1	Zoback and Gorelick. And I think this is a very
L2	important plot when I think about the potential size
L3	of earthquakes. It is very difficult to get a large
L 4	earthquake in a very small hole. When you think about
L5	earthquakes globally, the large earthquakes, the San
L6	Andreas Fault, the earthquakes that occurred down in
L7	Mexico, in Japan, those are on faults that are
L8	hundreds and hundreds of miles long.
L9	They generate very large magnitude 7 quakes.
20	There's a direct relationship and this is
21	what this plot is is showing between the the
22	length of the fault and stress built up in the fault
23	and magnitude. And the correlation is to have big
24	earthquakes, you have to have big faults.
25	So we're thinking about shallow disposal,

1	shallow seismicity. When we think about shallow
2	lineaments or faults or subsurface. They don't have
3	the stress built up over time to degenerate large,
4	appreciable earthquakes. That's just because they're
5	young. They're not as cranky. And they're they
6	just don't have the stress built up.
7	When you get larger earthquakes, magnitude 5
8	3, magnitude 5 4. Those are on larger faults, and
9	those are generally buried deeper because they have a
10	higher stress built up. And that's just a general
11	trend in in seismology in relationship to faulted
12	pods.
13	Q And so we're about to move on from
14	seismicity. So I was hoping you could find a summary
15	of your conclusions for admission, and then I'll have
16	a follow-up question after that.
17	A So when we look at seismicity in in
18	relationship to the Permian Basin, we did a thorough
19	review, looking at, you know, what's what's
20	inducing earthquakes across the Permian? We recognize
21	there's a concern. We're concerned as well about the
22	increase in seismicity and how it relates to to
23	saltwater disposal operations.
24	And when we look at, you know, shallow
25	disposal operations and reflect on seismicity, there's

1	key components we have to consider. It's the fault
2	orientation. It's the the fault length. It's if
3	there's a fault there. It's the pressure change model
4	to understand what potentially slip is and how those
5	are oriented in respect to each other. And so looking
6	at all those criterion together, you know, we feel
7	that there's a very low risk of of appreciable
8	seismicity associated with with these two locations
9	or a shallow disposal in Southeast New Mexico.
10	There is, however, as documented, a much

There is, however, as documented, a much larger risk of seismicity from deep disposal, which again has been documented and has been implemented to through the OCD's protocols around seismicity. And so I -- we feel that this, you know -- looking at these pilots provides an optionality to support disposal in a manner which will mitigate seismic risk.

11

12

13

14

15

16

17

18

19

20

2.1

22

23

2.4

25

Q So one of the things that I noticed when I looked at your slides is that there is a lot of information on these slides. But you've also come to a conclusion. So Chevron wasn't just wanting to show the Commission this end result; right? You wanted to also show the Commission the depth of analysis that you undertook to reach this conclusion. So you sort of wanted to show your math?

A Yes, that's correct. Yes.

1	Q And are you familiar or have you reviewed
2	OCD's conditions of approval or conditions for
3	approval of administrative applications in Exhibit 11?
4	A Yes, I have.
5	Q And was there a condition of approval or
6	condition for administrative applications that
7	assessed seismicity?
8	A Yes, there was.
9	Q And do you feel like the seismicity review
10	that you did for these two wells would be consistent
11	with that requirement?
12	A Yes, I do.
13	Q Let's move on then to the next two sets of
14	slides, which relate to your data collection and first
15	of all your response protocol.
16	A Yes.
17	Q So if you could explain to the commissioners
18	what this slide is and how you developed it?
19	A Yeah, so so this is this was work that
20	was undertaken, I mentioned earlier today, through the
21	NMOGA work group. And so I'd like to apply industry,
22	several of which are in the room here from other
23	organizations that helped support this framework. And
24	I think this is an excellent opportunity for industry
25	to work together and with with regulators and
	Page 269

others on managing turned around disposal.

2.4

And so what this -- what this puts together is essentially taking the culmination of what you heard today on concerns around disposal interactions with potential production intervals, you know, potential seismicity, things like that, and it puts together a framework which industry can work through and work together on to not only document, collect data, assess, report, and then manage potential risks.

And so I -- I won't necessarily walk through all the text on the right. I'll mainly just focused on the -- the colored letter -- the colored words on the -- on the left side. But essentially, this is looking at, you know, once -- once the pilot starts up and starts injecting and monitoring, and we'll talk about the data collection. If there's an event that kind of triggers this response, this is how this will go in theory.

And so if there's an offset producer that -and this is mainly getting focused on -- on impacts to
production, quarterly rights, things like that -- if
there's an offset producer that determines that
potential interference is occurring and we note that,
you know -- we know we can work with monitoring our
own producers.

1 | 2 | some | 3 | prof | 5 | 4 | of th | 5 | we'd | 6 | review | 7 | FSI | 1 | 8 | or FI | 9 | that | 10 | look |

11

12

13

14

15

16

17

18

19

20

2.1

22

23

2.4

25

We hope that other operators, if they see something that changes in their -- in their production profiles or their -- their watercuts overtime or any of those information you're bringing a spore to us, we'd like to set up a discussion. We'd like to review. Again, we -- we provide information on -- on FSI in this case or fracture stimulation interference or FDI. We'd like to review that and rule that out if that's a case of that -- that change. Today will be looking at the -- the stimulation times of offset wells.

And then if we ruled that out, potential additional data collection -- I think it's been mentioned, tracers, other data collection options to -- to ascertain potential communication. If we look at -- if there's no, you know, communication, you know, then -- then potentially no further interaction. But if there is, we'd take remedial action.

And those can be a number of things. It could be reduction in the pressures. It could be a reduction in the injection pressures and a reduction in the injection rates over time. It could be potentially plugging back some of the well. It could be a combination of all -- many things. Again, all of this could be documented to the OCD and to industry as

1 we progress this. And then if -- if none of this is 2 3 successful, you know, we -- going down, we seek -- you know, seek resolution with OCD. We recognize the OCD 4 5 has the authority to suspend operations at any time, 6 and we support that. But this is a -- I think a robust framework 7 8 industry could work on in laying out a pragmatic 9 data-driven approach to manage issues around injection -- in this case around shallow injection 10 11 into the DMG in Southeast New Mexico. 12 And again, this was derived from stakeholder 0 13 engagement? 14 Α Yes. 15 And as you mentioned that there are 16 operators in the room, outside of the room. And 17 you've shared this with the Division in past meetings with the Division, this framework? 18 We have shared this with not only OCD but 19 Α 20 also with State Land Office and other -- and industry 2.1 as well. 22 You've been talking a lot about data today 0 and how that's one of the key aspects of the pilot 23 24 project. So if you wouldn't mind discussing the slide for Commissioners and giving the commissioners more 25

1 information about the data you intend to get, but also 2 why you think the data is important? So as you've heard many times today, we are -- Chevron has a vested interest in collecting a 4 robust data program with these two pilot wells. 6 There's been a lot of work. They've talked about a lot of uncertainty in shallow injection. 8 My colleague Bryce Taylor did some work on 9 some RT wells, and he only used a few. 'Cause there's 10 only a few wells that have actual data we can leverage 11 out of thousands in the Permian. So we look at this 12 as a very important opportunity to collect a lot more, 13 a very robust dataset, not only for us but for 14 industry to understand the potential issues. 15 Someone down here has listed out -- and I 16 will note this is -- this is not necessarily every 17 single piece of surveillance. We looked at these, and 18 these are the things that we think are high priority. Doesn't mean there may not be other things on the 19 20 table, you know, depending on what we'd look at. But 2.1 these are the things that we think are high priority 22 and part of our data collection plan. 23 So I'm going to briefly run through these 2.4 and just their surveillance and what we're -- what's going to be taken in purpose. And I'm going to kind 25

1 of label these into the -- the static perspective and 2 the dynamic perspectives. So first we have the -- the wire line 3 logging procedure that's -- that's fairly standard in 4 5 the industry. And so this is, you know, the quad combo logs, gamma ray resistivity, neutron density, 6 porosity, sonic. And that's looking at, you know, the 8 overall lithology and the reservoir, quality of the 9 reservoir, stress, things that are core building blocks of the -- of the geology. 10 11 Or else they're going to run the XMRI log, 12 which looks at fractures. We talked about natural 13 fractures and things like that. It's important to 14 understanding that, how it goes to mechanic worth 15 model. There were some questions earlier about 16 understanding the frac geometry. This is very 17 critical to understanding that. 18 One of the things here, we're going to have downhole pressure gauges. Chevron as a program and 19 20 any of our shallow disposal wells we drill in the Permian, we -- part of our standard protocol is to 2.1 22 install downward pressure gauge. 23 It's very important to understand how 2.4 pressure changes if we inject over time dynamically. Dynamically being a key component of that. Not once a 25 Page 274

1	month, not once a year, but continuously. Spinner
2	surveys are something we've also looked at,
3	understanding, you know, high prime interlay zones
4	where the water is going through injection over time.
5	Water chemistry. Chevron has a robust water
6	chemistry program. We look at produced water. This
7	seeds into our into looking at other things that we
8	look at around around potential beneficiary use and
9	things like that. So this is a robust program.
LO	As as colleagues we would be running
L1	defense and separate tests as well. So those are a
L2	lot of the somewhat static information that we could
L3	be collecting, some of the more dynamic data that we
L4	could be collecting based on information or tracers.
L5	Again, we talked about if there's you know, try to
L6	trace where potentially water is going is going out
L7	of zone, out of confinement. This is a good
L8	opportunity to try to understand that.
L9	We have downhole gauges, deployed producers,
20	monitor pressure changes or communication then
21	production monitoring. This is something that, again,
22	one of the the highlights and what I talked about
23	earlier in locating these wells where we did and
24	trying to take into account many different variables
25	is locating these on top of our own wells.

1	It's very challenging sometimes for
2	companies to share production data for obvious
3	reasons. But given that these are on top of our own
4	wells, we we can share data with ourself. And so
5	this gives us the opportunity to have a really high
6	quality rich dataset looking at production changes
7	very proximal to the to the well locations.
8	So again, this we feel this is a
9	cornerstone of our pilot program. We think this
10	this is going to add a lot of value not only
11	internally but also to the industry understanding, and
12	not just in Southeast New Mexico, but across the
13	Permian in general. This can be applied a lot of
14	places. So we're very, very excited about this, but I
15	think it's very important.
16	Q So the pilot project is a two-well pilot
17	project. And so does the data collection sort of
18	dovetail with the fact that you chose two wells as
19	your pilot project?
20	A Yes. It it does.
21	Q And why is that? Do you expect different
22	data from the different wells?
23	A We expect we expect different results
24	from different wells, I think. Obviously, we talked
25	about the geology difference in the modeling we came
	Page 276

1 up with was different. So this allows us to be able 2. to look at two different locations. 3 You know, it's very hard to form a trend if you only have one datapoint. And so we're starting 4 5 with two. We might need three, but we -- we felt that this was adequate to try to further our understanding. 6 It also dovestail in with other data collection we're 8 doing in Texas with our operations as well. 9 0 Let's go ahead and talk about the next slide about the timeline for your data collection efforts. 10 11 So this is -- this is a proposed kind of 12 guideline. You'll notice it's kind of pre-spud 13 execution. Injections start up and down the road. And so this should be looked at as a notional kind of 14 15 timeline. 16 There's certain data that you will collect 17 at one point in time. The logs will be run, and those 18 are the logs, right, when we drill the well. There's 19 other pieces of information like pressure data, 20 production monitoring, you know, other data that will 2.1 be collected over longer periods of time. 22 report it. 23 And so -- so this is just a -- just an 2.4 overview of kind of how things will lay out from a -from a general timeline as far as execution. So yeah, 25

1 obviously, when we drill the well, we'll be logging 2 We'll be doing the DFITs and the step-rate tests. When we start injection, you know, we'll be, 3 you know, performing, you know, and slowing down all 4 5 pressure gauges, looking at how the pressure's 6 changing, and doing some of the treatments, understanding how that is running spinner surveys, 8 things like that, to understand how the dynamic well 9 performs over time. 10 I'm feeding into, again, my colleague Bryce 11 report on rate change analysis. So I'd say collect 12 data, be able to execute that modeling work to see how 13 the well is performing, looking at offset producers. So this is kind of a just a notional timeline that 14 15 looks at how data will be collected over a period of 16 time. 17 And this is -- this is, I think, very important to understand that some day it will come at 18 19 Some day it will come over time. Some day it once. 20 will -- will come continuously just based on the -the nature and the flavor of the data being collected. 2.1 22 And so one of the things that you mentioned 0 is a desire to be transparent and to share this data 23 2.4 in a collaborative fashion. Can you explain a little bit more about that to the commissioners? 25

1	A Yes. So at a at a very high level that
2	we're committed to work with OCD in providing this
3	data in a public format so that everybody can can
4	work on. This is one of the big conversations here
5	about the industry on on how to proceed with this.
6	I think this is a little bit new for a lot of of
7	us.
8	And and maybe the OCD on collection and
9	dissemination of of such a rich dataset. And so we
LO	look forward to if moving forward put the pilots
L1	working with the OCD on setting up a plan to to
L2	store and host data in a certain way.
L3	Q And then the final slide that you prepared
L4	gives a summary of the key takeaways from your
L5	testimony.
L6	MS. BENNETT: And I don't want anyone
L7	to get the wrong idea that it means his testimony is
L8	over though, because I do have a bunch of questions to
	ask him.
L9	ask him. BY MS. BENNETT:
L9 20 21	
19 20 21	BY MS. BENNETT:
L9 20	BY MS. BENNETT: Q But I would love to hear your key takeaways
L9 20 21 22	BY MS. BENNETT: Q But I would love to hear your key takeaways from your testimony.
19 20 21 22 23	BY MS. BENNETT: Q But I would love to hear your key takeaways from your testimony. A So I believe I talked on on several of

1	lot of the data that's been proposed today. And
2	Chevron is committed to collecting and providing a
3	very robust and transparent dataset with these.
4	We feel it's very important not only to the
5	overall success of the pilot program, but but just
6	to the further understanding of some of these
7	uncertainties that we've talked about and being able
8	to provide a lot more granular information to perform
9	more higher-level modeling to perform more in-depth
LO	analysis than we are able to just because we don't
L1	have enough data.
L2	And we're modeling uncertainty on top of
L3	certainty when we could be actually modeling, you
L 4	know, actual constrained information. And and so
L5	we support that we support that as part of our
L6	conditions of approval on on collecting data and
L 7	disseminating it as well.
L8	Q Thanks for that. One of the things that we
L 9	talked about earlier today was this is kind of
20	going back to a question that was posed to
21	Mr. Merrifield about how many wells were analyzed to
22	come up with a net porosity. And do you have an
23	answer to that question?
24	A Yes. It was so that that worked to
25	look at the overall DMG geological understanding took
	Page 280

1	into account hundreds of wells across the Permian
2	Basin.
3	Q The next kind of questions I wanted to ask
4	you about were OCD Exhibit Number 11. Have you had a
5	chance to review that?
6	A Yes.
7	Q And I just want to ask you some pretty
8	general questions about it, correcting that I do not
9	have them in yet. So you reviewed it and well, let
10	me take a step back and talk about what Chevron did to
11	prepare for coming to this hearing today.
12	Chevron evaluated offset DMG production;
13	yes?
14	A Mm-hmm.
15	Q And it evaluated potential impacts on offset
16	Avalon production?
17	A Yes.
18	Q And ensured adequate lower and upper
19	containment?
20	A Yes.
21	Q Evaluated faulting and lineaments that
22	connect as pathways?
23	A Yes.
24	Q Assessed seismicity to the extent relevant?
25	A Yes.
	Page 281

1	Q	Ensured adequate well bore design to protect
2	SDWs?	
3	А	Yes.
4	Q	You have come up with reporting for faults?
5	А	Yes.
6	Q	Safety monitoring and mitigation measures?
7	А	Yes.
8	Q	So looking at the well, do you think that
9	those ana	lyses are consistent with consistent with
10	the Divis	ion's proposed guidance in in Exhibit 11?
11	А	I believe so.
12	Q	Would you consider those to be some sort of
13	touchston	es for the Division to follow when evaluating
14	future sh	allow DMG applications?
15	А	I believe so.
16	Q	Let's see. I just wanted to take a quick
17	look at p	aragraph 2, "Criteria for selection of the
18	injection	interval, excluding the Lamar limestone from
19	an inclus	ion and department interval." Is that
20	something	that Chevron has done or is willing to do?
21	A	Yes.
22	Q	Excluding the lower Brushy Canyon from the
23	permitted	interval? Is that something that Chevron
24	has done?	
25	A	Yes.
		Page 282

1	Q Review of the AOR and assessment of evidence
2	of natural frac systems or faults, is that something
3	that Chevron has done?
4	A Yes.
5	Q So in terms of the well bore design and
6	construction I'm not going to read all of this.
7	But are these consistent with the well bore design
8	that you have put forth today?
9	A Yes, it is.
10	Q We already talked about limiting the two
11	main to 5 foot, 5 inches. We already talked about
12	craving stimulation, additional testing and
13	monitoring, conducting a cement bottom log for each
14	casing string. Is that something that you had
15	proposed to do in your original application?
16	A Yes.
17	Q Conducting a suite of open-hole logs over
18	the approved injection interval and submitting this
19	information to you if needed. Is that part of your
20	reporting protocol?
21	A Yes, it is.
22	Q Conducting a successful step-rate test
23	before injection commences. Is that something that
24	Chevron is willing to do?
25	A Yes, we are committed to conducting a
	Page 283

1	step-rate test, so I really would like to review some
2	of the exhibits proposing this temporary test
3	procedure.
4	Q And that's not because you disagree with
5	doing a separate test. You just have some questions
6	about how it is to be performed?
7	A That's correct.
8	Q Some inconsistencies in the volumes to be
9	performed?
10	A Yes. That's correct.
11	Q Some inconsistencies in the volumes?
12	A Yes.
13	Q And then every two years after commencement
14	of the injection permits, you shall obtain a status on
15	the pressure and review the summary on the performance
16	including analysis by fault on a visit. Is that
17	something Chevron's willing to do?
18	A Yes.
19	Q And publicized monitoring where the new well
20	location is covered. It sounds like you already have
21	a very robust monitoring program in place.
22	A Yes, we do.
23	Q And then I think I've touched on everything.
24	So it sounds like with the exception of wanting to get
25	some clarity about the actual mechanics of the

1	step-rate test, Chevron is or is willing to comply
2	with all of the conditions in Exhibit 11?
3	A Yes.
4	Q Did you review the OCD's pre-hearing
5	statement?
6	A Yes.
7	Q Did you see the statement that the Papa
8	Squirrel is located in an area not favored for DMG
9	disposal due to resource potential?
10	A Yes.
11	Q Is that something that you agree with based
12	on your own review and based on your team's review?
13	A No.
14	Q And why is that?
15	A So when we look at the the review of the
16	resource, I think we look back at some of the
17	historical previous reviews of that, they they
18	brought examples that there are things that are more
19	complicated than when you first look at.
20	Look at the if you only look at SWD
21	interactions with production, you're only going to
22	come up with SWD interactions with production. If you
23	only look at potential Wolfcamp to Avalon, as an
24	example, interactions, you're only going to come up
25	with Wolfcamp to Avalon interactions.

1	And so looking at everything consistently
2	under, you know, a new light of what's going on in the
3	basin, what's produced water issues. We feel it's
4	important to re-look at that and continue to evaluate
5	it as things change over time. That that's our
6	view and and the big reason why we're doing this
7	pilot program.
8	Q Did you see the Division statement about
9	Papa Squirrel being between two areas where increased
10	water saturation has been reported?
11	A Yes.
12	Q Is that a concern that Mr. Parizek addressed
13	today?
13	5 5 5 5 5 5
14	A Yes, I believe so.
14	A Yes, I believe so.
14 15	A Yes, I believe so. Q The final questions I have for you well,
14 15 16	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we
14 15 16 17	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together?
14 15 16 17	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the
14 15 16 17 18 19	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the commissioners that we feel this is a very robust data
14 15 16 17 18 19 20	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the commissioners that we feel this is a very robust data collection program and our pilots. We feel that it
14 15 16 17 18 19 20 21	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the commissioners that we feel this is a very robust data collection program and our pilots. We feel that it will provide a lot of opportunities to learn, not only
14 15 16 17 18 19 20 21 22	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the commissioners that we feel this is a very robust data collection program and our pilots. We feel that it will provide a lot of opportunities to learn, not only from again, from our perspective, industry
14 15 16 17 18 19 20 21 22 23	A Yes, I believe so. Q The final questions I have for you well, is there anything that you would like to say before we conclude our time together? A Yeah, just want to reiterate to to the commissioners that we feel this is a very robust data collection program and our pilots. We feel that it will provide a lot of opportunities to learn, not only from again, from our perspective, industry perspective, but from the from the OCD's

1	in Southern New Mexico.
2	Q Were the exhibits that we discussed prepared
3	by you or under your supervision?
4	A Yes, they were.
5	MS. BENNETT: At this time I'd like to
6	move the admission of Exhibits 126 to Exhibit 141.
7	MR. FUGE: Any objection?
8	MR. TREMAINE: None.
9	MR. FUGE: Exhibit so rendered.
10	(Exhibit 126 through Exhibit 141 were
11	marked for identification and admitted
12	into evidence.)
13	MS. BENNETT: Thank you.
14	And I pass the witness for any
15	questions.
16	MR. FUGE: Mr. Tremaine, do you have
17	questions for the witness?
18	MR. TREMAINE: I have two questions,
19	Mr. Chair.
20	BY MR. TREMAINE:
21	Q Mr. Comiskey, thank you for walking through
22	some of your observations on Exhibit 11. Independent
23	of Exhibit 11, your recommendations of the OCD, do you
24	or Chevron feel that DFIT tests should be performed on
25	all proposed DMG wells?

1	A I think we think it's a very important
2	understanding to collect dynamic data on stress in the
3	reservoir properties. Yes.
4	Q Would Chevron be willing to incorporate that
5	into the recommendation in addition to what we've seen
6	this before in Exhibit 11?
7	A Yes, I believe so.
8	Q I want to ask you a follow-up question
9	generally about this stress orientation that you're
10	talking about and the seismicity in slides 135 and
11	136. One of the Division's concerns and in
12	presentation we'll get into that more later or
13	tomorrow is areas of uncertainty and knowledge of
14	the geology in the area.
15	And I would argue that present communication
16	with Chevron today actually corroborates some of that
17	concern that there are certain areas where more data
18	is necessary. When we hear your presentation related
19	to seismicity, I think it's fair to say that you state
20	or implied a relatively high level of confidence that
21	there are not unstable faults in the proposed
22	injection area.
23	I'm just wondering if you can articulate and
24	help explain, like, what could be seen as kind of a
25	delta in that confidence. Why, when we're talking

1	about an area with geologic uncertainties, are we
2	relatively certain about the lack of faults or lower
3	risk seismicity?
4	A So when we think about fault, right,
5	that's that's a feature that you can map in 3D.
6	You can connect up those datapoints. It has it has
7	an aperture, it has closure. When we think about some
8	of the lineaments or some of the mechanisms that have
9	been discussed have made have been conduits to
10	to water pool, those are not what we'd call faults.
11	And so the ability for a lineament to to
12	generate an appreciable seismic event, it's well,
13	it's very limited. And that's because again, the
14	the stress built up in that. How much stress is is
15	there, you know, over time, the orientation of those.
16	And so the differentiation between fault and lineament
17	is a key thing.
18	When we think about faults, we think about,
19	you know, whether it's big, you know, the magnitude 4
20	quake or the larger earthquakes seen in front of me,
21	those are on things that are rooted, large features
22	that we can map. And my colleague Jason Parizek
23	showed a a map of a large fault right through the
24	area. We can see those. We can handle those.
25	When we think about lineaments or fracture

1	system, those are two different things. And so the
2	ability for a fracture system necessary to generate a
3	large earthquake is well, it's not applicable.
4	MR. TREMAINE: Thank you for that.
5	No further questions. Thank you,
6	Mr. Chair.
7	MR. FUGE: Ms. Hardy, do you have any
8	questions for the witness?
9	MS. HARDY: I do not. Thank you.
10	MR. FUGE: Dr. Ampomah?
11	DR. AMPOMAH: Yes, sir. I do have a
12	couple.
13	So let's start from page 126. I will
14	probably skip to 127. So on this particular page,
15	definitely you showed that the Papa Squirrel is within
16	that SRA?
17	MR. COMISKEY: Yes.
18	DR. AMPOMAH: But the Severitas 2 State
19	SWD 1 is not in that area?
20	MR. COMISKEY: Yes.
21	DR. AMPOMAH: So considering if you
22	look at the deeper zones, where there's a lot of
23	micro-seismic events happening, why would you not
24	consider building this well that's not dealing the SRA
25	rings, they're deeper. You know, why would you not
	Page 290

1	consider building that all the way to Devonia because
2	there's no micro-seismic event there?
3	MR. COMISKEY: Chevron has two
4	Devonian deep SWD wells located very proximal to
5	Severitas 2 SWD 1 already. And I won't speak to to
6	economic thresholds on drilling deep wells and the
7	cost and impact. So I I won't speak on those, but
8	we are we do have two deep disposables right there
9	already.
10	DR. AMPOMAH: Thank you. Now, you
11	showed a slide where you were comparing a map of
12	seismic events in Texas and in New Mexico.
13	MR. COMISKEY: Yes.
14	DR. AMPOMAH: What is New Mexico doing
15	better than Texas?
16	MR. COMISKEY: I won't I won't
17	necessarily speak to better. I think that would be
18	more of an opinion. But I I will say the the
19	geology in the basin is different.
20	So if you look if I go to slide
21	well, if we go to slide 131 or document 131, one of
22	the things to do is there's a lot more water being
23	disposed in Texas than in New Mexico. There's a lot
24	more water coming across the state line from New
25	Mexico into Texas. So there's a lot more disposal.

1	The likelihood of induced seismicity from from
2	disposal operations is is I would argue higher.
3	But also too the geology's different.
4	In that seven part of Culberson County, that's the age
5	of the of the Permian Basin roughly. There's a
6	large set of old reverse faults. They extend up.
7	And some of those are are visible on
8	the on a foreign figure on slide 135. If you
9	look if you look over, you can see near where it
10	it says the Apache Fault Zone. Those are deep fault
11	zones. So there's a large set of deep faults that are
12	roughly yes, yes.
13	You see the earthquakes just above it.
14	There's a large set of of reverse faults that
15	extend in that part of the basin. And so the the
16	hypothesis there, again, when you think about the
17	the deposition and the thrust that kind of formed the
18	basin back during the the order mission and the
19	Silurian and Devonian time.
20	Those faults were were activated.
21	They're reverse faults. Now they're now they're
22	activated normally. And they're oriented in the
23	manner based on focal mechanism data that are roughly
24	parallel to the stress direction. And so that area
25	has a unique set of of circumstances. It might not

1 be a big fault. 2 You have a mechanism, which is deep 3 disposal, and then you have the orientation of the fault is roughly parallel to the stress direction. So 4 5 you know, combining those ingredients together makes that area very sensitive to -- to perturbation. 6 we've seen through modeling work and there's been some 8 papers published that modeled on the order of roughly 9 10 psi change in those deep formations is enough to 10 induce slip. 11 In Southern New Mexico, we obviously --12 there are deep faults. There are earthquakes, but 13 it's a slightly different set of ingredients in Southern New Mexico, so we haven't seen the 14 15 proliferation. But again, the disposal volumes are 16 quite different between Southern New Mexico and the 17 northern part of the Texas Permian Basin. 18 DR. AMPOMAH: So in your slide 129, 19 page 129, as we all know, the deep injection is in the 20 one here, but the micro-seismic events is way deeper 2.1 than that. So based on your expertise, what is really 22 causing that? 23 MR. COMISKEY: So the -- the faults 2.4 that are down here that are moving, they extend up into the Silurian/Devonian. We can see them. And so 25 Page 293

1 they're acting as conduits of water. 2 A fault isn't all that it was. Tt. --3 if you think about -- if you think about the San Andreas fault, we often think about it as one long 4 continuous fault, but we know there's earthquakes in Los Angeles and there's earthquakes in the Bay Area; 6 right? But the whole fault doesn't move. 8 Very similar here. I mean, think about 9 these faults that are in the basement. The whole fault doesn't move. Only portions of that fault move 10 11 during a period of time. 12 And so is injection or pressure 13 actually the pressure. It's not direct fluid contact. 14 It's the pressure. As that pressure goes into those 15 formations and diffuses out, that can create a more 16 lasting change in the reservoir. Can also create a 17 drip pressure, i.e. reducing the effective stress. And that lead me through to direct 18 19 transformation into the -- the basement just through 20 the -- through the interval or into some of these faults. Down the fault, coming to a point where the 2.1 22 fault is even more critically stressed, inducing slip. And we've seen that recently, where you have a fault 23 2.4 that has moved several different times along the transect of that fault. 25

1	DR. AMPOMAH: On your page 137, you
2	talked about the framework that industry has a
3	preference. I want to know at what point does NMOCD
4	come see?
5	MR. COMISKEY: Well, we also have down
6	here, "Seek OCD resolution." But our goal as the
7	as the industry and again, the we will be
8	collaborating and communicating with the OCD through
9	all of this. We're more than willing to be
10	transparent on working with industry. Again, this is
11	an industry problem on produced water management.
12	And so in vision the OCD could come in
13	at any point. We like to keep the OCD or hope to keep
14	the OCD engaged. But we do recognize that, you know,
15	at some point if there's there's scrambling with
16	the other resolution that already is going to agree to
17	the OCD has the ability to to implement and remove
18	the permit or act. And we recognize and support that
19	authority.
20	DR. AMPOMAH: Yeah, because when I look
21	at it, you know, on your lefthand side, if let's say
22	no interference, then that means no action is needed;
23	right? But I don't see where there is a communication
24	to NMOCD about let's say even anything happened.
25	MR. COMISKEY: So again, I think when

1	we look at this, this is just a this is just kind
2	of a high level, you know, just just flow. The
3	whole the premise of this is that the stakeholders
4	would be engaged on this. And it can be the
5	stakeholders that are involved in the well, could be a
6	mobile working group, and and also the OCD for some
7	process.
8	DR. AMPOMAH: Let's look at the data
9	that surveillance program. So I want to ask how often
10	are you using poly DFMI to identify natural process?
11	MR. COMISKEY: I'm I'm pretty
12	confident. We've we've had good results in using
13	FDMI logs across the Permian to identify open and
14	closed heel fractures. We have a we have a very
15	robust in-house technology group and our technology
16	company that that's what they do every day that
17	that's what they do every day is look at image logs
18	around the world.
19	So I I feel very confident. We've
20	had a good success of of recognizing fracture
21	systems, fracture networks within those concealed,
22	closed, you know, open.
23	DR. AMPOMAH: So you want to use the
24	spinner someday to identify the
25	MR. COMISKEY: Yes.

1	DR. AMPOMAH: And is it you will
2	compare with the log data?
3	MR. COMISKEY: Yes.
4	DR. AMPOMAH: So which log data are you
5	going to compare that to?
6	MR. COMISKEY: So when we think about
7	the high again, these are these are sandstone,
8	so we can look at the transects. My colleague Tom
9	Merrifield noted that.
10	So we can look at the porosity trends
11	in these sands, depositional geology if you're in a
12	you know, if you're looking at a Bouma sequence
13	looking at those upper finding sequences and looking
14	at where the high porosity, thick channeling sands,
15	blocky sands, so we can look at that from the the
16	porosity and neutron density.
17	And they correlate that to permeability
18	that we there are I would probably defer to my
19	colleague Tom Merrifield on any more detail on that.
20	But it's a pretty standard processing and sands and
21	then relating that to to, you know, high clean
22	zones for water.
23	DR. AMPOMAH: Yeah. For water, that is
24	I still feel, just a suggestion, but you might want
25	to still consider recording some of these productive

1	loss, like some of these injector zones. It could be
2	easy comparing.
3	MR. COMISKEY: And and to add to
4	that, we do have cork that we have collected in other
5	either disposal wells or not disposal wells, but
6	wells we drilled through the DMG to help constrain the
7	models for those pour process. It's not like we don't
8	have any core at all. We do have core to it but.
9	DR. AMPOMAH: So it's an accident then.
10	MR. COMISKEY: That's right.
11	DR. AMPOMAH: Now, so when I look at
12	your program, I see a lot of stunted data collection.
13	MR. COMISKEY: Yes.
14	DR. AMPOMAH: Less than our data
15	collection. But I do see you do have the production
16	monitoring.
17	MR. COMISKEY: Yes.
18	DR. AMPOMAH: So I want to know he
19	I'm just going to recommend that you should consider
20	dynamic modeling, simulation, and also coupled with
21	your mechanics too.
22	MR. COMISKEY: So we we do have that
23	list. We are going to take that. So we're doing
24	we are currently doing mechanic worth modeling in
25	this. And so this dynamic data will help feed into
	Page 298

1 that mechanic worth model over time. 2 My colleague Bryce mentioned some of 3 the RTA work. This will help feed that. And so we are -- we do have robust data modeling. My colleague 4 5 Jason Parizek, he showed some of the modeling work 6 that was done on the -- on the line -- the line frac modeling. 8 We have -- we do -- again, are -- are 9 expanding upon that modeling work as we get more 10 dynamic data to be able to, you know, constrain the 11 models and be able to push the models further. 12 we -- we are looking at that in-house as well. 13 DR. AMPOMAH: Yeah, but you said you do 14 the mechanics. But what about the hydrodynamic? More 15 complex than the one that Kappa will give you and then 16 the fracture and then also the potentially gone? 17 So when we think about MR. COMISKEY: 18 going to more complicated modeling, I think the 19 limiting factors are the data quality and the data 20 abundance. You -- we can go to a very, very complicated dynamic model, but if the data we have 21 22 isn't robust enough to support that, the results, I would argue, are -- are fairly ambiguous. 23 2.4 So we've seen a lot of high value and -- and running more simplistic models for the 25

1	questions you're trying to get after. Think when we
2	take a step back and look at the overall status of
3	just disposal and data collection associated with
4	that. It's very limited.
5	And so taking a step to collect this
6	data I think is a big step. We hope to continue to
7	progress that. I mean, to more data acquisition than
8	others. Maybe we'll get more more complicated
9	modeling efforts. But thinking of the current
LO	position we're in right now with just the data we
L1	have, I see a lot of value for the more simplistic
L2	models and a lot more uncertainty in the more
L3	complicated models just because the data we have
L4	doesn't necessarily support that.
L5	DR. AMPOMAH: So in regards to the
L6	tracer, so based on the earlier analysis, you didn't
L7	have control over the other well. Are you saying that
L8	you're going to have control over the wells to be able
L9	to perform the tracer test?
20	MR. COMISKEY: Yeah. Yeah, one of the
21	key things is, you know, we start running. We can
22	we look at this and we need we see the need to run
23	tracers. Obviously, we're going to have the wells,
24	you know, next to us so. And when we execute a tracer
25	program, if you're trying to understand a particular

1	question or understand something, having the, you
2	know, control of the wells nearby to be able to test
3	that is very important.
4	If you have other other operators or
5	companies, trying to get on the same page sometimes
6	can can be a challenge. So that's a that's a
7	strategic advantage and part of the reasons why we
8	picked these locations.
9	DR. AMPOMAH: I don't believe I can ask
LO	questions related to the Exhibit 11 because they don't
L1	talk about it.
L2	MR. FUGE: The witness testified to it.
L3	So you can ask questions.
L4	DR. AMPOMAH: So if we can go to that
L5	one. And I do have some few questions.
L6	So as we review Chevron's application,
L7	my first question is so you can go to OCD isn't it?
L8	MS. BENNETT: Oh, OCD. I'm sorry about
L9	that.
20	DR. AMPOMAH: So the first question
21	that I have is the first one. You know, number one,
22	approved locations outside the identified well
23	productions till deleted by the and provided by the
24	as an except, so in one of your wells, you are
25	within that area.

1	MR. COMISKEY: I believe we're actually
2	in that area in both wells.
3	DR. AMPOMAH: You're in that area in
4	both, yeah. In both wells in that area.
5	MR. COMISKEY: Yes.
6	DR. AMPOMAH: So does your
7	communication satisfy the admonition?
8	MR. COMISKEY: It does not. And and
9	again, the reason why we're trying to re-look at this
10	is that, you know, we we understand there's concern
11	on this. But generally, drawing a a big circle on
12	a map and saying, "Don't go in here anymore" is is
13	maybe not the best approach when we think about a
14	long-term strategy of produced water management.
15	We understand there's risks. That's
16	why we we come here today. That's why we're
17	presenting this robust data collection program.
18	That's why we're disseminating it. We think that
19	again having a data-driven pragmatic approach to
20	disposal is probably a better and more advantageous
21	way to understand the risks. So that is why that's
22	why they're pushed together.
23	DR. AMPOMAH: Was Chevron part of that?
24	MR. COMISKEY: I believe Chevron was
25	part of that, yes. I I was not a part of that

1	group. I was not employed at Chevron at the time.
2	DR. AMPOMAH: So was it more like a
3	general knowledge or is a settled group like, yeah,
4	I'll buy them back?
5	MR. COMISKEY: So I I would argue
6	that things change. When this when this was put
7	up, there was there was good work that was brought
8	forth in my opinion on this.
9	I think we provided testimony that
10	again if you only look at disposal related
11	interactions with production, you're probably only
12	going to come up with disposal related questions. If
13	you only look at fracture driven interactions or FSIs,
14	you're only going to you're only going to come up
15	with that. So looking at everything holistically, is
16	just probably a good approach.
17	I mean, also too, I would also suggest
18	that in 2015, 2016, 2017, the concern around produced
19	water management was not what it is today. The rise
20	of seismicity has definitely impacted industry. It's
21	created I think a step change in how we need to handle
22	it.
23	The amount of water that we're handling
24	on a daily basis is it's never been worked at
25	before in the history of our industry on this scale.

1	And so I think re-looking at all options and how we
2	can can manage that is very important. So I think
3	it's a multitude of things.
4	DR. AMPOMAH: So does that mean that if
5	the commission agrees to Chevron's request, that one
6	needs to be struck down or something?
7	MR. COMISKEY: I would argue that maybe
8	it's more of a taking a data-driven approach to
9	disposal within within the the Avalon production
LO	area. I think that's the way that Chevron is
L1	advocating for this. We we aren't advocating for a
L2	free for all in disposal. We're we're advocating
L3	for again a data-driven, pragmatic approach to to
L4	understanding disposal in in the area.
L 5	DR. AMPOMAH: So on 2Bm, exclude the
L6	lower Brushy Canyon formation from the interval. So I
L7	know that you said Chevron was saying it's just going
L8	to be different. "We are not going to do any
L9	injection there." But it's still part of what you
20	want the canyon for.
21	MR. COMISKEY: Yes, and I I believe
22	we're not drilling we're not drilling into the
23	lower Brushy. We're drilling into the upper portion
24	of the Brushy. The Brushy is roughly 1,000 feet
25	thick.

