GW -

MONITORING REPORTS

DATE: 1998

September 16, 1999

Mr. Wayne Price **NMOCD** 2040 S. Pacheco St. Santa Fe, New Mexico 87505

Re:

Evaporation Pond Sludge

Giant Refining Company - Bloomfield GW-001

Dear Mr. Price:

Giant Refining Company – Bloomfield submitted a written request on August 18, 1999 for permission to apply evaporation pond sludge directly to the land surface in an area immediately south of the evaporation pond.

Giant hereby withdraws that request. Instead, the pond sludge will be processed through a centrifuge and the solids will be land applied at Giant Mid-Continent's permitted land farm. Analytical data documenting that the pond sludge is non-hazardous was submitted with the August 18 letter. Because the material is non-hazardous, contains no recoverable petroleum hydrocarbon and will be applied to a segregated cell of the land farm, Giant proposes that no additional sampling be required in the segregated cell in which the sludge is applied.

Included with this letter are the appropriate forms needed for approval of this land application.

If you need additional information, please contact me at (505) 632 4168.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

Enclosures

111 Road 4990 Bloomfield, New Mexico 87413

C-138 OKELING!

MARTYPE KIELING!

9/27/29

OK BI

SILE

CERTIFICATE OF WASTE STATUS

1. Generator Name and Address:	2. Destination Name:
Giant Refining Company - Bloomfield	Giant Mid-Continent
50 County Road 4990 Bloomfield, N.M. 87413	111 County Road 4990 Bloomfield, N.M. 87413
3. Originating Site (name):	Location of the Waste (Street address &/or ULSTR):
Giant Refinery	50 County Road 4990
Attach list of originating sites as appropriate 4. Source and Description of Waste	
Process waste water evaporation pond slu	idge Sludge was removed from lined
evaporation lagoon. Analytical data avai	lable.
Lynn Shelton	representative for:
(Print Name)	
Giant Refining Company according to the Resource Conservation and Recove	do hereby certify that, ry Act (RCRA) and Environmental Protection Agency's July,
1988, regulatory determination, the above described	
	APT oilfield waste which is non-hazardous by characteristic by product identification
and that nothing has been added to the exempt or no	n-exempt non-hazardous waste defined above.
For NON-EXEMPT waste only the following documents of MSDS Information X RCRA Hazardous Waste Analysis	nentation is attached (check appropriate items): X Other (description): WQCC Analysis
Chain of Custody	
Name (Original Signature):	7
Title: Environmental Manager	
Date: September 16, 1999	

District I - (505) 393-6161 2 O. Box 1980 Hobbs, NM 88241-1980 District II - (505) 748-1283 311 S. First Artesia, NM 88210 District III - (505) 334-6178 D Rio Brazos Road Loc, NM 87410 District IV - (505) 827-7131

New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

(505) 827-7131

Form C-138 Originated 8/8/95

> Submit Original Plus 1 Copy to appropriate District Office

HEQUEST FOR	APPROVAL TO ACCEPT	SOLID WASTE
1. RCRA Exempt: Non-Exempt: X		Giant Refining Company 4. Generator
Verbal Approval Received: Yes 🗓	No 🔲	5. Originating Site
2. Management Facility Destination Giant	: Mid-Continent	Not Determined 6. Transporter
	County Road 4990 ofield, N.M. 87413	8. State New Mexico
7. Location of Material (Street Address or UL	STR) 50 County 4990 Bloomfield, N.M.	87413
9. <u>Circle One</u> :		
·	and the Generator's certification	ompanied by necessary chemical analysis to on of origin. No waste classified hazardous by ed for transport.
Estimated Volume 1500 cy Know	vn Volume (to b≑ entered by the c	perator at the end of the haul) ————————————————————————————————————
SIGNATURE: Waste Manage from Pacil ty Author Fed	TITLE: MCR.S	
SIGNATURE: Waste Manage from Pacil ty Author Fed	TITLE: MCR.S	perator at the end of the haul)————————————————————————————————————

CERTIFICATE OF WASTE STATUS

1. Generator Name and Address:	2. Destination Name:
Giant Refining Company - Bloomfield	Giant Mid-Continent
50 County Road 4990	111 County Road 4990
Bloomfield, N.M. 87413	Bloomfield, N.M. 87413
3. Originating Site (name):	Location of the Waste (Street address &/or ULSTR):
Giant Refinery	50 County Road 4990
Attach list of originating sites as appropriate	
4. Source and Description of Waste	
Process waste water evaporation pond slu	
evaporation lagoon. Analytical data ava-	Table.
I, Lynn Shelton	
(Print Name)	- Topiosoniauvo ion
Giant Refining Company	do hereby certify that,
	ry Act (RCRA) and Environmental Protection Agency's July,
1988, regulatory determination, the above described	ry Act (RCRA) and Environmental Protection Agency's July,
1988, regulatory determination, the above described EXEMPT cilfield waste X NON-EXEMPT	ry Act (RCRA) and Environmental Protection Agency's July,
1988, regulatory determination, the above described EXEMPT oilfield waste X NON-EXEMPT	ry Act (RCRA) and Environmental Protection Agency's July, waste is: (Check appropriate classification) APT cilfield waste which is non-hazardous by characteristic r by product identification
1988, regulatory determination, the above described EXEMPT oilfield waste X NON-EXEMPT analysis o	ry Act (RCRA) and Environmental Protection Agency's July, waste is: (Check appropriate classification) APT oilfield waste which is non-hazardous by characteristic by product identification on-exempt non-hazardous waste defined above.
1988, regulatory determination, the above described EXEMPT oilfield waste X NON-EXEMPT analysis o and that nothing has been added to the exempt or not For NON-EXEMPT waste only the following documents of the exempt of the exempt or not	ry Act (RCRA) and Environmental Protection Agency's July, waste is: (Check appropriate classification) APT oilfield waste which is non-hazardous by characteristic r by product identification on-exempt non-hazardous waste defined above. mentation is attached (check appropriate items): X Other (description):
1988, regulatory determination, the above described EXEMPT cilfield waste	ry Act (RCRA) and Environmental Protection Agency's July, waste is: (Check appropriate classification) APT oilfield waste which is non-hazardous by characteristic r by product identification on-exempt non-hazardous waste defined above. mentation is attached (check appropriate items): X Other (description):

District I - (505) 393-6161 2 O. Box 1980 Hobbs, NM 88241-1980 District II - (505) 748-1283 311 S. First Artesia, NM 88210 District III - (505) 334-6178 Rio Brazos Road Lec, NM 87410 District IV - (505) 827-7131

New Mexico Energy Minerals and Natural Resources Department Oil Conservation Division 2040 South Pacheco Street Santa Fe, New Mexico 87505

(505) 827-7131

Form C-138 Originated 8/8/95

Submit Original Plus 1 Copy to appropriate District Office

REQUEST FOR APPROVAL TO ACCEPT SOLID WASTE

1124020170117111110712107100217	COLIB TITIOTE
1. RCRA Exempt: Non-Exempt: X	Giant Refining Company 4. Generator
Verbal Approval Received: Yes 📉 No 🔲	5. Originating Site
2. Management Facility Destination Giant Mid-Continent	Not Determined 6. Transporter
3. Address of Facility Operator Bloomfield, N.M. 87413	8. State New Mexico
7. Location of Material (Street Address or ULSTR) 50 County 4990 Bloomfield, N.M.	87413
9. <u>Circle One</u> :	
 A. All requests for approval to accept oilfield exempt wastes will be acc Generator; one certificate per job. B. All requests for approval to accept non-exempt wastes must be accept PROVE the material is not-hazardous and the Generator's certification listing or testing will be approved. 	companied by necessary chemical analysis to
All transporters must certify the wastes delivered are only those consigne	ed for transport.
BRIEF DESCRIPTION OF MATERIAL:	
Process waste water evaporation pond sludge. Analysis av	
Estimated Volume	
Waste Managered Facility Authorized Agent	AGH DATE: 9-17-99
TYPE OR PRINT NAME: BARRY HOLMAN TE	ELEPHONE NO. 505-672-4077
(This space for State Use)	
APPROVED BY:TITLE:	DATE:
	O NTT.

111 Road 4990 Bloomfield, New Mexico 87413

505 632,8006

ALIC 2 D IOOO

CIL CONSERVATION POVISION

August 18, 1999

Mr. Wayne Price NMOCD 2040 S. Pacheco Santa Fe, New Mexico 87505

Re: Evaporation Pond Sludge

Giant Refining Company - Bloomfield GW-001

Dear Mr. Price:

Giant Refining Company – Bloomfield is planning to clean the south process wastewater evaporation lagoon. The sludge on the bottom will be removed and disposed of. Cleaning the lagoon will control odor from the lagoon and will allow inspection of the top HDPE liner for structural integrity.

In order to protect the liner from mechanical damage, Giant plans to use water from the north evaporation lagoon to blast the sludge in the south lagoon. The resultant slurry (sludge and water) will be vacuumed into a truck.

Giant requests permission to dispose of the sludge on site on Giant's property immediately south of the south lagoon. Enclosed is a copy of analytical data that was performed on the sludge including TCLP and WQCC analytical parameters. This shows the sludge to be non-hazardous material. There were a few insignificant hits on hydrocarbons and the inorganic data shows that the metals levels are consistent with background soil.

Disposing of the sludge on-site will offer significant savings in transportation and handling of the sludge. The sludge will be applied in a manner to prevent pooling or ponding. Giant sees no adverse effect on the environment. Although the sludge is black when it is removed, it oxidizes quickly to the color of the native soil.

Giant appreciates you consideration of this request. If you need additional information, please contact me at (505) 632 4168.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

Enclosure

cc: Denny Foust, NMOCD, Aztec

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 El Paso, Texas 79922

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com ANALYTICAL RESULTS FOR

GIANT REFINING CO.-BLOOMFIELD

Attention: Lynn Shelton

111 County Road

Bloomfield, NM 87413

PAGE 1 of 2

July 7, 1999

Receiving Date: 6/3/99 Sample Type: Sludge Project No: N/A Project Location: N/A Prep Date: 7/1/99 Analysis Date: 7/1/99 Sampling Date: 6/2/99

Sample Condition: Intact & Cool Sample Received by: AD

Project Name: N/A

FIELD CODE: S. POND SLUDGE

TA #: T125841/992603	Reporting					
·	Limit	Concentration	QC	RPD	EA	IA
8260 Compounds	(ug/kg)	(ug/kg)				
Dichlorodifluoromethane	25	ND				
Chloromethane	25	ND				
Vinyl chloride	50	ND	107			107
Bromomethane	125	ND				
Chloroethane	. 25	ND				
Trichlorofluoromethane	25	ND				
1,1-Dichloroethene	25	ND	104	6	90	104
Methylene chloride	125	ND				
trans-1,2-Dichloroethene	25	ND				
1,1-Dichloroethane	25	ND				
cis-1,2-Dichloroethene	25	ND				
Chloroform	25	ND	102			102
2,2-Dichloropropane	25	ND				
Bromochloromethane	25	ND				
1,2-Dichloroethane	25	ND				
1,1,1-Trichloroethane	25	ND				
Carbon Tetrachloride	25	ND				
1,1-Dichloropropene	25	ND				
Benzene	25	54		1	112	
1,2-Dichloropropane	25	ND	100			100
Trichloroethene	25	ND		4	114	
Dibromomethane	25	ND				
Bromodichloromethane	25	ND				
cis-1,3-Dichloropropene	25	ND				
trans-1,3-Dichloropropene	25	ND				
Toluene	25	400	101	3	112	101
1,1,2-Trichloroethane	25	ND				
1,3-Dichloropropane	25	ND				
MTBE	25	ND				

GIANT REFINING CO.-BLOOMP Attention: Lynn Shelton

FIELD CODE: S. POND SLUDGE

TA#: T125841/992603	Reporting Limit	Concentration	QC	RPD	EA	IΑ
8260 Compounds	(ug/kg)	(ug/kg)				
Dibromochloromethane	25	ND.		<u> </u>		
1,2-Dibromoethane	25	ND				
Tetrachloroethene	25	ND				
Chlorobenzene	25	ND	100	1	109	100
1,1,1,2-Tertachloroethane	25	ND			•	
Ethylbenzene	25	110	102			102
m & p-Xylene	25	630				
Bromoform	25	ND				
Styrene	25	ND				
o-Xylene	25	260				
1,1,2,2-Tetrachloroethane	25	ND				
1,2,3-Trichloropropane	25	ND				
Isopropylbenzene	25	ND				
Bromobenzene	25	ND				
2-Chlorotoluene	25	ND				
n-Propylbenzene	25	ND				
4-Chlorotoluene	25	ND				
1,3,5-Trimethylbenzene	25	130				
tert-Butylbenzene	25	ND				
1,2,4-Trimethylbenzene	25	380				
1,4-Dichlorobenzene	50	ND				
sec-Butylbenzene	25	ND				
1,3-Dichlorobenzene	50	ND				
4-Isopropyltoluene	25	ND				
1,2-Dichlorobenzene	50	ND				
n-Butylbenzene	25	ND				
1,2-Dibromo-3-chloropropane	125	ND				
1,2,3-Trichlorobenzene	125	ND				
Naphthalene	25	180				
1,2,4-Trichlorobenzene	125	ND	•	• •	1.	
Hexachlorobutadiene	125	ND				

% Recovery

Dibromofluoromethane	103
Toluene-d8	100
4-Bromofluorobenzene	100

ND = Not Detected

Methods: EPA SW 846-5035, 8260B

CHEMIST: JG

7-7-99

Director, Dr. Blair Leftwich

Date

6701 Aberdoen Avenue, Suite 9 GIANT REFINING & Fipley Avenue, Suite A

BLOOMFIELD, NM 87413

111 COUNTY RD 4990

CLIENT

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443 E-Mail: lab@traceanalysis.com

1296 806 • 794 • 1296 FAX 806 • 794 • 1298 3443 915 • 585 • 3443 FAX 915 • 685 • 3443 FAX 915 • 785 •

FAX 915 STATEMENO. :

SAMPLE NO.: 932003 INVOICE NO.: 22104219 REPORT DATE: 06-29-99

REVIEWED BY: //

CLIENT SAMPLE ID : S. POND SLUDGE SAMPLE TYPE: sludge

SAMPLED BY: L.S. SUBMITTED BY: Lynn Shelton

SUBMITTED BY: Lynn Shelton SAMPLE SOURCE ...: S. POND SLUDGE

AUTHORIZED BY : L. Shelton CLIENT P.O. : --

SUBMITTAL DATE ...: 06-02-99 SUBMITTAL DATE : 06-03-99

EXTRACTION DATE:

RKS -

criteria range possibly due non-homogeneity of the sample for the following parameters: Lead, Cadmium, Selenium, Silver, and Copper. Matrix Spike Duplicate was out of acceptance criteria for Zinc and Matrix spike and matrix spike duplicate were out of acceptance

METALS SOLID-ICP

	Ω	DATA	TABLE		
Parameter	Result	Unit	Detection Limit	Analysis Date Test Method	Analyst
Total Silver	<1.3	mg/Kg	1.30		
,,	<5.00	mg/Kg	2.00		
Barium .	410	mg/Kg	5.00		
Cadmium	<5.00	mg/Kg	5.00		N. Munir
=	4.5	mg/Kg	5.00		
•	6.5	mg/Kg	5.00	06-11-99 6010B	N. Munir
Seleni	<5.00	mg/Kg	5.00		N. Munir

(1) Copy to Client

Mannay

MANAGING DIRECTOR

Z	ļ
	The state of the s
	į
	:
	i
	1
	1
<	
	1
マ マ	
()	
\cong	1
NC	
	Ì
_	1
LYSIS	٦
LYSIS	
	1
\supset	ļ
	1
A	1
	1
	1
W. Company	1
	.
Œ.	١
7)	1
	- 1
	- 1
\forall	1
₹	
RA	
IRA	
TRA	
TRA	

Lubbock, Texas 79424 El Paso, Texas 79922 6701 Aberdeen Avenue, Suite 9 CLIENT GIANT REFINING 675 Ripley Avenue, Suite A

BLOOMFIELD, NM 87413 111 COUNTY RD 4990

800 • 378 • 1296 888 • 588 • 3443 E-Mail: lab@traceanalysis.com

806 • 794 • 1296 915 • 585 • 3443

FAX 806-794-1298 FAX 91**宝和**P的单 **NO.** :

INVOICE NO.: 22104219 06-29-99 992603 REPORT DATE:

: 2 OF REVIEWED BY:

	Analyst N. Munir
(Continue)	Analysis Date 06-10-99 06-21-99 06-21-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-17-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99 06-18-99
	Analysis Date 06-10-99 06-21-99 06-18-99 06-18-99 06-18-99 06-17-99 06-18-99 06-17-99 06-18-99
TABLE	Detection Limit 0.50 25.0 5.00 5.00 5.00 5.00 5.00 5.00
DATA	Unit mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg mg/Kg
	Result 6.8 790 <5.00 <5.00 <5.00 6800 48. <5.00 <5.00
	Parameter Total Mercury Total Aluminum Total Boron Total Cobalt Total Copper Total Iron Total Manganese Total Molybdenum Total Nickel

ILTRACEANALYSIS, INC. IIIIIII III

6701 Aberdeen Avenue, Suite 9 GAINT REFINING & 65 Ripley Avenue, Suite A

111 COUNTY ROAD 4990 BLOOMFIELD, NM 87413

CLIENT

Lubbock, Texas 79424 800 • 378 • 1296 El Paso, Texas 79922 888 • 588 • 3443

FAX 806 • 794 • 1298 806 • 794 • 1296 915 • 585 • 3443

INVOICE NO.: FAX 915SENTPLE NO.

22104219 REPORT DATE: REVIEWED BY:

PAGE

E-Mail: lab@traceanalysis.com

L. Shelton AUTHORIZED BY CLIENT P.O.

06-02-99 SAMPLE DATE ...: SUBMITTAL DATE :

EXTRACTION DATE:

SUBMITTED BY ...: Lynn Shelton SAMPLE SOURCE ...: S. POND SLUDGE

SAMPLED BY: SAMPLE TYPE: CLIENT SAMPLE ID

S. POND SLUDGE

sludge

TCLP Metals

	Analyst N. Munir
	SW 7060A SW 7060A SW 3010A/7080A SW 3010A/7130 SW 3010A/7190 SW 3010A/7420 SW 770A SW 7760A
	Analysis Date 06-15-99 06-15-99 06-15-99 06-10-99 06-10-99 06-15-99 06-10-99
TABLE	Detection Limit 0.50 0.50 0.50 0.50 0.50 0.50 0.50 0.5
DATA	Unit mg/L mg/L mg/L mg/L mg/L mg/L mg/L
D	Result <0.50 <0.50 <0.50 <0.50 <0.50 <0.010 <0.50 <0.50
	Parameter Arsenic (TCLP) Barium (TCLP) Cadmium (TCLP) Chromium (TCLP) Lead (TCLP) Mercury (TCLP) Selenium (TCLP) Silver (TCLP)

AMALYTICAL REGULTIGE REPORTED HEREN APLY DNLY TO THE BANDLEIS) TEGEED. PLATHERMORE, THIS REPORT CAN DNLY BE COPIED IN 118 MITHETY

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922

800 • 378 • 1296 888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR GIANT REFINING CO. BLOOMFIELD

Attention: Lynn Shelton 111 County Road 4990 Bloomfield, NM 87413

June 14, 1999

Receiving Date: 06/03/99 Sample Type: Sludge Project No: N/A

Project Location: N/A

Sampling Date: 06/02/99 Sample Condition: I & C Sample Received by: VW

Project Name: N/A

TA#	FIELD CODE	TCLP Cr (mg/L)
EPA LIMIT =		5.0
T125841/992603	S. Pond Sludge	<0.50
er.		
ICV		1.03
CCV		0.99
REPORTING LIMIT		0.50
RPD	QA QC	2
% Extraction Accuracy	Ala	99
% Instrument Accuracy	Q_{n} ,	101
EVTDACTION DATE		00/04/00
EXTRACTION DATE		06/04/99
ANALYSIS DATE		06/07/99

METHODS: EPA 846-1311, 6010B

CHEMIST: RR

TCLP Cr SPIKE: 10 mg/L TCLP Cr CV: 1.0 mg/L

Director, Dr. Blair Leftwich

DATE

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 El Paso, Texas 79922 800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR GIANT REFINING CO. BLOOMFIELD

Attention: Lynn Shelton 111 County Road 4990 Bloomfield, NM 87413

June 16, 1999

Receiving Date: 06/03/99 Sample Type: Sludge

Project No:

Project Location:

Extraction Date: 06/07/99 Analysis Date: 06/15/99 Sampling Date: 06/02/99 Sample Condition: I & C Sample Received by: VW

Project Name:

TCLP VOLATILES (mg/L)	EPA Limit	Reporting Limit	T126322/992603 S. Pond Sludge	QC	RPD	%EA	%IA
Vinyl chloride	0.20	0.05	ND	112	6	116	112
1,1-Dichloroethene	0.70	0.05	ND	112	9	116 ·	112
Methyl Ethyl Ketone	200.0	0.5	ND	85	12	86	85
Chloroform	6.00	0.05	ND	86	10	103	86
1,2-Dichloroethane	0.50	0.05	ND	81	12	93	81
Benzene	0.50	0.05	ND	96	9	112	96
Carbon Tetrachloride	0.50	0.05	ND	104	6	119	104
Trichloroethene	0.50	0.05	ND	96	7	114	96
Tetrachloroethene	0.70	0.05	ND	9 9	8	124	99
Chlorobenzene	100.00	0.05	ND	98	8	108	98
1,4-Dichlorobenzene	7.50	0.05	ND	94	8	108	94

SURROGATES	% Recovery
Dibromofluoromethane	91
Toluene-d8	96
4-Bromofluorobenzene	93

ND = Not Detected

METHODS: EPA SW 846-1311, 8260.

CHEMIST: DG

Director, Dr. Blair Leftwich

06/16/99

Lubbock, Texas 79424

800 • 378 • 1296

806 • 794 • 1296 FAX 806 • 794 • 1298

PAGE

CLIENT GIANT PREFINING ACOMPANY Texas 79922 888 • 588 • 3443 111 COUNTY ROAD 4990

E-Mail: lab@traceanalysis.com

915 • 585 • 3443 AM PIE 585 04944 :

992603 INVOICE NO.: 22104219

BLOOMFIELD, NM 87413

REPORT DATE: 06-22-99

REVIEWED BY:

1 OF

CLIENT SAMPLE ID : S. POND SLUDGE

SAMPLE TYPE: sludge

SAMPLED BY: L.S.

SUBMITTED BY: Lynn Shelton SAMPLE SOURCE ...: S. POND SLUDGE

ANALYST S. Ortiz

AUTHORIZED BY : L. Shelton

CLIENT P.O.

SAMPLE DATE ...: 06-02-99 SUBMITTAL DATE: 06-03-99 EXTRACTION DATE: 06-15-99

ANALYSIS DATE .: 06-16-99

REMARKS -

Pyridine is out of acceptance criteria in laboratory control sample. Results are acceptable in the laboratory control sample duplicate and the matrix spikes.

Hexachorobenzene Relative Percent Difference between Laboratory Control Samples is out of acceptance criteria. Detection limits raised due to interference.

TCLP Semi - Volatiles by EPA 8270C

DATA	TABLE		
			Detection
Parameter	Result	<u>Unit</u>	Limit
Pyridine:	<0.25	$\mathtt{mg/L}$	0.25
1,4-Dichlorobenzene:	<0.25	mg/L	0.25
2-Methylphenol:	<0.25	mg/L	0.25
4-Methylphenol:	<0.25	mg/L	0.25
Hexachloroethane:	<0.25	mg/L	0.25
Nitrobenzene:	<0.25	mg/L	0.25
Hexachlorobutadiene:	<0.25	mg/L	0.25
2,4,6-Trichlorophenol:	<0.25	mg/L	0.25
2,4,5-Trichlorophenol:	<0.25	mg/L	0.25
2,4-Dinitrotoluene:	<0.25	mg/L	0.25
Hexachlorobenzene:	<0.25	mg/L	0.25
Pentachlorophenol:	<0.25	mg/L	0.25

(1) Copy to Client

MANAGING DIRECTOR

Lubbock, Texas 79424

800 • 378 • 1296

806 • 794 • 1296 FAX 806 • 794 • 1298

CLIENT GIANT REFINING COMPANY Texas 79922 888 • 588 • 3443 915 • 585 • 3443 SAMPLE NO. :

992603

111 COUNTY ROAD 4990

INVOICE NO.: 22104219

BLOOMFIELD, NM 87413

REPORT DATE: 06-22-99

REVIEWED BY:

PAGE

: 2 OF

D A T A T A B I	E	(Cont.)
Surrogate Information -	Percent	
	Recovery	Range
2-Flourophenol:	33.1	11-114
Phenol-D6	25.6	13-130
Nitrobenzene-d5	61.0	1-198
2-Flurobiphenyl:	71.2	19-152
2,4,6-Tribromophenol	93.4	1-179
Terphenyl-d14	154.0	15-195

Lubbock, Texas 79424

806 • 794 • 1296 800 • 378 • 1296

FAX 806 • 794 • 1298

CLIENT GATNTIPREFINING CO. El Paso, Texas 79922 888 • 588 • 3443 915 • 585 • 3443 SAMPLE NO. :

992603

111 COUNTY RD. 4990 BLOOMFIELD, NM 87413 E-Mail: lab@traceanalysis.com

INVOICE NO.: 22104219 REPORT DATE: 06-22-99

REVIEWED BY:

CLIENT SAMPLE ID : S. POND SLUDGE

SAMPLE TYPE: sludge SAMPLED BY: L.S.

SUBMITTED BY: Lynn Shelton

SAMPLE SOURCE ...: S. POND SLUDGE

ANALYST S. Ortiz

AUTHORIZED BY : L. Shelton

CLIENT P.O.

PAGE

SAMPLE DATE ...: 06-02-99

SUBMITTAL DATE: 06-03-99

EXTRACTION DATE: 06-14-99

ANALYSIS DATE .: 06-15-99

REMARKS -

Detection limits raised due to sample dilution.

PAH - Soil by 8270C

DATA	TABLE		
Parameter	Result	Unit	Detection Limit
Naphthalene:	<6.0	mg/Kg	6.0
Acenaphthylene:	<6.0	mg/Kg	6.0
Acenaphthene:	<6.0	mg/Kg	6.0
Fluorene:	<6.0	mg/Kg	6.0
Anthracene:	<6.0	mg/Kg	6.0
Phenanthrene	<6.0	mg/Kg	6.0
Fluoranthene:	<6.0	mg/Kg	6.0
Pyrene:	<6.0	mg/Kg	6.0
Benz[a]anthracene:	<6.0	mg/Kg	6.0
Chrysene:	<6.0	mg/Kg	6.0
Benzo[b&k]fluoranthene:	<6.0	mg/Kg	6.0
Benzo[a]pyrene:	<6.0	mg/Kg	6.0
indeno[1,2,3-cd]pyrene:	<6.0	mg/Kg	6.0
Dibenz[a,h]anthracene:	<6.0	mg/Kg	6.0
Benzo[g,h,i]perylene:	<6.0	mg/Kg	6.0

(1) Copy to Client

MANAGING DIRECTOS

BLOOMFIELD, NM 87413

Lubbock, Texas 79424

800 • 378 • 1296

FAX 806 • 794 • 1298

806 • 794 • 1296

CLIENT GATATAPIPREFETATORICACO. El Paso, Texas 79922 888 • 588 • 3443 915 • 585 • 3443 SAMPLE 585 04944: 111 COUNTY RD. 4990

E-Mail: lab@traceanalysis.com

992603 INVOICE NO.: 22104219

REPORT DATE: 06-22-99

REVIEWED BY: PAGE

: 2 OF

DATA TAB	L E	(Cont.)
Surrogate Information -	Percent	
	Recovery	Range
Phenol-d5:	61.4	13-130
2-Fluorobiphenyl:	88.1	19-152
2,4,6 Tribromophenol:		1-179
2-Fluorophenol:		11-114
Terphenyl-d14	100.0	15-195
Nitrobenzene-d5		1-198

MTRACEANALYSIS, INC. MILLI

6701 Aberdeen Avenue, Suite 9 GIANT REFINING & 675 Ripley Avenue, Suite A

111 COUNTY ROAD 4990 BLOOMFIELD, NM 87413

CLIENT

Lubbock, Texas 79424 800•378•1296 El Paso, Texas 79922 888•588•3443

E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 **£** 58**£ £** 4944

FAX 915SAMPLE NO.

INVOICE NO:: 22104219
REPORT DATE: 06-23-99
REVIEWED RV:

REVIEWED BY: V

CLIENT SAMPLE ID : S. POND SLUDGE SAMPLE TYPE: sludge

SAMPLED BY L.S.

SUBMITTED BY: Lynn Shelton SAMPLE SOURCE ...: S. POND SLUDGE

AUTHORIZED BY : D. Overhoff

CLIENT P.O. : --SAMPLE DATE ...: 06-02-99 SUBMITTAL DATE : 06-03-99

EXTRACTION DATE: --

REMARKS

Matrix Spike Detection limit raised for Sulfate due to interference. Fluoride Matrix Spike level below reporting limit. data not valid.

