NM1 - ____30____

LANDFARM CELL BACKGROUND DATA

CELL(S):

___8 and 10____

November 5, 2014

Mr. Brad Jones
Oil Conservation Division
New Mexico Energy, Minerals and
Natural Resources Department
1220 S. St. Francis Drive
Santa Fe, NM 87505

Re:

R360 Artesia LLC (NM1-30-0)

Plan 4 - Background Soil Concentrations

Mr. Jones,

This letter transmits Plan 4, which is part of R360 Artesia's (R360) effort to establish background soil concentrations. R360 initiated this discussion with the New Mexico Oil Conservation Division (OCD) to evaluate vadose soils beneath the buffer zone and cell berm north of cells 1 through 4 and to prepare the site for closure.

This plan discusses background soil data for the Artesia Landfarm. The permit requires the establishment of background concentrations for constituents in soils. R360 collected 12 composite samples for background concentrations based on a sample plan approved by the OCD. These data are discussed in the following section.

INITIAL BACKGROUND SAMPLES

R360 submitted the Groundwater Delineation Report to the OCD in November 2013. Included in this report were the results and discussion of the background soils data. R360 retained Larson & Associates, Inc. to collect the background samples. The north side of Cells 5 and 6 were selected for background sample collection with 12 composite samples being collected. Each composite sample consisted of 16 discrete samples that were collected between approximately 1 and 2 feet below ground surface (bgs). The analytes included those listed on the Section 3103 A&B list, which includes among others:

- TRPH (Method 418.1)
- Soluble anions, pH
- Metals
- Volatile Organics
- Semi-volatile Organics
- PCBs

Based on the TRPH and chloride concentrations, it appears the selected background area was slightly impacted over time in most areas. Background composite samples 8 and 10 were the only two sections not to show an impact. This conclusion is based on the TRPH and the chloride concentration (Table 1). Figure 1 presents a

Facility drawing showing the background composite sample locations. Figure 2 presents a detailed drawing showing the individual discrete sample locations for each composite sample.

Table 1. Background Concentrations for TPH and Chlorides

Section No.	Depth	TRPH (mg/kg)	Chloride (mg/kg)
1	1-2 ft	169	240
2	1-2 ft	341	268
3	1-2 ft	356	237
4	1-2 ft	275	1,100
5	1-2 ft	239	183
6	1-2 ft	192	874
7	1-2 ft	390	65.1
8	1-2 ft	<4.78	<5
9	1-2 ft	33.8	<5
10	1-2 ft	<5.02	<5
11	1-2 ft	4.61	457
12	1-2 ft	251	14.8

Background Soil Concentrations

R360 proposes to use the two background samples collected in sections 8 and 10 for the background soil concentrations. R360 reserves the right to collect additional background samples in the future in order to have a larger data pool and better confidence in these values. However, in order to proceed with the removal of soils in the buffer zone, as identified in Plan 1, R360 needs to establish background soil values at this time. Table 2 and 3 provide the background values for Section 8 and 10 samples. Average concentrations are presented for the inorganic species and TRPH in Table 2 and the volatile, semi-volatile and other organics in Table 3. The laboratory report shows the reporting limit (RL) value which is equivalent to the practical quantification limit (PQL). Attachment A presents the analytical report for background samples 8 and 10. Appendix B presents a letter from the analytical laboratory that explains the reporting units.

It is necessary to average the parameter concentrations for the two background samples. This is complicated by the fact that a number of values are reported below the RL (PQL). R360 reviewed the 2009 EPA Guidance Document, Statistical Analysis of Groundwater Data at RCRA Facilities. Chapter 5 of this document discusses how to manage non-detect data. They discuss three methods for statistical evaluation and one method for simple substitution. They recommend the three statistical methods over the simple substitution, but with only two data points these methods are not as useful. R360 will evaluate these methods if more background samples are collected, but with two background samples we prefer to use the simple substitution method at this time. The simple substitution method options include 0, ½ of the detection limit and the detection limit. Since the real value cannot be known, each of these has some bias if used. Of these options, EPA recommends

using ½ of the detection limit for determing background values. R360 believes that due to the low sample number the simple substitution will be appropriate for two data points and recommends using ½ of the detection limit.

R360 used ½ of the detection limit value to calculate the average concentration. The average value is listed as a "less than" value, since the detection value is used. R360 reserves the right to use a different approved method for averaging background concentrations, at a future date, especially if additional background samples are collected. Using the simple substitution method will allow R360 to initiate removal of soil from the buffer and berm area and collect verification samples. R360 will use the higher of the PQL or the background soil concentration (19.15.3615.E.NMAC) in the evaluation of analytical data collected as part of the closure and site evaluation efforts.

Please contact Wayne Crawley with R360 at (281) 873-3205 or me if you have questions.

Sincerely,

LARSON & ASSOCIATES, INC.

Mark J. Larson, P.G.

Sr. Project Manager/President mark@laenvironmental.com

cc:

Wayne Crawley – R360 Environmental Solutions Midland Office

TABLES

Table 2. Background Soil Concentrations for Inorganic Parameters and TRPH

	Depth (Feet)	TRPH	Cyanide	Chloride	Fluoride	Nitrate-N	Sulfate	చ
1 .								
=	Mean Background Concentration:	<4.90	<0.176	<5.04	<1.08	<5.04	<11	7.60
					The same of the sa		447	00.1
		9.55 - 10.0	0.428 - 0.450	5.02 - 5.06	1.00 - 1.01	5.02 - 5.06	100-101	
-	,	0 1 4				20:0	T.OT - 0.0T	
Jection 0 1/15/13	7-1	<4.78	<0.180	<5.06	1.16	<5.06	12	7 53
Cortion 10 07/1/12	,	L				00:0:	77	76.7
	7 - T	<5.02	<0.171	<5.02	<1,00	<5.02	<10.0	7.69
				The second secon		10:0	0.01	00.7

Arsenic Barium 1.63 21.0 0.983 - 0.995 1.97 - 1.99 1.54 19.6						Contract of the last of the la					
1.63 21.0 0.983 - 0.995 1.97 - 1.99 1.54 19.6		Jate	(Feet)	Arsenic	Barium	Cadmium	Chromium	Copper	Iron	Lead	Manganes
1.63 21.0 0.983 - 0.995 1.97 - 1.99 1.54 19.6	Background	Concont	1	000							
1-2 1.54 19.6 1-2 1.54 19.6	Dacuel Outla	Concern	ration:	1.63	21.0	<0.117	4.81	1.45	5.380	7.87	0.01
1-2 1.54 19.6				1000	100				2006	10:3	10.0
1-2 1.54 19.6				0.965 - 0.995	1.97 - 1.99	0.298 - 0.295	1.97 - 1.99	1.97 - 1.99	614-622	0 205 - 0 200	107 101
1-2 1.34 19.6	170 8 no	15/12	1 2	7 7	007				110	0.233 - 0.230	
7		CT /CT	7 - 1	1.54	19.6	<0.0983	4.57	1.37	5 200	7.87	7 2 1
	10 01 00	16/12	,	7					2,200	70.7	45.0
1-2 1./1 22.4	//O OT 11	CT /OT	7-1	1./1	22.4	0.136	5.05	1.53	5 560	202	K 03
								1	0000	76.7	200.4

Sample	Date	Depth	Mercury	Selenium	Silver	Zinc
		(Feet)				ZIIIC
Mean Backgr	Mean Background Concentration:	tration:	<0.016	0.579	<0.099	10.35
PQL			0.0373 - 0.0406 0.491 - 0.497 0.197 - 0.199	0.491 - 0.497	0.197 - 0.199	2 46 - 2 49
	,,					
Section 8	section 8 07/15/13	1-2	<0.0149	0.503	<0.0983	101
					200	1
section 10 07/16/13	07/16/13	1-2	<0.0162	0.654	<0.0995	10.6

Notes: Analysis performed by method SW-846-9056 by DHL Analytical, Inc., Round Rock, Texas

Results are reported in milligram per Kilograms (mg/Kg).

1. <: Not detected at method detection limit

2. TRPH - Total Recoverable Hydrocarbons, Method 418.1

3.For < (ess than) values, 1/2 of the detection value was used for background average calculations

Table 3. Volatile, Semi-Volatile and PCB Concentrations in Background Soil Samples

													_		11184	_	_
													or children	2,6-Dicilioro		70 0100E	20.040.00
Methylene	<0 004785	3		×0.00430	100000								3 4 Dinitare	ohenol		<0.0502	700000
Total Xylenes	<0.00095	5	_	50.000833	10100.00								2 4 Dimothul	phenol		<0.01005	200000
Ethyl benzene	<0.00095	Š	_	<0.00033	1010000								2 A-Dichloro	phenol		<0.01005	
Trichloro	<0.00095	0.00450 - 0.00507 0.00450 - 0.00507	P98000 0>	<0.00101	-	Vinyl chloride		<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		2 4 6-Trichloro	phenol		<0.01005	
Tetrachloro	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		1,1,2,2- Tetrachloroetha	ne	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		2.4.5-Trichloro	phenol		<0.01005	
1,1-Dichloro	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		1,1,2-Trichloro ethane	10000	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		2,3,4,6-	Tetrachloro	pnenoi	<0.01005	
1,2-Dichloro ethane	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		1,1,1-Trichloro ethane	10000	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		:	Benzolaj pyrene		<0.01005	
Carbon tetra chloride	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		Ethylene bromide	10 000 0V	000000	0.00450 - 0.00507	<0.000899	<0.00101			Naphthalene		<0.01005	
Toluene	<0.00095	0.00450 - 0.00507 0.00450 - 0.00507	<0.000899	<0.00101		1,1-Dichloro ethane	700005	55000.05	0.00450 - 0.00507	<0.000899	<0.00101		2-Methyl	naphthalene		<0.01005	00000
Benzene	<0.00095	0.00450 - 0.00507	<0.000899	<0.00101		Chloroform	<0.00095	20000	0.00450 - 0.00507	<0.000899	<0.00101		1-	Metriyinaphthale	20000	<0.0100>	0000 0000
Depth feet	tration:		1-2	1-2		Depth feet	ration:			1-2	1-2	-	Depth .	feet		ration:	
Date	Mean Background Concentration:		Section 8 07/15/13	Section 10 07/16/13		Date	Mean Background Concentration:			07/15/13	Section 10 07/16/13		Date		-	Mean background concentration:	
Sample	Mean Backg	PQL	Section 8	Section 10		Sample	Mean Backer		PQL	Section 8	Section 10		Samulo		Mon Backer	IVICALI DACKE	100

CU.0101 CU.01001 CU.01005 CU.01005 CU.01005 CU.01005 CU.00099 CU.00099 CU.00090 CU.00000 CU.000000 CU.00000 CU.000000 CU.00000 CU.000000 CU.00000 CU.000000 CU.00000 CU.00000 CU.00000 CU.00000 CU.00000 CU.0	0112	,	1010				The state of the s	10 mg/20 mg/					
2-Nitrophenol 4,6-Dinitro-2-methyl phenol 4-Chloro-3-methyl phenol 4-Methyl phenol 4-Methyl phenol 4-Nitro phenol <0.01005			SU.UIUI	<0.0101	<0.0101	<0.0101	<0.0101	<0.0101	<0.0101	<0.0101	<0.0101	<0.0504	<0.0101
2-Nitrophenol 4,6-Dinitro-2- methyl phenol 4-Chloro-3- methyl phenol 4-Methyl phenol 4-Methyl phenol 4-Nitro phenol <0.01005													
c.0.1005 methyl phenol methyl phenol 4-Metnyl phenol 4-Mitro phenol c.0.1005 c.0.3302 c.0.1005 c.0.2201 c.0.5502 0.0266 - 0.0268 0.0659 - 0.0666 0.0266 - 0.0268 0.0266 - 0.0268 0.132 - 0.133 c.0.0999 c.0.0300 c.0.0099 c.0.0200 c.0.0500 c.0.0101 c.0.0303 c.0.0101 c.0.0202 c.0.0504	Depth 2	~	-Chloro phenol	2-Methylphenol	2-Nitrophenol	4,6-Dinitro-2-		A Bankley Inches		Pentachloro			
<0.0302 <0.01005 <0.0201 <0.0502 0.0659 - 0.0666 0.0266 - 0.0268 0.0266 - 0.0268 0.132 - 0.133 <0.0300	feet				iolioliolioni -	methyl phenol		4-Ivietnyi pnenoi	4-Nitro pnenoi	lonoda	Phenol	Total Phenol	
CO.0559 - 0.0666 0.0266 - 0.0268 0.0266 - 0.0268 0.132 - 0.133 <0.0539 0.0300	ntration:	_	<0.01005	<0.01005	<0.01005	V0 0303	100100V	20000	0000	DIIGIIOI			
0.0559 - 0.0666 0.0266 - 0.0268 0.0266 - 0.0268 0.132 - 0.133 <0.0300	I	Э.		200	COOTOG	70:0305	CONTON	T070'0>	<0.0502	<0.01005	<0.01005	<0.01005	
<0.00999 <0.00999 <0.0300 <0.00999 <0.0500 <0.0500 <0.0101			0.0266 - 0.0268	0.0266 - 0.0268	0.0266 - 0.0268	0.0659 - 0.0666	0.0266 - 0.0268	0.0266 - 0.0268	0.132 - 0.133	0.0266 - 0.0268	0 0056 0 0360	0200 0 2500	
<0.00999 <0.00999 <0.0300 <0.00999 <0.0200 <0.0101	,	_	000000						00000	00700 00700	0.0200 - 0.0200	0.0200 - 0.0200	
<0.0101<0.0101<0.0303<0.0101<0.0202	7 - 1	_	<0.00999	<0.00999	<0.00999	<0.0300	<0.00999	<0.0200	<0.0500	99900 0>	000000	00000	
<0.0101 <0.0101 <0.0303 <0.0101 <0.0202	,	_		1 1					00000	000000	500000	66600.00	
	7-1	-	<0.0101	<0.0101	<0.0101	<0.0303	<0.0101	<0.0202	<0.0504	<0.0101	<0.0101	10100	
		1							. 000:0:	1010:01	TOTOTO	1010.01	

0.0266 - 0.0268

0.132 - 0.133 <0.0500

0.0266 - 0.0268 | 0.0266 - 0.0268

0.0266 - 0.0268 <0.00999

0.0266 - 0.0268 <0.00999 <0.0101

0.0266 - 0.0268 <0.00999 <0.0101

> <0.00999 <0.0101

<0.00999 <0.0101

<0.00999 <0.0101

<0.00999 <0.0101

Section 10 07/16/13 1 - 2 Section 8 07/15/13

0.0266 - 0.0268 | 0.0266 - 0.0268 | 0.0266 - 0.0268 | 0.0266 - 0.0268

<0.00999

<0.00999

<0.00999

Sample	Date	Depth feet	Aroclor 1016	Aroclor 1221	Aroclor 1232	Aroclor 1242	Aroclor 1248	Aroclor 1254	Aroclor 1260
Mean Backgi	round Concer	ntration:	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168
PQL			0.0333 - 0.0336	0.0333 - 0.0336	0.0333 - 0.0336	0.0333 - 0.0336 0.0333 - 0.0336	0.0333 - 0.0336	0.0333 - 0.0336	0.03
Section 8	07/15/13	1-2	<0.0167	<0.0167	<0.0167	<0.0167	<0.0167	<0.0167	791002
Section 10	07/16/13	1-2	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168	<0.0168

Notes: Analysis performed by method SW-846-9056 by DHL Analytical, Inc., Round Rock, Texas

Results are reported in milligram per Kilograms (mg/Kg).

1. <: Not detected at method detection limit

2. BDL: Below method detection limit

FIGURES

Figure 1 - Background Composite Sample Location Map

ATTACHMENT A

July 25, 2013

Order No.: 1307158

Mark Larson Larson & Associates 507 N. Marienfeld #200 Midland, TX 79701

TEL: (432) 687-0901 FAX (432) 687-0456

RE: R360 Artesia Landfarm

Dear Mark Larson:

DHL Analytical, Inc. received 12 sample(s) on 7/18/2013 for the analyses presented in the following report.

There were no problems with the analyses and all data met requirements of NELAC except where noted in the Case Narrative. All non-NELAC methods will be identified accordingly in the case narrative and all estimated uncertainties of test results are within method or EPA specifications.

If you have any questions regarding these tests results, please feel free to call. Thank you for using DHL Analytical.

Sincerely,

John DuPont General Manager

This report was performed under the accreditation of the State of Texas Laboratory Certification Number: T104704211-13-11

Table of Contents

Miscellaneous Documents	3
CaseNarrative 1307158	
WorkOrderSampleSummary 1307158	
PrepDatesReport 1307158	
AnalyticalDatesReport 1307158	
Analytical Report 13071581	
AnalyticalQCSummaryReport 13071585	

CHAIN-OF-CUSTODY

AB WOR	100 m	100 NO V	12 2 1 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2											7		LABORATORY USE ONLY:	RECEIVING TEMP: 1. THERM #: 5	CUSTODY SEALS - D BROKEN DINTACT X NOT USED	A CARRIER BILL# COVINGO	L HAND DELIVERED
L 80 ×		24 (5%)														TURN AROUND TIME	NORMAL 🗆	1 DAY 🔾 2 DAY 🔾	отнек 🗆	
		SH.	TO STORY TO														3	1		
N. Marienfeld, Ste. 200 Midland, TX 79701 432-687-0901	PRESERVATION		ICE ICE	ス										>		RECEIVED BY: (Signature)	RECEIVED BY (Signature)	PEO BY: (Signature)		
507 N. Mic		1/2 C	Matrix # of Config	2 5									7	3	- Row (1)	1	2	830		
C) SE	P=PAINT S SL=SLUDGE	OF COTTON	Date Time	SIE DISHE		77/2 2017		74743 1100	7-15-18 4-00	7-16-13 300	7-16-11 1000	UT	7-7743 1200	2-17-1 1000		DATE/TIME	DATE/TIME	7 /19 (3 DATE/TIME		
CITSON & SSOCIOTES, Inc. Environmental Consultants (eported to:		A-AIIX	Lab#	0	20	500	95		6	80	60	3	17	26		BY:(Signature)	Y. Siohature)	0 Y:(Signature)	8	A CONTRACTOR OF THE CONTRACTOR
A CITSON SSOCIO Environmen Data Reported to:	TRRP report?	TIME ZONE: Time zone/State:	OM AFELD Sample I.D.	Jaint 1	& tank	Meint S	17	1 yound	(torot)	Style &	Joint 9	140/04/	1 total	1 think	TOTAL	RELINOUNSHED BY	RECINQUISHED BY: USionature)	RELINQUISHED BY:(Signature)		

WWW.LSO.COM Questions? Call 800-800-8984

. ý

47
376974
₹ 473
ACCES 1

0 Check hero if LSO Supplies are used with Ground Servi-FOR COURIER Pick-up Location 15 USE ONLY Phone (Important) 432-687-6961 1000 Counter Number 79701 Zip Time: City Code: Dale: XX. 1 OT NORTH MARIEMEDLD State ARSON & ASSOCIATES 6010rour Company's Billing Reference Info Ship Date: (mm/dd/yy) 4. Packag Street Address Airbill No. 47376974 Suite / Floor TULLAND Cig 00 Check availability at ljsit vevu.lso.com for availability of sarvices to your desfination and enjoy added features by creating your shipping label anime. Phone (Important) Assumed 10:30 a.m. service unless otherwise noted, Saturday Delivory (Extra charge, not ovailable on Ground) Zip Deliver Without Delivery & Signature (See Limits of Liability below) Other_ (No P.O. Box or P.O. Box Zip Çodg*Deliveries) Release Signature 27 Check availability at Check availability at www.fso.com WWW. Iso.com Ground (next day to most cities) By 10:30 am Deliv. sry By 8:30 am Dalivery (Extra-charge, no signature obtained) By 3:00 pm Delivery N X

LINAT OF LIABÎTY. We ara not responsi manner. We wilk'not pay any claim in axo-package without obtaining a delivery signi-PROVIDED BY \$50 IS NOT INTENBED FOI

77.

the for claims in excess of \$100 for any reason unless you; 1) declare a greater value (not to exceed \$25,000); 2) pay an additional fee; 3) and document your actual loss in a timely see the actual loss. We are not liabel for any sequal for consequential damages, Additional imitations of failubly an our current Service build. If you ask us to definer a vite, you include the confinent in our current Service build. If you ask us to definer a vite, you have not all fability for pains resulted from such service and ELIVERY SIGNATINE WILL BE OBTANIED FOR RESS AM DELIVERIES, PRIGHTY SERVICE PACKAGING TOSE ON GROUPS SERVICE, OVERSIGN RATES BARY APPLY.