1	DR. AMPOMAH: So there is a separation?			
2	MR. COMISKEY: Yes. Yes. We're not			
3	drilling through the whole Brushy. We're not drilling			
4	into the lower Brushy. We're drilling into the top			
5	portion, logging it, collecting the data, and then			
6	again, as was common early in testimony, it will be			
7	sealed off.			
8	DR. AMPOMAH: Now, 3C. You've planned			
9	oxidizing. You've planned oxidizing as part of your			
10	demolition plans. That's			
11	MR. COMISKEY: I I don't believe it			
12	does. I mean, we're committed to to adhering to			
13	the permit. And we keep making sure that the fluids			
14	are complying within the injection interval for the			
15	UIC program.			
16	DR. AMPOMAH: So NMOCD is also			
17	proposing 4F. So OCD should establish a process to			
18	allow the use of existing data imaging in disposal			
19	wells as exploration wells, including pressure			
20	monitoring. Now, when I looked at I need to know			
21	definitely you were going to have the pressure			
22	measurement. Is it downhole or?			
23	MR. COMISKEY: It's we'll have			
24	service injection pressure monitoring and also			
25	downhole reservoir pressure monitoring. Yes.			

1	DR. AMPOMAH: So do you support that
2	point? Can Chevron agree to that?
3	MR. COMISKEY: Absolutely. If if
4	there are abilities to look at existing DMG disposals
5	for monitoring, absolutely.
6	DR. AMPOMAH: Thank you, and thanks for
7	you knowledge on micro-seismicity. It was exact.
8	MR. FUGE: Mr. Bloom?
9	MR. BLOOM: Yeah, just a couple
10	questions. If we go back to 3C for a second.
11	Does an acid treatment create new
12	fracture systems?
13	MR. COMISKEY: No. I mean, the acid
14	treatment we're looking at is mainly on the cleanout
15	side. It's to you know, it was common earlier to
16	look at skin, you know. You know, clean up some of
17	the near well bore. Things like that's the purpose
18	of the action. Acid injections.
19	MR. BLOOM: Just wanted to clarify
20	that. Thank you.
21	I appreciate your analysis on the
22	future proposed seismic monitoring program. I hope
23	that that data is publicly available or that there's
24	some way that the Land Office can access that as you
25	put out the program.

1	We have OCD has its SRA to pick
2	through and does analysis, but the Land Office, we
3	also have an in-house review that we do before we
4	issue any salt water to federal easements. So I don't
5	know that we need all the data dumped on us, but
6	having a system where we can get in and see what
7	you've sent over and be very smart of you to be
8	helpful.
9	MR. COMISKEY: Absolutely.
10	MR. BLOOM: Thank you.
11	MR. COMISKEY: And in the present?
12	MR. BLOOM: That's it.
13	MR. FUGE: I just have a couple. I'm
14	on page 137, the sort of notional structure. I think
15	this makes sense as sort of a decision tree and
16	appreciate the notion of, you know, keeping the OCD
17	involved but sort of limiting, you know, direct
18	engagement so, like, we can't sort through it
19	ourselves. So I sort of appreciate that in the
20	structure.
21	I do have a question about the first
22	one, and more just well, I have two questions. One,
23	how will new producers in the area know about this and
24	other structure? Or do you think that universe is
25	well-defined, that when we issue the approval, the

1	universe of producers that might be impacted are going
2	to be already known?
3	MR. COMISKEY: So obviously, we we
4	can only communicate this through the the DMG work
5	group, but there's NMOGA. And so that helps a lot.
6	We also reach out in IPAM. So I'm I'm engaged in
7	the the deep the working group that covers that.
8	And so and then too obviously through
9	through our work with Rowena [ph] Group, we would,
LO	you know, be happy if if we felt like we had
L1	available to notify any operators through any of that,
L2	we've reached out through our main contacts to make
L3	that establishment.
L4	MR. FUGE: That's helpful. Thank you.
L5	And then would the potential interference, the sort of
L6	producer potential interference and I sort of see some
_	
L7	examples of data. It reads to me a little bit kind of
L8	examples of data. It reads to me a little bit kind of
L7 L8 L9	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling
L8 L9	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling block? Like we're going to argue about whether
L8 L9 20	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling block? Like we're going to argue about whether there's potential interference?
L8 L9 20	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling block? Like we're going to argue about whether there's potential interference? Or is this is sort of like she suggests
L8 L9 20 21	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling block? Like we're going to argue about whether there's potential interference? Or is this is sort of like she suggests that maybe interference either via watercuts or other
L8 L9 20 21 22	examples of data. It reads to me a little bit kind of the first time I looked at it is, is this a stumbling block? Like we're going to argue about whether there's potential interference? Or is this is sort of like she suggests that maybe interference either via watercuts or other changes, and then you immediately jump into the green

1	production," you'd go into that sort of resolution
2	process?
3	MR. COMISKEY: Yes.
4	MR. FUGE: Just want a clarification in
5	the testimony. I'm on page 138. You talked through a
6	lot of the sort of various data collection
7	surveillance portions of the program. I guess in your
8	sort of affirmative direct testimony, I took the last
9	three as things that might be done. But then in your
10	exchange with Dr. Ampomah, it sounded like those were
11	things that would be done as part of the deployment.
12	Which is it?
13	MR. COMISKEY: So so if we look at
14	so tracers tracer things that may be run. The
15	reason for it is if we don't we're just pumping
16	tracers in the ground, we're not seeing anything, we
17	could pump forever. And there's money.
18	But downhole gauge and the offset
19	producers, we already have those deployed. Those were
20	already hand monitoring wells, and so those are there.
21	And then production monitoring is something we we
22	do continuously. So so the bottom two are
23	happening. The tracers are something we we may
24	deploy if if there's a reason for it. Yes?
25	MR. FUGE: On page 140, you talked

1	about sort of data reporting and other things like
2	that. Just to clarify here kind of in the maybe I
3	was just a little confused with sort of the last two.
4	Is there a suggestion that OCD would be getting sort
5	of a distilled version of the dataset that operators
б	were getting, or would y'all be getting the same?
7	MR. COMISKEY: So and this this
8	would be an opportunity we'd love to engage the OCD
9	on. We would like to put all the data in one
10	location. We don't we don't want to manage a share
11	point for every operator and every financial
12	stakeholder.
13	So we would like to provide all the
14	data, interpreted, raw data. We we look at this as
15	maybe having quarterly updates on this with OCD, so
16	everybody's looking at the same data. There isn't
17	"you looked at this, I looked at that." And one
18	location, a one-stop shop.
19	MR. FUGE: And then just to clarify one
20	comment. You don't need to pull it up. But there was
21	one in OCD's Exhibit 11 about sort of a requirement to
22	provide some publicly available seismic I think you
23	answered it you do have a robust network but my
24	understanding is the robust network you have is
25	private micro-seismic, which is a little trickier. So

1	do you have a position on the public aspect?
2	MR. COMISKEY: So so the agreement
3	that we had with the provider and the companies is
4	that we can provide that. We can provide the the
5	locations of our first quakes and exact attitude to
6	OCD. And we we have before.
7	So so that is again, we also
8	support expanding the New Mexico territory we've
9	discussed as well. But but that that data, you
LO	know, if if needed can be provided.
L1	MR. BLOOM: And then I think the last
L2	component, and this is just sort of a, you know,
L3	conceptual piece. And again, it's a question I asked.
L4	I forget of which witness. It may have been you in
L5	your first round of testimony.
L6	When I think pilot, there's sort of
L7	like a lesson learned component with the data and a
L8	firm commitment to sort of report out at an interval.
L9	And so I see and it's not sort of reporting out on
20	every kind of triggering event that's there.
21	But what I'm not seeing in the proposal
22	is a sort of like "Five years out, we will give a
23	rollup like the Commission has seen for certain" acid
24	bath well. I can think of more recently to talk about
25	it as a component. Am I missing that element, or is

1	it not present?
2	MR. COMISKEY: It's it's probably
3	not present. And we that'd be something we'd love
4	to work on if if the permits are are approved
5	with with you and your staff just just to work
6	out a plan on designation, we kind of envisioned
7	having regular updates and then and then as you
8	mentioned maybe more milestone updates as well.
9	MR. FUGE: Yeah, I mean, I think at
LO	least from where I'm sitting now, I mean, if the
L1	Commission were to issue an order with a pilot, I
L2	think I would want at least just putting out there.
L3	Would you be open to if we put in a sort of there
L 4	was a milestone report at some meaningful number of
L 5	years out where it's going to open a discussion there
L6	to incident five, ten, you know, milestones?
L7	MR. COMISKEY: Yes, we would be open to
L8	something like that. Sure, UGS.
L9	MR. FUGE: I have no further question.
20	And mindful of
21	Ms. Bennett, do you have a?
22	MS. BENNETT: Yes. May I do two really
23	brief redirects?
24	MR. FUGE: Yeah. Yep.
25	//
	Page 312

1 EXAMINATION 2. BY MS. BENNETT: So on Exhibit 11, Mr. Ampomah asked you a 3 0 question about whether you fit within or Chevron fits 4 5 within the 1A because your two locations are within 6 the DMGRA. But as I read this, it says that it's the recommendation for administrative review, not 8 approval, per se. Is that a fair rating of this 1A is 9 limited to administrative applications? 10 I believe looking at that that's correct. 11 And you're here before the Commission on a 12 full hearing and not seeking administrative approval 13 of these applications? 14 Yes, that's correct. Α 15 And would you be willing to move forward 16 with hearings to the extent required in the future for 17 other DMG disposal wells that were within the DMGRA? 18 Α Yes, we would. 19 And then Dr. Ampomah also asked you a 20 question about whether the NMOGA DMGRA is sort of like this set in stone, exclusionary -- for lack of a 2.1 22 better word -- that the operators sort of acceded to 23 over the years. And that made me think of the fact that 2.4 there are multiple operators who were a part of that 25 Page 313

1	working group who have supported your projects. So do			
2	you know if XTO was part of that original working			
3	group?			
4	A I believe they were. Yes.			
5	Q How about Cimarex?			
6	A I believe they were.			
7	Q Mewbourne?			
8	A I believe they were.			
9	Q Chevron?			
10	A Yes, Chevron was.			
11	Q So do you think it's fair to say that			
12	there's been an evolution in thinking since 2016			
13	that's shared by more than just Chevron?			
14	A Yes, I believe so.			
15	Q And that evolution in thinking is what			
16	you're presenting to the commission at this time?			
17	A Yes.			
18	MS. BENNETT: Thank you. Those are the			
19	only redirect questions I had.			
20	MR. FUGE: Are you reserving?			
21	MS. BENNETT: Yes. I would like to			
22	reserve with the opportunity to recall Mr. Comiskey as			
23	a rebuttal witness if necessary.			
24	MR. FUGE: Well, in light of the time,			
25	I think we're at a natural breaking point since			
	Page 314			

1	Chevron, I believe, is finished presenting its
2	witness. So we will resume tomorrow morning at 9 a.m.
3	with OCD's witnesses.
4	For those listening in, and this was in
5	all of the announcements announcing the meeting, there
6	is a different link for tomorrow morning's meeting.
7	Just go to the agenda, click on it. Just click on the
8	link for Day Two. And we will start promptly at nine.
9	Thank you.
10	(Whereupon, the meeting concluded at
11	4:57 p.m.)
12	
13	
14	
15	
16	
17	
18	
19	
20	
21	
22	
23	
24	
25	
	Page 315

1 CERTIFICATE OF DEPOSITION OFFICER 2 I, JAMES COGSWELL, the officer before whom the foregoing proceedings were taken, do hereby 3 certify that any witness(es) in the foregoing 4 5 proceedings, prior to testifying, were duly sworn; 6 that the proceedings were recorded by me and 7 thereafter reduced to typewriting by a qualified transcriptionist; that said digital audio recording of 8 9 said proceedings are a true and accurate record to the 10 best of my knowledge, skills, and ability; that I am neither counsel for, related to, nor employed by any 11 of the parties to the action in which this was taken; 12 13 and, further, that I am not a relative or employee of 14 any counsel or attorney employed by the parties 15 hereto, nor financially or otherwise interested in the outcome of this action. 16 17 18 19 2.0 21 JAMES COGSWELL Notary Public in and for the State of New Mexico 22 23 24 25

1 CERTIFICATE OF TRANSCRIBER 2. I, KIRSTEN FITZGERALD, do hereby certify 3 that this transcript was prepared from the digital 4 audio recording of the foregoing proceeding, that said transcript is a true and accurate record of the 5 proceedings to the best of my knowledge, skills, and 6 7 ability; that I am neither counsel for, related to, 8 nor employed by any of the parties to the action in which this was taken; and, further, that I am not a 9 relative or employee of any counsel or attorney 10 11 employed by the parties hereto, nor financially or 12 otherwise interested in the outcome of this action. 13 14 15 16 17 18 KIRSTEN FITZGERALD 19 2.0 21 22 23 24 25

&	1.57 194:5	109,000 154:20	12 3:5 7:7 27:4
& 2:9	1.7 200:15	109-123 4:23	35:11 57:3
	202:12 208:16	11 19:12 35:11	143:10 266:1
0	210:23	37:7 51:18,19	12,000 200:23
0 245:16	1.74 194:5	51:23 57:3	208:22 225:20
0.4 113:10	1/2 79:18,21,23	64:20 74:8,10	12,500 72:18
01 1:3	252:8 259:6	79:20 144:2,4	224:20,24
1	10 109:19	147:15 179:3	240:25
1 24:8 25:23	242:19 258:15	185:5 203:13	120 147:2
43:13 52:6,9	259:11,21	235:14 266:1	158:9
69:4 73:12	293:9	269:3 281:4	121 149:19
78:21 95:19	10,000 172:8	282:10 285:2	167:4
129:16 143:10	225:13,15	287:22,23	122 151:23
143:10 144:3	226:10 245:25	288:6 301:10	1220 1:15
152:18 160:12	254:12	310:21 313:3	123 4:8 151:24
183:16 192:4	100 79:3 92:14	11,000 246:1	157:19 158:1
220:24 228:23	93:3 107:10,11	11-23 1:5	172:24,24
259:15 290:19	107:12	110 159:18	124 153:20
291:5	101 78:6,6	205:20	167:3 168:14
1,000 304:24	106:18	112 130:24	125 23:22 70:8
1,520 147:21	102 4:6	142:8 163:12	126 239:22,25
1.1 192:10	102/102 4:20	177:4	287:6,10
194:1,6	4:21,22	113 135:3	290:13
1.14. 192:10	103 82:23	162:1 163:7	126-141 4:24
1.15. 192:8	104 83:2 84:16	114 138:17	127 241:21
1.2 194:1 221:7	112:19,21	163:22	290:14
222:4	115:12 116:1	115 140:22	129 293:18,19
1.22 192:5	105 87:12	116 143:2	12:45 122:24
1.22. 192:3	106 4:7 88:12	117 143:4	12th 7:13
1.3 217:6	107 93:23	118 144:21	13 135:16
1.32 222:4	108 102:5,9	165:22 171:23	145:3 182:23
1.5 192:23	107:7	171:24	198:8 202:1,7
193:24	109 127:6	119 147:1	203:1 249:22
1.53 192:24	157:19 158:1	11th 18:16,23	266:1

[130 - 2021]

130 205:23	150 191:15	10 2.5 1/5./ 10	225:24
		19 3:5 145:4,18	
1300 186:11	219:1	146:18 162:9	20,000 70:3
131 291:21,21	151 195:5	166:13	203:5 208:25
135 288:10	152 195:6	1960s 183:17	223:8 224:7,11
292:8	212:25 222:13	1970s 183:17	224:15 225:3
13507 8:1,4	153 196:23	1977 186:17	226:12 227:3
136 264:9	154 199:16	1a 313:5,8	232:19 241:2,5
288:11	224:23 231:22	1b 109:20	244:24 246:3
137 295:1	155 201:3	1st 1:14	258:21
307:14	156 202:14	2	200 75:20
138 309:5	224:14 231:22	2 22:14,19,23	113:4 180:7
14 86:7,9,10,12	157 234:25	43:12 52:8	202:5
86:12,13,19	158 4:9	68:14 69:2,10	2012 179:9
145:3	158/158 4:23	72:15 73:12	2014 143:9
140 264:13	1584 191:23	78:13 95:19	2015 139:14,15
265:4 309:25	159 4:10	129:16 144:4	143:10 303:18
141 287:6,10	211:16		2016 126:18
142 182:16	16 16:9,11	156:18 172:18	127:16 174:10
209:10,14,17	64:22 139:5,9	182:25 183:6	174:18,22
142-162 4:25	140:1 266:1	192:6 193:10	257:9 303:18
143 182:19	161 206:21	193:21 211:9	314:12
210:3	162 207:23	215:22 242:10	2017 249:9
144 183:10	209:11,14,17	254:25 259:14	303:18
145 185:1	16th 14:16	282:17 290:18	2018 124:22
146 185:1	16th's 11:21	291:5	2019 131:21
147 185:17	17 45:7 246:3	2,000 134:20	145:23 244:3
216:20	266:1	171:25	244:10 251:14
148 187:17	17,000 241:2	2.0. 248:23	2020 44:9
149 187:18	17,000 241.2 174wa 190:6	2.5 242:10	125:20 131:21
14th 20:11	174wa 150.0	243:19 248:24	244:12
15 145:3	176 4.11 178 4:12	250:3 252:3	2021 32:2 43:1
237:23	18 86:20 145:3	2.9 242:10,10	43:2 47:10
15,000 70:5	145:18 146:18	20 3:6 13:21,23	166:4 242:15
72:16 224:7,19	162:9 166:3,13	47:22 65:18	242:20 247:2
12.10 224.1,19	244:24	113:9 186:2,3	
	\(\alpha \frac{44.24}{\}\)	186:16 225:8	249:13,15

[2022 - 4:57]

2022 66:5	235:14 266:1	3	330 261:4,21
180:10 186:3	23638 14:15	3 51:1,5 67:8	264:13 265:4
190:5 249:15	23640 20:16	69:23,25	34 3:7
251:20 259:18	23645 20:17	113:10 133:10	36 3:3
2022/2023	23686 26:22	192:9 242:10	3700 82:1
244:13	27:8 67:13	242:11,18	39 4:3
2023 1:9 7:7	23687 26:22	251:15 252:8,8	3:15 238:5
13:4 44:9	27:8 67:16	266:3 267:8	3:30 237:17
251:14	23688 11:9	3,000 132:19	238:6
2024 19:12	15:1	161:4,21	3c 305:8 306:10
2026 184:18	23727 7:25	3.4 211:2	3d 165:15
209/209 4:25	238 4:15	242:11	176:13 289:5
20913 21:17	23942 20:15	3.4. 242:10	4
20913d 25:16	21:10	3.5 252:3	4 70:14 208:22
21 138:24	23943 21:15	3.5. 242:13	266:3 267:8
139:6,22 140:6	24 7:20 13:11	3.8 255:1	289:19
141:4,5 163:23	29:15 135:16	30 45:6 47:23	4,000 171:25
210 4:13	145:4	50:19 61:25	200:22 226:8
212 4:14	24/8/2011	62:3 152:21	4,655 115:22
216 162:18	167:5	186:8 190:8	4.0 247:1
21629c 10:23	25 169:18	203:2 205:9,21	248:23
12:2,5	190:8 205:1	211:17 212:1	4.0. 248:15
21629d 11:2	26 36:24	228:25	40 112:17
21744 9:16	267 67:9 72:10	30,000 38:25	203:11
15:8 19:10	84:16 88:12	225:8,24 227:3	400 73:1 79:5
22 3:4 13:4	92:14 93:24	245:17	401h 147:18
220 254:5	28 3:6	300 202:6,9	148:10
2200 81:23	28.8 199:25	203:15 265:7	42 153:6 173:4
191:8,13	287/287 4:24	31 3:6	450 203:13,21
22018 9:18	28716 317:18	313 4:16	4500 258:19
19:11	29 163:9 200:7	32 163:9 230:5	460 191:11
22019 9:18	208:23	32311 316:20	4600 245:21
19:11	2bm 304:15	33.67 184:16	468 72:24
23 3:7 13:12	2dd 116:5	33.82 186:4	4:57 315:11
107:22 145:4		100.7	313.11

[4f - above]

4f 305:17	7	9	295:17 316:10
5	7 71:7 143:8	9 3:4 220:23	317:7
5 70:19 79:18	147:15 193:22	255:1 265:23	able 8:23 17:20
79:21,23 138:1	215:23 216:8	315:2	42:18 46:11
193:17,21	265:22 266:19	9,000 201:15	47:2 50:11
215:19 259:6	7,000 240:22	203:4 208:25	58:15 59:3
265:18 266:1	245:21 258:19	245:24	93:6,15 94:6
267:7,8 283:11	70 45:8 256:24	90 216:12	104:6 111:9
283:11	257:1 261:6	252:10	114:4 117:12
5's 193:20	264:19	900 265:9	117:15 118:11
5,000 232:18	70s 108:17	90s 108:18	118:21 146:16
5.0. 243:20	72 18:7 215:9	91,000 154:7	146:18 150:15
50 107:10,11,12	7225 13:20	925 191:12	155:3 156:3
146:13 256:20	73 203:7 209:1	95 112:18	165:17 168:11
50,000 223:9	75 220:22	252:11	168:19,23
224:16	750 70:10	96 184:19	176:11 190:2
500 79:9 113:5	781 73:11	98 44:16,18	191:5 195:10
146:20	79,000 154:6	102:5,8 113:22	195:18 196:10
55 4:4	8	98-108 4:22	198:15 214:17
6	8 1:9 3:3 71:11	99 91:10,14	217:4 228:15
6 71:4 137:17	73:7 127:23	92:20	234:19,23 258:2 277:1
203:1 228:25	130:2 139:3	9:09 1:10	278:12 280:7
242:18	140:2 142:16	9:50 27:4	280:10 299:10
60 45:8 264:19	150:9 152:24	9th 5:3	299:11 300:18
62 215:8	154:21 156:1	a	301:2
63 4:5	172:22 249:12	a&m 64:16	abnormal
6304851 1:22	8,979 198:6	a.m. 1:10 315:2	144:14
65 215:8	200:14 202:20	abadie 2:9 10:7	above 35:7
220:22 256:20	800 146:20	abandoned	78:18 79:9
256:25	80s 108:17	108:2	80:24,25 99:15
6500 240:25	217:13	abided 13:23	205:4,8,9
66 72:10	87 153:7 173:5	abilities 306:4	227:6 242:12
69,000 154:5	87505 1:16	ability 47:23	248:25 249:6
	8th 5:3	48:24 152:2	292:13
		289:11 290:2	

[absolutely - addressing]

absolutely	317:5	actively 47:21	adam 2:11 9:21
43:23 66:9	accurately	146:22 157:11	22:1
260:4 306:3,5	254:14	activity 55:7	add 19:17
307:9	achinivu 29:11	actual 97:23	101:25 114:13
abundance	acid 21:16	114:5 130:23	131:16 193:15
17:4 22:14	74:17 119:9,17	168:20 169:11	193:21 215:21
299:20	119:18 124:11	173:13 190:24	248:9 276:10
academia	229:17 306:11	193:6 198:15	298:3
39:19	306:13,18	199:13 206:9	added 37:19
acceded 313:22	311:23	221:19 273:10	117:10
accelerate	acquired 58:6	280:14 284:25	addition 17:14
44:22 48:24	173:21	actually 43:19	37:3 97:16
49:1	acquiring 50:8	76:24 86:20	288:5
acceptable 9:5	58:5	90:3 92:20	additional
9:6 108:21	acquisition	98:4 107:6	19:18 24:5
accepted 40:4	300:7	110:9,25 112:5	32:7 35:16,22
125:21 181:9	acreage 11:11	112:7,19	37:18 50:1,4
access 188:13	14:11,11,12,18	113:14 115:1	82:14 142:23
254:5 306:24	44:1,2 213:5	118:5,17	194:22,22
accesses 233:7	acres 14:17	119:12 120:20	229:4 234:12
accident 298:9	acronym	121:9,16	238:3 271:13
accommodated	206:15	166:16 167:4	283:12
13:8,10 16:20	act 80:17	183:4 189:2	address 18:21
accomplished	295:18	191:1,5,20	32:8 34:3,11
257:12	acting 294:1	192:15,16	57:6,9 59:3
account 48:4	action 271:18	195:24 216:2,3	67:1 74:5
183:22 232:4	295:22 306:18	221:22 223:14	118:22
250:3 275:24	316:12,16	225:17 226:3	addressed
281:1	317:8,12	230:19 232:23	13:16 117:7
accumulate	activated	254:15,20	286:12
207:13	292:20,22	265:17 280:13	addresses
accurate 92:21	active 7:15	288:16 294:13	13:14 159:21
99:24 104:1	145:21 182:25	302:1	addressing
110:16 245:16	183:5 209:3	ad 98:14	10:20 26:7
254:8 316:9	262:3		

[adds - amazing]

adds 81:9	admitted 102:7	agencies	agrees 304:5
adequate 68:17	102:10 157:24	254:11	ahead 10:4
277:6 281:18	158:2 209:16	agenda 1:5	31:8 238:13
282:1	209:18 287:11	5:11 6:8,9,12	277:9
adhering	admonition	6:23,24 7:2,5	ahs 105:16
305:12	302:7	18:8,9,9 20:1,7	al 240:6 257:8
adjacent 45:4	adopt 7:2,10	20:10,12 27:7	260:5
130:5 131:16	adopted 7:5,13	315:7	alarm 205:16
adjourn 122:23	advance 20:1	agendas 18:21	alarms 205:7
237:16	advanced 18:7	aggregate	206:22
adjudicated	advantage	81:13	aligned 257:1
18:16 19:11	301:7	agi 22:14,19,23	allow 17:5 27:2
adjudicatory	advantageous	23:9,20 24:8	54:17 108:19
26:22 27:8	302:20	24:11,15	198:22 305:18
adjustments	advantages	agi's 25:2	allowable
221:21	107:4	agis 23:6,6	200:5 205:2
administer	adversely	ago 51:17	allowance 6:4
29:25 38:12	15:11	241:14 246:19	allowed 176:12
administrative	advice 18:1	249:23 260:6	199:1
5:10 22:24	advisor 39:15	agree 5:14	allowing 161:6
23:5 24:5 25:3	180:12	23:14 169:2	165:19
26:6 37:5	advocating	215:15 222:3,5	allows 36:25
39:25 57:3	304:11,11,12	225:3 226:15	46:2 94:4
269:3,6 313:7	affect 130:22	232:12 233:19	277:1
313:9,12	affected 15:11	238:23 263:18	alluded 31:22
administrativ	143:3 158:12	263:19 285:11	alluding 247:19
22:20 23:9	affecting	295:16 306:2	alphabetically
26:1	129:24 158:20	agreed 212:1	215:17
admission	affirmative	216:11 223:23	alternative
102:3,5 157:19	71:12,12 73:2	224:17	110:5,8 142:16
209:13 240:17	309:8	agreement 8:23	142:16
267:15 287:6	afternoon	8:25 9:3 25:1	alternatives
admissions	123:8 159:16	143:18 311:2	229:24
24:25	age 292:4	agreements	amazing
		61:7	236:13

[ambiguous - analyze]

ambiguous117:11,18,24303:2 304:4,15164:23 169:222:17 299:23118:24 119:19305:1,8,16174:17 176:13amenable 31:6169:7,8,15,20306:1,6 309:10181:19,24amend 12:2170:4,13,19,22313:3,19183:7,11,14,2amended 11:1171:15,20,23ampomah's183:21 184:221:17 25:17172:2,9,1961:19 175:22185:1,14 186:amount 45:3,23173:6,9,12,16anadarko186:20,2546:25 54:1173:25 174:4,840:23,24187:15 189:25100:4 112:25216:18,19,24analog 214:7195:8,21,23,24184:6,11 186:9217:5,8,16,19222:18,19196:1 197:2,7201:17 213:21218:16,19,25223:16,24198:11,21217:9 224:10219:5,9,16,20230:13 248:6202:13 211:11224:25 303:23219:24 220:5analogies213:2,9,16,20amounts220:17 221:3101:23214:6,10,12
amenable31:6169:7,8,15,20306:1,6 309:10181:19,24amend12:2170:4,13,19,22313:3,19183:7,11,14,2amended11:1171:15,20,23ampomah's183:21 184:221:17 25:17172:2,9,1961:19 175:22185:1,14 186:amount45:3,23173:6,9,12,16anadarko186:20,2546:25 54:1173:25 174:4,840:23,24187:15 189:25100:4 112:25216:18,19,24analog214:7195:8,21,23,24184:6,11 186:9217:5,8,16,19222:18,19196:1 197:2,7201:17 213:21218:16,19,25223:16,24198:11,21217:9 224:10219:5,9,16,20230:13 248:6202:13 211:11224:25 303:23219:24 220:5analogies213:2,9,16,20
amend12:2170:4,13,19,22313:3,19183:7,11,14,2amended11:1171:15,20,23ampomah's183:21 184:221:17 25:17172:2,9,1961:19 175:22185:1,14 186:amount45:3,23173:6,9,12,16anadarko186:20,2546:25 54:1173:25 174:4,840:23,24187:15 189:25100:4 112:25216:18,19,24analog214:7195:8,21,23,24184:6,11 186:9217:5,8,16,19222:18,19196:1 197:2,7201:17 213:21218:16,19,25223:16,24198:11,21217:9 224:10219:5,9,16,20230:13 248:6202:13 211:11224:25 303:23219:24 220:5analogies213:2,9,16,20
amended 11:1 171:15,20,23 ampomah's 183:21 184:2 21:17 25:17 172:2,9,19 61:19 175:22 185:1,14 186:3 amount 45:3,23 173:6,9,12,16 anadarko 186:20,25 46:25 54:1 173:25 174:4,8 40:23,24 187:15 189:25 100:4 112:25 216:18,19,24 analog 214:7 195:8,21,23,24 184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
21:17 25:17 172:2,9,19 61:19 175:22 185:1,14 186: amount 45:3,23 173:6,9,12,16 anadarko 186:20,25 46:25 54:1 173:25 174:4,8 40:23,24 187:15 189:25 100:4 112:25 216:18,19,24 analog 214:7 195:8,21,23,24 184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
amount 45:3,23 173:6,9,12,16 anadarko 186:20,25 46:25 54:1 173:25 174:4,8 40:23,24 187:15 189:25 100:4 112:25 216:18,19,24 analog 214:7 195:8,21,23,24 184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
46:25 54:1 173:25 174:4,8 40:23,24 187:15 189:25 100:4 112:25 216:18,19,24 analog 214:7 195:8,21,23,24 184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
100:4 112:25 216:18,19,24 analog 214:7 195:8,21,23,24 184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
184:6,11 186:9 217:5,8,16,19 222:18,19 196:1 197:2,7 201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
201:17 213:21 218:16,19,25 223:16,24 198:11,21 217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
217:9 224:10 219:5,9,16,20 230:13 248:6 202:13 211:11 224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
224:25 303:23 219:24 220:5 analogies 213:2,9,16,20
amounts 220.17 221.3 101.23 214.0,10,12
188:13 221:15,20,25 analogous 217:20 218:21
1 / /
255:14 223:3,6 224:6 analogously 223:10,13 ampomah 2:6 225:2,9 226:5 136:20 224:5,10,13
6:13,17,18,25 226:7 227:10 analogs 182:3,4 226:13,24
7:3,11 9:9 227:15 229:23 195:10,17 227:12 228:15
17:23 19:14 230:2,7 231:4 208:15 218:14 228:24 230:3
26:12 57:20,22 231:18,25 208:13 218:14 228:24 230:3
58:1,24 60:3,9 232:6 233:11 analogy 101:13 236:13,20
90:16 107:17 234:25 235:18 101:19 268:22 278:11
107:19,22,24 235:22 236:12 analyses 280:10 284:16
107.17,22,24 253.22 250.12 analyses 280.10 284.10 108:3,6 109:2 290:10,11,18 103:22 155:17 300:16 306:21
109:4,13,17,22 290:21 291:10 180:17 282:9 307:2
110:4 111:4,8 291:14 293:18 analysis 33:19 analytical
111:17,22 295:1,20 296:8 39:1,17 52:1 196:8
112:14,19,21 296:23 297:1,4 52:16,17 83:6 analyze 13:15
113:6,9,22 297:23 298:9 83:8 84:3,4 95:5,7 151:24
114:3,18,22
115:4,7,10,17 299:13 300:15 104:10,19 213:19 217:4
115:21,24 301:9,14,20 115:3 135:6 217:19 225:5
116:6,9,14,17 302:3,6,23 142:12 149:19

[analyzed - approaches]

analyzed	174:3 210:15	21:21 27:20	51:22 66:8,19
156:14 216:25	219:17,19	28:2 37:25	66:21 67:6
218:17 280:21	229:14 260:21	165:19 176:16	76:8 77:11
analyzing	280:23	appearances	102:4 126:3
112:23 194:21	answered	27:10	180:25 181:5
anderson 220:5	161:16 310:23	appeared 25:25	236:23 269:3,6
andersonian	answering	appearing 9:21	282:14 313:9
256:16	232:11	10:7 21:19	313:13
andreas 266:16	anthropogenic	22:1	applied 200:17
294:4	248:1,2	appears 27:11	216:13 223:18
angeles 294:6	anticipate 36:6	30:7	276:13
anhydrite	anticipated	applicable	apply 126:25
99:12	22:6 55:11	290:3	129:1 234:25
anhydrites	anymore	applicant 22:1	269:21
80:16,18,20	302:12	25:14	applying 182:4
81:4,7 99:21	anyway 198:21	applicant's	appreciable
117:15	205:16	25:10	267:4 268:7
annotated	aoi 45:13	application	289:12
240:19	248:20	7:25 12:11	appreciate 28:7
announced	aor 69:6,13	13:21 20:15,19	28:18 98:2
242:15	92:21 100:16	20:24 21:15	115:4 306:21
announcements	211:14 259:11	22:13 24:6,16	307:16,19
315:5	259:21 283:1	41:18 58:1	appreciated
announcing	apache 292:10	61:23 66:1,24	28:17 97:22
315:5	apart 233:21	67:9,11,13,16	approach 31:8
annual 186:4	234:7	70:2 75:15	34:1,13 54:7
anomalies	aperture 289:7	91:19,21 92:18	94:19 103:24
99:22 101:16	apex 189:3	109:20 112:22	108:13,17,25
anomaly	apologize 12:16	116:18 121:11	110:16 227:24
117:14	23:16 175:20	159:19 235:20	272:9 302:13
answer 9:22	186:13 254:23	283:15 301:16	302:19 303:16
74:3 90:18	appear 9:19	applications	304:8,13
92:5 109:15	185:7	4:21 12:25	approaches
168:11,23	appearance	35:4 36:19	84:9 96:17
169:19 170:25	10:2 11:4	37:22 41:22	

[appropriate - arguing]

_			
appropriate	158:13 160:12	132:4 133:13	293:6 294:6
15:25 24:4	163:24 172:5	135:9 138:13	301:25 302:2,3
25:3 36:19	179:3 180:7	138:23 140:8	302:4 304:10
50:6 52:2,6,9	183:22 184:3	141:1 143:9	304:14 307:23
74:20 209:8	190:8 193:22	144:19 145:2,5	areas 32:14
appropriately	211:2 213:22	145:6,10	41:15 43:16
24:6,17 25:9	approximation	146:12 149:12	47:20 48:2
234:2	196:19	149:25 151:10	52:25 56:13
approval 6:9	april 249:22	152:11,13,20	65:24 67:3
21:16 22:24	aquifer 79:2,4	153:1 154:22	83:10 84:11
23:5,17,18	79:16 81:22	155:22 157:5,9	86:15 87:2
24:25 25:3,16	aquifers 78:17	159:5,9 160:6	89:18 90:8
25:24 26:5,6	arbitrarily	160:20 162:8	93:11 94:21
37:6 51:23	236:1	165:15,20	96:16 97:6,9
57:3 59:1	arco 64:24	168:12,25	97:12 99:3,12
68:19 75:3	area 35:18	171:16,17	100:2 101:2,8
269:2,3,5	41:14,17 45:25	172:3,12,22,25	128:3,24
280:16 307:25	46:3 47:17,23	173:7,21 175:1	129:19 130:3
313:8,12	48:9 49:20,21	175:6 180:5	130:13,15
approve 22:13	53:5,9 55:12	184:3 187:10	148:1 156:3,14
22:19 23:9	56:5,9,11,15,17	200:17 211:1,5	162:21,25
26:1 79:23	59:1 60:5,6,8	219:6,17	194:11 213:14
approved	60:19,19,22	220:21 230:4	215:1 216:25
12:25 19:16	61:10,15 65:23	236:10,24	233:14 242:4
24:3 34:14	68:17 69:7	244:17 245:5,9	250:18 252:19
108:25 283:18	71:8 75:15	246:21 248:16	260:21 286:9
301:22 312:4	80:23 83:20,23	248:21 249:5	288:13,17
approving	84:1 86:3	250:9,10,12,17	argue 58:7
10:18 11:10	87:21 88:1,9	253:19 256:19	129:3 141:22
approximate	88:16,17 89:22	258:15 261:13	252:10 288:15
161:2 202:12	90:4 91:9	261:14 263:25	292:2 299:23
approximately	92:24 96:8,9	265:18 285:8	303:5 304:7
36:7 64:22	96:20 97:24	288:14,22	308:19
85:2 89:2	98:14,17	289:1,24	arguing 16:1
132:19 152:23	129:23 130:8	290:19 292:24	