Inorganic Non-Metals-Solids Modified Methods Based on Water Extracts

	DATA	TABLE		
Parameter Result	t Unit mg/Kg mg/Kg mg/Kg mg/Kg s.U.	Detection Limit 10. 110 50. 20.	Analysis Test Method 06-04-99 EPA-300.0 06-04-99 EPA-300.0 06-04-99 EPA-300.0 06-07-99 SM-9045C 06-07-99 SW-9045C	Analyst A. Myers A. Myers A. Myers A. Myers A. Myers A. Myers

A CO CONTRACTOR OF THE PARTY OF

(1) Copy to Client

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922

888 • 588 • 3443

806 • 794 • 1296 915 • 585 • 3443

FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR GIANT REFINING CO. BLOOMFIELD

Attention: Lynn Shelton 111 County Road 4990 Bloomfield, NM 87413

June 14, 1999

Receiving Date: 06/03/99 Sample Type: Sludge

Project No: N/A

Project Location: N/A

Sampling Date: 06/02/99 Sample Condition: I & C Sample Received by: VW

Project Name: N/A

TA#	FIELD CODE	CYANIDE (mg/L)	PHENOLICS (mg/L)	
T125841/992603	S. Pond Sludge	<0.025	0.549	
ICV		0.126	0.835	
CCV		0.121	0.850	
REPORTING LIMIT		0.025	0.002	
	100			
RPD	MICH	1*	8	•
% Extraction Accuracy	$\{X_{\mathbf{L},\mathbf{l}}\}$	103*	116	
RPD % Extraction Accuracy % Instrument Accuracy		105	104	
	blank spikes were used for I	RPD & %EA.		
PREP DATE		06/09/99	06/10/99	
ANALYSIS DATE		06/09/99	06/10/99	

METHODS: EPA SM 4500 CN-C,E,

CHEMIST: MD

CYANIDE SPIKE: 3.0 mg/L CYANIDE PHENOLICS SPIKE: 0.8 mg/L PHENOLICS CYANIDE CV: 0.120 mg/L CYANIDE PHENOLICS CV: 0.8 mg/L PHENOLICS

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A Lubbock, Texas 79424 El Paso, Texas 79922

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296

FAX 806 • 794 • 1298

E-Mail: lab@traceanalysis.com

915 • 585 • 3443 FAX 915 • 585 • 4944

ANALYTICAL RESULTS FOR GIANT REFINING CO. BLOOMFIELD

Attention: Lynn Shelton 111 County Road 4990 Bloomfield, NM 87413

June 14, 1999

Receiving Date: 06/03/99 Sample Type: Sludge Project No: N/A

Project Location: N/A

Sampling Date: 06/02/99 Sample Condition: I & C Sample Received by: VW Project Name: N/A

110,000.110...01

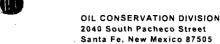
TOTAL C.

TA# FIELD CODE		(mg/kg)
T125841/992603	S. Pond Sludge	4.8
ICV	÷	1.04
CCV		1.04
REPORTING LIMIT		2.0
RPD		1
% Extraction Accuracy % Instrument Accuracy		103 104
EXTRACTION DATE ANALYSIS DATE		06/09/99 06/10/99

METHODS: EPA 846-1311, 6010B

CHEMIST: RR

TOTAL Cr SPIKE: 200 mg/kg TOTAL Cr CV: 1.0 mg/L


Director, Dr. Blair Leftwich

6-14-59

DATE

PIOH Turn Around Time if different from standard Carrier # 11 PS # 12 881 871 1006201 CHAIN-OF-CUSTODY AND ANALYSIS REQUEST * 57KLAW-1 SIMENISTO 2 (15] (Circle or Specify Method No.) ANALYSIS REQUEST GC/MS Semi. Vol. 8270C/625 REMARKS: CHAMIDE-1 TCLP Semi Volatiles LAB Order ID #_ LAB USE ONLY TCLP Metals Ag As Ba Cd Cr Pb Se Hg Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Log-in Review_ Headspace _ 2001XT\1.814 H9T Temp_ BTEX 8021B/602 MTBE 8021B/602 4725 Ripley Dr., Ste A El Paso, Toxas 79922-1028 Tol (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 202 **TIME** SAMPLING **3TA**_Q Name: CIANT REFINING CO. - 8(20MFIELD (505) 632 416P (305) (324024 E. **PRESERVATIVE** NONE METHOD ICE Sample Signature: ниоз Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C.O.C. Date: Date: TraceAnalysis, Inc. HCF Project Name: BLOOMFIELD, NOW 87413 SCUDGE Received at Laboratory by: MATRIX AIA SCOOMFILLS PAIS TIOS **MATER** Received by: oceived by: **InnomA\amuloV** N # CONTAINERS 00:4 65 COUNTY ROAD 4990 3700775 LYNN SHELTON (If different from above) P.O. LOK 157 FIELD CODE Date: (Street, City, Zip) Post 6701 Aberdeen Avenue, Ste. 9 Lubbock, Texas 79424 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 Company Name: Project Location: Relinquished by: Contact Person: Relinquished by: Relinquished by: LAB USE nvoice to: LAB# ONLY Project #: Address:

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

(505) 827-7131

August 17, 1999

Mr. Lynn Shelton
Giant Refining Company
#89 County Rd. 4990
Bloomfield, New Mexico

87413

RE: GROUND WATER SAMPLE ANALYSES

GIANT BLOOMFIELD REFINERY BLOOMFIELD, NEW MEXICO

Dear Mr. Shelton:

Enclosed you will find copies of the analytical results of the ground water quality samples from the Giant Refining Company Bloomfield Refinery (Giant) that the New Mexico Oil Conservation Division (OCD) split with Giant on April 14-15, 1999. Please include a table and discussion of these OCD results in the future site investigation reports.

If you have any questions or comments, please call me at (505) 827-7154.

Sincerely,

William C. Olson

Hydrologist

Environmental Bureau

enclosure

xc w/enclosure:

Denny Foust, OCD Aztec District Office

Randall T. Hicks, R.T. Hicks Consulting, Ltd.

Pinnacle Lab ID number May 27, 1999 904067

NMOCD 2040 S. PACHECO SANTA FE.

NM

87505

Project Name

GIANT BLOOMFIELD REFINERY

Project Number

(none)

Attention:

BILL OLSON

On 4/15/99 Pinnacle Laboratories, Inc. Inc., (ADHS License No. AZ0592), received a request to analyze **aqueous** samples. The samples were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

Due to laboratory error, all samples for EPA method 8260 were performed outside of EPA holding time. We apologize for any inconvenience this may have caused. There will be no charge for this analysis.

EPA methods 150.1 and 8260 were performed by Pinnacle Laboratories, Inc., Albuquerque, NM.

Silicon was analyzed by ATEL, Marion, OH.

All other parameters were performed by ESL (OR) Inc., Portland, OR.

If you have any questions or comments, please do not hesitate to contact us at (505)344-3777.

Kimberly D. McNeill Project Manager H. Mitchell Rubenstein, Ph. D.

Amtchustt

General Manager

MR: mt

Enclosure

CLIENT	: NMOCD	PINNACLE ID	: 904067
PROJECT#	: (none)	DATE RECEIVED	: 4/15/99
PROJECT NAME	: GIANT BLOOMFIELD REFINERY	REPORT DATE	: 5/27/99
PIN			DATE
ID. #	CLIENT DESCRIPTION	MATRIX	COLLECTED
01	9904141400 (MW-4)	AQUEOUS	4/14/99
02	9904141515 (RW-14)	AQUEOUS	4/14/99
03	9904141530 (RW-15)	AQUEOUS	4/14/99
04	9904141615 (RW-17)	AQUEOUS	4/14/99
05	9904141710 (MW-28)	AQUEOUS	4/14/99
06	9904150900 (MW-23)	AQUEOUS	4/15/99
07	9904151000 (MW-9)	AQUEOUS	4/15/99
08	TRIP BLANK	AQUEOUS	4/13/99

GC/MS RESULTS

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

: NMOCD

PINNACLE I.D. :

904067

PROJECT#

: NONE

DATE RECEIVED :

4/15/99

PROJECT NAME	: GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMF	IELD REFINER	₹Y			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-01	9904141400 (MW 4)	AQUEOUS	4/14/99	N/A	05/11/99	20
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane		< 20	ug/L			
Chloromethane		< 20	ug/L			
Vinyl Chloride		< 20	ug/L			
Bromomethane	1.0	< 20	ug/L			
Chloroethane		< 20	ug/L			
Trichlorofluoromethane		< 20	ug/L			
Acetone	10	< 200	ug/L			
Acrolein	5.0	< 100	ug/L			
1,1-Dichloroethene	1.0	< 20	ug/L			
lodomethane	1.0	< 20	ug/L			
Methylene Chloride	1.0	< 20	ug/L			
Acrylonitrile	5.0	< 100	ug/L			
cis-1,2-Dichloroethene	1.0	< 20	ug/L			
Methyl-t-butyl Ether	1.0	< 20	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 20	ug/L			
1,1-Dichloroethane	1.0	< 20	ug/L			
trans-1,2-Dichloroethene	1.0	< 20	ug/L			
2-Butanone	10	< 200	ug/L			
Carbon Disulfide	1.0	< 20	ug/L			
Bromochloromethane		< 20	ug/L			
Chloroform		< 20	ug/L			
2,2-Dichloropropane		< 20	ug/L			
1,2-Dichloroethane		< 20	ug/L			
Vinyl Acetate		< 20	ug/L			
1,1,1-Trichloroethane		< 20	ug/L			
1,1-Dichloropropene	1.0	< 20	ug/L			
Carbon Tetrachloride	1.0	< 20	ug/L			
Benzene	1.0	9400(D1000)				
1,2-Dichloropropane		< 20	ug/L			
Trichloroethene	1.0	< 20	ug/L			
Bromodichloromethane		< 20	ug/L			
2-Chloroethyl Vinyl Ether		< 200	ug/L			
cis-1,3-Dichloropropene		< 20	ug/L			
trans-1,3-Dichloropropene		< 20	ug/L			
1,1,2-Trichloroethane	1.0	< 20	ug/L			
1,3-Dichloropropane		< 20	ug/L			
Dibromomethane	1.0	< 20	ug/L			
Toluene	1.0	< 20	ug/L			
1,2-Dibromoethane	1.0	< 20	ug/L			
4-Methyl-2-Pentanone	10	< 200	ug/L			
2-Hexanone		< 200	ug/L ug/L			
Dibromochloromethane		< 200	ug/L ug/L			
Tetrachloroethene	1.0	< 20	ug/L ug/L			
Chlorobenzene		< 20	ug/L ug/L			
Ethylbenzene	1.0	590	ug/L ug/L			
1,1,1,2-Tetrachioroethane		< 20	ug/L ug/L			:
	1.0	390	ug/L ug/L			
m&p Xylenes			_			
o-Xylene	1.0	29	ug/L			

Bromofluorobenzene

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

GC/MS RESULTS

TEST	: VOLATILE ORG	ANICS EPA ME	ETHOD 8260			
CLIENT	: NMOCD			PINNACLE I.D		904067
PROJECT #	: NONE			DATE RECEIVED) :	4/15/99
PROJECT NAME	: GIANT BLOOMF	IELD REFINER				
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-01	9904141400 (MW 4)	AQUEOUS	4/14/99	N/A	05/11/99	20
PARAMETER	DET. LIMIT		UNITS			
Styrene	1.0	< 20	ug/L			
Bromoform	1.0	< 20	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 20	ug/L			
1,2,3-Trichloropropane	1.0	< 20	ug/L			
Isopropyl Benzene	1.0	44	ug/L			
Bromobenzene	1.0	< 20	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 20	ug/L			
n-Propylbenzene	1.0	39	ug/L			
2-Chlorotoluene	1.0	< 20	ug/L			
4-Chlorotoluene	1.0	< 20	ug/L			
1,3,5-Trimethylbenzene	1.0	56	ug/L			
tert-Butylbenzene	1.0	< 20	ug/L			
1,2,4-Trimethylbenzene	1.0	430	ug/L			
sec-Butylbenzene	1.0	< 20	ug/L			
1,3-Dichlorobenzene	1.0	< 20	ug/L			
1,4-Dichlorobenzene	1.0	< 20	ug/L			
p-Isopropyltoluene	1.0	< 20	ug/L			
1,2-Dichlorobenzene	1.0	< 20	ug/L			
n-Butylbenzene	1.0	< 20	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 20	ug/L			
1,2,4-Trichlorobenzene	1.0	< 20	ug/L			
Naphthalene	1.0	53	ug/L			
Hexachlorobutadiene	1.0	< 20	ug/L			
1,2,3-Trichlorobenzene	1.0	< 20	ug/L			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4	•	N/A *				
		(80 - 120)				
Toluene-d8		105				

(88 - 110)

97 (86 - 115)

(D1000) = SAMPLE ANALYZED AT 1000X DILUTION FOR THIS PARAMETER.

^{* =} SURROGATE RECOVERY NOT OBTAINABLE DUE TO MATRIX INTERFERENCE.

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME	: GIANT BLOOMF	IELD REFINER	RY			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-02	9904141515 (RW 14)	AQUEOUS	4/14/99	N/A	05/11/99	40
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	1.0	< 40	ug/L			
Chloromethane	1.0	< 40	ug/L			
Vinyl Chloride	1.0	< 40	ug/L			
Bromomethane	1.0	< 40	ug/L			
Chloroethane	1.0	< 40	ug/L			
Trichlorofluoromethane	1.0	< 40	ug/L			
Acetone	10	< 400	ug/L			
Acrolein	5.0	< 200	ug/L			
1,1-Dichloroethene	1.0	< 40	ug/L			
lodomethane	1.0	< 40	ug/L			
Methylene Chloride	1.0	< 40	ug/L			
Acrylonitrile	5.0	< 200	ug/L			
cis-1,2-Dichloroethene		< 40	ug/L			
Methyl-t-butyl Ether	1.0	68	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane		< 40	ug/L			
1,1-Dichloroethane		< 40	ug/L			
trans-1,2-Dichloroethene		< 40	ug/L			
2-Butanone		< 400	ug/L			
Carbon Disulfide	1.0	< 40	ug/L			
Bromochloromethane	1.0	< 40	ug/L			
Chloroform	1.0	< 40	ug/L			
2,2-Dichloropropane	1.0	< 40	ug/L ug/L			
1,2-Dichloroethane	1.0	< 40	ug/L			
•	1.0	< 40	-			
Vinyl Acetate		< 40	ug/L			
1,1,1-Trichloroethane	1.0	< 40	ug/L			
1,1-Dichloropropene	1.0	< 40	ug/L			
Carbon Tetrachloride	1.0		ug/L			
Benzene	1.0	4200	ug/L			
1,2-Dichloropropane	1.0	< 40	ug/L			
Trichloroethene	1.0	< 40	ug/L			
Bromodichloromethane	1.0	< 40	ug/L			
2-Chloroethyl Vinyl Ether	10	< 400	ug/L			
cis-1,3-Dichloropropene	1.0	< 40	ug/L			
trans-1,3-Dichloropropene	1.0	< 40	ug/L			
1,1,2-Trichloroethane	1.0	< 40	ug/L			
1,3-Dichloropropane	1.0	< 40	ug/L			
Dibromomethane	1.0	< 40	ug/L			
Toluene	1.0	21000(D1000)	ug/L			
1,2-Dibromoethane	1.0	< 40	ug/L			
4-Methyl-2-Pentanone	10	< 400	ug/L			
2-Hexanone	10	< 400	ug/L			
Dibromochloromethane	1.0	< 40	ug/L			
Tetrachloroethene	1.0	< 40	ug/L			
Chlorobenzene	1.0	< 40	ug/L			
Ethylbenzene		3300	ug/L			
4 4 4 0 Tataaabla athaa a	1.0	3300	~g/_			
1,1,1,2-Tetrachloroethane	1.0 1.0	< 40	ug/L			
m&p Xylenes			_			

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT PROJECT # : NMOCD

PINNACLE I.D. :

904067

: NONE

DATE RECEIVED :

4/15/99

PROJECT NAME	: GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMF	FIELD REFINER	₹Y			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-02	9904141515 (RW 14)	AQUEOUS	4/14/99	N/A	05/11/99	40
PARAMETER	DET. LIMIT		UNITS			
Styrene	1.0	< 40	ug/L			
Bromoform	1.0	< 40	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 40	ug/L			
1,2,3-Trichloropropane	1.0	< 40	ug/L			
Isopropyl Benzene	1.0	92	ug/L			
Bromobenzene	1.0	< 40	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 40	ug/L			
n-Propylbenzene	1.0	330	ug/L			
2-Chlorotoluene	1.0	< 40	ug/L			
4-Chlorotoluene	1.0	< 40	ug/L			
1,3,5-Trimethylbenzene	1.0	690	ug/L			
tert-Butylbenzene	1.0	< 40	ug/L			
1,2,4-Trimethylbenzene	1.0	2400	ug/L			
sec-Butylbenzene	1.0	< 40	ug/L			
1,3-Dichlorobenzene	1.0	< 40	ug/L			
1,4-Dichlorobenzene	1.0	< 40	ug/L			
p-Isopropyltoluene	1.0	< 40	ug/L			
1,2-Dichlorobenzene	1.0	< 40	ug/L			
n-Butylbenzene	1.0	< 40	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 40	ug/L			
1,2,4-Trichlorobenzene	1.0	< 40	ug/L			
Naphthalene	1.0	590	ug/L			
Hexachlorobutadiene	1.0	< 40	ug/L			
1,2,3-Trichlorobenzene	1.0	< 40	ug/L			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4		99				
		(80 - 120)				
Toluene-d8		108				
		(88 - 110)				
Bromofluorobenzene		102				
		(86 - 115)				

(D1000) = SAMPLE ANALYZED AT 1000X DILUTION FOR THESE PARAMETERS. DILUTION ANALYZED ON 5/12/99.

GC/MS RESULTS

: VOLATILE ORGANICS EPA METHOD 8260 TEST

CLIENT PINNACLE I.D. : 904067 : NMOCD PROJECT# : NONE DATE RECEIVED : 4/15/99

PROJECT NAME	: GIANT BLOOMF	FIELD REFINER	RY			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-03	9904141530 (RW 15)	AQUEOUS	4/14/99	N/A	05/11/99	50
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	1.0	< 50	ug/L			
Chloromethane	1.0	< 50	ug/L			
Vinyl Chloride	1.0	< 50	ug/L			
Bromomethane	1.0	< 50	ug/L			
Chloroethane	1.0	< 50	ug/L			
Trichlorofluoromethane	1.0	< 50	ug/L			
Acetone	10	< 500	ug/L			
Acrolein	5.0	< 250	ug/L			
1,1-Dichloroethene	1.0	< 50	ug/L			
Iodomethane	1.0	< 50	ug/L			
Methylene Chloride	1.0	< 50	ug/L			
Acrylonitrile	5.0	< 250	ug/L			
cis-1,2-Dichloroethene	1.0	< 50	ug/L			
Methyl-t-butyl Ether	1.0	< 50	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 50	ug/L			
1,1-Dichloroethane	1.0	< 50	ug/L			
trans-1,2-Dichloroethene	1.0	< 50	ug/L			
2-Butanone	10	< 500	ug/L			
Carbon Disulfide	1.0	< 50	ug/L			
Bromochloromethane	1.0	< 50	ug/L			
Chloroform	1.0	< 50	ug/L			
2,2-Dichloropropane	1.0	< 50	ug/L			
1,2-Dichloroethane	1.0	< 50	ug/L			
Vinyl Acetate	1.0	< 50	ug/L			
1,1,1-Trichloroethane	1.0	< 50	ug/L			
1,1-Dichloropropene	1.0	< 50	ug/L			
Carbon Tetrachloride	1.0	< 50	ug/L			
Benzene	1.0	15000(D1000)	ug/L			
1,2-Dichloropropane	1.0	< 50	ug/L			
Trichloroethene	1.0	< 50	ug/L			
Bromodichloromethane	1.0	< 50	ug/L			
2-Chloroethyl Vinyl Ether	10	< 500	ug/L			
cis-1,3-Dichloropropene	1.0	< 50	ug/L			
trans-1,3-Dichloropropene	1.0	< 50	ug/L			
1,1,2-Trichloroethane	1.0	< 50	ug/L			
1,3-Dichloropropane	1.0	< 50	ug/L			
Dibromomethane	1.0	< 50	ug/L			
Toluene	1.0		ug/L			
1.2-Dibromoethane	1.0	21000(D1000) < 50	_			
-,			ug/L			
4-Methyl-2-Pentanone	10	< 500	ug/L			
2-Hexanone	10	< 500	ug/L			
Dibromochloromethane	1.0	< 50	ug/L			
Tetrachloroethene	1.0	< 50	ug/L			
Chlorobenzene	1.0	< 50	ug/L			
Ethylbenzene	1.0	4100	ug/L			
1,1,1,2-Tetrachloroethane	1.0	< 50	ug/L			
m&p Xylenes	1.0	17000	ug/L			
o-Xylene	1.0	5600	ug/L			

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT PROJECT# : NMOCD

PINNACLE I.D. :

904067

: NONE

DATE RECEIVED:

4/15/99

PROJECT	NAME

DILUTION ANALYZED ON 5/12/99.

: GIANT BLOOMFIELD REFINERY

SAMPLE	. 00 000		DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
00.4007.00	9904141530 (RW		4/4.4/06	N.17.A	05/44/00	
904067-03	15)	AQUEOUS	4/14/99	N/A	05/11/99	50
PARAMETER	DET. LIMIT		UNITS			
Styrene	1.0	< 50	ug/L			
Bromoform	1.0	< 50	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 50	ug/L			
1,2,3-Trichloropropane	1.0	< 50	ug/L			
Isopropyl Benzene	1.0	120	ug/L			
Bromobenzene	1.0	< 50	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 50	ug/L			
n-Propylbenzene	1.0	430	ug/L			
2-Chlorotoluene	1.0	< 50	ug/L			
4-Chlorotoluene	1.0	< 50	ug/L			
1,3,5-Trimethylbenzene	1.0	780	ug/L			
tert-Butylbenzene	1.0	< 50	ug/L			
1,2,4-Trimethylbenzene	1.0	2800	ug/L			
sec-Butylbenzene	1.0	< 50	ug/L			
1,3-Dichlorobenzene	1.0	< 50	ug/L			
1,4-Dichlorobenzene	1.0	< 50	ug/L			
p-Isopropyltoluene	1.0	< 50	ug/L			
1,2-Dichlorobenzene	1.0	< 50	ug/L			
n-Butylbenzene	1.0	< 50	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 50	ug/L			
1,2,4-Trichlorobenzene	1.0	< 50	ug/L			
Naphthalene	1.0	570	ug/L			
Hexachlorobutadiene	1.0	< 50	ug/L			
1,2,3-Trichlorobenzene	1.0	< 50	ug/L			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4		99				
,		(80 - 120)				
Toluene-d8		160 *				
. 5.555 40		(88 - 110)				
Bromofluorobenzene		95				
S. S. HORIZOTOBOTIZOTIO		(86 - 115)				

(86 - 115)

(D1000) = SAMPLE ANALYZED AT 1000X DILUTION FOR THESE PARAMETERS.

^{* =} SURROGATE RECOVERY OUTSIDE ACCEPTANCE LIMITS DUE TO MATRIX INTERFERENCE.

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMFI	ELD REFINER	Υ			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-04	9904141615 (RW 17)	AQUEOUS	4/14/99	N/A	05/12/99	5
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	1.0	< 5.0	ug/L			
Chloromethane	1.0	< 5.0	ug/L			
Vinyl Chloride	1.0	< 5.0	ug/L			
Bromomethane	1.0	< 5.0	ug/L			
Chloroethane	1.0	< 5.0	ug/L			
Trichlorofluoromethane	1.0	< 5.0	ug/L			
Acetone	10	< 50	ug/L			
Acrolein	5.0	< 25	ug/L			
1,1-Dichloroethene	1.0	< 5.0	ug/L			
lodomethane	1.0	< 5.0	ug/L			
Methylene Chloride	1.0	< 5.0	ug/L			
Acrylonitrile	5.0	< 25	ug/L			
cis-1,2-Dichloroethene	1.0	< 5.0	ug/L			
Methyl-t-butyl Ether	1.0	5.6	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 5.0	ug/L			
1,1-Dichloroethane	1.0	< 5.0	ug/L			
trans-1,2-Dichloroethene	1.0	< 5.0	ug/L			
2-Butanone	10	< 50	ug/L			
Carbon Disulfide	1.0	< 5.0	ug/L			
Bromochloromethane	1.0	< 5.0	ug/L			
Chloroform	1.0	< 5.0	ug/L			
2,2-Dichloropropane	1.0	< 5.0	ug/L			
1,2-Dichloroethane	1.0	< 5.0	ug/L			
Vinyl Acetate	1.0	< 5.0	ug/L			
1,1,1-Trichloroethane	1.0	< 5.0	ug/L			
1,1-Dichloropropene	1.0	< 5.0	ug/L			
Carbon Tetrachloride		< 5.0	ug/L			
Benzene	1.0	250	ug/L			
1,2-Dichloropropane	1.0	< 5.0	ug/L			
Trichloroethene	1.0	< 5.0	ug/L			
Bromodichloromethane	1.0	< 5.0	ug/L			
2-Chloroethyl Vinyl Ether	10	< 50	ug/L			
cis-1,3-Dichloropropene	1.0	< 5.0	ug/L			
trans-1,3-Dichloropropene	1.0	< 5.0	ug/L			
1,1,2-Trichloroethane		< 5.0	ug/L			
1,3-Dichloropropane	1.0	< 5.0	ug/L			
Dibromomethane	1.0	< 5.0	ug/L			
Toluene	1.0	95	ug/L			
1,2-Dibromoethane	1.0	< 5.0	ug/L			
4-Methyl-2-Pentanone		< 50	ug/L ug/L			
4-Methyl-z-rentatione 2-Hexanone	10	< 50	ug/L ug/L			
Z-nexanone Dibromochloromethane	1.0	< 5.0	ug/L ug/L			
Tetrachloroethene	1.0	< 5.0	ug/L ug/L			
Chlorobenzene		< 5.0	ug/L ug/L			
Ethylbenzene	1.0	66	ug/L ug/L			
1,1,1,2-Tetrachloroethane	1.0	< 5.0	ug/L ug/L			

GC/MS RESULTS

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

SAMPLE

: NMOCD

PINNACLE I.D.:

904067

PROJECT #

: NONE

DATE RECEIVED:

4/15/99

PROJECT NAME	PRO.	JECT	NAMI
--------------	------	------	------

: GIANT BLOOMFIELD REFINERY

DATE DATE DATE DIL. CLIENT ID MATRIX SAMPLED EXTRACTED ANAL VZED EACTOR

SAMELE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
20.4007.04	9904141615 (RW					
904067-04	17)	AQUEOUS	4/14/99	N/A	05/12/99	5
PARAMETER	DET. LIMIT		UNITS			
m&p Xylenes	1.0	290	ug/L			
o-Xylene	1.0	78	ug/L			
Styrene	1.0	< 5.0	ug/L			
Bromoform	1.0	< 5.0	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 5.0	ug/L			
1,2,3-Trichloropropane	1.0	< 5.0	ug/L			
Isopropyl Benzene	1.0	15	ug/L			
Bromobenzene	1.0	< 5.0	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 5.0	ug/L			
n-Propylbenzene	1.0	16	ug/L			
2-Chlorotoluene	1.0	< 5.0	ug/L			
4-Chlorotoluene	1.0	< 5.0	ug/L			
1,3,5-Trimethylbenzene	1.0	7.8	ug/L			
tert-Butylbenzene	1.0	< 5.0	ug/L			
1,2,4-Trimethylbenzene	1.0	310	ug/L			
sec-Butylbenzene	1.0	11	ug/L			
1,3-Dichlorobenzene	1.0	< 5.0	ug/L			
1,4-Dichlorobenzene	1.0	< 5.0	ug/L			
p-IsopropyItoluene	1.0	14	ug/L			
1,2-Dichlorobenzene	1.0	< 5.0	ug/L			
n-Butylbenzene	1.0	< 5.0	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 5.0	ug/L			
1,2,4-Trichlorobenzene	1.0	< 5.0	ug/L			
Naphthalene	1.0	25	ug/L			
Hexachlorobutadiene	1.0	< 5.0	ug/L			
1,2,3-Trichlorobenzene	1.0	< 5.0	ug/L			

SURROGATE % RECOVERY

1,2-Dichloroethane-d4

103

(80 - 120)

Toluene-d8

109

(88 - 110)

Bromofluorobenzene

104

(86 - 115)