.

Sample Receipt Checklist Client Name Larson & Associates Date Received: 7/18/2013 Work Order Number 1307158 Received by JB Checklist completed by: 7/18/2013 Reviewed by Carrier name LoneStar Shipping container/cooler in good condition? Yes 🗸 No 🗔 Not Present Custody seals intact on shippping container/cooler? Yes No 🗌 Not Present Custody seals intact on sample bottles? Yes No 🗌 Not Present Chain of custody present? Yes 🗸 No 🗌 Chain of custody signed when relinquished and received? Yes 🗹 No 🗌 Chain of custody agrees with sample labels? Yes 🗸 No \Box Samples in proper container/bottle? Yes V No 🗌 Sample containers intact? Yes V No 🗌 Sufficient sample volume for indicated test? Yes V No All samples received within holding time? Yes V No [Container/Temp Blank temperature in compliance? Yes 🗸 No 🗌 1.1 °C Water - VOA vials have zero headspace? Yes No 🗌 No VOA vials submitted 🗹 Water - pH<2 acceptable upon receipt? Yes No 🗌 NA 🗸 LOT# Adjusted? Checked by Water - ph>9 (S) or ph>12 (CN) acceptable upon receipt? Yes No 🗌 NA 🗹 LOT# Adjusted? Checked by Any No response must be detailed in the comments section below. Client contacted Date contacted: Person contacted Contacted by: Regarding Comments: Corrective Action

Page 1 of 1

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Lab Order:

1307158

CASE NARRATIVE

Date: 26-Jul-13

Sample was analyzed using the methods outlined in the following references:

Method SW8260C - Volatile Organics

Method SW8270D - Semivolatiles Organics (1-Methylnapthalene is not NELAC Certified)

Method SW8270D - PCB Analysis

Method SW6020A - Metals Analysis

Method SW7471B - Mercury Analysis

Method E300 - Anions Analysis

Method E418.1 - TRPH Analysis (this parameter not NELAC Certified)

Method SW9014 - Cyanide Analysis

Method SW9045D - pH of a Soil (corrosivity)

Method D2216 - Percent Moisture

LOG IN

The samples were received and log-in performed on 7/18/2013. A total of 12 samples were received and analyzed. The samples arrived in good condition and were properly packaged.

ANIONS ANALYSIS

For Anions Analysis, the recovery of Chloride for the Matrix Spike and Matrix Spike Duplicate (1307158-02 MS/MSD) was slightly below the method control limits. These are flagged accordingly in the QC Summary Report. This anion is within method control limits in the associated LCS. The reference sample selected for the QC Sample was from this work order. No further corrective action was taken.

TRPH ANALYSIS

For TRPH Analysis, the recoveries and RPD of the Matrix Spike and Matrix Spike Duplicate (1307158-01 MS/MSD) were above the method control limits. These are flagged accordingly in the QC Summary Report. The associated LCS is within method control limits. The reference sample selected for the QC Sample was from this workorder. No further corrective action was taken.

As per the TCEQ-NELAP accreditation requirement the following must be noted: The TCEQ guidance on the use of Total Petroleum Hydrocarbons (all methodologies) recommends a modification to the method. That modification includes collecting the sample using an open-bore coring device and extruding the cored sample into a volatile organic analysis (VOA) vial with a polytetraflouroethylene-lined (PTFE-lined) septum seal. If this modification is not utilized the results of samples collected in 4 oz containers for TPH components may be compromised. The client has been notified and has

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Lab Order:

1307158

CASE NARRATIVE

requested the Laboratory to proceed with analysis.

METALS ANALYSIS

For Metals Analysis, the recovery of Iron for the Matrix Spike and Matrix Spike Duplicate (1307158-08 MS/MSD) was below of the method control limits. These are flagged accordingly in the QC Summary Report. These compounds are within method control limits in the associated LCS. The reference sample selected for the QC Sample was from this workorder. No further corrective action was taken.

For Metals Analysis, the recoveries of Iron and Manganese for the Post Digestion Spike (1307158-08 PDS) were above the method control limits. These are flagged accordingly in the QC Summary Report. These compounds are within method control limits in the associated Serial Dilution. The reference sample selected for the QC Sample was from this workorder. No further corrective action was taken.

PCB ANALYSIS

For PCB Analysis, several samples were diluted due to nature of matrix.

For PCB Analysis, the recoveries of surrogates 2-Fluorobiphenyl and 4-Terphenyl-d14 for Sample Composite #6 were above the method control limits, due to nature of matrix. These are flagged accordingly in the Analytical Data Report. No further corrective action was taken.

SEMIVOLATILES ANALYSIS

For Semivolatiles Analysis, several samples were diluted due to nature of matrix.

For Semivolatiles Analysis, the recoveries of the surrogates for Sample Composite #6 were above the method control limits, due to nature of matrix and confirmed by re-analysis. These are flagged accordingly in the Analytical Data Report. No further corrective action was taken.

VOLATILES ANALYSIS

As per the TCEQ-NELAP accreditation requirement the following must be noted: The TCEQ guidance on the use of EPA SW-846 Method 5035 recommends a modification to the method. That modification includes collecting the sample using an open-bore coring device and extruding the cored sample into a volatile organic analysis (VOA) vial with a polytetraflouroethylene-lined (PTFE-lined) septum seal. If this modification is not utilized the results of samples collected in 4 oz containers for low level Volatile components may be compromised. The client has been notified and has requested the Laboratory to proceed with analysis.

CLIENT: Larson & Associates
Project: R360 Artesia Landfarm

Lab Order: 130

1307158

Work Order Sample Summary

Date: 26-Jul-13

T LC TD	G			
Lab Smp ID	Client Sample ID	Tag Number	Date Collected	Date Recved
1307158-01	Composite #1		07/15/13 02:15 PM	7/18/2013
1307158-02	Composite #2		07/15/13 01:30 PM	7/18/2013
1307158-03	Composite #3		07/16/13 11:45 AM	7/18/2013
1307158-04	Composite #4		07/16/13 02:30 PM	7/18/2013
1307158-05	Composite #5		07/17/13 09:00 AM	7/18/2013
1307158-06	Composite #6		07/17/13 11:00 AM	7/18/2013
1307158-07	Composite #7		07/15/13 04:00 PM	7/18/2013
1307158-08	Composite #8		07/15/13 03:00 PM	7/18/2013
1307158-09	Composite #9		07/16/13 10:00 AM	7/18/2013
1307158-10	Composite #10		07/16/13 09:00 AM	7/18/2013
1307158-11	Composite #11		07/17/13 12:00 PM	7/18/2013
1307158-12	Composite #12		07/17/13 10:00 AM	7/18/2013

Lab Order: 1307158

Client: Larson & Associates

Project: R360 Artesia Landfarm

PREP DATES REPORT

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1307158-01A	Composite #1	07/15/13 02:15 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-01B	Composite #1	07/15/13 02:15 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #1	07/15/13 02:15 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #1	07/15/13 02:15 PM	Soil	SW9045C	pH Preparation	07/22/13 04:00 PM	58515
	Composite #1	07/15/13 02:15 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-01C	Composite #1	07/15/13 02:15 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #1	07/15/13 02:15 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #1	07/15/13 02:15 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #1	07/15/13 02:15 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #1	07/15/13 02:15 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #1	07/15/13 02:15 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-02A	Composite #2	07/15/13 01:30 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-02B	Composite #2	07/15/13 01:30 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #2	07/15/13 01:30 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #2	07/15/13 01:30 PM	Soil	SW9045C	pH Preparation	07/22/13 04:00 PM	58515
	Composite #2	07/15/13 01:30 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-02C	Composite #2	07/15/13 01:30 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #2	07/15/13 01:30 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #2	07/15/13 01:30 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #2	07/15/13 01:30 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #2	07/15/13 01:30 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #2	07/15/13 01:30 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-03A	Composite #3	07/16/13 11:45 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-03B	Composite #3	07/16/13 11:45 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
		07/16/13 11:45 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #3	07/16/13 11:45 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #3	07/16/13 11:45 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #3	07/16/13 11:45 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
Page 1 of 5)f 5						11000

PREP DATES REPORT

rder: 1307158			
'der: 130715			0
der: 13	1	-	2110
de.	,	4	1

Larson & Associates Project: Client:

R360 Artesia Landfarm

Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1307158-03C	Composite #3	07/16/13 11:45 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #3	07/16/13 11:45 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #3	07/16/13 11:45 AM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #3	07/16/13 11:45 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #3	07/16/13 11:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #3	07/16/13 11:45 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-04A	Composite #4	07/16/13 02:30 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-04B	Composite #4	07/16/13 02:30 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #4	07/16/13 02:30 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #4	07/16/13 02:30 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #4	07/16/13 02:30 PM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #4	07/16/13 02:30 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-04C	Composite #4	07/16/13 02:30 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #4	07/16/13 02:30 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #4	07/16/13 02:30 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #4	07/16/13 02:30 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #4	07/16/13 02:30 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #4	07/16/13 02:30 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-05A	Composite #5	07/17/13 09:00 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-05B	Composite #5	07/17/13 09:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #5	07/17/13 09:00 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #5	07/17/13 09:00 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #5	07/17/13 09:00 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-05C	Composite #5	07/17/13 09:00 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #5	07/17/13 09:00 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #5	07/17/13 09:00 AM	Soil	SW3550C	Soil Prep Sonication; BNA	07/22/13 08:42 AM	58493
	Composite #5	07/17/13 09:00 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #5	07/17/13 09:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
Dog 7 of 6	<i>Y</i> .				0.00		1

Page 2 of 5

Larson & Associates 1307158 Lab Order: Client:

PREP DATES REPORT

		arcs.				I NEI DATES NEI ON	-
Project:	R360 Artesia Landfarm	ndfarm					
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1307158-05C	Composite #5	07/17/13 09:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-06A	Composite #6	07/17/13 11:00 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-06B	Composite #6	07/17/13 11:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #6	07/17/13 11:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #6	07/17/13 11:00 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #6	07/17/13 11:00 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #6	07/17/13 11:00 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-06C	Composite #6	07/17/13 11:00 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #6	07/17/13 11:00 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #6	07/17/13 11:00 AM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #6	07/17/13 11:00 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #6	07/17/13 11:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #6	07/17/13 11:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-07A	Composite #7	07/15/13 04:00 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-07B	Composite #7	07/15/13 04:00 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #7	07/15/13 04:00 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #7	07/15/13 04:00 PM	Soil	SW9045C	pH Preparation	07/22/13 04:00 PM	58515
	Composite #7	07/15/13 04:00 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-07C	Composite #7	07/15/13 04:00 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #7	07/15/13 04:00 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #7	07/15/13 04:00 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #7	07/15/13 04:00 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #7	07/15/13 04:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #7	07/15/13 04:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-08A	Composite #8	07/15/13 03:00 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-08B	Composite #8	07/15/13 03:00 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #8	07/15/13 03:00 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #8	07/15/13 03:00 PM	Soil	SW9045C	pH Preparation	07/22/13 04:00 PM	58515
Page 3 of 5	of 5						

Page 3 of 5

Larson & Associates 1307158 Lab Order: Client:

PREP DATES REPORT

Project:	R360 Artesia Landfarm	ndfarm				THE PAIES WEIGHT	•
Sample 10	Client Samule ID	Collection Date	Motrie	Toot Numbon	Tore Nomes	, d	
	or admin amount	Concenton Date	Manin	rest Number	rest ivalue	Frep Date	Batch ID
1307158-08B	Composite #8	07/15/13 03:00 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-08C	Composite #8	07/15/13 03:00 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #8	07/15/13 03:00 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #8	07/15/13 03:00 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #8	07/15/13 03:00 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #8	07/15/13 03:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #8	07/15/13 03:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-09A	Composite #9	07/16/13 10:00 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-09B	Composite #9	07/16/13 10:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #9	07/16/13 10:00 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #9	07/16/13 10:00 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #9	07/16/13 10:00 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-09C	Composite #9	07/16/13 10:00 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #9	07/16/13 10:00 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #9	07/16/13 10:00 AM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #9	07/16/13 10:00 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #9	07/16/13 10:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #9	07/16/13 10:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-10A	Composite #10	07/16/13 09:00 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-10B	Composite #10	07/16/13 09:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #10	07/16/13 09:00 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #10	07/16/13 09:00 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #10	07/16/13 09:00 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-10C	Composite #10	07/16/13 09:00 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #10	07/16/13 09:00 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #10	07/16/13 09:00 AM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #10	07/16/13 09:00 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #10	07/16/13 09:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
Page 4 of 5	of 5						

Page 4 of 5

PREP DATES REPORT

DHL Analytical, Inc.

Larson & Associates 1307158 Lab Order: Client:

Project:	R360 Artesia Landfarm	ndfarm			INELD	INCLUSION ON THE OWN	
Sample ID	Client Sample ID	Collection Date	Matrix	Test Number	Test Name	Prep Date	Batch ID
1307158-10C	Composite #10	07/16/13 09:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-11A	Composite #11	07/17/13 12:00 PM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-11B	Composite #11	07/17/13 12:00 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #11	07/17/13 12:00 PM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #11	07/17/13 12:00 PM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #11	07/17/13 12:00 PM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #11	07/17/13 12:00 PM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-11C	Composite #11	07/17/13 12:00 PM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #11	07/17/13 12:00 PM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #11	07/17/13 12:00 PM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #11	07/17/13 12:00 PM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #11	07/17/13 12:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #11	07/17/13 12:00 PM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
1307158-12A	Composite #12	07/17/13 10:00 AM	Soil	SW5030A	Purge and Trap Soils GC/MS	07/18/13 12:17 PM	58451
1307158-12B	Composite #12	07/17/13 10:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #12	07/17/13 10:00 AM	Soil	E300	Anion Prep	07/22/13 02:08 PM	58513
	Composite #12	07/17/13 10:00 AM	Soil	SW9010C	Cyanide Soil Prep	07/24/13 10:32 AM	58502
	Composite #12	07/17/13 10:00 AM	Soil	SW9045C	pH Preparation	07/23/13 08:57 AM	58520
	Composite #12	07/17/13 10:00 AM	Soil	SW3550B	Soil Prep Sonication: TRPH	07/22/13 11:14 AM	58511
1307158-12C	Composite #12	07/17/13 10:00 AM	Soil	SW7471A	Mercury Soil Prep, Total	07/19/13 09:00 AM	58449
	Composite #12	07/17/13 10:00 AM	Soil	D2216	Moisture Preparation	07/23/13 04:24 PM	58534
	Composite #12	07/17/13 10:00 AM	Soil	SW3550C	Soil Prep Sonication: BNA	07/22/13 08:42 AM	58493
	Composite #12	07/17/13 10:00 AM	Soil	SW3550C	Soil Prep Sonication: PCB	07/23/13 01:51 PM	58538
	Composite #12	07/17/13 10:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448
	Composite #12	07/17/13 10:00 AM	Soil	SW3050B	Soil Prep Total Metals: ICP-MS	07/19/13 08:40 AM	58448

<u>ე</u>

ANALYTICAL DATES REPORT

DHL Analytical, Inc.

Lab Order: 1307158
Client: Larson & Associates

R360 Artesia Landfarm

Project:

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1307158-01A	Composite #1	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 02:46 PM	GCMS1_130718A
1307158-01B	Composite #1	Soil	E300	Anions by IC method - Soil	58513	_	07/23/13 09:57 AM	IC2_130723A
	Composite #1	Soil	SW9014	Cyanide - Solid Sample	58502		07/24/13 05:10 PM	UV/VIS_2_130724B
	Composite #1	Soil	SW9045D	pH of Solid (Corrosivity)	58515	-	07/22/13	WC_130722A
	Composite #1	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-01C	Composite #1	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	S	07/23/13 10:03 PM	GCMS8_130723A
	Composite #1	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #1	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	5	07/23/13 04:26 PM	GCMS9_130723A
	Composite #1	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 02:35 PM	CETAC_11G_130722C
	Composite #1	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:05 PM	ICP-MS3_130719B
	Composite #1	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:15 PM	ICP-MS2_130722A
1307158-02A	Composite #2	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 03:17 PM	GCMS1_130718A
1307158-02B	Composite #2	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 10:16 AM	IC2_130723A
	Composite #2	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:11 PM	UV/VIS_2_130724B
	Composite #2	Soil	SW9045D	pH of Solid (Corrosivity)	58515	-	07/22/13	WC_130722A
	Composite #2	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-02C	Composite #2	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/23/13 10:34 PM	GCMS8_130723A
	Composite #2	Soil	D2216	Percent Moisture	58534	_	07/24/13 08:50 AM	PMOIST_130723A
	Composite #2	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	5	07/23/13 04:50 PM	GCMS9_130723A
	Composite #2	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 02:38 PM	CETAC_HG_130722C
	Composite #2	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:20 PM	ICP-MS2_130722A
	Composite #2	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:11 PM	ICP-MS3_130719B
1307158-03A	Composite #3	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 03:50 PM	GCMS1_130718A
1307158-03B	Composite #3	Soil	E300	Anions by IC method - Soil	58513	100	07/23/13 01:43 PM	IC2_130723A
	Composite #3	Soil	E300	Anions by IC method - Soil	58513	_	07/23/13 10:30 AM	IC2_130723A
	Composite #3	Soil	SW9014	Cyanide - Solid Sample	58502	_	07/24/13 05:13 PM	UV/VIS_2_130724B
	Composite #3	Soil	SW9045D	pH of Solid (Corrosivity)	58520	_	07/23/13 01:35 PM	PH_130723A
	Composite #3	Soil	E418.1	TRPH	58511	10	07/22/13 03:18 PM	IR207_130722A

Page 1 of 5

26-Jul-13

DHL Analytical, Inc.