[arguments - avalon]

arguments	assessment	71:4,7,11 73:7	authors 113:17
10:25 18:2	22:6 47:10,13	attendance	automated
20:6	55:8 96:15	38:5	205:7
arms 232:7	105:8,25 115:1	attendees 2:2	automatically
arranged	120:22,22	attention	205:18
228:25	127:1 129:9	138:20	available 71:17
arrow 89:4,5	181:16 182:2	attitude 311:5	94:18,21 115:2
148:16 260:14	185:5 201:4	attorney 2:8,9	174:18 214:6
arrows 257:19	224:18 283:1	2:11,13,15,17	227:1 264:23
articles 265:14	assessments	2:18 316:14	306:23 308:11
articulate	104:1 200:16	317:10	310:22
288:23	asset 180:4	attributable	avalon 49:15
ascertain 258:2	assets 179:18	239:12 260:3	61:2 105:18
258:3 271:15	179:25	attributed	127:18 128:4
aside 14:24	assigned	42:14 174:13	129:24 130:4
42:6 146:1	231:20	174:15 241:9	130:16,22,25
asked 13:7	assist 63:20	244:18	131:7,7,22
90:16 174:8	associated	attributes	132:3,19,22
225:9 229:3	19:10 46:21	118:3	133:14,22
311:13 313:3	49:16 182:13	attributing	134:7,10,12,15
313:19	208:12 242:16	163:22	134:20 135:1,4
asking 93:10	268:8 300:3	atypical 58:19	135:11,15,19
118:2 121:20	assume 10:8	audio 5:21	135:22 136:7,9
aspect 143:1	assuming 20:25	316:8 317:4	136:12,13
146:24 311:1	236:21	august 139:15	137:7 138:15
aspects 181:15	assumption	authoritative	138:25 140:22
272:23	105:21 228:17	243:22	142:2,18 143:2
assess 81:8	assumptions	authority 15:10	144:10,14,16
94:20 105:16	227:11,14	272:5 295:19	145:5,9 146:2
111:1 239:15	229:10 230:12	authorize	146:8 147:6
270:9	233:1	22:18 25:14	150:12,23
assessed 269:7	attach 9:4 69:6	26:1 77:11,12	152:3,5 154:1
281:24	attachment	authorized	154:14 155:4
assessing 47:9	69:4,10,23,25	23:6,8	155:23,24
96:19	70:14,19,25		156:3,21,23

[avalon - basement]

157:12 158:17	139:17,18	125:11 127:15	249:7,12
158:21 159:6,8	201:7,10	168:12 179:6	251:16 252:9
160:7,17,24	b	182:19 256:25	barriers 109:11
161:3,7,12	b 4:18,21 67:16	257:16 258:4	base 80:8 82:5
162:5 163:3,14	102:3,8 166:18	backup 24:13	105:23 116:21
163:17,23	baby 53:23	bags 251:23	137:3 154:3
165:8,25	bachelor 64:15	ball 255:9	based 14:2
167:11 170:19	bachelor's 40:9	265:16	16:16 24:1
171:4,8 174:24	125:12,13	balls 254:19	26:13 32:22
175:8,14 176:4	179:9	255:2,4,8	51:3 52:11,16
176:8,17,22,25	back 5:6 8:24	265:20,25	71:22 86:16
177:11,15	27:6 28:13,14	ban 49:25	100:23 117:3
240:14 245:23	39:3 41:4	bands 242:16	137:14,21
281:16 285:23	48:20 61:23	bank 101:14	155:11 168:16
285:25 304:9	76:4 82:10,11	barrel 51:2,5	169:21 176:15
avalon's 157:8	82:15 92:20	184:10,21	201:18 205:11
avant 20:15,17	108:17 110:24	185:4	218:23 220:5
20:22	112:1 127:1	barrels 45:6	224:4 226:9,12
average 70:4,9	134:23 137:13	50:19 70:1,3,5	231:24 232:15
72:17,25	147:5 155:14	72:16,18	233:12 235:5
215:19 224:20	158:9 163:12	147:21 171:25	235:23 256:1
251:17	174:10 183:17	172:8 184:1,19	256:23 258:1
averaging	204:14 207:21	185:5,6 186:8	259:25 264:7
225:20	210:13 221:2	186:11 200:1,7	265:5,9 275:14
aversion	223:11 237:3,6	200:22,23	278:20 285:11
220:25	237:6 238:8	202:5 203:4,5	285:12 292:23
avoid 228:2	242:15 249:8	203:7,12	293:21 300:16
aware 49:23	249:17 271:23	208:22,23,25	baseline 134:15
105:25 121:21	280:20 281:10	209:1 218:8	134:17,24
148:2 165:14	285:16 292:18	224:16,16,20	137:13 154:1
169:18 173:7	300:2 303:4	224:21,24	basement
173:15 212:5	306:10	225:3,8,15,20	167:24 240:18
218:22	background	225:24 226:9	257:25 262:22
axis 133:17,18	40:8 64:14	226:12 227:3	294:9,19
135:25 136:1	65:19 124:7	232:18,19	
	00.17 12 1.7		

[basic - bennett]

basic 89:13	beach 254:19	35:18 37:24	202:21 214:24
258:14			
	255:2,4,8,9	48:16,20,23	245:20
basically 36:9	265:16,20,25	49:18 51:16	bench 171:12
80:21 95:21	bear 104:3	52:7,10,19	benches 56:18
109:10 147:20	becoming	55:5 56:3 57:8	171:11
basin 37:15	256:19	102:22 103:8	beneficiary
42:11 43:22,24	bed 259:7	108:7 109:5	275:8
44:1,6,7,23	beds 152:23	121:10 126:16	benefit 30:5
45:1,5,19	began 248:4	127:23 143:8	127:4 182:14
50:18 58:8	beginning	150:8 157:19	184:12
63:23 64:23	160:7 180:10	161:20 166:15	bennett 2:17
79:9 84:22	183:11 220:10	167:11,21	3:6 4:3,5,15,16
124:23 125:3	begins 143:2	168:8 171:21	20:20,21 21:12
126:24 151:25	147:1 151:23	173:16 185:17	27:16,16 28:3
152:12 175:4	185:17 187:16	193:2 216:20	28:5,8 29:6
180:3,6 220:13	195:5 199:16	217:8 220:3	30:2 31:8,10
220:14 239:7	202:14	254:25 264:9	35:15 38:6,8
239:12,17	behalf 8:14	279:23 282:11	38:22 39:6
240:6,9 243:14	9:22 10:7 11:4	282:15 286:14	41:24 42:3,4
248:1 251:22	20:21 22:1	288:7 301:9	54:20 62:14,17
253:20 260:3	27:17,24 28:10	302:1,24	63:8,10 66:10
260:25 261:9	34:24 36:13	304:21 305:11	66:16,17 91:11
262:17,20,24	67:6 71:17	313:10 314:4,6	91:13,25 102:1
263:6,22	behavior	314:8,14 315:1	102:12,20
267:18 281:2	187:25 188:4	believes 35:6	106:9,20
286:3 291:19	190:24	37:7 216:21	118:20 120:6
292:5,15,18	behaviors	bell 73:18	122:6,13,20
293:17	237:9	76:17 82:4	123:5 219:22
basis 54:2	belabor 279:24	83:3,18,19,22	222:8 237:19
55:16 154:4,19	believe 9:24	85:18,19 97:3	238:15,19,21
169:24 303:24	10:22 11:4,14	103:2,18	239:20,24
bath 311:24	12:8 13:22	104:25 105:9	279:16,20
bay 294:6	15:5 16:5,11	111:14 115:21	287:5,13
baylor 40:12	16:18,19 22:18	144:3,4 145:7	301:18 312:21
	23:3 24:8	200:13 201:9	312:22 313:2

[bennett - bottom]

314:18,21	78:8,16 81:11	122:7 174:6,7	157:12 159:7
bentonite 109:8	91:8 103:15	210:17 306:8,9	168:2 172:20
best 108:20	109:14 110:22	306:19 307:10	173:10,12
110:16,17	119:2 122:2	307:12 311:11	176:5,8 181:24
164:1 172:7	149:19 159:18	blue 86:5,15,19	226:4 240:14
208:6 218:14	164:1 181:22	88:25 129:14	245:24
302:13 316:10	192:9 193:18	130:3 133:18	border 43:12
317:6	193:19 195:8	135:12,13	43:14 45:5
better 19:7	203:14 211:12	136:1,24,25	152:15,17
74:1 88:20,25	220:14 223:25	137:12 138:24	borders 243:1
103:8 203:17	224:3 231:15	139:6,19 141:5	bore 68:13 78:3
208:24 213:23	234:16 238:11	141:23 143:22	78:8,11,15,22
214:12 229:22	240:11 241:11	144:25 147:13	106:17 119:12
232:20 248:9	247:20 251:20	149:24 150:25	119:15 223:19
291:15,17	278:25 279:6	188:16,18	229:12 235:2
302:20 313:22	308:17	195:14 200:19	282:1 283:5,7
beyond 35:7	black 132:15	202:24 222:14	306:17
122:2 169:10	133:5,19,21	242:2 243:15	bores 124:13
189:11 197:23	152:15 243:17	246:15,21	boring 259:9
197:24 198:12	247:14 261:18	248:12 251:17	bottle 215:23
big 196:14,15	blank 186:14	253:23,24	bottlenecking
207:3 233:2	blatant 263:15	body 39:25	133:1
252:21 266:23	block 245:18	boe 251:13,21	bottom 43:25
266:24 279:4	308:19	boes 251:16	44:8 97:17
286:6 289:19	blocks 86:18	boiled 118:7	135:7,24
293:1 300:6	240:20 274:10	bone 61:4 99:2	142:11 144:25
302:11	blocky 297:15	119:24 139:12	148:17,24,25
biggest 59:8	bloom 2:5 6:19	140:9 142:12	188:17 192:2
224:6	6:20 7:1,9 9:10	150:13 151:25	193:22 194:4
billion 202:5	17:12 18:25	152:2,8,10,19	201:20 207:11
bit 8:24 12:9,13	19:13 21:7	152:25 153:6	244:9,15 249:3
22:17 35:10,22	26:11 60:10,11	153:20 154:2	249:17,22
46:15 52:22	119:20,21	154:13,15,21	251:8 261:24
61:12 65:3	120:1,8,16,25	154:24 155:8	265:16,21
68:22 76:20	121:5,8 122:1	156:20 157:2	283:13 309:22

[bottomhole - c108]

bottomhole	break 100:5	brings 223:8	buffer 211:12
146:19 155:5	122:24 156:24	broad 43:24	build 45:16
193:14 199:8	164:6,6 237:17	44:4,4 58:16	114:5 117:15
215:3 216:8	breakdown	250:9 256:17	186:23 188:20
228:13	189:4,6 191:1	broader 53:25	233:15
bouma 297:12	191:6 208:14	55:7 248:19	building 1:14
boundaries	breaking 194:9	broadly 47:17	5:7 61:18
236:2	314:25	brough 263:20	64:25 235:3,5
boundary	breakouts	brought 10:17	274:9 290:24
197:20,24	145:17 220:24	259:25 285:18	291:1
199:5 200:14	breaks 221:1	303:7	buildup 110:24
201:5 202:20	breakthrough	brushy 36:2	112:9
228:9 235:19	140:3	49:15 76:9,11	built 175:16
236:1	bridging 110:6	76:13,14,15,16	266:22 267:3,6
bowl 98:15	brief 22:5	76:18 77:10,14	267:10 289:14
box 85:15,16	28:25 31:3	79:9 82:12,17	bullet 192:18
85:17 149:24	36:9 41:9 74:4	102:23 103:4	192:25 193:2
186:14 192:14	122:24 125:10	103:19 104:7,8	bullseyes 242:3
194:4 201:22	126:12 179:5	104:23 105:1,9	bunch 279:18
235:12 308:24	182:11 312:23	105:17,19	bureau 36:3
boxes 192:1	briefing 10:25	106:21,23	buried 267:9
246:15	briefly 30:3	109:23,24	burner 29:10
bran 143:10	31:18 35:12	110:6 111:11	business 39:16
148:8	36:16 43:7,20	111:14 150:19	buy 303:4
brand 229:21	44:19 47:12	173:13 214:23	c
brandon 36:1	64:13 127:9	282:22 304:16	
breach 154:2	181:11 191:18	304:23,24,24	c 2:1 3:1 5:1
154:21 155:8	241:21 273:23	305:3,4	153:14
176:5,7,9	brigham	bryce 2:20 29:9	c108 25:2,15,24
breached	179:10	81:10 86:23	26:2 66:23
153:21 156:21	bring 5:23	100:7 110:22	67:10,23 68:2
breaching	180:7 210:12	178:8,14,24	68:4,22 69:4
108:9 152:8	263:17	241:13 273:8	72:4,8,12
157:2	bringing 271:4	278:10 299:2	91:19,21 92:18
	g g -/1.1		107:20 109:20
			223:12,13,23

[c108 - cases]

		I	
224:18	211:20 254:19	304:16,20	23:7 27:8,20
c108s 4:20 67:5	289:10	capable 227:4	35:3 38:2
67:5 68:11,24	called 7:21	capacity 37:13	55:16,16 61:17
70:12 76:8	24:18 38:18	191:4 234:21	67:13,16 82:2
78:4 102:4	63:3 123:18	capital 59:20	107:3 126:15
224:13	139:21 146:2	233:25	127:1 128:21
calculate	178:15 197:20	caprock 240:11	129:8,14,17
110:20 113:14	198:19	carbonate	138:19 139:2
113:20 184:13	callout 133:21	152:21	148:2 150:8,11
223:20 228:21	136:6,12	carbonates	152:24,25
calculated	147:17	240:17	154:3 155:14
81:24 183:25	callouts 139:11	carbondale	155:17 159:22
192:19 198:5,6	153:5	64:18	160:3,4,21,24
212:8,14	calls 178:7	care 49:7,19	163:8 174:12
235:13	canyon 36:2	50:1,4	196:3 198:13
calculation	49:15 73:18,18	career 179:17	202:1 203:11
229:9	76:9,11,13,16	careful 52:1	205:19 215:25
calibrate	76:16,17 77:10	carry 105:22	223:25 224:15
110:12 111:9	77:14 79:9	204:18	224:16,23
111:18 155:2	82:17 83:3,18	cartoons	228:6 231:13
calibrated	83:19,22 85:18	148:25	240:13 260:5
168:21	85:20 87:19	case 7:21,22,24	271:7,9 272:10
calibration	97:3,4 102:23	7:25 9:13,16	cases 5:17 7:16
112:11	103:3,4,18,18	9:17,21 10:13	7:17 9:19,24
california	103:19 104:8	10:13,17 11:3	9:25 11:16
124:11 179:14	105:9,14,14	11:8,9,13,19	14:6,21 15:6
179:18,24	106:21,23	12:8 14:5,10	19:11 26:21
call 5:2 6:14,16	109:23 110:6	14:13,14,14,16	27:10,12,18
27:3 38:9	111:14,14,14	15:2,8,14,16,18	28:11 41:19
44:25 62:15,18	115:22 144:3,4	16:4,9,12	126:4 129:2
71:11 75:9	144:5 145:8,8	17:15,19 18:12	156:2 158:22
114:5 122:17	150:19,20	18:24 19:3,10	171:14 181:1
123:3,10	173:13 201:9	19:20 20:15,16	200:18 201:24
141:25 149:22	214:23 237:9	21:8,10,14	202:24 224:13
178:4 205:9	245:21 282:22	22:2,13,14	228:5 229:15

[cases - chemistry]

229:25	cemented 104:5	102:16 122:14	changes 6.11
		123:9 157:21	changes 6:11 6:24 23:21
casing 78:7,21	cementing		
78:25 79:12	77:19 82:10,11	169:8 175:18	24:4 75:8
96:24 112:8	center 141:4,8	209:25 287:19	99:14 126:20
119:6,7 188:9	150:2 166:3	290:6	129:4 131:22
188:25 191:23	197:16 206:4	challenge 99:9	131:23 138:14
206:7 229:22	central 188:2	99:10 301:6	163:13 175:7
283:14	204:10 238:10	challenges 54:4	271:2 274:24
castile 80:22,23	certain 35:6	challenging	275:20 276:6
81:3,7,9 99:11	50:6 111:19	86:14 276:1	308:23
99:21 117:12	207:13 242:9	chance 7:7,23	changing 278:6
191:7 194:23	250:9 261:13	13:14 75:16	channeling
catalyst 247:2	277:16 279:12	91:11 110:17	297:14
catch 91:12	288:17 289:2	112:16 194:9	character
93:24	311:23	281:5	89:25
caught 116:13	certainty	chances 107:5	characteristic
cause 105:21	280:13	change 75:24	118:19
118:15 127:3	certificate	75:25 76:5	characteristics
142:22 155:18	316:1 317:1	128:17 131:19	196:9
229:1 256:5,14	certify 316:4	134:21 136:8	charge 207:21
273:9	317:2	138:2 140:14	chart 132:6
caused 162:21	cetera 206:7	141:22 142:4	133:16 183:23
175:15 248:2	235:14	145:25 146:23	190:23 200:8
causes 128:19	chair 2:3 7:1,9	166:7 174:19	235:11
146:25 170:1	8:10 9:20 10:6	229:19 247:3	charts 201:25
175:16	10:12 11:8,25	258:11,12	cheap 96:22
causing 140:5	12:16,19 13:13	263:24 264:1	98:9
173:18 253:9	15:3 16:3	268:3 271:9	check 37:23
293:22	17:12 18:6	278:11 286:5	115:24 121:8
caution 17:4	19:6,13,14,17	293:9 294:16	236:23 237:2
22:15	20:21 21:2,7	303:6,21	checked 161:22
ceiling 186:5	21:25 22:9	changed	checking 5:25
cement 82:16	23:13 25:11	128:16 161:23	chemistry
82:17 108:14	26:11 34:25	259:14	134:21 175:10
109:11 283:13	36:16 60:9,12		275:5,6

[cherry - class]

cherry 73:18	72:19 73:25	303:1 304:10	cimarex's 15:6
76:16 87:18,18	75:11 76:10	304:17 306:2	circle 128:7,7,8
97:4 103:3,18	80:9 86:10	313:4 314:9,10	128:10 130:8
104:25 105:9	90:20 92:20	314:13 315:1	143:23 160:4
105:14 111:14	93:5 94:11	chevron's 32:2	246:25 248:13
144:5 145:8	100:11 102:23	33:13 34:3	302:11
150:19 200:13	123:10 124:3,4	36:18 39:15	circles 128:6
202:21 214:24	124:9 126:4	42:10,16,25	129:11,21,23
231:14 237:9	129:20 130:4	43:21 44:1	130:3,14 132:7
245:21	131:4 142:17	47:6 50:16	132:8 143:25
chevron 2:17	144:10 145:2	51:21 52:16	143:25 242:8,8
2:18,19,20,21	156:14 157:3,7	53:7 54:6	243:19
2:22 27:15,17	160:6 163:13	55:11 60:18	circular 236:4
28:10,18 29:3	164:16,19,23	61:22 67:6	circumstances
29:7 31:13,14	165:3 167:21	72:22 77:5	14:3 50:6
31:20,23 32:5	168:8,25	79:17 100:3	262:11 292:25
32:23 33:1,3	176:22,25	103:1 145:9	cite 25:21 36:22
33:18,21 34:10	177:10,13	158:16 176:15	cited 260:9
34:18 39:11,12	178:7 179:1,2	181:4,12 213:4	clarification
39:14 40:15,21	179:3,6,11,12	238:2,14	14:5 22:21
41:14,18 43:5	179:17 181:1	253:25 284:17	24:6 65:8
43:16 44:2,14	209:2 211:4	301:16 304:5	105:6 210:21
44:19 45:25	213:7 214:3	chief 36:4	309:4
47:8 49:5 50:7	216:21 218:16	chino 1:14 5:6	clarify 24:19,20
50:7,20 51:25	225:16 233:21	choice 90:12	57:23 77:23
53:3,11,25	252:23 254:4	chokes 204:20	102:19 116:7
54:13 56:4,8	257:14 268:20	choose 184:7	145:9 219:4
56:15 57:5	273:4 274:19	196:11 205:3	222:14 226:7
58:25 59:12,17	275:5 280:2	chose 44:15,20	306:19 310:2
60:20 61:5,14	281:10,12	60:18 186:7	310:19
63:15,16,18,20	282:20,23	276:18	clarifying
64:19,20 65:23	283:3,24 285:1	cimarex 2:9	158:10
66:2,4,20 69:1	287:24 288:4	10:7,17,21,24	clarity 284:25
69:6 70:2,7	288:16 291:3	13:8 314:5	class 68:14
71:5,17 72:14	302:23,24		78:13
·	•		

[clean - combo]

	I	I	
clean 119:10,11	192:4,12	collated 231:9	298:15 300:3
119:14,15	221:13,18	colleague 28:9	302:17 309:6
204:13 207:1	289:7	225:10 241:13	collectively
297:21 306:16	closures 208:13	273:8 278:10	59:24
cleaned 229:22	cluster 147:22	289:22 297:8	color 14:12
cleanout	154:4,5,7,7,9	297:19 299:2,4	86:18 88:16
306:14	154:19,20	colleagues	113:3 136:23
clear 20:11	clusters 154:10	28:16 275:10	144:17 245:18
76:10 107:1	coalson 265:15	collect 45:14	266:2
219:17 224:8	coded 88:16	47:21 48:25	colored 128:6
263:13,14	113:3	59:21 62:8	128:10 129:11
clerk 7:19	cody 2:19 29:9	101:5 104:20	129:21 150:3
click 315:7,7	29:14 38:10,17	104:23 110:8	240:20 242:3
clip 192:20	39:9 89:17	111:13 169:25	242:16 243:19
close 16:6 25:7	168:23	205:24 207:6	244:1 246:11
43:11 208:13	cogswell 1:21	270:8 273:12	248:13 254:19
215:10 216:1,6	316:2,21	277:16 278:11	254:21,22
223:3,7 226:13	coherent	288:2 300:5	255:2 257:16
231:15 233:23	261:20	collected	261:19,24
closed 149:7	coincident	134:15 277:21	262:2 264:19
235:22 296:14	142:5	278:15,21	265:15 270:12
296:22	colgate 2:11	298:4	270:12
closely 174:14	9:22 10:18,20	collecting 59:9	colors 132:5
234:17	11:4,6,17,24	103:12,15,17	201:23 242:6
closer 5:23	12:20 13:3,22	103:20 191:21	254:24,25
220:2 225:23	15:15 21:3	273:4 275:13	265:19
234:15 245:8	colgate's 11:10	275:14 280:2	column 86:5
closest 78:17	14:18 15:8	280:16 305:5	comb 207:11
92:6 222:23	collaborating	collection 77:6	combination
235:20,24	295:8	206:11 209:5	271:24
259:5	collaboration	269:14 270:16	combine 91:20
closure 97:17	33:25	271:13,14	combining
97:20 100:25	collaborative	273:22 276:17	293:5
111:2 189:14	29:17 62:10	277:7,10 279:8	combo 103:17
189:14 190:3	91:3 278:24	286:20 298:12	274:6

[come - commitments]

	ı	ı	ı
come 8:6 21:20	59:4 60:7,22	comments 6:11	239:21 240:1
32:11 39:3	60:25 61:16	6:24 17:25	259:1 268:21
61:23 87:1	62:2 89:17	101:24	268:22 304:5
94:7 96:14	90:16 118:21	commercial	311:23 312:11
106:7 127:2	119:25 120:4,6	47:5	313:11 314:16
129:2 207:15	120:15,19	commingle	commission's
208:13 221:10	121:4,7,13	176:25	11:14 12:2,4
232:18 251:20	122:5,16	commission 1:2	24:25 26:5
260:19 268:19	168:23 219:22	2:4,5,7,8 5:4	commissioner
278:18,19,20	220:3,7,20	6:22 7:18,19	2:3,5,6 6:17,19
280:22 282:4	221:17 238:16	8:3 9:5,16	17:21 58:3
285:22,24	238:22 287:21	10:16,22 11:1	61:19
295:4,12	290:17,20	12:7,9 14:8,10	commissioners
302:16 303:12	291:3,13,16	14:22,25 15:7	5:20 6:11 7:6
303:14 308:24	293:23 295:5	15:7,10,16,19	9:7,21 10:6
comes 20:12	295:25 296:11	16:24 17:7	13:17 16:23
110:24 197:10	296:25 297:3,6	18:1,19 19:24	17:10 18:23
231:9 233:3	298:3,10,13,17	21:25 22:18,22	20:21 22:9
241:22,24	298:22 299:17	23:2,3,8,18	26:10 29:4
comfortable	300:20 302:1,5	24:2,19 25:8	30:4 31:2
18:22 51:21	302:8,24 303:5	28:20,21 29:20	34:17 35:1
210:15	304:7,21 305:2	30:24 31:6	57:19 64:14
coming 58:23	305:11,23	32:4 34:15	84:17 91:15
75:23 90:10	306:3,13 307:9	35:19 36:23	127:5 179:5
103:21 112:1,5	307:11 308:3	39:22 40:2	182:15,20
147:21 170:23	309:3,13 310:7	43:8 47:13	185:20 187:19
170:25 171:12	311:2 312:2,17	53:20 54:22	199:19 243:10
216:7 223:11	314:22	61:23 62:12	250:24 260:10
237:24 281:11	commencem	64:5 68:5	269:17 272:25
291:24 294:21	284:13	88:13 124:6	272:25 278:25
comiskey 2:19	commences	125:18 126:12	286:19
29:9 38:10,12	283:23	131:1 143:5	commitment
38:17,22 39:7	comment 16:6	147:3 180:23	311:18
39:9 41:25	19:18 235:18	191:18 204:3	commitments
57:16,25 58:2	310:20	208:3 225:11	5:24

[committed - concerns]

committed	compare 297:2	completions	255:21 268:1
44:12 50:7	297:5	129:24 130:22	composite
279:2 280:2	compared	130:24 132:22	162:4 229:8
283:25 305:12	222:4	133:23 134:9	comprised
common 305:6	comparing	134:18 135:3	161:13
306:15	291:11 298:2	138:10 139:15	compromised
commonly	compatible	140:13,17,22	189:7 192:22
189:15	77:1	141:20 142:13	compulsory
communicate	competing	142:18 146:1	10:18 11:10
161:7 221:11	11:15 12:25	146:15 150:13	compute
308:4	14:21 15:6	154:1,15 155:7	113:11,14
communicating	compile 67:19	155:23 156:21	computer
158:17 295:8	67:22	164:10,12	198:18
communication	complete 119:5	complex	concealed
130:12 143:19	156:2	299:15	296:21
144:8 156:5	completed	complicated	conceive
158:20 161:14	133:12 134:19	14:21 285:19	210:23
172:11 176:12	135:17 136:9	299:18,21	conceived 24:7
271:15,16	145:7 150:19	300:8,13	conceptual
275:20 288:15	160:14 163:24	complication	311:13
295:23 302:7	166:13 167:10	108:8	concern 31:7
communicati	210:7 223:14	comply 68:12	42:12,15 53:2
173:19	completely	68:13 285:1	112:2 224:7
communicator	189:7	complying	225:3 230:10
103:3	completing	305:14	267:21 286:12
companies	175:8	component	288:17 302:10
48:17 218:19	completion	42:17 54:10	303:18
218:23 254:1	53:12 134:6,22	55:20 80:21	concerned
276:2 301:5	134:23,24	114:12 255:16	74:22 187:1
311:3	137:18 139:13	256:14 258:8	213:10 263:11
company 2:10	140:8 141:12	260:12 274:25	267:21
10:8 27:25	142:6,10 154:3	311:12,17,25	concerns 9:8
296:16	156:24 159:6	components	12:17 34:2
comparable	166:11 167:8	26:25 54:6	35:13 36:10
224:10	174:16 176:21	91:21 92:17	46:24 47:3

[concerns - consistent]

	I	I	
54:15 57:6	conditional	conferences	21:24 27:23
59:2,5,10,14	14:7	26:21	34:25 35:2,25
187:8 270:4	conditions 5:15	conferring 26:2	39:21 64:5,5
288:11	8:3,20,22	confidence	68:7 125:18
conclude	36:19 37:21	288:20,25	180:23 208:6
286:17	51:22 57:4	confident 194:8	conservative
concluded	75:2 202:6	208:10 232:25	190:15,21
315:10	223:19 230:16	296:12,19	232:21
conclusion 53:7	235:19 265:9	confined 36:25	consider 19:25
71:25 73:22	269:2,2 280:16	confinement	37:16 98:5
76:3 83:16,24	285:2	275:17	177:10,14
84:10,12 85:22	conduct 77:13	confirm 168:19	268:1 282:12
85:24 87:23	119:9 185:14	172:20,21	290:24 291:1
146:9 149:14	188:4 189:18	176:3,11 213:4	297:25 298:19
155:20 156:20	214:6,9 215:6	confirming	considerable
158:16,18	215:15	27:11	45:11,23 46:20
164:9 185:11	conducted	confused 310:3	consideration
186:22 187:11	94:22 125:3	confusing	32:18 47:14
201:20 268:20	134:7,11,14	221:21	considerations
268:23	135:17 145:18	connect 262:22	47:16 48:4
conclusions	146:17,19	281:22 289:6	considered
89:15 135:6	183:22 188:25	connection	53:11 55:6
143:6 144:22	190:5 194:13	73:17 167:18	80:5 109:11
155:10 174:19	conducting	connections	190:14
185:8 186:19	283:13,17,22	71:20 73:4	considering
186:25 187:5	283:25	connectivity	49:7 174:25
187:21 199:20	conduit 168:2	72:1,2	181:13 290:21
207:24 264:7	conduits 289:9	connects	consistent
267:15	294:1	170:10	18:20 20:9
conclusive	conference	consensus 8:7	37:15 51:22
142:22 165:7	7:17,17,25 9:2	consequences	74:15 75:4
170:25	9:14 11:20	54:15	78:12 79:24
condition 8:8	12:22,23 14:15	conservation	132:10 246:12
269:5,6	22:4	1:2 2:3,5,6,8,13	254:9 269:10
		5:4 8:2,16	282:9,9 283:7

[consistently - correct]

consistently	100:6 151:21	209:3 212:4	cornerstones
142:17 155:21	181:22,23,25	300:17,18	239:8
214:5 244:12	187:16 208:11	301:2	corporation
286:1	281:19	controlled	40:23
consists 187:20	contains 30:23	204:19	correct 12:1
consolidated	contested 9:2	controller	16:3 46:14
27:18	12:24 13:25	204:19	47:7,11 57:3
constantly	14:2 16:11,13	convenience	64:1,3 65:14
204:24 207:11	16:20 25:6	78:5	71:24 77:20,22
constituents	context 61:20	conventional	79:19 80:13,25
171:5	109:1	184:15 244:25	81:6,15 82:8
constrain 298:6	continuances	conversation	88:11 89:1
299:10	13:8	227:20	90:15,22 92:22
constrained	continue 6:3	conversations	93:1,9,17,21
280:14	42:18 47:2	16:16 279:4	95:4,7,16 96:6
constraint	98:6 188:20	conversion	96:10 98:19
199:2	189:2,11,12	99:13	100:19 101:6
constructing	251:4 279:25	convert 228:13	102:24,25
258:9	286:4 300:6	convince 170:8	104:18 107:14
construction	continued 11:3	convoluted	107:15 110:2
68:12 78:12	186:3 250:5	10:15 228:3	139:4 145:12
283:6	continuing	copies 30:12	146:4 147:16
consulted	46:24 249:11	core 44:25	148:14 149:17
23:19	continuity 97:6	115:1 127:11	149:21 162:2
contact 107:6	101:1,3	228:22 230:23	164:13,14
294:13	continuous	265:6 274:9	165:23 166:5,6
contacts 308:12	111:15 213:19	298:8,8	166:19 168:16
contained	227:22 294:5	coring 114:11	170:21 172:23
89:12	continuously	cork 298:4	176:14 180:21
container	275:1 278:20	corner 30:10	185:2,16
234:1	309:22	30:18 44:17	188:12 189:10
containment	contour 107:8	133:9,15 135:8	216:9 221:17
79:15 80:1,2,3	control 43:16	139:6,25 145:6	221:17 222:21
80:4,6,7,11,18	47:21,24 60:21	cornerstone	268:25 284:7
98:25 99:6	151:14 206:6	251:1 276:9	284:10 313:10

[correct - current]

212.11		2010 207 12	250025445
313:14	cost 114:13	306:9 307:13	258:8 274:17
correcting	207:21 291:7	coupled 100:24	critically 37:1
281:8	coterra 33:7	298:20	294:22
correctly 61:13	counsel 7:18	course 12:14,21	cropped 163:9
89:5 174:11	10:6 11:5 13:3	18:7 145:25	cross 37:14
220:4	16:5,24 17:6	146:21	54:25 85:7,9
correlate 85:8	17:18 18:1	court 8:12	85:11,14,20,25
88:21 115:11	19:24 21:20	29:25 38:11	115:24 143:23
232:7 297:17	27:14 38:1	62:19 123:12	209:23 261:17
correlated	51:17 54:23	178:9	263:20
133:3 231:11	316:11,14	cover 5:9 88:6	crossing 90:9
correlates	317:7,10	181:15	crust 40:14
200:14	count 186:2	covered 60:14	cue 257:16
correlation	counties 58:25	136:21 284:20	culberson
114:7 115:11	county 21:18	covers 88:5,17	244:16 266:5
115:25 116:3	43:11,13	152:11 184:2	292:4
168:9 248:5,6	142:19 155:22	308:7	culmination
248:10 250:15	242:25 243:1,2	cranky 267:5	270:3
266:23	243:13,16	craving 283:12	cum 40:11
correlations	244:7 246:14	create 37:14	125:14 179:10
116:20	247:8 249:6	81:4 113:2,5	cumulative
correlative	250:2,4 253:19	294:15,16	128:8 198:10
32:12,18 34:12	260:15,16	306:11	199:25 200:2
35:14 36:21	262:15 263:4	created 248:19	201:17 202:18
37:8 52:14,23	265:25 266:7	303:21	234:22
100:12 208:8	292:4	creates 241:15	curious 174:19
correspond	couple 5:9 55:1	creative 228:2	current 37:19
203:1	60:13 106:5,16	credentials	56:5,8 68:12
corresponding	118:5 119:21	40:4 125:21	68:13 160:23
200:15 201:23	121:2 163:19	creek 111:6	160:25 180:11
202:22	175:21 188:2	criteria 105:12	184:20 207:7
corresponds	207:5 209:24	118:7 282:17	212:4,4,5
265:22	212:20 246:19	criterion 268:6	217:2,3 242:3
corroborates	248:8 254:16	critical 42:19	300:9
288:16	264:3 290:12	256:4 257:21	

[currently - data]

currently 60:20	cylinder 197:16	42:21 45:14	205:14,22,24
75:14 92:24	197:17,17,19	47:21 48:25	206:1,2,5,11
125:6 298:24	cylindrical	50:1,5,8 55:14	209:5 213:1,14
curtailed	228:8 236:11	55:23 58:5	213:19,24
252:19	d	59:9,21,21	214:8,14,16
curtailing	d 4:1 5:1	60:5 62:6 69:6	217:3 218:24
249:4	daily 44:3 54:2	70:11,21 71:1	222:1 227:1
curtailment	69:19 70:4	71:18 72:11	228:1,3,11,14
248:21 249:14	72:17 141:18	77:5 89:7	228:18 229:9
249:16,19	195:20,20	90:19,21 91:3	230:13,19
curtailments	214:9,12,13	94:11,19,21	231:2 235:16
246:23 247:18	215:2 223:9,9	95:5,7,17,18	235:23 246:22
247:20 249:19	303:24	99:2,14,19,24	251:15 256:23
250:5,8,12,14	damaging	103:12,16,17	257:12 261:20
250:15,20	158:20	103:20,25	262:16 263:16
251:4	dana 2:15 8:13	104:10,10,19	269:14 270:9
curve 86:1,2	21:2 27:24	104:20 110:8	270:16 271:13
110:25 111:15	daniel 2:8	110:17,17,19	271:14 272:9
177:10,14	darcy 201:18	111:13,13	272:22 273:1,2
curves 202:25	darin 2:9	112:17 115:2	273:5,10,22
235:10	dark 86:15	117:23,24	275:13 276:2,4
cut 112:7 137:1	88:21 128:7,8	118:6,8 120:7	276:17,22
142:20 146:13	265:21	134:25 137:21	277:7,10,16,19
146:19 155:15	darker 86:19	138:3,6 142:23	277:20 278:12
155:19 263:13	251:17 254:24	155:2,16	278:15,21,23
cut's 137:4	darren 10:6	162:10,14	279:3,12 280:1
cutoff 184:8,17	dash 132:14	164:1 166:4,17	280:11,16
186:7,10	134:5 141:15	168:3 169:25	286:19 288:2
cuttings 128:21		174:18 184:6	288:17 292:23
207:19	141:23 142:3,3 246:13 253:16	188:1 189:23	296:8 297:2,4
cycle 192:4,6,8		191:17,22	298:12,14,25
192:9 207:22	257:24	194:21 195:6	299:4,10,19,19
214:16	dashed 133:5	195:19 196:2,2	299:21 300:3,6
cycles 191:21	249:2	196:4,9,12,18	300:7,10,13
	data 33:19,19 33:22,23 35:16	199:20 203:1	302:17,19

[data - deeper]

		T	T
304:8,13 305:5	dating 249:8	dealt 17:22	declined
305:18 306:23	davis 204:6	deana 2:17	212:11
307:5 308:17	day 1:3 6:3	20:21 27:16	declines 131:11
308:25 309:6	13:21 39:3	28:8	132:11
310:1,9,14,14	45:6 50:19	debrine 2:18	declining
310:16 311:9	51:2 70:2,3,5	4:8,12 28:9	185:10 186:3
311:17	72:16,18 74:2	123:6,8,24	decreases
database	101:17 108:21	125:24 126:2	132:18
105:16 114:6	172:1,8 184:1	127:4,8 157:18	deep 46:8,21,22
datapoint	184:21 185:4	178:3,7,21	46:24 125:1
112:10 190:4	200:22,23	181:7,10	151:1,9 167:24
193:5 277:4	203:5,6 208:23	182:14,17	204:8 240:17
datapoints	209:1 217:23	206:18,19	241:1,8,9,15
111:9,19 113:2	218:8,15	209:13,20	243:7 244:18
113:8 214:12	224:16,17,20	decade 202:8	246:2,9,15,18
214:17 289:6	224:21,24	203:21	247:11 248:6
datas 198:16	225:4,8,16,20	decay 189:21	248:10 249:5,7
dataset 223:14	225:25 226:9	december	250:12 252:16
228:7 273:13	226:12 227:3	20:11 249:15	252:19 256:19
276:6 279:9	232:18,20	decide 16:8	257:25 258:18
280:3 310:5	251:14,16	decided 15:2	259:17 268:11
date 9:3 12:24	252:9 278:18	190:10	291:4,6,8
14:1 16:12,14	278:19,19	decides 16:14	292:10,11
16:20 18:23	296:16,17	decision 12:2,4	293:2,9,12,19
108:11 133:5	315:8	12:10 75:22	308:7
139:13 140:12	days 6:4 13:23	91:6 307:15	deeper 24:10
167:7,8 222:6	78:12	deck 127:22,23	24:15 53:13
222:10 249:22	de 9:15 10:16	decline 112:9	103:11 149:19
249:23	10:17 14:19	133:20 134:2	151:1 153:20
dates 61:22	15:1,12,17,20	183:21 184:2	164:13 190:18
140:8 141:12	19:10 20:16,24	184:14,16	194:17 202:16
142:6 162:10	deadline 20:3	185:14,25	208:24 240:16
162:12,13	deaf 261:19	186:4 199:4	244:25 259:4
183:17 262:24	dealing 227:18	236:22	267:9 290:22
	290:24		290:25 293:20