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMFI	ELD REFINER	RY			
SAMPLE			DATE	DATE	DATE	DIL.
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-05	9904141710 (MW 28)	AQUEOUS	4/14/99	N/A	05/11/99	100
PARAMETER	DET. LIMIT		UNITS	- Western Production and the second		
TAVANCIEN	DET. ENVIT		011110			
Dichlorodifluoromethane	1.0	< 100	ug/L			
Chloromethane	1.0	< 100	ug/L			
Vinyl Chloride	1.0	< 100	ug/L			
Bromomethane	1.0	< 100	ug/L			
Chloroethane	1.0	< 100	ug/L			
Trichlorofluoromethane	1.0	< 100	ug/L			
Acetone	10	< 1000	ug/L			
Acrolein	5.0	< 500	ug/L			
1,1-Dichloroethene	1.0	< 100	ug/L			
lodomethane	1.0	< 100	ug/L			
Methylene Chloride	1.0	< 100	ug/L			
Acrylonitrile	5.0	< 500	ug/L			
cis-1,2-Dichloroethene	1.0	< 100	ug/L			
Methyl-t-butyl Ether	1.0	< 100	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 100	ug/L			
1,1-Dichloroethane	1.0	< 100	ug/L			
trans-1,2-Dichloroethene	1.0	< 100	ug/L			
2-Butanone	10	< 1000	ug/L			
Carbon Disulfide		< 100	ug/L			
Bromochloromethane		< 100	ug/L			
Chloroform		< 100	ug/L			
2,2-Dichloropropane		< 100	ug/L			
1,2-Dichloroethane		< 100	ug/L			
Vinyl Acetate		< 100	ug/L			
1,1,1-Trichloroethane		< 100	ug/L			
1,1-Dichloropropene		< 100	ug/L			
Carbon Tetrachloride		< 100	ug/L			
Benzene	1.0	12000(D1000)	ug/L			
1,2-Dichloropropane		< 100	ug/L			
Trichloroethene		< 100	ug/L			
Bromodichloromethane		< 100	ug/L			
2-Chloroethyl Vinyl Ether		< 1000	ug/L			
cis-1,3-Dichloropropene		< 1000	ug/L			
trans-1,3-Dichloropropene		< 100	ug/L			
1,1,2-Trichloroethane		< 100	ug/L			
1,3-Dichloropropane		< 100	ug/L			
Dibromomethane		< 100	ug/L ug/L			
Toluene	1.0	43000(D1000)	ug/L ug/L			
1,2-Dibromoethane		< 100	ug/L			
4-Methyl-2-Pentanone		< 1000	ug/L			
2-Hexanone		< 1000	ug/L			
Dibromochloromethane		< 1000	ug/L			
Tetrachloroethene		< 100	ug/L ug/L			
Chlorobenzene		< 100	ug/L ug/L			
Ethylbenzene	1.0	6600	ug/∟ ug/L			
•		< 100	_			
1,1,1,2-Tetrachloroethane	1.0		ug/L			
m&p Xylenes o-Xylene		19000(D1000)	_			
o-Aylene	1.0	12000	ug/L			

GC/MS RESULTS

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT : NMOCD PINNACLE I.D. : 904067 PROJECT# : NONE DATE RECEIVED: 4/15/99

PROJECT NAME	: GIANT BLOOM	FIE	LD REFINER	RΥ			
SAMPLE	· ·			DATE	DATE	DATE	DIL.
ID#	CLIENT ID		MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-05	9904141710 (MV 28)	٧	AQUEOUS	4/14/99	N/A	05/11/99	100
PARAMETER	DET. LIMIT			UNITS			
Styrene	1.0	<	100	ug/L			
Bromoform	1.0	<	100	ug/L			
1,1,2,2-Tetrachloroethane	1.0	<	100	ug/L			
1,2,3-Trichloropropane	1.0	<	100	ug/L			
Isopropyl Benzene	1.0		330	ug/L			
Bromobenzene	1.0	<	100	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	<	100	ug/L			
n-Propylbenzene	1.0		830	ug/L			
2-Chlorotoluene	1.0	<	100	ug/L			
4-Chlorotoluene	1.0	<	100	ug/L			
1,3,5-Trimethylbenzene	1.0		1500	ug/L			
tert-Butylbenzene	1.0	<	100	ug/L			
1,2,4-Trimethylbenzene	1.0		4900	ug/L			
sec-Butylbenzene	1.0	<	100	ug/L			
1,3-Dichlorobenzene	1.0	<	100	ug/L			
1,4-Dichlorobenzene	1.0	<	100	ug/L			
p-Isopropyltoluene	1.0	<	100	ug/L			
1,2-Dichlorobenzene	1.0	<	100	ug/L			
n-Butylbenzene	1.0	<	100	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	<	100	ug/L			
1,2,4-Trichlorobenzene	1.0	<	100	ug/L			
Naphthalene	1.0		730	ug/L			
Hexachlorobutadiene	1.0	<	100	ug/L			
1,2,3-Trichlorobenzene	1.0	<	100	ug/L			
SURROGATE % RECOVERY							
1,2-Dichloroethane-d4			93				
			(80 - 120)				
Toluene-d8			157 *				
			(88 - 110)				
Bromofluorobenzene			95				
			(86 - 115)				
			. ,				

(D1000) = SAMPLE ANALYZED AT 1000X DILUTION FOR THESE PARAMETERS. DILUTION ANALYZED ON 5/12/99.

^{* =} SURROGATE RECOVRY OUTSIDE RECOVERY LIMITS, DUE TO MATRIX INTERFERENCE.

GC/MS RESULTS

: VOLATILE ORGANICS EPA METHOD 8260

TEST CLIENT : NMOCD PINNACLE I.D. : 904067 : NONE 4/15/99 PROJECT# DATE RECEIVED:

GIANT BLOOMEIELD REFINERY

PROJECT NAME	: GIANT BLOOMFIELD REFINERY								
SAMPLE			DATE	DATE	DATE	DIL.			
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR			
904067-06	9904150900 (MW	AQUEOUS	4/15/99	N/A	05/11/99	100			
	23) DET. LIMIT	AGOLOGO		1477	00/11/03	100			
PARAMETER	DET. LIMIT		UNITS						
Dichlorodifluoromethane	1.0	< 100	ug/L						
Chloromethane	1.0	< 100	ug/L						
Vinyl Chloride	1.0	< 100	ug/L						
Bromomethane	1.0	< 100	ug/L						
Chloroethane	1.0	< 100	ug/L						
Trichlorofluoromethane	1.0	< 100	ug/L						
Acetone	10	< 1000	ug/L						
Acrolein	5.0	< 500	ug/L						
1,1-Dichloroethene	1.0	< 100	ug/L						
lodomethane	1.0	< 100	ug/L						
Methylene Chloride	1.0	< 100	ug/L						
Acrylonitrile	5.0	< 500	ug/L						
cis-1,2-Dichloroethene	1.0	< 100	ug/L						
Methyl-t-butyl Ether	1.0	< 100	ug/L						
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 100	ug/L						
1,1-Dichloroethane	1.0	< 100	ug/L						
trans-1,2-Dichloroethene	1.0	< 100	ug/L						
2-Butanone	10	< 1000	ug/L						
Carbon Disulfide	1.0	< 100	ug/L						
Bromochloromethane	1.0	< 100	ug/L						
Chloroform	1.0	< 100	ug/L						
2,2-Dichloropropane	1.0	< 100	ug/L						
1,2-Dichloroethane	1.0	< 100	ug/L						
Vinyl Acetate	1.0	< 100	ug/L						
1,1,1-Trichloroethane	1.0	< 100	ug/L						
1,1-Dichloropropene	1.0	< 100	ug/L						
Carbon Tetrachloride	1.0	< 100	ug/L						
Benzene	1.0	30000(D250)	ug/L						
1,2-Dichloropropane	1.0	< 100	ug/L						
Trichloroethene	1.0	< 100	ug/L						
Bromodichloromethane	1.0	< 100	ug/L						
2-Chloroethyl Vinyl Ether	10	< 1000	ug/L						
cis-1,3-Dichloropropene	1.0	< 100	ug/L						
trans-1,3-Dichloropropene	1.0	< 100	ug/L						
1,1,2-Trichloroethane	1.0	< 100	ug/L						
1,3-Dichloropropane	1.0	< 100	ug/L						
Dibromomethane	1.0	< 100	ug/L						
Toluene	1.0	14000	ug/L						
1,2-Dibromoethane	1.0	< 100	ug/L						
4-Methyl-2-Pentanone	10	< 1000	ug/L						
2-Hexanone	10	< 1000	ug/L						
Dibromochloromethane	1.0	< 100	ug/L						
Tetrachloroethene	1.0	< 100	ug/L						
Chlorobenzene	1.0	< 100	ug/L						
Ethylbenzene	1.0	4000	ug/L						
1,1,1,2-Tetrachloroethane	1.0	< 100	ug/L						
m&p Xylenes	1.0	18000	ug/L						
o-Xylene	1.0	4400	ug/L						

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PROJECT NAME	DJECT NAME : GIANT BLOOMFIELD REFINERY							
SAMPLE			DATE	DATE	DATE	DIL.		
ID #	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR		
904067-06	9904150900 (MW 23)	AQUEOUS	4/15/99	N/A	05/11/99	100		
PARAMETER	DET. LIMIT		UNITS					
Styrene	1.0	< 100	ug/L					
Bromoform	1.0	< 100	ug/L					
1,1,2,2-Tetrachloroethane	1.0	< 100	ug/L					
1,2,3-Trichloropropane	1.0	< 100	ug/L					
isopropyl Benzene	1.0	150	ug/L					
Bromobenzene	1.0	< 100	ug/L					
trans-1,4-Dichloro-2-Butene	1.0	< 100	ug/L					
n-Propylbenzene	1.0	390	ug/L					
2-Chlorotoluene	1.0	< 100	ug/L					
4-Chlorotoluene	1.0	< 100	ug/L					
1,3,5-Trimethylbenzene	1.0	690	ug/L					
tert-Butylbenzene	1.0	< 100	ug/L					
1,2,4-Trimethylbenzene	1.0	2400	ug/L					
sec-Butylbenzene	1.0	< 100	ug/L					
1,3-Dichlorobenzene	1.0	< 100	ug/L					
1,4-Dichlorobenzene	1.0	< 100	ug/L					
p-Isopropyltoluene	1.0	< 100	ug/L					
1,2-Dichlorobenzene	1.0	< 100	ug/L					
n-Butylbenzene	1.0	< 100	ug/L					
1,2-Dibromomo-3-chloropropane	1.0	< 100	ug/L					
1,2,4-Trichlorobenzene	1.0	< 100	ug/L					
Naphthalene	1.0	330	ug/L					
Hexachlorobutadiene	1.0	< 100	ug/L					
1,2,3-Trichlorobenzene	1.0	< 100	ug/L					
SURROGATE % RECOVERY								
1,2-Dichloroethane-d4		95						
		(80 - 120)						
Toluene-d8		104						
		(88 - 110)						
Bromofluorobenzene		98						
		(86 - 115)						

(D250) = SAMPLE ANALYZED AT 250X DILUTION FOR THESE PARAMETERS. DILUTION ANALYZED ON 5/12/99.

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMFIELD REFINERY								
SAMPLE			DATE	DATE	DATE	DIL.			
ID #	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR			
904067-07	9904151000 (MW-9) AQUE		4/15/99	N/A	05/11/99	100			
PARAMETER	DET. LIMIT		UNITS						
Dichlorodifluoromethane	1.0	< 100	uall						
Chloromethane	1.0		ug/L						
		< 100	ug/L						
Vinyl Chloride	1.0	< 100	ug/L						
Bromomethane	1.0	< 100	ug/L						
Chloroethane	1.0	< 100	ug/L						
Trichlorofluoromethane	1.0	< 100	ug/L						
Acetone	10	< 1000	ug/L						
Acrolein	5.0	< 500	ug/L						
1,1-Dichloroethene	1.0	< 100	ug/L						
lodomethane	1.0	< 100	ug/L						
Methylene Chloride	1.0	< 100	ug/L						
Acrylonitrile	5.0	< 500	ug/L						
cis-1,2-Dichloroethene	1.0	< 100	ug/L						
Methyl-t-butyl Ether	1.0	< 100	ug/L						
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 100	ug/L						
1,1-Dichloroethane	1.0	< 100	ug/L						
trans-1,2-Dichloroethene	1.0	< 100	ug/L						
2-Butanone	10	< 1000	ug/L						
Carbon Disulfide	1.0	< 100	ug/L						
Bromochloromethane	1.0	< 100	ug/L						
Chloroform	1.0	< 100	ug/L						
2,2-Dichloropropane	1.0	< 100	ug/L						
1,2-Dichloroethane	1.0	< 100	ug/L						
Vinyl Acetate	1.0	< 100	ug/L						
1,1,1-Trichloroethane	1.0	< 100	ug/L						
1,1-Dichloropropene	1.0	< 100	ug/L						
Carbon Tetrachloride	1.0	< 100	ug/L						
Benzene	1.0	14000	ug/L						
1,2-Dichloropropane	1.0	< 100	ug/L						
Trichloroethene	1.0	< 100	ug/L						
Bromodichloromethane	1.0	< 100	ug/L						
2-Chloroethyl Vinyl Ether	10	< 1000	ug/L						
cis-1,3-Dichloropropene	1.0	< 100	ug/L						
trans-1,3-Dichloropropene	1.0	< 100	ug/L						
1,1,2-Trichloroethane	1.0	< 100	ug/L						
1,3-Dichloropropane	1.0	< 100	ug/L						
Dibromomethane	1.0	< 100	ug/L						
Toluene	1.0	280	ug/L						
1,2-Dibromoethane	1.0	< 100	ug/L						
4-Methyl-2-Pentanone	10	< 1000	ug/L						
2-Hexanone	10	< 1000	ug/L						
Dibromochloromethane	1.0	< 100	ug/L						
Tetrachloroethene	1.0	< 100	ug/L						
Chlorobenzene	1.0	< 100	ug/L						
Ethylbenzene	1.0	< 100	ug/L						
1,1,1,2-Tetrachloroethane	1.0	< 100	ug/L ug/L						
r, r, r,z-retracmoroethane	1.0	~ 100	ug/L						

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

: NMOCD

PINNACLE I.D. :

904067

PROJECT#

Bromofluorobenzene

: NONE

DATE RECEIVED :

4/15/99

PROJECT NAME	: GIANT BLOOMFIELD REFINERY

PROJECT NAME : GIANT BLOOMFIELD REFINERY							
SAMPLE			DATE	DATE	DATE	DIL.	
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR	
904067-07	9904151000 (MW-9)	AQUEOUS	4/15/99	N/A	05/11/99	100	
PARAMETER	DET. LIMIT		UNITS				
m&p Xylenes	1.0	5200	ug/L				
o-Xylene	1.0	480	ug/L				
Styrene	1.0	< 100	ug/L				
Bromoform	1.0	< 100	ug/L				
1,1,2,2-Tetrachloroethane	1.0	< 100	ug/L				
1,2,3-Trichloropropane	1.0	< 100	ug/L				
Isopropyl Benzene	1.0	< 100	ug/L				
Bromobenzene	1.0	< 100	ug/L				
trans-1,4-Dichloro-2-Butene	1.0	< 100	ug/L				
n-Propylbenzene	1.0	< 100	ug/L				
2-Chlorotoluene	1.0	< 100	ug/L				
4-Chlorotoluene	1.0	< 100	ug/L				
1,3,5-Trimethylbenzene	1.0	300	ug/L				
tert-Butylbenzene	1.0	< 100	ug/L				
1,2,4-Trimethylbenzene	1.0	830	ug/L				
sec-Butylbenzene	1.0	< 100	ug/L				
1,3-Dichlorobenzene	1.0	< 100	ug/L				
1,4-Dichlorobenzene	1.0	< 100	ug/L				
p-Isopropyltoluene	1.0	< 100	ug/L				
1,2-Dichlorobenzene	1.0	< 100	ug/L				
n-Butylbenzene	1.0	< 100	ug/L				
1,2-Dibromomo-3-chloropropane	1.0	< 100	ug/L				
1,2,4-Trichlorobenzene	1.0	< 100	ug/L				
Naphthalene	1.0	< 100	ug/L				
Hexachlorobutadiene	1.0	< 100	ug/L				
1,2,3-Trichlorobenzene	1.0	< 100	ug/L				
SURROGATE % RECOVERY							
1,2-Dichloroethane-d4		96					
		(80 - 120)					
Toluene-d8		104					

(88 - 110)

97 (86 - 115)

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PROJECT NAME	: GIANT BLOOMFIELD REFINERT					
SAMPLE 10.4	01.151.15.10		DATE	DATE	DATE	DIL.
ID #	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR
904067-08	TRIP BLANK	AQUEOUS	4/13/99	N/A	05/11/99	1
PARAMETER	DET. LIMIT		UNITS			
D						
Dichlorodifluoromethane	1.0	< 1.0	ug/L			
Chloromethane	1.0	< 1.0	ug/L			
Vinyl Chloride	1.0	< 1.0	ug/L			
Bromomethane	1.0	< 1.0	ug/L			
Chloroethane	1.0	< 1.0	ug/L			
Trichlorofluoromethane	1.0	< 1.0	ug/L			
Acetone	10	< 10	ug/L			
Acrolein	5.0	< 5.0	ug/L			
1,1-Dichloroethene	1.0	< 1.0	ug/L			
lodomethane	1.0	< 1.0	ug/L			
Methylene Chloride	1.0	< 1.0	ug/L			
Acrylonitrile	5.0	< 5.0	ug/L			
cis-1,2-Dichloroethene	1.0	< 1.0	ug/L			
Methyl-t-butyl Ether	1.0	< 1.0	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 1.0	ug/L			
1,1-Dichloroethane	1.0	< 1.0	ug/L			
trans-1,2-Dichloroethene	1.0	< 1.0	ug/L			
2-Butanone	10	< 10	ug/L			
Carbon Disulfide	1.0	< 1.0	ug/L			
Bromochloromethane	1.0	< 1.0	ug/L			
Chloroform	1.0	< 1.0	ug/L			
2,2-Dichloropropane	1.0	< 1.0	ug/L			
1,2-Dichloroethane	1.0	< 1.0	ug/L			
Vinyl Acetate	1.0	< 1.0	ug/L			
1,1,1-Trichloroethane	1.0	< 1.0	ug/L			
1,1-Dichloropropene	1.0	< 1.0	ug/L			
Carbon Tetrachloride	1.0	< 1.0	ug/L			
Benzene	1.0	< 1.0	ug/L			
1,2-Dichloropropane	1.0	< 1.0	ug/L			
Trichloroethene	1.0	< 1.0	ug/L			
Bromodichloromethane	1.0	< 1.0	ug/L			
2-Chloroethyl Vinyl Ether	10	< 10	ug/L			
cis-1,3-Dichloropropene	1.0	< 1.0	ug/L			
trans-1,3-Dichloropropene	1.0	< 1.0	ug/L			
1,1,2-Trichloroethane	1.0	< 1.0	ug/L			
1,3-Dichloropropane	1.0	< 1.0	ug/L			
Dibromomethane	1.0	< 1.0	ug/L			
Toluene	1.0	< 1.0	ug/L			
1,2-Dibromoethane	1.0	< 1.0	ug/L			
4-Methyl-2-Pentanone	10	< 10	ug/L			
2-Hexanone	. 10	< 10	ug/L			
Dibromochloromethane	1.0	< 1.0	ug/L			
Tetrachloroethene	1.0	< 1.0	ug/L			
Chlorobenzene	1.0	< 1.0	ug/L			
Ethylbenzene	1.0	< 1.0	ug/L			
1,1,1,2-Tetrachloroethane	1.0	< 1.0	ug/L			

Bromofluorobenzene

2709-D Pan American Freeway NE Albuquerque, New Mexico 87107 Phone (505) 344-3777 Fax (505) 344-4413

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

 CLIENT
 : NMOCD
 PINNACLE I.D. :
 904067

 PROJECT #
 : NONE
 DATE RECEIVED :
 4/15/99

PROJECT NAME : GIANT BLOOMFIELD REFINERY								
SAMPLE			DATE	DATE	DATE	DIL.		
ID#	CLIENT ID	MATRIX	SAMPLED	EXTRACTED	ANALYZED	FACTOR		
904067-08	TRIP BLANK	AQUEOUS	4/13/99	N/A	05/11/99	1		
PARAMETER	DET. LIMIT		UNITS					
m&p Xylenes	1.0	< 1.0	ug/L					
o-Xylene	1.0	< 1.0	ug/L					
Styrene	1.0	< 1.0	ug/L					
Bromoform	1.0	< 1.0	ug/L					
1,1,2,2-Tetrachloroethane	1.0	< 1.0	ug/L					
1,2,3-Trichloropropane	1.0	< 1.0	ug/L					
Isopropyl Benzene	1.0	< 1.0	ug/L					
Bromobenzene	1.0	< 1.0	ug/L					
trans-1,4-Dichloro-2-Butene	1.0	< 1.0	ug/L					
n-Propylbenzene	1.0	< 1.0	ug/L					
2-Chlorotoluene	1.0	< 1.0	ug/L					
4-Chlorotoluene	1.0	< 1.0	ug/L					
1,3,5-Trimethylbenzene	1.0	< 1.0	ug/L					
tert-Butylbenzene	1.0	< 1.0	ug/L					
1,2,4-Trimethylbenzene	1.0	< 1.0	ug/L					
sec-Butylbenzene	1.0	< 1.0	ug/L					
1,3-Dichlorobenzene	1.0	< 1.0	ug/L					
1,4-Dichlorobenzene	1.0	< 1.0	ug/L					
p-Isopropyltoluene	1.0	< 1.0	ug/L					
1,2-Dichlorobenzene	1.0	< 1.0	ug/L					
n-Butylbenzene	1.0	< 1.0	ug/L					
1,2-Dibromomo-3-chloropropane	1.0	< 1.0	ug/L					
1,2,4-Trichlorobenzene	1.0	< 1.0	ug/L					
Naphthalene	1.0	< 1.0	ug/L					
Hexachlorobutadiene	1.0	< 1.0	ug/L					
1,2,3-Trichlorobenzene	1.0	< 1.0	ug/L					
SURROGATE % RECOVERY								
1,2-Dichloroethane-d4		95						
.,		(80 - 120)						
Toluene-d8		101						
		(88 - 110)						

94 (86 - 115)

GC/MS RESULTS

TEST

1,1,1,2-Tetrachloroethane

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT

: NMOCD

PINNACLE I.D. :

904067

CLIENT	: NMOCD			PINNACLE I.D	. :	904067
PROJECT #	: NONE					
PROJECT NAME	: GIANT BLOOM	IFIELD R	EFINERY			
SAMPLE ID#	BATCH		MATRIX	DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
REAGENT BLANK	051199		AQUEOUS	N/A	05/11/99	
			UNITS			
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	1.0	< 1.0	ug/L			
Chloromethane	1.0	< 1.0	ug/L			
Vinyl Chloride	1.0	< 1.0	ug/L			
Bromomethane	1.0	< 1.0	ug/L			
Chloroethane	1.0	< 1.0	ug/L			
Trichlorofluoromethane	1.0	< 1.0	ug/L			
Acetone	10	< 10	ug/L			
Acrolein	5.0	< 5.0	ug/L			
1,1-Dichloroethene	1.0	< 1.0	ug/L			
Iodomethane	1.0	< 1.0	ug/L			
Methylene Chloride	1.0	< 1.0	ug/L			
Acrylonitrile	5.0	< 5.0	ug/L			
cis-1,2-Dichloroethene	1.0	< 1.0	ug/L			
Methyl-t-butyl Ether	1.0	< 1.0	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane	1.0	< 1.0	ug/L			
1,1-Dichloroethane	1.0	< 1.0	ug/L			
trans-1,2-Dichloroethene	1.0	< 1.0	ug/L			
2-Butanone	10	< 10				
Carbon Disulfide	1.0	< 1.0	ug/L ug/L			
	1.0	< 1.0	ug/L			
Bromochloromethane	1.0					
Chloroform		< 1.0	ug/L			
2,2-Dichloropropane	1.0	< 1.0	ug/L			
1,2-Dichloroethane	1.0	< 1.0	ug/L			
Vinyl Acetate	1.0	< 1.0	ug/L			
1,1,1-Trichloroethane	1.0	< 1.0	ug/L			
1,1-Dichloropropene	1.0	< 1.0	ug/L			
Carbon Tetrachloride	1.0	< 1.0	ug/L			
Benzene	1.0	< 1.0	ug/L			
1,2-Dichloropropane	1.0	< 1.0	ug/L			
Trichloroethene	1.0	< 1.0	ug/L			
Bromodichloromethane	1.0	< 1.0	ug/L			
2-Chloroethyl Vinyl Ether	10	< 10	ug/L			
cis-1,3-Dichloropropene	1.0	< 1.0	ug/L			
trans-1,3-Dichloropropene	1.0	< 1.0	ug/L			
1,1,2-Trichloroethane	1.0	< 1.0	ug/L			
1,3-Dichloropropane	1.0	< 1.0	ug/L			
Dibromomethane	1.0	< 1.0	ug/L			
Toluene	1.0	< 1.0	ug/L			
1,2-Dibromoethane	1.0	< 1.0	ug/L			
4-Methyl-2-Pentanone	10	< 10	ug/L			
2-Hexanone	10	< 10	ug/L			
Dibromochloromethane	1.0	< 1.0	ug/L			
Tetrachloroethene	1.0	< 1.0	ug/L			
Chlorobenzene	1.0	< 1.0	ug/L			
Ethylbenzene	1.0	< 1.0	ug/L			
1 1 1 2 Tetraphlaraethana	1.0	- 10	ua/l			

ug/L

1.0

< 1.0

GC/MS RESULTS

TEST : VOLATILE ORGANICS EPA METHOD 8260

CLIENT : NMOCD

PROJECT # : NONE

PROJECT NAME : GIANT BLOOMFIELD REFINERY

PINNACLE I.D. :

904067

PROJECT NAME	: GIANT BLOOM	FIELD RI	EFINERY			
SAMPLE			==	DATE	DATE	DIL.
ID#	BATCH		MATRIX	EXTRACTED	ANALYZED	FACTOR
REAGENT BLANK	051199		AQUEOUS	N/A	05/11/99	11
PARAMETER	DET. LIMIT		UNITS			
m&p Xylenes	1.0	< 1.0	ug/L			
o-Xylene	1.0	< 1.0	ug/L			
Styrene	1.0	< 1.0	ug/L			
Bromoform	1.0	< 1.0	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 1.0	ug/L			
1,2,3-Trichloropropane	1.0	< 1.0	ug/L			
Isopropyl Benzene	1.0	< 1.0	ug/L			
Bromobenzene	1.0	< 1.0	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 1.0	ug/L			
n-Propylbenzene	1.0	< 1.0	ug/L			
2-Chlorotoluene	1.0	< 1.0	ug/L			
4-Chlorotoluene	1.0	< 1.0	ug/L			
1,3,5-Trimethylbenzene	1.0	< 1.0	ug/L			
tert-Butylbenzene	1.0	< 1.0	ug/L			
1,2,4-Trimethylbenzene	1.0	< 1.0	ug/L			
sec-Butylbenzene	1.0	< 1.0	ug/L			
1,3-Dichlorobenzene	1.0	< 1.0	ug/L			
1,4-Dichlorobenzene	1.0	< 1.0	ug/L			
p-Isopropyltoluene	1.0	< 1.0	ug/L			
1,2-Dichlorobenzene	1.0	< 1.0	ug/L			
n-Butylbenzene	1.0	< 1.0	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 1.0	ug/L			
1,2,4-Trichlorobenzene	1.0	< 1.0	ug/L			
Naphthalene	1.0	< 1.0	ug/L			
Hexachlorobutadiene	1.0	< 1.0	ug/L			
1,2,3-Trichlorobenzene	1.0	< 1.0	ug/L			
SURROGATE % RECOVERY						
1,2-Dichloroethane-d4			113			
		(80	- 120)			
Toluene-d8		,	109			
• •			- 110)			
Bromofluorobenzene			107			
			- 115)			

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT PROJECT # : NMOCD

: NONE

. NONE

PINNACLE I.D. :