	ANALYTICAL DATES REPORT	
1307158	Larson & Associates	R360 Artesia Landfarm
Lab Order:	Client:	Project:

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1307158-03C	Composite #3	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/23/13 11:05 PM	GCMS8_130723A
	Composite #3	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #3	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	Ŋ	07/23/13 05:13 PM	GCMS9_130723A
	Composite #3	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:10 PM	CETAC_HG_130722C
	Composite #3	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	Ś	07/19/13 09:17 PM	ICP-MS3_130719B
	Composite #3	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:26 PM	ICP-MS2_130722A
1307158-04A	Composite #4	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	Π	07/18/13 04.21 PM	GCMS1_130718A
1307158-04B	Composite #4	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 10:45 AM	IC2_130723A
	Composite #4	Soil	E300	Anions by IC method - Soil	58513	10	07/23/13 02:42 PM	IC2_130723A
	Composite #4	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:13 PM	UV/VIS_2_130724B
	Composite #4	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #4	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-04C	Composite #4	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/23/13 11:35 PM	GCMS8_130723A
	Composite #4	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #4	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	5	07/23/13 05:36 PM	GCMS9_130723A
	Composite #4	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:12 PM	CETAC_HG_130722C
	Composite #4	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:32 PM	ICP-MS2_130722A
	Composite #4	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:23 PM	ICP-MS3_130719B
1307158-05A	Composite #5	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 04:52 PM	GCMS1_130718A
1307158-05B	Composite #5	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 11:00 AM	IC2_130723A
	Composite #5	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:13 PM	UV/VIS_2_130724B
	Composite #5	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #5	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-05C	Composite #5	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	S	07/24/13 12:06 AM	GCMS8_130723A
	Composite #5	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #5	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	5	07/23/13 05:59 PM	GCMS9_130723A
	Composite #5	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:14 PM	CETAC_HG_130722C
	Composite #5	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:38 PM	ICP-MS2 130722A
Page 2 of 5	of 5							

Page 2 of 5

	ANALYTICAL DATES REPORT	
1307158	Larson & Associates	R360 Artesia Landfarm
Lab Order:	Client:	Project:

					William Action to the Control of the			
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1307158-05C	Composite #5	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:29 PM	ICP-MS3_130719B
1307158-06A	Composite #6	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 05:23 PM	GCMS1_130718A
1307158-06B	Composite #6	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 12:00 PM	IC2_130723A
	Composite #6	Soil	E300	Anions by IC method - Soil	58513	10	07/23/13 02:56 PM	IC2_130723A
	Composite #6	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:13 PM	UV/VIS_2_130724B
	Composite #6	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #6	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-06C	Composite #6	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/24/13 12:37 AM	GCMS8_130723A
	Composite #6	Soil	D2216	Percent Moisture	58534	1	07/24/13 08:50 AM	PMOIST_130723A
	Composite #6	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	S	07/23/13 06:22 PM	GCMS9_130723A
	Composite #6	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:17 PM	CETAC_HG_130722C
	Composite #6	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	Ś	07/19/13 09:35 PM	ICP-MS3_130719B
	Composite #6	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 02:44 PM	ICP-MS2_130722A
1307158-07A	Composite #7	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 05:56 PM	GCMS1_130718A
1307158-07B	Composite #7	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 12:15 PM	IC2_130723A
	Composite #7	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:13 PM	UV/VIS_2_130724B
	Composite #7	Soil	SW9045D	pH of Solid (Corrosivity)	58515	1	07/22/13	WC_130722A
	Composite #7	Soil	E418.1	TRPH	58511	_	07/22/13 03:18 PM	IR207_130722A
1307158-07C	Composite #7	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	'n	07/24/13 01:08 AM	GCMS8_130723A
	Composite #7	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #7	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	Ś	07/23/13 06:45 PM	GCMS9_130723A
	Composite #7	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:19 PM	CETAC_HG_130722C
	Composite #7	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 02:50 PM	ICP-MS2_130722A
	Composite #7	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:41 PM	ICP-MS3_130719B
1307158-08A	Composite #8	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 06:27 PM	GCMS1_130718A
1307158-08B	Composite #8	Soil	E300	Anions by IC method - Soil	58513	1	07/23/13 12:30 PM	IC2_130723A
	Composite #8	Soil	SW9014	Cyanide - Solid Sample	58502	1	07/24/13 05:16 PM	UV/VIS_2_130724B
	Composite #8	Soil	SW9045D	pH of Solid (Corrosivity)	58515	1	07/22/13	WC_130722A
Page 3 of 5	of 5							

Page 3 of 5

	ANALYTICAL DATES REPORT	
1307158	Larson & Associates	R360 Artesia Landfarm
Lab Order:	Client:	Project:

Project:	R360 Artesia Landfarm	ndfarm						
Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1307158-08B	Composite #8	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207 130722A
1307158-08C	Composite #8	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	-	07/23/13 03:51 PM	GCMS8 130723A
	Composite #8	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #8	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	_	07/23/13 12:35 PM	GCMS9_130723A
	Composite #8	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 02:19 PM	CETAC_HG_130722C
	Composite #8	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 02:03 PM	ICP-MS2_130722A
	Composite #8	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	S	07/19/13 08:53 PM	ICP-MS3_130719B
1307158-09A	Composite #9	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 06:57 PM	GCMS1_130718A
1307158-09B	Composite #9	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 12:44 PM	IC2_130723A
	Composite #9	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:16 PM	UV/VIS_2_130724B
	Composite #9	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #9	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-09C	Composite #9	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	-	07/23/13 04:22 PM	GCMS8_130723A
	Composite #9	Soil	D2216	Percent Moisture	58534	Τ	07/24/13 08:50 AM	PMOIST_130723A
	Composite #9	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	-	07/23/13 12:58 PM	GCMS9_130723A
	Composite #9	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:21 PM	CETAC_HG_130722C
	Composite #9	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:47 PM	ICP-MS3_130719B
	Composite #9	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	50	07/22/13 02:55 PM	ICP-MS2_130722A
1307158-10A	Composite #10	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 07:28 PM	GCMS1_130718A
1307158-10B	Composite #10	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 12:59 PM	IC2_130723A
	Composite #10	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:16 PM	UV/VIS_2_130724B
	Composite #10	Soil	SW9045D	pH of Solid (Corrosivity)	58520	1	07/23/13 01:35 PM	PH_130723A
	Composite #10	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-10C	Composite #10	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	1	07/23/13 04:53 PM	GCMS8_130723A
	Composite #10	Soil	D2216	Percent Moisture	58534	_	07/24/13 08:50 AM	PMOIST_130723A
	Composite #10	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	-	07/23/13 01:22 PM	GCMS9_130723A
	Composite #10	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:23 PM	CETAC_HG_130722C
	Composite #10	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 09:53 PM	ICP-MS3_130719B
Page 4 of 5	of 5							

26-Jul-13

		•	
		ALL	
-	,	6	
-	3	3	
. /		1	
-	7		2
4		-	
_	1	1	
-			

	ANALYTICAL DATES REPORT	
1307158	Larson & Associates	R360 Artesia Landfarm
Lab Order:	Client:	Project:

Sample ID	Client Sample ID	Matrix	Test Number	Test Name	Batch ID	Dilution	Analysis Date	Run ID
1307158-10C	Composite #10	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 03:01 PM	ICP-MS2_130722A
1307158-11A	Composite #11	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	-	07/18/13 08:00 PM	GCMS1_130718A
1307158-11B	Composite #11	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 01:13 PM	IC2_130723A
	Composite #11	Soil	E300	Anions by IC method - Soil	58513	10	07/23/13 03:11 PM	IC2_130723A
	Composite #11	Soil	SW9014	Cyanide - Solid Sample	58502	1	07/24/13 05:16 PM	UV/VIS_2_130724B
	Composite #11	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #11	Soil	E418.1	TRPH	58511	1	07/22/13 03:18 PM	IR207_130722A
1307158-11C	Composite #11	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/24/13 01:39 AM	GCMS8_130723A
	Composite #11	Soil	D2216	Percent Moisture	58534	_	07/24/13 08:50 AM	PMOIST_130723A
	Composite #11	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	\$	07/23/13 07:09 PM	GCMS9_130723A
	Composite #11	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:25 PM	CETAC_HG_130722C
	Composite #11	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 12:59 PM	ICP-MS2_130722A
	Composite #11	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	Ś	07/19/13 11:17 PM	ICP-MS3_130719B
1307158-12A	Composite #12	Soil	SW8260C	8260 Soil Volatiles by GC/MS	58451	Т	07/18/13 08:30 PM	GCMS1_130718A
1307158-12B	Composite #12	Soil	E300	Anions by IC method - Soil	58513	10	07/23/13 03:26 PM	IC2_130723A
	Composite #12	Soil	E300	Anions by IC method - Soil	58513	-	07/23/13 01:28 PM	IC2_130723A
	Composite #12	Soil	SW9014	Cyanide - Solid Sample	58502	-	07/24/13 05:17 PM	UV/VIS_2_130724B
	Composite #12	Soil	SW9045D	pH of Solid (Corrosivity)	58520	-	07/23/13 01:35 PM	PH_130723A
	Composite #12	Soil	E418.1	TRPH	58511	-	07/22/13 03:18 PM	IR207_130722A
1307158-12C	Composite #12	Soil	SW8270D	PCB by GC/MS - Soil/Solid	58538	5	07/24/13 02:10 AM	GCMS8_130723A
	Composite #12	Soil	D2216	Percent Moisture	58534	-	07/24/13 08:50 AM	PMOIST_130723A
	Composite #12	Soil	SW8270D	Semivolatiles by GC/MS - Soil	58493	S	07/23/13 07:32 PM	GCMS9_130723A
	Composite #12	Soil	SW7471B	Total Mercury: Soil/Solid	58449	-	07/22/13 03:27 PM	CETAC_HG_130722C
	Composite #12	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	5	07/19/13 11:23 PM	ICP-MS3_130719B
	Composite #12	Soil	SW6020A	Trace Metals: ICP-MS - Solid	58448	25	07/22/13 01:05 PM	ICP-MS2_130722A

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No:

11-0109-10

Lab Order: 1307158

Date: 26-Jul-13

Client Sample ID: Composite #8

Lab ID: 1307158-08

Collection Date: 07/15/13 03:00 PM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL MERCURY: SOIL/SOLID	1100	SW74	71B				Analyst: LM
Mercury	ND	0.0149	0.0373		mg/Kg-dry	1	07/22/13 02:19 PM
TRACE METALS: ICP-MS - SOLID		SW60:	20A				Analyst: SW
Arsenic	1.54	0.491	0.983		mg/Kg-dry	5	07/19/13 08:53 PM
Barium	19.6	0.491	1.97		mg/Kg-dry	5	07/19/13 08:53 PM
Cadmium	ND	0.0983	0.295		mg/Kg-dry	5	07/19/13 08:53 PM
Chromium	4.57	0.491	1.97		mg/Kg-dry	5	07/19/13 08:53 PM
Copper	1.37	0.491	1.97	J	mg/Kg-dry	5	07/19/13 08:53 PM
Iron	5200	61.4	61.4		mg/Kg-dry	25	07/22/13 02:03 PM
Lead	2.82	0.0983	0.295		mg/Kg-dry	5	07/19/13 08:53 PM
Manganese	45.6	0.491	1.97		mg/Kg-dry	5	07/19/13 08:53 PM
Selenium	0.503	0.147	0.491		mg/Kg-dry	5	07/19/13 08:53 PM
Silver	ND	0.0983	0.197		mg/Kg-dry	5	07/19/13 08:53 PM
Zinc	10.1	0.983	2.46		mg/Kg-dry	5	07/19/13 08:53 PM
SEMIVOLATILES BY GC/MS - SOIL		SW82	70D				Analyst: CZ
1-Methylnaphthalene	ND	0.00999	0.0266	N	mg/Kg-dry	1	07/23/13 12:35 PM
2-Methylnaphthalene	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
Naphthalene	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
Benzo[a]pyrene	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,3,4,6-Tetrachlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,4,5-Trichlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,4,6-Trichlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,4-Dichlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,4-Dimethylphenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2,4-Dinitrophenol	ND	0.0500	0.132		mg/Kg-dry	1	07/23/13 12:35 PM
2,6-Dichlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2-Chlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2-Methylphenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
2-Nitrophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
4,6-Dinitro-2-methylphenol	ND	0.0300	0.0659		mg/Kg-dry	1	07/23/13 12:35 PM
4-Chloro-3-methylphenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
4-Methylphenol	ND	0.0200	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
4-Nitrophenol	ND	0.0500	0.132		mg/Kg-dry	1	07/23/13 12:35 PM
Pentachlorophenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
Phenol	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
Total Phenol (Calculated)	ND	0.00999	0.0266		mg/Kg-dry	1	07/23/13 12:35 PM
Surr: 2,4,6-Tribromophenol	80.0	0	45-126		%REC	1	07/23/13 12:35 PM
Surr: 2-Fluorobiphenyl	95.0	0	60-125		%REC	1	07/23/13 12:35 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No: Lab Order: 11-0109-10

1307158

Date: 26-Jul-13

Client Sample ID: Composite #8

Lab ID: 1307158-08

Collection Date: 07/15/13 03:00 PM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS - SOIL		SW82	270D				Analyst: CZ
Surr: 2-Fluorophenol	99.0	0	37-125		%REC	1	07/23/13 12:35 PM
Surr: 4-Terphenyl-d14	96.0	0	45-125		%REC	1	07/23/13 12:35 PM
Surr: Nitrobenzene-d5	87.0	0	45-125		%REC	1	07/23/13 12:35 PM
Surr: Phenol-d5	81.0	0	40-125		%REC	1	07/23/13 12:35 PM
PCB BY GC/MS - SOIL/SOLID		SW82	270D				Analyst: CZ
Aroclor 1016	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1221	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1232	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1242	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1248	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1254	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Aroclor 1260	ND	0.0167	0.0333		mg/Kg-dry	1	07/23/13 03:51 PM
Surr: 2-Fluorobiphenyl	83.2	0	43-125		%REC	1	07/23/13 03:51 PM
Surr: 4-Terphenyl-d14	105	0	32-125		%REC	1	07/23/13 03:51 PM
8260 SOIL VOLATILES BY GC/MS		SW82	260C				Analyst: DEW
Benzene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Toluene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Carbon tetrachloride	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,2-Dichloroethane	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,1-Dichloroethylene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Tetrachloroethylene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Trichloroethylene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Ethylbenzene	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Total Xylenes	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Methylene chloride	ND	0.00450	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Chloroform	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,1-Dichloroethane	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Ethylene bromide	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,1,1-Trichloroethane	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,1,2-Trichloroethane	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
1,1,2,2-Tetrachloroethane	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Vinyl chloride	ND	0.000899	0.00450		mg/Kg-dry	1	07/18/13 06:27 PM
Surr: 1,2-Dichloroethane-d4	105	0	52-149		%REC	1	07/18/13 06:27 PM
Surr: 4-Bromofluorobenzene	100	0	84-118		%REC	1	07/18/13 06:27 PM
Surr: Dibromofluoromethane	106	0	65-135		%REC	1	07/18/13 06:27 PM
Surr: Toluene-d8	95.8	0	84-116		%REC	1	07/18/13 06:27 PM

- * Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No:

Lab Order:

11-0109-10 1307158

Date: 26-Jul-13

Client Sample ID: Composite #8

Lab ID: 1307158-08

Collection Date: 07/15/13 03:00 PM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRPH		E418	1				Analyst: JCG
Petroleum Hydrocarbons, TR	ND	4.78	9.55	N	mg/Kg-dry	1	07/22/13 03:18 PM
CYANIDE - SOLID SAMPLE		SW90	14				Analyst: JCG
Cyanide, Total	ND	0.180	0.450		mg/Kg-dry	1	07/24/13 05:16 PM
ANIONS BY IC METHOD - SOIL		E30	0				Analyst: JBC
Chloride	ND	5.06	5.06		mg/Kg-dry	1	07/23/13 12:30 PM
Fluoride	1.16	1.01	1.01		mg/Kg-dry	1	07/23/13 12:30 PM
Nitrate-N	ND	5.06	5.06		mg/Kg-dry	1	07/23/13 12:30 PM
Sulfate	12.0	10.1	10.1		mg/Kg-dry	1	07/23/13 12:30 PM
PH OF SOLID (CORROSIVITY)		SW904	15D				Analyst: JCG
рН	7.52	0	0		pH Units@21.2℃	1	07/22/13
PERCENT MOISTURE		D221	6				Analyst: JCG
Percent Moisture	1.23	0	0		WT%	1	07/24/13 08:50 AM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- TPH pattern not Gas or Diesel Range Pattern E
- MDL Method Detection Limit
- RL Reporting Limit
- Parameter not NELAC certified

- Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- Not Detected at the Method Detection Limit
- Spike Recovery outside control limits

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No: Lab Order: 11-0109-10

1307158

Date: 26-Jul-13

Client Sample ID: Composite #10

Lab ID: 1307158-10

Collection Date: 07/16/13 09:00 AM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TOTAL MERCURY: SOIL/SOLID		SW74	71B				Analyst: LM
Mercury	ND	0.0162	0.0406		mg/Kg-dry	1	07/22/13 03:23 PM
TRACE METALS: ICP-MS - SOLID		SW60	20A				Analyst: SW
Arsenic	1.71	0.497	0.995		mg/Kg-dry	5	07/19/13 09:53 PM
Barium	22.4	0.497	1.99		mg/Kg-dry	5	07/19/13 09:53 PM
Cadmium	0.136	0.0995	0.298	J	mg/Kg-dry	5	07/19/13 09:53 PM
Chromium	5.05	0.497	1.99		mg/Kg-dry	5	07/19/13 09:53 PM
Copper	1.53	0.497	1.99	J	mg/Kg-dry	5	07/19/13 09:53 PM
Iron	5560	62.2	62.2		mg/Kg-dry	25	07/22/13 03:01 PM
Lead	2.92	0.0995	0.298		mg/Kg-dry	5	07/19/13 09:53 PM
Manganese	50.4	0.497	1.99		mg/Kg-dry	5	07/19/13 09:53 PM
Selenium	0.654	0.149	0.497		mg/Kg-dry	5	07/19/13 09:53 PM
Silver	ND	0.0995	0.199		mg/Kg-dry	5	07/19/13 09:53 PM
Zinc	10.6	0.995	2.49		mg/Kg-dry	5	07/19/13 09:53 PM
SEMIVOLATILES BY GC/MS - SOIL		SW82	700		0 0 ,		
1-Methylnaphthalene	ND	0.0101	0.0268	N	ma/Ka dni		Analyst: CZ
2-Methylnaphthalene	ND	0.0101	0.0268	188	mg/Kg-dry mg/Kg-dry	1 1	07/23/13 01:22 PM
Naphthalene	ND	0.0101	0.0268				07/23/13 01:22 PM
Benzo[a]pyrene	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,3,4,6-Tetrachlorophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,4,5-Trichlorophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,4,6-Trichlorophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,4-Dichlorophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,4-Dimethylphenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2,4-Dinitrophenol	ND	0.0504	0.0266		mg/Kg-dry	1	07/23/13 01:22 PM
2,6-Dichlorophenol	ND	0.0304	0.133		mg/Kg-dry	1	07/23/13 01:22 PM
2-Chlorophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
2-Methylphenol	ND	0.0101			mg/Kg-dry	1	07/23/13 01:22 PM
2-Nitrophenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
4,6-Dinitro-2-methylphenol	ND	0.0303	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
4-Chloro-3-methylphenol	ND	0.0303	0.0666		mg/Kg-dry	1	07/23/13 01:22 PM
4-Methylphenol	ND		0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
4-Nitrophenol	ND	0.0202	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
Pentachlorophenol	ND	0.0504	0.133		mg/Kg-dry	1	07/23/13 01:22 PM
Phenol	ND	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
Total Phenol (Calculated)		0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
Surr: 2,4,6-Tribromophenol	ND 80.0	0.0101	0.0268		mg/Kg-dry	1	07/23/13 01:22 PM
Surr: 2-Fluorobiphenyl	80.0	0	45-126		%REC	1	07/23/13 01:22 PM
Sun. 2-1 Idorobiphenyi	92.0	0	60-125		%REC	1	07/23/13 01:22 PM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No: Lab Order: 11-0109-10 1307158 Date: 26-Jul-13