[defects - designation]

	I	I	
defects 76:15	113:15 127:17	depending	245:13 247:9
defense 275:11	130:5,10,10,16	108:18 194:5	247:10,10
defer 74:7	139:7 144:1,9	201:11 219:9	252:24 254:8
120:4 210:8	147:8,9,10	225:25 246:23	265:22,23
297:18	150:18 151:5	264:13 273:20	266:3,4,8
define 97:13	152:12,13	depends 213:23	268:22 280:9
118:8,11,19	155:6 156:4	225:21	depths 240:21
defined 118:17	160:15 181:17	depict 243:3,5	244:22,23
186:1 242:14	190:7 220:13	depicted	245:6,14
307:25	243:14 253:20	147:15	254:11 259:16
definitely 264:1	260:17 262:4	depicting	259:16
290:15 303:20	delay 211:17	248:13	deputy 36:2
305:21	deleted 301:23	depleted 32:16	derivatives
definitive	delta 50:24	184:22 185:7	196:4
127:13	51:5 252:3	186:18,24	derived 145:16
degenerate	288:25	187:12 208:9	242:19 245:15
267:3	demolition	deploy 309:24	272:12
degree 40:9,12	305:10	deployed	describe 44:19
64:15,17	demonstrate	275:19 309:19	56:16 91:14
125:12,14	50:5 127:12	deployment	129:11 133:16
179:9,13	137:24 144:7	309:11	150:4 241:21
degrees 256:20	145:20	deposition	250:24
256:21,24,25	demonstrated	262:24 292:17	described
261:5,7,21	146:10	316:1	196:22 197:12
264:13,19	demonstrates	depositional	description
265:4	144:23 147:4	297:11	4:19
delaware 2:16	density 77:16	depreciation	design 65:5
8:1,14 34:6,8	81:9 274:6	266:8	78:21,22 79:1
35:5,20 43:22	297:16	depth 99:13	79:12,14 115:8
44:6 45:1,24	department	104:12 115:13	207:7 282:1
46:18 49:8	282:19	115:17,19	283:5,7
63:23 84:21	depend 212:8	116:3 153:13	designated
89:21 92:3,6	dependent	153:13 191:23	188:21
94:23 105:13	55:23 114:6	200:3,4 201:10	designation
105:13,23	200:3 229:15	223:19 244:5,5	312:6

[designed - differentiation]

designed 12:22	determines	dfit 76:22,23	different 30:7
68:17 96:25	270:22	77:5,11,12,18	45:20 55:19
252:25	determining	82:9 103:20	56:18 84:7,9
designing	142:22	104:4 106:20	89:11,13,19
63:25	develop 42:19	106:23 109:25	90:14,19
designs 78:3,7	47:2	110:9,12,15	103:22 114:14
78:8,11,16	developed 62:5	111:5,10,13,21	116:3 117:19
desire 278:23	126:22 131:7	287:24	118:6 125:1
despite 144:7	269:18	dfits 107:2	126:21 127:2
detail 31:15	developing	278:2	129:2 135:21
35:11 51:14	131:16 179:19	dfmi 296:10	145:10 148:1
61:12 72:5	development	diagnostic	150:3 167:19
103:15 117:8	35:24 40:19	76:23 107:2	171:11 175:10
120:7 126:15	41:1,3,6,25	diagonal	196:5,11,12
189:24 210:6	43:16 54:17	148:12	198:19 200:10
260:6 297:19	55:7,12,18	diagram 80:22	200:10,17
detailed 39:1	56:17,23,23	82:15 91:18	201:17 229:24
details 168:22	58:19 83:10	106:18 131:24	230:16 231:23
191:23	88:17 124:11	131:25 133:8	235:10 239:2
detect 254:13	125:6 128:24	264:17	242:6,17
255:12	132:4 135:9,9	diagrams 84:6	249:20 253:12
detecting	138:23 140:8	265:16	255:5,12,12,12
151:21	144:18 145:2,6	diameter 37:18	256:23 262:19
determination	148:1 154:22	diamond	262:20 264:18
83:19	155:22 156:2	247:14	275:24 276:21
determine	162:8 172:25	dictated 211:7	276:22,23,24
94:21 96:23	180:4 240:24	diego 125:13	277:1,2 290:1
105:3,3 156:16	244:25	125:15	291:19 292:3
161:23 165:17	device 94:8	difference	293:13,16
188:23 197:25	devices 207:6	81:21 89:9	294:24 304:18
204:21 215:6	devonia 291:1	185:23 229:13	315:6
determined	devonian 24:9	265:10,10	differentiation
99:3,17 110:13	291:4 292:19	276:25	241:7 266:4
193:9	293:25	differences	289:16
		196:5 264:25	

[difficult - disseminating]

	I	I	I
difficult 99:23	130:4 131:16	discussions	160:14,17,20
139:10 160:10	133:23 142:2	11:7,17,23	164:4,7 167:16
170:7 255:6	146:8 163:15	22:10 59:7	168:5 170:8,11
266:13	163:17,18	121:22	240:12,16,18
diffuses 294:15	197:8 200:4	dismissal 20:23	241:7,9,12,16
digest 13:15	director 36:2	displacement	244:18 245:1
digital 316:8	disagree 284:4	204:16	246:15,17,18
317:3	disagrees 23:2	disposable 32:6	248:10 249:5
dip 107:14	discern 139:10	disposables	250:12 252:12
255:20 258:3	discontinuity	291:8	252:14,16,19
dipole 103:16	118:12,15,16	disposal 32:8	252:21 258:10
dipping 255:24	discuss 23:11	32:12 34:1,3	259:24 260:4
256:18,20	29:20 31:1	35:8 37:13,19	266:25 267:23
direct 194:3	33:12 39:3	39:16 41:21	267:25 268:9
266:20 294:13	76:8 100:7	45:4 46:1,17	268:11,15
294:18 307:17	127:5 132:10	46:21,22,24	270:1,4 274:20
309:8	160:22 169:17	49:8,16,20,25	285:9 291:25
directing 18:4	182:16 187:18	50:5,25 52:3,6	292:2 293:3,15
direction	238:4 264:6	52:9 53:12	298:5,5 300:3
145:16 146:8	discussed 56:24	58:8,11 63:20	302:20 303:10
148:19 157:16	105:18 106:19	63:21,22,25	303:12 304:9
215:15 255:15	157:15 170:16	64:2 65:10,16	304:12,14
255:23 257:12	209:10 287:2	65:16,20	305:18 313:17
257:15,20,21	289:9 311:9	120:17 121:24	disposal's
258:4,4 260:24	discusses	124:18 125:1	127:13
261:2,14 264:1	206:21 247:18	126:7 129:14	disposals 47:1
264:12 265:1,3	discussing	130:6,17 131:5	50:25 306:4
265:11 292:24	31:13 92:10	139:8,25 140:4	dispose 58:12
293:4	120:7 272:24	140:16 142:21	disposed 51:7
direction's	discussion 8:20	143:3,11,16	291:23
256:24	22:21 28:21	144:2,9,12	disseminated
directional	34:17 67:4	145:7,21 146:7	56:2
257:19	68:22 121:17	147:8 151:14	disseminating
directly 16:12	247:21 271:5	151:19 154:23	50:9 280:17
23:11 93:13	312:15	155:20 156:22	302:18

[dissemination - dr]

dissemination	dmg 24:12	227:4 232:16	dor 65:12
62:6 279:9	31:20 32:15,15	235:25 240:13	dot 147:18
distance 81:16	32:17 34:1,3,6	246:8 252:12	183:23,23
81:23 82:1	35:17 37:13,14	252:14 259:24	double 10:19
158:10 164:4	37:15,18 45:2	272:11 280:25	148:16
222:23 235:16	48:15 49:21	281:12 282:14	doubt 184:12
246:24	52:3,6,9,24	285:8 287:25	dovestail 277:7
distilled 310:5	53:3,4,9 55:8	298:6 306:4	dovetail 276:18
distinct 263:5	55:12 58:6,7	308:4 313:17	downhole
distinguish	61:14 67:2	dmgra 49:21	206:6 213:24
263:22	74:11 86:25	50:5 313:6,17	214:1 274:19
distribution	91:9 92:3	313:20	275:19 305:22
263:3	93:19 95:2,18	dmgstwd 37:6	305:25 309:18
division 2:14	96:9,16 97:24	docket 6:6 7:16	downward
8:6,16,22 11:9	100:15 103:11	9:15 11:21	105:1 274:22
11:14,17,20,21	105:8 115:2	18:15 26:15	dozen 240:3
13:1 14:7,16	120:23 121:10	document	dozens 227:2,2
15:9,13,13,14	121:25 126:22	252:15 270:8	dr 6:13,18,25
15:19,21 21:24	128:4 143:3,13	291:21	7:3,11 9:9
22:11,19,21,23	144:12 147:12	documentation	17:23 19:14
23:4,8,17	147:13 151:8	68:4 189:16	26:12 57:20,22
24:21 25:15	157:5,13	documented	58:1,24 60:3,9
26:1,3,6 27:23	162:21 163:1	268:10,12	90:16 107:17
33:23 34:19,25	166:21 167:12	271:25	107:19,22,24
35:2,25 36:23	168:4 172:15	documents	108:3,6 109:2
39:22 64:6	175:12 182:25	140:1	109:4,13,17,22
68:11 78:10	183:5,8 187:3	doing 42:20	110:4 111:4,8
125:18,19	187:3,10	107:4 119:17	111:17,22
180:23 239:20	190:11 195:17	154:8 277:8	112:14,19,21
272:17,18	199:11 208:8	278:2,6 284:5	113:6,9,22
282:13 286:8	208:10,15,16	286:6 291:14	114:3,18,22
division's 23:12	210:7 213:4	298:23,24	115:4,7,10,17
24:2 25:10	214:19,22	domain 262:20	115:21,24
68:8 187:1	216:9,21	dominated	116:6,9,14,17
282:10 288:11	218:15 222:10	220:12	117:11,18,24

[dr - earlier]

118:24 119:19	303:2 304:4,15	291:6 304:22	202:11 203:16
169:7,8,15,20	305:1,8,16	304:22,23	203:17 213:15
170:4,13,19,22	306:1,6 309:10	305:3,3,4	227:8 228:10
171:15,20,23	313:19	drills 96:21	229:6 239:10
172:2,9,19	draw 83:11,12	drinking 32:25	248:1 250:19
173:6,9,12,16	85:22 89:15	71:20 73:19	260:19 285:9
173:25 174:4,8	101:23 131:8	79:13	dug 153:20
175:22 183:16	132:4 135:9	drip 294:17	duly 38:18 63:3
216:18,19,24	138:20,23	drive 1:15	123:18 178:15
217:5,8,16,19	145:2 146:16	211:24	316:5
218:16,19,25	146:18 155:3	driven 126:23	dumped 307:5
219:5,9,16,20	162:8 173:1	131:17 136:17	duration
219:24 220:5	175:6 185:8	138:9 177:18	138:11 212:3
220:17 221:3	186:19 234:11	177:19 272:9	duties 124:8,12
221:15,20,25	drawing	302:19 303:13	124:16,25
222:12,19,22	302:11	304:8,13	dwell 101:11
223:3,6 224:6	drawn 265:2	driver 130:11	dylan 1:8 2:3
225:2,9 226:5	drill 23:24	140:16 150:15	dynamic 50:11
226:7 227:10	93:23,25 94:1	150:20 199:3	274:2 275:13
227:15 229:23	94:8,10,16,18	drivers 133:2	278:8 288:2
230:2,7 231:4	94:22 95:1	155:15	298:20,25
231:18,25	96:3,18,22	driving 48:5	299:10,21
232:6 233:11	98:3 100:23,24	50:3	dynamically
234:25 235:18	101:7 103:19	drop 133:25	274:24,25
235:22 236:12	119:6 131:10	136:14 238:11	e
290:10,11,18	207:18 274:20	249:14,17	e 2:1,1 3:1 4:1
290:21 291:10	277:18 278:1	dropped 59:6	4:18 5:1,1 8:1
291:14 293:18	drilled 145:22	192:8	8:4 25:23
295:1,20 296:8	160:7 162:5	drops 137:2	41:12 64:11
296:23 297:1,4	186:15,16	dsts 95:11,12	261:25
297:23 298:9	213:4 222:10	95:14	earl 2:18 28:9
298:11,14,18	298:6	due 83:21	earlier 20:18
299:13 300:15	drilling 45:25	140:3 143:19	42:24 45:11
301:9,14,20	53:12 76:17	186:23 187:11	47:4,8 48:16
302:3,6,23	180:5 188:9,25	190:12 194:23	49:6 51:17
			77.0 31.17

[earlier - enhanced]

	I	I	
59:24 78:10	293:12 294:5,6	efficiently	316:14 317:8
82:9 89:17	easement	234:20	317:11
168:15 176:10	121:11,12	effort 28:19	employee
194:20 197:3	easements	efforts 277:10	316:13 317:10
202:16 215:18	307:4	300:9	enable 5:18
217:12 225:10	easier 106:8	eight 13:4,5,24	90:20 148:22
228:23 250:23	213:25	160:7 263:18	218:10
269:20 274:15	east 89:22	263:19	enables 189:14
275:23 280:19	141:2,10 162:7	either 16:18	enabling
300:16 306:15	171:3 190:18	28:1 32:16	156:10
early 152:5	225:23	44:3 61:23	enacted 249:4
163:11 182:24	eastern 139:9	74:25 76:18	enclosing
249:13 305:6	easy 197:15	121:25 130:4	156:13
earth 253:10	230:11 298:2	161:9 187:2	ended 62:9
earthquake	ebbs 30:20	196:2 206:18	114:11
40:13 255:11	economic	207:3 214:21	ends 166:4
255:13 262:10	158:24 291:6	225:6 232:2	energy 2:10
266:14 290:3	eddies 101:14	242:9 246:22	10:8
earthquakes	eddy 43:13	254:10 255:14	engage 310:8
46:20 241:8	243:1,13	263:6 298:5	engaged 94:3
242:9 243:18	253:19	308:22	295:14 296:4
243:22 244:1,2	edge 45:19	el 183:2,3	308:6
244:19,20	edges 197:19	186:21 210:4	engagement
246:4,5,6,7,11	educate 50:11	217:15 236:22	39:18 62:7
246:24 247:23	educational	element 33:20	272:13 307:18
247:25 249:25	40:8 64:14	311:25	engineer
250:3 253:9,9	125:11 179:7	eleven 63:17	179:19 180:1,3
254:7,13	effect 25:19	eliminate 159:1	engineering
258:16,18,20	187:9 200:25	else's 223:15	71:18 179:10
259:17,20	effective 262:8	emphasis	179:15 180:12
260:3,16,19	294:17	179:15	180:16 181:8
266:5,13,15,15	effects 149:13	emphasize	enhance 119:15
266:16,24	193:16	154:22 184:20	148:22
267:4,7,20	efficiency	employed	enhanced
289:20 292:13	154:9	303:1 316:11	107:5 179:21

[enhanced - exactly]

217:24 246:22	environment	193:20	249:24 259:10
enjoy 101:17	42:20 54:7	estimated	259:11,12
enjoys 211:5	envisioned	224:3	265:15,19,20
enrichment	312:6	estimating	266:6 290:23
171:6	equal 250:6	137:14	291:12 293:20
enrollment	equalizes 199:8	et 152:18 206:7	eventually
214:11	equally 174:15	235:14 240:6	189:20 199:7
ensure 36:21	equivalent	257:8 260:5	204:15
37:15 209:4	251:14	evaluate 90:7	everybody
ensured 281:18	err 232:20	93:12 94:6	42:22 50:9
282:1	errors 12:4	103:9 152:1	54:5,14 91:11
enter 79:6	es 316:4	188:7 286:4	93:24 245:4
188:21 189:12	especially	evaluated 76:4	253:13 279:3
entered 10:22	172:12 217:3	99:2 113:18	everybody's
11:4 27:9	essential 81:6	114:14 129:8	43:25 310:16
37:25 130:2	essentially	135:18 281:12	evidence 71:19
entering 21:21	22:25 24:3	281:15,21	73:3 101:9
27:20 28:2	79:14 93:9	evaluating	102:11 156:18
entertain	94:13 196:18	121:15 124:25	158:3 209:19
114:17	197:13 198:25	152:19 175:6	283:1 287:12
entire 6:22	216:1 243:25	282:13	evident 52:23
111:9 177:21	249:9,14 254:2	evaluation	evolution 124:8
180:12,20	270:3,13	98:10 117:9	247:6 314:12
183:18 185:15	establish 96:12	evaluations	314:15
186:8 230:24	184:6 305:17	114:9	evolving 35:21
234:3,24	established	evd 4:19	exact 61:10
251:10	49:21,22	event 133:22	108:11 211:13
entirety 169:18	138:13	134:3 244:5,23	211:21 234:1
entities 76:6	establishing	247:1 249:21	237:2,10 306:7
entitled 75:25	124:17 126:21	270:16 289:12	311:5
252:23	247:4	291:2 311:20	exactly 11:22
environment	establishment	events 150:21	34:8 88:2
220:8,11 256:1	308:13	242:18 244:7	90:25 114:2
256:3 257:2,17	estimate	244:10 245:8	122:5 224:17
	190:21 193:8	248:2,17,25	234:9 261:10

[exactly - expected]

		71 72 71 010	1 - 1 - 1 - 1
263:9	except 72:6	51:23 74:8,10	157:15,19,24
examination	301:24	79:20 91:15,16	158:1 159:25
4:2 39:5 55:3	exception	91:17 102:8,8	182:15 183:8
63:9 102:17	284:24	102:8,9 127:23	187:17 209:10
106:14 123:23	exchange	129:7 130:1,2	209:14 210:22
158:7 159:14	309:10	130:23 131:3	212:15 219:13
176:1 178:20	excited 5:8	131:24 135:2	229:20 259:25
210:1 212:22	276:14	135:21 139:3	284:2 287:2,6
238:20 313:1	exclude 150:15	140:2,21	exist 93:13
examinations	304:15	141:16 142:8	263:10
142:24	excluding	142:16 143:8	existent 173:18
examined	282:18,22	145:11,13	existing 45:14
38:20 63:5	exclusionary	147:15 150:2,9	46:3,5,6,11
71:17 123:20	313:21	156:1 158:1	56:8,10 71:3
178:17 186:6	excuse 41:17	159:21 160:21	93:8,15 94:17
examiner 12:15	73:13	163:7,12	96:2,4,19
15:13 18:6	excused 62:13	166:17 167:13	115:1 157:5
example	122:11 178:2	168:4 172:24	161:9,9 187:2
127:21 128:25	237:15	183:7 185:21	187:9 305:18
133:11 138:4	execute 63:22	186:13 187:18	306:4
139:1 140:1	278:12 300:24	191:14 209:17	expanded 56:1
141:2 142:1,7	executed 58:20	209:17 221:24	254:15
143:7 147:6	execution 50:2	269:3 281:4	expanding
148:4 150:1	124:12 125:8	282:10 285:2	299:9 311:8
171:18 172:5	277:13,25	287:6,9,10,10	expansion 54:8
205:23,23	exercise 50:4	287:22,23	expect 57:16
206:1 257:11	153:25	288:6 301:10	89:24 192:6
285:24	exhaustive	310:21 313:3	194:25 201:13
examples 134:8	103:24 105:12	exhibits 30:11	237:21 251:24
137:6 164:18	155:17	30:16,22 33:6	276:21,23,23
166:16 172:17	exhibit 4:20,21	34:8 45:21	expectation
285:18 308:17	4:22,23,24,25	57:3,7 59:12	103:1
excellent	9:4 30:6,11,12	102:3 126:10	expected 152:7
269:24	30:17,23 35:11	127:5,24	190:17 200:21
	37:7 51:18,19	128:23 130:19	208:18

[expecting - fault]

expecting	explanation	extrapolating	288:19 313:8
12:23 227:7	140:18 149:12	184:16 234:16	314:11
230:7	175:14	extremely	fairly 215:12
expedient	explanations	184:10,15	215:13 244:12
13:10	142:17	exxon 64:24	245:16 274:4
expedited	exploration	f	299:23
13:10	41:2,4 97:1,25	_	fall 214:25
experience 65:4	98:7 305:19	face 46:25	falls 85:20
171:16 176:15	explore 98:6	215:17	familiar 41:18
179:6,7 226:10	exploring	faces 54:4	41:21 43:25
233:13	126:14	facilities 45:15	49:9,10 66:1,7
experienced	express 155:11	45:17 46:3,6	73:24 74:3
174:25	187:1	46:12 47:25	126:3,6 180:25
expert 41:25	expressed 49:6	55:24 133:1	181:3 187:23
66:11 125:25	expressing 13:9	182:13 204:5	211:21 269:1
181:8	expressly 22:22	204:11 206:9	family 5:24
expertise	23:8	207:18 209:6,9	far 17:16 68:20
168:13 293:21	extend 292:6	facility 204:10	186:25 197:10
experts 29:16	292:15 293:24	fact 16:8 33:4	198:2 201:12
33:17 194:21	extended 135:4	76:14 87:1	203:19 213:9
explain 127:9	137:20 187:24	95:20 97:8 100:25 104:17	262:7 277:25
128:20 131:1	189:13	100:23 104:17	fashion 27:18
143:5 144:21	extends 79:4	186:23 239:11	278:24
147:2 160:11	138:2 148:9	276:18 313:24	fast 202:10
185:19 187:19	183:3	factor 48:5	fault 98:24
211:17 227:20	extension	101:6 194:5	118:8,17,19
228:1 269:17	262:24	216:13	148:18 156:8
278:24 288:24	extensive 31:24	factor's 216:15	255:14,17,23
explained	extent 113:23	factors 31:25	255:23 256:3
126:21	138:22 238:12	48:6 55:19	256:17,19
explaining	281:24 313:16	216:6 229:19	257:3,5,22,25
240:8	extra 120:1	299:19	258:3,5 261:13
explains 228:7	173:6 211:12	fair 18:11 19:7	261:14 262:8
228:18	extract 105:15	55:8 65:21	264:16 265:5,8
		128:18 149:14	265:12 266:16

[fault - filed]

266 22 22	202 22 204 0	6 1 10 01 15 05	0 1 150 16
266:22,22	293:23 294:9	feel 12:21 15:25	ferocity 153:16
268:1,2,3	294:21	51:21 54:12	ffp 264:23
284:16 289:4	favor 206:9	114:12 226:11	fi 5:12,16
289:16,23	favorability	268:6,14 269:9	fidelity 263:12
292:10,10	82:21	276:8 280:4	field 47:22
293:1,4 294:2	favorable	286:3,19,20	124:14 135:23
294:4,5,7,10,10	32:15 66:25	287:24 296:19	155:2 171:3,7
294:21,22,23	83:17,20 84:13	297:24	183:3,3 185:15
294:25	86:16 87:24,25	feet 23:23	186:8,9,10
faulted 267:11	87:25 90:1	75:12,21 79:5	187:12 190:7
faulting 146:25	favored 285:8	79:9 81:23	205:11 210:4
160:18 220:8	fdi 136:19	82:1,6 107:10	217:15 234:4
220:11 256:1	271:8	115:22 121:3	234:12 236:22
256:16 257:2	fdmi 296:13	132:20 152:21	fields 186:21
257:17 262:19	fe 1:16	152:24 153:6,7	205:12 208:9
281:21	feature 149:10	161:4,21	218:11
faults 71:19	172:10 209:3	164:13 173:4,5	figurative
73:4,15 99:1,4	289:5	191:24 198:7	137:10
99:6,8,18	features 117:20	218:1,2 240:22	figure 195:9
100:2 118:1	130:9,15 156:6	240:25 241:2,2	223:16 253:14
147:25 149:9	168:1 289:21	241:5 244:5,24	253:15,17
151:1,9 156:7	february	244:25 245:17	256:15 292:8
161:15 165:18	125:20 145:23	245:21,22,24	figured 192:10
167:24 168:9	fed 144:3,4	245:25 246:1,3	figures 264:11
255:10 256:5,6	183:15	254:12 258:20	264:16
256:9 260:23	federal 120:13	258:21,24	file 12:1 13:24
261:16,21	307:4	304:24	18:4 20:22
262:12,14,21	feed 298:25	fellow 6:10 7:6	30:22 106:19
264:18 265:2	299:3	9:7 16:22	140:10 159:19
266:17,24	feedback 33:3	17:10 18:23	filed 10:24 11:8
267:2,8 282:4	48:13,23 49:2	26:9	12:6 13:12
283:2 288:21	58:15 62:1	felt 96:18	14:24 15:4
289:2,10,18	218:23	114:15 117:2	19:25 22:13
292:6,11,14,20	feeding 278:10	277:5 308:10	41:18 66:2
292:21 293:12			67:6,10 121:10

[filed - focused]

126:4 181:1	196:16 215:16	237:8,21,22	flow 197:14,14
files 69:16	218:14 267:14	238:3 239:18	197:20,24
filing 9:25	finding 297:13	245:13,18	199:5 201:5,18
10:25 19:25	fine 20:3	255:13 269:14	201:19 204:17
20:2,14,18	175:23	274:3 285:19	204:24,25
22:5 25:7 26:4	finetune 196:12	301:17,20,21	206:5 216:2
30:8,9	finish 264:7	307:21 308:18	228:8 232:5
filings 7:19	finished 315:1	311:5,15	259:2 296:2
18:19 224:2	finite 236:3,9,9	fish 101:13,16	flows 30:21
fill 112:1	firm 28:9	fishing 101:18	fluid 76:24
filled 5:8	311:18	101:21	77:1 94:7
filtered 86:9,10	first 5:5,13 6:8	fit 75:17 188:5	104:14 148:22
204:12	7:24 15:21	313:4	149:8 154:11
filters 207:8	24:13,13 27:15	fits 313:4	156:10 171:9
filtration 207:6	29:2,9 36:1	fitted 209:6	188:13,14
209:6	38:10,18 63:3	fitzgerald	189:6 192:23
final 5:8 9:14	66:24 78:22	317:2,18	193:15 197:24
12:22 13:24	85:8 93:25	five 5:24	199:10 215:19
18:10,14,15	111:25 123:18	159:25 184:3	229:4 241:17
19:11 24:23	127:7 130:20	214:15,17	294:13
53:20 155:1	130:23 133:6,6	238:1 240:22	fluids 36:25
229:14 279:13	133:10,21	251:23 311:22	94:4 149:16
286:15	134:3 136:6	312:16	305:13
finally 42:23	137:9 141:20	fix 205:19	flush 207:21
156:19 182:11	141:20 143:3	222:9	flushed 207:9
209:5	149:22 150:5	flat 251:19,21	focal 220:25
financial	151:8 153:12	252:6	254:20 255:19
310:11	178:15 181:15	flavor 278:21	292:23
financially	182:18 187:17	flexibility	focus 41:5 56:8
316:15 317:11	187:22 188:5,8	58:22	67:20 105:8,18
find 60:2 73:13	188:10,19	flood 65:9,12	180:6 181:15
73:15 80:15	189:5 192:7,22	179:20 217:14	focused 39:16
81:12 84:5	199:16 208:5	floods 179:20	40:10 41:3
95:9 96:3	214:6 219:2	floor 1:14	96:7 147:9
189:23 190:2	222:22 227:15	54:22	179:19 180:13

[focused - fracture]

100 17 107 0			0 100 10 00
180:15 183:8	forced 112:5	236:25 245:15	frac 103:10,22
243:7 246:18	215:25	245:21 293:9	104:1,11
251:9 270:11	forecast 44:8	294:15	110:13,20
270:20	198:11,22,25	formed 262:20	111:2,16
focusing 87:16	foregoing	292:17	112:14,16
100:10 240:6	316:3,4 317:4	formulation	125:3 133:4,22
251:10	foreign 292:8	158:6	136:7,12,17
folks 169:18	foremost 208:5	forth 8:24	137:9,25 138:9
238:8	forever 309:17	82:15 233:20	153:15 156:23
follow 267:16	forget 311:14	246:19 283:8	156:25 161:13
282:13 288:8	forgot 6:15	303:8	164:8,20 165:4
followed 185:3	form 119:18	forthcoming	165:5 166:14
236:4	277:3	42:21	168:15,22,23
following	formal 220:24	forward 14:2	171:8,9 176:3
124:14 133:8	format 279:3	14:25 16:10,10	177:11,14
134:8 142:9	formation	18:3 26:17	207:2 274:16
175:22 180:2	76:13,25 77:1	28:20 30:21	283:2 299:6
follows 38:20	77:4 79:7,10	34:16,18 90:23	fracked 136:13
63:5 123:20	80:22,23 85:18	91:2,6 117:16	164:15
178:17	85:20 87:17	233:5 238:4	fracs 133:4
foot 38:25 79:4	97:4 99:11	279:10,10	137:7,8 161:6
154:21 192:17	111:6,24 112:6	313:15	163:14,19,24
192:24 193:11	112:8 114:23	found 71:18	164:2 168:20
193:17,23,24	119:13,14	72:1 81:2	175:9 176:16
194:6 200:14	121:10 188:6,8	185:20 216:11	fraction 74:23
201:15 202:20	188:12,14,19	235:25	fractions
215:8,9,19	188:24 189:4,5	foundation	165:18
283:11	189:6 191:1,3	175:5	fracture 74:24
footprint 46:2	191:5 192:22	four 6:1 39:13	76:23 81:9
75:17	193:6 231:6	131:9 141:7	107:2 111:2
foots 207:11	304:16	145:17 151:16	126:23 131:17
force 25:19	formations	180:9 213:22	136:18 138:9
50:3 219:17	32:10 78:18	214:15,16	148:18 152:3
220:16	111:15 120:17	235:14 252:3	165:19 169:10
	120:18 194:24		173:18 176:12

[fracture - gas]

177:18,19	front 23:15	126:1 157:20	87:17 100:7
188:23 189:14	241:13 289:20	157:23 158:4	103:9 106:3
189:15 190:3	frustrating	159:11 169:7	116:17 118:3
192:4,11,11	17:15,21	174:6,9 175:17	122:8 126:15
208:13 215:3	fsi 136:19	175:19,23	159:10 175:17
215:16 216:7	271:7	178:1,6,9,18	178:3 212:16
216:12,15	fsis 303:13	181:9 209:15	240:15 265:24
221:13 226:4	fuge 1:8 2:3 5:2	209:22 210:11	271:17 277:6
227:6 231:25	6:15,19,21 7:4	210:18 212:18	280:6 290:5
232:4 271:7	7:12 8:11,17	216:18 220:1	299:11 312:19
289:25 290:2	8:19 9:6,11,13	236:17,19	316:13 317:9
296:20,21	9:23 10:3,10	237:4,12,15,20	future 48:2
299:16 303:13	12:18 14:4,23	237:24 238:8	49:20 50:12
306:12	15:22 16:22	238:16 287:7,9	55:15,21 56:7
fractured	17:10,23 18:11	287:16 290:7	56:12,16,21,22
174:23 192:7	19:1,8,15,23	290:10 301:12	56:25 75:7
fractures	20:8,25 21:5	306:8 307:13	91:2 96:13,15
161:11,15	21:10,14 22:3	308:14 309:4	98:17 128:23
173:7,9,23	25:4 26:9,13	309:25 310:19	157:5 185:10
229:2 274:12	26:20 27:6,19	312:9,19,24	187:3,10 222:2
274:13 296:14	28:1 29:5,23	314:20,24	233:16 243:7
fracturing	31:7 34:22	full 25:19 63:12	244:14 245:1
176:23 216:9	36:12 37:23	179:12 313:12	282:14 306:22
229:6	38:6,11,21	fully 10:14	313:16
framework	42:2 54:24	13:14 15:16	g
62:5 269:23	57:13,19 60:10	37:4 121:23	g 5:1 219:17
270:7 272:7,18	60:13,23 61:13	131:6	gallon 192:15
295:2	61:18 62:11,15	fundamental	gallons 154:5,7
francis 1:15	62:19 63:6	12:4 15:5	154:7,20
fred 29:10	66:14 91:24	118:7	gamma 77:15
free 304:12	102:6,13 106:4	fundamentally	89:8 153:12
frequently	106:7 107:17	96:11	274:6
254:16	119:20 122:9	further 26:2	gas 21:16 51:12
fresh 46:13	122:19,21	47:15 50:22	54:4 65:9
76:25 77:1	123:1,7,12,21	61:11 62:12	124:18 125:4

[gas - go]

101 10 10	4.	1 • • .	104510610
131:12,19	generating	geophysicist	194:5 196:19
132:1,2,9,12,18	262:10	147:24 148:3	254:6 257:14
133:19 136:2	geologic 32:22	151:6 172:14	276:5 279:14
136:15 139:21	34:9 70:11	geophysicists	giving 38:24
142:4,13 177:4	71:18 87:17	263:18	272:25
177:8 207:20	88:8 130:9,15	geophysics	glad 12:20
241:25 251:6	151:13 200:16	40:10,13 42:1	259:25
gather 50:4	289:1	150:25	glance 255:7
71:1 101:14,17	geological	getting 5:11	glean 95:18
103:25 112:10	31:25 35:19	17:19 46:10	global 41:2,5
114:10	56:12,20,21	110:17 112:17	globally 250:19
gathering	117:20 125:16	266:9 270:20	266:15
33:19,22 94:19	172:10 263:25	310:4,6,6	go 6:23 10:3
gauge 274:22	280:25	give 9:23 22:5	14:10,25 15:1
309:18	geologist 97:1	26:23 38:3	16:10,10 17:6
gauges 134:13	97:25 104:4	43:20 78:16	20:13 27:2
214:1 274:19	124:11,25	90:25 91:2,11	30:1 31:8,9,14
275:19 278:5	125:7	91:24 93:24	37:24 42:6
gears 91:7	geologists 84:8	124:7 125:10	45:16 68:20,23
gebremichael	geology 32:16	126:11 149:4	90:19 101:17
36:4	35:4 44:23	176:4 179:5	101:20 107:19
general 44:22	45:19 47:16,18	182:11 184:12	113:20 117:1,5
140:25 149:25	64:16 66:13,24	206:10 211:12	118:3 119:12
172:2 173:22	82:21 96:8,8	211:22 219:23	155:10 189:24
175:6 227:16	113:23 125:25	231:16 235:12	190:11 198:2
267:10 276:13	231:24 255:21	239:4 248:9	199:10 205:3
277:25 281:8	258:2 260:21	299:15 311:22	214:13 216:2
303:3	274:10 276:25	given 6:4 25:1	218:25 235:11
generally 46:16	288:14 291:19	56:1 97:7	238:13,18
138:11 149:25	297:11	100:1 118:1	239:14 240:15
173:21 267:9	geology's 292:3	140:7 183:24	242:23 243:20
288:9 302:11	geomechanical	232:22 241:18	249:17 250:2
generate	255:17	246:18 276:3	251:4 252:25
266:19 289:12	geometry	gives 45:13	253:17 254:25
290:2	256:12 274:16	188:19 193:12	258:13 260:4

[go - greater]

			,
260:10,12	104:21 105:2	303:14,14	gradients
262:14 270:18	105:22 109:25	304:17,18	103:22 104:1
277:9 291:20	110:7 111:5,23	305:21 308:1	104:11 110:13
291:21 299:20	112:10 113:10	308:19 312:15	110:20
301:14,17	114:10,15	good 10:5,12	graduated
302:12 306:10	116:2 117:2	20:20 34:25	40:11 125:14
309:1 315:7	119:16 120:20	99:24 108:8	179:8
goal 32:11	120:25 123:6	117:16 123:2,8	granted 21:6
49:12 259:4	126:19 127:5	159:16 168:5	226:1,16
295:6	127:15 129:4	190:14 191:6,6	granting 12:5
goes 25:24	132:16,25	193:20,20	granular 280:8
174:9 197:8	139:1 143:18	195:25 196:19	graph 137:15
202:3 205:17	144:24 145:20	198:14 216:5	165:23 166:4
205:20 245:16	148:20,20	222:25 240:7	188:10 189:3
274:14 294:14	158:9 159:17	257:11,15	190:22,22
goetze 36:3	173:2 181:21	260:5 264:24	graphical
going 5:2 6:5,7	182:16 189:24	265:14 275:17	253:3
8:6,24 9:17	194:15 195:7	296:12,20	graphs 136:23
16:9 18:15,21	217:11 233:5	303:7,16	162:4,11 177:3
19:23 20:13,14	233:11,15,16	gor 133:25	gravity 161:23
26:23 27:1,10	234:23 237:16	gorelick 266:11	gray 200:20
27:14 33:15	238:2,8 240:9	gotten 12:9	201:22 202:24
36:10 38:23,24	245:4 251:3	35:12 117:8	255:8
39:2 48:21	252:4 260:12	governing	great 28:12,14
50:15 55:13,14	261:11 272:3	25:18	28:15,15 30:2
58:21 59:19,21	273:23,25,25	gradient	42:24 58:3
66:18 71:1,7	274:11,18	103:10 111:10	67:4 79:25
72:5 74:25	275:4,16,16	111:16 164:8	90:8 91:7
75:18 76:5	276:10 280:20	166:14 192:3	92:13 100:8
77:3,14 82:22	283:6 285:21	194:1,7 215:4	101:12 106:11
86:3 91:2,7,10	285:24 286:2	215:16,19,22	154:9 169:24
92:20 93:10	295:16 297:5	216:8,12 219:3	200:9 208:20
101:20 103:12	298:19,23	219:6 221:18	greater 49:7
103:14,15	299:18 300:18	226:4	81:5 86:7,12
104:5,16,18,21	300:23 303:12		86:12,13,14,19

[greater - head]