904067

TROJECT #	. NONE					
PROJECT NAME	: GIANT BLOOM	IFIELD RI	-HNERY	D	5.7	B.:
SAMPLE ID#	BATCH	BATCH		DATE EXTRACTED	DATE ANALYZED	DIL. FACTOR
	051299		MATRIX AQUEOUS	N/A	05/12/99	1
REAGENT BLANK				IN/A	03/12/99	<u> </u>
PARAMETER	DET. LIMIT		UNITS			
Dichlorodifluoromethane	1.0	< 1.0	ug/L			
Chloromethane	. 1.0	< 1.0	ug/L			
Vinyl Chloride	1.0	< 1.0	ug/L			
Bromomethane	1.0	< 1.0	ug/L			
Chloroethane	1.0	< 1.0	ug/L			
Trichlorofluoromethane	1.0	< 1.0	ug/L			
Acetone	10	< 10	ug/L			
Acrolein	5.0	< 5.0	ug/L			
1,1-Dichloroethene	1.0	< 1.0	ug/L			
Iodomethane	1.0	< 1.0	ug/L			
Methylene Chloride	1.0	< 1.0	ug/L			
Acrylonitrile	5.0	< 5.0	ug/L			
cis-1,2-Dichloroethene	1.0	< 1.0	ug/L			
Methyl-t-butyl Ether	1.0	< 1.0	ug/L			
1,1,2,1,2,2-Trichlorotrifluoroethane		< 1.0	ug/L			
1,1-Dichloroethane	1.0	< 1.0	ug/L			
trans-1,2-Dichloroethene	1.0	< 1.0	ug/L			
2-Butanone	10	< 10	ug/L			
Carbon Disulfide	1.0	< 1.0	ug/L			
Bromochloromethane	1.0	< 1.0	ug/L			
Chloroform	1.0	< 1.0	ug/L			
2,2-Dichloropropane	1.0	< 1.0	ug/L			
1,2-Dichloroethane	1.0	< 1.0	ug/L			
Vinyl Acetate	1.0	< 1.0	ug/L			
•	1.0	< 1.0	ug/L			
1,1,1-Trichloroethane			_			
1,1-Dichloropropene	1.0	< 1.0	ug/L			
Carbon Tetrachloride	1.0	< 1.0	ug/L			
Benzene	1.0	< 1.0	ug/L			
1,2-Dichloropropane	1.0	< 1.0	ug/L			
Trichloroethene	1.0	< 1.0	ug/L			
Bromodichloromethane	1.0	< 1.0	ug/L			
2-Chloroethyl Vinyl Ether	10	< 10	ug/L			
cis-1,3-Dichloropropene	1.0	< 1.0	ug/L			
trans-1,3-Dichloropropene	1.0	< 1.0	ug/L			
1,1,2-Trichloroethane	1.0	< 1.0	ug/L			
1,3-Dichloropropane	1.0	< 1.0	ug/L			
Dibromomethane	1.0	< 1.0	ug/L			
Toluene	1.0	< 1.0	ug/L			
1,2-Dibromoethane	1.0	< 1.0	ug/L			
4-Methyl-2-Pentanone	10	< 10	ug/L			
2-Hexanone	10	< 10	ug/L			
Dibromochloromethane	1.0	< 1.0	ug/L			
Tetrachloroethene	1.0	< 1.0	ug/L			
Chlorobenzene	1.0	< 1.0	ug/L			
Ethylbenzene	1.0	< 1.0	ug/L			
1,1,1,2-Tetrachloroethane	1.0	< 1.0	ug/L			

GC/MS RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

CLIENT PROJECT# : NMOCD

: NONE

PINNACLE I.D. :

904067

PROJECT	NAME
SAMPLE	
15 0	

: GIANT BLOOMFIELD REFINERY

SAMPLE				DATE	DATE	DIL.
ID#	BATCH		MATRIX	EXTRACTED	ANALYZED	FACTOR
REAGENT BLANK	051299		AQUEOUS	N/A	05/12/99	11
PARAMETER	DET. LIMIT		UNITS			
m&p Xylenes	1.0	< 1.0	ug/L			<u>-,-</u>
o-Xylene	1.0	< 1.0	ug/L			
Styrene	1.0	< 1.0	ug/L			
Bromoform	1.0	< 1.0	ug/L			
1,1,2,2-Tetrachloroethane	1.0	< 1.0	ug/L			
1,2,3-Trichloropropane	1.0	< 1.0	ug/L			
Isopropyl Benzene	1.0	< 1.0	ug/L			
Bromobenzene	1.0	< 1.0	ug/L			
trans-1,4-Dichloro-2-Butene	1.0	< 1.0	ug/L			
n-Propylbenzene	1.0	< 1.0	ug/L			
2-Chlorotoluene	1.0	< 1.0	ug/L			
4-Chlorotoluene	1.0	< 1.0	ug/L			
1,3,5-Trimethylbenzene	1.0	< 1.0	ug/L			
tert-Butylbenzene	1.0	< 1.0	ug/L			
1,2,4-Trimethylbenzene	1.0	< 1.0	ug/L			
sec-Butylbenzene	1.0	< 1.0	ug/L			
1,3-Dichlorobenzene	1.0	< 1.0	ug/L			
1,4-Dichlorobenzene	1.0	< 1.0	ug/L			
p-Isopropyltoluene	1.0	< 1.0	ug/L			
1,2-Dichlorobenzene	1.0	< 1.0	ug/L			
n-Butylbenzene	1.0	< 1.0	ug/L			
1,2-Dibromomo-3-chloropropane	1.0	< 1.0	ug/L			
1,2,4-Trichlorobenzene	1.0	< 1.0	ug/L			
Naphthalene	1.0	< 1.0	ug/L			
Hexachlorobutadiene	1.0	< 1.0	ug/L			
1,2,3-Trichlorobenzene	1.0	< 1.0	ug/L			

SURROGATE % RECOVERY

 1,2-Dichloroethane-d4
 96

 (80 - 120)

 Toluene-d8
 103

 (88 - 110)

 Bromofluorobenzene
 98

 (86 - 115)

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

TEST

: VOLATILE ORGANICS EPA METHOD 8260

PINNACLE I.D.

904067

SPIKED SAMPLE CLIENT

: 904130-01

DATE ANALYZED :

5/11/99

: NMOCD

PROJECT#

: ug/L (PPB)

PROJECT NAME

: NONE

: GIANT REFINERY BLOOMFIELD

COMPOUND	SAMPLE CONC.	SPIKE ADDED	MS RESULT	MSD RESULT	MS %REC	MSD %REC	RPD	QC LIMITS RPD	QC LIMITS %RECOVERY
1.1-DICHLOROETHENE	<1.0	50.0	44.6	46.3	89	93	4	14	61-145
BENZENE	<1.0	50.0	49.7	51.2	99	102	3	11	76-127
TRICHLOROETHENE	<1.0	50.0	47.8	49.0	96	98	2	14	71-120
TOLUENE	<1.0	50.0	48.0	49.5	96	99	3	13	76-125
CHLOROBENZENE	<1.0	50.0	52.4	53.6	105	107	2	13	75-130

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777 Ext:

Attn: Kimberly Mcneill

FAX: (505) 344-4413

Our Lab #: MAR99-09062

Your Sample ID: 904067-01

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/14/99

2:00 PM

Test Group	EPA Method	Test	R	esult	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		42	MG/L	4/22/99	KRG	14488
						End	of Report	
			Report Approved By:					
			·					

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Lab Number MAR99-09062:Page 1

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777 Ext:

FAX: (505) 344-4413

Attn: Kimberly Mcneill
Our Lab #: MAR99-09063

Your Sample ID: 904067-02

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/14/99

3:15 PM

Test Group	EPA Method	Test		Result	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		41	MG/L	4/22/99	KRG	14488
						Ena	of Report	
			Report Approved By:					

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777

Ext:

Attn: Kimberly Mcneill

FAX: (505) 344-4413

Our Lab #: MAR99-09064

Your Sample ID: 904067-03

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/14/99

3:30 PM

Test Group	EPA Method	Test		Result	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		45	MG/L	4/22/99 Enc	KRG of Report	14488
			Report Approved By	:	•	Бла	oj Report	

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777 Ext:

Attn: Kimberly Mcneill

FAX: (505) 344-4413

Our Lab #: MAR99-09065

Your Sample ID: 904067-04

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/14/99

4:15 PM

Test Group	EPA Method	Test	Ŀ	Result	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		41	MG/L	4/22/99	KRG	14488
						Ena	of Report	
			_					
			Report Approved By:	<u>*</u>				

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777 E

Ext:

Attn: Kimberly Mcneill

FAX: (505) 344-4413.

Our Lab #: MAR99-09066

Your Sample ID: 904067-05

Date Logged-In: 4/19/99

Samuel Samuel Other/Und

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/14/99

5:10 PM

Test Group	EPA Method	Test	F	Result	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		46	MG/L	4/22/99	KRG	14488
					,	End	of Report	
			Report Approved By:					
				Doborol	h V. Johnso			

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Lab Number MAR99-09066:Page 1

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777 Ext

Attn: Kimberly Mcneill

FAX: (505) 344-4413

Our Lab #: MAR99-09067

Your Sample ID: 904067-06

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/15/99

9:00 AM

Test Group	EPA Method	Test	F	Result	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		48	MG/L	4/22/99 End	KRG of Report	14488
			Report Approved By:				. "	

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory.

Lab Number MAR99-09067:Page 1

Aqua Tech Environmental Laboratories, Inc.

- CERTIFICATE OF ANALYSIS -

Client #: 12523

Report Date: 27-Apr-99

Pinnacle Laboratories, Inc.

2709 - D Pan American Freeway, NE

Albuquerque, NM 87107-

Phone: (505) 344-3777

Ext:

Attn: Kimberly Mcneill

FAX: (505) 344-4413

Our Lab #: MAR99-09068

Your Sample ID: 904067-07

Date Logged-In: 4/19/99

Sample Source: Other/Undefined

Matrix: Water

Client Project #:

PO#:

Project #:

Date Submitted to Lab: 4/16/99

- COLLECTION INFORMATION -

Date/Time/By:

4/15/99

10:00 AM

Test Group	EPA Method	Test	Re	sult	Units	Analysis Date	Analyst	WS#
SILICA-MS	200.8	Silica, as SiO2		46	MG/L	4/22/99	KRG	14488
							of Report	
					į.	, ,		
			Report Approved By: _		<i>y</i>		× 1	Section 1998

Deborah K. Johnson

This report shall not be reproduced, except in its entirety, without the written approval of the laboratory

REQUIRED: YES NO SPECIAL CERTIFICATION CLIENT DISCOUNT: RUSH SURCHARGE: DUE DATE: TAT: STANDARD QC LEVEL: PROJ. NAME: PROJECT #: 2709-D Pan American Freeway, NE Pinnacle Laboratories, Inc. (505) 344-3777 Fax (505) 344-4413 Albuquerque, New Mexico 87107 904067-01 PROJECT INFORMATION SAMPLE Pinnacle Laboratories, Inc 503 \$ Network Project Manager: -05 904067 67 96 02 NMOCA MS RUSH!! 7 MSD COMMENTS BLANK DATE 15 7 Received Good Cond./Cold Received Intact? Chain of Custody Seals LAB NUMBER: 0900 1710 1000 2191 otal Number of Containers 538 1515 1400 TIME Kimberly D. McNeill SAMPLE RECEIPT MATRIX 3 Interlab Chain of Custody LAB BA ₽ Metals (8) RCRA RCRA TCLP METALS BARRINGER SEQUOIA N. CREEK STL- NEW JERSEY STL-CT PORTLAND - ESL-OR PENSACCLA - STL-FL SAMPLES SENT TO: Metals-13 PP List ATEL-Marion Metals-TAL ٨ × X 8 × Silicon by ICP TOX TOC ۴ Gen Chemistry Printed Name: Kim KSleill Printed Name Signature: RECEIVED BY: Pinnacle Laboratories, Inc. RELINQUISHED BY: Oil and Grease ANALYSIS REQUEST Volatile Organics GC/MS (8260) BOD COD 4/1s/99 Time: Date Time: PESTICIDES/PCB (608/8080) 8270 BY GC/MS PNA (8310) RECEIVED BY: RELINQUISHED BY: Signature Printed Name ompany 8240 (TCLP 1311) ZHE Jan J Herbicides (615/8150) Base/Neutral Acid Compounds GC/MS (625/8270) **URANIUM RADIUM 226+228** Date Time: Gross Alpha/Beta TO-14

NUMBER OF CONTAINERS

Environmental Services Laboratory, Inc. Es

17400 SW Upper Boones Ferry Road • Suite 270 • Portland, OR 97224 • (503) 670-8520

May 06, 1999

Kim McNeill Pinnacle Laboratories

2709-D Pan American Fwy NE

Albuquerque, NM 87107

TEL: 505-344-3777 FAX (505) 344-4413

RE: 904067/NMOCD/Giant Bloomfield Refiner

Order No.: 9904085

Dear Kim McNeill.

Environmental Services Laboratory received 7 samples on 4/16/99 for the analyses presented in the following report.

The Samples were analyzed for the following tests:

Alkalinity (Alkalinity)

BNA Semi-Vol Organics, Aqueous (SW8270B)

Bromide (Bromide)

CHLORIDE (Chloride)

CONDUCTANCE (E120.1)

Fluoride (fluoride)

ICP Metals (ICPMET)

MERCURY (Mercury)

Sulfate (Sulfate)

TOTAL DISSOLVED SOLIDS (E160.1)

There were no problems with the analyses and all data for associated QC met EPA or laboratory specifications except where noted in the Case Narrative. Results apply only to the samples analyzed. Reproduction of this report is permitted only in its entirety, without the written approval from the Laboratory.

If you have any questions regarding these tests results, please feel free to call.

Sincerely,

Kimberly Hill

Kimber athi

Technical Review

ANALYTICAL SERVICES FOR THE ENVIRONMENT

GENERAL CHEMISTRY RESULTS

CLIENT

: NMOCD

PINNACLE I.D.

: 904067

PROJECT#

: (none)

DATE RECEIVED

: 4/15/99

PROJECT NAME

: GIANT BLOOMFIELD REFINERY

SAMPLE			DATE		DATE	
ID. #	CLIENT I.D.	MATRIX	SAMPLED		ANALYZED	
01	9904141400 (MW-4)	AQUEOUS	4/14/99		4/16/99	
02	9904141515 (RW-14)	AQUEOUS	4/14/99		4/16/99	
03	9904141530 (RW-15)	AQUEOUS	4/14/99		4/16/99	
PARAMI	ETER		UNITS	9904141400 (MW-4)	9904141515 (RW-14)	9904141530 (RW-15)
PH (150	.1)		UNITS	6.87	7.17	7.00

CHEMIST NOTES:

N/A

GENERAL CHEMISTRY RESULTS

CLIENT

: NMOCD

PINNACLE I.D.

: 904067

PROJECT#

: (none)

DATE RECEIVED

: 4/15/99

PROJECT NAME

: GIANT BLOOMFIELD REFINERY

SAMPLE			DATE		DATE	
ID. #	CLIENT I.D.	MATRIX	SAMPLED		ANALYZED	
04	9904141615 (RW-17)	AQUEOUS	4/14/99		4/16/99	
05	9904141710 (MW-28)	AQUEOUS	4/14/99		4/16/99	
06	9904150900 (MW-23)	AQUEOUS	4/15/99		4/16/99	
PARAME	ETER		UNITS	9904141615 (RW-17)	9904141710 (MW-28)	9904150900 (MW-23)
PH (150	1)		UNITS	7.10	7.00	6.96

CHEMIST NOTES:

N/A

GENERAL CHEMISTRY RESULTS

CLIENT

: NMOCD

PINNACLE I.D.

: 904067

PROJECT#

: (none)

DATE RECEIVED

: 4/15/99

PROJECT NAME

: GIANT BLOOMFIELD REFINERY

SAMPLE			DATE		DATE	
ID. #	CLIENT I.D.	MATRIX	SAMPLED		ANALYZED	
07	9904151000 (MW-9)	AQUEOUS	4/15/99		4/16/99	
PARAM	ETER		UNITS	9904151000 (MW-9)		
PH (150	.1)		UNITS	7.02		

CHEMIST NOTES:

N/A

GENERAL CHEMISTRY - QUALITY CONTROL

SAMPLE

CLIENT

: NMOCD

PINNACLE I.D.

904067

PROJECT#

: (none)

SAMPLE MATRIX

: AQUEOUS

PROJECT NAME

: GIANT BLOOMFIELD REFINERY

%

PARAMETER

UNITS UNITS

PINNACLE I.D. RESULT 704069-04 7.10

RESULT 7.04

DUP.

RPD 0.85

CHEMIST NOTES:

N/A

PH

(Spike Sample Result - Sample Result)

% Recovery =

-----X 100

Spike Concentration

(Sample Result - Duplicate Result)

RPD (Relative Percent Difference) =

-----X 100

Average Result

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order: Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-01A

Client Sample ID: 904067-01

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0				Analyst: sld
Alkalinity, Bicarbonate (As CaCO3)	1100	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	1100	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: sld
Bromide	2	0.1		mg/L	5	4/22/99
CHLORIDE		EPA 325.3				Analyst: sld
Chloride	380	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: si d
Specific Conductance	2340	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sld
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: si d
Sulfate	18	5		mg/L	1	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: sl d
Total Dissolved Solids (Residue, Filterable)	2000	10		mg/L	1	4/19/99
MERCURY		SW 7470 / E	PA 24	5.		Analyst: jph
Mercury	ND	0.0002		mg/L	1	4/19/99

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-01

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-01A

Matrix: AQUEOUS

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
CP METALS	S	W 6010 / EF	A 200.		Analyst: jp ł
Aluminum	ND	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	0.0065	0.005	mg/L	1	4/30/99
Barium	2.2	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.61	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	170	0.13	mg/L	1	4/30/99
Chromium	ND	0.02	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.055	mg/L	1	4/30/99
Iron	11	0.2	mg/L	1	4/30/99
Lead	ND	0.005	mg/L	1	4/30/99
Magnesium	55	0.08	mg/L	1	4/30/99
Manganese	4.7	0.005	mg/L	1	4/30/99
Molybdenum	0.012	0.005	mg/L	1	4/30/99
Nickel	ND	0.01	mg/L	1	4/30/99
Potassium	6.5	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	510	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	ND	0.005	mg/L	1	4/30/99
Zinc	ND	0.04	mg/L	1	4/30/99

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order: Project:

9904083

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-01A

Client Sample ID: 904067-01

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B		•		Analyst: keh
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		µg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		μg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,4-Dichlorobenzene	ND	, 5		μg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1	4/23/99
2,4,5-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dimethylphenol	ND	5		μg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		µg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		µg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2-Chloronaphthalene	ND	5		μg/L	1	4/23/99
2-Chlorophenol	ND	5		µg/Ľ	1	4/23/99
2-Methylnaphthalene	23.8	5		μg/L	1	4/23/99
2-Methylphenol	ND	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		μg/L	1	4/23/99
2-Nitrophenol	ND	5		µg/L	1	4/23/99
2-Picoline	ND	10		μg/L	1	4/23/99
3-Methylcholanthrene	ND	5		μg/L	1	4/23/99
3-Methylphenol	ND	5		μg/L	1	4/23/99
3-Nitroaniline	ND	5		μg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		μg/L	1	4/23/99
4-Aminobiphenyl	ND	50		μg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		μg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	ND	5		μg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		μg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		µg/L	1	4/23/99
Acenaphthene	ND	5		μg/L	1	4/23/99
Acenaphthylene	ND	5		μg/L	1	4/23/99
Acetophenone	ND	5		µg/L	1	4/23/99
Aniline	ND	5		μg/L	1	4/23/99
Anthracene	ND	5		µg/L	1	4/23/99
Benz(a)anthracene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order: 990 Project: 904

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-01A

Client Sample ID: 904067-01

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5		μg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5		μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5		µg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5		µg/L	1	4/23/99
Benzyl alcohol	ND	5		µg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5		µg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5		μg/L	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5		μg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	ND	5		μg/L	1	4/23/99
Butyl benzyl phthalate	ND	5		μg/L	1	4/23/99
Chrysene	ND	5		μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5		μg/L	1	4/23/99
Di-n-octyl phthalate	ND	5		µg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5		μg/L	1	4/23/99
Dibenzofuran	ND	5		μg/L	1	4/23/99
Diethyl phthalate	ND	5		μg/L	1	4/23/99
Dimethyl phthalate	ND	5		μg/L	1	4/23/99
Ethyl methanesulfonate	ND	5		μg/L	1	4/23/99
Fluoranthene	ND	5		μg/L	1	4/23/99
Fluorene	ND	5		μg/L	1	4/23/99
Hexachlorobenzene	ND	5		μg/L	1	4/23/99
Hexachlorobutadiene	ND	5		μg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5		μg/L	1	4/23/99
Hexachloroethane	ND	5		μg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5		μg/L	1	4/23/99
Isophorone	ND	5		μg/L	1	4/23/99
Methyl methanesulfonate	ND	5		μg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5		μg/L	1	4/23/99
N-Nitrosopiperidine	ND	5		μg/L	1	4/23/99
Naphthalene	48.6	5		μg/L	1	4/23/99
Nitrobenzene	ND	5		μg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5		μg/L	1	4/23/99
Pentachlorobenzene	ND	5		μg/L	1	4/23/99
Pentachloronitrobenzene	√ ND	5		µg/L	1	4/23/99
Pentachlorophenol	ND	5		μg/L	1	4/23/99
Phenacetin	ND	5		μg/L	1	4/23/99
Phenanthrene	ND	5		μg/L	1	4/23/99
Phenol	10	5		μg/L	1	4/23/99
Pyrene	ND	5		μg/L	1	4/23/99
•						

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

904067/NMOCD/Giant Bloomfield Refinery

Project: Lab ID:

9904085-01A

Client Sample ID: 904067-01

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

nalyses	Result	Limit Qu	al Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	71.9	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	21.6	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	33.1	21-100	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	52.4	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	52.2	35-114	%REC	1	4/23/99
Surr: Phenol-d5	21.0	10-94	%REC	1	4/23/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-02

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-02A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0				Analyst: sld
Alkalinity, Bicarbonate (As CaCO3)	840	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	840	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: sld
Bromide	ND	0.1		mg/L	1	4/22/99
CHLORIDE		EPA 325.3				Analyst: sld
Chloride	420	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: sld
Specific Conductance	2140	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sld
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: sld
Sulfate	12	5		mg/L	1	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: sld
Total Dissolved Solids (Residue, Filterable)	1600	10		mg/L	1	4/19/99
MERCURY		SW 7470 / E	PA 24	5.		Analyst: jph
Mercury	ND	0.0002		mg/L	1	4/19/99

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-02

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-02A

Matrix: AQUEOUS

Analyses	Result	Limit Ç	ual Units	DF	Date Analyzed
ICP METALS	S	W 6010 / EP	A 200.		Analyst: jph
Aluminum	0.2	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	0.0057	0.005	mg/L	1	4/30/99
Barium	0.75	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.52	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	96	0.13	mg/L	1	4/30/99
Chromium	ND	0.005	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.005	mg/L	1	4/30/99
Iron	5.1	0.2	mg/L	1	4/30/99
Lead	ND	0.005	mg/L	1	4/30/99
Magnesium	37	0.08	mg/L	1	4/30/99
Manganese	2.3	0.005	mg/L	1	4/30/99
Molybdenum	0.0061	0.005	mg/L	1	4/30/99
Nickel	0.055	0.01	mg/L	1	4/30/99
Potassium	5.1	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	450	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	ND	0.005	mg/L	1	4/30/99
Zinc	ND	0.04	mg/L	1	4/30/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order: Project:

9904083

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-02A

Client Sample ID: 904067-02

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B				Analyst: keh
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		μg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,4-Dichlorobenzene	ND	5		μg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1	4/23/99
2,4,5-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dimethylphenol	7.93	5		μg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		μg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		µg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2-Chloronaphthalene	ND	5		µg/L	1	4/23/99
2-Chlorophenol	ND	5		μg/L	1	4/23/99
2-Methylnaphthalene	174	5		μg/L	1	4/23/99
2-Methylphenol	6.13	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		μg/L	1	4/23/99
2-Nitrophenol	ND	5		µg/L	1	4/23/99
2-Picoline	ND	10		μg/L	1	4/23/99
3-Methylcholanthrene	ND	5		μg/L	1	4/23/99
3-Methylphenol	ND	5		µg/L	1	4/23/99
3-Nitroaniline	ND	5		μg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		μg/L	1	4/23/99
4-Aminobiphenyl	ND	50		μg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		µg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	37.8	5		μg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		μg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		μg/L	1	4/23/99
Acenaphthene	ND	5		µg/L	1	4/23/99
Acenaphthylene	ND	5		μg/L	1	4/23/99
Acetophenone	ND	5		µg/L	1	4/23/99
Aniline	ND	5		μg/L	1	4/23/99
Anthracene	ND	5		μg/L	1	4/23/99
Benz(a)anthracene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-02

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-02A

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5	µg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5	μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5	μg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5	µg/L	1	4/23/99
Benzyl alcohol	ND	5	μg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5	μg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5	μg/L	. 1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5	μg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	ND	5	μg/L	1	4/23/99
Butyl benzyl phthalate	ND	5	μg/L	1	4/23/99
Chrysene	ND	5	μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5	μg/L	1	4/23/99
Di-n-octyl phthalate	ND	5	μg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5	µg/L	1	4/23/99
Dibenzofuran	ND	5	μg/L	1	4/23/99
Diethyl phthalate	ND	5	μg/L	1	4/23/99
Dimethyl phthalate	ND	5	μg/L	1	4/23/99
Ethyl methanesulfonate	ND	5	μg/L	1	4/23/99
Fluoranthene	ND	5	µg/L	1	4/23/99
Fluorene	ND	5	μg/L	1	4/23/99
Hexachlorobenzene	ND	5	μg/L	1	4/23/99
Hexachlorobutadiene	ND	5	μg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5	μg/L	1	4/23/99
Hexachloroethane	ND	5	μg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5	μg/L	1	4/23/99
Isophorone	ND	5	μg/L	1	4/23/99
Methyl methanesulfonate	ND	5	μg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5	μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5	μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5	µg/L	1	4/23/99
N-Nitrosopiperidine	ND	5	μg/L	1	4/23/99
Naphthalene	371	5	μg/L	1	4/23/99
Nitrobenzene	ND	5	μg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5	μg/L	1	4/23/99
Pentachlorobenzene	ND	5	μg/L	1	4/23/99
Pentachloronitrobenzene	ND	5	μg/L	1	4/23/99
Pentachlorophenol	ND	5	μg/L	1	4/23/99
Phenacetin	ND	5	μg/L	1	4/23/99
Phenanthrene	5.44	5	μg/L	1	4/23/99
Phenol	ND	5	μg/L	1	4/23/99
Pyrene	ND	5	μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-02A

Client Sample ID: 904067-02

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

nalyses	Result	Limit Qu	ial Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	79.5	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	61.4	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	33.0	21-100	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	63.4	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	57.2	35-114	%REC	1	4/23/99
Surr: Phenol-d5	15.1	10-94	%REC	1	4/23/99

^{* -} Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-03

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-03A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0				Analyst: sld
Alkalinity, Bicarbonate (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: si d
Bromide	0.79	0.1		mg/L	1	4/22/99
CHLORIDE		EPA 325.3				Analyst: sl d
Chloride	800	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: si d
Specific Conductance	3140	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sld
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: sld
Sulfate	20	5		mg/L	1	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: sld
Total Dissolved Solids (Residue, Filterable)	2300	10		mg/L	1	4/19/99
MERCURY		SW 7470 / E	EPA 24	5.		Analyst: jph
Mercury	ND	0.0002		mg/L	1	4/19/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

Tag Number:

Client Sample ID: 904067-03

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-03A

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ICP METALS	S	W 6010 / EPA	A 200.		Analyst: jph
Aluminum	0.86	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	ND	0.005	mg/L	1	4/30/99
Barium	1.1	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.77	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	200	0.13	mg/L	1	4/30/99
Chromium	ND	0.02	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.055	mg/L	1	4/30/99
Iron	8.3	0.2	mg/L	1	4/30/99
Lead	ND	0.005	mg/L	1	4/30/99
Magnesium	55	0.08	mg/L	1	4/30/99
Manganese	5	0.005	mg/L	1	4/30/99
Molybdenum	0.0065	0.005	mg/L	1	4/30/99
Nickel	0.046	0.01	mg/L	1	4/30/99
Potassium	7.1	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	620	20	mg/L	1	. 4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	ND	0.005	mg/L	1	4/30/99
Zinc	ND	0.04	mg/L	1	4/30/99

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Client Sample ID: 904067-03

Lab Order:

9904085

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-03A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B				Analyst: keh
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		μg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,4-Dichlorobenzene	ND	5		μg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1 1	4/23/99
2,4,5-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dimethylphenol	19.1	5		μg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		μg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2-Chloronaphthalene	ND	5		μg/L	1	4/23/99
2-Chlorophenol	ND	5		μg/L	1	4/23/99
2-Methylnaphthalene	129	5		μg/L	1	4/23/99
2-Methylphenol	11	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		μg/L	1	4/23/99
2-Nitrophenol	ND	5		μg/L	1	4/23/99
2-Picoline	ND	10		μg/L	1	4/23/99
3-Methylcholanthrene	ND	5		μg/L	1	4/23/99
3-Methylphenol	ND	5		μg/L	1	4/23/99
3-Nitroaniline	ND	5		μg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		μg/L	1	4/23/99
4-Aminobiphenyl	ND	50		μg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		μg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	70.1	5		µg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		μg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		μg/L	1	4/23/99
Acenaphthene	ND	5		μg/L	1	4/23/99
Acenaphthylene	ND	5		μg/L	1	4/23/99
Acetophenone	ND	5		μg/L	1	4/23/99
Aniline	ND	5		μg/L	1	4/23/99
Anthracene	ND	5		µg/L	1	4/23/99
Benz(a)anthracene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

S - Spike Recovery outside accepted recovery limits

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

E - Value above quantitation range

* - Value exceeds Maximum Contaminant Level

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order: Project:

Lab ID:

9904085

904067/NMOCD/Giant Bloomfield Refinery

9904085-03A

Client Sample ID: 904067-03

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5		μg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5		μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5		µg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5		µg/L	1	4/23/99
Benzyl alcohol	ND	5		µg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5		µg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5		µg/L	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5		µg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	8.25	5		µg/L	1	4/23/99
Butyl benzyl phthalate	ND	5		µg/L	1	4/23/99
Chrysene	ND	5		μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5		µg/L	1	4/23/99
Di-n-octyl phthalate	ND	5		µg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5		µg/L	1	4/23/99
Dibenzofuran	ND	5		µg/L	1	4/23/99
Diethyl phthalate	ND	5		µg/L	1	4/23/99
Dimethyl phthalate	ND	5		μg/L	1	4/23/99
Ethyl methanesulfonate	ND	5		μg/L	1	4/23/99
Fluoranthene	ND	5		µg/L	1	4/23/99
Fluorene	ND	5		μg/L	1	4/23/99
Hexachlorobenzene	ND	5		μg/L	1	4/23/99
Hexachlorobutadiene	ND	5		μg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5		μg/L	1	4/23/99
Hexachloroethane	ND	5		µg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5		μg/L	1	4/23/99
Isophorone	ND	5		μg/L	1	4/23/99
Methyl methanesulfonate	ND	5		μg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5		μg/L	1	4/23/99
N-Nitrosopiperidine	ND	5		μg/L	1	4/23/99
Naphthalene	354	5		μg/L	1	4/23/99
Nitrobenzene	ND	5		µg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5		μg/L	1	4/23/99
Pentachlorobenzene	ND	5		μg/L	1	4/23/99
Pentachloronitrobenzene	ND	5		μg/L	1	4/23/99
Pentachlorophenol	ND	5		μg/L	1	4/23/99
Phenacetin	ND	5		μg/L	1	4/23/99
Phenanthrene	ND	5		μg/L	1	4/23/99
Phenol	ND	5		µg/L	1	4/23/99
Pyrene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

904067/NMOCD/Giant Bloomfield Refinery

Project: Lab ID:

9904085-03A

Client Sample ID: 904067-03

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

nalyses	Result	Limit Qu	ial Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	79.8	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	62,2	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	34.4	21-100	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	63.8	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	53.8	35-114	%REC	1	4/23/99
Surr: Phenol-d5	15.4	10-94	%REC	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

9904085-04A

Date: 06-May-99

CLIENT: Lab Order:

Project:

Lab ID:

Pinnacle Laboratories

9904085

904067/NMOCD/Giant Bloomfield Refinery

Tag Number:

Collection Date: 4/14/99

Client Sample ID: 904067-04

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0			··	Analyst: sld
Alkalinity, Bicarbonate (As CaCO3)	1300	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	1300	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: sld
Bromide	0.76	0.1		mg/L	1	4/22/99
CHLORIDE		EPA 325.3				Analyst: sld
Chloride	250	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: sld
Specific Conductance	2910	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sld
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: sld
Sulfate	210	42		mg/L	8.33	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: sid
Total Dissolved Solids (Residue, Filterable)	2200	10		mg/L	1	4/19/99
MERCURY		SW 7470 / E	PA 24	5.		Analyst: jph
Mercury	ND	0.0002		mg/L	1	4/19/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order: Project:

9904085

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-04A

Client Sample ID: 904067-04

Tag Number:

Collection Date: 4/14/99

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
ICP METALS	S	W 6010 / EP	A 200.		Analyst: jph
Aluminum	ND	0.05	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	ND	0.005	mg/L	1	4/30/99
Barium	1.2	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.69	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	140	0.13	mg/L	1	4/30/99
Chromium	ND	0.005	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.005	mg/L	1	4/30/99
Iron	3.7	0.2	mg/L	1	4/30/99
Lead	ND	0.005	mg/L	1	4/30/99
Magnesium	68	80.0	mg/L	1	4/30/99
Manganese	2.3	0.005	mg/L	1	4/30/99
Molybdenum	ND	0.005	mg/L	1	4/30/99
Nickel	ND	0.005	mg/L	1	4/30/99
Potassium	6.2	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	560	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	ND	0.005	mg/L	1	4/30/99
Zinc	ND	0.04	mg/L	1	4/30/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

Client Sample ID: 904067-04

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-04A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B			*	Analyst: ke h
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		μg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		µg/L	1	4/23/99
1,4-Dichlorobenzene	ND	5		μg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1	4/23/99
2,4,5-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		µg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		µg/L	1	4/23/99
2,4-Dimethylphenol	19.5	5		μg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		µg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		µg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2-Chloronaphthalene	ND	5		µg/L	1	4/23/99
2-Chlorophenol	ND	5		μg/L	1	4/23/99
2-Methylnaphthalene	91.7	5		μg/L	1	4/23/99
2-Methylphenol	ND	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		µg/L	1	4/23/99
2-Nitrophenol	ND	5		μg/L	1	4/23/99
2-Picoline	ND	10		μg/L	1	4/23/99
3-Methylcholanthrene	ND	5		μg/L	1	4/23/99
3-Methylphenol	ND	5		μg/L	1	4/23/99
3-Nitroaniline	ND	5		μg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		μg/L	1	4/23/99
4-Aminobiphenyl	ND	50		µg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		µg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		µg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	ND	5		µg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		μg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		μg/L	1	4/23/99
Acenaphthene	ND	5		μg/L	1	4/23/99
Acenaphthylene	ND	5		μg/L	1	4/23/99
Acetophenone	ND	5		μg/L	1	4/23/99
Aniline	ND	5		μg/L	1	4/23/99
Anthracene	ND	5		μg/L	1	4/23/99
Benz(a)anthracene	ND	5		µg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

Client Sample ID: 904067-04

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID:

9904085-04A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5		ug/L	1	4/23/99
Benzo(b)fluoranthene	ND	5		ug/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5	ļ	ug/L	1	4/23/99
Benzo(k)fluoranthene	ND	5	ļ	ug/L	1	4/23/99
Benzyl alcohol	ND	5	1	µg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5	į	ug/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5	ļ	ug/L	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5		Jg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	15.6	5	j	µg/L	1	4/23/99
Butyl benzyl phthalate	ND	5	ļ	ug/L	1	4/23/99
Chrysene	ND	5		μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5	ļ	ug/L	1	4/23/99
Di-n-octyl phthalate	ND	5	ļ	ug/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5	ı	µg/L	1	4/23/99
Dibenzofuran	ND	5	ļ	ug/L	1	4/23/99
Diethyl phthalate	ND	5	ı	ug/L	1	4/23/99
Dimethyl phthalate	ND	5	ı	µg/L	1	4/23/99
Ethyl methanesulfonate	ND	5	ı	µg/L	1	4/23/99
Fluoranthene	ND	5	ļ	ug/L	1	4/23/99
Fluorene	5.54	5	ı	µg/L	1	4/23/99
Hexachlorobenzene	ND	5	ı	µg/L	1	4/23/99
Hexachlorobutadiene	ND	5	ŀ	ug/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5	1	ug/L	1	4/23/99
Hexachloroethane	ND	5	ļ	ug/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5	ŀ	ug/L	1	4/23/99
Isophorone	ND	5	ļ	ug/L	1	4/23/99
Methyl methanesulfonate	ND	5	ı	ug/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5	ļ	ug/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5	j.	ug/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5	ı	ug/L	1	4/23/99
N-Nitrosopiperidine	ND	5	ļ	ug/L	1	4/23/99
Naphthalene	97.5	5	,	ug/L	1	4/23/99
Nitrobenzene	ND	5	ı	ug/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5	ļ.	ug/L	1	4/23/99
Pentachlorobenzene	ND	5	ı	ug/L	1	4/23/99
Pentachloronitrobenzene	ND	5	ļ	ug/L	1	4/23/99
Pentachlorophenol	ND	5	١	ug/L	1	4/23/99
Phenacetin	ND	5	1	ug/L	1	4/23/99
Phenanthrene	ND	5	ŀ	ug/L	1	4/23/99
Phenol	ND	5	ŀ	ug/L	1	4/23/99
Pyrene	ND	5	1	ug/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order: Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-04A

Client Sample ID: 904067-04

Tag Number:

Collection Date: 4/14/99

nalyses	Result	Limit	Qual	Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	75.1	10-123		%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	23.4	43-116	S	%REC	1	4/23/99
Surr: 2-Fluorophenol	39.8	21-100		%REC	1	4/23/99
Surr: 4-Terphenyl-d14	65.0	33-141		%REC	1	4/23/99
Surr: Nitrobenzene-d5	82.0	35-114		%REC	1	4/23/99
Surr: Phenol-d5	26.3	10-94		%REC	1	4/23/99

- * Value exceeds Maximum Contaminant Level
- S Spike Recovery outside accepted recovery limits
- R RPD outside accepted recovery limits
- E Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085 Lab Order:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-05A

Client Sample ID: 904067-05

Tag Number:

Collection Date: 4/14/99

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0				Analyst: sl
Alkalinity, Bicarbonate (As CaCO3)	600	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	600	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: sl
Bromide	2.9	0.1		mg/L	5	4/22/99
CHLORIDE		EPA 325.3				Analyst: sl
Chloride	75	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: sl
Specific Conductance	1070	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sle
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: sl
Sulfate	100	62		mg/L	12.5	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: slo
Total Dissolved Solids (Residue, Filterable)	710	10		mg/L	1	4/19/99
MERCURY		SW 7470 / E	EPA 24	5.		Analyst: jpl
Mercury	ND	0.0002		mg/L	1	4/19/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

9904085-05A

Date: 06-May-99

CLIENT: Lab Order:

Project:

Lab ID:

Pinnacle Laboratories

9904085

Tag Number:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Client Sample ID: 904067-05

Matrix: AQUEOUS

Analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
ICP METALS	S	W 6010 / EPA	200.		Analyst: jph
Aluminum	10	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	0.017	0.005	mg/L	1	4/30/99
Barium	1.8	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.29	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	85	0.13	mg/L	1	4/30/99
Chromium	ND	0.02	mg/L	1	4/30/99
Cobalt	0.011	0.005	mg/L	1	4/30/99
Copper	ND	0.055	mg/L	1	4/30/99
Iron	28	0.2	mg/L	1	4/30/99
Lead	0.087	0.005	mg/L	1	4/30/99
Magnesium	47	0.08	mg/L	1	4/30/99
Manganese	3.3	0.005	mg/L	1	4/30/99
Molybdenum	0.011	0.005	mg/L	1	4/30/99
Nickel	0.019	0.01	mg/L	1	4/30/99
Potassium	6.2	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	130	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	0.02	0.005	mg/L	1	4/30/99
Zinc	0.054	0.04	mg/L	1	4/30/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

Client Sample ID: 904067-05

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID: 9

9904085-05A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5		μg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5		μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5		μg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5		μg/L	1	4/23/99
Benzyl alcohol	ND	5		μg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5		μg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5		μg/L	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5		µg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	ND	5		µg/L	1	4/23/99
Butyl benzyl phthalate	ND	5		μg/L	1	4/23/99
Chrysene	ND	5		μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5		µg/L	1	4/23/99
Di-n-octyl phthalate	ND	5		µg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5		μg/L	1	4/23/99
Dibenzofuran	ND	5		μg/L	1	4/23/99
Diethyl phthalate	ND	5		μg/L	1	4/23/99
Dimethyl phthalate	ND	5		μg/L	1	4/23/99
Ethyl methanesulfonate	ND	5		μg/L	1	4/23/99
Fluoranthene	ND	5		µg/L	1	4/23/99
Fluorene	ND	5		μg/L	1	4/23/99
Hexachlorobenzene	ND	5		µg/Ľ	1	4/23/99
Hexachlorobutadiene	ND	5		µg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5		μg/L	1	4/23/99
Hexachloroethane	ND	5		μg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5		μg/L	1	4/23/99
Isophorone	ND	5		μg/L	1	4/23/99
Methyl methanesulfonate	ND	5		μg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5		µg/L	1	4/23/99
N-Nitrosopiperidine	ND	5		μg/L	1	4/23/99
Naphthalene	266	5		μg/L	1	4/23/99
Nitrobenzene	ND	5		μg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5		μg/L	1	4/23/99
Pentachlorobenzene	ND	5		µg/L	1	4/23/99
Pentachloronitrobenzene	ND	5		μg/L	1	4/23/99
Pentachlorophenol	ND	5		μg/L	1	4/23/99
Phenacetin	ND	5		μg/L	1	4/23/99
Phenanthrene	ND	5		μg/L	1	4/23/99
Phenol	ND	5		µg/L	1	4/23/99
Pyrene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

Tag Number:

Client Sample ID: 904067-05

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/14/99

Lab ID: 9904085-05A Matrix: AQUEOUS

Analyses	Result	Limit	Qual Un	its DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B			Analyst: ke ł
1,2,4,5-Tetrachlorobenzene	ND	5	μg/	'L 1	4/23/99
1,2,4-Trichlorobenzene	ND	5	µg/	L 1	4/23/99
1,2-Dichlorobenzene	ND	5	μg/	'L 1	4/23/99
1,2-Diphenylhydrazine	ND	5	μg/	L 1	4/23/99
1,3-Dichlorobenzene	ND	5	µg/	L 1	4/23/99
1,4-Dichlorobenzene	ND	5	μg/	'L 1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5	· µg/	L 1	4/23/99
2,4,5-Trichlorophenol	ND	5	μg/	'L 1	4/23/99
2,4,6-Trichlorophenol	ND	5	μg/	'L 1	4/23/99
2,4-Dichlorophenol	ND	5	µg/	'L 1	4/23/99
2,4-Dimethylphenol	14.2	5	μg/	L 1	4/23/99
2,4-Dinitrophenol	ND	10	μg/	L 1	4/23/99
2,4-Dinitrotoluene	ND	5	µg/	L 1	4/23/99
2,6-Dichlorophenol	ND	5	μg/	L 1	4/23/99
2,6-Dinitrotoluene	ND	5	µg/	L 1	4/23/99
2-Chloronaphthalene	ND	5	μg/	L 1	4/23/99
2-Chlorophenol	ND	5	μg/	L 1	4/23/99
2-Methylnaphthalene	126	5	μg/	L 1	4/23/99
2-Methylphenol	ND	5	μg/	L 1	4/23/99
2-Nitroaniline	ND	5	μg/	L 1	4/23/99
2-Nitrophenol	ND	5	μg/	L 1	4/23/99
2-Picoline	ND	10	μg/	L 1	4/23/99
3-Methylcholanthrene	ND	5	μg/	L 1	4/23/99
3-Methylphenol	ND	5	μg/	L 1	4/23/99
3-Nitroaniline	ND	5	μg/	L 1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5	μg/	L 1	4/23/99
4-Aminobiphenyl	ND	50	µg/	L 1	4/23/99
4-Bromophenyl phenyl ether	ND	5	μg/	L 1	4/23/99
4-Chloro-3-methylphenol	ND	5	μg/	L 1	4/23/99
4-Chlorophenyl phenyl ether	ND	5	μg/	L 1	4/23/99
4-Methylphenol	42.9	5	μg/	L 1	4/23/99
4-Nitroaniline	ND	5	μg/	L 1	4/23/99
4-Nitrophenol	ND	5	µg/	L 1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5	μg/	L 1	4/23/99
Acenaphthene	ND	5	μg/	L 1	4/23/99
Acenaphthylene	ND	5	μg/	L 1	4/23/99
Acetophenone	ND	5	μg/	L 1	4/23/99
Aniline	ND	5	μg/		4/23/99
Anthracene	ND	5	μg/	L 1	4/23/99
Benz(a)anthracene	ND	5	μg/	L 1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

9904085

Lab Order:

9904083

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-05A

Client Sample ID: 904067-05

Tag Number:

Collection Date: 4/14/99

analyses	Result	Limit Qu	al Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	83.3	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	71.6	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	38.7	21-100	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	68.8	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	64.2	35-114	%REC	1	4/23/99
Surr: Phenol-d5	26.0	10-94	%REC	1	4/23/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

Lab Order:

9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-06A

Client Sample ID: 904067-06

Tag Number:

Collection Date: 4/15/99

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
ALKALINITY		EPA 310.0				Analyst: sld
Alkalinity, Bicarbonate (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99
Alkalinity, Total (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99
BROMIDE		4500 B				Analyst: sld
Bromide	ND	0.1		mg/L	1	4/22/99
CHLORIDE		EPA 325.3				Analyst: sld
Chloride	120	50		mg/L	100	4/26/99
CONDUCTANCE		EPA 120.1				Analyst: sld
Specific Conductance	1740	1		µmhos/cm	1	4/21/99
FLUORIDE		EPA 340.2				Analyst: sld
Fluoride	ND	0.2		mg/L	1	4/16/99
SULFATE		EPA 375.4				Analyst: sld
Sulfate	29	5		mg/L	1	4/20/99
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst: sld
Total Dissolved Solids (Residue, Filterable)	1400	10		mg/L	1	4/22/99
MERCURY		SW 7470 / I	EPA 24	5.		Analyst: jph
Mercury	ND	0.0002		mg/L	1	4/19/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT: Lab Order:

Project:

Lab ID:

Pinnacle Laboratories

9904085-06A

9904085

Tag Number:

Client Sample ID: 904067-06

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/15/99

Matrix: AQUEOUS

Analyses	Result	Limit Q	ual Units	DF	Date Analyzed
CP METALS	S	W 6010 / EPA	200.		Analyst: jph
Aluminum	2.9	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	0.012	0.005	mg/L	1	4/30/99
Barium	1.3	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.66	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	150	0.13	mg/L	1	4/30/99
Chromium	ND	0.02	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.055	mg/L	1	4/30/99
Iron	8.8	0.2	mg/L	1	4/30/99
Lead	0.046	0.005	mg/L	1	4/30/99
Magnesium	75	0.08	mg/L	1	4/30/99
Manganese	5.8	0.005	mg/L	1	4/30/99
Molybdenum	0.0089	0.005	mg/L	1	4/30/99
Nickel	0.025	0.01	mg/L	1	4/30/99
Potassium	7.4	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	340	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	0.011	0.005	mg/L	1	4/30/99
Zinc	ND	0.04	mg/L	1	4/30/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

000400

9904085

Client Sample ID: 904067-06

Tag Number:

Project:

904067/NMOCD/Giant Bloomfield Refinery

Collection Date: 4/15/99

Lab ID:

9904085-06A

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B			_	Analyst: keh
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		µg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,4-Dichlorobenzene	ND	5		μg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1	4/23/99
2,4,5-Trichlorophenol	ND	5		µg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dimethylphenol	86.6	5		μg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		μg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		μg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		µg/L	1	4/23/99
2-Chloronaphthalene	ND	5		μg/L	1	4/23/99
2-Chlorophenol	ND	5		μg/L	1	4/23/99
2-Methylnaphthalene	81.6	5		μg/L	1	4/23/99
2-Methylphenol	48	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		μg/L	1	4/23/99
2-Nitrophenol	ND	5		μg/L	1	4/23/99
2-Picoline	ND	10		µg/L	1	4/23/99
3-Methylcholanthrene	ND	5		μg/L	1	4/23/99
3-Methylphenol	ND	5		µg/L	1	4/23/99
3-Nitroaniline	ND	5		µg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		μg/L	1	4/23/99
4-Aminobiphenyl	ND	50		μg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		μg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	44.6	5		μg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		μg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		μg/L	1	4/23/99
Acenaphthene	ND	5		µg/L	1	4/23/99
Acenaphthylene	ND	5		µg/L	1	4/23/99
Acetophenone	ND	5		μg/L	1	4/23/99
Aniline	ND	5		μg/L	1	4/23/99
Anthracene	ND	5		µg/L	1	4/23/99
Benz(a)anthracene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

904067/NMOCD/Giant Bloomfield Refinery

Project: Lab ID:

9904085-06A

Client Sample ID: 904067-06

Tag Number:

Collection Date: 4/15/99

Matrix: AQUEOUS

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5	μg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5	μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5	μg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5	µg/L	1	4/23/99
Benzyl alcohol	ND	5	μg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5	μg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5	µg/L	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5	μg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	ND	5	μg/L	1	4/23/99
Butyl benzyl phthalate	ND	5	μg/L	1	4/23/99
Chrysene	ND	5	μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5	μg/L	1	4/23/99
Di-n-octyl phthalate	ND	5	μg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5	μg/L	1	4/23/99
Dibenzofuran	ND	5	μg/L	1	4/23/99
Diethyl phthalate	ND	5	μg/L	1	4/23/99
Dimethyl phthalate	ND	5	μg/L	1	4/23/99
Ethyl methanesulfonate	ND	5	μg/L	1	4/23/99
Fluoranthene	ND	5	μg/L	1	4/23/99
Fluorene	ND	5	μg/L	1	4/23/99
Hexachlorobenzene	ND	5	μg/L	1	4/23/99
Hexachlorobutadiene	ND	5	μg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5	μg/L	1	4/23/99
Hexachloroethane	ND	5	μg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5	μg/L	1	4/23/99
Isophorone	ND	5	μg/L	1	4/23/99
Methyl methanesulfonate	ND	5	μg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5	μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5	μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5	μg/L	1	4/23/99
N-Nitrosopiperidine	ND	5	μg/L	1	4/23/99
Naphthalene	189	5	μg/L	1	4/23/99
Nitrobenzene	ND	5	μg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5	μg/L	1	4/23/99
Pentachlorobenzene	ND	5	μg/L	1	4/23/99
Pentachloronitrobenzene	ND	5	μg/L	1	4/23/99
Pentachlorophenol	ND	5	μg/L	1	4/23/99
Phenacetin	ND	5	μg/L	1	4/23/99
Phenanthrene	ND	5	μg/L	1	4/23/99
Phenol	ND	5	μg/L	1	4/23/99
Pyrene	ND	5	μg/Ľ	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order:

Project:

Lab ID:

Pinnacle Laboratories

9904085-06A

9904085

904067/NMOCD/Giant Bloomfield Refinery

Client Sample ID: 904067-06

Tag Number:

Collection Date: 4/15/99

Matrix: AQUEOUS

analyses	Result	Limit Qu	ual Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	71.3	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	50.8	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	33.0	21-100	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	61.4	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	54.8	35-114	%REC	1	4/23/99
Surr: Phenol-d5	24.0	10-94	%REC	1	4/23/99

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-07A

Client Sample ID: 904067-07

Tag Number:

Collection Date: 4/15/99

Analyses	Result	Limit	Qual	Units	DF	Date Analyze	d
ALKALINITY		EPA 310.0				Analyst	sld
Alkalinity, Bicarbonate (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99	
Alkalinity, Carbonate (As CaCO3)	ND	5		mg/L CaCO3	1	4/25/99	
Alkalinity, Total (As CaCO3)	1200	5		mg/L CaCO3	1	4/25/99	
BROMIDE		4500 B				Analyst	sid
Bromide	0.23	0.1		mg/L	1	4/22/99	
CHLORIDE		EPA 325.3				Analyst	sld
Chloride	200	50		mg/L	100	4/26/99	
CONDUCTANCE		EPA 120.1				Analyst	sld
Specific Conductance	2170	1		µmhos/cm	1	4/21/99	
FLUORIDE		EPA 340.2				Analyst:	sld
Fluoride	ND	0.2		mg/L	1	4/16/99	
SULFATE		EPA 375.4				Analyst:	sld
Sulfate	19	5		mg/L	1	4/20/99	
TOTAL DISSOLVED SOLIDS		EPA 160.1				Analyst:	sld
Total Dissolved Solids (Residue, Filterable)	1600	10		mg/L	1	4/22/99	
MERCURY		SW 7470 / E	EPA 24	5.		Analyst:	jph
Mercury	ND	0.0002		mg/L	1	4/19/99	

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT:

Pinnacle Laboratories

904067/NMOCD/Giant Bloomfield Refinery

Lab Order:

9904085

Client Sample ID: 904067-07

Tag Number:

Project:

Collection Date: 4/15/99

Lab ID:

9904085-07A

Analyses	Result	Limit (Qual Units	DF	Date Analyzed
ICP METALS	s	W 6010 / EF	PA 200.		Analyst: jph
Aluminum	ND	0.14	mg/L	1	4/30/99
Antimony	ND	0.005	mg/L	1	4/30/99
Arsenic	0.015	0.005	mg/L	1	4/30/99
Barium	2.1	0.005	mg/L	1	4/30/99
Beryllium	ND	0.002	mg/L	1	4/30/99
Boron	0.69	0.01	mg/L	1	4/30/99
Cadmium	ND	0.002	mg/L	1	4/30/99
Calcium	160	0.13	mg/L	1	4/30/99
Chromium	ND	0.005	mg/L	1	4/30/99
Cobalt	ND	0.005	mg/L	1	4/30/99
Copper	ND	0.055	mg/L	1	4/30/99
Iron	8.5	0.2	mg/L	1	4/30/99
Lead	0.18	0.005	mg/L	1	4/30/99
Magnesium	33	0.08	mg/L	1	4/30/99
Manganese	3.5	0.005	mg/L	1	4/30/99
Molybdenum	0.011	0.005	mg/L	1	4/30/99
Nickel	0.035	0.01	mg/L	1	4/30/99
Potassium	5.1	0.2	mg/L	1	4/30/99
Selenium	ND	0.005	mg/L	1	4/30/99
Silver	ND	0.005	mg/L	1	4/30/99
Sodium	450	20	mg/L	1	4/30/99
Thallium	ND	0.01	mg/L	1	4/30/99
Vanadium	ND	0.005	mg/L	1	4/30/99
Zinc	0.055	0.04	mg/L	1	4/30/99

B - Analyte detected in the associated Method Blank

^{* -} Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

E - Value above quantitation range

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

904067/NMOCD/Giant Bloomfield Refinery

Project: Lab ID:

9904085-07A

Client Sample ID: 904067-07

Tag Number:

Collection Date: 4/15/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
BNA SEMI-VOL ORGANICS, AQUEOUS		SW 8270B				Analyst: keh
1,2,4,5-Tetrachlorobenzene	ND	5		μg/L	1	4/23/99
1,2,4-Trichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,2-Diphenylhydrazine	ND	5		μg/L	1	4/23/99
1,3-Dichlorobenzene	ND	5		μg/L	1	4/23/99
1,4-Dichlorobenzene	ND	5		µg/L	1	4/23/99
2,3,4,6-Tetrachlorophenol	ND	5		μg/L	1	4/23/99
2,4,5-Trichlorophenol	ND	5		µg/L	1	4/23/99
2,4,6-Trichlorophenol	ND	5		μg/L	1	4/23/99
2,4-Dichlorophenol	ND	5		µg/L	1	4/23/99
2,4-Dimethylphenol	30.8	5		µg/L	1	4/23/99
2,4-Dinitrophenol	ND	10		µg/L	1	4/23/99
2,4-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2,6-Dichlorophenol	ND	5		µg/L	1	4/23/99
2,6-Dinitrotoluene	ND	5		μg/L	1	4/23/99
2-Chloronaphthalene	ND	5		μg/L	1	4/23/99
2-Chlorophenol	ND	5		μg/L	1	4/23/99
2-Methylnaphthalene	48.3	5		μg/L	1	4/23/99
2-Methylphenol	11.3	5		μg/L	1	4/23/99
2-Nitroaniline	ND	5		µg/L	1	4/23/99
2-Nitrophenol	ND	5		μg/L	1	4/23/99
2-Picoline	ND	10		μg/L	1	4/23/99
3-Methylcholanthrene	ND	5		µg/L	1	4/23/99
3-Methylphenol	ND	5		μg/L	1	4/23/99
3-Nitroaniline	ND	5		μg/L	1	4/23/99
4,6-Dinitro-2-methylphenol	ND	5		µg/L	1	4/23/99
4-Aminobiphenyl	ND	50		μg/L	1	4/23/99
4-Bromophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Chloro-3-methylphenol	ND	5		μg/L	1	4/23/99
4-Chlorophenyl phenyl ether	ND	5		μg/L	1	4/23/99
4-Methylphenol	ND	5		µg/L	1	4/23/99
4-Nitroaniline	ND	5		μg/L	1	4/23/99
4-Nitrophenol	ND	5		µg/L	1	4/23/99
7,12-Dimethylbenz(a)anthracene	ND	5		µg/L	1	4/23/99
Acenaphthene	ND	5		μg/L	1	4/23/99
Acenaphthylene	ND	5		µg/L	1	4/23/99
Acetophenone	ND	5		μg/L	1	4/23/99
Aniline	ND	5		µg/L	1	4/23/99
Anthracene	ND	5		μg/L	1	4/23/99
Benz(a)anthracene	ND	5		µg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order:

Project:

Lab ID:

Pinnacle Laboratories

9904085

9904085-07A

904067/NMOCD/Giant Bloomfield Refinery

Tag Number:

Client Sample ID: 904067-07 Collection Date: 4/15/99

Matrix: AQUEOUS

Analyses	Result	Limit	Qual	Units	DF	Date Analyzed
Benzo(a)pyrene	ND	5		μg/L	1	4/23/99
Benzo(b)fluoranthene	ND	5		μg/L	1	4/23/99
Benzo(g,h,i)perylene	ND	5		μg/L	1	4/23/99
Benzo(k)fluoranthene	ND	5		μg/L	1	4/23/99
Benzyl alcohol	ND	5		μg/L	1	4/23/99
Bis(2-chloroethoxy)methane	ND	5		μg/L	1	4/23/99
Bis(2-chloroethyl)ether	ND	5		μg/Ľ	1	4/23/99
Bis(2-chloroisopropyl)ether	ND	5		μg/L	1	4/23/99
Bis(2-ethylhexyl)phthalate	22.7	5		μg/L	1	4/23/99
Butyl benzyl phthalate	ND	5		μg/L	1	4/23/99
Chrysene	ND	5		μg/L	1	4/23/99
Di-n-butyl phthalate	ND	5		μg/L	1	4/23/99
Di-n-octyl phthalate	ND	5		μg/L	1	4/23/99
Dibenz(a,h)anthracene	ND	5		μg/L	1	4/23/99
Dibenzofuran	ND	5		μg/L	1	4/23/99
Diethyl phthalate	ND	5		µg/L	1	4/23/99
Dimethyl phthalate	ND	5		μg/Ľ	1	4/23/99
Ethyl methanesulfonate	ND	5		µg/L	1	4/23/99
Fluoranthene	ND	5		µg/L	1	4/23/99
Fluorene	ND	5		μg/L	1	4/23/99
Hexachlorobenzene	ND	5		μg/L	1	4/23/99
Hexachlorobutadiene	ND	5		μg/L	1	4/23/99
Hexachlorocyclopentadiene	ND	5		µg/L	1	4/23/99
Hexachloroethane	ND	5		μg/L	1	4/23/99
Indeno(1,2,3-cd)pyrene	ND	5		µg/L	1	4/23/99
Isophorone	ND	5		μg/L	1	4/23/99
Methyl methanesulfonate	ND	5		µg/L	1	4/23/99
N-Nitroso-di-n-butylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodi-n-propylamine	ND	5		μg/L	1	4/23/99
N-Nitrosodiphenylamine	ND	5		μg/L	1	4/23/99
N-Nitrosopiperidine	ND	5		μg/L	1	4/23/99
Naphthalene	81.5	5		µg/L	1	4/23/99
Nitrobenzene	ND	5		μg/L	1	4/23/99
p-Dimethylaminoazobenzene	ND	5		μg/L	1	4/23/99
Pentachlorobenzene	ND	5		μg/L	1	4/23/99
Pentachloronitrobenzene	ND	5		μg/L	1	4/23/99
Pentachlorophenol	ND	5		μg/L	1	4/23/99
Phenacetin	ND	5		μg/L	1	4/23/99
Phenanthrene	ND	5		μg/L	1	4/23/99
Phenol	ND	5		μg/L	1	4/23/99
Pyrene	ND	5		μg/L	1	4/23/99

Qualifiers:

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

Date: 06-May-99

CLIENT: Lab Order: Pinnacle Laboratories

9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

Lab ID:

9904085-07A

Client Sample ID: 904067-07

Tag Number:

Collection Date: 4/15/99

Matrix: AQUEOUS

Analyses	Result	Limit Qua	l Units	DF	Date Analyzed
Surr: 2,4,6-Tribromophenol	80.5	10-123	%REC	1	4/23/99
Surr: 2-Fluorobiphenyl	60.2	43-116	%REC	1	4/23/99
Surr: 2-Fluorophenol	19.2	21-100 S	%REC	1	4/23/99
Surr: 4-Terphenyl-d14	67.4	33-141	%REC	1	4/23/99
Surr: Nitrobenzene-d5	43.0	35-114	%REC	1	4/23/99
Surr: Phenol-d5	29.5	10-94	%REC	1	4/23/99

ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

B - Analyte detected in the associated Method Blank

* - Value exceeds Maximum Contaminant Level

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

									0.5	ND		Chloride
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result		Analyte
	ate:	Prep Date:	99	Analysis Date 4/26/99 SeqNo: 10436	Analysis SeqNo:		Units: mg/L)426C	Chloride Uni	Test Code: Chloride Run ID: NO INST	Batch ID: 01 CL A-4/27/ 9904085	Batch IC	Sample ID: MBlank Client ID:
									0.1	ND		Bromide
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result		Analyte
			-	10089	SeqNo:)422A	HIT MAN_990422A	Run ID:	9904085		Client ID:
	ate:	Prep Date	99	Analysis Date 4/22/99	Analysis		Units: mg/L	Bromide	Test Code: Bromide	Batch ID: 01 BR A-4/23/	Batch ID	Sample ID: MBlank
									თთთ	888	te (As CaCO3) (As CaCO3) 3aCO3)	Alkalinity, Bicarbonate (As CaCO3) Alkalinity, Carbonate (As CaCO3) Alkalinity, Total (As CaCO3)
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result		Analyte
			•	10250	SeqNo:)419G	NO INST_990419G	Run ID:	9904085		Client ID:
	ate:	Prep Date	99	Analysis Date 4/19/99	Analysis	1003	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Batch ID	Sample ID: MBlank
									ம ம ம	888	te (As CaCO3) (As CaCO3) CaCO3)	Alkalinity, Bicarbonate (As CaCO3) Alkalinity, Carbonate (As CaCO3) Alkalinity, Total (As CaCO3)
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result		Analyte
			-	10240	SeqNo:		1425A	NO INST_990425A	Run ID:	9904085		Client ID:
	ate:	Prep Date:	99	Analysis Date 4/25/99	Analysis	1003	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Batch ID	Sample ID: MBlank
)RT }lank	QC SUMMARY REPORT Method Blank	MMAR	QC SU						ld Refinery	ies 3iant Bloomfie	Pinnacle Laboratories 9904085 904067/NMOCD/Giant Bloomfield Refinery	CLIENT: Work Order: Project:

Work Order: 9904085

QC SUMMARY REPORT

Method Blank

Project: 9040	904067/NMOCD/Giant Bloomfield Refinery	ld Refinery					Method Blank	lank
Sample ID: MBlank	Batch ID: 01 COND-04/	Test Code: E120.1	E120.1	Units: µmhos/cm		Analysis Date 4/21/99	Prep Date:	,
Client ID:	9904085	Run ID:	NO INST_990421B)421B		SeqNo: 10009		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Specific Conductance	ND			v strake, s				
Sample ID: MBlank	Batch ID: 01 FL A-4/16/	Test Code: fluoride	fluoride	Units: mg/L		Analysis Date 4/16/99	Prep Date:	
Client ID:	9904085	Run ID:	NO INST_990416B)416B		SeqNo: 9525		
Analyte	Resuit	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Fluoride	ND	0.2						
Sample ID: MBlank	Batch ID: 01 SULFATE	Test Code:	Sulfate	Units: mg/L		Analysis Date 4/20/99	Prep Date:	
Client ID:	9904085	Run ID:	HIT MAN_990420B	0420B		SeqNo: 10044		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Sulfate	ND	51						
Sample ID: MBlank	Batch ID: 01 TDS-4/23/9	Test Code:	E160.1	Units: mg/L		Analysis Date 4/19/99	Prep Date:	
Client ID:	9904085	Run ID:	NO INST_990219E)219E		SeqNo: 10187		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Quai
Total Dissolved Solids (Residue, Filtera	sidue, Filtera ND	10						
Sample ID: MBlank	Batch ID: 01 TDS-4/23/9	Test Code: E160.1	E160.1	Units: mg/L		Analysis Date 4/22/99	Prep Date:	
Client ID:	9904085	Run ID:	NO INST_990422D)422D		SeqNo: 10208		
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	Qual
Total Dissolved Solids (Residue, Filtera	sidue, Filtera ND	10						

Work Order: Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Method Blank

Sample ID: MB-356	Batch ID: 356	Test Code: Mercury	Mercury	Units: mg/L		Analysis	Analysis Date 4/19/99	99	Prep Da	Prep Date: 4/19/99	
Client ID:	9904085	Run ID:	MERC_990419A	19A		SeqNo:	9719				
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Mercury	ND	0.0002				i					
Mercury, Diss	ND	0.0002									
Mercury, TCLP	ND	0.0002									

Work Order: 9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Method Blank

•							!				
Sample ID: MB-367	Batch ID: 367	Test Code:	SW8270B	Units: µg/L		Analysis	Analysis Date 4/23/99	9	Prep Date: 4/20/99	: 4/20/99	
Client ID:	9904085	Run ID:	MANFREDD_990423B	990423B		SeqNo:	10415				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4,5-Tetrachlorobenzene	ND	Ο 1		j							
1,2,4-Trichlorobenzene	ND	ហ									
1,2-Dichlorobenzene	ND	Ֆ									
1,2-Diphenylhydrazine	ND	υı									
1,3-Dichlorobenzene	ND	υ 1									
1,4-Dichlorobenzene	ND	رن ن									
2,3,4,6-Tetrachlorophenol	ND	σı									
2,4,5-Trichlorophenol	ND	ري ن									
2,4,6-Trichlorophenol	ND	ر ت									
2,4-Dichlorophenol	ND	(J1									
2,4-Dimethylphenol	ND	رن ن									
2,4-Dinitrophenol	NO	10									
2,4-Dinitrotoluene	ND	თ									
2,6-Dichlorophenol	ND	ري ن									
2,6-Dinitrotoluene	ND	5 1									
2-Chloronaphthalene	NO	თ									
2-Chlorophenol	ND	თ									
2-Methylnaphthalene	ND	ഗ									
2-Methylphenol	ND	თ									
2-Nitroaniline	ND	თ									
2-Nitrophenol	ND	თ									
2-Picoline	ND	10									
3-Methylcholanthrene	ND	51									
3-Methylphenol	ND	თ									
3-Nitroaniline	ND	51									
4,6-Dinitro-2-methylphenol	ND	5									
4-Aminobiphenyl	ND	50									
4-Bromophenyi phenyl ether	ND	5 1									
4-Chloro-3-methylphenol	ND	5									
Qualifiers: ND - Not D	ND - Not Detected at the Reporting Limit		S-Sp	S - Spike Recovery outside accepted recovery	accepted reco	overy limits		B - Analyte detected in the associated Method Blank	n the associat	ed Method B	lank

J - Analyte detected below quantitation limits

CLIENT:	
Pinnacle Laboratories	

Work Order: 9904085

Project: 904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Method Blank

Hexachlorobutadiene	Hexachlorobenzene	Fluorene	Fluoranthene	Ethyl methanesulfonate	Dimethyl phthalate	Diethyl phthalate	Dibenzofuran	Dibenz(a,h)anthracene	Di-n-octyl phthalate	Di-n-butyl phthalate	Chrysene	Butyl benzyl phthalate	Bis(2-ethylhexyl)phthalate	Bis(2-chloroisopropyl)ether	Bis(2-chloroethyl)ether	Bis(2-chloroethoxy)methane	Benzyl alcohol	Benzo(k)fluoranthene	Benzo(g,h,i)perylene	Benzo(b)fluoranthene	Benzo(a)pyrene	Benz(a)anthracene	Anthracene	Aniline	Acetophenone	Acenaphthylene	Acenaphthene	7,12-Dimethylbenz(a)anthracene	4-Nitrophenol	4-Nitroaniline	4-Methylphenoi	4-Chlorophenyl phenyl ether
B	ND	ND	N	N	ND	N D	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND
ហ	Ο 1	O1	Ŋ	თ	ഗ	ن ن	ហ	ហ	ហ	ហ	51	Сī	ъ	51	Ŋ	Сī	Ŋ	Ŋ	СЛ	51	ΟΊ	ΟΊ	ن ن	Oi	O1	ن ن	Оī	Оī	Оì	υ ī	Ст	5

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

B - Analyte detected in the associated Method Blank

Work Order: 9904085

Method Bla	QC SUMMARY REPOR
3lank	ORT

7701 N Cluci. 7704003	330H083	
Project:	904067/NMOCD/Giant Bloomfield Refinery	Meti

Pyrene	Phenoi	Phenanthrene	Phenacetin	Pentachlorophenol	Pentachloronitrobenzene	Pentachlorobenzene	p-Dimethylaminoazobenzene	Nitrobenzene	Naphthalene	N-Nitrosopiperidine	N-Nitrosodiphenylamine	N-Nitrosodi-n-propylamine	N-Nitroso-di-n-butylamine	Methyl methanesulfonate	Isophorone	Indeno(1,2,3-cd)pyrene	Hexachloroethane	Hexachlorocyclopentadiene	
ND	ND	N	ND	ND	N	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	
5	ა	Сī	Сп	Сh	ڻ.	თ	5	Si.	ڻ.	σı	σ i	Сī	Si.	υ i	Ŋ	(Ji	Сл	თ	

Qualifiers: ND - Not Detected at the Reporting Limit

J - Analyte detected below quantitation limits

S - Spike Recovery outside accepted recovery limits

R - RPD outside accepted recovery limits

B - Analyte detected in the associated Method Blank

6 of 7

Work Order: 99 Project: 90

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Method Blank

Qual

Sample ID: MB-371	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis	Analysis Date 4/30/99	9	Prep Date: 4/20/99	e: 4
Client ID:	9904085	Run ID:	ICP_990429A			SeqNo:	11061			
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD RPDLimit	0
Aluminum	.1314	0.13								
Antimony	ND	0.005								
Arsenic	ND	0.005								
Barium	ND	0.005								
Beryllium	ND	0.002								
Boron	ND	0.01								
Cadmium	ND	0.002								
Calcium	.1206	0.12								
Chromium	.01527	0.015								
Cobalt	ND	0.005								
Copper	.0514	0.051								
Iron	.1502	0.15								
Lead	ND	0.005								
Magnesium	.07938	0.079								
Manganese	ND	0.005								
Molybdenum	ND	0.005								
Nickel	ND	0.08								
Potassium	ND	0.2								
Selenium	ND	0.005								
Silver	ND	0.005					•			
Sodium	ND	0.2								
Thallium	ND	0.01								
Vanadium	ND.	0.005								
Zinc	NO.	0.037								

Work Order: 9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Duplicate

	20	0.0%	75	0	0	0.0%	0	0	50	75	Chloride
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10470	SeqNo:		426C	NO INST_990426C	Run ID:	9904085	Client ID:
	te:	Prep Date:	99	Analysis Date 4/26/99	Analysis		Units: mg/L	Chloride	Test Code:	Batch ID: 01 CL A-4/27/	Sample ID: 9904111-04A DUP
	20	11.8%	200	0	0	0.0%	0	0	50	225	Chloride
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10446	SeqNo:		426C	NO INST_990426C	Run ID:	9904085	Client ID: 904067-07
	e:	Prep Date:	99	Analysis Date 4/26/99	Analysis		Units: mg/L	Chloride	Test Code:	Batch ID: 01 CL A-4/27/	Sample ID: 9904085-07A DUP
	20	3.4%	600	0	0	0.0%	0	0	5	580	Alkalinity, Total (As CaCO3)
	20	0.0%	0	0	0	0.0%	0	0	ۍ.) ND	Alkalinity, Carbonate (As CaCO3)
	20	3.4%	600	0	0	0.0%	0	0	ა	3) 580	Alkalinity, Bicarbonate (As CaCO3)
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val		LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10247	SeqNo:		425A	NO INST_990425A	Run ID:	9904085	Client ID: 904067-05
	ie:	Prep Date:	99	Analysis Date 4/25/99	Analysis	aCO3	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Sample ID: 9904085-05A DUP
	20	0.0%	150	0	0	0.0%	0	0	5	150	Alkalinity, Total (As CaCO3)
	20	0.0%	0	0	0	0.0%	0	0	ζī) ND	Alkalinity, Carbonate (As CaCO3)
	20	0.0%	150	0	0	0.0%	0	0	ڻ.	3) 150	Alkalinity, Bicarbonate (As CaCO3)
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10263	SeqNo:		419G	NO INST_990419G	Run ID:	9904085	Client ID:
	ē:	Prep Date:	99	Analysis Date 4/19/99	Analysis	3CO3	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Sample ID: 9904055-08A DUP

Work Order: 9904085 **Project:** 904067/1

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Duplicate

	20	6.5%	450	0	0	0.0%	0	0	10	Filtera 480	Total Dissolved Solids (Residue, Filtera
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10221	SeqNo:		1422D	NO INST_990422D	Run ID:	9904085	Client ID:
	le:	Prep Date:	9	Analysis Date 4/22/99	Analysis		Units: mg/L	E160.1	Test Code: E160.1	Batch ID: 01 TDS-4/23/9	Sample ID: 9904104-06A DUP
	20	4.3%	470	0	0	0.0%	0	0	10	Filtera 450	Total Dissolved Solids (Residue, Filtera
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10192	SeqNo:		219E	NO INST_990219E	Run ID:	9904085	Client ID:
	le:	Prep Date:	9	Analysis Date 4/19/99	Analysis		Units: mg/L	E160.1	Test Code: E160.1	Batch ID: 01 TDS-4/23/9	Sample ID: 9904055-03A DUP
	20	4.8%	167.8	120	80	0.0%	0	0	120	176.1	Sulfate
Qual	%RPD RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10057	SeqNo:)420B	HIT MAN_990420B	Run ID:	9904085	Client ID:
	le:	Prep Date:	9	Analysis Date 4/20/99	Analysis		Units: mg/L	Sulfate	Test Code:	Batch ID: 01 SULFATE	Sample ID: 9904093-02A DUP
	20	0.0%	0	0	0	0.0%	0	0	0.2	ND	Fluoride
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				9529	SeqNo:		416B	NO INST_990416B	Run ID:	9904085	Client ID:
	le:	Prep Date	9	Analysis Date 4/16/99	Analysis		Units: mg/L	fluoride	Test Code:	Batch ID: 01 FL A-4/16/	Sample ID: 9904055-01A DUP
·	20	2.6%	2340	0	0	0.0%	0	0		2280	Specific Conductance
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10012	SeqNo:		421B	NO INST_990421B	Run ID:	9904085	Client ID: 904067-01
	e:	Prep Date:	9	Analysis Date 4/21/99	Analysis	ח	Units: µmhos/cm	E120.1	Test Code: E120.1	Batch ID: 01 COND-04/	Sample ID: 9904085-01A DUP

Project: Work Order:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Duplicate

Sample ID: 9904067-07A DUP Batch ID: 356	Batch ID: 356	Test Code:	Test Code: Mercury	Units: mg/L		Analysis	Analysis Date 4/19/99)9	Prep Da	Prep Date: 4/19/99
Client ID:	9904085	Run ID:	Run ID: MERC_990419A	9A		SeqNo:	9725			
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	owLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual
Mercury, Diss	ND	0.0002	0	0	0.0%	0	0	0	0.0%	20
Mercury, TCLP	ND	0.0002	0	0	0.0%	0	0	0	0.0%	20

Project: Work Order:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Duplicate

Sample ID: 9904085-01A DUP	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: ma/L		Analysis	lalvsis Date 4/30/99	99	Prep Da	Prep Date: 4/20/99	
Client ID: 904067-01	9904085	Run ID:	ICP_990429A			SeqNo:	11031				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	Limit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	ND	0.14	0	0	0.0%	0	0	0	0.0%	20	
Antimony	ND ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Arsenic	,006317	0.005	0	0	0.0%	0	0	0.006511	3.0%	20	
Barium	2.147	0.005	0	0	0.0%	0	0	2.235	4.0%	20	
Beryllium	ND	0.002	0	0	0.0%	0	0	0	0.0%	20	
Boron	.5821	0.01	0	0	0.0%	0	0	0.6082	4.4%	20	
Cadmium	ND	0.002	0	0	0.0%	0	0	0	0.0%	20	
Calcium	164.7	0.13	0	0	0.0%	0	0	171.5	4.1%	20	
Chromium	ND.	0.02	0	0	0.0%	0	0	0	0.0%	20	
Cobalt	ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Copper	ND	0.055	0	0	0.0%	0	0	0	0.0%	20	
Iron	10.76	0.2	0	0	0.0%	0	0	10.8	0.4%	20	
Lead	ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Magnesium	52.74	0.08	0	0	0.0%	0	0	54.9	4.0%	20	
Manganese	4.568	0.005	0	0	0.0%	0	0	4.745	3.8%	20	
Molybdenum	.01216	0.005	0	0	0.0%	0	0	0.01167	4.1%	20	
Nickel	.01262	0.01	0	0	0.0%	0	0	0	200.0%	20	
Potassium	6.22	0.2	0	0	0.0%	0	0	6.493	4.3%	20	
Selenium	ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Silver	ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Sodium	297.6	0.2	0	0	0.0%	0	0	511	52.8%	20	
Thallium	ND	0.01	0	0	0.0%	0	0	0	0.0%	20	
Vanadium	ND	0.005	0	0	0.0%	0	0	0	0.0%	20	
Zinc	ND	0.04	0	0	0.0%	0	0	0	0.0%	20	

CLIENT: Work Order:	Pinnacle I 9904085	Pinnacle Laboratories 9904085							QC SUI	MMAR	QC SUMMARY REPORT)RT
Project:	904067/N	904067/NMOCD/Giant Bloomfield Refinery	d Refinery							Sampl	Sample Matrix Spike	Spike
Sample ID: 9904085-07A MS	5-07A MS	Batch ID: 01 CL A-4/27/	Test Code: Chloride	Chloride	Units: mg/L		Analysis	Analysis Date 4/26/99	99	Prep Date:	ite:	
Client ID: 904067-07	-07	9904085	Run ID:	NO INST_990426C			SeqNo:	10447				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		700	50	500	200	100.0%	75	125	0			
Sample ID: 9904085-07A MSD	5-07A MSD	Batch ID: 01 CL A-4/27/	Test Code: Chloride	Chloride	Units: mg/L		Analysis	Analysis Date 4/26/99	99	Prep Date:	ite:	
Client ID: 904067-07	-07	9904085	Run ID:	NO INST_990426C	426C		SeqNo:	10448				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		700	50	500	200	100.0%	75	125	700	0.0%	20	
Sample ID: 9904111-04A MS	1-04A MS	Batch ID: 01 CL A-4/27/	Test Code: Chloride	Chloride	Units: mg/L		Analysis	Analysis Date 4/26/99	99	Prep Date:	ite:	
Client ID:		9904085	Run ID:	NO INST_990426C	426C		SeqNo:	10471				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		575	50	500	75	100.0%	75	125	0			
Sample ID: 9904111-04A MSD	1-04A MSD	Batch ID: 01 CL A-4/27/	Test Code: Chloride	Chloride	Units: mg/L		Analysis	Analysis Date 4/26/99	99	Prep Date:	ite:	
Client ID:		9904085	Run ID:	NO INST_990426C	426C		SeqNo:	10472				
Analyte		Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Chloride		550	50	500	75	95.0%	75	125	575	4.4%	20	:
Sample ID: 9904055-01A MS	5-01A MS	Batch ID: 01 FL A-4/16/	Test Code: fluoride	fluoride	Units: mg/L		Analysis	Analysis Date 4/16/99	99	Prep Date:	ite:	
Client ID:		9904085	Run ID:	NO INST_990416B	416B		SeqNo:	9530		÷		
Analyte		Result	PQ	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride		7.9	0.2	7	0	112.9%	75	125	0			

CLIENT: Pinnacle Laboratories **Work Order:** 9904085

904067/NMOCD/Giant Bloomfield Refinery

Project:

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

Sample ID: 9904055-01A MSD	Batch ID: 01 FL A-4/16/ Test Code: fluoride	Test Code:	fluoride	Units: ma/L		Analysis	Analysis Date 4/16/99	Ö	Prep Date:	te:	
Client ID:	9904085	Run ID:	NO INST_990416B	416B		SeqNo:	9531				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Fluoride	8	0.2	7	0	114.3%	75	125	7.9	1.3%	20	
Sample ID: 9904093-02A MS	Batch ID: 01 SULFATE	Test Code: Sulfate	Sulfate	Units: mg/L		Analysis	Analysis Date 4/20/99	9	Prep Date:	te:	
Client ID:	9904085	Run ID:	HIT MAN_990420B	420B		SeqNo:	10068				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Sulfate	1127	500	800	167.8	119.9%	75	125	0			
Sample ID: 9904093-02A MSD	Batch ID: 01 SULFATE	Test Code: Sulfate	Sulfate	Units: mg/L		Analysis	Analysis Date 4/20/99	9	Prep Date:	ite:	
Client ID:	9904085	Run ID:	HIT MAN_990420B	420B		SeqNo:	10069				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Sulfate	1094	500	800	167.8	115.8%	75	125	1127	3.0%	20	
Sample ID: 9904067-07A MS	Batch ID: 356	Test Code: Mercury	Mercury	Units: mg/L		Analysis	Analysis Date 4/19/99	9	Prep Da	Prep Date: 4/19/99	
Client ID:	9904085	Run ID:	MERC_990419A	9A		SeqNo:	9722				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	.00205	0.0002	0.002	0	102.5%	75	125	0			
Mercury, Diss	.00205	0.0002	0.002	0	102.5%	75	125	0			
Mercury, TCLP	.00205	0.0002	0.002	0	102.5%	75	125	0			

Work Order: 9904085 **Project:** 904067/

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

20		0.0% 0.0% 0.0%	0.00205 0.00205 0.00205	125 125 125	75 75 75	102.5% 102.5% 102.5%	000	0.002 0.002 0.002	0.0002 0.0002 0.0002	.00205 .00205 .00205	Mercury Mercury, Diss Mercury, TCLP
i i	%RPD RPDLimit Qual	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK value SPK Ref Val	SPK value	PQL	Result	Analyte
				9723	SeqNo:		19A	MERC_990419A	Run ID:	9904085	Client ID:
1/99	Prep Date: 4/19/99	Prep D	99	Analysis Date 4/19/99	Analysis		Units: mg/L	Test Code: Mercury	Test Code:	Batch ID: 356	Sample ID: 9904067-07A MSD Batch ID: 356

Work Order: 9
Project: 9

: 9904085

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Matrix Spike

						!					
Sample ID: 9904085-01A MS	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis	nalysis Date 4/30/99	9	Prep Da	Prep Date: 4/20/99	
Client ID: 904067-01	9904085	Run ID:	ICP_990429A			SeqNo:	11032				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	5.32	0.14	5	0	106.4%	80	120	5.305	0.3%	0	
Antimony	.5522	0.005	0.5	0	110.4%	80	120	0.5489	0.6%	0	
Arsenic	.4919	0.005	0.5	0.006511	97.1%	80	120	0.49	0.4%	0	
Barium	2.651	0.005	0.5	2.235	83.4%	80	120	2.644	0.3%	0	
Beryllium	.5178	0.002	0.5	0	103.6%	80	120	0.513	0.9%	0	
Boron	1.1	0.01	0.5	0.6082	98.3%	80	120	1.096	0.4%	0	
Cadmium	.4829	0.002	0.5	0	96.6%	80	120	0.4783	0.9%	0	
Calcium	167	0.13	C 1	171.5	-89.6%	80	120	165.8	0.7%	0	z
Chromium	.5145	0.02	0.5	0	102.9%	80	120	0.5098	0.9%	0	
Cobalt	.4779	0.005	0.5	0	95.6%	80	120	0.4755	0.5%	0	
Copper	.5775	0.005	0.5	0	115.5%	80	120	0.5758	0.3%	0	
Iron	11.27	0.2	0.5	10.8	95.2%	80	120	11.36	0.7%	0	
Lead	.4972	0.005	0.5	0	99.4%	80	120	0.4916	1.1%	0	
Magnesium	53.8	0.08	G i	54.9	-22.1%	80	120	53.46	0.6%	0	z
Manganese	5.058	0.005	0.5	4.745	62.7%	80	120	5.037	0.4%	0	z
Molybdenum	.4531	0.005	0.5	0.01167	88.3%	80	120	0.4538	0.2%	0	
Nickel	.4923	0.01	0.5	0	98.5%	80	120	0.4867	1.2%	0	
Potassium	14.2	0.2	5	6.493	154.1%	80	120	14.15	0.3%	0	z
Selenium	.518	0.005	0.5	0	103.6%	80	120	0.5171	0.2%	0	
Silver	.5316	0.005	0.5	0	106.3%	80	120	0.5305	0.2%	0	
Sodium	296.5	0.2	5	511	-4 289.9%	80	120	298.8	0.8%	0	
Thallium	.5283	0.01	0.5	0	105.7%	80	120	0.5247	0.7%	0	
Vanadium	.5232	0.005	0.5	0	104.6%	80	120	0.5205	0.5%	0	
Zinc	.5469	0.04	0.5	0	109.4%	80	120	0.5498	0.5%	0	

Work Order: 9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Sample Matrix Spike Duplicate