Client Sample ID: Composite #10

Lab ID: 1307158-10

Collection Date: 07/16/13 09:00 AM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual Units	DF	Date Analyzed
SEMIVOLATILES BY GC/MS - SOIL		SW82	270D			Analyst: CZ
Surr: 2-Fluorophenol	96.0	0	37-125	%REC	1	07/23/13 01:22 PM
Surr: 4-Terphenyl-d14	93.0	0	45-125	%REC	1	07/23/13 01:22 PM
Surr: Nitrobenzene-d5	84.0	0	45-125	%REC	1	07/23/13 01:22 PM
Surr: Phenol-d5	80.0	0	40-125	%REC	1	07/23/13 01:22 PM
PCB BY GC/MS - SOIL/SOLID		SW82	270D			Analyst: CZ
Aroclor 1016	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1221	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1232	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1242	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1248	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1254	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Aroclor 1260	ND	0.0168	0.0336	mg/Kg-dry	1	07/23/13 04:53 PM
Surr: 2-Fluorobiphenyl	81.5	0	43-125	%REC	1	07/23/13 04:53 PM
Surr: 4-Terphenyl-d14	104	0	32-125	%REC	1	07/23/13 04:53 PM
8260 SOIL VOLATILES BY GC/MS		SW82	600			
Benzene	ND	0.00101	0.00507	mg/Kg-dry	1	Analyst: DEW
Toluene	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Carbon tetrachloride	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,2-Dichloroethane	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,1-Dichloroethylene	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Tetrachloroethylene	ND	0.00101	0.00507	mg/Kg-dry		07/18/13 07:28 PM
Trichloroethylene	ND	0.00101	0.00507	454 150 1	1	07/18/13 07:28 PM
Ethylbenzene	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Total Xylenes	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Methylene chloride	ND	0.00101		mg/Kg-dry	1	07/18/13 07:28 PM
Chloroform	ND	0.00307	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,1-Dichloroethane	ND		0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Ethylene bromide	ND	0.00101 0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,1,1-Trichloroethane	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,1,2-Trichloroethane	ND		0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
1,1,2,2-Tetrachloroethane		0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Vinyl chloride	ND	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Surr: 1,2-Dichloroethane-d4	ND 105	0.00101	0.00507	mg/Kg-dry	1	07/18/13 07:28 PM
Surr: 4-Bromofluorobenzene	105	0	52-149	%REC	1	07/18/13 07:28 PM
	99.5	0	84-118	%REC	1	07/18/13 07:28 PM
Surr: Dibromofluoromethane	105	0	65-135	%REC	1	07/18/13 07:28 PM
Surr: Toluene-d8	97.1	0	84-116	%REC	1	07/18/13 07:28 PM

Qualifiers:

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit

RL Reporting Limit

N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

CLIENT:

Larson & Associates

Project:

R360 Artesia Landfarm

Project No:

11-0109-10

Lab Order:

1307158

Date: 26-Jul-13

Client Sample ID: Composite #10

Lab ID: 1307158-10

Collection Date: 07/16/13 09:00 AM

Matrix: SOIL

Analyses	Result	MDL	RL	Qual	Units	DF	Date Analyzed
TRPH		E418	.1				Analyst: JCG
Petroleum Hydrocarbons, TR	ND	5.02	10.0	N	mg/Kg-dry	1	07/22/13 03:18 PM
CYANIDE - SOLID SAMPLE		SW90	14				Analyst: JCG
Cyanide, Total	ND	0.171	0.428		mg/Kg-dry	1	07/24/13 05:16 PM
ANIONS BY IC METHOD - SOIL		E300)				Analyst: JBC
Chloride	ND	5.02	5.02		mg/Kg-dry	1	07/23/13 12:59 PM
Fluoride	ND	1.00	1.00		mg/Kg-dry	1	07/23/13 12:59 PM
Nitrate-N	ND	5.02	5.02		mg/Kg-dry	1	07/23/13 12:59 PM
Sulfate	ND	10.0	10.0		mg/Kg-dry	1	07/23/13 12:59 PM
PH OF SOLID (CORROSIVITY)		SW904	5D				Analyst: MK
рН	7.68	0	0		pH Units@21.2℃	1	07/23/13 01:35 PM
PERCENT MOISTURE		D221	6				Analyst: JCG
Percent Moisture	1.47	0	0		WT%	1	07/24/13 08:50 AM

- Value exceeds TCLP Maximum Concentration Level
- C Sample Result or QC discussed in the Case Narrative
- E TPH pattern not Gas or Diesel Range Pattern
- MDL Method Detection Limit
- RL Reporting Limit
- N Parameter not NELAC certified

- B Analyte detected in the associated Method Blank
- DF Dilution Factor
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- S Spike Recovery outside control limits

Date: 25-Jul-13

CLIENT:

Larson & Associates

Work Order: Project:

1307158

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID.

CETAC_HG 130722C

Page 1 of 32

Project:		esia Landfa					RunII		CETAC_F		
The QC dat 06C, 13071	ta in batch 58449 app 58-07C, 1307158-08	lies to the f C, 1307158	ollowing s -09C, 130	amples: 1307 7158-10C, 13	158-01C, 1307 07158-11C, 13	7158-02C, 13 807158-12C	307158-03C	, 1307158	8-04C, 13071	58-05C,	1307158-
	MB-58449	Batch ID:			TestNo		7471B		Units:	mg/Kg	
SampType:	MBLK	Run ID:	CETAC	_HG_130722	C Analys	is Date: 7/22	2/2013 1:12:	41 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	PDLimit Qua
Mercury			ND	0.0400					10.000		
Sample ID:	LCS-58449	Batch ID:	58449		TestNo	: SW	7471B		Units:	mg/Kg)
SampType:	LCS	Run ID:	CETAC	_HG_130722	C Analys	is Date: 7/22	/2013 1:20:	50 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	PDLimit Qua
Mercury			0.203	0.0400	0.2000	0	102	85	115		111111111111111111111111111111111111111
Sample ID:	LCSD-58449	Batch ID:	58449		TestNo	: SW:	7471B		Units:	mg/Kg	J
SampType:	LCSD	Run ID:	CETAC	_HG_130722	C Analys	is Date: 7/22	/2013 1:22:	52 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit '	%RPD R	PDLimit Qua
Mercury			0.207	0.0400	0.2000	0	104	85	115	1.95	25
	1307158-08C SD	Batch ID:	58449		TestNo	sw:	7471B		Units:	mg/Kg	j-dry
SampType:	SD	Run ID:	CETAC	_HG_1307220	C Analys	is Date: 7/22	/2013 2:21:	47 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit '	%RPD R	PDLimit Qua
Mercury			0	0.186	0	0				0	10
Sample ID:	1307158-08C PDS	Batch ID:	58449		TestNo	: SW7	7471B		Units:	mg/Kg	j-dry
SampType:	PDS	Run ID:	CETAC	_HG_1307220	2 Analys	is Date: 7/22	/2013 2:29:	46 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ^c	%RPD R	PDLimit Qua
Mercury			0.245	0.0373	0.2328	0	105	85	115		
Sample ID:	1307158-08C MS	Batch ID:	58449		TestNo	: SW7	471B		Units:	mg/Kg	-dry
SampType:	MS	Run ID:	CETAC	_HG_1307220	Analys	s Date: 7/22	/2013 2:31:	49 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Mercury			0.198	0.0372	0.1861	0	107	80	120		
Sample ID:	1307158-08C MSD	Batch ID:	58449		TestNo	: SW7	'471B		Units:	mg/Kg	-dry
SampType:	MSD	Run ID:	CETAC	_HG_1307220	Analysi	s Date: 7/22	/2013 2:33:	53 PM	Prep Date:	7/19/2	013
Analyte			Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD R	PDLimit Qua
Mercury			0.199	0.0373	0.1863	0	107	80	120	0.542	25

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Larson & Associates

Work Order:

1307158

Project: R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

CETAC_HG_130722C

Sample ID: ICV2-130722	Batch ID: R678	567	TestNo	: sw:	7471B		Units:	mg/Kg
SampType: ICV	Run ID: CET	AC_HG_130722	C Analysi	s Date: 7/22	/2013 1:06:	34 PM	Prep Date	9:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit C
Mercury	0.00393	3 0.0400	0.004000	0	98.2	90	110	
Sample ID: CCV2-130722	Batch ID: R675	67	TestNo	: SW7	7471B		Units:	mg/Kg
SampType: CCV	Run ID: CET.	AC_HG_130722	C Analysi	s Date: 7/22	/2013 2:05:	21 PM	Prep Date	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit C
Mercury	0.00204	0.0400	0.002000	0	102	90	110	
Sample ID: CCV3-130722	Batch ID: R675	67	TestNo	SW7	471B		Units:	mg/Kg
SampType: CCV	Run ID: CET	AC_HG_1307220	C Analysis	s Date: 7/22	/2013 2:40:	49 PM	Prep Date	e:
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit C
Mercury	0.00200	0.0400	0.002000	0	100	90	110	-
Sample ID: CCV4-130722	Batch ID: R675	67	TestNo:	SW7	'471B		Units:	mg/Kg
SampType: CCV	Run ID: CETA	AC_HG_1307220	2 Analysis	s Date: 7/22	/2013 3:31:	33 PM	Prep Date	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Q
Mercury	0.00197	0.0400	0.002000	0	98.5	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 2 of 32

Larson & Associates

Work Order:

1307158

Project: R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS2_130722A

The QC data in batch 58448 applies to the following samples: 1307158-01C, 1307158-02C, 1307158-03C, 1307158-04C, 1307158-05C, 1307158-05C, 1307158-07C, 1307158-08C, 1307158-09C, 1307158-10C, 1307158-11C, 1307158-12C

Sample ID: 1307158-08C SD	Batch ID:	58448		TestNo	o: SW	6020A		Units:	mg/Kg-dry
SampType: SD	Run ID:	ICP-MS2	_130722A	Analys	is Date: 7/2 2	2/2013 2:09	:00 PM	Prep Date:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit ⁴	%RPD RPDLimit Q
Iron		5240	307	0	5196				0.918 10
Sample ID: 1307158-08C PDS	Batch ID:	58448		TestNo	: SW	6020A		Units:	mg/Kg-dry
SampType: PDS	Run ID:	ICP-MS2	_130722A	Analys	is Date: 7/22	2/2013 3:07:	00 PM	Prep Date:	7/19/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit S	%RPD RPDLimit Q
Iron		13000	61.4	6144	5196	128	80	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

57

Page 3 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS2_130722A

						N 65 - 157		_130/22A
Sample ID: ILCVL-130722	Batch ID: R	867561	TestNo	o: SW	6020A		Units:	mg/L
SampType: LCVL	Run ID:	CP-MS2_130722A	Analys	sis Date: 7/22	2/2013 12:1	1:00 PM	Prep Date	e:
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD RPDLimit Qual
Iron	0.1	14 0.100	0.100	0	114	70	130	10
Sample ID: LCVL1-130722	Batch ID: R	67561	TestNo	: SW	6020A	7/-11	Units:	mg/L
SampType: LCVL	Run ID: IC	CP-MS2_130722A	Analys	is Date: 7/22	2/2013 1:46:	:00 PM	Prep Date	e:
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Iron	0.1	11 0.100	0.100	0	111	70	130	
Sample ID: LCVL2-130722	Batch ID: R	67561	TestNo	SW	6020A		Units:	mg/L
SampType: LCVL	Run ID: 10	CP-MS2_130722A	Analys	is Date: 7/22	/2013 3:42:	00 PM	Prep Date	y:
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qual
Iron	0.1	11 0.100	0.100	0	111	70	130	
Sample ID: ICV1-130722	Batch ID: R	67561	TestNo	: SW	6020A		Units:	mg/L
SampType: ICV	Run ID: IC	P-MS2_130722A	Analys	is Date: 7/22	/2013 11:53	3:00 AM	Prep Date	:
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Iron	2.5	0.100	2.50	0	103	90	110	
Sample ID: CCV1-130722	Batch ID: Re	67561	TestNo	: SW6	6020A		Units:	mg/L
SampType: CCV	Run ID: IC	P-MS2_130722A	Analysi	s Date: 7/22	/2013 1:17:	00 PM	Prep Date	:
Analyte	Res	ult RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Iron	5.2	2 0.100	5.00	0	104	90	110	
Sample ID: CCV2-130722	Batch ID: R6	67561	TestNo	: SW6	020A		Units:	mg/L
SampType: CCV	Run ID: IC	P-MS2_130722A	Analysi	s Date: 7/22	/2013 3:13:0	00 PM	Prep Date	
Analyte	Res	ult RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Iron	5.2	8 0.100	5.00	0	106	90	110	

Qual	lifiers
------	---------

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 4 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_130719B

The QC data in batch 58448 applies to the following samples: 1307158-01C, 1307158-02C, 1307158-03C, 1307158-04C, 1307158-05C, 1307158-06C, 1307158-07C, 1307158-08C, 1307158-09C, 1307158-10C, 1307158-11C, 1307158-12C

Sample ID: MB-58448	Batch ID:	58448		TestNo:	SW	6020A		Units:	mg/Kg	
SampType: MBLK	Run ID:	Run ID: ICP-MS3_130719B		Analysis Date: 7/19/2013 8:29:00 Pl				M Prep Date: 7/19/2013		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qua	
Arsenic		ND	1.00					Manufacture (Inc.)		
Barium		ND	2.00							
Cadmium		ND	0.300							
Chromium		ND	2.00							
Copper		ND	2.00							
Iron		ND	12.5							
Lead		ND	0.300							
Manganese		ND	2.00							
Selenium		ND	0.500							
Silver		ND	0.200							
Zinc		ND	2.50							

Sample ID: LCS-58448	Batch ID:	58448		TestNo:	SW	6020A		Units:	mg/Kg
SampType: LCS	Run ID:	ICP-MS	3_130719B	Analysis	s Date: 7/19)/2013 8:35:	00 PM	Prep Date	7/19/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qua
Arsenic		51.5	1.00	50.00	0	103	80	120	
Barium		50.7	2.00	50.00	0	101	80	120	
Cadmium		49.4	0.300	50.00	0	98.9	80	120	
Chromium		48.6	2.00	50.00	0	97.2	80	120	
Copper		50.0	2.00	50.00	0	100	80	120	
Iron		271	12.5	250.0	0	108	80	120	
Lead		50.7	0.300	50.00	0	101	80	120	
Manganese		52.2	2.00	50.00	0	104	80	120	
Selenium		53.4	0.500	50.00	0	107	80	120	
Silver		50.8	0.200	50.00	0	102	80	120	
Zinc		51.8	2.50	50.00	0	104	80	120	

Sample ID: LCSD-58448	Batch ID:	58448		TestNo	: SW	6020A		Units:	mg/k	(g
SampType: LCSD	Run ID:	ICP-MS	3_130719B	Analysis Date: 7/19/2013 8:41:00 F			00 PM	Prep Date	7/19/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD	RPDLimit Qual
Arsenic		51.2	1.00	50.00	0	103	80	120	0.438	20
Barium		49.4	2.00	50.00	0	98.8	80	120	2.55	20
Cadmium		49.0	0.300	50.00	0	97.9	80	120	1.02	20
Chromium		48.5	2.00	50.00	0	97.0	80	120	0.258	20
Copper		49.2	2.00	50.00	0	98.3	80	120	1.66	20
Iron		268	12.5	250.0	0	107	80	120	1.21	20
Lead		50.4	0.300	50.00	0	101	80	120	0.544	20

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAC certified

59

Page 5 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_130719B

Sample ID: LCSD-58448	Batch ID:	58448		TestN	o: SW6	6020A		Units:	mg/K	g	
SampType: LCSD	Run ID:	ICP-MS	3_130719B	Analys	sis Date: 7/19	/2013 8:41	:00 PM	Prep Date:	7/19/	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁴	%RPD	RPDLimi	it Qua
Manganese		51.7	2.00	50.00	0	103	80	120	1.11	20	
Selenium		52.9	0.500	50.00	0	106	80	120	1.08	20	
Silver		50.5	0.200	50.00	0	101	80	120	0.740	20	
Zinc		50.3	2.50	50.00	0	101	80	120	2.89	20	
Sample ID: 1307158-08C SD	Batch ID:	58448		TestN	o: SW6	6020A		Units:	mg/K	g-dry	
SampType: SD	Run ID:	ICP-MS3	3_130719B	Analys	sis Date: 7/19	/2013 8:59:	:00 PM	Prep Date:	7/19/	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ^c	%RPD	RPDLimi	it Qua
Arsenic		0	4.91	0	1.540				0	10	
Barium		19.6	9.83	0	19.56				0.062	10	
Cadmium		0	1.47	0	0				0	10	
Chromium		4.45	9.83	0	4.573				2.78	10	
Copper		0	9.83	0	1.370				0	10	
Lead		2.79	1.47	0	2.819				0.876	10	
Manganese		46.0	9.83	0	45.64				0.724	10	
Selenium		0	2.46	0	0.5026				0	10	
Silver		0	0.983	0	0				0	10	
Zinc		9.82	12.3	0	10.11				2.91	10	
Sample ID: 1307158-08C PDS	Batch ID:	58448		TestN	o: SW6	6020A		Units:	mg/K	g-dry	
SampType: PDS	Run ID:	ICP-MS3	_130719B	Analys	sis Date: 7/19	/2013 9:59:	00 PM	Prep Date:	7/19/	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ^c	%RPD I	RPDLimi	t Qua
Arsenic		56.9	0.983	49.15	1.540	113	80	120			
Barium		74.4	1.97	49.15	19.56	112	80	120			
Cadmium		51.4	0.295	49.15	0	105	80	120			
Chromium		56.8	1.97	49.15	4.573	106	80	120			
Copper		54.4	1.97	49.15	1.370	108	80	120			
_ead		55.7	0.295	49.15	2.819	108	80	120			
Manganese		108	1.97	49.15	45.64	127	80	120			S
Selenium		56.8	0.491	49.15	0.5026	115	80	120			
Silver		51.2	0.197	49.15	0	104	80	120			
Zinc		66.1	2.46	49.15	10.11	114	80	120			
Sample ID: 1307158-08C MS	Batch ID:	58448		TestNe	o: SW 6	6020A		Units:	mg/K	g-dry	
SampType: MS	Run ID:	ICP-MS3	_130719B	Analys	sis Date: 7/19 /	/2013 10:05	5:00 PM	Prep Date:	7/19/	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit 9	%RPD I	RPDLimi	t Qua
Arsenic		52.1	1.00	50.12	1.540	101	80	120			
Barium		70.2	2.00	50.12	19.56	101	80	120			
Qualifiers: B Analyte dete	ected in the as	ssociated M	ethod Blank	DF	Dilution Facto	r				1911	
	ected in the as				Dilution Facto Method Detect				D	age 6 o	f 32

- Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - Spike Recovery outside control limits Parameter not NELAC certified