	Γ	T	1
86:20 205:20	150:18 151:5	h	happens
220:9 241:5	151:18 152:13	h 4:18 204:15	104:17 262:9
greatly 107:5	155:7 156:4	half 36:7 44:10	happy 179:8
green 129:23	160:15 174:12	92:3,8 93:20	181:14 182:21
132:7 136:2	174:22 181:18	135:20 150:7	187:22 191:19
137:12 139:20	205:13 216:21	158:13 163:24	308:10
143:12 147:13	260:18 262:4	164:3,15,21	hard 5:24
148:5,12 150:5	269:21 296:6	165:5 166:13	30:12 192:9
150:5,6 183:23	296:15 303:1,3	171:3,6 172:5	236:13 254:23
188:16 195:13	308:5,7,9	179:23 180:1,9	277:3
195:14 203:12	314:1,3	205:17 211:7	harder 238:1
251:12,13	group's 30:5	234:6 251:23	263:22
262:1,2 265:21	49:12	259:6	hardy 2:15 3:3
308:23	groups 180:4	halfway 87:5	4:7,10,11,14
greenish 88:24	growing 42:12	89:3	8:10,13,13,17
greg 2:5	42:15 161:18	hall 1:13 5:7	8:18,21 9:11
gross 152:10,20	161:21	28:13	9:12 21:2,2,13
ground 233:9	grows 190:18	hand 38:15	27:24,24 36:12
309:16	growth 152:3	62:22 85:1	36:15 57:13,15
group 24:18	guess 18:3 65:6	113:1 123:15	106:4,5,11,15
29:21 34:6,9	84:24 141:9	178:12 309:20	107:16 159:11
35:5,21 41:2,5	148:24 160:11	handful 29:13	159:12,15
45:1,24 46:18	211:20 221:12	handle 123:6	169:5 174:7
48:16 49:3,6,8	221:24 309:7	289:24 303:21	175:18,20,24
49:9,13,19,24	guidance 18:20	handling	176:2 177:24
59:23 62:6	282:10	180:14 206:21	212:18,20,23
89:21 92:3,7	guide 226:20	303:23	216:16 290:7,9
94:24 105:13	guideline	happen 184:18	harp 240:4
105:23 113:16	277:12	189:20 212:10	harris 88:17
117:7 124:15	guidelines	229:16	234:3
124:24 126:18	227:9 230:20	happened	hart 11:3
127:16,17,18	guys 20:6	295:24	he'll 110:23
130:5,10,11,17		happening	head 61:1
139:8 144:1,9		12:11 160:2	97:21 119:9
147:8,10,11		290:23 309:23	206:17 212:13

[head - hope]

221.2 224.0	h oorer 142.10	206.2 207.7 14	historia 24.2
221:2 234:9	heavy 143:10	296:2 297:7,14	historic 34:2
headline	148:8 179:22	297:21 299:24	historical 56:23
199:24	179:24	higher 86:3,21	59:11 109:1
headlining	heel 296:14	104:7 128:15	285:17
199:23	hello 212:24	152:7 172:8	historically
healed 173:23	help 91:5 115:7	193:19 194:2,7	108:25 128:15
hear 10:9 11:15	288:24 298:6	202:17 203:14	history 10:15
15:1 17:7	298:25 299:3	203:16,16,20	19:20 54:3
32:14 52:12	helped 269:23	218:12 225:25	166:24 167:1
61:13 106:8	helpful 307:8	226:3 227:21	177:21 183:15
279:21 288:18	308:14	232:21 264:20	183:16,18
heard 9:17	helping 229:25	267:10 280:9	198:12,13
15:13,16 19:2	helps 170:12	292:2	214:8 303:25
270:4 273:3	308:5	highest 215:24	hmm 111:7
hearing 1:3,13	hereto 316:15	highlight 33:18	115:9 121:4
9:3 10:19	317:11	109:5 138:22	281:14
12:24 13:2,10	hershey 64:25	144:24	hold 231:17
14:1 15:2,6	heterogeneity	highlighted	hole 77:13,14
16:11,13,20	228:19	128:2 133:14	94:2 106:24,25
17:7,8,25	heterogenous	135:12,16,23	112:7,13
18:10,14,16,24	227:18	166:19 243:14	143:11 145:17
19:11 20:2,16	hey 308:25	243:16	266:14 283:17
22:6 25:6	high 22:6 32:8	highlighting	holistically
26:15,22 27:8	81:8 83:3,22	84:19	303:15
28:3 32:19	86:2 160:8,8	highlights	holland 11:3
33:11,18 35:12	186:5 200:18	275:22	hollow 76:18
36:17,22 68:8	201:24 202:23	highly 187:12	homogeneous
68:10,21 75:22	204:17 205:19	227:17 254:8	228:8,16 231:8
76:1 197:4	213:23 224:3	hinges 103:11	232:5
281:11 285:4	224:13,15,23	hinkle 2:15	honest 121:14
313:12	229:6 232:14	8:13	honor 230:12
hearings 14:2	232:15 233:13	hired 179:11	hope 11:24
313:16	273:18,21	histogram	12:7 17:21
heat 179:22	275:3 276:5	244:4	59:22 62:7,9
	279:1 288:20		271:1 295:13

[hope - implied]

300:6 306:22	hydraulic	identified	95:22 100:12
hoping 102:19	74:23,24	35:16 86:6	106:20 130:6
231:2 267:14	hydraulics	95:15 126:16	140:22 157:4,8
horizons	259:1	128:5 129:24	157:12 182:7
118:16	hydrocarbon	130:21 151:6	185:9 186:20
horizontal	187:14	152:5 160:16	186:23 187:14
93:11 124:13	hydrocarbons	172:18 192:4	198:1 211:1
124:21 125:9	94:15 96:20	234:5,12	231:14 233:15
145:15 159:8	98:16 100:15	301:22	233:16 236:10
165:13 176:23	101:5,10,15	identifies 69:1	246:17 291:7
180:5 204:16	hydrodynamic	85:17	impacted 56:17
220:9,21,23	299:14	identify 27:20	246:22 250:9
257:20	hydrologic	84:25 87:2	303:20 308:1
horne 260:5	71:19 73:4,17	117:12 143:20	impactor
host 279:12	hypotheses	155:18 176:11	163:17
hot 244:6	129:3 140:19	182:3 189:14	impacts 34:11
hour 6:2 36:7	152:4 168:3	192:20 296:10	49:14,17 56:4
205:17	169:12 170:2	296:13,24	93:12 185:12
hours 7:20	247:24 261:11	identifying	187:2 270:20
13:12 18:7	hypothesis	35:15 83:9	281:15
house 296:15	134:9,25 140:3	illinois 64:17	impair 32:12
299:12 307:3	142:25 160:19	image 77:16	208:7
huh 115:23	161:8 164:11	145:16,17	impede 117:20
human 248:2	167:23 262:6	173:20 296:17	impermeable
hundred 61:8	292:16	imaging 305:18	109:9,11
65:11 113:2,4	i	imbalance 51:2	258:25 259:3
121:2 207:7	i.e. 294:17	immediate	implement
hundreds	idea 162:16	176:17 250:17	206:13 295:17
266:18,18,18	279:17	immediately	implemented
281:1	identifiable	308:23	217:15 268:12
hurricane	130:9	impact 16:18	implications
111:6	identification	16:19 45:16	51:9 215:13
hurting 138:13	102:10 158:2	48:1 51:11	implied 236:20
hybrid 48:6	209:18 287:11	52:14 53:3,4,9	288:20
	207.10 207.11	53:12 93:7,7	

[important - industry]

important 37:1	250:25	267:22	144:13 145:25
44:10 90:7	includes 63:23	increased	146:23
103:24 197:10	121:9 180:19	35:24 127:19	indications
219:25 226:2	183:19	128:20 142:9	156:5 165:7,8
233:19 234:22	including 8:6	150:14,22	indicative
236:8 256:12	142:11 162:21	154:18 163:10	190:3
264:25 265:11	219:13 257:14	203:17 252:5	indicator 98:18
266:12 273:2	284:16 305:19	286:9 308:25	indicators 67:1
273:12 274:13	inclusion	increases	257:18
274:23 276:15	282:19	132:12,13,17	individual
278:18 280:4	inconclusive	137:3 138:5	135:13 177:6,9
286:4,25 288:1	169:22	205:8	186:6 204:23
301:3 304:2	inconsistencies	increasing	215:7 236:21
imposed 36:20	284:8,11	137:4 140:4	individually
improve 197:9	incorporate	199:6 262:7	30:4 81:14
206:22,24	58:16 288:4	incredible	induce 293:10
209:7	incorporated	98:11	induced 32:21
inch 79:18,21	115:2	independent	42:13 229:6
inches 79:23	incorporating	287:22	239:11 256:13
283:11	248:17	index 223:17	292:1
incident 312:16	increase 104:12	223:17	inducing
include 40:16	128:12 131:19	indicate 86:15	247:23,25
40:18 41:9,15	134:1,20 136:6	94:13 98:20	267:20 294:22
58:16 63:24	136:8,14,16	128:14 130:18	induction
65:24 67:11	137:11,19,20	151:4,4 162:12	171:17
68:3 69:18	140:5 141:24	indicated 60:17	industry 48:25
105:17 116:22	143:14 150:10	137:4 143:22	49:3 50:10
120:17 182:7	171:6 176:21	153:13 167:1	54:13 58:14
213:14	199:8 201:6	168:14 184:4	59:16,17 62:8
included 8:3	202:6,9 203:8	indicates 25:13	189:17 246:20
16:13 67:5	203:13,15,19	32:16 147:18	257:13 269:21
77:10 91:21	208:18 234:18	163:12 257:19	269:24 270:7
102:4 105:19	239:11 251:12	indication	271:25 272:8
109:23 150:8	251:25 254:17	73:15,16 104:9	272:20 273:14
160:24 162:24	256:7,10	104:13 133:6	274:5 276:11

[industry - inputs]

279:5 286:22	informed 35:19	45:23 55:7,11	241:1 243:7
295:2,7,10,11	ingredients	65:20 66:25	245:20 246:2
303:20,25	56:22 232:1	69:8,20 70:1	247:9,11 248:7
industry's	293:5,13	73:17 76:23	250:19 251:18
253:25	initial 38:24	77:2,3,24 78:1	258:18 259:4
inflow 147:23	42:5 68:19	81:17,22 82:3	260:20 261:25
148:10	114:9 193:8	82:11,21 83:17	262:3 271:21
influence 159:5	214:16 248:14	83:20 84:13	271:22 272:10
163:20 197:22	248:15,20,23	86:16,25	272:10 273:7
197:23,24	initially 266:9	102:22,24	275:4 278:3
208:16	initiated 123:1	105:1 107:2	282:18 283:18
influenced	inject 76:10,12	109:24 110:7	283:23 284:14
160:19 162:25	76:16,24 112:8	110:15,21	288:22 293:19
influx 135:4	119:12 120:23	111:20,20,24	294:12 304:19
144:13 151:21	121:24 179:21	124:19 139:23	305:14,24
155:6 163:5,11	182:9 197:11	140:4 149:10	injections
information	203:11 207:22	156:4 158:11	162:22 217:12
35:20,22 39:1	217:25 274:24	163:1 173:13	252:6 277:13
42:21 49:1	injected 45:7,8	193:6,9,10,17	306:18
55:17 56:1	51:4 103:2	194:10 195:2	injectivity
62:9 68:3	104:6,25 164:8	196:14 198:2,6	119:15 168:10
69:15,18 70:16	172:7 202:5	198:10,13	217:17 223:17
72:7,12 78:17	209:7 225:15	199:2,9 200:5	injector 196:3
92:14 97:23	234:1 252:7,9	200:13 201:1	196:3 197:22
166:23 191:6	252:12	201:10,16,17	199:12 201:12
241:22 243:21	injecting 35:8	202:11,23	217:22 298:1
246:19 255:25	76:9 104:21	205:1 206:6	injectors
255:25 258:2	112:6 144:3,4	210:24 215:11	130:10 147:11
260:8,11	146:22 196:21	217:14,17	147:13 150:18
268:19 271:4,6	227:3 262:4	218:2,7 224:25	197:12 198:23
273:1 275:12	270:15	225:5 226:4,21	199:4 208:9
275:14 277:19	injection 21:16	226:22 230:21	233:9
280:8,14	24:10,11,15	231:11,19	input 219:23
283:19	31:21 35:17,24	232:10 233:13	inputs 231:22
	36:20 37:1	233:16 240:21	

[inquiry - ipam]

inquiry 68:22	intentions	interests 208:6	231:17 240:16
126:12	91:15	interference	245:20 246:8,9
ins 246:23	interact 81:4	127:14 136:19	247:10 258:19
inserted 78:4	147:7 151:15	155:20 159:2	262:3 282:18
inset 84:20	interacted	177:11,15	282:19,23
88:13,15,15	135:19	270:23 271:7	283:18 294:20
243:12	interacting	295:22 308:15	304:16 305:14
insight 90:25	132:22 133:24	308:16,20,22	311:18
inspection	134:10 135:1	interlay 275:3	intervals 66:25
130:20	142:18 155:23	intermediate	214:20 217:25
install 274:22	interaction	79:7	218:11 240:15
instance 221:19	130:25 133:7	intermittent	262:1 270:5
integrated	133:13,22	108:14	intervened
148:4 150:24	135:14 136:17	internally	35:3
206:4	137:10 166:15	211:8 276:11	intimately
integrity 188:6	177:19 271:17	interpret 90:20	211:20
188:7,20	interactions	117:16 192:9	introduce 8:11
intend 27:17	126:23 128:4	214:17 262:14	10:2 29:3
30:8 273:1	131:18 135:11	interpretation	inverted 98:15
intended 22:18	138:9,10,12	110:12 116:22	investigate
24:10,11,12	146:15 174:23	117:3,3 118:2	175:15
182:21 250:22	177:18,20	118:25 151:17	investigated
252:20	270:4 285:21	interpretations	156:17 159:9
intends 33:21	285:22,24,25	99:25 127:3	investigation
33:23	303:11,13	interpreted	32:6 132:24
intent 23:4	interest 13:9	151:10 256:18	172:15 201:11
25:14,25 76:10	44:3,11 60:18	256:23 257:25	involve 28:24
156:24 308:24	122:21 236:24	264:16 310:14	involved 47:10
intention	245:5 273:4	interrupt	54:14 59:13
234:14	interested	118:21	65:5,7 84:8
intentional	120:8 260:11	interval 37:1	124:25 125:8
90:13	316:15 317:12	37:20 77:24	296:5 307:17
intentionally	interesting	82:22 83:17	ip 117:1
109:24 164:6	80:15 81:3,7	107:8 152:11	ipam 308:6
	81:13 192:13	193:10 201:10	

[ish - know]

	1	I	I
ish 122:24	181:22 219:14	key 33:20 35:15	196:10 198:4,5
248:13 266:2	289:22 299:5	55:20 87:1	201:16 211:9
isolates 94:5	jens 257:8	110:3 137:23	211:24 229:8
issue 11:18	jesse 2:13 8:15	138:8,8 142:14	234:15 237:7,8
14:17 22:22	21:23 27:22	144:6 170:6	239:9 240:19
31:25 59:16,17	34:24	227:11 248:8	241:9,10
59:17 149:20	joaquin 124:10	250:11 255:16	244:10 248:12
205:19 286:25	179:18	255:20 256:14	248:20 249:22
307:4,25	job 1:22 74:18	268:1 272:23	251:2 252:2
312:11	119:9,17,18	274:25 279:14	255:8 256:18
issued 11:1	240:7 264:24	279:21 289:17	257:24 258:1
15:9,17 48:14	jobs 124:9	300:21	259:22,22
issues 8:25	229:17	kicking 9:15	270:17 273:25
13:13 42:22	joint 25:8,12	19:3	277:11,12,14
49:2 59:25	26:4,16	kilometers	277:24 278:14
214:4 272:9	jointly 27:13	265:23 266:3	280:19 281:3
273:14 286:3	july 139:15	kind 7:22 22:5	288:24 292:17
it'd 190:6	247:1	29:2 47:24	296:1 308:17
it'll 256:8	jumbled 21:9	48:5 50:3 55:6	310:2 311:20
item 5:22 6:8	jump 308:23	58:18,23 61:25	312:6
184:18	jumping	66:23 71:1	kinematics
items 27:7 31:1	159:17	76:19 84:22	40:14
57:6 203:18	june 139:13	85:25 90:7	kirsten 317:2
207:19	184:18	91:3,5,20 94:4	317:18
j	k	94:11,14 99:9	knew 17:16
james 1:21	k 2:13	103:25 105:15	knock 94:25
316:2,21	kappa 198:19	108:14,17	know 7:18,20
january 18:16	299:15	127:25 128:7	9:16 10:1 14:7
18:23 19:12	keep 26:15	136:3 138:12	17:3 25:8
249:8,15	226:2 295:13	140:19 141:7	35:23 42:22
japan 266:17	295:13 305:13	148:18 149:9	44:23 47:20
jared 38:4	keeping 307:16	172:15 174:15	48:21 49:14
jason 2:21	kept 202:19	175:5 186:14	50:20 52:21
29:10 123:11	211:9 256:18	186:17 187:25	54:19 56:21,22
123:17 124:1	211.9 230.10	190:20 194:3	58:5,20 59:19
143.17 144.1			

[know - large]

60:4,25 61:1,9	197:2,3,24	277:20 278:3,4	241:25 242:1
64:22 73:14	200:7,21	278:4 280:14	242:25 249:3
86:22,22 89:18	202:20 203:14	286:2,24	253:21 255:19
89:20 90:6,9	205:3 206:16	289:15,19,19	lack 52:24
91:1 94:20	211:6,6,25	290:25 293:5	97:24 289:2
96:13,14,22	212:2 213:15	293:19 294:5	313:21
97:19,21 98:14	214:19 215:3,8	295:3,14,21	lamar 79:7
101:8,14	215:12 216:14	296:2,22	80:5 81:3,10
104:14,20	217:1,10,16	297:12,21	82:4 99:7,9,18
105:4,20	218:1,2,7	298:18 299:10	99:19 100:4,6
108:13,20	221:5 225:14	300:21,24	182:1 190:13
109:1,19 110:4	226:8,11,21,23	301:2,21	190:16,22
110:23 111:1	227:19,21	302:10 304:17	191:21 193:24
111:25 112:1	230:13,15,17	305:20 306:15	194:14,18,23
112:12,22	230:23 231:5	306:16,16	208:9,14 221:5
113:19 114:17	232:10 233:13	307:5,16,17,23	282:18
114:22 116:12	233:21 234:10	308:10 311:10	land 33:14
116:21,21	234:15 235:4	311:12 312:16	37:25 38:1
117:2,18 119:1	235:19 236:6,8	314:2	58:14 111:6
119:11,13,16	237:25 238:9	knowing 110:6	120:21,21,22
120:10,16,18	239:8 241:12	knowledge	121:6,9,12,16
121:13,19	248:6 251:3,5	169:14 171:19	272:20 306:24
122:2 148:18	251:21 252:2	172:7 288:13	307:2
151:16 155:1	252:13,13	303:3 306:7	language 25:13
155:13 160:25	253:8 258:10	316:10 317:6	82:14 102:21
161:8,22	258:17,20	known 88:17	lapse 162:2
162:16 164:17	260:18,19,20	146:1 308:2	large 5:19 6:6
167:9,20 168:6	261:4 267:19	knows 109:17	44:2 46:25
169:19 170:13	267:24 268:6	l	94:20 202:11
171:11 172:12	268:14 270:5	label 222:7,9	236:1 266:8,13
174:3,14 175:4	270:14,24,24	244:4 247:14	266:15,19
177:2 183:17	271:16,17	259:12 274:1	267:3 289:21
186:17 191:11	272:3,4 273:20	labeled 147:18	289:23 290:3
193:8,18	274:5,7 275:3	167:5 188:5	292:6,11,14
194:14 196:7	275:15 277:3	203:23 241:3	

[larger - lime]

1 70.22	204:10	207:10.240:5	1: (1.6
larger 79:23	294:18	207:19 240:5	license 61:6
128:6,9 150:2	leading 142:25	241:11 246:6	lies 81:9 176:8
248:16 266:5	160:18	246:10 253:17	life 128:9
267:7,8 268:11	leak 187:18,24	260:7 264:11	131:13 146:14
289:20	187:25 188:22	270:13	182:6 183:20
largest 251:6	189:5,13	lefthand	184:18 186:18
lasted 180:9	190:25 192:15	295:21	187:13 199:1
lasting 294:16	192:20 193:23	leftmost 192:2	200:1 209:7
lastly 130:14	193:23 194:13	leg 87:16	212:9 229:18
137:16 138:4	208:14	legacy 56:11	233:2 234:24
153:2,17	leaning 255:23	legend 129:22	lifetime 128:13
late 48:15	learn 50:10	legends 88:19	light 12:10
166:4 244:12	54:14 58:10	length 164:15	128:6,10 141:5
244:13	62:8 232:22	266:22 268:2	262:2 265:21
laterally 99:15	286:21	lesson 311:17	286:2 314:24
laude 40:11	learned 126:25	letter 270:12	lighter 86:18
125:14 179:10	128:24 311:17	letters 33:5,7,8	liked 78:15
law 28:8	learning 44:22	33:9	likelihood
lawyers 53:19	48:24 49:1	letting 114:17	32:17 67:2
lay 75:15 146:6	61:24	199:3	100:15,21,22
182:19 277:24	learnings 129:1	level 15:21 22:6	292:1
layer 37:15	140:7	72:5 99:1	likely 20:10
240:12	lease 61:7	127:1 207:13	26:3 30:6
layers 79:15	leave 27:1	233:7 244:6	140:18 257:4
118:18 167:19	33:12 36:11	279:1 280:9	262:6,18,23
laying 272:8	229:14	288:20 296:2	likewise 104:3
laymen's	left 43:24 82:14	levels 86:17	lime 151:25
195:22	85:7,10 86:2	242:14	152:3,8,10,19
lays 219:10	129:15 133:9,9	leverage 45:13	153:1,6,21
lea 21:17 43:11	133:15 136:5,7	45:15 46:2	154:2,13,16,21
142:19 155:22	138:21 140:25	48:3 273:10	154:24 155:8
243:1,1,13	141:6 146:3	leveraging	156:20 157:2
253:19	149:2,23 152:9	47:25 48:21	168:2 172:21
lead 56:12,22	153:3 162:14	levy 38:4	173:11 176:5,8
138:13 164:9	184:10 188:11		181:24

[limestone - location]

limestone 80:5	206:20 242:25	listed 162:13	littlefield
80:8 99:2,7,18	242:25 243:16	273:15	183:15
100:4 182:1	243:16 244:8,8	listening 25:5	live 176:23
208:10 282:18	246:14,14	315:4	223:3
limit 65:15	247:8 248:18	literally 263:9	llc 2:11,16 8:14
138:6	249:2,7,7	lithology	20:16,22 21:15
limitation	250:2,4 251:17	153:17,18	llp 2:15
13:22 74:11	252:7,22	274:8	load 216:15
limitations	253:16 257:24	little 5:23 8:24	localized
13:20 258:5	274:3 291:24	10:14 12:9,13	160:18
limited 77:21	299:6,6	14:12 21:8	locally 204:19
252:14 289:13	lineament	22:17,17 28:14	locate 255:13
300:4 313:9	148:6,7,18	30:20 45:18,21	located 43:9,13
limiting 283:10	149:3,5,15	46:15 51:14	43:15 44:25
299:19 307:17	156:12 172:10	52:22 58:22	84:21 85:2
limits 47:23	289:11,16	61:11,11,20	120:20 128:25
line 23:5 27:1	lineaments	76:20 78:7,16	138:25 140:6
45:9 51:6	147:1 148:1	81:11 91:8	141:3,3 166:2
80:24 81:1	149:9 151:5,8	99:7 103:15	166:25 172:25
85:6 87:6	156:7,8,16	109:13 110:22	183:2 190:20
97:17 132:15	167:13,15,23	119:2 122:2	238:11 241:5
133:5,21 134:4	172:15 267:2	148:25 149:19	285:8 291:4
134:5 137:2,3	281:21 289:8	159:17 181:22	locating 275:23
140:12 141:23	289:25	192:9 193:18	275:25
142:3,3,11	linear 113:19	193:19 195:8	location 23:22
148:13 160:5	linearly 104:12	203:14 211:12	31:12,15,16
160:10,11	lines 84:22	220:2,14 222:2	43:4 45:17
172:5,6 173:1	137:8 141:15	223:25 224:3	60:18 61:3,5
183:4,12 184:5	150:3,25 151:4	231:15 234:16	75:9,12,14,20
185:25 188:16	151:4 204:17	238:9,11	75:24 76:7
188:17,18,22	226:11 256:22	240:11 241:11	79:3,4 85:17
195:15 200:19	lineup 263:17	247:5,20	119:22 120:12
200:20,20	link 315:6,8	251:20 278:24	121:25 129:13
201:16,20	list 2:2 298:23	279:6 308:17	129:16 139:7
202:4 203:12		310:3,25	143:7,20 148:7

[location - looked]

150:6 151:18	log 5:18,21	longer 24:19	250:2 251:25
153:7 154:2	37:14 147:20	101:12 158:23	253:8,12
160:13 165:18	153:9,15	212:2 277:21	257:23 260:10
190:8,10	204:19 217:2,3	longevity 46:24	261:3,16
199:25 200:7	255:24 274:11	206:24	264:14 265:15
200:20 202:22	283:13 297:2,4	look 19:23	265:24 267:17
208:24 213:1	logarithmic	20:14 26:17	267:24 271:15
225:1,24 246:6	139:19	27:14 28:20	273:11,20
246:7,8 259:15	logged 76:14	34:16,18 48:22	275:6,8 277:2
284:20 310:10	logging 70:21	49:19,25 55:15	279:10 280:25
310:18	71:5 77:13	55:16,20,22	282:17 285:15
locations 44:15	147:19 274:4	56:7 58:9,10	285:16,19,20
44:20,21,24	278:1 305:5	59:18 67:9	285:20,23
48:5,22 54:12	logic 209:3	69:22 86:24	286:4 290:22
55:19 73:12,19	212:4	97:10,11 128:6	291:20 292:9,9
83:10 113:24	logistical 28:22	128:19 131:25	295:20 296:1,8
121:21 129:19	31:1	132:14 137:24	296:17 297:8
139:12 144:11	logs 77:14,16	138:19 141:22	297:10,15
150:17 153:3	87:13,15 89:7	146:24 147:25	298:11 300:2
154:23 156:9	89:8 145:17	159:18 161:25	300:22 302:9
156:18 173:4	173:20 274:6	165:22 167:3	303:10,13
205:11 222:14	277:17,18	168:14 191:14	306:4,16
222:18 231:24	283:17 296:13	192:14 193:6	309:13 310:14
234:5,12 240:4	296:17	193:25 196:5	looked 6:5
242:2 243:15	long 5:6 17:19	199:13 200:25	56:10,10,18,19
258:14 268:8	19:3,3 32:3	204:1 206:1	74:7 87:2 89:8
276:7 277:2	36:19 39:12	211:16 212:25	89:18 105:11
301:8,22 311:5	53:22 63:16	217:23,24	105:12,13
313:5	122:23 124:4	227:1 230:2	118:5 127:21
locator 128:1	138:14 179:2	233:6 237:3	132:25 133:1
129:8 135:8,24	180:14 184:7	240:10 242:8	144:21 145:11
138:20,22	186:18 197:23	244:3 245:8	146:25 201:25
140:24 144:24	202:2 237:20	246:10 247:22	207:8 212:11
149:23,24	266:18 294:4	248:5,22 249:5	214:22 217:22
195:6 242:1	302:14	249:16,17	220:24 228:6

[looked - magnitude]

247:24 248:3	242:24 243:12	214:14 216:5	104:5 105:17
260:6 268:18	244:15 260:14	218:10 225:22	114:16,20
273:17 275:2	261:19 264:12	226:23 227:1,5	133:9,15 150:7
277:14 305:20	267:19 268:5	227:6 228:5,10	151:21 152:9
308:18 310:17	268:14 270:14	228:12 230:25	166:18 167:5
310:17	271:10 274:7	231:1 232:24	181:23 191:13
looking 16:22	275:7 276:6	233:22 234:17	193:19 205:4
26:9 42:16	278:5,13 282:8	234:18 252:22	216:4 226:17
46:23 47:1,16	286:1 297:12	254:10 257:13	227:8 230:8
47:17,18,19,19	297:13,13	259:3 260:7,11	254:24 281:18
49:14 53:25	299:12 303:15	261:9,11	282:22 289:2
54:10 57:19	304:1 306:14	268:18 272:22	304:16,23
74:16 83:3	310:16 313:10	273:6,7,12	305:4
95:25 96:1,3	looks 13:16	275:12 276:10	lucky 38:22
96:21 99:8	16:15 110:24	276:13 279:6	lunch 122:24
101:16 106:18	111:16 120:12	280:1,8 286:21	m
107:7 108:6,11	149:19 159:21	290:22 291:22	macro 233:7
110:9 118:6,10	196:20 240:20	291:23,25	made 6:4 7:20
118:18 125:1	264:10 274:12	298:12 299:24	9:25 13:18,21
126:20 136:3,5	278:15 286:24	300:11,12	20:17 28:19
139:1,16,17,18	los 294:6	308:5 309:6	84:7 130:18
140:19,24,24	loss 110:13	lotos 144:4	289:9 313:24
140:25 141:17	298:1	love 279:21	madera 152:17
142:20 143:2,5	lost 116:15	310:8 312:3	153:10
145:1,17	lot 32:19 33:18	loving 243:1	magic 220:22
147:14 150:1,1	45:13 48:25	low 32:17,20	magna 179:10
151:16 153:11	50:13 58:5	73:20 95:22	magnitude
154:8 155:13	59:9 65:19	100:15,21,22	242:9,10,12
155:14 164:2,3	86:22 97:20	114:19 152:25	243:19,20
174:11,14	98:13 117:6,8	184:11,11	244:2 246:11
181:16 193:21	128:24 188:21	200:18 201:24	246:12 247:1
194:6 202:8	189:16 190:11	202:23 203:4	248:15,23,24
208:11 210:3	191:17,22	218:7 268:7	254:22,24,25
211:10 218:7	194:22 202:11	lower 72:19	255:1,3 259:12
232:9,10 239:9	206:8 213:23	80:2,7 98:24	265:18 266:19
			203.10 200.19

[magnitude - matter]

		1.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2.2	
266:23 267:7,8	manage 93:14	138:22 139:5	mark 201:15
289:19	93:16 258:7	140:25 143:13	257:8
magnitudes	270:9 272:9	143:21,24	marked 102:9
245:5 255:2	304:2 310:10	144:16,24	158:2 172:11
main 245:3	managed	145:3,14,19	209:18 261:25
247:6 283:11	143:21	147:12,25	287:11
308:12	management	148:5 149:23	markers
maintained	41:7,8 42:10	149:24 150:2,7	195:15
36:24	42:13,15 54:8	150:16,23,25	master 64:16
major 197:6	55:22 59:16	151:3 152:9,10	125:12
240:8,23	124:17 258:9	153:2 156:1	master's 40:12
majority	286:25 295:11	160:6 163:7,10	125:14 179:13
173:23	302:14 303:19	167:17 172:24	match 108:15
make 6:1 24:23	managing	182:24 195:13	196:9,11,18
30:14 33:25	270:1	210:3 223:1	198:14,15
34:7 36:13	manner 13:6	240:2,3 241:25	228:3
37:24 75:8,17	17:22 36:25	243:12,18	material 5:19
75:22 98:9	42:20 56:2	246:6,10	67:25 82:24
99:24 103:25	156:23 268:16	247:14 248:11	89:12,13 109:9
106:8 109:18	292:23	253:18,18	materials 17:13
123:1 146:12	map 31:12,15	255:1,7 256:22	32:1 44:16,18
158:14 213:25	43:4,23,24	257:6,7,16,19	64:9 67:19,22
221:21 229:13	69:1 84:21,23	260:7 289:5,22	69:12 71:23
308:12	84:23,25 88:13	289:23 291:11	91:10 239:23
makes 91:22	88:15,16 92:17	302:12	math 86:14
206:23 228:17	95:24 96:25	mapped 148:6	268:24
261:23 293:5	97:11,13 99:16	mapping	matter 8:23
307:15	99:17 107:8	172:16	10:15,20 15:7
making 8:24	113:2 114:24	maps 98:22	15:15,17 18:9
32:3 91:6	116:19 126:16	107:9 127:21	21:22 22:11
118:14 158:5	127:20,25	mar 183:2,3	23:2 25:7,9
264:21 305:13	128:1 129:7,8	186:21 210:4	26:5 29:16
malcolm	129:12,15,19	217:15 236:22	33:17 40:5
152:18 153:10	129:21 135:8	march 13:4	41:10 68:8
	135:24 138:20	48:20	125:21 194:20

[matters - mewbourne]

		I _	
matters 15:12	means 86:2	meetings	111:12,18
19:20 28:22	220:8 261:12	272:17	112:3,15,20,24
66:2,12,20	266:2 279:17	meets 26:4	113:7,13 114:2
max 70:6 72:22	295:22	memory 134:13	114:8,20,25
204:21 216:14	meant 43:19	mention 88:3	115:6,9,15,20
249:12	47:4 221:5	121:2	115:23 116:4,8
maximum 70:1	measure 111:1	mentioned 13:6	116:11,16,24
72:14 145:15	measurement	14:9 19:22	117:17,22
193:8,12 199:1	305:22	29:15 30:3	118:4 119:5
200:4 205:2	measures 282:6	31:18 42:24	122:12,16
215:17 216:3	meat 33:16	45:11 47:8	194:19 210:9
218:4 224:19	mechanic	48:16 50:18	210:12 280:21
225:5,6,12,17	274:14 298:24	51:18 56:3	297:9,19
226:3,9,20	299:1	59:24 64:19	merrifield's
232:10 257:20	mechanical	119:23 127:16	181:18
mean 17:25	179:9	147:24 153:10	mesa 166:18
84:24 85:4	mechanics 41:4	155:3 182:24	mesh 207:8
93:7 118:20	81:8 284:25	183:5 197:3	meshed 228:8
136:23 146:5	298:21 299:14	202:16 205:22	mesquite 159:1
147:15 190:20	mechanism	241:13 246:16	met 33:13 48:8
203:25 207:1	97:15 98:5	260:23 269:20	metal 143:10
215:10 219:7	161:5 220:25	271:14 272:15	148:8
219:16 238:5	254:21 292:23	278:22 299:2	meters 204:25
263:9,9 273:19	293:2	312:8	method 74:20
294:8 300:7	mechanisms	meredith 23:7	methodology
303:17 304:4	255:19 256:2	merrifield 2:22	185:22
305:12 306:13	289:8	29:10 62:18,20	methods 74:25
312:9,10	median 198:5,7	63:2,11,13	mewbourne
meaning 60:19	201:16	66:11,20	11:8,18,23
154:10 155:7	medium 265:21	102:19 105:7	12:12 14:9
171:5 248:2	meeting 5:3,3,6	106:16 107:21	16:4,5 27:25
257:4	5:18 7:7,13 8:5	107:23 108:1,4	33:10 34:19
meaningful	18:16 20:11	108:10 109:3,7	36:14 37:2,4,7
312:14	217:6 315:5,6	109:15,21	37:10,22 51:18
	315:10	110:2,11 111:7	314:7

[mewbourne's - mobile]

mewbourne's	mic 220:2	258:15 259:11	minimize 37:8
15:18 36:17,18	micro 75:8	259:21	minimum
mexico 1:1 5:4	121:2 145:18	miles 69:2 92:9	13:25 192:3
21:18 33:13,14	168:25 290:23	95:2,11,12,21	193:25 194:7
41:15 42:18	291:2 293:20	96:5 133:10	220:19,21
43:11,12,14	306:7 310:25	151:16 156:18	221:6,10,11,13
44:5,12,12	microsite 75:8	158:13 172:18	221:16 222:3
45:5,10 46:22	mid 200:18	190:9 200:15	238:2
48:18 51:1,4	201:24 202:1	208:17 211:2,9	minor 77:3
51:11 54:9,11	middle 116:2	234:7 242:18	114:12 167:25
54:18 59:23	137:25 138:23	259:6 266:18	minute 12:21
63:23 65:24	143:23 255:7	milestone	13:11 15:25
88:18 125:7,18	257:8	312:8,14	26:23 29:1
152:12,14,17	midland 44:6	milestones	193:16 211:17
172:4 180:20	124:22 180:6	312:16	241:14
193:7 204:9	205:14 220:14	millidarcy	minutes 7:8,10
213:8 215:21	263:5,8	198:8 202:1	7:13 27:4
218:6 225:11	midstream	203:1,2,2	212:1 237:23
226:5 227:8	2:12 21:15,20	228:24,25,25	mislabeling
230:14,19	22:2	230:5	221:10
232:23 234:3	migrate 103:3	million 36:4	missing 311:25
240:22 241:4	migrated 104:7	45:6,7 50:19	mission 292:18
242:5,23	171:9 250:8	51:1,5 199:25	mitigate 47:3
243:23 248:4	migration	200:7 203:7,11	268:16
251:5,9,11,18	104:14,22	208:23 209:1	mitigation
252:15,17	105:1 148:23	249:12 251:15	250:21 282:6
254:15 259:10	149:16 156:10	252:9 256:8	mixed 109:9
260:21 261:6	mile 92:3 93:20	mind 104:20	mixing 165:8
263:2,21	99:4 160:12	226:2 232:6	171:4,7,14
266:17 268:9	163:24 164:3	272:24	mm 111:7
272:11 276:12	164:21 165:5	mindful 312:20	115:9 121:4
287:1 291:12	172:6 182:25	mingle 28:16	281:14
291:14,23,25	183:6 202:12	mini 112:14,16	mobile 205:21
293:11,14,16	210:23 211:7	minimal 220:10	296:6
311:8 316:22	233:21 234:6		

[mode - move]