Sample ID: 9904085-01A MSD	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis I	Analysis Date 4/30/99		Prep Date: 4/20/99	1/20/99	
Client ID: 904067-01	9904085	Run ID:	ICP_990429A			SeqNo:	11033				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit RPD Ref Val	रPD Ref Val	%RPD RPI	RPDLimit (Qual
Aluminum	5.305	0.14	5 1	0	106.1%	80	120	0		ļ	
Antimony	.5489	0.005	0.5	0	109.8%	80	120	0			
Arsenic	.49	0.005	0.5	0.006511	96.7%	80	120	0			
Barium	2.644	0.005	0.5	2.235	81.9%	80	120	0			
Beryllium	.513	0.002	0.5	0	102.6%	80	120	0			
Boron	1.096	0.01	0.5	0.6082	97.5%	80	120	0			
Cadmium	.4783	0.002	0.5	0	95.7%	80	120	0			
Calcium	165.8	0.13	5	171.5	-113.3%	80	120	0			z
Chromium	.5098	0.02	0.5	0	102.0%	80	120	0			
Cobalt	.4755	0.005	0.5	0	95.1%	80	120	0			
Copper	.5758	0.055	0.5	0	115.2%	80	120	0			
Iron	11.36	0.2	2	10.8	28.0%	80	120	0			z
Lead	.4916	0.005	0.5	0	98.3%	80	120	0			
Magnesium	53.46	0.08	5	54.9	-28.8%	80	120	0			z
Manganese	5.037	0.005	0.5	4.745	58.4%	80	120	0			z
Molybdenum	.4538	0.005	0.5	0.01167	88.4%	80	120	0			
Nickel	.4867	0.01	0.5	0	97.3%	80	120	0			
Potassium	14.15	0.2	5	6.493	153.1%	80	120	0			z
Selenium	.5171	0.005	0.5	0	103.4%	80	120	0			
Silver	.5305	0.005	0.5	0	106.1%	80	120	0			
Sodium	298.8	0.2	5	511	-4243.8%	80	120	0			z
Thallium	.5247	0.01	0.5	0	104.9%	80	120	0			
Vanadium	.5205	0.005	0.5	0	104.1%	80	120	0			
Zinc	.5498	0.04	0.5	0	110.0%	80	120	0			

Date: 06-May-99

	20	2.5%	10	115	85	97.5%	0	10	0.5	9.75	Chloride
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10461	SeqNo:		1426C	NO INST_990426C	Run ID:	9904085	Client ID:
	ite:	Prep Date:	99	Analysis Date 4/26/99	Analysis		Units: mg/L	Chloride	Test Code: Chloride	Batch ID: 01 CL A-4/27/	Sample ID: LCSD
			0	115	85	100.0%	0	10	0.5	10	Chloride
Qual	%RPD RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
			-	10437	SeqNo:)426C	NO INST_990426C	Run ID:	9904085	Client ID:
	ite:	Prep Date:	99	Analysis Date 4/26/99	Analysis		Units: mg/L	Chloride	Test Code: Chloride	Batch ID: 01 CL A-4/27/	Sample ID: LCS
			0	115	85	88.5%	0	0.6	0.1	.531	Bromide
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
			_	10090	SeqNo:)422A	HIT MAN_990422A	Run ID:	9904085	Client ID:
	ite:	Prep Date:	99	Analysis Date 4/22/99	Analysis		Units: mg/L	Bromide	Test Code:	Batch ID: 01 BR A-4/23/	Sample ID: LCS
			0	115	85	103.2%	0	126	رن ن	3) 130	Alkalinity, Total (As CaCO3)
Qual	RPDLimit	%RPD	LowLimit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10251	SeqNo:)419G	NO INST_990419G	Run ID:	9904085	Client ID:
	ite:	Prep Date:	99	Analysis Date 4/19/99	Analysis	aco3	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Sample ID: LCS
			0	115	85	99.2%	0	126	5	3) 125	Alkalinity, Total (As CaCO3)
Qual	%RPD RPDLimit	%RPD	Limit HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10241	SeqNo:		1425A	NO INST_990425A	Run ID:	9904085	Client ID:
	ite:	Prep Date:	99	Analysis Date 4/25/99	Analysis	aCO3	Units: mg/L CaCO3	Alkalinity	Test Code: Alkalinity	Batch ID: 01 ALK A-4/2	Sample ID: LCS
neric	Spike - ge	/ Control	Laboratory Control Spike - generic					,	ld Refinery	9904085 904067/NMOCD/Giant Bloomfield Refinery	Project: 904
RT	QC SUMMARY REPORT	MMAR	QC SUI							Pinnacle Laboratories	

Work Order: 9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Laboratory Control Spike - generic

Sample ID: LCS	Batch ID: 01 COND-04/	Test Code: E120.1	E120.1	Units: µmhos/cm	_	Analysis	Analysis Date 4/21/99	9	Prep Date:	ē.	
Client ID:	9904085	Run ID:	NO INST_990421B	121B		SeqNo:	10010				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Specific Conductance	994		1000	0	99.4%	85	115	0			
Sample ID: LCS	Batch ID: 01 FL A-4/16/	Test Code: fluoride	fluoride	Units: mg/L		Analysis	Analysis Date 4/16/99	9	Prep Date:	e.	
Client ID:	9904085	Run ID:	NO INST_990416B	416B		SeqNo:	9527				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Fluoride	7.8	0.2	7	0	111.4%	85	115	0			
Sample ID: LCS	Batch ID: 01 SULFATE	Test Code: Sulfate	Sulfate	Units: mg/L		Analysis	Analysis Date 4/20/99	9	Prep Date:	ĊP.	
Client ID:	9904085	Run ID:	HIT MAN_990420B	420B		SeqNo:	10045				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Sulfate	7.36	5	8	0	92.0%	85	115	0			
Sample ID: LCS	Batch ID: 01 TDS-4/23/9	Test Code:	E160.1	Units: mg/L		Analysis	Analysis Date 4/19/99	9	Prep Date	e:	
Client ID:	9904085	Run ID:	NO INST_990219E	219E		SeqNo:	10188				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Total Dissolved Solids (Residue, Filtera	, Filtera 3510	10	3966	0	88.5%	85	115	0			
Sample ID: LCS	Batch ID: 01 TDS-4/23/9	Test Code:	E160.1	Units: mg/L		Analysis	Analysis Date 4/22/99	9	Prep Date:	e:	
Client ID:	9904085	Run ID:	NO INST_990422D	422D		SeqNo:	10209				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	%RPD RPDLimit	Qual
Total Dissolved Solids (Residue, Filtera	, Filtera 3890	10	3966	0	98.1%	85	115	0			

S - Spike Recovery outside accepted recovery limits

Work Order: 990

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Laboratory Control Spike - generic

Cample ID: I CG_356	0.455 ID: 356	Tant Code:	ARAPANIA	I laite: mall		^ =alvaio	Data 4/40/6	Ď	م مود	·~: 4/40/00	
Cample 10. CCG-330	ממנכורום. מספ	Test Code. Mercury	Mercury	טוווט. וווש/ב		Allalysis	Analysis Date 4/19/99	ŭ	rieb Da	riep Date. */ 13/33	
Client ID:	9904085	Run ID:	MERC_990419A	9A		SeqNo:	9720				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit HighLimit	HighLimit	RPD Ref Val	%RPD	RPDLimit	Qual
Mercury	.00103	0.0002	0.001	0	103.0%	80	120	0			
Mercury, Diss	.00103	0.0002	0.001	0	103.0%	80	120	0			
Mercury, TCLP	.00103	0.0002	0.001	0	103.0%	. 80	120	0			
Sample ID: LCS-367	Batch ID: 367	Test Code:	Test Code: SW8270B	Units: µg/L		Analysis	Analysis Date 4/23/99	99	Prep Da	Prep Date: 4/20/99	
Client ID:	9904085	Run ID:	MANFREDD_990423B	990423B		SeqNo:	10417				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	Limit HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	28.4	5	50	0	56.8%	44	142	0			
1,4-Dichlorobenzene	27.7	5	50	0	55.4%	20	124	0			
2,4-Dinitrotoluene	33.8	5	50	0	67.6%	39	139	0			
2-Chlorophenol	57.3	5	100	0	57.3%	23	134	0			
4-Chloro-3-methylphenol	63.5	5	100	0	63.5%	22	147	0			
4-Nitrophenol	26.2	თ	100	0	26.2%	_	132	0			
Acenaphthene	33.2	5	50	0	66.4%	47	145	0			
N-Nitrosodi-n-propylamine	32.5	5	50	0	65.0%	_	230	0			
Pentachlorophenol	65.5	ζī	100	0	65.5%	14	176	0			
Phenol	21	5	100	0	21.0%	Ç1	112	0			
Pyrene	32.6	5	50	0	65.2%	52	115	0			

Work Order: 9
Project: 9

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Laboratory Control Spike Duplicate

Sample ID: LCSD-367 Client ID:	Batch ID: 367 9904085	Test Code: SW8270B Run ID: MANFREI	SW8270B Units: MANFREDD_990423B	Onits: µg/L 990423B		Analysis SeqNo:	\nalysis Date	99	Prep Da	Prep Date: 4/20/99	
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
1,2,4-Trichlorobenzene	28.4	ა	50	0	56.8%	44	142	28.4	0.0%	28	
1,4-Dichlorobenzene	27.5	J ī	50	0	55.0%	20	124	27.7	0.7%	32	
2,4-Dinitrotoluene	32.9	Оī	50	0	65.8%	39	139	33.8	2.7%	22	
2-Chlorophenol	56.4	رن ن	100	0	56.4%	23	134	57.3	1.6%	29	
4-Chloro-3-methylphenol	62	51	100	0	62.0%	22	147	63.5	2.4%	37	
4-Nitrophenol	24.9	ъ	100	0	24.9%	_	132	26.2	5.1%	47	
Acenaphthene	32.3	51	50	0	64.6%	47	145	33.2	2.7%	28	
N-Nitrosodi-n-propylamine	31.7	_C 1	50	0	63.4%	_	230	32.5	2.5%	55	
Pentachlorophenol	63.5	₅	100	0	63.5%	14	176	65.5	3.1%	49	
Phenol	20.7	5	100	0	20.7%	5	112	21	1.4%	23	
Pyrene	32.5	5	50	0	65.0%	52	115	32.6	0.3%	25	

Work Order: 990 Project: 904

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Laboratory Control Spike - generic

Sample ID: LCS-371	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis	nalysis Date 4/30/99	99	Prep Da	Prep Date: 4/20/99	
Client ID:	9904085	Run ID:	ICP_990429A			SeqNo:	11060				
Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	HighLimit RPD Ref Val	%RPD	RPDLimit	Qual
Aluminum	5.192	0.14	5	0.1314	101.2%	80	120	0			
Antimony	.5273	0.005	0.5	0	105.5%	80	120	0			
Arsenic	.4617	0.005	0.5	0	92.3%	88	120	0			
Barium	.5076	0.005	0.5	0	101.5%	80	120	0			
Beryllium	.5131	0.002	0.5	0	102.6%	80	120	0			
Boron	,4999	0.01	0.5	0	100.0%	80	120	0			
Cadmium	.4917	0.002	0.5	0	98.3%	80	120	0			
Calcium	.872	0.13	0.75	0.1206	100.2%	80	120	0			
Chromium	,5074	0.02	0.5	0.01527	98.4%	80	120	0			
Cobalt	.4819	0.005	0.5	0	96.4%	80	120	0			
Copper	.5254	0.055	0.5	0.0514	94.8%	80	120	0			
Iron	.5422	0.2	0.5	0.1502	78.4%	80	120	0			
Lead	.4961	0.005	0.5	0	99.2%	80	120	0			
Magnesium	.7833	0.08	0.75	0.07938	93.9%	80	120	0			
Manganese	.4872	0.005	0.5	0	97.4%	80	120	0			
Molybdenum	,4313	0.005	0.5	0	86.3%	80	120	0			
Nickel	.4917	0.01	0.5	0	98.3%	80	120	0			
Potassium	5.195	0.2	5	0	103.9%	80	120	0			
Selenium	.4982	0.005	0.5	0	99.6%	80	120	0			
Silver	.4974	0.005	0.5	0	99.5%	80	120	0			
Sodium	.5953	0.2	0.5	0	119.1%	80	120	0			
Thallium	.5156	0.01	0.5	0	103.1%	80	120	0			
Vanadium	.5139	0.005	0.5	0	102.8%	80	120	0			
Zinc	.5478	0.005	0.5	0	109.6%	80	120	0			

Don Date: Alabino	Analisis Data Alabana	11-3/1	Tark Carlos Managers I limites many	Batak ID. 356	Sample ID: IOV
Continuing Calibration Verification Standard	Continuing Cail		mfield Refinery	904067/NMOCD/Giant Bloomfield Refinery	Project:
TO CATALOGUE AND A SECOND CASE				9904085	Work Order: 9904085
OC SIIMMARY REPORT	oc oc			Pinnacle Laboratories	CLIENT:

mk	ated Method Bla	d in the associ	B - Analyte detected in the associated Method Blank		overy limits	le accepted rec	S - Spike Recovery outside accepted recovery	S - Spil		ND - Not Detected at the Reporting Limit	Qualifiers: ND - Not I
				120	80	107.8%	0	50	5	53.9	Phenol-d5
				120	80	98.4%	0	50	౮	49.2	Nitrobenzene-d5
				120	80	108.4%	0	50	თ	54.2	4-Terphenyl-d14
				120	80	108.4%	0	50	თ	54.2	2-Fluorophenol
				120	80	109.8%	0	50	_ω	54.9	2-Fluorobiphenyl
				120	80	116.0%	0	50	ა	58	2,4,6-Tribromophenol
									თ	53.5	Phenol
									თ	51.1	Pentachlorophenol
									5	54.9	N-Nitrosodiphenylamine
									თ	54.8	Hexachlorobutadiene
									თ	55.5	Fluoranthene
									თ	52.1	Di-n-octyl phthalate
									თ	54.2	Benzo(a)pyrene
									5	53.8	Acenaphthene
									თ	54.5	4-Chloro-3-methylphenol
									Ç1	55.7	2-Nitrophenol
									ڻ. ڻ	55	2,4-Dichlorophenol
									თ	55.4	2,4,6-Trichlorophenol
									5	53.7	1,4-Dichlorobenzene
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				10416	SeqNo:)90423B	MANFREDD_990423B	Run ID:	9904085	Client ID:
	te:	Prep Date	19	Analysis Date 4/23/99	Analysis		Units: µg/L	SW8270B	Test Code:	Batch ID: 367	Sample ID: CCV
	!		0	110	90	105.5%	0	0.002	0.0002	.00211	Mercury, TCLP
			0	110	90	105.5%	0	0.002	0.0002	.00211	Mercury, Diss
			0	110	90	105.5%	0	0.002	0.0002	.00211	Mercury
Qual	RPDLimit	%RPD	HighLimit RPD Ref Val	HighLimit	LowLimit	%REC	SPK Ref Val	SPK value	PQL	Result	Analyte
				9724	SeqNo:		Ă	MERC_990419A	Run ID:	9904085	Client ID:
	Prep Date: 4/19/99	Prep Da	ğ	Analysis Date 4/19/99	Analysis		Units: mg/L	Mercury	Test Code: Mercury	Batch ID: 356	Sample ID: ICV

J - Analyte detected below quantitation limits

R - RPD outside accepted recovery limits

I of I

Work Order: 9904085

Project:

904067/NMOCD/Giant Bloomfield Refinery

QC SUMMARY REPORT

Initial Calibration Verification Standard

	Sample ID: CCVLOW	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis	Analysis Date 4/29/99	9	Prep Date:		
	Client ID:	9904085	Run ID:	ICP_990429A			SeqNo:	11018				
	Analyte	Result	PQL	SPK value	SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD !	RPDLimit	Qual
	Antimony	.5201	0.005	0.5	0	104.0%	90	110	0			
	Arsenic	.5052	0.005	0.5	0	101.0%	90	110	0			
	Barium	.5043	0.005	0.5	0	100.9%	90	110	0			
	Beryllium	.5054	0.002	0.5	0	101.1%	90	110	0			
	Cadmium	.4973	0.002	0.5	0	99.5%	90	110	0			
	Chromium, 200.7	.5155	0.005	0.5	0	103.1%	95	105	0			
	Cobalt	.4767	0.005	0.5	0	95.3%	90	110	0			
	Copper, 200.7	.5066	0.005	0.5	0	101.3%	95	105	0			
	Iron	.4837	0.01	0.5	0	96.7%	90	110	0			
	Lead, 200.7	.4918	0.005	0.5	0	98.4%	95	105	0			
	Manganese	.4924	0.005	0.5	0	98.5%	90	110	0			
	Molybdenum	.4927	0.005	0.5	0	98.5%	90	110	0			
	Nickel, 200.7	.4911	0.005	0.5	0	98.2%	95	105	0			
	Potassium	5.051	0.2	5	0	101.0%	90	110	0			
	Selenium	.4972	0.005	0.5	0	99.4%	90	110	0			
	Silver, 200.7	.4901	0.005	0.5	0	98.0%	95	105	0			
_	Thallium	.5106	0.01	0.5	0	102.1%	90	110	0			
•	Vanadium	.5037	0.005	0.5	0	100.7%	90	110	0			
	Zinc, 200.7	.4975	0.005	0.5	0	99.5%	95	105	0			

904067/NMOCD/Giant Bloomfield Refinery 9904085 Pinnacle Laboratories QC SUMMARY REPORT Minerals ICV for ICP

Project:

CLIENT:
Work Order:

Sample ID: ICVHI	Batch ID: 371	Test Code: ICPMET	ICPMET	Units: mg/L		Analysis	Analysis Date 4/29/99	99	Prep Date:	te:	
Client ID:	9904085	Run ID:	ICP_990429A			SeqNo:	11019				
Analyte	Result	PQL	SPK value	SPK value SPK Ref Val	%REC	LowLimit	HighLimit	LowLimit HighLimit RPD Ref Val	%RPD	%RPD RPDLimit Qual	Qual
Aluminum	24.04	0.05	25	0	96.2%	90	110	0			
Calcium, 200.7	23.87	0.05	25	0	95.5%	95	105	0			
Hardness	156.7	0.33	165	0	94.9%	90	110	0			
Magnesium	23.57	0.05	25	0	94.3%	90	110	0			
Sodium	4.773	0.2	5	0	95.5%	90	110	0			
Tin	4.767	0.01	5	0	95.3%	90	110	0			

Glossary of Flags

\mathbb{H} 2 ? AB The Relative Percent Difference (RPD) between the duplicate and its associated sample was greater than 20%. A triplicate analysis was not possible due to tack of sample AE . The hydrocarbon pattern in this sample is not typical of diesel. $\Lambda\Lambda$. The sample was analyzed when the holding time for the analysis had expired Qualifier The hydrocarbons in this sample extend into the oil range. The hydrocarbons in this sample extend into the gasoline range. The hydrocarbon pattern in this sample is not typical of oil. Please see ease narrative for information pertaining to this analyte. The hydrocarbons in this sample extend into the diesel range The Matrix Spike (MS) Exceeded control limits. The Luboratory Control Sample was in control validating the batch The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) exceeded recovery control limits. An instrument spike was analyzed and was in control. This indicates an interference affecting the sample preparation process The Matrix Spike (MS) exceeded control limits. An instrument spike was analyzed and was in control. This indicates an interference affecting the sample preparation process, The Laboratory Control Standard (LCS) and the LCS Duplicate (LCSD) exceeded Relative Percent Difference (RPD) control limits. See case Narrative for explanation. Value above quantitation range. This value is considered an estimate. The Relative Percent Difference (RPD) between the duplicate and its associated sample was greater than 20%. It was concluded through visual inspection that the sample was non-homogeneous The Relative Percent Difference (RPD) between the duplicate and its associated sample was greater than 20%. A triplicate was analyzed. The results of all three analysis indicate a non-homogeneous sample The Matrix Spike (MSD) and Matrix Spike Duplicate (MSD) recoveries is not calcuable due to a high amount of analyte in the sample. The Matrix Spike (MS) and Matrix Spike Duplicate (MSD) exceeded Relative Percent Difference (RPD) control limits. See case narative for explanation The Laboratory Control Sample (LCS) exceeded control limits. See case marrative for explanation The Laboratory Control Sample (LCS) exceeded control limits. The Matrix Spike (MS) was in control validating the batch Detection Limits were elevated due to matrix interference. Analyte detected in associated Method Blank. he Matrix Spike (MS) and Matrix Spike Duplicate (MSD) exceeded recovery control limits. See case narrative for explanation. nalyte detected between the method detection limit (MDL) and the reporting limit. This value is considered an extinate. he hydrocarbon pattern in this sample is not typical of gasoline. ge to limited volume of sample it was not possible to analyze the standard method quality control Description

 X^{AP} Unable to quantitate surrogate recoveries due to dilution of sample.

The sample was provided in an improper container.

The sample was received with head space

Surrogate recovery outside control limits. See case narrative.

Spike recovery outside control limits. See other qualifiers or ease narrative for corrective action.

IAD outside accepted limits. See other qualifiers or case narrative for corrective action.

The Relative Percent Difference (RPD) between the analysis column and the confirmation column was greater than 40%. The lower result was reported due to obvious interference.

The Relative Percent Difference (RPD) between the analysis column and the confirmation column was greater than 40%. The higher result was reported

The Relative Percent Difference (RPD) between the duplicate and its associated sample was greater than 20%. The analyte was less than three times the reporting limit. The RPD is not applicable.

Interlab Chain of Custody

Pinnacle Laboratories, Inc.

Date: 4/15 Page: 1 of (

иливек оғ соитыиекз 41-OT Gross Alpha/Beta RADIUM 226+228 MUINARU Base/Neutral Acid Compounds GC/MS Herbicides (615/8150) 8240 (TCLP 1311) ZHE (01E8) ANG 8270 BY GC/MS Х × × × **ANALYSIS REQUEST** PESTICIDES/PCB (608/8080) COD BOD Volatile Organics GC/MS (8260) Oil and Grease AIL (B:006 + Corb) X × Gen Chemistry VZ 301 XG1 PJ Metals-PM × X ¥ × × メ Metals-13 PP List RCRA TCLP METALS Metals (8) RCRA LABID (0) و 0 50 3 22 0 Kimberly D. McNeill MATRIX AQ TIME 2709-D Pan American Freeway, NE 7400 £5/ 6191 136 980 1515 8 Albuquerque, New Mexico 87107 DATE Network Project Manager: 71/7 4/15 Pinnacle Laboratories, Inc. (505) 344-3777 Fax (505) 344-4413 SAMPLE ID -03 70--05 ģ -07 904067-01

PROJECT INFORMATION	SAMPLE RECEIPT	SAMPLES SENT TO:	RELINQUISHED BY: 1,	1. RELINQUISHED BY:
PROJECT #: 904067	Total Number of Containers	PENSACOLA - STL-FL	Signature: Time:	Signature:
PROJ. NAME: NMOCD	Chain of Custody Seals	PORTLAND - ESL-OR K	leil 1	
ac LEVEL: STO IV	Received Intact?	STL-CT	Printed Name: , Date;	Printed Name: Date:
QC REQUIRED: MS MSD BLANK Received Good Cond./Cold	Received Good Cond./Cold	STL- NEW JERSEY	x', 145/6:11 4/15/99	
TAT: STANDARD RUSH!!	LAB NUMBER: 7904085	N. CREEK	Pinnacle Laboratories, Inc.	Company
		BARRINGER	RECEIVED BY:	RECEIVED BY:
DUE DATE: $4/24$ COMMENTS:	S	SEQUOIA	Signature: Time:	Signature: Time:
RUSH SURCHARGE: ϕ			1/10000	
CLIENT DISCOUNT:			Printed Name:	Printed Name: Date:
SPECIAL CERTIFICATION			66/3//	
REQUIRED; YES NO			Company	Company

MINIALE Pinnacle Laboratories Inc.

CHAIN OF CUSTODY PAGE: LOF

904010

PLI Accession #:

MUM 7 $\overline{}$ Printed Name: To Date: 4 15 9 56 -140I Metals: RCRA Metals by TCLP (Method 1311) Date: RCRA Metals (8) RECEIVED BY: (LAB) RELINQUISHED BY: Target Analyte List Metals (23) Priority Pollutant Metals (13) Printed Name Schature: Signature: Compan HΘ 4 7 7 7 7 4 General Chemistry: 🕂 4 Polynuclear Aromatics (610/8310/8270-SIMS) 7 1 4 4 4 Base/Neutral/Acid Compounds GC/MS (625/8270) 65/-51 Herbicides (615/8151) **ANALYSIS REQUEST** Pesticides /PCB (608/8081/8082) Company: NMOCE See reverse side (Force Magure) 8260 (Landfill) Volatile Organics Time: Date RELINQUISHED BY: 8260 (CUST) Volatile Organics RECEIVED BY: 1111 4 4 4 8260 (Full) Volatile Organics 8260 (TCL) Volatile Organics Printed Name Signature: 504.1 EDB □ / DBCP □ 8021 (CUST) PRIOR AUTHORIZATION IS REQUIRED FOR RUSH PROJECTS (NORMAL) (OJAH) 1208 8021 (EDX) 8021 (TCL) 8MT □ 38TM □ (X3T8) IS08 □ PCE OTHER 8021 (BTEX)/8015 (Gasoline) MTBE (M8015) Gas/Purge & Trap □ SDWA toeinl Joerel/Diesel/Direct Inject □ 1 WEEK Petroleum Hydrocarbons (418.1) TRPH LAB I.D □ 72hr Division COMMENTS: FIXED FEE METHANOL PRESERVATION 🗓 CERTIFICATION REQUIRED: MATRIX Set 1 にで \mathcal{Z} buscartion (RUSH) 🗀 24hr 0060 651/1 OoH! C001/64-51/h TIME || 表 413 DATE YN/NA 2 Bloom Ketel なれてのと 95-MM) 0171414079 904150900 MV-23 7-MW PROJECT INFORMATION RW-17 9904151000 (MM-9 505 SAMPLE RECEIPT PROJECT MANAGER: SAMPLE 10 390414 1615 00 h) h! PROJ. NAME: $G_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}_{\mathcal{L}}}}}$ rio Blank NO. CONTAINERS CUSTODY SEALS COMPANY: COMPANY ADDRESS: ADDRESS: PHONE: BILL TO: SHIPPED VIA: FAX PROJ. NO 4064 P.O. NO

SHADED AREAS ARE FOR LAB USE ONLY.

11/10/98 PLI Inc.: Pinnacle Laboratories, Inc. • 2709-D Pan American Freeway, NE • Albuquerque, New Mexico 87107 • (505) 344-3777 • Fax (505) 344-4413 • E-mail: PIN_LAB@WORLDNET.ATT.NET

RECEIVED INTACT

PLEASE FILL THIS FORM IN COMPLETELY.

BLUE ICENICE

DISTRIBUTION: White - PLI, Canary - Originator

Pinnacle Laboratories Inc.

Company

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

NOTICE OF PUBLICATION

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan renewal applications has been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-049) - EL PASO NATURAL GAS Company, Mr. Richard Duarte, P.O. Box 1492, El Paso, Texas, 79978 has submitted a renewal application for the previously approved discharge plan for their BLANCO PLANT facility located in Section 14, Township 29 North, Range 11 West, San Juan County, near Bloomfield New Mexico. Approximately 120,000 gallons per day of process waste water with a total dissolved solids concentration of less than 600 mg/l is discharged to the city of Bloomfield public owned treatment works (POTW). Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface varies in depth from 14 feet to 39 feet. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

(GW-001) Bloomfield Refining Company, Lynn Shelton, P.O. Box 159, Bloomfield, New Mexico 87413, has submitted-a-renewal application for the previously approved discharge plan for its Bloomfield Petroleum Refinery located in the NW/4 NE/4 and the S/2 NE/4 and the N/2 NW/4 SW/4 and the SE/4 NW/4 SW/4 and the NE/4 SW/4 of Section 26, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The renewal application consist of methods and procedures for handling products, waste, waste water management, and site investigation/ abatement plans. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface varies in depth from 10 feet to 30 feet and is a water zone directly caused by seepage from Hammond Ditch. The ditch water has a total dissolved solids concentration of approximately 200 mg/l. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and public hearing may be requested by any interested person. Requests for public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 16th day of September, 1999.

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

LORÍ WROTENBERY, Director

SEAL

RECEIVED

JUL 1 5 1999

Environmental Bureau
Oil Conservation Division

111 Road 4990 Bloomfield, New Mexico 87413

505 632.8006

July 6, 1999

Mr. Wayne Price New Mexico Oil Conservation Division 2040 S. Pacheco Santa Fe. New Mexico 87505

RE: San Juan Refining Company, Bloomfield, New Mexico, Discharge Plan GW-1

Dear Mr. Price:

R.T. Hicks Consultants, Ltd. will hand-deliver our renewal application for Groundwater Discharge Permit number GW-1 on July 6, 1999. Our renewal application consists of two volumes:

Volume I

Discharge Plan Application, Waste and Wastewater Management

Volume II

Discharge Plan Application, Site Investigation and Abatement Plan

Hicks Consultants will deliver the Application in paper and electronic format. Due to the length of Volume II, NMOCD may find that information is more easily retrieved from the Adobe Acrobat file (text) or the Microsoft Excel files (tables and selected Plates).

We are confident that you will find Volume II is consistent with our earlier proposals. The environmental data developed over the past 15 years supports:

- continued removal of separate phase hydrocarbons from groundwater in the central Refinery area
- construction and maintenance of a hydraulic barrier between the San Juan River and the alluvial sediments due north of the Refinery
- monitored natural attenuation to address dissolved-phase hydrocarbons in groundwater

After we address your comments and questions regarding this Discharge Plan renewal application, we will submit a revised Corrective Measures Study (CMS) to the U.S. EPA. We will forward a copy of that document to NMOCD.