N

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_130719B

Sample ID: 1307158-08C MS	Batch ID:	58448		TestNo	SW6	6020A		Units:	mg/	Kg-dry	
SampType: MS	Run ID:	ICP-MS	3_130719B	Analys	is Date: 7/19	/2013 10:0	5:00 PM	Prep Date:	7/19	/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimi	t Qua
Cadmium		48.0	0.301	50.12	0	95.9	80	120			
Chromium		51.9	2.00	50.12	4.573	94.4	80	120			
Copper		49.8	2.00	50.12	1.370	96.7	80	120			
Iron		5010	12.5	250.6	4814	78.0	80	120			S
Lead		51.7	0.301	50.12	2.819	97.6	80	120			
Manganese		94.6	2.00	50.12	45.64	97.6	80	120			
Selenium		52.1	0.501	50.12	0.5026	103	80	120			
Silver		49.2	0.200	50.12	0	98.2	80	120			
Zinc		58.9	2.51	50.12	10.11	97.3	80	120			
Sample ID: 1307158-08C MSD	Batch ID:	58448		TestNo	: SW6	6020A		Units:	mg/l	Kg-dry	
SampType: MSD	Run ID:	ICP-MS3	3_130719B	Analys	is Date: 7/19	/2013 10:11	:00 PM	Prep Date:	7/19	/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD	RPDLimit	Qua
Arsenic		50.5	0.974	48.68	1.540	100	80	120	3.26	20	
Barium		68.8	1.95	48.68	19.56	101	80	120	2.04	20	
Cadmium		46.0	0.292	48.68	0	94.6	80	120	4.29	20	
									20 12 13	20	
Chromium		50.4	1.95	48.68	4.573	94.1	80	120	2.93	20	
Chromium Copper		50.4 48.7	1.95 1.95	48.68 48.68	4.573 1.370	94.1 97.2	80 80	120 120	2.93	20	
							800000				s
Copper		48.7	1.95	48.68	1.370	97.2	80	120	2.38	20	S
Copper Iron		48.7 4890	1.95 12.2	48.68 243.4	1.370 4814	97.2 32.0	80 80	120 120	2.38 2.38	20 20	S
Copper Iron Lead		48.7 4890 50.6	1.95 12.2 0.292	48.68 243.4 48.68	1.370 4814 2.819	97.2 32.0 98.3	80 80 80	120 120 120	2.38 2.38 2.11	20 20 20	S
Copper Iron Lead Manganese		48.7 4890 50.6 93.3	1.95 12.2 0.292 1.95	48.68 243.4 48.68 48.68	1.370 4814 2.819 45.64	97.2 32.0 98.3 97.9	80 80 80	120 120 120 120	2.38 2.38 2.11 1.32	20 20 20 20	S

Oua	lifiers

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 7 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_130719B

Sample ID: ILCVL-130719	Batch ID: R67537		Test	No: SW6	6020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS	3_130719B	Analy	/sis Date: 7/19	/2013 3:16:	00 PM	Prep Date) :
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit	%RPD RPDLimit Qua
Arsenic	0.00548	0.00500	0.00500	0	110	70	130	
Barium	0.00525	0.0100	0.00500	0	105	70	130	
Cadmium	0.00112	0.00100	0.00100	0	112	70	130	
Chromium	0.00526	0.00500	0.00500	0	105	70	130	
Copper	0.00536	0.0100	0.00500	0	107	70	130	
Iron	0.108	0.100	0.100	0	108	70	130	
Lead	0.00108	0.00100	0.00100	0	108	70	130	
Manganese	0.00558	0.0100	0.00500	0	112	70	130	
Selenium	0.00579	0.00500	0.00500	0	116	70	130	
Silver	0.00210	0.00200	0.00200	0	105	70	130	
Zinc	0.00472	0.00500	0.00500	0	94.5	70	130	
Sample ID: LCVL2-130719	Batch ID: R67537		TestN	lo: SW6	020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS	3_130719B	Analy	rsis Date: 7/19 /	/2013 8:11:	00 PM	Prep Date	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua
Arsenic	0.00515	0.00500	0.00500	0	103	70	130	
Barium	0.00490	0.0100	0.00500	0	98.0	70	130	
Cadmium	0.000994	0.00100	0.00100	0	99.4	70	130	
Chromium	0.00456	0.00500	0.00500	0	91.2	70	130	
Copper	0.00477	0.0100	0.00500	0	95.5	70	130	
Iron	0.100	0.100	0.100	0	100	70	130	
Lead	0.000998	0.00100	0.00100	0	99.9	70	130	
Manganese	0.00519	0.0100	0.00500	0	104	70	130	
Selenium	0.00539	0.00500	0.00500	0	108	70	130	
Silver	0.00207	0.00200	0.00200	0	104	70	130	
Zinc	0.00431	0.00500	0.00500	0	86.3	70	130	
Sample ID: LCVL3-130719	Batch ID: R67537		TestN	o: SW6	020A		Units:	mg/L
SampType: LCVL	Run ID: ICP-MS3	3_130719B	Analy	sis Date: 7/19/	2013 10:59	:00 PM	Prep Date	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Arsenic	0.00513	0.00500	0.00500	0	103	70	130	
Barium	0.00503	0.0100	0.00500	0	101	70	130	
Cadmium	0.00103	0.00100	0.00100	0	103	70	130	
Chromium	0.00455	0.00500	0.00500	0	91.0	70	130	
Copper	0.00469	0.0100	0.00500	0	93.9	70	130	
Iron	0.100	0.100	0.100	0	100	70	130	
Lead	0.00100	0.00100	0.00100	0	100	70	130	
Manganese	0.00515	0.0100	0.00500	0	103	70	130	
Selenium	0.00521	0.00500	0.00500	0	104	70	130	
Qualifiers: B Analyte de	tected in the associated Mo	ethod Blank	DF	Dilution Factor		***		

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 8 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

ICP-MS3_130719B

Batch ID:	R67537		TestN	o: SW	6020A		Units:	mg/L
Run ID:	ICP-MS	3_130719B	Analys	sis Date: 7/19	9/2013 10:5	9:00 PM	Prep Date	e:
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
	0.00203	0.00200	0.00200	0	102	70	130	***************************************
	0.00435	0.00500	0.00500	0	87.1	70	130	
Batch ID:	R67537		TestNo	o: SW	6020A		Units:	mg/L
Run ID:	ICP-MS	3_130719B	Analys	sis Date: 7/20	/2013 12:5	9:00 AM	Prep Date	e:
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qua
	0.00520	0.00500	0.00500	0	104	70	130	
	0.00479	0.0100	0.00500	0	95.9	70	130	
(0.000831	0.00100	0.00100	0	83.1	70	130	
	0.00434	0.00500	0.00500	0	86.8	70	130	
	0.00470	0.0100	0.00500	0	94.1	70	130	
	0.102	0.100	0.100	0	102	70		
(0.000981	0.00100	0.00100					
Ratch ID:	DETEST		TootNe	CW/				
						-00 PM		mg/L
			www.wimes					
					X0289280-15488			76111 D 111 DEIIIII Qua
					104	90	110	
		0.0100		0	106	90	110	
		0.100	2.50	0	108	90	110	
	0.101	0.00100	0.100	0	101	90	110	
	0.108	0.0100	0.100	0	108	90	110	
	0.107	0.00500	0.100	0	107	90	110	
	0.103	0.00200	0.100	0	103	90	110	
	0.107	0.00500	0.100	0	107	90	110	A Topics
Batch ID:	R67537		TestNo	: SW6	6020A		Units:	mg/L
	ICD MC	3 130719B	Analys	is Date: 7/19	/2013 7:29:	00 PM	Prep Date	e:
Run ID:	ICF-IVIS	0_1007102	vouces modern 2 oct					
Run ID:	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua
Run ID:	THE PARTY OF THE P		-	Ref Val	%REC	LowLimi 90	t HighLimit	%RPD RPDLimit Qua
	Batch ID: Run ID: Batch ID: Run ID:	Run ID: ICP-MS Result 0.00203 0.00435 Batch ID: R67537 Run ID: ICP-MS Result 0.00520 0.00479 0.000831 0.00434 0.00470 0.102 0.000981 0.00535 0.00202 0.00426 Batch ID: R67537 Run ID: ICP-MS Result 0.103 0.101 0.102 0.104 0.106 2.69 0.101 0.108 0.107 0.103 0.107	Run ID: ICP-MS3_130719B Result RL 0.00203 0.00200 0.00435 0.00500 Batch ID: R67537 Run ID: ICP-MS3_130719B Result RL 0.00520 0.00500 0.00479 0.0100 0.00434 0.00500 0.00470 0.0100 0.00503 0.0100 0.00503 0.0100 0.00535 0.00500 0.00202 0.00200 0.00426 0.00500 Batch ID: R67537 Run ID: ICP-MS3_130719B Result RL 0.103 0.00500 0.101 0.0100 0.102 0.00100 0.104 0.00500 0.106 0.0100 0.107 0.00500 0.108 0.0100 0.109 0.101 0.101 0.00100 0.103 0.	Result RL SPK value	Run ID: ICP-MS3_130719B Analysis Date: 7/15 Result RL SPK value Ref Val 0.00203 0.00200 0.00200 0 0.00435 0.00500 0.00500 0 Batch ID: R67537 TestNo: SW Result RL SPK value Ref Val 0.00520 0.00500 0.00500 0 0.00479 0.0100 0.00500 0 0.00434 0.00500 0.00500 0 0.00470 0.0100 0.00500 0 0.00470 0.0100 0.00500 0 0.00470 0.0100 0.00500 0 0.00503 0.0100 0.00500 0 0.00503 0.0100 0.00500 0 0.00503 0.0100 0.00500 0 0.00426 0.00500 0.00500 0 0.00426 0.00500 0.00500 0	Run ID: ICP-MS3_130719B Analysis Date: 7/19/2013 10:5 Result RL SPK value Ref Val %REC 0.00203 0.00200 0.00200 0 102 0.00435 0.00500 0.00500 0 87.1 Batch ID: R67537 TestNo: SW6020A Run ID: ICP-MS3_130719B Analysis Date: 7/20/2013 12:5 Result RL SPK value Ref Val %REC 0.00520 0.00500 0.00500 0 104 0.00479 0.0100 0.00500 0 95.9 0.00434 0.00500 0.00500 0 94.1 0.102 0.100 0.00500 0 98.1 0.00470 0.0100 0.00500 0 98.1 0.00503 0.0100 0.00500 0 107 0.00503 0.0100 0.00500 0 107 0.00525 0.00500 0.00500 0	Run ID: ICP-MS3_130719B	Result RIL SPK value Ref Val %REC LowLimit HighLimit 0.00203 0.00200 0.00200 0 102 70 130 1

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

Analyte detected between SDL and RL

MDL Method Detection Limit

RPD outside accepted control limits

Spike Recovery outside control limits

Parameter not NELAC certified

63

Page 9 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID: ICP-MS3_130719B

								01 111DU	_100/1/15
Sample ID: CCV2-130719	Batch ID:	R67537		TestNo:	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS3	_130719B	Analysis	Date: 7/1	9/2013 7:29:	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Cadmium		0.193	0.00100	0.200	0	96.5	90	110	
Chromium		0.184	0.00500	0.200	0	92.0	90	110	
Copper		0.186	0.0100	0.200	0	93.2	90	110	
Iron		4.94	0.100	5.00	0	98.8	90	110	
Lead		0.193	0.00100	0.200	0	96.7	90	110	
Manganese		0.198	0.0100	0.200	0	98.8	90	110	
Selenium		0.214	0.00500	0.200	0	107	90	110	
Silver		0.195	0.00200	0.200	0	97.4	90	110	
Zinc		0.204	0.00500	0.200	0	102	90	110	
Sample ID: CCV3-130719	Batch ID:	R67537		TestNo:	SW	6020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS3	_130719B	Analysis	Date: 7/19	9/2013 10:17	:00 PM	Prep Date	

Campic ID. CCV3-1307 19	Balcii ID.	n0/33/		restivo): SW(0020A		Units:	mg/L
SampType: CCV	Run ID:	ICP-MS3	_130719B	Analys	is Date: 7/19	/2013 10:13	7:00 PM	Prep Date):
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	t HighLimit	%RPD RPDLimit Qua
Arsenic	A CONTROL OF THE STATE OF THE S	0.202	0.00500	0.200	0	101	90	110	
Barium		0.188	0.0100	0.200	0	93.8	90	110	
Cadmium		0.188	0.00100	0.200	0	93.8	90	110	
Chromium		0.186	0.00500	0.200	0	93.2	90	110	
Copper		0.191	0.0100	0.200	0	95.6	90	110	
Iron		5.06	0.100	5.00	0	101	90	110	
Lead		0.194	0.00100	0.200	0	96.8	90	110	
Manganese		0.198	0.0100	0.200	0	99.1	90	110	
Selenium		0.208	0.00500	0.200	0	104	90	110	
Silver		0.190	0.00200	0.200	0	95.2	90	110	
Zinc		0.204	0.00500	0.200	0	102	90	110	

Sample ID: CCV4-130719	Batch ID:	R67537		TestNo	: SW	6020A		Units:	mg/	L
SampType: CCV	Run ID:	ICP-MS3	_130719B	Analys	is Date: 7/20	/2013 12:28	3:00 AM	Prep Date	e:	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Arsenic		0.204	0.00500	0.200	0	102	90	110		
Barium		0.190	0.0100	0.200	0	95.0	90	110		
Cadmium		0.188	0.00100	0.200	0	93.8	90	110		
Chromium		0.186	0.00500	0.200	0	93.0	90	110		
Copper		0.194	0.0100	0.200	0	97.2	90	110		
Iron		5.04	0.100	5.00	0	101	90	110		
Lead		0.192	0.00100	0.200	0	96.0	90	110		
Manganese		0.199	0.0100	0.200	0	99.5	90	110		
Selenium		0.211	0.00500	0.200	0	106	90	110		
Silver		0.191	0.00200	0.200	0	95.4	90	110		
Zinc		0.200	0.00500	0.200	0	99.8	90	110		

Qualifiers:

- Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - Spike Recovery outside control limits
 - Parameter not NELAC certified

Page 10 of 32

Larson & Associates

Work Order:

1307158

Project: R360 Artesia Landfarm ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS8_130723A

The QC data in batch 58538 applies to the following samples: 1307158-01C, 1307158-02C, 1307158-03C, 1307158-04C, 1307158-05C, 1307158-06C, 1307158-07C, 1307158-08C, 1307158-09C, 1307158-10C, 1307158-11C, 1307158-12C

Sample ID: MB-58538 SampType: MBLK	Batch ID: Run ID:	58538 GCMS8	_130723A	TestNo Analysi		8270D 3/2013 3:20	:00 PM	Units: Prep Date	mg/Kg : 7/23/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aroclor 1016		ND	0.0500		301144				
Aroclor 1221		ND	0.0500						
Aroclor 1232		ND	0.0500						
Aroclor 1242		ND	0.0500						
Aroclor 1248		ND	0.0500						
Aroclor 1254		ND	0.0500						
Aroclor 1260		ND	0.0500						
Surr: 2-Fluorobiphenyl		0.767		1.000		76.7	43	125	
Surr: 4-Terphenyl-d14		1.05	**************************************	1.000		105	32	125	
Sample ID: LCS-58538	Batch ID:	58538		TestNo:	SW	3270D		Units:	mg/Kg

Sample ID: LCS-58538	Batch ID:	58538		TestNo	: SW	3270D		Units:	mg/Kg
SampType: LCS	Run ID:	GCMS8	_130723A	Analys	is Date: 7/23	/2013 7:28:	00 PM	Prep Date	: 7/23/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
Aroclor 1016	No other Land	0.956	0.0500	1.000	0	95.6	41	138	
Aroclor 1260		1.04	0.0500	1.000	0	104	61	131	
Surr: 2-Fluorobiphenyl		0.894		1.000		89.4	43	125	
Surr: 4-Terphenyl-d14	A	1.20		1.000		120	32	125	

						120	02	120	
Sample ID: 1307213-02CMS	Batch ID:	58538		TestNo	: SW	8270D		Units:	mg/Kg
mpType: MS Run ID	Run ID:	GCMS8	_130723A	Analysis Date: 7/23/2013 7:59:00 PM			Prep Date	7/23/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Aroclor 1016		0.601	0.0324	0.6489	0	92.7	41	138	
Aroclor 1260		0.626	0.0324	0.6489	0	96.4	61	131	
Surr: 2-Fluorobiphenyl		0.559		0.6489		86.1	43	125	
Surr: 4-Terphenyl-d14		0.735		0.6489		113	32	125	

Sample ID: 1307213-02CMS SampType: MSD	Batch ID: Run ID:	58538 GCMS8	3_130723A	TestNo Analys		8270D 3/2013 8:30:	00 PM	Units: Prep Date	mg/l	Kg /2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit Qual
Aroclor 1016		0.633	0.0324	0.6489	0	97.6	41	138	5.21	50
Aroclor 1260		0.676	0.0324	0.6489	0	104	61	131	7.81	50
Surr: 2-Fluorobiphenyl		0.573		0.6489		88.3	43	125	0	0
Surr: 4-Terphenyl-d14		0.764		0.6489		118	32	125	0	0

Oualifiers:	
Samuel 2.	

- В Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - RPD outside accepted control limits
 - Spike Recovery outside control limits
- Parameter not NELAC certified

Page 11 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS8_130723A

Sample ID: ICV-130723 SampType: ICV	Batch ID: Run ID:	R67582 GCMS8	_130723A	TestNo Analys		8270D 3/2013 2:49:	00 PM	Units: Prep Date	mg/Kg
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qua
Aroclor 1016		2.00	0.0500	2.000	0	100	80	120	
Aroclor 1260		2.20	0.0500	2.000	0	110	80	120	
Surr: 2-Fluorobiphenyl		1.91		2.000		95.6	80	120	
Surr: 4-Terphenyl-d14		2.37		2.000		119	80	120	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 12 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_130723A

The QC data in batch 58493 applies to the following samples: 1307158-01C, 1307158-02C, 1307158-03C, 1307158-04C, 1307158-05C, 1307158-06C, 1307158-07C, 1307158-08C, 1307158-09C, 1307158-10C, 1307158-11C, 1307158-12C

Sample ID: LCS-58493	Batch ID:	58493		TestNo): S	SW8270D		Units:	mg/Kg	
SampType: LCS	Run ID:	GCMS	_130723A	Analys	is Date: 7	/23/2013 9:53:	00 AM	Prep Date:	7/22/2013	
Analyte	F	Result	RL	SPK value	Ref Va	I %REC	LowLim	it HighLimit '	%RPD RPDLimi	t Qual
1-Methylnaphthalene		1.01	0.0266	1.340	0	75.4	40	125		N
2,3,4,6-Tetrachlorophenol		1.12	0.0266	1.340	0	83.4	40	125		
2,4,5-Trichlorophenol		1.15	0.0266	1.340	0	85.5	49	125		
2,4,6-Trichlorophenol		1.15	0.0266	1.340	0	85.8	43	125		
2,4-Dichlorophenol		1.13	0.0266	1.340	0	84.3	45	125		
2,4-Dimethylphenol		1.08	0.0266	1.340	0	80.5	32	125		
2,4-Dinitrophenol		1.09	0.132	1.340	0	81.4	25	132		
2,6-Dichlorophenol		1.13	0.0266	1.340	0	84.4	38	125		
2-Chlorophenol		1.05	0.0266	1.340	0	78.5	44	125		
2-Methylnaphthalene		1.02	0.0266	1.340	0	76.0	47	125		
2-Methylphenol	(0.839	0.0266	1.340	0	62.6	40	125		
2-Nitrophenol		1.09	0.0266	1.340	0	81.3	42	125		
4,6-Dinitro-2-methylphenol		1.23	0.0660	1.340	0	91.5	29	137		
4-Chloro-3-methylphenol		1.11	0.0266	1.340	0	83.2	46	125		
4-Methylphenol	(0.855	0.0266	1.340	0	63.8	41	125		
4-Nitrophenol		1.16	0.132	1.340	0	86.5	25	138		
Benzo[a]pyrene		1.24	0.0266	1.340	0	92.2	50	125		
Naphthalene		1.07	0.0266	1.340	0	79.9	40	125		
Pentachlorophenol		1.07	0.0266	1.340	0	79.6	25	125		
Phenol	C	0.914	0.0266	1.340	0	68.2	25	125		
Surr: 2,4,6-Tribromophenol	C	0.660		0.6670		99.0	45	138		
Surr: 2-Fluorobiphenyl	C	0.653		0.6670		98.0	60	135		
Surr: 2-Fluorophenol	C	0.667		0.6670		100	37	125		
Surr: 4-Terphenyl-d14	C	0.680		0.6670		102	60	129		
Surr: Nitrobenzene-d5	C	0.593		0.6670		89.0	45	125		
Surr: Phenol-d5	C	0.567		0.6670		85.0	40	125		
Sample ID: 1307175-04DMS	Batch ID:	58493		TestNo:	S	W8270D		Units:	mg/Kg-dry	
SampType: MS	Run ID:	GCMS9	_130723A	Analysis	s Date: 7/	23/2013 10:16:	00 AM	Prep Date:	7/22/2013	