	I	I	
mode 148:20	298:7 299:11	270:24 275:21	motion 10:24
149:4 156:13	299:11,25	277:20 282:6	11:1 12:1,6,21
model 86:24	300:12,13	283:13 284:19	13:7,12,14,24
155:2 168:22	moderated 1:8	284:21 298:16	14:24 15:4,25
169:10 175:14	modern 217:23	305:20,24,25	16:25 17:7
197:13,14,15	218:15	306:5,22	18:3,8,14,15
197:20 198:14	modifications	309:20,21	19:7,8,10,16,19
198:16 199:3	25:2	monitors	20:6,9,22
200:12 201:18	modified 23:23	205:14	22:20 25:12
224:4 228:3,7	240:5 266:10	monopole	26:4,16
228:10 229:12	modify 143:21	103:16	motions 12:24
231:23 232:3,5	modifying 12:5	month 183:24	19:25 255:13
232:9 236:4,11	modrall 2:17	184:1,10 186:8	mountain 34:6
257:6 264:22	2:18 28:8	249:8,13 275:1	34:8 35:5,21
265:6 268:3	molecules	monthly	45:1,24 46:18
274:15 299:1	241:18	139:18,24	49:8 89:21
299:21	moment 51:17	141:18,18	92:3,6 94:24
modeled 182:5	67:20 83:14,25	214:14,16	105:13,23
293:8	220:25 254:20	months 13:5,6	113:16 127:17
modeling 39:18	255:9	13:24 19:19	130:5,10,11,16
153:24 168:17	moments 17:18	128:11,13	139:7 144:1,9
182:2 195:2	money 309:17	137:14,21	147:8,10,11
197:1 199:13	monitor 50:11	213:17,18,22	150:18 151:5
231:4 276:25	93:11 112:9	213:22 214:15	152:13 155:7
278:12 280:9	275:20	236:2	156:4 160:15
280:12,13	monitored	moot 16:17,21	181:17 260:18
293:7 298:20	188:15 204:24	mooted 20:14	262:4
298:24 299:4,5	207:11	morning 9:20	move 7:1,9,15
299:7,9,18	monitoring	9:20 10:5,12	14:1 18:12
300:9	34:10 36:20	20:20 29:15	19:13 30:21
models 168:16	120:2,7,9	34:25 42:6,8	53:18 75:11,21
168:21,23	205:13,22	238:25 315:2	76:6 78:6,22
196:8,11,19	206:8 209:3	morning's	88:4 90:23
230:11 231:7	213:12 253:24	315:6	102:2,5 104:23
231:13,16	254:3,5 270:15		121:1,2 137:16

[move - new]

157:18 220:13	multiply	nearest 208:8	negative
225:4 247:16	193:10	nearly 249:12	177:19
252:21,21	multitude 48:4	necessarily	negatively
256:8,11	50:8 247:24	49:25 270:10	52:13 53:8
262:17 264:2	304:3	273:16 291:17	100:12 157:4,8
267:13 269:13	mute 5:21 27:1	300:14	158:20
287:6 294:7,10	n	necessary 23:1	neither 316:11
294:10 313:15		35:23 122:18	317:7
moved 13:1	n 2:1 3:1,1 4:1	244:10 288:18	net 84:10 87:21
16:12 23:22	5:1	290:2 314:23	88:15,20,20,22
124:22 141:1	name 28:7 39:7	neck 86:23	88:25 90:4
167:22 179:25	63:12,13 123:25 167:4	259:5	152:21 258:11
180:10 256:19	178:22,24	need 5:11,13	280:22
258:1 294:24	names 105:15	9:1,2 14:25	network
movement 86:1	narrow 68:22	25:6 26:14	204:18 252:21
149:8 167:25	77:17	32:7 35:15,16	254:1,3 310:23
167:25 257:5	natural 161:15	46:16,17 59:18	310:24
moves 26:20	229:2 274:12	74:6 75:7,11	networks 161:9
255:15 262:9	283:2 296:10	76:6 118:11	161:10 296:21
moving 30:10	314:25	121:23 122:15	neutron 77:15
51:6 91:1,6	naturally 89:24	142:23 155:16	274:6 297:16
209:13 238:4	nature 25:1	155:17 163:18	never 13:6
252:7 255:10	35:4 39:19	173:25 193:14	191:1 256:8
279:10 293:24	50:12 61:20	210:10 221:20	303:24
mud 108:23	75:19 90:17	222:9 237:21	new 1:1 5:3,10
109:10,10	93:5 187:12	277:5 300:22	7:17 17:17
multidiscipli	190:15 278:21	300:22 303:21	21:18 33:13,14
34:13	near 119:11,14	305:20 307:5	37:17 41:15
multiple 48:6	152:16,16	310:20	42:18 43:11,11
58:25 82:6	160:5 223:7	needed 22:7	43:14 44:5,11
115:18 117:25	234:11 292:9	117:7 283:19	44:12 45:5,10
139:2 155:15	306:17	295:22 311:10	45:17 46:21
170:2 171:5	nearby 99:4	needs 169:20	48:18 51:1,4
173:9 198:19	119:24 135:4	220:13 235:1	51:11 54:9,11
257:12 313:25	301:2	304:6	54:18 59:23

[new - numerical]

	I		
63:23 65:24	nmemnrd 5:12	155:1 246:13	15:1,12,17,20
88:18 125:7,17	nmocd 295:3	250:4 254:18	19:10 20:16,24
152:11,14,17	295:24 305:16	258:23 259:17	number 7:25
172:4 179:25	nmocd's	260:13 262:12	8:4 9:18 13:7
180:20 188:8	226:16	265:13 270:23	14:15 15:8
188:25 193:7	nmoga 37:12	273:16	20:15 21:8,10
197:20 204:8	269:21 308:5	noted 48:13	21:14,17 22:14
206:13 213:16	313:20	49:21 68:11	22:19,23 23:15
215:21 218:6	noise 228:10	80:3 81:18	24:8 25:23
225:11 226:5	normal 17:1	89:17 95:1	27:8 30:12,17
227:8 229:21	118:2 194:10	143:14 149:13	32:6 33:2,2
230:14,19	220:8,11,18	155:25 163:8	46:20 52:6,9
232:23 234:3	221:4 256:1	173:4 190:24	65:4,6 78:6,21
240:22 241:4	257:2,17	224:18 249:2	82:24 84:16
242:4,22	normally 58:6	266:6 297:9	95:19 101:7
243:22 248:4	94:2 292:22	notice 6:4 18:8	106:19 112:25
251:5,9,11,18	north 139:5	75:25 79:20	113:17 198:10
252:15,16	261:2,22	151:2 223:23	198:24 212:1
258:7 259:10	northeast	239:6 244:4	212:13 213:15
260:20 261:6	132:3 145:6	249:21 253:23	218:25 219:1,1
263:2,21 268:9	148:13 151:3	277:12	220:22 222:13
272:11 276:12	northern 2:16	noticed 140:11	222:13 226:13
279:6 284:19	8:1,14 131:8	218:3 268:17	234:22,23
286:2 287:1	243:13,23	notifications	244:19 271:19
291:12,14,23	244:16 253:19	211:8	281:4 301:21
291:24 293:11	293:17	notified 76:6	312:14
293:14,16	northwest	notify 308:11	numbered
306:11 307:23	261:2,22	notion 307:16	102:5 266:1
311:8 316:22	264:14	notional 277:14	numbers 20:16
night 9:25	northwind 2:12	278:14 307:14	21:8 194:7
16:25 17:14	21:15,20 22:2	november 1:9	208:12 215:10
nine 137:21	notable 224:12	5:3 11:21	232:15 259:13
315:8	notary 316:21	14:16 16:9,10	numerical
nm 1:16	note 44:10	novo 9:15	224:4 229:19
	141:17 151:7	10:16,17 14:19	

[numerous - oil]

numerous	obtain 112:23	68:20 74:11,15	offer 114:4
48:17 261:25	211:11 284:14	74:19 79:21	offhand 17:3
0	obvious 97:8	91:4 109:17	office 33:14
o 3:1 5:1	262:15 276:2	130:2 143:8	37:25 38:1
oath 29:25	obviously	156:1 216:11	58:14 120:21
38:12	56:23 59:11	227:9 230:20	121:9,12,16
objection 36:23	180:20 236:12	233:20 237:8	124:14,24
209:15 210:17	241:25 244:20	241:24 249:3,4	205:14 272:20
210:18 287:7	251:14 258:25	249:8,14,16	306:24 307:2
objections	276:24 278:1	250:4,16	officer 316:1,2
102:6 157:20	293:11 300:23	259:25 271:25	offices 205:12
157:23 226:19	308:3,8	272:4,4,19	offset 52:24
oblong 236:7	oc 33:14	279:2,8,11	61:14 73:20
observation	occ 13:2 16:14	281:4 287:23	131:16 133:22
118:13 155:25	49:7	295:6,8,12,13	133:23 134:16
observations	occasion 13:9	295:14,17	136:13 138:10
126:20 127:17	occupy 23:3	296:6 301:17	147:7 150:12
129:25 130:18	occur 99:15	301:18 305:17	163:20 181:19
142:15 143:17	247:11 257:5	307:1,16 310:4	211:10 263:14
159:7 165:9	occurred 140:3	310:8,15 311:6	270:19,22
287:22	150:13 244:2	ocd's 25:24	271:10 278:13
observe 132:9	245:9 246:5	35:13 36:6,10	281:12,15
133:13 137:10	247:1 266:16	37:3,4,11	309:18
150:12 154:13	occurring	51:19,23 68:7	oh 6:15 10:3
154:14 253:7	161:15 176:19	68:10 74:7	86:13 161:20
observed	253:6 254:7	75:2,4 79:20	262:2 301:18
132:12 133:3	259:5 270:23	127:23 215:15	oil 1:2 2:3,5,6,8
134:18 138:12	occurs 36:20	238:3 242:14	2:13 5:4 8:2,15
147:21 149:16	104:14 255:11	242:20 268:13	21:24 27:23,25
150:21 159:5,6	ocd 30:7,9 32:1	269:2 285:4	35:2,25 39:21
163:13 175:10	35:5 37:6,12	286:23 310:21	51:3,12 54:3
observing	37:16 49:7	315:3	64:5,5 65:8
135:10 137:1	50:9 51:18	ochi 29:10	68:7 71:1 94:4
175:15	54:14 57:2	october 7:7,13	96:21 108:9
173.13	58:14 62:7	190:5 249:9	125:18 131:19

[oil - opinion]

132:1,2,2,7,9	274:25 275:1	170:11 204:4,7	209:2,4 229:16
132:11,12,17	278:19	207:14	244:18 245:13
132:18 133:19	ones 108:2	operates 44:3	258:10 267:23
136:2,16 137:2	136:21 196:25	61:6 92:21	267:25 272:5
137:12 139:20	204:9 219:14	129:20 131:4	277:8 292:2
142:4,9,13	225:16	144:10	operator 93:10
161:22 177:4,8	ongoing 59:7	operating	94:14 96:21
179:22,25	59:23 62:7	20:15,22 44:5	143:12,15
180:22 183:24	121:22	44:13 46:1	170:8,11
183:25 184:19	online 24:13	50:8 61:7	174:12 205:10
186:12 188:20	28:2 38:1	130:4 156:22	211:22 254:1
207:19 210:4	180:7 213:17	173:2,3 214:5	310:11
218:10 241:24	onset 17:8	215:23 230:19	operators 33:2
251:6,13 252:5	onsite 204:25	operation 64:2	33:3,24 47:23
oilfield 179:15	205:12	65:6 66:12	48:9,12,14
okay 20:4 29:3	onward 244:3	193:7 208:19	91:5 98:5
68:25 73:11	open 27:2 38:2	241:19	106:1 205:10
78:9,25 83:1	53:19 54:21	operational	207:14 233:22
97:1,7,10	59:9 61:11	46:4 69:21	271:1 272:16
103:6 104:21	62:9 71:19	72:11 214:4	301:4 308:11
107:21,23	73:4,15 77:13	230:16 240:8	310:5 313:22
108:1 109:21	77:14 94:1	253:6	313:25
112:17,24	106:24,25	operationally	opinion 46:18
113:7 116:6	112:13 143:11	55:23 76:12	51:25 52:5,8
122:19 123:7	143:25 161:9	operations	68:2 74:14
178:6 222:12	170:20 188:24	39:17 43:21	75:3 79:11
222:19	283:17 296:13	45:12 47:19,20	100:8,10,12,13
old 186:17	296:22 312:13	48:2 50:12,21	100:14,17,18
292:6	312:15,17	50:22 51:12	100:19 103:23
older 108:12	opening 28:25	58:17 124:15	110:15 129:3
once 35:11	31:3,17 36:13	130:7 176:18	140:17 157:3,7
198:12,14	38:3 126:17	181:8 182:12	157:11 184:15
207:4,12	148:20 149:4	194:10 204:5	184:22 291:18
216:11 264:7	operate 48:17	205:15 206:4	303:8
270:14,14	61:1,3,6 131:6	207:20 208:12	

[opinions - overlying]

opinions	orange 130:14	orient 43:7	ourself 276:4
155:11	153:4 160:4	88:13 182:22	outcome
opportunities	200:20 202:4	195:12 240:1	316:16 317:12
42:23 54:16	202:24 242:8	243:10 247:7	outline 36:9
60:1 91:1	242:16,18	orientate 245:4	85:19 152:14
286:21	246:25 266:2	orientation	246:13
opportunity	oranges 242:11	84:17 145:15	outlined 192:1
16:2 17:1,13	order 5:4 8:1,3	145:24 146:6,7	outlines 237:3
18:18 28:7,16	8:20 9:4 10:18	148:16,21,23	outlining 25:12
31:3,5 54:13	10:22 11:2,10	149:3,7 151:11	outputs 200:8
57:2 58:10,12	11:15 12:2,5	156:6 167:14	outs 97:9,14
59:19 178:4	12:12 14:18	167:15 219:12	outset 237:25
179:13 180:7	15:1,8,9,14,17	219:15 255:17	outside 172:25
269:24 273:12	15:20 21:17	256:2 261:1,6	173:2 226:10
275:18 276:5	22:22 23:7,14	265:5 268:2	272:16 301:22
310:8 314:22	23:15,16 24:21	288:9 289:15	oval 243:17
oppose 35:3	24:22 25:8,13	293:3	248:13 250:1
opposed 27:13	25:16,23 26:7	orientation's	overall 239:16
156:11	30:14,16 65:11	156:9	254:4 274:8
opposite 47:19	82:22 110:20	oriented	280:5,25 300:2
optimal 83:9	111:1 112:9	148:19 260:24	overburden
212:3	113:1 135:5	261:4,22	190:12,14,18
optimistic	154:20 169:25	264:20 268:5	194:17
223:25	189:23 193:13	292:22	overburdened
optimized	206:24 237:16	orienting 264:8	194:24
207:9	292:18 293:8	original 162:21	overlaid 141:13
optionality	312:11	162:25 283:15	overlapping
42:11,17 46:23	ordering 25:22	314:2	11:11 14:11
53:25 54:8	orders 14:7	originally 6:5	overlaps 14:17
239:10 268:15	22:12,16	24:7	overlay 140:10
options 32:8,12	organization	orthogonal	146:6
46:17 47:1	44:4	156:11 257:6	overlying
117:19,25	organizations	265:2,8	135:15 147:7
271:14 304:1	269:23	orthographs	155:6 163:14
		214:9	163:15,15,18

[oversaw - parizek]

oversaw 125:4	packers 107:6	183:10 185:1	129:13 131:5
overseeing	packet 30:6,23	185:17 187:17	153:4,6 173:5
124:12,20	264:10	187:18 191:15	182:5,22 183:9
125:8	packets 30:13	195:5,6 196:23	190:19 191:10
overstating	pad 133:11,11	199:16 201:3	191:12 195:11
224:25	133:23,24	202:14 205:23	195:14 202:13
overtime 271:3	134:12,16,19	206:20 207:23	202:15 208:21
overview 22:5	135:13 136:9	209:10 212:25	208:24 214:1
38:24 41:9	136:11,13	219:1,2 222:13	222:24 223:7
42:9 43:21	141:20 142:1	224:14,22	223:20,24
182:11 238:25	163:3,16 177:5	234:25 239:22	225:23 234:11
277:24	pads 132:20	239:25 290:13	243:3,5 245:19
own 47:12,19	135:18	290:14 293:19	247:8,13,13
92:23 121:24	page 3:2 4:2	295:1 301:5	258:15,19
213:14 215:7	13:12 30:19	307:14 309:5	259:5 285:7
218:20 239:5	44:16,18 67:8	309:25	286:9 290:15
259:2 270:25	72:10 83:2	pagination	paper 260:1
275:25 276:3	87:12 88:12	30:5,7 44:17	papers 26:17
285:12	91:10,14 92:20	panel 264:17	293:8
owner 61:14	93:3,23 106:18	papa 43:10	paragraph
owns 218:16	106:19 107:22	44:24 45:12	25:21,22 73:9
oxidizing 305:9	109:19 112:21	52:5 60:24	282:17
305:9	113:22 115:12	61:3,15 67:14	parallel 148:19
oxy 33:8	116:1 127:6	67:20,23 68:3	151:9,11,11
p	130:24 135:2	69:2,13,25	156:7,8 167:15
p 2:1,1 5:1	138:17 140:22	70:3,7 71:8	167:24 256:21
p 2.1,1 3.1 28:14	142:8 143:2,4	73:10,11 78:23	257:3 260:24
p.m. 315:11	144:21 147:1,2	81:17,25 82:5	264:20 292:24
pace 44:22	149:19 151:23	82:13 83:4,12	293:4
55:18	151:24 153:20	83:18 84:25	parameters
pack 233:23	159:18 162:2	87:4 89:21	47:18 196:13
234:14,17	163:12,22	90:1 92:4,7,21	196:16,22,24
package 89:11	165:22 167:3	92:24 94:25	200:12
package 89.11 packer 94:3,5	168:14 172:24	95:3 99:5	parizek 2:21
119:8	182:16,19	100:9 115:8,12	29:10 123:11

[parizek - performed]

123:13,17	292:15 293:17	316:14 317:8	penetrate 69:8
124:1,2 125:25	301:7 302:23	317:11	people 28:15
127:6 169:13	302:25,25	parting 189:16	29:6,18 49:22
169:16,23	304:19 305:9	192:11 194:2	226:8
170:6,16,21,24	309:11 313:25	227:7	perceived
171:18,21,24	314:2	partly 239:10	12:20
172:4,14,23	partially 14:18	partners 21:15	percent 45:8
173:8,10,15,20	211:11	parts 262:17	61:9 86:7,10
174:2,5,21	particles 207:2	263:21	86:11,12,19,20
286:12 289:22	207:7	party 7:21 17:2	111:23 112:17
299:5	particular	21:21	112:18 113:10
part 48:8 49:4	16:13 32:21	pass 23:10	146:13 184:16
53:2,24 69:21	66:5 109:6	30:12 209:20	186:4 205:20
76:18 77:5,7	120:2 131:14	287:14	216:13 252:11
80:21 91:19	133:24 140:14	password 5:12	252:11
93:5 103:6	141:14 142:19	past 17:17 51:9	percentage
104:19 110:25	148:2 150:1	272:17	61:1,10
114:25 126:11	200:6 214:25	path 162:5	perfectly 76:10
128:22 129:9	241:22 242:24	167:21	perforate
129:14,16	247:8 258:11	paths 163:6	111:25 119:7
131:8 146:11	290:14 300:25	166:12	perforation
150:6,11 167:5	particularly	pathway	147:22
168:17 169:24	25:19	117:21 149:15	perforations
170:7,14,17	parties 5:17,25	161:6	119:11 207:3
174:21 180:20	8:5,9 9:18	pathways	perform 37:16
181:12 186:1	10:19 11:7	176:12 281:22	213:7 228:15
194:23 210:7	15:11 16:7	pc 2:9	280:8,9 300:19
211:21 215:5	17:11 21:19	pe 153:16	performance
217:20 221:9	24:24 25:5	peak 224:15	125:2 163:4
225:13 228:9	26:14,18,24	pecos 1:13 5:7	166:8 182:6
230:17 239:2,5	27:2,9,19 28:1	28:13	195:11 198:23
243:13 247:12	28:21,24 31:4	pending 10:13	284:15
265:14 273:22	31:9 75:25	11:13,16 14:13	performed 56:4
274:21 280:15	84:18 182:15	14:22 15:18	106:21,23,25
283:19 292:4	239:22 316:12	16:4 236:23	164:19 165:3

[performed - place]

284:6,9 287:24	263:8,22	pessimistic	55:6,10 57:24
performing	267:18,20	152:24	58:4,12,23
110:9 278:4,13	273:11 274:21	petra 89:10	61:19 90:7,17
performs 278:9	276:13 281:1	petroleum	93:5 156:15
period 13:22	292:5 293:17	40:23 66:12	157:4 169:24
19:21 41:1	296:13	125:25 179:14	170:14 172:13
124:9 186:1	permission	180:12	181:4,12 185:9
188:14 203:11	68:23 222:2	petrophysics	187:9 194:12
212:7 278:15	permit 58:8	112:23	199:14 213:8
294:11	61:25 62:3	ph 25:20 29:10	230:18,18
periods 131:15	70:6 205:2,4,8	36:2,3,5 38:5	231:2 232:23
135:4 277:21	295:18 305:13	256:7,10 308:9	239:1,13 251:2
permeabilities	permits 37:6	phillip 36:3	270:14 272:23
200:11 228:20	218:4 226:1	phone 29:11	273:5 276:9,16
permeability	284:14 312:4	photoelectric	276:16,19
113:12,14,15	permitted	153:17	280:5 286:7
113:18,21	282:23	physically	311:16 312:11
196:13 197:3,5	permitting	211:23	pilots 61:21
197:8 198:7	40:19 49:19	pick 196:10	239:15 242:2
200:17 201:24	50:1 63:20	244:11 307:1	268:15 279:10
228:22 229:9	65:5	picked 301:8	286:20
230:11,22	perpendicular	picks 37:15	pinch 97:9,14
233:4,6 297:17	149:6 156:12	piece 273:17	101:4
permian 42:11	person 6:22	311:13	pink 129:18
43:24 44:1	28:13,15 118:5	pieces 7:23	144:17 147:18
50:14 54:2,9	121:15 219:19	18:19 61:22	pinkish 86:1
54:18 64:23	perspective	277:19	240:20
124:23 126:24	25:10 58:9,13	pilot 28:19	pinon 23:7
173:22 175:4	58:16 59:8	31:12,19,19	114:23
180:2,13,20	234:21 274:1	32:14 33:20	pipe 216:1
239:7,12,16	286:22,23,24	34:14 38:25	pit 233:16
240:6,9 241:8	perspectives	39:2 42:16,25	place 12:12
248:1 251:11	274:2	43:1,5 44:15	13:1 101:4
251:22 254:4	perturbation	47:9 48:14,19	111:25 116:19
260:3,25 261:9	241:13 293:6	52:13 53:8,21	126:18 137:18

[place - positioning]

141 01 150 05	120 2 7 120 10	110 11 110 5	F 1.4
141:21 153:25	138:3,7 139:19	112:11 113:5	pop 5:14
206:12 217:6	139:23 141:13	134:3 137:5	porosities
284:21	141:15 146:3	146:11 147:22	202:22 231:14
places 64:21	165:25 177:5,7	147:23 148:10	231:23
276:14	177:14 183:14	189:3 190:2,13	porosity 82:20
placing 87:3	186:1 188:2,15	190:25 191:8	83:4,22 84:11
plan 23:24 33:1	196:6 201:7	191:25 192:13	85:24 86:3,8
48:19 58:19	202:25 224:22	192:20,21	86:17,20,23,25
63:21 76:15	244:15,21	197:21 198:9	87:21 88:9,16
118:16 119:3	249:2,6,22,25	199:9 205:1,2	88:20,20,22,25
120:5,7 206:12	251:8 253:14	205:5,9 207:10	90:4 113:9,18
258:9 273:22	259:18 261:24	221:7 228:17	196:13 200:15
279:11 312:6	265:16,22	249:3 277:17	231:20 274:7
planes 264:16	266:10,12,21	294:21 295:3	280:22 297:10
planned 305:8	plots 135:21	295:13,15	297:14,16
305:9	137:24 162:19	306:2 310:11	portal 27:2
planning 39:17	188:2 212:14	314:25	portion 44:6,25
70:25 76:12	244:3,23	pointed 194:19	77:13 84:21
82:18 124:12	plotted 89:10	226:19	103:19 109:10
124:20 125:8	142:3 249:6	pointing 12:3	109:11 152:12
plans 114:4	plt 148:10	227:5	184:2 188:5,19
169:15 305:10	plu 147:18	points 146:8	304:23 305:5
plate 54:3	plug 76:15	184:5	portions 25:18
plc 204:20	82:17 108:15	pole 161:14	183:20 294:10
please 5:17	207:3 249:18	poly 296:10	309:7
8:11 10:3	plugged 69:12	polygon 144:18	posed 280:20
38:14 39:7	108:7,11	248:19	poses 54:4
62:21 63:11	plugging 69:15	polygons	position 14:8
123:13,14,25	108:12 271:23	129:18	14:23 23:12
165:22 167:3	pods 267:12	pool 10:21	24:2 44:2
178:11,22	point 14:4	11:11 14:17	53:25 110:10
237:4	16:17,21 17:5	289:10	233:24 300:10
plot 113:19	23:1 24:14	pooling 10:18	311:1
132:15 137:9	89:4,5 103:5	11:11,15 14:21	positioning
137:22,25	105:24 110:3	15:6	25:9

[positive - presented]

positivo 19.12	187:2 228:19	proctice 20:10	nuonava 72:2
positive 48:13 48:23 49:2	231:19 232:15	practice 20:10 29:23 109:8	prepare 73:2 84:3 281:11
177:17 204:16	232:19 234:4	211:20	prepared 22:20
possibility	236:10 266:12	practices 240:8	25:12 30:6
104:15 105:4	270:5,6,9,23	pragmatic	82:20 93:22
173:17	271:12,15	272:8 302:19	95:25 126:11
possible 105:15	273:14 275:8	304:13	130:20 157:16
119:14,15	281:15 285:9	pre 33:11 35:12	209:11 279:13
146:25 149:15	285:23 308:15	36:17,22 68:8	287:2 317:3
175:21 207:1	308:16,20	68:10,21	preponderance
215:25 227:25	potentially 8:6	277:12 285:4	246:18
232:16,23	14:20 23:4	precedent	prescribe 17:2
posted 262:5	25:14 49:16	132:21	presence 43:21
potential 32:21	51:11 55:25	predict 168:20	80:16 96:9
47:3 49:14	56:17,19	predictable	117:14 168:9
50:10 51:9	109:23 127:2	131:12	present 6:18,20
53:3 54:14	151:15 152:6	predicted	6:22 27:17
56:4,7,16	154:1 156:10	134:15 203:3	28:19 29:12
73:20 75:7	171:12 172:8	predictions	31:3 36:1 42:9
94:14 98:21	173:3 186:11	168:15	79:2 80:19
100:9,11	225:1 268:4	predominantly	82:3 126:7
101:10 104:22	271:17,23	252:16	204:3 229:4,7
108:8 117:20	275:16 299:16	preference	288:15 307:11
128:19 130:12	pounds 192:15	295:3	312:1,3
130:19 144:7	pour 207:4	preferentially	presentation
147:25,25	298:7	149:7	25:5 29:17
148:6,22	powell 36:2	preferred	31:17 33:16
149:11 150:15	powerpoint	96:19	36:6,11 122:8
150:20 151:5	30:21	preliminary	158:15 164:19
151:13 154:8	ppg 192:19	98:7,9	164:22,24
160:17 161:9	practical 45:9	prelude 83:9	288:12,18
167:25 172:11	practicalities	premise 251:19	presented
181:17,20	122:4	296:3	27:13 33:1
182:6 184:13	practically	preparations	48:19 59:12
184:18 185:9	133:10	37:19	216:20 218:13

[presented - proceed]

	I	1	I
230:3 235:9,16	215:22 216:4	prevent 32:13	132:15 134:22
presenting 5:17	216:14 218:6	82:11 108:8	145:11,13
6:1 302:17	221:13 226:3	152:3	223:13 316:5
314:16 315:1	226:21 227:7	prevented	priority 114:16
preserve 18:17	228:12 230:14	214:5	114:19,21
preserved	232:1,4 233:1	prevention	273:18,21
250:22	233:15 235:1,1	35:14 208:7	private 310:25
pressure 69:20	235:3,4,5	prevents 17:9	probability
70:6,9 72:6,22	241:12,15,17	previous 23:25	113:10
72:25 80:10	252:20 256:8	97:2 130:1	probably 14:8
94:3 100:5	256:10 258:12	141:2 142:8	43:25 58:7
104:24 110:24	262:7 265:6	147:6 156:1	105:4 113:1
112:9 134:13	268:3 274:19	201:25 203:15	117:6 174:24
146:17,20,23	274:22,24	229:3 248:11	226:16 240:3
147:19 155:5	275:20 277:19	253:5 285:17	250:6,6 252:10
160:9 176:20	278:5 284:15	previously	257:3 259:8
176:20 188:15	294:12,13,14	13:17 39:21,24	290:14 297:18
188:18,21,24	294:14,17	64:4,23 125:17	302:20 303:11
189:4,7,8,11,15	305:19,21,24	153:11 155:3	303:16 312:2
189:16,21,23	305:25	183:4	problem 15:5
190:3 191:2,8	pressure's	primarily 32:7	106:1 109:18
191:10 192:4	278:5	35:13 63:22	295:11
192:11,15	pressures 94:7	83:21 162:7	problematic
193:9,13,14,23	146:19 182:9	179:19 180:13	23:25
194:2 196:2,4	195:20 204:21	primary 24:11	problems 99:13
197:23 198:16	206:6,7 208:14	27:12 39:16	99:20
199:2,5,7,9	208:14 215:17	63:19,19 92:1	proceed 108:7
200:5 201:5,7	216:7 228:14	119:16 180:5	procedural
201:8,13 202:2	229:7 232:22	183:19 217:11	10:15 19:20
202:17 203:9	234:18 271:20	prime 85:4,11	procedure
203:17,19	271:21	85:13 87:6	274:4 284:3
204:17 205:1,8	pretty 89:5	89:3 116:1	procedures
205:20,20	131:22 237:23	275:3	37:5,7
206:6,7 208:17	259:12 281:7	prior 7:16 20:2	proceed 10:21
213:24 214:1	296:11 297:20	35:23 89:8	63:7 279:5

[proceeding - profiles]

proceeding	303:18	158:12,17	175:7 177:3,5
13:5 19:24	producer	170:20 185:3	177:8,21 180:1
317:4	138:25 139:21	210:4	183:15,16,18
proceedings	142:2 148:11	production	183:19,24,25
16:18,19 22:12	150:18 167:17	2:11 21:3	184:5,11,20
316:3,5,6,9	167:22 170:12	32:15 41:7	185:10,12
317:6	176:4,18	49:15 51:3	187:3,3 198:12
process 50:2	177:11,15	56:5,7,8,11,12	204:19 208:11
84:8 91:6	184:7,15 196:3	56:15,16 61:2	240:14,23,24
103:7 117:1,2	210:4 251:6	61:3 92:24	241:14 245:24
185:2 204:11	270:19,22	93:15 95:22	245:25 246:1
213:25 296:7	308:16	124:15,24	247:10 251:4
296:10 298:7	producers	127:18,18	251:13,25
305:17 309:2	52:24 53:3,4,9	128:17 130:22	252:1,5 270:5
processes 205:7	92:7 128:4	130:25 131:11	270:21 271:2
processing 57:4	130:11,16	131:15,20	275:21 276:2,6
204:14 297:20	131:7,8 132:3	132:1,13,17	277:20 281:12
produce 42:10	143:14 144:10	134:1 135:21	281:16 285:21
156:3 183:12	145:5,10	136:14,15,16	285:22 298:15
217:9	147:10,12	136:25 137:11	303:11 304:9
produced 32:9	152:3 157:12	137:12,19,20	309:1,21
42:12,14 46:25	170:10 176:17	138:1,2,14	productions
50:14,17,20,21	176:22 182:25	139:16,20	187:10 218:10
50:23 51:2	183:5 185:10	140:5,10,14,23	301:23
54:1,2,7 55:21	208:8 211:10	141:13,15,24	productive
59:16 76:13	270:25 275:19	142:9 143:14	56:19 297:25
82:11 102:22	278:13 307:23	144:14 145:25	productivity
102:24 103:1	308:1 309:19	146:3 147:19	91:9 95:18
104:6 131:9	produces 45:5	147:20 150:10	223:17
146:13 180:14	50:19	150:14,22	products
180:17,17	producing	152:6,6 157:8	126:17
186:18 239:10	96:24 127:14	158:21 160:23	professional
251:22 275:6	128:9,15 132:2	162:1,21,25	65:3
286:3,25	133:20,25	163:4,7,11,13	profiles 200:9
295:11 302:14	136:15 151:15	165:23 166:7	271:3

[profit - provided]

profit 74:23	66:5 93:6	properly	protect 37:8
program 42:17	110:1 111:9	213:19 233:19	282:1
48:15,20 64:25	124:18 125:3	234:13	protected 60:6
70:17 73:25	126:8 156:15	properties	protecting
74:15,16 75:4	157:4 181:4,13	253:12 288:3	79:16
103:7,11 114:4	185:9 194:12	proportion	protection
170:15 180:15	199:14 231:3	60:19	36:21 52:23
198:17,18	239:9 272:24	proposal 74:24	protective
230:18 251:2	276:16,17,19	120:3 212:6	32:24 79:12
264:23 273:5	projected	233:20 311:21	protests 59:5
274:19 275:6,9	84:23 187:12	proposals 48:8	protocol 33:22
276:9 280:5	projecting	propose 9:4	77:6,8 242:15
284:21 286:7	186:10	26:7 223:8	242:20 247:3
286:20 296:9	projection	proposed 24:21	269:15 274:21
298:12 300:25	35:14 80:6	24:22 37:5,21	283:20
302:17 305:15	85:6 148:9	47:5 60:4	protocols
306:22,25	projects 47:9	61:22 69:8,20	242:22 268:13
309:7	53:8 55:15	70:16 73:17	proud 251:5
programming	59:20 65:17	74:14 83:13	prove 170:9
89:14	90:23 124:19	93:16 208:5	provide 14:12
programs	125:4 157:5	210:23 213:8	18:20 40:7
34:11 124:18	179:20 239:1,5	243:15 245:19	48:25 51:14
progress 272:1	314:1	246:8 247:9	59:22 61:20
300:7	proliferation	277:11 280:1	64:8 70:16,21
progressed	293:15	282:10 283:15	72:7 78:18
244:12	prompted	287:25 288:21	94:11,11
project 28:19	175:1	306:22	167:18 208:11
29:18 31:12,19	promptly 315:8	proposing	210:6 271:6
31:19 32:2,14	prone 257:4	31:13,20 33:21	280:8 286:21
33:4,5,9,11,20	258:5,6 260:25	34:10 71:5	310:13,22
34:14 38:25	261:23 264:21	73:25 74:11	311:4,4
39:2 42:25	propagating	79:18 111:21	provided 9:5
43:1,5 52:13	154:15 161:11	131:6 230:4	50:1 54:12
52:17 53:21	proper 56:2	233:14 284:2	67:10 102:20
55:6,10 58:4	234:5	305:17	257:13 301:23

[provided - question]

303:9 311:10	publication	239:3 245:3	qualified 316:7
provider 311:3	257:8	247:6 273:25	quality 203:17
provides	publicized	306:17	206:22 209:7
268:15	284:19	purposes 22:3	213:24 274:8
providing	publicly 48:25	77:18 181:9	276:6 299:19
168:2 279:2	94:18 195:19	218:9	quarry 114:4
280:2	227:1 264:23	pursuant 11:14	quarter 44:9
proximal 43:13	306:23 310:22	13:19	quarterly
128:25 276:7	published	push 299:11	221:2 270:21
291:4	260:5 293:8	pushed 302:22	310:15
proximity	pull 207:15	pushing 204:17	question 27:11
142:21 155:19	227:2 259:11	put 18:3,14,15	27:15 58:3
156:4 163:16	259:19 310:20	27:1 29:17	60:3 61:21
prudent 35:23	pulled 115:1	30:6 59:19	74:1 81:21
psi 70:8,10	206:3 249:23	119:8 151:18	90:17,18 96:12
72:19,24 73:1	251:15	169:21 204:25	97:7 105:7
134:20 146:20	pump 188:17	213:17 218:9	109:16 113:11
146:21 155:4	188:18,20	219:12 225:24	116:16,24
191:8,11,12,13	189:2,21 191:4	233:20 246:19	120:11,24
192:5,16,20,24	191:4,7 309:17	252:19 279:10	121:19 158:10
193:10,17,22	pumped 188:13	283:8 303:6	161:17 162:23
193:24 194:6	188:15 195:1	306:25 310:9	163:2 164:25
202:6,9 203:13	212:6	312:13	169:24 182:5
203:15,21	pumping	puts 220:22	187:7 190:5
215:8,9,19	189:12 309:15	270:2,6	194:16 197:4
216:8 220:22	pumps 204:16	putting 103:7	209:21 210:12
221:7 222:4,4	204:16,16	312:12	210:16 211:16
256:8,10 265:7	pun 252:20	q	219:19 220:4
265:9 293:9	purple 88:21		222:22 223:1
psid 205:1	128:2 129:18	quad 274:5 quake 289:20	225:9 227:24
psis 215:22	140:11 141:9,9	quakes 259:4	229:3 232:11
public 5:12	142:3	266:19 311:5	233:3 234:16
94:21 254:11	purpose 42:8,9	qualifications	247:22 260:18
279:3 311:1	66:22 77:21	41:10	267:16 280:20
316:21	83:6,8 110:11	71.10	280:23 288:8

[question - rates]

301:1,17,20	284:5 286:15	202:12,20	136:1,2,2,24,25
307:21 311:13	287:15,17,18	208:17 210:24	137:2,3,12,12
312:19 313:4	290:5,8 300:1	211:4,7,13	137:20 138:2,5
313:20	301:10,13,15	242:7	138:14 139:20
questioning	303:12 306:10	radiuses	139:20,21,24
236:16	307:22 314:19	242:17	140:4 141:18
questions 9:22	quick 57:22	railroad 40:2	141:19 142:5
12:17 16:23	69:22 105:7	raise 38:15	162:1 165:23
17:11 26:10,11	106:13 119:21	62:22 123:14	171:25 184:8
26:12 34:19	175:24 237:23	178:11	184:17 186:5,7
50:15 53:19	282:16	raised 32:1	186:9,10
54:21,22 55:2	quicker 234:18	rake 255:20	188:17 189:21
57:9,10,12,14	quickly 29:8	ran 134:13	195:8,22,24
57:16,17,20	57:1 68:24	227:21	196:1,2 197:2
60:11,13,17	95:1	ranch 190:7	197:7,9 198:11
61:19 62:12	quite 35:10,22	ranchy 105:14	198:15,20
78:23 92:2	80:15 81:12	range 189:12	203:19 206:5
102:14,16	219:1 223:23	194:2 200:21	213:1,9,20
103:10 106:3,6	236:5,10	215:5 223:24	215:2 223:9,9
106:17 107:16	244:20 293:16	224:4 230:8	223:21 224:5,9
107:18 116:18	r	234:10 262:24	225:6,17
118:22 119:22	r 2:1 5:1 8:1,4	rankin 2:11 3:4	226:17,17,21
122:8,9 158:6	21:17 152:18	9:20,21 10:1	227:21 228:14
159:10,11,12	r21575 15:9	10:12 14:5,14	228:15,24
159:16 169:6,9	r2swd 198:1	15:3 16:1	231:11 232:7
174:7,8 175:17	radial 197:14	17:16 18:2	232:10,21
175:21,22	197:14 201:18	19:19 21:25	233:2 278:2,11
177:24 178:4	201:19 228:8	22:1,3,8 23:14	283:22 284:1
209:25 212:17	230:4 232:5	25:11	285:1
212:19,21,24	radius 93:20	rapidly 212:12	rates 32:18
216:17 219:2	94:23 99:4	rate 37:17	52:14 72:6
219:25 231:1	182:7,25 183:6	69:20 70:1,4	100:12 168:6
236:18 237:6	196:14 198:6	72:14,17 132:1	171:17 172:3
237:12 274:15	200:14 201:5	132:7,11	195:20 202:23
279:18 281:3,8	200:14 201:3	133:18,20	203:3,16
	I .	1	1