Sample ID: 1307175-04DMS	Batch ID:	58493		TestNo:	SW8	3270D		Units:	mg/Kg-dry
SampType: MS	Run ID:	GCMS9	_130723A	Analysis	s Date: 7/23	/2013 10:16	6:00 AM	Prep Date	2: 7/22/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD RPDLimit Qual
1-Methylnaphthalene		1.02	0.0284	1.430	0	71.6	40	125	N
2,3,4,6-Tetrachlorophenol		1.03	0.0284	1.430	0	71.8	40	125	8.3
2,4,5-Trichlorophenol		1.08	0.0284	1.430	0	75.5	49	125	
2,4,6-Trichlorophenol		1.08	0.0284	1.430	0	75.3	43	125	
2,4-Dichlorophenol		1.10	0.0284	1.430	0	77.0	45	125	
2,4-Dimethylphenol		1.02	0.0284	1.430	0	71.3	32	125	
2,4-Dinitrophenol		0.731	0.141	1.430	0	51.1	25	132	
2,6-Dichlorophenol		1.10	0.0284	1.430	0	76.6	38	125	

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 13 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_130723A

					Kullii		JC1V139	10012		
Sample ID: 1307175-04DMS	Batch ID: 5	8493	TestN	o: SW	3270D		Units:	mg/	Kg-dry	
SampType: MS	Run ID: G	GCMS9_130723A	Analys	sis Date: 7/2 3	/2013 10:10	6:00 AM	Prep Date	: 7/22	2/2013	
Analyte	Res	sult RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimi	it Qu
2-Chlorophenol	1.0	0.0284	1.430	0	74.1	44	125			
2-Methylnaphthalene	1.0	0.0284	1.430	0	70.2	47	125			
2-Methylphenol	8.0	0.0284	1.430	0	59.3	40	125			
2-Nitrophenol	1.0	0.0284	1.430	0	73.5	42	125			
4,6-Dinitro-2-methylphenol	0.9	0.0704	1.430	0	66.5	29	137			
4-Chloro-3-methylphenol	1.0	0.0284	1.430	0	74.6	46	125			
4-Methylphenol	0.8	0.0284	1.430	0	59.6	41	125			
4-Nitrophenol	1.0	0.141	1.430	0	73.4	25	138			
Benzo[a]pyrene	1.1	15 0.0284	1.430	0	80.6	50	125			
Naphthalene	1.0	0.0284	1.430	0	73.3	40	125			
Pentachlorophenol	0.9	14 0.0284	1.430	0	63.9	25	125			
Phenol	0.9	25 0.0284	1.430	0	64.7	25	125			
Surr: 2,4,6-Tribromophenol	2.3	35	2.847		82.7	45	138			
Surr: 2-Fluorobiphenyl	2.4	11	2.847		84.7	60	135			
Surr: 2-Fluorophenol	2.4	10	2.847		84.5	37	125			
Surr: 4-Terphenyl-d14	2.5	56	2.847		90.0	60	129			
Surr: Nitrobenzene-d5	2.3	34	2.847		82.2	45	125			
Surr: Phenol-d5	2.0	09	2.847		73.5	40	125			
Sample ID: 1307175-04DMSD	Batch ID: 58	3493	TestNo	o: SW8	270D		Units:	mg/l	Kg-dry	
Sample ID: 1307175-04DMSD SampType: MSD	220 220 230	3493 CMS9_130723A		o: SW8):00 AM			(g-dry /2013	
	220 220 230	CMS9_130723A					Units:	7/22	/2013	t Qua
SampType: MSD	Run ID: G	CMS9_130723A	Analys	is Date: 7/23	/2013 10:39	LowLimi	Units: Prep Date t HighLimit	: 7/22 %RPD	/2013 RPDLimit	10000
SampType: MSD Analyte 1-Methylnaphthalene	Run ID: G	CMS9_130723A sult RL 02 0.0289	Analys	is Date: 7/23 Ref Val	%REC		Units: Prep Date t HighLimit 125	: 7/22 %RPD 0.025	/2013 RPDLimit	t Qua
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol	Run ID: GRes	CMS9_130723A sult RL 02 0.0289 05 0.0289	Analys SPK value	Ref Val	%REC 70.4	LowLimi 40 40	Units: Prep Date t HighLimit 125 125	%RPD 0.025 2.53	RPDLimit 30 30	Art and a
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol	Run ID: GRes	CMS9_130723A sult RL 02 0.0289 05 0.0289 02 0.0289	SPK value 1.454 1.454	Ref Val	%REC 70.4 72.5	40 40 49	Units: Prep Date t HighLimit 125 125 125	%RPD 0.025 2.53 3.66	30 30 30 30	Art and a
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol	Run ID: G Res 1.0 1.0 1.1	CMS9_130723A sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289	Analys SPK value 1.454 1.454 1.454	Ref Val 0 0 0	%REC 70.4 72.5 77.0 77.9	40 40 49 43	Units: Prep Date t HighLimit 125 125 125 125	%RPD 0.025 2.53 3.66 5.01	30 30 30 30 30	Art and a
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol	Run ID: G Res 1.0 1.1 1.1	CMS9_130723A sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289 2 0.0289	Analys SPK value 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1	40 40 49 43 45	Units: Prep Date t HighLimit 125 125 125 125 125	%RPD 0.025 2.53 3.66 5.01 1.77	30 30 30 30 30 30 30	Art and a
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol	Run ID: G Res 1.0 1.1 1.1 1.1	CMS9_130723A sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289 12 0.0289 14 0.0289	Analys SPK value 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7	40 40 49 43 45 32	Units: Prep Date t HighLimit 125 125 125 125 125 125 125	%RPD 0.025 2.53 3.66 5.01 1.77 0.693	30 30 30 30 30 30 30 30 30	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol	Run ID: G Res 1.0 1.1 1.1 1.1	CMS9_130723A Sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289 14 0.0289 15 0.0289 16 0.0289	Analys SPK value 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2	40 40 49 43 45 32 25	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75	30 30 30 30 30 30 30 30 30 30 30	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Cirichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,6-Dichlorophenol	Run ID: G Res 1.0 1.1 1.1 1.1 1.0 0.75	CMS9_130723A Sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289 14 0.0289 15 0.0289 16 0.0289 17 0.0289 18 0.0289	Analys SPK value 1.454 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1	40 40 49 43 45 32 25 38	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985	30 30 30 30 30 30 30 30 30 30 30 30	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,6-Dichlorophenol 2,6-Dichlorophenol 2-Chlorophenol	Run ID: G Res 1.0 1.1 1.1 1.1 1.0 0.79 1.1	CMS9_130723A Sult RL 02	Analys SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0	40 40 49 43 45 32 25 38 44	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 132 125 125	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene	Run ID: G Res 1.0 1.1 1.1 1.1 1.0 0.79 1.1 1.0	CMS9_130723A sult RL 02 0.0289 05 0.0289 12 0.0289 13 0.0289 14 0.0289 15 0.143 1 0.0289 19 0.0289 10 0.0289 10 0.0289 11 0.0289 11 0.0289 12 0.0289	Analys SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2	40 40 49 43 45 32 25 38 44 47	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.79 1.1 1.0 1.0	CMS9_130723A sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4	40 40 49 43 45 32 25 38 44 47 40	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.79 1.1 1.0 0.86	CMS9_130723A sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	Ref Val 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4 74.4	40 40 49 43 45 32 25 38 44 47 40 42	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57 1.80 2.91	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4-6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 4,6-Dinitro-2-methylphenol	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.79 1.1 1.0 0.86 1.0 0.98	CMS9_130723A Sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4 74.4 68.4	40 40 49 43 45 32 25 38 44 47 40 42 29	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57 1.80 2.91 4.37	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,4-Dinitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 2-Nitrophenol 4,6-Dinitro-2-methylphenol 4-Chloro-3-methylphenol	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.79 1.1 1.0 0.86 1.0	CMS9_130723A Sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4 74.4 68.4 76.3	40 40 49 43 45 32 25 38 44 47 40 42 29 46	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57 1.80 2.91 4.37 3.81	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte 1-Methylnaphthalene 2,3,4,6-Tetrachlorophenol 2,4,5-Trichlorophenol 2,4,6-Trichlorophenol 2,4-Dichlorophenol 2,4-Dimethylphenol 2,4-Dimitrophenol 2,6-Dichlorophenol 2-Chlorophenol 2-Methylnaphthalene 2-Methylphenol 4,6-Dinitro-2-methylphenol 4-Chloro-3-methylphenol 4-Methylphenol	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.7 1.1 1.0 0.86 1.0 0.99 1.1 0.84	CMS9_130723A Sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4 74.4 68.4 76.3 58.3	40 40 49 43 45 32 25 38 44 47 40 42 29 46 41	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57 1.80 2.91 4.37 3.81 0.643	30 30 30 30 30 30 30 30 30 30 30 30 30 3	
SampType: MSD Analyte	Run ID: G Res 1.0 1.0 1.1 1.1 1.1 1.0 0.7 1.1 1.0 0.86 1.0 0.99 1.1	CMS9_130723A Sult RL 02	Analysis SPK value 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454 1.454	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	%REC 70.4 72.5 77.0 77.9 77.1 69.7 52.2 76.1 75.0 70.2 59.4 74.4 68.4 76.3	40 40 49 43 45 32 25 38 44 47 40 42 29 46	Units: Prep Date t HighLimit 125 125 125 125 125 125 125 125 125 12	%RPD 0.025 2.53 3.66 5.01 1.77 0.693 3.75 0.985 2.77 1.57 1.80 2.91 4.37 3.81	30 30 30 30 30 30 30 30 30 30 30 30 30 3	

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limits
- N Parameter not NELAC certified

Page 14 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_130723A

Sample ID: 1307175-04DMSD	Batch ID:	58493		TestNo	o: SW	8270D		Units:	mg/K	g-dry
SampType: MSD	Run ID:	GCMS	_130723A	Analys	is Date: 7/23	3/2013 10:3	9:00 AM	Prep Date:	7/22/	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD I	RPDLimit Qu
Pentachlorophenol		0.942	0.0289	1.454	0	64.8	25	125	3.03	30
Phenol		0.944	0.0289	1.454	0	65.0	25	125	2.10	30
Surr: 2,4,6-Tribromophenol		2.44		2.894		84.2	45	138	0	0
Surr: 2-Fluorobiphenyl		2.48		2.894		85.7	60	135	0	0
Surr: 2-Fluorophenol		2.47		2.894		85.2	37	125	0	0
Surr: 4-Terphenyl-d14		2.71		2.894		93.7	60	129	0	0
Surr: Nitrobenzene-d5		2.42		2.894		83.5	45	125	0	0
Surr: Phenol-d5		2.13		2.894		73.7	40	125	0	0
Sample ID: MB-58493	Batch ID:	58493		TestNo	: SW8	3270D		Units:	mg/K	9
SampType: MBLK	Run ID:	GCMS9	_130723A	Analys	is Date: 7/23	/2013 11:26	6:00 AM	Prep Date:	7/22/2	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qua
1-Methylnaphthalene		ND	0.0266							N
2,3,4,6-Tetrachlorophenol		ND	0.0266							13
2,4,5-Trichlorophenol		ND	0.0266							
2,4,6-Trichlorophenol		ND	0.0266							
2,4-Dichlorophenol		ND	0.0266							
2,4-Dimethylphenol		ND	0.0266							
2,4-Dinitrophenol		ND	0.132							
2,6-Dichlorophenol		ND	0.0266							
2-Chlorophenol		ND	0.0266							
2-Methylnaphthalene		ND	0.0266							
2-Methylphenol		ND	0.0266							
2-Nitrophenol		ND	0.0266							
4,6-Dinitro-2-methylphenol		ND	0.0660							
4-Chloro-3-methylphenol		ND	0.0266							
4-Methylphenol		ND	0.0266							
4-Nitrophenol		ND	0.132							
Benzo[a]pyrene		ND	0.0266							
Naphthalene		ND	0.0266							
Pentachlorophenol		ND	0.0266							
Phenol		ND	0.0266							
Total Phenol (Calculated)		ND	0.0266							
Surr: 2,4,6-Tribromophenol	(0.500		0.6670		75.0	45	138		
Surr: 2-Fluorobiphenyl	(0.580		0.6670		87.0	60	135		
Surr: 2-Fluorophenol	(0.600		0.6670		90.0	37	125		
Surr: 4-Terphenyl-d14	(0.627		0.6670		94.0	60	129		
Surr: Nitrobenzene-d5		0.520		0.6670		78.0	45	125		
Surr: Phenol-d5		0.513		0.6670		77.0	40	125		

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
 - S Spike Recovery outside control limits
 - N Parameter not NELAC certified

Page 15 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS9_130723A

					JCMD/_	ZO O I MOI I			
Sample ID: ICV-130723	Batch ID: R67579		TestNo	SW8	8270D		Units:	mg/Kg	
SampType: ICV	Run ID: GCMS9	_130723A	Analys	is Date: 7/23	/2013 9:30	00 AM	Prep Date	: :	
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLi	mit Qual
1-Methylnaphthalene	3.87	0.0266	4.000	0	96.7	80	120		N
2,3,4,6-Tetrachlorophenol	3.92	0.0266	4.000	0	98.0	80	120		
2,4,5-Trichlorophenol	3.99	0.0266	4.000	0	99.7	80	120		
2,4,6-Trichlorophenol	4.07	0.0266	4.000	0	102	80	120		
2,4-Dichlorophenol	3.96	0.0266	4.000	0	99.1	80	120		
2,4-Dimethylphenol	3.78	0.0266	4.000	0	94.4	80	120		
2,4-Dinitrophenol	3.89	0.132	4.000	0	97.3	80	120		
2,6-Dichlorophenol	4.06	0.0266	4.000	0	101	80	120		
2-Chlorophenol	3.89	0.0266	4.000	0	97.4	80	120		
2-Methylnaphthalene	3.86	0.0266	4.000	0	96.6	80	120		
2-Methylphenol	3.34	0.0266	4.000	0	83.4	80	120		
2-Nitrophenol	4.00	0.0266	4.000	0	99.9	80	120		
4,6-Dinitro-2-methylphenol	3.97	0.0660	4.000	0	99.3	80	120		
4-Chloro-3-methylphenol	4.05	0.0266	4.000	0	101	80	120		
4-Methylphenol	3.40	0.0266	4.000	0	85.0	80	120		
4-Nitrophenol	3.92	0.132	4.000	0	97.9	80	120		
Benzo[a]pyrene	4.08	0.0266	4.000	0	102	80	120		
Naphthalene	3.98	0.0266	4.000	0	99.5	80	120		
Pentachlorophenol	3.93	0.0266	4.000	0	98.2	80	120		
Phenol	3.59	0.0266	4.000	0	89.8	80	120		
Total Phenol (Calculated)	57.9	0.0266	0				0.708		
Surr: 2,4,6-Tribromophenol	3.99		4.000		99.8	80	120		
Surr: 2-Fluorobiphenyl	4.00		4.000		100	80	120		
Surr: 2-Fluorophenol	4.26		4.000		106	80	120		
Surr: 4-Terphenyl-d14	4.16		4.000		104	80	120		
Surr: Nitrobenzene-d5	4.09		4.000		102	80	120		
Surr: Phenol-d5	3.59		4.000		89.8	80	120		
						-			

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 16 of 32

Project:

Larson & Associates

Work Order:

1307158

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS1_130718A

The QC data in batch 58451 applies to the following samples: 1307158-01A, 1307158-02A, 1307158-03A, 1307158-04A, 1307158-05A, 1307158-05A, 1307158-09A, 1307158-10A, 1307158-11A, 1307158-12A

Sample ID: LCS-58451	Batch ID:	58451		TestNo	: SW	8260C		Units:	mg/Kg	NIA.
SampType: LCS	Run ID:	GCMS1	_130718A	Analys	is Date: 7/1	8/2013 1:38:	00 PM	Prep Date:	7/18/2013	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	t HighLimit '	%RPD RPDLir	nit Qua
1,1,1-Trichloroethane	(0.0237	0.00500	0.0232	0	102	68	130		
1,1,2,2-Tetrachloroethane	(0.0223	0.00500	0.0232	0	96.3	59	140		
1,1,2-Trichloroethane	C	0.0229	0.00500	0.0232	0	98.7	62	127		
1,1-Dichloroethane	C	0.0221	0.00500	0.0232	0	95.4	73	125		
1,1-Dichloroethylene	C	0.0211	0.00500	0.0232	0	90.8	65	136		
1,2-Dichloroethane	C	0.0234	0.00500	0.0232	0	101	72	137		
Benzene	C	0.0224	0.00500	0.0232	0	96.8	75	125		
Carbon tetrachloride	C	0.0237	0.00500	0.0232	0	102	67	133		
Chloroform	C	0.0239	0.00500	0.0232	0	103	72	124		
Ethylbenzene	C	0.0228	0.00500	0.0232	0	98.4	75	125		
Ethylene bromide	C	0.0221	0.00500	0.0232	0	95.4	70	124		
Methylene chloride	0	0.0256	0.00500	0.0232	0	111	63	137		
Tetrachloroethylene	0	0.0236	0.00500	0.0232	0	102	67	139		
Toluene	0	0.0236	0.00500	0.0232	0	102	75	125		
Trichloroethylene	0	0.0238	0.00500	0.0232	0	103	77	124		
Vinyl chloride	0	.0210	0.00500	0.0232	0	90.7	58	126		
Total Xylenes	0	.0679	0.00500	0.0696	0	97.6	75	125		
Surr: 1,2-Dichloroethane-d4		50.4		50.00		101	52	149		
Surr: 4-Bromofluorobenzene		50.7		50.00		101	84	118		
Surr: Dibromofluoromethane		51.1		50.00		102	65	135		
Surr: Toluene-d8		48.2		50.00		96.5	84	116		
Sample ID: MB-58451	Batch ID:	58451		TestNo	SW	8260C		Units:	mg/Kg	
SampType: MBLK	Run ID:	GCMS1	_130718A	Analysi	s Date: 7/18	3/2013 2:12:	00 PM	Prep Date:	7/18/2013	
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit %	6RPD RPDLim	nit Qual
1,1,1-Trichloroethane		ND	0.00500							
1,1,2,2-Tetrachloroethane		ND	0.00500							
1,1,2-Trichloroethane		ND	0.00500							
1,1-Dichloroethane		ND	0.00500							
1,1-Dichloroethylene		ND	0.00500							
1,2-Dichloroethane		ND	0.00500							
Benzene		ND	0.00500							
Carbon tetrachloride		ND	0.00500							
Chloroform		ND	0.00500							
Ethylbenzene		ND	0.00500							
Ethylene bromide		ND	0.00500							
Methylene chloride		ND	0.00500							
Tetrachloroethylene		ND	0.00500							

Qualifiers:

- B Analyte detected in the associated Method Blank
- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- J Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit
 - R RPD outside accepted control limits
- S Spike Recovery outside control limitsN Parameter not NELAC certified
- Page 17 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS1_130718A

Sample ID: MB-58451	Batch ID:	58451		TestN	o: SW	8260C		Units:	mg/K	g
SampType: MBLK	Run ID:	GCMS1	I_130718A	Analy	sis Date: 7/1	8/2013 2:12	:00 PM	Prep Date:	7/18/	2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit S	%RPD I	RPDLimit Qu
Toluene		ND	0.00500							
Trichloroethylene		ND	0.00500							
Vinyl chloride		ND	0.00500							
Total Xylenes		ND	0.00500							
Surr: 1,2-Dichloroethane-d4		53.8		50.00		108	52	149		
Surr: 4-Bromofluorobenzene		50.1		50.00		100	84	118		
Surr: Dibromofluoromethane		51.5		50.00		103	65	135		
Surr: Toluene-d8		47.7		50.00		95.4	84	116		
Sample ID: 1307158-12AMS	Batch ID:	58451		TestN	o: SW	8260C		Units:	mg/K	g-dry
SampType: MS	Run ID:	GCMS1	_130718A	Analys	sis Date: 7/18	3/2013 9:02	:00 PM	Prep Date:	7/18/2	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	6RPD F	RPDLimit Qua
1,1,1-Trichloroethane		0.0263	0.00604	0.0280	0	93.9	68	130		
1,1,2,2-Tetrachloroethane		0.0241	0.00604	0.0280	0	86.1	59	140		
1,1,2-Trichloroethane		0.0260	0.00604	0.0280	0	93.0	62	127		
1,1-Dichloroethane		0.0254	0.00604	0.0280	0	90.7	73	125		
1,1-Dichloroethylene		0.0242	0.00604	0.0280	0	86.2	65	136		
1,2-Dichloroethane		0.0278	0.00604	0.0280	0	99.1	72	137		
Benzene	(0.0249	0.00604	0.0280	0	88.9	73	126		
Carbon tetrachloride	(0.0256	0.00604	0.0280	0	91.5	67	133		
Chloroform	(0.0265	0.00604	0.0280	0	94.5	72	124		
Ethylbenzene	(0.0229	0.00604	0.0280	0	81.8	74	127		
Ethylene bromide	(0.0248	0.00604	0.0280	0	88.7	70	124		
Methylene chloride	(0.0307	0.00604	0.0280	0	110	63	137		
Tetrachloroethylene	(0.0235	0.00604	0.0280	0	84.0	67	139		
Toluene	(0.0251	0.00604	0.0280	0	89.5	71	127		
Trichloroethylene	(0.0249	0.00604	0.0280	0	88.8	77	124		
Vinyl chloride	(0.0226	0.00604	0.0280	0	80.8	58	126		
Total Xylenes	(0.0671	0.00604	0.0841	0	79.8	75	125		
Surr: 1,2-Dichloroethane-d4		64.8		60.40	11.5	107	52	149		
Surr: 4-Bromofluorobenzene		60.1		60.40		99.5	84	118		
Surr: Dibromofluoromethane		63.3		60.40		105	65	135		
Surr: Toluene-d8		58.1		60.40		96.2	84	116		
Sample ID: 1307158-12AMSD	Batch ID:	58451		TestNo	o: SW8	3260C		Units:	mg/Kg	g-dry
SampType: MSD	Run ID:	GCMS1	_130718A	Analys	is Date: 7/18	/2013 9:35:	00 PM	Prep Date:	7/18/2	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD R	PDLimit Qua
1,1,1-Trichloroethane	C).0273	0.00622	0.0289	0	94.8	68	130	3.81	30
1,1,2,2-Tetrachloroethane	C).0253	0.00622	0.0289	0	87.7	59	140	4.85	30
Qualifiers: B Analyte dete	ected in the as	sociated M	lethod Blank	DF	Dilution Facto	or				
J Analyte dete	ected between	MDL and	RL	MDL	Method Detec	tion Limit			Dog	ge 18 of 32
ND Not Detected	d at the Metho	od Detection	n Limit		RPD outside a		rol limite		1 45	SC 10 01 32

- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- MDL Method Detection Limit
 - RPD outside accepted control limits
- Spike Recovery outside control limits Parameter not NELAC certified

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS1_130718A

Sample ID: 1307158-12AMSD	Batch ID: 58451		TestNo:	SW8	3260C		Units:	mg/l	Kg-dry
SampType: MSD	Run ID: GCMS1	I_130718A	Analysis	s Date: 7/18	/2013 9:35:	00 PM	Prep Date:	7/18	/2013
Analyte	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD	RPDLimit Qual
1,1,2-Trichloroethane	0.0272	0.00622	0.0289	0	94.3	62	127	4.39	30
1,1-Dichloroethane	0.0263	0.00622	0.0289	0	91.1	73	125	3.34	30
1,1-Dichloroethylene	0.0252	0.00622	0.0289	0	87.2	65	136	4.11	30
1,2-Dichloroethane	0.0295	0.00622	0.0289	0	102	72	137	6.08	30
Benzene	0.0259	0.00622	0.0289	0	89.6	73	126	3.74	30
Carbon tetrachloride	0.0270	0.00622	0.0289	0	93.7	67	133	5.27	30
Chloroform	0.0278	0.00622	0.0289	0	96.4	72	124	4.94	30
Ethylbenzene	0.0233	0.00622	0.0289	0	80.6	74	127	1.42	30
Ethylene bromide	0.0263	0.00622	0.0289	0	91.3	70	124	5.85	30
Methylene chloride	0.0314	0.00622	0.0289	0	109	63	137	2.08	30
Tetrachloroethylene	0.0232	0.00622	0.0289	0	80.6	67	139	1.21	30
Toluene	0.0252	0.00622	0.0289	0	87.4	71	127	0.527	30
Trichloroethylene	0.0267	0.00622	0.0289	0	92.6	77	124	7.07	30
Vinyl chloride	0.0244	0.00622	0.0289	0	84.4	58	126	7.30	30
Total Xylenes	0.0684	0.00622	0.0866	0	79.0	75	125	1.97	30
Surr: 1,2-Dichloroethane-d4	71.7		62.20		115	52	149	0	0
Surr: 4-Bromofluorobenzene	61.5		62.20		98.9	84	118	0	0
Surr: Dibromofluoromethane	65.5		62.20		105	65	135	0	0
Surr: Toluene-d8	58.5		62.20		94.1	84	116	0	0

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 19 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

GCMS1_130718A

Batch ID:	R67509		TestNo:	SW	/8260C		Units:	mg/l	Kg
Run ID:	GCMS1_	130718A	Analysis	Date: 7/1	8/2013 1:07:0	00 PM	Prep Date:		
	Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit 9	%RPD	RPDLimit Qu
11	0.0476	0.00500	0.0464	0	103	80	120		
	0.0439	0.00500	0.0464	0	94.5	80	120		
9	0.0466	0.00500	0.0464	0	100	80	120		
0	0.0448	0.00500	0.0464	0	96.6	80	120		
1	0.0442	0.00500	0.0464	0	95.2	80	120		
1 8	0.0483	0.00500	0.0464	0	104	80	120		
. 0	0.0451	0.00500	0.0464	0	97.2	80	120		
1	0.0475	0.00500	0.0464	0	102	80	120		
1	0.0475	0.00500	0.0464	0	102	80	120		
10	0.0452	0.00500	0.0464	0	97.5	80			
	0.0444	0.00500	0.0464	0	95.7	80			
	0.0500	0.00500	0.0464	0	108	80			
10	0.0467	0.00500	0.0464	0	101	80			
	0.0466	0.00500	0.0464	0					
	0.0483	0.00500	0.0464	0			1000000		
	0.0415	0.00500	0.0464	0					
	0.135	0.00500	0.139	0					
	52.5		50.00						
	49.7		50.00						
	51.6								
	Run ID:	Run ID: GCMS1_ Result 0.0476 0.0439 0.0466 0.0448 0.0442 0.0483 0.0451 0.0475 0.0475 0.0452 0.0444 0.0500 0.0467 0.0466 0.0483 0.0415 0.135 52.5 49.7	Run ID: GCMS1_130718A Result RL 0.0476 0.00500 0.0439 0.00500 0.0466 0.00500 0.0448 0.00500 0.0442 0.00500 0.0483 0.00500 0.0475 0.00500 0.0475 0.00500 0.0475 0.00500 0.0452 0.00500 0.0452 0.00500 0.0454 0.00500 0.0467 0.00500 0.0467 0.00500 0.0468 0.00500 0.0483 0.00500 0.0483 0.00500 0.0415 0.00500 0.135 0.00500 52.5 49.7 51.6	Run ID: GCMS1_130718A Analysis Result RL SPK value 0.0476 0.00500 0.0464 0.0439 0.00500 0.0464 0.0466 0.00500 0.0464 0.0448 0.00500 0.0464 0.0442 0.00500 0.0464 0.0483 0.00500 0.0464 0.0475 0.00500 0.0464 0.0475 0.00500 0.0464 0.0452 0.00500 0.0464 0.0444 0.00500 0.0464 0.0500 0.00500 0.0464 0.0467 0.00500 0.0464 0.0468 0.00500 0.0464 0.0483 0.00500 0.0464 0.0415 0.00500 0.0464 0.0415 0.00500 0.0464 0.135 0.00500 0.139 52.5 50.00 49.7 50.00 51.6 50.00	Run ID: GCMS1_130718A Analysis Date: 7/1 Result RL SPK value Ref Val 0.0476 0.00500 0.0464 0 0.0439 0.00500 0.0464 0 0.0466 0.00500 0.0464 0 0.0448 0.00500 0.0464 0 0.0483 0.00500 0.0464 0 0.0451 0.00500 0.0464 0 0.0475 0.00500 0.0464 0 0.0475 0.00500 0.0464 0 0.0452 0.00500 0.0464 0 0.0444 0.00500 0.0464 0 0.0500 0.0464 0 0 0.0467 0.00500 0.0464 0 0.0467 0.00500 0.0464 0 0.0483 0.00500 0.0464 0 0.0483 0.00500 0.0464 0 0.0415 0.00500 0.0464 0 0.0415 0.0	Run ID: GCMS1_130718A Analysis Date: 7/18/2013 1:07:0 Result RL SPK value Ref Val %REC 0.0476 0.00500 0.0464 0 103 0.0439 0.00500 0.0464 0 94.5 0.0466 0.00500 0.0464 0 96.6 0.0448 0.00500 0.0464 0 95.2 0.0483 0.00500 0.0464 0 97.2 0.0475 0.00500 0.0464 0 97.2 0.0475 0.00500 0.0464 0 102 0.0452 0.00500 0.0464 0 97.5 0.0444 0.00500 0.0464 0 97.5 0.0462 0.00500 0.0464 0 97.5 0.0500 0.0464 0 95.7 0.0500 0.0464 0 108 0.0467 0.00500 0.0464 0 101 0.0466 0.00500 0.0464 0 104	Run ID: GCMS1_130718A Analysis Date: 7/18/2013 1:07:00 PM Result RL SPK value Ref Val %REC LowLimit 0.0476 0.00500 0.0464 0 103 80 0.0439 0.00500 0.0464 0 94.5 80 0.0466 0.00500 0.0464 0 100 80 0.0448 0.00500 0.0464 0 96.6 80 0.0442 0.00500 0.0464 0 95.2 80 0.0483 0.00500 0.0464 0 97.2 80 0.0475 0.00500 0.0464 0 102 80 0.0475 0.00500 0.0464 0 102 80 0.0452 0.00500 0.0464 0 97.5 80 0.0444 0.00500 0.0464 0 95.7 80 0.0467 0.00500 0.0464 0 101 80 0.0466 0.00500 0.046	Run ID: GCMS1_130718A Analysis Date: 7/18/2013 1:07:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit 9 0.0476 0.00500 0.0464 0 103 80 120 0.0439 0.00500 0.0464 0 94.5 80 120 0.0466 0.00500 0.0464 0 100 80 120 0.0448 0.00500 0.0464 0 96.6 80 120 0.0442 0.00500 0.0464 0 95.2 80 120 0.0442 0.00500 0.0464 0 95.2 80 120 0.0483 0.00500 0.0464 0 97.2 80 120 0.0475 0.00500 0.0464 0 102 80 120 0.0475 0.00500 0.0464 0 97.5 80 120 0.0452 0.00500 0.0464 0 95.7 80	Run ID: GCMS1_130718A Analysis Date: 7/18/2013 1:07:00 PM Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD 0.0476 0.00500 0.0464 0 103 80 120 0.0439 0.00500 0.0464 0 94.5 80 120 0.0448 0.00500 0.0464 0 100 80 120 0.0448 0.00500 0.0464 0 96.6 80 120 0.0442 0.00500 0.0464 0 95.2 80 120 0.0483 0.00500 0.0464 0 97.2 80 120 0.0451 0.00500 0.0464 0 97.2 80 120 0.0475 0.00500 0.0464 0 102 80 120 0.0475 0.00500 0.0464 0 97.5 80 120 0.0452 0.00500 0.0464 0 97.5 80

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 20 of 32

Larson & Associates

Work Order:

1307158

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

IC2_130723A

Project: The QC data in batch 58513 applies to the following samples: 1307158-01B, 1307158-02B, 1307158-03B, 1307158-04B, 1307158-05B, 1307158-06B, 1307158-07B, 1307158-08B, 1307158-09B, 1307158-10B, 1307158-11B, 1307158-12B Sample ID: LCS-58513 Batch ID: 58513 TestNo: E300 Units: mg/Kg SampType: LCS Run ID: IC2_130723A Analysis Date: 7/23/2013 9:05:19 AM Prep Date: 7/22/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Chloride 50.2 5.00 50.00 0 100 80 Fluoride 19.5 1.00 20.00 0 97.4 80 120 Nitrate-N 26.1 5.00 25.00 0 105 80 120 Sulfate 153 10.0 150.0 0 102 80 120 Sample ID: LCSD-58513 Batch ID: 58513 TestNo: E300 Units: mg/Kg SampType: LCSD Run ID: IC2_130723A Analysis Date: 7/23/2013 9:19:53 AM Prep Date: 7/22/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Chloride 49.9 5.00 50.00 0 99.8 80 120 0.526 20 Fluoride 19.4 1.00 20.00 0 96.8 80 120 0.636 20 Nitrate-N 25.8 5.00 25.00 0 103 80 120 1.26 20 Sulfate 153 10.0 150.0 102 80 120 0.025 20 Sample ID: MB-58513 Batch ID: 58513 TestNo: E300 Units: mg/Kg SampType: MBLK Run ID: IC2_130723A Analysis Date: 7/23/2013 9:34:27 AM Prep Date: 7/22/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Chloride ND 5.00 Fluoride ND 1.00 Nitrate-N ND 5.00 Sulfate ND 10.0 Sample ID: 1307158-02B MS Batch ID: 58513 TestNo: E300 Units: mg/Kg-dry SampType: MS Run ID: IC2_130723A Analysis Date: 7/23/2013 11:15:48 AM Prep Date: 7/22/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Chloride 363 6.37 127.3 268.2 74.2 120 80 S Fluoride 129 1 27 127.3 7.491 95.8 80 120 Nitrate-N 26.1 6.37 28.75 90.7 80 120 Sulfate 12.7 127.3 311.3 96.9 80 120 Sample ID: 1307158-02B MSD Batch ID: 58513 TestNo: E300 Units: mg/Kg-dry SampType: MSD Run ID: IC2 130723A Analysis Date: 7/23/2013 11:30:23 AM Prep Date: 7/22/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Chloride 364 6.37 127.3 268.2 75.2 80 120 0.345 20 S Fluoride 130 1.27 127.3 7.491 96.5 80 120 0.698 20 Nitrate-N

Qualifiers:

В Analyte detected in the associated Method Blank

26.4

6.37

- J Analyte detected between MDL and RL
- ND Not Detected at the Method Detection Limit
- RL Reporting Limit
- Analyte detected between SDL and RL
- DF Dilution Factor
- MDL Method Detection Limit

0

R RPD outside accepted control limits

91.9

80

120

1.30

20

Page 21 of 32

- Spike Recovery outside control limits
- N Parameter not NELAC certified

28.75

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

IC2_130723A

Batch ID:	58513		TestNo	E300)		Units:	mg/k	(g-dry
Run ID:	IC2_130	0723A	Analysi	s Date: 7/23	/2013 11:3	0:23 AM	Prep Date	7/22	2013
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
	437	12.7	127.3	311.3	98.9	80	120	0.581	20
Batch ID:	58513		TestNo	E300)		Units:	mg/k	(g-dry
Run ID:	IC2_130	723A	Analysis	s Date: 7/23/	2013 1:57:	35 PM	Prep Date	7/22/	2013
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD	RPDLimit Qual
	114	5.86	117.1	0	97.6	80	120		
	114	1.17	117.1	1.275	96.7	80	120		
	24.3	5.86	26.44	0	91.7	80	120		
	119	11.7	117.1	0	101	80	120		
Batch ID:	58513		TestNo:	E300)		Units:	mg/K	g-dry
Run ID:	IC2_130	723A	Analysis	Date: 7/23/	2013 2:12:	09 PM	Prep Date:	7/22/	2013
	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit	%RPD	RPDLimit Qual
	115	5.86	117.1	0	98.1	80	120	0.488	20
	115	1.17	117.1	1.275	97.1	80	120	0.408	20
	24.4	5.86	26.44	0	92.4	80	120		20
	119	11.7	117.1	0	102	80	120	0.551	20
	Batch ID: Batch ID: Run ID:	Run ID: IC2_130 Result 437 Batch ID: 58513 Run ID: IC2_130 Result 114 114 24.3 119 Batch ID: 58513 Run ID: IC2_130 Result 115 115 24.4	Run ID: IC2_130723A Result RL Batch ID: IC2_130723A Result RL 114 5.86 114 1.17 24.3 5.86 119 11.7 Batch ID: 58513 Run ID: IC2_130723A Result RL 115 5.86 115 1.17 24.4 5.86	Run ID: IC2_130723A Analysis Result RL SPK value 437 12.7 127.3 Batch ID: 58513 TestNo: Run ID: IC2_130723A Analysis Result RL SPK value 114 5.86 117.1 114 1.17 117.1 24.3 5.86 26.44 119 11.7 117.1 Batch ID: 58513 TestNo: Run ID: IC2_130723A Analysis Result RL SPK value 115 5.86 117.1 115 1.17 117.1 115 1.17 117.1 24.4 5.86 26.44	Run ID: IC2_130723A Analysis Date: 7/23/3 Result RL SPK value Ref Value 437 12.7 127.3 311.3 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/3 Result RL SPK value Ref Value 114 5.86 117.1 0 114 1.17 117.1 1.275 24.3 5.86 26.44 0 119 11.7 117.1 0 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2 Result RL SPK value Ref Value 115 5.86 117.1 0 115 5.86 117.1 0 115 1.17 117.1 1.275 24.4 5.86 26.44 0	Run ID: IC2_130723A Analysis Date: 7/23/2013 11:34 Result RL SPK value Ref Val %REC 437 12.7 127.3 311.3 98.9 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 1:57: Result RL SPK value Ref Val %REC 114 5.86 117.1 0 97.6 114 1.17 117.1 1.275 96.7 24.3 5.86 26.44 0 91.7 119 11.7 117.1 0 101 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 2:12: Result RL SPK value Ref Val %REC 115 5.86 117.1 0 98.1 115 1.17 117.1 1.275 97.1 24.4 5.86 26.44 0 92.4 <td>Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Result RL SPK value Ref Val %REC LowLim 437 12.7 127.3 311.3 98.9 80 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 1:57:35 PM Result RL SPK value Ref Val %REC LowLim 114 5.86 117.1 0 97.6 80 114 1.17 117.1 1.275 96.7 80 24.3 5.86 26.44 0 91.7 80 119 11.7 117.1 0 101 80 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 2:12:09 PM Result RL SPK value Ref Val %REC LowLim 115 5.86 117.1 0 98.1 80 115 1.17 1</td> <td>Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Prep Date: Prep Da</td> <td>Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Prep Date: 7/22/2013 11:30:30:30:30:30:30:30:30:30:30:30:30:30:</td>	Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Result RL SPK value Ref Val %REC LowLim 437 12.7 127.3 311.3 98.9 80 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 1:57:35 PM Result RL SPK value Ref Val %REC LowLim 114 5.86 117.1 0 97.6 80 114 1.17 117.1 1.275 96.7 80 24.3 5.86 26.44 0 91.7 80 119 11.7 117.1 0 101 80 Batch ID: 58513 TestNo: E300 Run ID: IC2_130723A Analysis Date: 7/23/2013 2:12:09 PM Result RL SPK value Ref Val %REC LowLim 115 5.86 117.1 0 98.1 80 115 1.17 1	Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Prep Date: Prep Da	Run ID: IC2_130723A Analysis Date: 7/23/2013 11:30:23 AM Prep Date: 7/22/2013 11:30:30:30:30:30:30:30:30:30:30:30:30:30:

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 22 of 32

Larson & Associates

Work Order:

1307158

Project: R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

IC2_130723A

	Section 1990 Section 1991 Section 1991	NA DOCTORD						1307	
Sample ID: ICV-130723	Batch ID:	R67565		TestNo	o: E30	00		Units:	mg/Kg
SampType: ICV	Run ID:	IC2_13	0723A	Analys	sis Date: 7/2 3	3/2013 8:47	:07 AM	Prep Date	9:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD RPDLimit Qual
Chloride		25.7	5.00	25.00	0	103	90	110	
Fluoride		10.1	1.00	10.00	0	101	90	110	
Nitrate-N		13.4	5.00	12.50	0	107	90	110	
Sulfate		80.3	10.0	75.00	0	107	90	110	
Sample ID: CCV1-130723	Batch ID:	R67565		TestNo	p: E30	10		Units:	mg/Kg
SampType: CCV	Run ID:	IC2_130	723A	Analys	sis Date: 7/2 3	3/2013 11:4	4:57 AM	Prep Date	2:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride	2, 200	10.0	5.00	10.00	0	100	90	110	
Fluoride		3.92	1.00	4.000	0	98.0	90	110	
Nitrate-N		5.18	5.00	5.000	0	104	90	110	
Sulfate		30.7	10.0	30.00	0	102	90	110	
Sample ID: CCV2-130723	Batch ID:	R67565		TestNo	: E30	0		Units:	mg/Kg
SampType: CCV	Run ID:	IC2_130	723A	Analys	is Date: 7/23	3/2013 2:26:	44 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride		9.94	5.00	10.00	0	99.4	90	110	
Fluoride		3.92	1.00	4.000	0	98.0	90	110	
Nitrate-N		5.19	5.00	5.000	0	104	90	110	
Sulfate		30.5	10.0	30.00	0	102	90	110	
Sample ID: CCV3-130723	Batch ID:	R67565		TestNo	E300	0		Units:	mg/Kg
SampType: CCV	Run ID:	IC2_130	723A	Analys	is Date: 7/23	/2013 3:40:	39 PM	Prep Date	:
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit	%RPD RPDLimit Qual
Chloride		9.90	5.00	10.00	0	99.0	90	110	
Fluoride		3.89	1.00	4.000	0	97.3	90	110	
Nitrate-N		5.14	5.00	5.000	0	103	90	110	
Sulfate		30.5	10.0	30.00	0	102	90	110	

Qualifiers:

B Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 23 of 32

Larson & Associates

Work Order:

1307158

Project: R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

IR207_130722A

The QC data in batch 58511 ap 06B, 1307158-07B, 1307158-08	BB, 1307158-	09B, 130	amples: 130 7158-10B, 13	7158-01B, 1307 [.] 307158-11B, 130	158-02B, 1: 07158-12B	307158-03B	, 1307158	3-04B, 13071	58-05B,	130715	8-
Sample ID: ICV-130722	Batch ID:	58511		TestNo	E4	18.1		Units:	mg/K	a	
SampType: ICV	Run ID:	IR207_	130722A	Analysi	s Date: 7/2	2/2013 3:18	:00 PM	Prep Date:	-	3	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	nit HighLimit	%RPD F	RPDLim	it Qual
Petroleum Hydrocarbons, TR		249	10.0	250.0	0	99.5	90	110			N
Sample ID: LCS-58511	Batch ID:	58511		TestNo	E41	18.1		Units:	mg/K	g	
SampType: LCS	Run ID:	IR207_	130722A	Analysi	s Date: 7/2 :	2/2013 3:18:	:00 PM	Prep Date:	7/22/2	2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁹	%RPD F	RPDLim	it Qual
Petroleum Hydrocarbons, TR		88.8	10.0	100.0	0	88.8	80	120			N
Sample ID: MB-58511	Batch ID:	58511		TestNo	E41	18.1		Units:	mg/K	9	
SampType: MBLK	Run ID:	IR207_	130722A	Analysis	s Date: 7/2	2/2013 3:18:	00 PM	Prep Date:	7/22/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit ⁴	%RPD F	RPDLim	it Qual
Petroleum Hydrocarbons, TR		ND	10.0					1,510			N
Sample ID: 1307158-01BMS	Batch ID:	58511		TestNo:	E41	18.1		Units:	mg/K	g-dry	
SampType: MS	Run ID:	IR207_	130722A	Analysis	Date: 7/22	2/2013 3:18:	00 PM	Prep Date:	7/22/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit 9	%RPD F	RPDLim	it Qual
Petroleum Hydrocarbons, TR		401	10.2	102.4	168.9	226	80	120			SN
Sample ID: 1307158-01BMSD	Batch ID:	58511		TestNo:	E41	8.1		Units:	mg/Kg	q-dry	
SampType: MSD	Run ID:	IR207_	130722A	Analysis	Date: 7/22	2/2013 3:18:	00 PM	Prep Date:	7/22/2	013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	%RPD F	PDLimi	it Qual
Petroleum Hydrocarbons, TR		321	10.1	100.9	168.9	151	80	120	22.1	20	SRN
Sample ID: CCV1-130722	Batch ID:	58511		TestNo:	E41	8.1		Units:	mg/Kg	1	
SampType: CCV	Run ID:	IR207_	130722A	Analysis	Date: 7/22	2/2013 3:18:	00 PM	Prep Date:			
Analyte	1	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	6RPD R	PDLimi	t Qual
Petroleum Hydrocarbons, TR		250	10.0	250.0	0	100	85	115			N
Sample ID: LCSD-58511	Batch ID:	58511		TestNo:	E41	8.1		Units:	mg/Kg		
SampType: LCSD	Run ID:	IR207_1	130722A	Analysis	Date: 7/22	2/2013 3:18:	00 PM	Prep Date:	7/22/2		
Analyte	-	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	6RPD R	PDLimi	t Qual
Petroleum Hydrocarbons, TR		88.8	10.0	100.0	0	88.8	80	120	0	20	N

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

RPD outside accepted control limits

Page 24 of 32

S Spike Recovery outside control limits

N Parameter not NELAC certified

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

IR207_130722A

Sample ID: CCV2-130722	Batch ID:	Batch ID: 58511): E4	418.1		Units:	mg/	Kg	
SampType: CCV	Run ID:	IR207_1	30722A	Analys	is Date: 7/	22/2013 3:18:	00 PM	Prep Date	:		
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit	%RPD	RPDLimit	Qual
Petroleum Hydrocarbons, TR		251	10.0	250.0	0	100	85	115			N

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 25 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

PH_130723A

The QC data in batch 58520 applies to the following samples: 1307158-03B, 1307158-04B, 1307158-05B, 1307158-06B, 1307158-09B, 1307158-10B, 1307158-11B, 1307158-12B

Sample ID: 1307175-06A-DUP	Batch ID:	58520		TestNo	o: S	SW9045D		Units:	l Ha	pH Units@21.39	
SampType: DUP	Run ID: PH_130723A		23A	Analysis Date: 7/23/2013 1:35			00 PM	Prep Date		/2013	
Analyte		Result	RL	SPK value	Ref Va	l %REC	LowLimit	t HighLimit	%RPD	RPDLimi	t Qual
рН		7.22	0	0	7.047				2.36	5	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 26 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

PH_130723A

									(Table)
Sample ID: ICV1-130723 SampType: ICV	Batch ID: Run ID:	PH_S-4 PH_130		TestNo Analys	o: SW !	9045D 9/2013 1:35:	00 PM	Units: Prep Date:	pH Units@20.7℃ 7/23/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
рН		4.02	0	4.000	0	100	99	101	
Sample ID: ICV2-130723	Batch ID:	PH_S-4	1478	TestNo	: SW9	9045D		Units:	pH Units@20.7℃
SampType: ICV	Run ID:	PH_130	723A	Analys	is Date: 7/23	/2013 1:35:	00 PM	Prep Date:	7/23/2013
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qual
pH		7.01	0	7.000	0	100	99	101	7500
Sample ID: ICV3-130723	Batch ID:	PH_S-4	1478	TestNo	: SW9	9045D		Units:	pH Units@20.7℃
SampType: ICV	Run ID:	PH_130	723A	Analys	is Date: 7/23	/2013 1:35:	00 PM	Prep Date:	7/23/2013
Analyte	Ī	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPDLimit Qual
pH		10.0	0	10.00	0	100	99	101	
Sample ID: CCV-13072	Batch ID:	PH_S-4	1478	TestNo	: SW9	0045D		Units:	pH Units@21.1℃
SampType: CCV	Run ID:	PH_130	723A	Analysi	s Date: 7/23	/2013 1:35:	00 PM	Prep Date:	7/23/2013
Analyte	F	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qual
рН		7.10	0	7.000	0	101	97.1	102.9	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 27 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

PMOIST_130723A

The QC data in batch 58534 applies to the following samples: 1307158-01C, 1307158-02C, 1307158-03C, 1307158-04C, 1307158-05C, 1307158-05C, 1307158-07C, 1307158-08C, 1307158-09C, 1307158-11C, 1307158-12C

Sample ID: 1307157-21A-DUP	Batch ID:	58534		TestNo): D 2	2216		Units:	WT%	,
SampType: DUP	Run ID:	PMOIST	_130723A	Analysis Date: 7/24/2013 8:50:00 AM				Prep Date:	7/23/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit	HighLimit '	%RPD	RPDLimit Qual
Percent Moisture		14.7	0	0	14.90			17	1.27	30

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 28 of 32

Project:

Larson & Associates

Work Order:

1307158

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

UV/VIS_2_130724B

LowLimit HighLimit %RPD RPDLimit Qual

5.71

30

125

The QC data in batch 58502 applies to the following samples: 1307158-01B, 1307158-02B, 1307158-03B, 1307158-04B, 1307158-05B, 1307158-06B, 1307158-07B, 1307158-08B, 1307158-09B, 1307158-10B, 1307158-11B, 1307158-12B Sample ID: MB-58502 Batch ID: 58502 TestNo: SW9014 Units: mg/Kg SampType: MBLK Run ID: UV/VIS 2 130724B Analysis Date: 7/24/2013 5:10:00 PM Prep Date: 7/24/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Cyanide, Total ND 0.500 Sample ID: LCS-58502 Batch ID: 58502 TestNo: SW9014 Units: mg/Kg SampType: LCS Run ID: UV/VIS_2_130724B Analysis Date: 7/24/2013 5:10:00 PM Prep Date: 7/24/2013 Analyte Result RL SPK value Ref Val %REC LowLimit HighLimit %RPD RPDLimit Qual Cyanide, Total 5.20 0.500 5.000 0 104 85 115 Sample ID: 1307158-01BMS Batch ID: 58502 TestNo: SW9014 Units: mg/Kg-dry SampType: MS Run ID: UV/VIS 2 130724B Analysis Date: 7/24/2013 5:11:00 PM Prep Date: 7/24/2013 Analyte Result RL SPK value LowLimit HighLimit %RPD RPDLimit Qual Ref Val %REC Cyanide, Total 5.25 0.521 5.213 0 101 75 125 Sample ID: 1307158-01BMSD Batch ID: 58502 TestNo: SW9014 Units: mg/Kg-dry SampType: MSD Run ID: UV/VIS_2_130724B Analysis Date: 7/24/2013 5:11:00 PM Prep Date: 7/24/2013

SPK value

5.213

Ref Val

0

%REC

107

75

Qualifiers:

Analyte

Cyanide, Total

Analyte detected in the associated Method Blank

Result

5.56

RL

0.521

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

В

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 29 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

UV/VIS_2_130724B

Sample ID: ICV-130724	Batch ID:	R67605		TestNo:	SW	9014		Units:	mg/Kg
SampType: ICV	Run ID:	UV/VIS_2	_130724B	Analysis	Date: 7/24	4/2013 9:44:0	00 AM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Cyanide, Total		0.112	0.500	0.1000	0	112	85	115	2(4)
Sample ID: CCV1-130724	Batch ID:	R67605		TestNo:	sw	9014	- AND	Units:	mg/Kg
SampType: CCV	Run ID:	UV/VIS_2	_130724B	Analysis	Date: 7/24	1/2013 5:13:0	00 PM	Prep Date	0
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Cyanide, Total		0.229	0.500	0.2000	0	114	85	115	
Sample ID: CCV2-130724	Batch ID:	R67605		TestNo:	SW	9014		Units:	mg/Kg
SampType: CCV	Run ID:	UV/VIS_2	_130724B	Analysis	Date: 7/24	1/2013 5:18:0	00 PM	Prep Date	:
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit	%RPD RPDLimit Qual
Cyanide, Total		0.213	0.500	0.2000	0	106	85	115	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 30 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

WC_130722A

The QC data in batch 58515 app	olies to the fo	ollowing sar	mples: 130	7158-01B, 1307	158-02B, 13	07158-07B,	1307158-08B		
Sample ID: 1307158-08BDUP	Batch ID:	58515 Te		TestNo	No: SW9045D		Units:	pH Units@21.2℃	
SampType: DUP	Run ID: WC_130722A			Analysis Date: 7/22/2013			Prep Date:	7/22/2013	
Analyte		Result	RL	SPK value	Ref Val	%REC	LowLimit HighLimit %	6RPD RPDLimit Qua	
рН		7.56	0	0	7.519			0.517 5	

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 31 of 32

Larson & Associates

Work Order:

1307158

Project:

R360 Artesia Landfarm

ANALYTICAL QC SUMMARY REPORT

RunID:

WC_130722A

Batch ID: Run ID:	**************************************						Units: Prep Date:	pH Units@21℃ 7/22/2013
	Result	RL	SPK value	Ref Val	%REC	LowLim	it HighLimit %	RPD RPDLimit Qua
	3.98	0	4.000	0	99.5	99	101	***************************************
Batch ID:	PH_S-414	77	TestNo	: SW9	9045D		Units:	pH Units@20.9℃
Run ID:	WC_1307	22A	Analysi	s Date: 7/22	/2013		Prep Date:	7/22/2013
	Result	RL	SPK value	Ref Val	%REC	LowLimi	it HighLimit %	RPD RPDLimit Qual
	6.97	0	7.000	0	99.6	99	101	
Batch ID:	PH_S-414	77	TestNo	SW9	045D		Units:	pH Units@20.9℃
Run ID:	WC_1307	22A	Analysi	s Date: 7/22	/2013		Prep Date:	7/22/2013
	Result	RL	SPK value	Ref Val	%REC	LowLimi	t HighLimit %	RPD RPDLimit Qual
	10.0	0	10.00	0	100	99	101	
Batch ID:	PH_S-414	77	TestNo:	SW9	045D		Units:	pH Units@21℃
	1000							
Run ID:	WC_1307	22A	Analysis	s Date: 7/22/	/2013		Prep Date:	7/22/2013
	WC_1307	22A RL	Analysis	s Date: 7/22	% REC	LowLimi		
	Batch ID: Run ID: Batch ID: Run ID:	Run ID: WC_1307 Result 3.98 Batch ID: PH_S-414 Run ID: WC_1307 Result 6.97 Batch ID: PH_S-414 Run ID: WC_1307 Result 10.0	Run ID: WC_130722A Result RL 3.98 0 Batch ID: PH_S-41477 Run ID: WC_130722A Result RL 6.97 0 Batch ID: PH_S-41477 Run ID: WC_130722A Result RL 10.0 0	Run ID: WC_130722A Analysis Result RL SPK value 3.98 0 4.000 Batch ID: PH_S-41477 TestNo Run ID: WC_130722A Analysis Result RL SPK value 6.97 0 7.000 Batch ID: PH_S-41477 TestNo Run ID: WC_130722A Analysis Result RL SPK value 10.0 0 10.00	Run ID: WC_130722A Analysis Date: 7/22 Result RL SPK value Ref Val 3.98 0 4.000 0 Batch ID: PH_S-41477 TestNo: SWS Run ID: WC_130722A Analysis Date: 7/22 Result RL SPK value Ref Val 6.97 0 7.000 0 Batch ID: PH_S-41477 TestNo: SWS Run ID: WC_130722A Analysis Date: 7/22 Result RL SPK value Ref Val 10.0 0 10.00 0	Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC 3.98 0 4.000 0 99.5 Batch ID: PH_S-41477 TestNo: SW9045D Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC 6.97 0 7.000 0 99.6 Batch ID: PH_S-41477 TestNo: SW9045D Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC 10.0 0 10.00 0 100	Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC LowLim 3.98 0 4.000 0 99.5 99 Batch ID: PH_S-41477 TestNo: SW9045D Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC LowLimin 6.97 0 7.000 0 99.6 99 Batch ID: PH_S-41477 TestNo: SW9045D Run ID: WC_130722A Analysis Date: 7/22/2013 Result RL SPK value Ref Val %REC LowLimin 10.0 0 10.00 0 100 99	Run ID: WC_130722A Analysis Date: 7/22/2013 Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit % 3.98 0 4.000 0 99.5 99 101 Batch ID: PH_S-41477 TestNo: SW9045D Units: Run ID: WC_130722A Analysis Date: 7/22/2013 Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit % 6.97 0 7.000 0 99.6 99 101 Batch ID: PH_S-41477 TestNo: SW9045D Units: Run ID: WC_130722A Analysis Date: 7/22/2013 Prep Date: Result RL SPK value Ref Val %REC LowLimit HighLimit % 10.0 0 10.00 0 100 99 101

Qualifiers:

Analyte detected in the associated Method Blank

J Analyte detected between MDL and RL

ND Not Detected at the Method Detection Limit

RL Reporting Limit

J Analyte detected between SDL and RL

DF Dilution Factor

MDL Method Detection Limit

R RPD outside accepted control limits

S Spike Recovery outside control limits

N Parameter not NELAC certified

Page 32 of 32

ATTACHMENT B

October 14, 2014

Mark Larson Larson & Associates 507 N. Marienfeld #200 Midland, Texas 79701

RE: REPORTING OF RESULTS FOR R360 Artesia Landfarm

Dear Mark Larson,

DHL Analytical, Inc. has sent several reports to Larson and Associates, Inc. for the above referenced project; all of these reports meet the NELAC requirements. On these reports, the column header RL stands for Reporting Limit and this term is equivalent to PQL (Practical Quantitation Limit) which is used by the State of New Mexico. The terms RL and PQL are used by multiple federal and state agencies, and these interchangeable terms all mean that this concentration of analyte in the sample is equivalent to the lowest concentration standard used for the instrument calibration. For the reports associated with R360 Artesia Landfarm all nondetected concentrations of target compounds are reported as ND (not detected) which is the same as less than the PQL value for each analyte.

Sincerely,

John DuPont General Manager

DHL Analytical, Inc.