[rates - recollection]

204:22,24	react 182:9	118:11,18	211:9 213:13
212:11 215:11	reacting 230:21	119:10 127:11	276:3 301:7
218:3,4,8,12	reaction 90:14	132:16 133:2	rebuttal 122:17
224:2 226:22	reactive 249:19	137:23 141:25	178:5 314:23
227:8 229:6	read 6:13 15:4	142:23 144:6	recall 16:25
232:13,25	19:9 73:9	155:16 169:25	74:10,19
235:5 271:22	213:23 254:23	180:15 184:12	108:10 167:7
rather 35:23	283:6 313:6	194:9 197:9,21	177:23 191:9
46:12 68:24	reading 128:16	200:3 213:21	210:8 211:13
104:17 141:18	readings	215:9 218:13	214:22 217:14
235:17	228:13	221:12 225:21	225:6,7 228:22
rating 313:8	reads 308:17	226:25 228:4	234:9 237:1
ratio 131:19	ready 30:1	229:11,13,23	314:22
132:9,12,18	38:13 123:3	230:13,22	received 33:3,9
133:19 177:4,8	216:21	231:6,9 232:11	48:13 59:1
ratios 132:2	real 205:15	233:2,6,23,25	receiving
rattled 207:21	206:2,2,11	235:2,4,9,22,24	154:10
raw 41:4	209:4,5 233:2	236:7 244:11	recent 23:6
310:14	reality 228:4	247:2 276:5	186:15 259:19
ray 77:15	236:6	284:1 293:21	recently 261:5
153:12 274:6	realized 202:9	312:22	294:23 311:24
reach 8:23 9:3	really 28:7	reason 49:4	recess 26:24
83:24 135:6	37:12 55:16	59:2 77:10	recognize
168:1 187:5	57:1 66:23	108:13 112:3	42:11 59:10,14
189:3 207:13	77:18 82:3,16	119:16 188:21	59:15 206:25
268:23 308:6	83:8 86:18	190:10 195:18	267:20 272:4
reached 143:6	87:1 89:6	205:5 211:17	295:14,18
143:15 144:22	91:19 95:1	211:21,22	recognized
146:9 187:6,21	96:10,25 98:2	212:1 215:5,14	42:2 66:15
191:1,4 199:21	99:18,22,23	228:9 230:17	238:17
201:21 207:24	101:12,24	244:16 248:16	recognizing
308:12	103:24 104:19	286:6 302:9	296:20
reaching	105:22 110:12	309:15,24	recollection
249:12	114:6,13	reasons 32:7	74:21
	116:25 117:16	60:17 135:15	

[recommend - regulators]

recommend	recovers	reduces 45:15	referred 26:6
260:10 298:19	136:17 137:13	262:8	174:11 189:15
recommendat	recovery	reducing 236:4	240:16
288:5 313:7	179:21 183:19	294:17	referring 30:11
recommendat	217:24	reduction	131:23 136:22
24:24 37:4,11	rectangles	50:14 244:13	158:11 188:10
49:12 287:23	135:12,13	271:20,21,21	192:25 240:23
recommending	rectangular	reductions	reflect 6:21 7:4
79:21	236:7	252:13	7:12 19:15
reconfigure	recycle 50:24	redundant	228:4 230:8
26:24	recycled 50:16	21:16 24:8,12	267:25
reconsider 8:3	recycles 50:21	24:14,18,20	reflected
12:1,7 13:7,12	recycling 50:17	reevaluation	228:20 229:8
reconsideration	red 85:15,16,17	138:18	reflecting
15:4	85:25 128:2	reeves 244:16	200:10
reconvene 27:3	130:8 134:4	260:15,16	reflective
237:17	136:1 139:20	261:16 262:15	230:24
record 7:4,12	142:3 148:16	263:4 265:25	reflects 204:6
18:17 19:15	151:4,4 192:1	266:7	regard 124:7
25:20 27:5	192:14 242:7	reexamination	148:15 151:20
39:8 40:5	242:16,18	37:13	153:20 187:1,8
63:12 87:4	246:13 248:16	refer 30:17	187:15 235:3
122:25 125:22	253:13 256:22	136:18 137:1	regarding 8:20
178:23 238:7	260:14	reference 23:17	35:4,17 37:3,5
316:9 317:5	reddish 240:20	23:18,20	69:18 73:3
recorded 316:6	246:25	239:21 246:24	84:10 91:8
recording	redirect 314:19	259:13 260:8	120:12 126:17
123:2 297:25	redirects	referenced 14:5	130:1 146:12
316:8 317:4	312:23	25:22 126:16	regards 300:15
records 9:17	reds 242:12,12	246:5	regressed
recover 158:23	reduce 48:1	references 30:8	244:11
recoverable	73:20	159:22 260:9	regular 189:5
187:14	reduced 77:25	referencing	312:7
recovered	316:7	244:7	regulators
184:19			39:19 269:25

[rehearing - represents]

rehearing 8:1	316:13 317:10	remiss 259:23	represent
10:24 12:5	relatively 6:6	remove 207:18	128:3,10 129:6
13:17,21	122:23,23	295:17	129:19,23
reinforce 80:17	132:10 194:15	removed 59:6	130:3,15 132:7
reinjection	197:13 203:21	205:13 207:17	132:8 138:17
125:5	213:16 288:20	209:8	139:11 143:25
reiterate 19:1	289:2	rendered 287:9	148:5 149:2
250:13 286:18	relax 189:10	reoccurred	150:17 151:1
rejected 241:18	relaxation	265:18	162:6,13
relate 35:13	189:8	repeatedly 11:3	195:16 224:13
180:17 269:14	relaying 204:5	rephrase	229:21 236:9
related 14:11	relevant 157:12	154:14 162:23	242:3,6,17
180:16 204:4	247:21 281:24	164:25 177:12	representation
221:4 288:18	relying 114:24	report 26:13	172:3 188:3
301:10 303:10	remained 25:19	44:9 214:14	253:4 256:16
303:12 316:11	remaining	215:2 226:25	256:17
317:7	181:17,20	270:9 277:22	representative
relates 244:22	184:13,19	278:11 311:18	130:23 152:23
251:2 252:2	185:6,15	312:14	250:7 251:10
267:22	186:12,21	reported 1:21	255:18
relating 297:21	187:13 236:22	128:20 195:19	represented
relation 114:1	238:2	286:10	129:10 131:2
114:24 147:10	remand 23:4	reporter 8:12	132:5 185:25
245:19 256:11	remanding	29:25 38:12,14	202:24 235:9
relationship	22:23	62:19,21	243:19
113:18,19	remarks 36:13	123:12,14	representing
165:9 171:4,7	38:3	178:9,11	140:12 141:6,8
253:11,11	remedial	206:14	141:10 144:18
266:20 267:11	271:18	reporting	242:18
267:18	remember	246:23 249:9	represents
relationships	99:11 108:4	254:11 282:4	127:10 128:8
171:14	206:17,18	283:20 310:1	129:7,13,15
relative 84:21	215:24 238:22	311:19	130:8 133:17
149:3 234:10	remind 211:4	reports 36:18	134:5 135:13
251:25 259:14		243:24	136:1,9,12

[represents - resulting]

138:18 139:7	requires 36:24	234:20 236:11	48:11 62:4
147:23 149:25	rerun 230:11	258:11 262:7	102:20 155:24
150:7 152:17	researchers	274:8,9 288:3	166:14 171:20
160:6 167:8	264:15	294:16 305:25	176:17,21
177:18 183:23	reserve 57:11	reservoirs 96:9	177:16,20
190:20 197:17	60:15 105:25	196:8 259:2	241:15 242:4
197:18 201:8	122:17 178:4	residual 216:25	248:14,24
201:17 202:5	181:17 314:22	resistivity	249:4 250:17
203:13 241:23	reserved	77:15 153:15	269:15 270:17
request 8:2	149:12	274:6	responses
19:21 20:5	reserves 32:17	resolution	250:19
21:1,3,5 22:21	67:2 96:13,16	14:21 19:2	responsibilities
33:22 34:13	97:24 98:7,17	272:4 295:6,16	39:14 40:15,18
75:4 191:9	98:21 105:8	309:1	63:18,19,24
232:18 238:10	185:15 186:21	resolve 11:18	124:8 125:7
304:5	236:22	231:2	responsibility
requested	reserving	resolved 11:24	41:14 65:23
224:2 232:13	314:20	16:15 26:17	180:19
requesting	reservoir 39:17	resolving 25:8	responsible
20:23 26:5	47:18 89:25	resource 41:6	5:15 42:20
70:2 72:15,19	90:20 124:17	54:17 64:22	124:19 125:2
72:23 221:23	156:23,25	94:20 285:9,16	restate 47:12
230:18 232:21	157:1 179:19	resources	165:2 187:6
require 111:19	180:3,16 182:9	42:19 47:2	restricted
176:9 237:10	196:11,15,18	respect 106:17	49:21 149:8
required 21:17	196:20 197:17	119:23 142:11	result 52:17
35:7 68:4	198:1 199:5,7	185:8 186:20	99:20 130:24
72:12 215:1	199:10 201:1,5	187:9 195:3	131:18 133:25
313:16	201:8,13	268:5	176:13 207:24
requirement	202:10,20	respond 12:16	221:16 222:3
37:16 269:11	203:9 207:4	16:2 17:1	268:21
310:21	208:16,17	18:18 19:18,21	resulted 137:18
	1	210.20	186:4
requirements	216:3 221:4	219:20	160.4
requirements 69:19	216:3 221:4 223:18 228:20	response 15:23	resulting
_			

[results - robust]

			1
results 112:23	285:4,12,12,15	93:20 94:17	289:4,23 291:8
169:3 170:17	301:16 307:3	96:6 98:8	294:7 295:23
170:20 226:4	313:7	107:14 110:1	298:10 300:10
276:23 296:12	reviewed 22:11	111:8 113:4,24	righthand
299:22	22:16 24:22	114:6 115:14	30:10,18 44:17
resume 41:10	51:19 56:2	115:20 117:17	82:25 88:14
41:12 64:8	75:2 87:14	120:23 121:16	113:3 135:7
122:24 315:2	269:1 281:9	121:24 122:17	rights 10:21
return 238:5	reviewing	123:14 127:20	32:12 34:12
reversal 103:10	126:10	129:22 131:24	35:14 36:21
104:13	reviews 239:13	135:24 139:17	37:9 52:23
reverse 256:3	258:14 285:17	141:16 144:25	157:12 208:8
292:6,14,21	revised 11:1	147:12 149:5	270:21
reverted	revisions 8:8	150:16 153:8,9	ringing 185:5
134:23	30:14,16	153:18 159:22	rings 290:25
review 7:7	revisit 61:24	163:14 166:18	rise 34:11
10:14,16,17	129:1 175:1	170:20 178:11	42:13 46:20
14:19 15:12	revoke 11:10	183:14 184:5	252:18 303:19
16:2 17:13	12:12	186:1 188:25	risk 37:8 50:10
19:19 24:1,5	rga 218:13	190:23 192:19	52:20,22 95:22
31:24 40:16,16	rich 276:6	193:1,3 194:24	152:13 239:15
47:15 52:1	279:9	197:16 200:8	258:9 268:7,11
53:4 55:17	right 10:11	202:25 213:2	268:16 289:3
56:4,12,15,20	15:11 21:11	213:11 217:6	risks 270:9
57:2 68:7,17	23:16 38:15	217:10 219:18	302:15,21
69:7 71:8,22	43:25 44:8	221:6 223:10	road 56:1
95:17 117:1	47:6 56:5	226:6,14 231:1	277:13
150:11 215:1	57:17 62:15,22	234:2 237:19	roads 75:18
239:7,14,19	67:14 69:23	240:2 244:3	robust 28:20
252:24,25	71:9,13 72:20	245:12 246:25	127:3 140:18
253:2,4 258:16	76:11 79:18	247:15,23	254:2,6 272:7
259:22,23	80:3,12,25	253:14,14	273:5,13 275:5
267:19 269:9	82:4 84:18	261:21 264:22	275:9 280:3
271:6,8 281:5	86:4 87:7,18	266:10 268:21	284:21 286:19
283:1 284:1,15	88:10 91:18	270:11 277:18	296:15 299:4

[robust - samples]

	I	T	I
299:22 302:17	164:2 166:3	ruled 271:12	sahara 183:15
310:23,24	193:17 202:6	rules 16:25	saint 1:15
rock 164:6	221:1 240:21	17:4,8 18:20	salado 83:11,12
192:7 194:18	240:24 241:1,4	211:7 216:10	131:8 132:3
203:17 230:21	245:17,21,24	226:19	135:9 138:23
258:25 259:3	245:25 246:1,3	ruling 140:15	145:2 162:8
rocks 101:15	246:13 248:20	rulings 13:18	173:1 234:11
rod 161:14	249:10 251:15	13:19	sales 41:1
role 124:16	251:19,20,22	run 29:7 71:4	salt 99:12
125:8 180:11	252:3,8 253:18	94:1 111:3	117:14 120:17
180:13	256:17,20,21	117:25 119:6	121:11 127:13
roles 40:25	256:24 257:1	147:20 168:25	307:4
roll 6:13,16	257:19 259:6	170:9 199:3	salts 99:21
rolling 185:23	260:24 261:1,2	202:25 273:23	saltwater 35:8
rollup 311:23	261:3,4,21	274:11 277:17	41:21 63:20,21
room 1:13 5:19	264:13,19,20	300:22 309:14	63:22,25 64:2
28:2 54:5	265:4,8,20,21	running 77:16	65:15,16,20
269:22 272:16	266:2,2 292:5	96:23 275:10	126:6 129:13
272:16	292:12,23	278:7 299:25	130:5,17 131:5
root 127:3	293:4,8 304:24	300:21	139:8,24 140:4
142:22 155:18	round 236:16	runs 146:4	140:16 142:21
170:1	311:15	148:13	143:11,16
rooted 289:21	route 76:14	rustler 81:17	144:1,8,12
rosavar 256:7	routine 220:18	82:2,5	145:7,21 146:7
256:10	rowena 308:9	S	147:8 151:14
rose 264:17	rt 226:24 273:9	s 2:1 3:1 4:18	151:19 154:23
rotate 261:12	rt8 235:23	5:1	155:19 156:22
rotates 261:1,8	rta 195:21	safe 54:7 209:4	160:13,16,20
261:11	228:6 299:3	safeguards	164:4,7 170:8
roughly 45:5,6	rubin 2:8 17:3	35:6	170:11 267:23
45:7 50:18,19	18:6 19:6 20:5	safely 50:8	sample 132:2
51:1,5 131:21	rule 36:23,24	safety 30.8 safety 194:5	135:22 162:7
137:2,16 141:3	142:24 169:25	216:6,13,15	171:13
146:13 151:8	216:5 271:8	282:6	samples 134:14
152:21 162:18		202.0	134:16,17

[samples - see]

171:10 230:23	226:16 300:17	sciences 125:16	secondary
san 124:10	302:12 304:17	scope 55:11,13	183:19 217:11
125:13,15	says 5:14 9:5	90:6 122:2	seconds 205:9
179:18 266:15	83:3 96:8	scrambling	205:21
294:3	133:21 136:7	295:15	section 23:15
sand 105:14	137:17 143:13	screen 5:14,19	23:17 85:7,9
sands 83:22	206:21 292:10	31:11 43:4	85:12,14,25
297:11,14,15	313:6	66:18 72:11	99:15 106:24
297:20	scada 120:13	screens 81:10	107:1 138:24
sandstone	120:20 206:2	sds 144:2	139:5,6,9,22
297:7	206:14	sdws 73:5	140:1,6 141:3
sandstones	scale 118:13	282:2	141:4,5,8
113:16	139:19 223:1	se 313:8	142:15,19
santa 1:16	246:12 254:22	seal 80:17,18	160:12 161:14
satisfactory	255:6 263:3	81:5 181:25	163:23 166:3
24:23	303:25	194:8 208:10	182:23 195:7
satisfy 302:7	scattered	sealed 173:24	263:21
saturation	129:19	305:7	sections 37:14
216:25 217:10	scenario	search 105:12	61:5,8 85:20
286:10	205:19	227:19	128:1,3 131:6
savage 2:9 3:5	scenarios	seat 123:22	145:3,18
10:2,3,5,6,11	154:12 170:12	second 7:3,11	146:18 162:9
12:16,18,19	200:10	19:14 22:14	162:20,24
14:6 15:22,24	scheduled 20:1	23:6,9,23 25:2	163:8,9 166:13
18:1,2,4,18	scheduling	25:15 38:3	261:17
19:17 20:4	22:4	44:9 79:6	sector 64:22
saw 6:3 133:23	schematic	84:23 85:11	security 5:13
134:21 142:9	107:24 241:10	91:24 93:24	sediments 86:7
190:25 204:9	scheme 261:25	96:25 133:11	see 6:10 10:8
227:16 244:13	scherer 25:20	134:4 136:12	12:10 25:20
saying 71:16	schill 2:9 10:7	189:19 192:2	26:14 28:15
77:17 79:22	scholars 261:9	192:25 200:2	31:22 38:1
109:7,22 111:4	science 40:9,12	251:6 253:16	42:13 43:5
112:16 117:23	58:7 64:15,17	254:18 306:10	50:13 68:10,15
217:5 224:8	125:13 179:9		68:16,18 79:17

[see - seismicities]

81:16 86:1,5	208:20 213:18	298:12,15	160:8 165:6,7
86:22 88:19	214:15 215:22	300:11,22	166:14 171:1,1
96:1,3,8 97:18	216:6 218:4	307:6 308:16	171:3,7 176:17
98:20,24 99:18	222:2 223:7	311:19	177:16 213:22
104:16,25	224:9,14,22,24	seeds 275:7	215:7 218:6
113:6 114:25	225:1,18 226:9	seeing 28:3	219:13 220:20
115:21 116:20	226:25 228:19	39:4 90:3	225:12 235:24
117:9,19,25	229:18 231:21	127:19 130:6	240:3 245:20
118:17 121:9	233:22 234:19	146:20 150:14	250:19 251:4
127:25 128:6	235:2,5 237:6	152:6 154:9	288:5,24
128:12 131:17	241:6,10 244:9	155:6 156:5	289:20 293:7
131:22 132:17	244:19,23	171:9 174:23	293:14 294:23
133:19 134:2	245:14,23	175:10 185:13	299:24 311:23
136:5,13	246:6,10 248:5	211:9 228:1,24	sees 142:4
137:10,17	248:22,25	230:22 232:16	segue 195:25
138:1 140:13	249:11,13,18	308:25 309:16	seismic 31:25
145:24 146:15	250:5 251:12	311:21	40:16 99:2,14
146:23 148:10	251:19,24	seek 15:12	99:19 116:23
153:13 155:24	252:2 253:7,18	37:12 272:3,4	117:22,24
159:25 161:25	254:10,21	295:6	118:1,8,25
163:20 175:7	255:5,6,8	seeking 10:17	145:18 148:7
176:20 182:22	258:16 259:9	70:7 313:12	151:6 165:15
183:16 184:4,9	259:16 260:14	seeks 11:9	168:25 176:13
184:14 185:24	261:1,17,20	seemed 97:5	215:1 242:4
188:1 189:8,10	262:18 263:1,4	seems 14:16	248:14 249:19
189:17 190:22	263:5,7,8,10,12	90:18 250:14	253:24 254:3,5
190:25 191:5	263:15,20	252:1	261:17,20
191:22 194:9	264:17 265:4	seen 17:17	262:16 263:16
194:20,21	265:10,19,25	101:9 118:13	268:16 279:24
195:12,21	266:5 271:1	129:25 130:12	289:12 290:23
196:9 197:22	278:12 282:16	131:12,14	291:2,12
198:4 199:4	285:7 286:8	135:14 141:19	293:20 306:22
200:2,19 201:6	289:24 292:9	142:15,17	310:22,25
201:14,22	292:13 293:25	144:13 150:10	seismicities
202:2 203:3,8	295:4,23	155:21 158:22	247:11

[seismicity - shallow]

	107.51	1 10 0 10	
seismicity	sending 185:24	17:7 19:8,10	61:5,15,17
32:21 39:3,17	229:21	26:14,24 27:7	67:17 72:4,8
41:7 42:7,13	senior 180:12	36:17 37:6	72:15 73:3,12
42:14 47:3	sense 206:11	79:7,8 119:7	75:9,12 78:21
57:17 60:15	228:17 235:12	141:8,9 200:12	79:1 80:6
116:25 118:22	307:15	204:25 205:1,2	81:23 84:4
119:1 239:7,11	sensitive 293:6	205:4,4,9	88:8 89:2,6,23
239:15,16,19	sensitivities	216:15 227:9	92:15 93:2,20
241:3 242:15	154:6	262:11 271:5	95:8,9,10,11,13
242:20,22	sent 17:14	292:6,11,14,25	95:19,23 99:5
244:17 245:4	203:12 204:15	293:13 313:21	119:23 120:12
245:14 247:22	205:10 207:14	sets 241:10	129:16 153:4,7
248:3,7,10	307:7	269:13	173:5 182:5
249:18 250:5,8	separate 215:6	setting 13:18	183:6 190:8,19
250:16,20,21	215:16 226:20	14:24 18:10	191:10,12
252:18 253:5	275:11 284:5	42:6 124:16	195:11,13
254:17 256:13	separation 82:7	199:1 239:16	199:17,23
258:8,14	118:11,18	279:11	208:21,22
259:23 267:1	161:3 258:21	settle 207:10	214:1 223:5,20
267:14,17,22	258:23 305:1	settled 16:7	223:24 224:19
267:25 268:8	separator 57:4	303:3	225:18 234:4
268:11,13	sequence	setups 5:21	259:14 290:18
269:7,9 270:6	297:12	seven 292:4	291:5
281:24 288:10	sequences	several 29:6	shaded 248:20
288:19 289:3	297:13	30:4 33:5	248:21 255:5
292:1 303:20	series 97:17	46:19 103:22	shading 88:21
306:7	service 45:14	126:19 131:6	shale 161:3
seismology	45:16 46:2,5	150:3 164:12	shallow 31:21
40:13 254:20	46:11 47:25	181:15 196:7	32:6,22 45:4
267:11	48:1 75:12	213:18 252:19	45:25 46:25
selection 48:7	215:21 305:24	253:21 254:14	49:16,25 53:11
282:17	set 7:16 8:7	255:18 269:22	74:11 81:22
send 6:7 172:10	11:20 12:24	279:23 294:24	191:24 204:7
204:13,22	14:1,10,15	severitas 45:18	214:22 225:19
206:25	16:11,14 17:6	52:8 60:23	240:12,21

[shallow - shut]

241:7 243:8	sharp 249:13	126:19 128:23	113:8 128:25
245:1 246:17	sheet 44:10	137:7 140:23	129:7,10,12,21
250:14 259:3	shelf 177:22	141:21 153:8	133:5,9,18,19
259:24 260:3	shelves 54:10	163:4 171:5	133:21 136:10
260:19 261:25	shmax 145:14	173:21 201:4	137:21,25
262:3 266:25	145:23 146:6	208:15 236:2	138:6,21 139:5
267:1,1,24	148:15,19	241:4 242:21	139:13,19,23
268:9 272:10	149:4,6 151:11	243:6 244:14	139:25 141:14
273:7 274:20	156:6,9,11	245:1 257:6	142:8 143:13
282:14	167:15 219:8	268:20,22,24	143:24 144:11
shallower	219:10 256:21	showed 70:24	144:16,17,24
45:21 132:20	256:24 257:3	97:4 116:18	146:3 147:6,11
190:11,13	264:12,21	134:12 143:16	148:5,16,24
233:14 260:17	shmin 149:4	163:7,10	149:23 150:23
266:7	shoe 188:25	172:20 228:23	152:15 153:2
shanor 2:15	191:23	261:5 289:23	155:15 160:5
8:14	shoot 188:9	290:15 291:11	162:11,14,15
shape 168:20	shop 243:25	299:5	163:6 165:4
shapes 236:6	310:18	showing 44:9	166:10,11,16
shaping 227:21	short 26:23	69:19 72:11	167:13,17,24
share 5:19	77:2 131:18	115:12 116:25	168:4 172:17
33:23 91:4	138:11 187:13	131:10 132:1	172:24,24
183:7 193:5	221:1 237:8,17	133:18 135:8	189:9 196:23
204:2 276:2,4	shorter 212:3	135:21 138:8	212:14 248:12
278:23 310:10	214:11	145:3 152:10	262:13
shared 127:17	shortest 213:21	152:24 153:5,9	shows 44:1,8
130:1 140:2	shorthand	153:23,24	44:21 84:20
155:14 171:19	71:11 124:7	163:5 224:23	86:21 88:15
181:22 219:14	shortlist 206:2	229:20 235:1	149:5 177:3
228:23 272:17	shortly 129:11	243:11 244:17	184:17 199:20
272:19 314:13	show 34:8	266:21	228:10 251:13
shareholder	45:20 61:11	shown 80:8,21	257:11 261:25
41:1	71:4 82:10,20	81:20 84:22	shut 143:18
sharing 66:18	107:24 110:23	85:7,25 89:5	176:22 205:18
181:24	113:9,11	91:19 97:3	205:21 246:23

[shut - slide]

250.20	~! ~~. ! C! ~ ~ ~ 41~-	~ ! 200.11	02.14.02.22
250:20	significantly	sir 290:11	92:14 93:22
shutoff 211:18	154:24	sit 184:23	97:2 100:10
shying 59:13	signpost 62:6	204:21	107:7 127:7,10
side 68:13 78:4	silurian 24:9	site 204:20	127:11,12,22
78:4 82:25	292:19 293:25	211:23	127:22 129:5
85:10,13 88:14	similar 45:22	siting 75:8	130:21 131:10
113:3 116:20	84:4 129:25	sitting 18:13	133:10 138:16
124:20 127:20	142:7 143:8	237:25 312:10	138:17,18
129:15 131:24	155:25 159:7	situation 170:2	140:23 141:19
132:3 138:21	163:4 185:2,22	six 30:23 65:1	143:4 144:20
139:9,17 141:6	194:16 203:11	128:10,13	144:25 146:10
141:10,16	203:20 205:5	137:14 159:22	147:4 148:17
146:3 149:23	213:7 225:17	213:22	148:24 149:1
150:16 152:10	233:9 255:8	sixth 160:3,4	149:18,24
152:25 153:3	263:2,20 294:8	size 202:19	151:24 152:13
162:8,14	similarly 121:1	266:12	153:19 155:9
166:18 192:19	simple 197:13	skills 316:10	158:9,12
218:5 224:3,13	228:7 231:8	317:6	161:25 162:1
228:23 232:14	232:5,9	skim 204:13	177:4 182:18
232:21 233:22	simplest 227:25	skin 229:16,18	182:20,21
241:11 270:13	simplistic	306:16	188:3 190:23
295:21 306:15	232:9 257:6	skinned 262:21	194:4 196:1
signature 71:14	264:24 299:25	skins 229:21	210:3,3 211:16
316:20 317:18	300:11	skip 33:15	216:19 218:25
signed 71:13	simulated	50:15 71:7	220:15 222:10
significance	202:23	290:14	222:13 239:19
85:16 140:13	simulation	slice 261:19,20	239:19 240:1
148:15 152:18	169:2 224:23	slide 31:11	241:20,21,21
167:12 232:7	298:20	43:20 78:5,5,6	243:9,10
significant	simulations	82:23 83:3,7	244:14 245:2,7
44:11 131:22	229:19	83:25 84:15,17	245:11,13
132:17,18	single 165:25	85:5,23 87:8,9	247:7,16,18
136:14 141:21	177:20 273:17	87:12,13 88:4	248:12 250:11
142:4 163:13	sinks 241:17	88:4,6,7,14	250:24 252:23
258:21		91:22 92:2,13	252:24 257:7

[slide - southern]

250.0.264.0	~~~~ II 72.14		212.22
259:8 264:9	small 73:14	somewhat	313:22
269:18 272:24	136:8 141:23	64:25 251:1	sound 215:10
277:9 279:13	186:9,9 188:13	275:12	sounded
291:11,20,21	225:12 242:8	sonar 103:16	309:10
292:8 293:18	259:12 266:14	sonic 77:15	sounds 25:4
slides 4:22,23	smaller 128:7,8	103:12 274:7	57:2 210:21
4:24,25 61:11	143:25 217:25	sorry 6:15 21:7	232:8 284:20
79:17 84:6	223:15 224:1	100:20 106:13	284:24
96:11 102:5	smart 179:15	115:15 147:19	sour 124:18
147:2 167:1	307:7	167:4 175:19	source 73:19
219:12 231:22	sme 117:4	183:23 188:16	159:2 174:20
242:23 243:7	social 59:2	191:25 206:16	243:20,22
246:12 253:5	socialize	239:21 262:2	sources 32:24
258:13 259:9	232:14	301:18	71:20 79:12
261:18 262:13	software 89:11	sort 8:7 9:24	241:16
264:3,7 268:18	198:19,21	22:6 25:7	south 1:15 45:4
268:19 269:14	223:15	53:22 80:17	45:24 145:12
288:10	solada 175:6	88:24 90:9	155:22 172:6
slight 30:15	sole 77:9	96:1,14 97:5	183:3 248:18
slightly 82:22	solely 24:15	97:15 98:15	261:3
84:6,6,9 89:19	solid 134:4	99:23 104:24	southeast 51:4
203:20 216:4	207:12,17	109:5 110:21	54:11 63:23
255:5 293:13	209:9	111:20 117:13	92:9 139:6,25
slip 220:15	solids 206:21	120:2 167:5	240:22 241:4
257:4 258:6,6	207:2,10,12,15	174:19 236:21	242:4 248:3
260:25 261:23	207:17 209:8	268:23 276:17	251:9,11,18
264:21 265:6	solution 50:17	282:12 307:14	252:15,16
268:4 293:10	97:10 132:8	307:15,17,18	261:3 264:14
294:22	165:9	307:19 308:15	268:9 272:11
slow 203:8,21	solutions 196:8	308:16,21,24	276:12
slowing 278:4	254:21 255:9	309:1,6,8	southeastern
slowly 208:18	somebody	310:1,3,4,21	41:15 44:5
slurry 108:23	211:24 238:1	311:12,16,18	65:24 242:22
108:23 154:4	someday	311:19,22	southern 43:11
240:17	296:24	312:13 313:20	46:21 64:17

[southern - stakeholders]

150:6 179:14	specific 25:13	157:13 159:7	247:8,13,13
243:22 260:15	44:15,20 57:6	168:2 172:21	258:15 259:5
260:16,20	102:21 189:24	173:11,12	285:8 286:9
261:6,16	197:22 227:13	176:5,8 181:24	290:15
262:15 263:2,4	241:19	240:14 245:24	squirrel's
263:21 265:24	specifically 8:2	springs 119:24	258:19
266:7 287:1	229:5	spud 277:12	sra 242:25
293:11,14,16	specified	squirrel 43:10	243:16 244:8
southwest	125:17	44:24 45:13	244:16 246:14
148:13 151:3	specifying	52:5 60:24	246:16,22
160:13 190:9	25:12	61:3,15 67:14	247:4,6,8,9
219:15 248:18	spectrum 133:2	67:20,23 68:3	249:6,7 250:3
space 207:4	sperling 2:17	69:2,13,25	250:4 256:19
233:19 234:2	2:18 28:8	70:3,7 71:9	266:6 290:16
254:7	spike 255:20	73:10,11 78:23	290:24 307:1
spaced 234:13	spill 71:2	81:18,25 82:5	sras 242:4,24
spaces 136:10	spinner 275:1	82:14 83:4,12	243:4,6,7
136:11	278:7 296:24	83:18 85:1	247:3
spacing 141:1	spirit 33:24,25	87:4 89:22	srt 37:17
164:5 234:5	spoke 29:14	90:1 92:4,7,21	st108 23:20
spacings	81:2	92:25 94:25	stab 96:12
163:19	spoken 75:7	95:3 99:5	stability 265:12
spatially	spore 271:4	100:9 115:8,12	stable 131:11
201:11	spot 135:25	129:13 131:5	131:11 132:11
speak 55:25	190:14	153:4,6 173:5	133:19 134:2
62:3 158:19,24	spring 32:9	182:5,22 183:9	163:7 256:5,6
181:21 291:5,7	61:4 99:2	190:19 191:10	261:13
291:17	139:12 140:9	191:12 195:11	stack 139:14
speaker 38:4	142:12 150:13	195:14 202:14	stacked 83:21
speakers	151:25 152:2,8	202:15 208:21	staff 312:5
115:18	152:10,19,25	208:24 214:2	stage 212:9
speaking 47:17	153:6,21 154:2	222:24 223:7	stakeholder
49:5 173:22	154:13,15,21	223:20,24	272:12 310:12
201:25	154:24 155:8	225:23 234:11	stakeholders
	156:20 157:2	243:3,5 245:19	33:2 39:18

[stakeholders - stick]

296:3,5	277:13 278:3	172:5,6 173:1	status 7:16,17
stalls 262:5	290:13 300:21	178:22 183:4	7:24 8:19 9:1
stamp 68:19	315:8	193:7 195:15	9:14,24 11:20
stand 23:1	started 28:23	197:14 226:11	12:22,23 14:15
standard 61:25	31:16 41:5	242:25 243:16	22:4 26:13,21
62:2 108:16	124:10,23	244:8 246:14	160:23,25
109:8 209:2	131:21 132:16	248:18 249:7	284:14 300:2
211:20 274:4	146:14 154:4	251:10 252:7	statute 13:20
274:21 297:20	175:3,7 179:17	252:22 259:14	13:20
standards	238:13 244:10	272:20 288:19	statutory 13:23
68:13 78:12	244:11	290:18 291:24	stayed 179:24
standpoint	starting 73:10	316:22	steadier 218:11
90:5 105:4	202:6 228:17	stated 12:22	steady 197:14
112:12 151:17	239:22 248:5	55:6	steam 179:20
197:9 217:22	254:24 277:4	statement 31:3	179:20,21
218:14	starts 83:2	33:11 35:13	steep 184:15
stands 188:6,22	189:6 192:22	36:18,23 65:21	stem 93:23,25
stanford 257:9	192:23 270:14	68:8,11,21	94:1,8,10,16,18
star 129:12,15	270:15	71:12,13,16	94:22 95:2
152:16 195:14	state 1:1 33:14	73:2 74:4	96:3,18,22
195:14	37:25 38:1	76:19 285:5,7	98:3 100:23,24
starred 153:3	39:7 42:18	286:8	step 37:17 98:7
stars 129:12	43:12,12 44:11	statements	98:9 141:21
189:9 242:2	44:12 45:9	27:12 28:25	151:20 188:8
243:15	47:13 48:18	126:17	226:17 245:16
start 30:19	51:6 53:1 54:9	states 25:23	278:2 281:10
46:12 66:18,19	54:18 58:14	251:7	283:22 284:1
67:4 74:6 80:2	63:11 72:15	static 274:1	285:1 300:2,5
84:15,16	73:12 78:21	275:12	300:6 303:21
104:21 126:10	95:19 108:18	stations 253:25	stepped 137:6
127:6 134:5	120:13,21	254:3,5,13	147:5
154:20 162:14	121:5,16	255:12	steps 197:1
162:18 216:19	123:25 125:13	statistically	stick 36:7
239:18,25	125:15 129:16	198:3	138:24 150:6
240:10 245:12	160:5,10,11		
	. ,		

[sticks - stunted]

	1	I	1
sticks 139:10	234:20,22	255:25 256:5	structure 95:24
141:6,7,10	store 279:12	256:25 257:12	97:11,13 98:22
143:13	straight 184:4	257:15,20,20	107:8 116:19
stimulate	185:25	260:22,24,25	307:14,20,24
156:25 195:10	strand 78:25	261:2,6,8	structures
259:1	strata 34:9	262:8,20 264:1	262:18 263:2
stimulated	53:13	264:25 265:3	struggled 17:18
74:12,24	strategic 301:7	265:11 266:22	studied 154:6
stimulation	strategies	267:3,6,10	studies 32:22
73:24 74:15,16	180:11	274:9 288:2,9	126:15 127:2
74:18,20 75:1	strategy 180:14	289:14,14	129:8 130:24
75:3 119:3,3	302:14	292:24 293:4	138:19 139:2
119:18,18	stratigraphic	294:17	155:14,18
136:19 161:10	37:14 89:20	stressed 294:22	159:22 174:12
176:16,18	90:2 97:3,5,8	stretch 220:10	248:6
271:7,10	101:1,3,11	258:4,4	study 82:19
283:12	118:12	strike 145:23	83:16 87:20
stimulation's	stratigraphy	220:15 256:25	91:8 113:21
165:19	89:19 97:14	257:17 258:3	126:11 128:18
stipulation	263:15	strikes 156:8	130:20 131:2
70:17	stream 101:13	striking 256:20	132:21 134:11
stone 313:21	101:15,16	string 79:6,8,11	135:5,17 143:1
stood 48:17	strength 152:2	79:15 283:14	144:21,23
stop 5:24	181:23 188:7	strong 134:9	146:17,25
189:21 238:1	190:15,21	191:3,7 193:5	148:2 150:8,11
243:25 310:18	194:22	250:15 266:4	152:1 154:16
stopped 105:24	stress 111:2	stronger 81:14	155:12 156:1
stops 249:25	145:16 192:3	129:3 190:17	160:3,24 163:9
259:18	192:12 194:1,7	194:25	175:4 207:25
storage 182:8	219:3,6,11,14	struck 304:6	214:7 260:5
197:18 199:11	220:9,10,19,21	structural	264:11
199:25 200:2	220:23,23	97:16,20	stumbling
202:18 203:6	221:7,10,12,16	100:25 255:21	308:18
208:23 209:1	221:18,19	263:25	stunted 298:12
229:12 233:1	222:3 253:11		

[stutter - sure]

stutter 28:14	179:11	suggested 14:6	support 33:5
styled 24:7,17	subservice	128:3 175:13	37:12,22 45:17
sub 151:11	39:15	suggesting	48:14 50:12
153:14	subset 129:9	74:19 128:16	52:1 54:18
subject 14:18	223:16 224:1	159:3 171:8	62:5 168:3
15:14 22:12	substance	suggestion	218:20 268:15
29:16 33:17	73:20 83:2	297:24 310:4	269:23 272:6
41:22 66:8	238:18	suggests 155:5	280:15,15
126:7,13 141:1	substantive	308:21	295:18 299:22
156:15 157:4	143:4 182:18	suite 283:17	300:14 306:1
181:4 194:20	187:17	suites 198:20	311:8
203:22	substituted	summa 125:14	supported
submissions	11:5,8	summarize	314:1
215:2	substitution	17:18 64:13	supporting
submit 24:25	13:3	100:8 155:13	33:8
25:15 67:25	subsurface	181:11 191:18	supportive
69:1,15 70:11	31:24 47:16	summarized	33:4,11
71:16 222:11	55:24 60:20	208:21	supports 37:4
submitted	73:16 116:5	summarizing	134:25
24:21 33:4,6,8	180:16 255:18	35:5	supposed 43:8
66:20 67:23	256:1,6 267:2	summary 40:7	164:8
92:18 143:9	subtle 136:6	125:10 126:12	sure 6:1 8:24
223:12,22	success 107:5	155:10 158:15	9:9 11:22
238:10	112:16 280:5	179:6 189:25	14:14 33:25
submitting	296:20	191:20 194:4	34:7 37:24
283:18	successful	198:4 207:23	53:2 67:21
subscribed	55:10 218:12	253:1 267:14	75:17 76:21
254:1	272:3 283:22	279:14 284:15	107:11 109:17
subsequent	suction 94:3	super 228:2	109:18 123:1
18:21 20:14	sufficiency	superior	158:5,14 163:2
23:19 147:2	100:6	140:18 164:10	165:1,3 177:13
159:24 183:8	sufficient 184:6	supervision	187:22 194:14
197:1 257:10	213:1 214:8	209:11 287:3	206:8,23 235:6
subsequently	suggest 236:24	supplement	251:5 305:13
11:2 25:17	303:17	151:24	312:18

[surface - talk]

surface 23:22	swd 31:19	switch 91:7,10	171:16 189:6
31:24 43:16	40:18 41:25	106:9	191:14 193:4
47:15 60:20	43:13 52:5,8	sworn 38:18	193:20 196:2
73:16 99:25	61:25 63:25	63:3 123:18	199:13 202:2,7
176:25 182:12	73:12 78:21	178:15 210:14	221:15 231:12
191:8 193:8,12	87:3 95:19	238:17,23	232:3 234:24
194:18 199:2	129:16 143:10	316:5	236:17 247:19
200:5 202:17	159:1 166:18	synergies 46:4	248:4 255:7
203:23 216:14	166:21 174:13	system 30:8,9	271:18 275:24
226:3 228:12	175:13 182:3	33:22 227:16	281:10 282:16
244:6 245:17	182:22 195:17	227:18 290:1,2	298:23 300:2
265:23	204:11,18	307:6	takeaway
surrounding	208:6,12,15	systems 203:23	142:14
198:1	209:6 213:5	209:6 283:2	takeaways
surveillance	217:23 218:12	296:21 306:12	53:20 92:1
103:6 114:10	218:15 243:15	t	279:14,21
120:5 124:17	246:9 259:15	t 3:1,1 4:18	taken 17:6
134:11,11	285:20,22	tab 41:12 64:11	47:14,15 50:25
164:20 165:4	290:19 291:4,5	67:8,13,16	95:2 138:19
170:7 171:2	swds 46:6,8,12	table 21:20	140:8 141:12
273:17,24	46:16,18 65:13	91:18 184:9	153:25 158:23
296:9 309:7	74:11 93:7,16	192:1,16 198:4	162:7 201:8
surveillances	167:22 168:4	273:20	245:8 273:25
114:15	182:10,12	tables 92:16	316:3,12 317:9
surveys 146:20	197:10 198:3	231:22	takes 214:15
146:21 275:2	204:4,7,8	tabs 30:23,24	222:1
278:7	206:13,24	tactical 55:14	talk 28:23 42:5
suspect 8:22	208:15 209:3,8	take 15:19 49:7	44:14 52:21
174:22	214:19 218:9	59:21 69:22	76:1 78:7 80:1
suspected	223:16	76:19 83:14	80:10,14 81:10
143:19 175:11	swear 29:20,24	88:1 96:12	86:24 100:4
suspend 272:5	62:20 123:13	97:11 100:5	109:13 113:22
sv 219:10	178:10	103:25 123:21	119:2 172:9
220:18 222:4	swell 23:22		195:8 204:12
	202:2	146:5,24	247:5,20
		151:20 154:17	

[talk - term]

	1	1	1
250:23 252:15	tank 197:18	233:18 235:7	255:4,9,24
253:15 259:24	207:10,16,21	235:21,23	telling 253:10
264:5 270:15	tanks 206:9	236:15 237:1,5	253:10
277:9 281:10	targa 2:15 7:25	273:8	tells 199:11
301:11 311:24	8:14	tbd 132:20	237:7 255:14
talked 12:20	target 31:20	153:14,14	255:17,22
16:4 46:15	87:2 120:18	team 23:19	256:5
50:13 51:8	164:16 173:14	29:3,12,13	temperature
56:20 58:24,25	205:6 218:1	31:23 52:11	238:11
60:15 65:2	targeted 77:23	124:16,24,25	temperatures
75:24 78:10	77:24 103:2	150:25 179:25	206:7
80:16 93:18	109:24 164:19	team's 285:12	temporary
97:19 98:13,14	165:3 214:24	teams 204:5	284:2
113:25 117:13	targeting 77:25	tech 5:8 40:10	ten 26:23 124:5
181:18 203:18	102:23 218:1	40:11	184:3 263:17
217:11 252:14	targets 78:19	technical 23:19	263:19 312:16
253:5 258:17	tasks 180:16	23:21 24:4	tend 101:13
262:12 273:6	taylor 2:20	55:17 124:16	208:16 229:14
274:12 275:15	29:9 81:10	124:24 252:24	236:2
275:22 276:24	92:10 100:7	252:25 253:2,4	tender 41:25
279:23 280:7	178:8,14,24,25	technologies	66:11 125:24
280:19 283:10	181:11 206:16	179:16	181:7
283:11 295:2	216:23 217:1,7	technology	tendered 126:1
309:5,25	217:13,18,21	41:5,6 125:4	tends 231:17
talking 30:19	218:18,22	296:15,15	tens 218:1
32:20 46:6	219:4,7,11,18	tectonics 40:11	tensor 254:20
65:3 82:9	221:9,23 222:6	40:14	255:9
83:11 102:21	222:17,21,25	tell 17:20 38:19	tenure 180:8
108:22 118:25	223:5,11	55:15,23 63:4	term 61:25
135:3 136:22	224:12 225:7	80:4 100:1	62:3 77:2
148:12 191:11	225:14 226:6	101:22 104:6	131:18 138:11
215:11 272:22	226:18 227:13	104:10,15	138:14 180:14
288:10,25	227:23 230:1,6	121:14 123:19	184:7 197:23
tan 84:22	230:9 231:7,21	178:16 199:19	302:14
144:17,18	232:3,12	238:23 247:15	

[terminating - thank]

terminating	283:22 284:1,2	testing 77:18	text 270:11
66:12	284:5 285:1	94:8,15 213:7	thank 8:10,18
terminology	300:19 301:2	213:11 283:12	9:11,12 10:11
34:6	tested 77:3	tests 57:4 77:3	12:19 14:3
terms 5:14	214:20	80:10 93:23	19:5 20:4,12
28:24 65:5	testified 38:20	94:16,16,17,19	21:11,12,13
74:16 83:16	39:21,24 63:5	95:2 96:3	22:8 26:19
89:8 95:18	64:4 123:20	100:23 187:25	27:16 28:5,6
105:7 136:20	125:19 178:17	188:4 191:21	30:2 31:10
153:11 183:25	180:22 215:18	215:6 275:11	34:21,23 36:15
195:22 219:7	301:12	278:2 287:24	37:22 38:8,21
227:22 230:22	testifies 29:22	texas 40:2,10	41:9 42:3
235:16 283:5	testify 29:21,24	40:11 43:11,14	44:14 46:5
territory 311:8	36:5 53:15	44:5 45:5 46:1	54:20 55:2
test 37:17,17	testifying 38:23	51:6,11 64:16	56:3 57:12
70:21 76:24	316:5	124:22 152:14	58:3 60:9
77:5,11,12	testimony 6:1	152:17 173:1	62:13,14,17
82:10 90:13	32:13,19 42:5	183:4 190:6,9	63:6,8 66:16
93:6,25 94:1,1	42:7,8 55:5	195:16 204:7,9	70:11 73:21
94:8,9,10,22	56:21,25 57:9	205:14 213:5	75:6 78:2
96:18,22 97:23	57:17 58:24	214:19,25	81:12 98:11
98:3 100:24	59:11 62:4	218:5 222:20	102:1,12,16
106:20 107:3	66:22 113:25	225:12,19	104:3 105:6
110:15,21	126:13,14	226:2 227:3,6	106:11 115:4
111:3,20,20	168:15 169:21	229:5,7 230:15	119:19 122:1,6
127:13 168:18	174:10,15	232:16 233:22	122:7,12,13,20
169:12 170:3,5	181:14 194:20	243:14,23,24	123:5,21
170:12 175:9	203:22 210:22	244:16 252:8	157:21 159:13
187:19,24	220:15 224:9	252:22 253:20	169:6,8 174:4
188:6,20,22,23	225:13 230:3	259:11 277:8	174:5,8 175:24
189:5,11,13,18	238:18 239:3,4	291:12,15,23	177:25 178:18
190:1,5,14,24	279:15,17,22	291:25 293:17	210:19 211:15
191:20 194:13	303:9 305:6	texnet 243:24	212:16,17
215:16 221:19	309:5,8 311:15	243:24	216:17 222:12
226:17,20			227:23 232:13

[thank - think]

236:13,15	194:16 196:14	286:5 289:21	176:10 178:1
238:15,19	203:18 231:10	290:1 291:22	190:7 197:15
287:13,21	231:11	300:21 303:6	205:22 207:7
290:4,5,9	thicknesses	304:3 306:17	210:15 215:18
291:10 306:6	86:6 90:14,20	309:9,11,14	216:12 221:9
306:20 307:10	202:21	310:1	224:12 225:7
308:14 314:18	thin 79:3	think 9:1,2,3	225:18 228:18
315:9	152:25 172:20	12:10,13 13:25	229:24 230:10
thankfully	262:21	14:20 17:5,17	231:10 233:18
259:9	thing 29:19	18:12 19:1,6	234:3,6,9,15
thanks 97:19	47:4 59:8 75:6	19:24 20:13,23	237:8,11,16
239:18 247:12	79:25 80:14	21:5 23:1,13	238:17 240:8
252:23 280:18	81:24 92:19	24:20,23,24	248:9 252:12
306:6	197:10 198:9	26:16 30:25	258:7,9 264:5
that'd 312:3	198:11 236:8	38:13 43:24	265:14 266:11
theoretical	240:5 254:18	46:10,15 49:22	266:12,14
104:13 105:3	289:17	49:24 50:13	267:1 269:24
theory 88:1	things 5:10	52:13,17,20	271:13 272:7
97:23 220:6,16	39:19 45:22	55:13 58:2,4	273:2,18,21
270:18	51:8 56:23	58:21 59:7	276:9,15,24
thick 86:5	60:1 65:2	60:14 61:10,18	278:17 279:6
108:23 152:21	75:18 80:10	62:11 68:21	279:25 282:8
152:24 153:7	101:22 121:18	74:21 75:21	284:23 285:16
154:21 173:4,5	151:7 198:21	79:22 81:20	288:1,1,19
297:14 304:25	239:6 248:7,8	84:5 88:5	289:4,7,18,18
thicker 89:21	253:6,6,7,21	93:18 98:3	289:25 291:17
154:24 172:22	256:3 265:13	100:14 101:12	292:16 294:3,3
194:11 231:12	268:17 270:6	103:5 105:2	294:4,8 295:25
231:16	270:21 271:19	107:10 108:25	297:6 299:17
thickness 83:21	271:24 273:18	112:4 114:11	299:18 300:1,6
84:11,12 86:23	273:19,21	119:23 120:5	302:13,18
89:20 90:2,2,4	274:9,13,18	121:1 122:21	303:9,21 304:1
90:9 151:25	275:7,9 277:24	122:22 123:3	304:2,10
152:11,21,22	278:8,22	161:5,10,16	307:14,24
153:1,5 172:20	280:18 285:18	169:23 174:2	310:22 311:11

[think - today]

		I	
311:16,24	95:20 96:5	133:17 134:22	timeframes
312:9,12	105:18 119:24	134:22 139:17	162:17
313:24 314:11	131:9 135:21	145:22 146:1	timeline 277:10
314:25	139:14 154:12	146:22 150:13	277:15,25
thinking 61:21	162:1 182:25	162:2 165:23	278:14
256:13 266:25	183:11 186:5	174:13,25	timely 30:22
300:9 314:12	191:20 200:9	175:8 179:12	times 162:19
314:15	234:4 240:20	182:9 188:14	240:3 254:10
thinner 89:23	277:5 309:9	189:23 196:5	271:10 273:3
90:3	threshold	201:1,6 202:3	294:24
thins 190:12	86:21 90:10	203:9,11	timespan
third 79:8 87:5	104:24	205:15 206:2,2	259:21
134:12 139:12	thresholds	206:11 209:4,5	timing 213:15
140:9 192:18	291:6	211:22 212:9	235:13 262:23
193:2	thrust 292:17	213:21 224:1	tip 262:22
thorough	thumb 216:5	229:13,15	title 130:22
142:24 239:7	tied 200:4	235:3,9,11,17	titled 243:15
267:18	221:1	238:4 244:5,20	toasty 238:9
thoroughly	tight 177:10,14	245:6 247:6	today 6:9 18:7
13:16	258:24	248:18 249:1	31:14,23 32:14
thought 58:20	till 131:10	249:12 250:21	32:19 33:19
101:21 140:2	251:14 301:23	254:7 267:3	34:17 35:19
150:20 196:25	time 5:6 10:14	271:22 272:5	36:1 38:5 39:4
226:15 232:20	11:2 19:4,21	274:24 275:4	42:7,24 51:1
263:24	22:7 23:3 26:8	277:17,21	52:12 66:22
thoughtful 34:1	32:3 35:21	278:9,16,19	71:25 73:22
34:13	37:17 38:9	286:5,17 287:5	74:5 75:23
thousand 155:4	41:1,24 54:21	289:15 292:19	80:9,11 81:11
164:13 218:8	57:15 60:11	294:11 299:1	98:4 100:4
thousands 82:6	66:10 82:23	303:1 308:18	101:9 108:19
218:2 244:24	87:14 103:5	314:16,24	118:23 122:3
258:24 273:11	105:2 108:21	timed 135:25	126:13 157:15
three 19:21	122:22 127:19	timeframe	181:13,18,21
36:1 78:25	131:9,10,13	184:3 203:20	189:25 204:7
79:11 95:2,12	132:13,21		219:13 224:9

[today - tree]

229:20 238:1	134:10,17	touchstones	transforms
240:4 252:15	137:18 141:21	282:13	189:22 196:7
259:9 261:12	148:2 154:3,19	towards 225:23	transient 195:8
265:17 269:20	183:22 203:13	248:17,18	195:23,24
270:4 271:9	231:6 239:6	trace 170:4	196:1 197:2,7
272:22 273:3	264:15 280:25	275:16	198:11,20
280:1,19	309:8	tracer 170:9	213:2,9,20
281:11 283:8	tool 147:20	300:16,19,24	224:5 228:15
286:13 288:16	top 60:25 81:9	309:14	228:24
302:16 303:19	81:22 82:3,4	tracers 271:14	transit 214:10
today's 240:9	82:24 135:20	275:14 300:23	transitioning
247:21	135:20 139:11	309:14,16,23	239:2
together 11:16	182:23,23	track 12:8,9	translate
27:13,18 29:16	190:23 193:9	153:12,13,18	227:17
29:17 59:18,25	200:8 201:8,9	tracking 97:15	transmitted
81:3,13 103:7	202:25 206:17	tracks 124:20	51:10
103:21 185:24	212:13 234:9	153:12 233:4	transparency
222:11 233:24	244:6 256:15	traditional	33:24
268:6 269:25	275:25 276:3	58:19 118:10	transparent
270:2,7,8	280:12 305:4	traffic 98:13	278:23 280:3
286:17 293:5	topic 41:8 57:1	traits 131:11	295:10
302:22	210:8	transcriber	transported
toilets 207:9	tops 245:15	317:1	51:10
told 95:21	total 115:13,17	transcript	trapped 98:16
225:10,11	115:18 182:8	317:3,5	trapping 97:21
toll 107:3	199:11 208:23	transcriptionist	travel 211:23
tom 2:22 29:10	211:1 233:1	316:8	traveled 164:20
62:18 63:2,13	252:1	transect 294:25	165:5
147:24 181:18	totally 116:14	transects 297:8	travels 201:14
194:19 210:9	touch 66:24	transferred	treatment
297:8,19	82:13 87:10	180:2	306:11,14
tomorrow	110:22	transform	treatments
288:13 315:2,6	touched 99:10	196:4 235:8	278:6
took 10:14 84:9	240:11 284:23	transformation	tree 307:15
117:11 132:24		294:19	

[tremaine - two]

tuomoino 2.12	triangles	200.25 201.5	22.14.24.14
tremaine 2:13	triangles	300:25 301:5	32:14 34:14
3:7 4:4,6,9,13	150:17 253:23	302:9	41:19,22 44:15
8:15,15 21:23	253:24	tubing 37:17	44:20,21,21
21:23 23:11,13	trickier 310:25	79:18,21 119:8	48:5 52:2,25
25:22 26:3,19	tricks 191:4	tune 196:17	53:7,8 60:4,16
27:22,22 34:22	tried 235:12	252:8	73:25 79:15,15
34:23,24 54:24	triggering	tunnel 169:10	79:17 80:11
55:1,4 57:11	311:20	turn 8:8 38:7	82:20 84:11
102:13,15,18	triggers 205:16	66:21 72:4,10	85:21 87:13,15
106:3 157:21	270:17	78:3 82:19,23	87:15 89:18
158:4,5,8	triple 103:17	83:25 87:8	90:6 91:9 92:9
159:10 209:22	truck 207:15	91:8 92:20	92:16 95:2,11
209:24 210:2	true 93:2	93:22 95:24	95:12,12,14,14
210:14,19,20	158:25 231:19	127:6 129:5	95:20 96:5,17
212:16 237:14	316:9 317:5	130:19 135:2	98:21 99:4
237:20,22	truncated	138:16 140:21	100:16 104:1
287:8,16,18,20	152:14	143:1 144:20	111:6 113:23
290:4	trust 121:6	149:18 153:19	113:24,24
tremendous	truth 38:19,19	155:9 183:10	118:16 123:6
45:3	38:20 63:4,4,5	187:15 195:2,5	126:4,6 134:8
trend 130:9,16	123:19,19,20	201:3 202:13	134:12 136:7
131:19 165:18	178:16,16,17	202:17 205:23	136:10,11
167:16 184:7	238:23	206:20 224:14	137:6,8 139:9
185:12,12	try 36:7 117:19	241:20 243:9	140:19 141:5,6
248:17 249:11	275:15,18	turned 270:1	141:20 142:1
251:24 252:1	277:6	turning 67:8	143:11,15,21
261:17 267:11	trying 11:18	88:7 245:7	143:22,24
277:3	16:8 68:20	turquoise	144:1,8,11
trending	90:5,19 96:11	88:24	148:25,25
261:21	99:16,17	twice 38:23	150:17,18
trends 148:8	115:10 156:25	two 6:4 12:13	151:7,14
151:2 189:24	164:6 197:25	18:4 19:22	152:23 156:2
245:6 297:10	232:6 242:21	23:21 26:21	156:15 158:13
triangle 139:6	253:8 261:10	28:11,19 31:12	163:8 166:12
	275:24 300:1	31:16,19,20	168:4 173:3

[two - understood]

170 22 100 1	4 . 1 25.7	1 00 17	107.5.100.2
179:23 180:1	typical 35:7	unclear 22:17	197:5 198:3
181:1,3 182:4	58:18 164:15	uncontested	200:18 220:19
182:24 184:24	171:24 172:3	21:1,4	221:6 229:25
194:12 195:1,3	187:25 188:3	unconventional	230:10,20
199:14 204:20	193:16 216:24	41:6 54:3	231:18 233:8
207:6 222:11	218:7	155:16 180:8	261:10 268:4
226:8 229:25	typically 19:25	240:24	273:14 274:23
231:5 234:7,12	131:17 188:7	under 21:17	275:18 278:8
239:15 240:4	189:1,17 198:3	50:6 118:1	278:18 300:25
242:1,12	204:4,6,10,25	130:5 148:20	301:1 302:10
243:15 244:3	213:18 217:23	149:6 156:13	302:15,21
251:23 258:5	240:16	157:16 164:8	understanding
258:13,14,22	typo 222:10	200:7,22 203:7	20:17 27:9
259:6 261:18	u	209:11 230:14	34:2 35:20
264:16 265:2,9	ugs 312:18	230:20 286:2	49:11,13 55:21
265:11 268:8	uh 115:23	287:3	56:14 68:6
269:10,13	uic 36:3 65:4,7	underground	75:5 77:9
273:5 276:16	65:9 66:11	32:24 71:20	78:14 90:12
276:18 277:2,5	68:14 78:13	73:19 79:12	126:22 132:16
283:10 284:13	305:15	underlying	158:14,25
286:9 287:18	ultimately	22:12 128:4	174:10 248:9
290:1 291:3,8	231:8,8	133:4 134:19	254:6,8 256:4
307:22 309:22	unanimously	142:2,10	256:11 257:15
310:3 312:22	7:5,14 19:16	144:11,14	257:22 274:14
313:5 315:8	unanswered	163:17 181:4	274:16,17
type 37:14 52:2	231:1	understand	275:3 276:11
110:15 177:16	uncertain	16:6 31:4	277:6 278:7
206:11 214:6	231:2	33:10 42:22	280:6,25 288:2
220:15 263:2	uncertainties	49:5 54:15,16	304:14 310:24
types 94:7	280:7 289:1	59:25,25 87:21	understands
170:12 206:1	uncertainty	88:9 112:4	121:23
256:23	232:25 233:4	115:7 132:25	understood
typewriting	273:7 280:12	153:25 154:16	98:4 220:4
316:7	288:13 300:12	158:5 163:2	222:6
	200.13 300.12	170:1 193:13	

[undertake - velocity]

undertake	university	48:3 50:16	utilize 74:25
87:20	40:10,13 64:17	57:23 79:18	227:11
undertaken	125:13,15	108:14 111:23	utilized 24:13
31:23 32:5,23	179:11,14	118:3 175:5	232:1
51:25 53:4	unknown 32:17	195:18 198:17	utterly 55:22
269:20	98:21	198:17 222:1	V
undertook 83:7	unlock 76:20	222:15 226:20	valid 116:16
83:16 88:8	unopposed 8:7	230:15 234:20	165:9 171:3,7
94:17 126:13	unstable 256:6	258:25 275:8	171:14
154:16 239:13	256:9 261:15	296:23 305:18	valley 124:11
239:14 252:24	262:9 288:21	used 89:11	179:18
268:23	update 9:23	102:20 112:10	value 114:13
unfavorable	11:22 221:24	112:22 195:9	117:10 158:24
149:11 151:18	222:7,9 257:10	195:17 211:6	198:6,7 276:10
unidentified	updates 310:15	214:7 223:14	299:24 300:11
38:4	312:7,8	223:25 226:24	values 198:5
uniformity	upgraded	227:18 260:9	200:15 221:2
101:11	37:18	273:9	264:19
unintelligible	upper 30:9,17	useful 118:23	valve 206:6
171:20	43:23 44:17	196:25	variables
unique 54:4	80:1,2,4,5,23	usgs 243:21,24	275:24
261:8 262:11	84:1 87:18	243:25 248:25	variations
292:25	99:6 103:18	using 44:17	89:19 90:2
unit 39:16	114:1 129:22	97:23 106:19	variety 40:25
120:14,20	181:25,25	114:1 118:8	various 39:18
121:9	187:16 231:10	136:19,20	64:21 126:23
unit's 120:17	281:18 297:13	198:18 201:15	241:16 242:22
united 251:7	304:23	202:21 227:19	309:6
units 81:8 86:6	upset 138:1	228:14 229:11	vary 44:23
86:15 94:5	upsets 131:14	235:6 264:22	203:4 215:9
97:3,5 101:1,4	uptick 248:4	296:10,12	vast 173:23
118:12 206:3	usa 27:17 28:10	usually 76:25	velocity 99:14
universe	usc 24:18	77:1 108:23,24	99:20,24
307:24 308:1	use 5:15 30:8	utility 209:7	117:16
	46:11 47:6		

[vents - water]

		I	I
vents 150:21	49:18,24 55:7	want 10:2	279:16 281:7
ventures	58:4 234:2	28:12 29:2	286:18 288:8
126:23	286:6	33:17 37:23	295:3 296:9,23
veritas 43:12	visible 292:7	38:2 44:22	297:24 298:18
224:15	vision 295:12	50:15 53:21	304:20 309:4
version 310:5	visit 205:17	58:15,15 59:8	310:10 312:12
versus 141:18	284:16	60:4 69:22	wanted 5:9
148:23 162:2	visualizing	78:2 80:14	28:23 29:19
165:23 177:4,8	264:25	87:2 90:13	78:7 79:25
223:12 245:14	voice 58:13	93:22 106:10	82:19 87:9
vertical 81:16	volcanic 32:9	110:4 112:22	88:3,5 92:19
81:21 82:7	volume 69:19	113:5 114:5,22	97:10 109:19
94:2 115:13,17	104:24 151:6	116:21 117:18	116:6 122:3
115:18 124:13	154:4,19 212:6	121:8 122:14	206:10 217:22
124:20 132:14	233:13	127:12 137:7	230:12 232:14
133:5 134:4,4	volumes 32:8	137:23 138:20	235:2 268:21
137:8 140:11	139:18,24	141:17,25	268:24 281:3
141:15,23	154:18 249:7	144:6 146:12	282:16 306:19
161:2 165:11	250:13,16	149:22 150:4	wanting 268:20
165:12 167:18	284:8,11	151:7 154:21	284:24
217:10 220:9	293:15	155:2 158:14	wants 24:18
220:23 241:6	W	170:14 172:7	warmer 254:25
264:18	wait 30:18	172:19,21	waste 32:13,18
vertically	waited 13:23	184:23 207:1	34:12 35:14
161:13,18,21	waiting 26:15	211:15,16	37:8 52:18,20
165:6	walting 20.13	217:3,8,9	52:22 207:18
vested 44:11	30:23 66:23	218:1 219:16	208:7 209:9
273:4	72:5 78:20	219:23 221:6	wasted 233:25
viability 47:9	83:14 136:3	222:5,14 223:6	watch 189:21
vicinity 131:4	183:13 187:24	224:8 226:7	water 32:9,25
135:10 149:10	208:2 220:1	230:18 232:8	39:16 41:7
165:20 183:9	245:11 253:21	232:18 234:19	42:10,10,12,14
218:15	270:10	234:19 247:15	42:17 45:6
view 12:3 15:17		250:13 254:18	46:25 50:14,16
38:25 42:10,16	walking 78:24 287:21	259:19 265:13	50:17,20,21,23

[water - well's]

	I	I	1
51:2,4,6,10	177:8 179:22	308:22	142:15 155:21
54:1,1,7 55:21	180:11,14,14	watered 150:9	155:22 171:1,7
59:16 64:21	180:18 182:10	175:11	192:7 198:13
65:9,12 70:1	193:17 200:1	watering	202:19,19
71:20 73:19	200:22,23	163:23	203:18 215:7
76:13,25 77:2	203:5,5 204:11	way 16:18	218:6 219:13
77:25 79:13	204:13,15	29:17 58:13	220:20 228:6
82:11 88:1	206:25 207:20	81:4 87:5 91:3	234:5 235:24
102:22,24	208:23 209:1,7	94:19 95:25	238:17 252:13
103:2 104:6	215:25 217:12	96:19,22 108:8	252:14 256:18
114:23 120:17	217:14 218:10	108:11,20	257:24 258:17
121:11,24	224:16,17	110:14 112:11	275:2 280:7
124:19 127:13	225:8 227:5	112:13 118:10	288:5 293:7
131:19 133:18	231:6,13,17	128:5 145:22	294:23 296:12
133:20 134:1	234:17 239:10	161:12 162:15	296:12,19
134:14,16,17	249:7 251:17	170:3 172:16	299:24 308:12
134:21 135:4	251:23 252:1,4	197:6,15 198:2	311:8
136:1,8,14,22	252:6,11,22	235:8,15	weaker 192:6
136:24,24,25	275:4,5,5,6,16	255:24 264:14	webex 5:18
137:1,3,4,11,19	286:3,10,25	279:12 291:1	website 243:21
137:20 138:2,5	289:10 291:22	293:20 302:21	249:8
138:14 139:20	291:24 294:1	304:10 306:24	wednesday 1:9
140:5,14	295:11 297:22	way's 255:22	week 14:11
141:24 142:5	297:23 302:14	ways 118:6	20:18
142:20 143:14	303:19,23	126:21 196:5	weekend
144:13 146:13	307:4 308:25	we've 7:16	101:21
146:23 147:21	water's 251:3	17:17 18:13	weeks 18:5
150:10,14,22	watercut	19:2,9 35:12	19:21,22 76:4
152:6 155:6,15	126:20 127:12	48:22 50:13	249:23
155:19 163:5	127:19 128:8	59:6 76:14	weight 193:15
164:20 165:5,8	128:11,13,13	89:18 98:13	193:18
167:21 170:22	128:15 129:4	103:7 104:24	welcome 5:5
170:25 171:4,5	160:8	128:23 129:23	27:6
171:8,8,10	watercuts	131:12,14	well's 184:17
175:9,10 177:3	128:20 271:3	133:3 138:12	212:9

[wells - william]

wells 31:16,20	131:13,17,23	180:5,8 181:3	273:10 274:20
32:15,22,23	132:19,23	181:19 182:3,4	275:23,25
35:6,8 41:22	133:12,14	183:2,12	276:4,18,22,24
43:5,8,15	134:12,20	184:24 185:3,4	280:21 281:1
44:16 46:1	135:1,5,11,14	185:7,9,13,24	287:25 291:4,6
47:5,6 48:3	135:15,22	186:2,4,6,16,17	298:5,5,6
49:20 50:2,25	136:9 138:10	186:20 187:2,9	300:18,23
52:2 53:8 58:6	138:15 139:14	187:13 190:19	301:2,24 302:2
59:5 60:4,7,24	140:9 141:7,9	194:12,12	302:4 305:19
61:2,4,14	141:11,13	195:1,3,16,17	305:19 309:20
63:21,21,22,25	142:1,19,21	195:19,20	313:17
64:2 65:4,7,9	143:3,11,16,19	197:8 198:1	wellspring
65:10,12,16,20	143:21,22	199:14 204:18	157:8
65:21 66:7	144:2,9,10,12	208:6,19 210:4	wendell 1:14
68:16 69:2,7	144:12,15,16	210:7,23 213:1	5:6
71:4,8 73:22	145:2,22 146:2	213:5,8,16	went 15:12
73:25 77:7	146:8,13 147:7	214:3,7,14,22	48:6 82:15
78:13,25 82:16	147:14 151:14	214:25 215:4,7	97:22 105:14
82:18,20 85:21	151:19 152:5	215:7 217:17	124:14 127:10
86:22 87:3,15	153:4 154:23	217:21,23,24	152:1 168:6
90:7,13,17	155:4,16,23,24	218:13,15,17	207:22 237:6,6
91:9 92:3,11	156:3,15,22	218:20 222:15	237:9
92:21,23 93:6	157:3,7,11	222:18,19	west 41:3 89:23
93:7,8,11,15,19	158:11,12,16	224:15 225:15	133:10 160:12
94:23 96:2,4	158:17,21,23	225:16,22	166:13 171:6
100:16 101:7	159:1,2,8	226:23 227:2	190:12
101:10 103:13	160:7,8,17,19	229:5 230:15	western 45:19
104:2 112:22	160:24 161:1	231:5 232:2	138:22
112:25 113:23	162:7 163:10	233:19,21,23	white 153:5
113:24 119:22	163:11,14,17	234:2,15,17	261:18
119:24 120:2	164:5 166:12	235:24 236:4	wi 5:12,16
124:21 125:1,2	166:15 167:16	246:16,17,18	wide 133:1
125:9 126:7	168:5,7 173:3	246:21 252:12	215:13
127:14,18,18	173:4 175:8,11	262:1,3 269:10	william 2:6
130:4,17	176:23 177:1	271:11 273:5,9	

[willing - written]

	ı	ı	I
willing 282:20	169:17 315:3	word 5:13	41:3 63:16
283:24 284:17	wolfcamp 61:2	57:23 313:22	64:19,21,23,24
285:1 288:4	61:4 129:24	words 47:13	65:8,9,17
295:9 313:15	130:21,24	270:12	124:4 179:2,3
window 134:5	132:20,22	work 18:25	280:24 303:24
wire 274:3	133:4,12 134:6	39:10 40:22	workgroup
withdrawing	134:9,16,19	41:4 47:22	37:13
20:18	135:1,3,11,14	48:21 52:11	working 5:7
withdrawn	137:8,9,18,25	59:18,23,24	8:21 32:2
241:17,18	138:11 139:14	63:14,15 64:20	42:25 43:1
witness 38:10	140:9,12,17,22	64:25 65:20	44:3 48:15
38:14,18 53:15	141:6,9,11,20	75:16 100:11	49:3,6,9,12
53:18 57:14,21	142:1,10,12,18	124:2 126:18	53:22 62:6
62:16,21 63:3	146:15 150:12	127:10,16,16	66:4 124:10,15
66:14 102:14	155:23 158:16	128:22 147:3	124:23,23
107:18 122:10	159:6,8 161:3	148:3 150:24	125:6 170:2
122:18,22	161:6,11	174:22 178:25	179:12,17,25
123:4,11,18	163:14,18	179:1,13	279:11 295:10
170:17 178:1,8	164:5,10,12,20	181:12 182:3	296:6 308:7
178:10,15	165:4,5,8	187:20 207:13	314:1,2
181:8 209:21	166:11,12	221:12 236:13	works 9:10
212:19 237:13	170:20 171:4	239:1 269:19	101:20
237:18,21,22	174:16,23	269:21,25	world 42:19
238:3,14	175:9,16 176:3	270:7,8,24	296:18
287:14,17	176:9,16,21,23	272:8 273:6,8	worry 93:10
290:8 301:12	177:1,11,14	278:12 279:2,4	worse 88:21
311:14 314:23	240:14 245:25	293:7 299:3,5	worst 88:20
315:2 316:4	262:23,25	299:9 303:7	worth 98:6
witnesses 26:25	285:23,25	308:4,9 312:4	274:14 298:24
29:8,21 30:15	wondered 31:5	312:5	299:1
31:14 32:23	wondering	workable 109:2	worthwhile
34:3,18,20	78:20 288:23	109:4	96:23
36:1 37:11	woodford	worked 29:14	writeup 159:24
52:21 80:9	151:1	29:16 39:12	written 17:5
100:3 123:6		40:21,25 41:2	59:2

[wrong - zoom]

	I	I	I
wrong 279:17	175:23 178:3	years 12:13	zone 23:24
wrote 60:14	181:14 187:8	39:13 46:19	35:24 69:8
X	193:4 194:1	63:17 64:20,22	73:18 80:1,6,7
x 4:1,18 133:17	196:24 204:2	65:1 124:5	96:24 98:25
135:25 139:17	205:9,12,25,25	131:9 162:15	99:7,15,17
201:10	210:18 211:19	179:4,24 180:1	100:6 104:5,7
xlot 189:13,20	215:24 216:5	180:9 184:4	167:9 187:16
190:24 191:20	216:10,23	198:24 201:23	210:7 275:17
221:14	217:5 218:12	202:7 203:14	292:10
xmri 274:11	219:5,9,24	246:19 254:15	zones 35:9
xto 314:2	220:7,17 221:9	254:16 284:13	80:11,18 94:15
xy 246:7	221:25 222:8	311:22 312:15	105:9,18
	222:25 223:6	313:23	173:13 231:19
y	223:11 224:6	yellow 129:12	275:3 290:22
y 133:18 136:1	225:2,13,14	132:8 138:21	292:11 297:22
139:18 201:7	226:5,18	152:16 242:7	298:1
231:10	227:23 228:16	242:17,19	zoom 29:12
y'all 38:23	229:11 230:6,9	262:1 265:5	260:13
310:6	235:7,7,21	yellows 242:11	
yard 75:15	236:12,15	yep 193:3	
yeah 9:10	240:2 241:24	312:24	
57:22 64:15	269:19 277:25	yesterday	
73:14 85:13	286:18 295:20	17:14 20:23	
86:18 89:4	297:23 299:13	30:15 33:8,9	
91:17 96:1	300:20,20	237:5	
98:1,2 108:3,5	302:4 303:3	young 179:10	
109:17 111:17	306:9 312:9,24	262:21 267:5	
112:3,14,20,20	year 11:5 48:15	youngest	
112:24 113:7	48:20 61:25	186:16	
114:16,22	62:3 137:17	Z	-
115:6,21 116:8	138:1,2 184:16		-
118:4,24 119:1	186:11,15	zero 137:2	
119:21 120:8	235:14,14,14	229:21	
120:16 122:1,7	244:9 260:6	zhai 240:5	
160:1,4 162:24	275:1	zoback 257:9	
		266:11	