Sincerely,

Giant Refining Company

Lynn Shelton

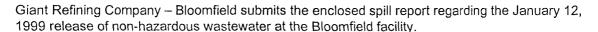
Environmental Manager

cc: Mr. Warren Arthur, U.S. EPA, Dallas Kim Bullerdick, Giant Industries

Ned Kendrick, Montgomery and Andrews

Randall Hicks, Hicks Consulting

May 17, 1999


Wayne Price NMOCD 2040 S. Pacheco Santa Fe, NM 87505

Denny Foust NMOCD 1000 Rio Brazos Aztec, NM 87413

Re:

Spill Report

Gentlemen:

Four samples were taken to verify that no release of hazardous constituents to the environment had taken place: a sample of the spill water was obtained from the spill site; a background soil sample was obtained from soil south of the bar ditch near the arroyo; a soil sample was obtained from the bottom of the arroyo where release water had flowed; and a sample of what appeared to be a seep on the north side of Sullivan Road near the Hammond Ditch.

All samples were found to be non-hazardous. Additionally, the sample taken north of Sullivan Road appears to be seepage from the Hammond Ditch. That area is still wet and seeping.

Giant proposes no further action regarding this release.

If you need additional information, please contact me at (505) 632 4168.

Sincere

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

Enclosures

OIL CONSERVATION DIVES ON

· RENIEWED - OK CHECKED WITH PISTRICT - OK OK TO SIGN OK TO SIGN VAYUE PRICE

III COUNTY
ROAD 4990
BLOOMFIELD
NEW MEXICO
87413

PHONE 505-632-8006 FAX 505-632-4034

OIL CONSERVATION DIVISION 2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131

STATE OF NEW MEXICO ENERGY, MINERALS AND NATURAL RESOURCES DEPARTMENT OIL CONSERVATION DIVISION

Notice is hereby given that pursuant to New Mexico Water Quality Control Commission Regulations, the following discharge plan applications have been submitted to the Director of the Oil Conservation Division, 2040 South Pacheco, Santa Fe, New Mexico 87505, Telephone (505) 827-7131:

(GW-130) Giant Refining Company, Lynn Shelton, P.O. Box 159, Bloomfield, New Mexico 87413, has submitted a renewal application for the previously approved discharge plan for its Bloomfield Petroleum Refinery Class I (non-hazardous) disposal well located in the NW/4 SW/4 of Section 26, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. Up to 2380 barrels (100,000 gallons) per day of non-hazardous refinery waste will be disposed of by injection into the Cliff House formation at a depth from 3400 to 3600 feet. The total dissolved solids concentration of the waste is approximately 15,600 mg/l. The total dissolved solids concentration of the formation fluids is approximately 25,000 mg/l. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface varies in depth from 10 feet to 30 feet and is a water zone directly caused by seepage from Hammond Ditch. The ditch water has a total dissolved solids concentration of approximately 200 The discharge plan addresses the operation and monitoring of the well, associated surface facilities, and provides a contingency plan in the event of an accidental spill, leak and/or any other unauthorized discharge to the surface and/or sub-surface.

(GW-001) Giant Refining Company, Lynn Shelton, P.O. Box 159, Bloomfield, New Mexico 87413, has submitted a renewal application for the previously approved discharge plan for its Bloomfield Petroleum Refinery located in the NW/4 NE/4 and the S/2 NE/4 and the N/2 NW/4 SW/4 and the SE/4 NW/4 SW/4 and the NE/4 SW/4 of Section 26, Township 29 North, Range 11 West, NMPM, San Juan County, New Mexico. The renewal application consist of methods and procedures for handling products, waste, waste water management, and site investigation/ abatement plans. Groundwater most likely to be affected by a spill, leak, or accidental discharge to the surface varies in depth from 10 feet to 30 feet and is a water zone directly caused by seepage from Hammond Ditch. The ditch water has a total dissolved solids concentration of approximately 200 mg/l. The discharge plan addresses how spills, leaks, and other accidental discharges to the surface will be managed.

Any interested person may obtain further information from the Oil Conservation Division and may submit written comments to the Director of the Oil Conservation Division at the address given above. The discharge plan application may be viewed at the above address between 8:00 a.m. and 4:00 p.m., Monday through Friday. Prior to ruling on any proposed discharge plan or its modification, the Director of the Oil Conservation Division shall allow at least thirty (30) days after the date of publication of this notice during which comments may be submitted to him and a public hearing may be requested by any interested person. Requests for a public hearing shall set forth the reasons why a hearing should be held. A hearing will be held if the Director determines there is significant public interest.

If no public hearing is held, the Director will approve or disapprove the proposed plan based on information available. If a public hearing is held, the director will approve or disapprove the proposed plan based on information in the plan and information submitted at the hearing.

GIVEN under the Seal of New Mexico Oil Conservation Commission at Santa Fe, New Mexico, on this 22th day of September, 1999.

STATE OF NEW MEXICO

OIL CONSERVATION DIVISION

SEAL

B~

LORI WROTENBERY, Director

Wayner - Roger says a letter is in order about replacement of this line Due to second failure in 2 months.

Lynn Shelton would like a time line letter on approved installation of barriers at the River before high water flows start in may

	ugu	A	, sag , 51		
7	Wed		Tuesday	Monday	Sunday
				1	
ŀ	EB SI	$-\langle$	>	DENNY - OFF	
		4		3	2
-	ЕВ				
		11		10	9
j	EB DF - SA	_		***************************************	
		18		17	16
	EB	$\overline{}$			
		25		24	23
	L			31	30

Septem

01/14/99

Non-UIC Inspection Results:

GIANT SAN JUAN REFINERY BLOOMFIELD, MET WITH LYNN SHELTON, TRANSFER LINE FROM SOUR WATER PONDS TO EVAPORATION PONDS DEVELOPED A LEAK NEAR SULLIVAN ROADIN THE LANDSCOPED AREA JUST NORTH OF THE NEW TRANSPORTATION OFFICES, THE NON-EXEMPT WATER RAN DOWN THE BAR DITCH TOWARDS THE EAST ON THE NORTH SIDE OF THE ROAD, FLOWING ACROSS THE ROADS SURFACE AT LEAST TWICE, FLOWED THROUGH A CULVERT TOWARDS THE RIVER AND WAS DIKED IN A WASH IN THE RIVER VALLEY L ABOUT 1/2 MILE NORTH OF RIVER. SPILL TRAVELED APPROX 1500 FEET AVG ABOUT 3' WIDE, SPILL EST AT 75 BBLS. DISCOVERED 16:001/12/99, SHUT-IN 16:20, DIKED AT 16:30. WHEN TOURING THE SITE1/14/99 THE REPAIRED LINE WAS STILL SEEPING BECAUSE THERE WAS A SIGNIFICANT VOLUME OF WATER IN THE EXCAVATION. THE TRANSFER LINE IS RATHER THIN WALLED PVC. DIRECTED LYNN SHELTON TO RUN TOTALS OF WQCC CONTITUENTS TO DETERMINE IF SOIL REMOVAL IS NECESSARY. PLAN ON TESTING AND/OR REPLACING THE DRAIN LINE. LETTER TO FOLLOW FROM SANTA FE.

Reported to District III on 1/13/99

Afternoon

3'WIDE BY 500 YDS.

470 489

SPILL RESPONSE NOTIFICATION FORM	
Reporter's Name: SHELTON, TYSON L; Position: ENVIRO, MCR.	
Last, First M.I. Phone Numbers: Work: (505), 633, 9013 - Hemo: (505), 377 (733	
Phone Numbers: Work: (505) 632-8013; Home: (505) 327 - 6333 Date and Time of This Notification: 1/13/99; 5:65 Pm	
Notification Made To: NATTONAL RESPONSE CENTER	
Facility & Owner name : Giant Refining Co.	
Physical Address : #50 County Road 4990 (Sullivan Road)	
Mailing Address : P.O. Box 159	
Bloomfield, NM 87413	
Facility Phone : (505) 632-8013	
GRC Identification Numbers: <u>FRP-06-NM-00015</u> ; EPA: <u>NMD 089_416_416</u> Facility Type: <u>Petroleum refinery</u> ; SIC Code: <u>2911</u>	
Were Materials Discharged? Y (Y/N) Confidential? N (Y/N) Meeting Federal Obligation to Report? Y (Y/N) Calling for Responsible Party? Y (Y/N)	
Incident Description: Source and/or Cause of Incident: PROCESS WASTEWATER TRANSPORTURE OF PROPERTY	2T ;T
Date and Time of Incident: 1615 H25 1/12/99	
Duration of Incident: 30 MINUTES Incident Address/Location: III COUNTERCOAD 4990, BLOOMFIELD, NM 87413	
Medium Affected (air, water, land): LAND	
Description of Medium: DRY ARROYO	
Nearest City: Bloomfield State: NM County: San Juan Zip: 87413	
Distance from City: Across River, 500ft. Direction from City: South	
Section: 26 & 27; Township: 29 North; Range: 11 West, N.M.P.M.	
Facility Latitude: 36°41′50″; Facility Longitude: 107°58′20″	
Container Type:; Tank Oil Storage Capacity: gallons;	
Facility Oil Storage Capacity: 32,487,000 gallons	
Type of Material Discharge: TREATED REFINERY PROCESS WASTEWATER Total Released: 3150 gallons; Amount to Waterway: 2900 gallons	
Response Actions Taken to Correct, Control or Mitigate Incident:	
PROCESS WASTEWATER LINE SHUT IN. ARROYO DIKED	
TO PREVENT ADDITIONAL RUNOFF	
Impact: Number of Injuries:; Number of Deaths:	
Were there Evacuations? (Y/N); Number Evacuated: W/A (Y/N))
Was there any Damage? (Y/N); Damage Estimate:	\$
Additional Information	n:
Other Notifications: EPA?(Y/N) NMED(Y/N) NMOCD? XES	
(Y/N) Facility Contact for Additional Information: Lynn Shotton	
Facility Contact for Additional Information: <u>Lynn Shelton</u>	

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

December 11, 1997

Mr. Warren Arthur (6EN-HX) USEPA Region VI 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

Re:

Monthly Progress Report EPA ID No. NMD 089416416

Administrative Order on Consent U.S. EPA Docket No. VI-303-H

Dear Mr. Arthur:

In accordance with VI.5.b. of the Order, Giant Refining Company - Bloomfield (GRC) submits this monthly progress report.

Interim Measures (IM) Progress

1. Interim Measures, including product recovery from onsite recovery wells, continues. The product recovery wells have been shut in and the pumps removed for maintenance. Additional groundwater measurements will be taken several times between now and February1, 1998.

Corrective Measures Study (CMS)

1. GRC is still waiting for the submission of the groundwater model for this facility. An additional survey will be performed to verify the elevations of the various recovery and monitor wells.

If you require additional information, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

cc:

John Stokes, Refinery Manager

Roger Anderson, NMOCD Benito Garcia, NMED

November Report

STATE OF NEW MEXICO OIL CONSERVATION DIVISION

MEMORANDUM OF MEETING OR CONVERSATION

Telephone	Personal	Time 2110 pm	1	Date //-24-97
	Originating Party			Other Parties
ROLD AND	ERSON,		CM	SWELTON - GINN BLOWMETERD
MARK ASI	ALLEY'			· · · · · · · · · · · · · · · · · · ·
Subject //- 4	4-97 LETTER F	Rom GINT	RRANE	STEND DISPOSAL OF
	- MYRAPOONS SOULS			
Discussion				
9				L XBOYE WQCC.
()	CV) REQUESTED	BKKORUM	Samt	W
			· · · · · · · · · · · · · · · · · · ·	
				
		······································	· · · · · · · · · · · · · · · · · · ·	
Conclusions or	Agreements / \	PROVIDE BU	-1/ 6P n/a.	n sou, samples FOR
101011				W CENT'S REQUEST
UNKKI	A COMPRESSOR	ITTU RYCK	GROLWAI	IS ON BE MOE.
VIVITC	1 COMMEDIC V	NTIN ON A	- OF WM/	33 OV OC TIMOL.
				1 1
Distribution		Sig	gned	Mark Haller
		1		1

November 17, 1997

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

Mr. Warren Arthur (6EN-HX) USEPA Region VI 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

Re:

Monthly Progress Report EPA ID No. NMD 089416416

Administrative Order on Consent U.S. EPA Docket No. VI-303-H

Dear Mr. Arthur:

In accordance with VI.5.b. of the Order, Giant Refining Company - Bloomfield (GRC) submits this monthly progress report.

Interim Measures (IM) Progress

1. Interim Measures, including product recovery from onsite recovery wells, continues.

Corrective Measures Study (CMS)

1. GRC continues to proceed with the groundwater model for this facility. Receipt of the model is expected at any time. GRC has selected a consulting firm, SA & B, Inc., of Phoenix, to prepare the new CMS and Human Health Risk Assessment. Additionally, Giant has performed additional pilot tests to corroborate the porosity data for this facility.

If you require additional information, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

cc:

John Stokes, Refinery Manager

Roger Anderson, NMOCD

Benito Garcia, NMED

October Report

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

November 5, 1997

Mr. Roger Anderson Environmental Bureau Chief NMOCD 2040 South Pacheco Santa Fe, New Mexico 87505

Re:

Bi-weekly River Terrace Report

Dear Mr. Anderson:

Giant Refining Company - Bloomfield submits the bi-weekly river terrace report. Biweekly sampling continues to take place. The most recent analytical data is supposed to be delivered this week after a delay by the laboratory.

There is still no evidence of separate phase hydrocarbon in the recovery culvert. No sheen is present on the river.

If you need additional information, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

cc:

Denny Foust, NMOCD, Aztec Greg Lyssy, USEPA, Region VI

Steve Pullen, NMED

November 4, 1997

Mr. Mark Ashley NMOCD 2040 South Pacheco Santa Fe, New Mexico 87505

Re:

Disposal of Non-Hazardous Soils On Site

GW-001 San Juan County

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

Dear Mr. Ashley:

Giant Refining Company - Bloomfield is submitting a request to use as "fill" dirt, in an area that is to be developed for construction, three soil piles that we have on site.

Specifically, the three soil piles are: the soil delisted by the EPA and currently stored on the east end of the refinery; the soil that was removed from the river terrace area by excavation last November and currently stored on plastic near Tank 2; and the soil and solids removed from the north lined evaporation lagoon.

The delisted soil will be used to fill in a low lying area near the refinery's naphtha loading rack to enhance stormwater management (see attached drawing). The river terrace soil and the soil and solids from the evaporation lagoon will be used as fill in the south unlined evaporation lagoon (see drawing). This lagoon will eventually be partially filled to provide room for future construction projects.

Samples were obtained from the river terrace soil on April 8, 1997 and were analyzed for TCLP parameters. A copy of that analytical data was submitted to the OCD, Santa Fe on May 2, 1997. Samples of the soil and solids from the lined evaporation lagoon were obtained on August 14, 1997 and were also analyzed for TCLP parameters. A copy of that analytical data is enclosed. The soil delisted by the EPA was sampled in 1991 and 1992 and was determined to be non-hazardous, and is documented in the RFI report that was submitted to the OCD.

WQCC analysis was performed on samples collected from each of the three soil piles on August 20, 1997. A copy of that analytical data is enclosed for your review. Please note that additional reporting limits were added to the WQCC data to reflect the "twenty times" rule of thumb that was suggested by the OCD for WQCC analysis (which is for water or liquids) to compensate for the samples being solids.

All three soil piles are below WQCC standards (except as described below) and, as such, seem suitable for the disposal methods described above. WQCC standards were exceeded as follows:

Mtching, m.	Domomotou	River Soil	Delisted Soil	Evan Dond	WOCC	
	Parameter	River Son	Densted Son	Evap Pond	wycc	
رسراد	√Aluminum	5,600	8,200	4,000	400 ppm	
15 200	√Iron	8,700	13,000	5,700	200 ppm	
410	✓ Managanese	240	310	190	20 ppm	, 2 ppm
	Zinc	160	~=*		40 ppm	•
	Copper	40			20 ppm	
	Chloride	<u>18</u> 0	<u> 29</u>	43,000	40,000 ppm	250 ppm
	Sulfate	8,000	1800	7,800	4,000 ppm	600 mm

Now I

Giant submits that the metals reported above are consistent with naturally occurring background levels for those metals. Giant also proposes to dispose of the river soil and evap pond soil as described above even though sulfates exceed WQCC levels in both samples and chlorides exceeded WQCC levels in the river soil because those soils will be overlain with additional clean "fill" soil, thereby effectively providing a soil cap that will minimize potential migration of those constituents.

Giant also submits that these disposal activities present an economical and effective method for disposal of these soils and that the disposal activities also represent a one time "beneficial use" of these soil piles.

Thank you for your consideration of this proposal. If you need additional information please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

Enclosures

cc: Denny Foust, NMOCD Aztec

cc w/o enclosures: John Stokes, Refinery Manager

Kathleen O'Leary, Regulatory Affairs Coordinator

PARAGON ANALYTICS, INC.

225 Commerce Drive • Fort Collins, CO 80524 • (800) 443-1511 • (970) 490-1511 • FAX (970) 490-1522

September 5, 1997

Mr. Lynn Shelton Giant Refining Company #50 County Road 4990/PO Box 159 Bloomfield, NM 87413

RE:

Paragon Workorder: 97-08-205

Client Project Name: Not Submitted

Client Project Number: Not Submitted

Dear Mr. Shelton:

One solid and three water samples were received from Giant Refining Company on

August 18, 1997. The samples were scheduled for the following analyses:

GC/MS Semivolatiles

pages 1-7

GC/MS Volatiles

pages 1-7

TCLP Pesticides

pages 1-7

TCLP Herbicides

pages 1-7

TCLP Metals

pages 1-7

Aromatic Volatile Organics

pages 1-9

The results for these analyses are contained in the enclosed report.

Thank you for your confidence in Paragon Analytics, Inc. Should you have any questions, please call.

Sincerely,

Paragon Analytics, Inc.

Victoria Bayly

Project Manager

VB/jjc

Enclosure: Report

Paragon Analytics, Inc.

Aromatic Volatile Organics Case Narrative

Giant Refining Company

Order Number - 9708205

- 1. This report consists of 3 water samples received by Paragon on 08/18/97.
- 2. These samples were prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the water samples were prepared by heating and purging 5 mls using purge and trap procedures based on Method 5030. The calibration curve was also prepared using the heated purge.
- 3. The samples were analyzed using a GC with a DB-624 capillary column and a PID detector according to protocols based on SW-846 Method 8020. All positive results were quantitated using the responses from the initial calibration curve using the internal standard technique. Second column confirmation was performed on all samples with positive results on a DB-VRX capillary column.
- 4. All samples were analyzed within the established holding times except sample 9708205-1 which was received by Paragon after the holding time had lapsed.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All matrix spike and matrix spike duplicate recoveries and RPDs were within acceptance criteria.
- 7. All blank spike and blank spike duplicate recoveries and RPDs were within the acceptance criteria.
- 8. All surrogate recoveries were within acceptance criteria.
- 9. All internal standard recoveries were within acceptance criteria.

- Due to high levels of non-target analytes sample 9708205-3 was analyzed at a higher 10. dilution. The reporting limits have been adjusted accordingly.
- 11. All initial and continuing calibration criteria were within acceptance criteria.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Mark R. Hayes

Fuels Chemist

Reviewer's Initials

Paragon Analytics, Inc.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE
PAI-ID	Client ID	MATRIX	SAMPLED
9708205-1	River-B (7/31)	Water	07/31/97
9708205-2	River-B (8/12)	Water	08/12/97
9708205-3	NOWP-E	Water	08/14/97
9708205-4	Pond Sludge	Solid	08/14/97

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

Reagent Blank

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: WRB1 08/21/97

Date Collected: N/A

Date Extracted: 8/21/97

Date Analyzed: 8/21/97

Sample Matrix: Water Sample Volume: 5 mL

Dilution Factor: 1

Analyte	Conc (ug/L)	Reporting Limit (ug/L)
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
M,P-Xylene	ND	1.0
O-Xylene	ND	0.50
Total Xylenes	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,3,4-Trifluorotoluene	96	88 - 119

ND = Not Detected at or above client requested reporting limit.

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

River-B (7/31)

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-1

Date Collected: 7/31/97

Date Extracted: 8/21/97

Date Analyzed: 8/21/97

Sample Matrix: Water Sample Volume: 5 mL

Dilution Factor: 1

Analyte	Conc (ug/L)	Reporting Limit (ug/L)
Benzene	0.72	0.50
Toluene	ND	0.50
Ethylbenzene	1.1	0.50
M,P-Xylene	3.9	1.0
O-Xylene	1.1	0.50
Total Xylenes	5.0	1.0

SURROGATE RECOVERY

% Recovery	% Rec Limits
06	88 - 119
	% Recovery

ND = Not Detected at or above client requested reporting limit.

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

River-B (8/12)

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-2

Date Collected: 8/12/97

Date Extracted: 8/21/97

Date Analyzed: 8/21/97

Sample Matrix: Water Sample Volume: 5 mL

Dilution Factor: 1

Analyte	Conc (ug/L)	Reporting Limit (ug/L)
Benzene	0.56	0.50
Toluene	ND	0.50
Ethylbenzene	1.0	0.50
M,P-Xylene	3.9	1.0
O-Xylene	1.0	0.50
Total Xylenes	5.0	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,3,4-Trifluorotoluene	96	88 - 119

ND = Not Detected at or above client requested reporting limit.

AROMATIC VOLATILE ORGANICS BLANK SPIKE

Method 8020

Sample ID

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: WBS1 08/21/97

Sample Matrix: Water

Blank Spike

Date Extracted:

8/21/97

Date Analyzed:

8/21/97

Sample Volume: 5 mL

Analyte	Spike Added (ug/L)	BS Concentration (ug/L)	BS Percent Recovery	QC Limits % Rec
Benzene	40.0	45.2	113	85 - 115
Toluene	40.0	43.1	108	85 - 115
Ethylbenzene	40.0	43.4	108	85 - 115
M,P-Xylene	80.0	86.9	109	85 - 115
O-Xylene	40.0	43.3	108	85 - 115
Total Xylenes	120	130	109	85 - 115

	Spike	BSD	BSD		QC
	Added	Concentration	Percent		Limits
Analyte	(ug/L)	(ug/L)	Recovery	RPD	RPD
Benzene	40.0	45.9	115	2	20
Toluene	40.0	44.1	110	2	20
Ethylbenzene	40.0	43.8	109	1	20
M,P-Xylene	80.0	87.5	109	1	20
O-Xylene	40.0	43.9	110	1	20
Total Xylenes	120	131	110	1	20

SURROGATE RECOVERY BS/BSD

Analyte	% Recovery	% Recovery	
	BS	BSD	% Rec Limits
2,3,4-Trifluorotoluene	99	98	88 - 119

D = Detected

AROMATIC VOLATILE ORGANICS MATRIX SPIKE

Method 8020

Sample ID

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-2MS

Sample Matrix: Water

River-B (8/12)

8/12/97

Date Collected:

Date Extracted: 8/21/97

Date Analyzed: 8/21/97

Sample Volume: 5 mL

Dilution Factor: 1

	Spike	Sample	MS	MS	QC
	Added	Concentration	Concentration	Percent	Limits
Analyte	(ug/L)	(ug/L)	(ug/L)	Recovery	% Rec
Benzene	40.0	0.56	46.7	115	85 - 115
Toluene	40.0	ND	44.0	110	85 - 115
Ethylbenzene	40.0	1.03	44.5	109	85 - 115
M,P-Xylene	80.0	3.93	91.0	109	85 - 115
O-Xylene	40.0	1.03	44.4	108	85 - 115
Total Xylenes	120	4.96	135	109	85 - 115

Analyte	Spike Added (ug/L)	MSD Concentration (ug/L)	MSD Percent Recovery	RPD	QC Limits RPD
Benzene	40.0	45.4	112	3	20
Toluene	40.0	42.7	107	3	20
Ethylbenzene	40.0	42.8	104	4	20
M,P-Xylene	80.0	87.2	104	4	20
O-Xylene	40.0	42.6	104	4	20
Total Xylenes	120	130	104	4	20

SURROGATE RECOVERY MS/MSD

Analyte	% Recovery MS	% Recovery MSD	% Rec Limits
2,3,4-Trifluorotoluene	97	97	88 - 119

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

NOWP-E

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-3

Date Collected: 8/14/97

Date Extracted: 8/21/97

Date Analyzed: 8/21/97

Sample Matrix: Water Sample Volume: 5 mL

Dilution Factor: 5

Analyte	Conc (ug/L)	Reporting Limit (ug/L)
Benzene	ND	2.5
Toluene	ND	2.5
Ethylbenzene	ND	2.5
M,P-Xylene	ND	5.0
O-Xylene	ND	2.5
Total Xylenes	ND	5.0

SURROGATE RECOVERY

% Recovery	% Rec Limits
05	88 - 119
	% Recovery

ND = Not Detected at or above client requested reporting limit.

GC/MS Semivolatiles Case Narrative

Giant Refining Company

Order Number - 9708205

- 1. This report consists of 1 soil sample received by Paragon on August 18, 1997.
- 2. This sample was prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the sample was tumbled by Method 1311. This TCLP leachate was then extracted using continuous liquid-liquid extractors, based on Method 3520.
- 3. The sample was analyzed using GC/MS with a DB-5.625 capillary column according to protocols based on SW-846 Method 8270B for TCLP compounds only. All positive results were quantitated against the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. The sample was analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. The matrix spike was performed on an in house sample. All matrix spike recoveries were within acceptance criteria.
- 7. All blank spike and blank spike duplicate recoveries were within the acceptance criteria.
- 8. All surrogate recoveries were within acceptance criteria.
- 9. All internal standard recoveries were within acceptance criteria.

10. All initial calibration criteria were within acceptance criteria. Method 8270B states any compound exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve that was analyzed on August 13, and 14, 1997, were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Daved F. Reid

Organic Chemist

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE
PAI-ID	Client ID	MATRIX	SAMPLED
9708205-1	River-B (7/31)	Water	07/31/97
9708205-2	River-B (8/12)	Water	08/12/97
9708205-3	NOWP-E	Water	08/14/97
9708205-4	Pond Sludge	Solid	08/14/97

Method SW8270--TCLP Leachate **Method Blank**

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708205

Client Name: Giant Refining Company

ClientProject ID: Not Submitted

Reported on: Thursday, August 28, 1997

Field ID: LABQC

Sample Matrix: liquid

Date Collected:

22-Aug-97

Sample Aliquot: 100

Lab ID: L-082297MB

% Moisture: N/A

Date Extracted: 22-Aug-97 Date Analyzed:

25-Aug-97

Final Volume: Dilution:

1

Cleanup Method: NONE Report Basis: NA

Prep Batch:

sv08087b1

LEACH DATE: 8/21/97

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
110-86-1	PYRIDINE	0.1	mg/l	0.1	U	
106-46-7	1,4-DICHLOROBENZENE	0.1	mg/l	0.1	U	
95-48-7	2-METHYLPHENOL	0.1	mg/l	0.1	U	
108-39-4	3+4-METHYLPHENOL	0.1	mg/l	0.1	U	
67-72-1	HEXACHLOROETHANE	0.1	mg/l	0.1	U	
98-95-3	NITROBENZENE	0.1	mg/l	0.1	U	-
87-68-3	HEXACHLOROBUTADIENE	0.1	mg/l	0.1	Ų	
88-06-2	2,4,6-TRICHLOROPHENOL	0.1	mg/l	0.1	U	
95-95-4	2,4,5-TRICHLOROPHENOL	0.5	mg/l	0.5	U	
121-14-2	2,4-DINITROTOLUENE	0.1	mg/l	0.1	U	
118-74-1	HEXACHLOROBENZENE	0.1	mg/l	0.1	U	
87-86-5	PENTACHLOROPHENOL	0.5	mg/l	0.5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0.445	mg/l	0.75	59	23 - 100
321-60-8	2-FLUOROBIPHENYL	0.278	mg/l	0.5	56	21 - 106
367-12-4	2-FLUOROPHENOL	0.403	mg/l	0.75	54	21 - 100
4165-60-0	NITROBENZENE-D5	0.248	mg/l	0.5	50	34 - 111
13127-88-3	PHENOL-D5	0.421	mg/l	0.75	56	15 - 104
1718-51-0	TERPHENYL-D14	0.29	mg/l	0.5	58	33 - 111

U = Less than the Reporting Limit

Semi-volatile Organics by GC/MS

Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708205

Client Name: Giant Refining Company

ClientProject ID: Not Submitted

Reported on: Friday, August 29, 1997

Field ID: Pond Sludge

Sample Matrix: liquid

Date Collected: 14-Aug-97

Sample Aliquot:

100

Date Extracted: 22-Aug-97

Final Volume:

Lab ID: 9708205-4

% Moisture: N/A

Dilution:

1

Cleanup Method: NONE

Date Analyzed: 26-Aug-97

Report Basis: AS RECEIVED

Prep Batch: sv08205

LEACH DATE: 8/21/97

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
110-86-1	PYRIDINE	0.1	mg/l	0.1	U	
106-46-7	1,4-DICHLOROBENZENE	0.1	mg/l	0.1	U	
95-48-7	2-METHYLPHENOL	0.1	mg/l	0.1	U	
108-39-4	3+4-METHYLPHENOL	0.1	mg/l	0.1	U	
67-72-1	HEXACHLOROETHANE	0.1	mg/l	0.1	υ	
98-95-3	NITROBENZENE	0.1	mg/l	0.1	U	
87-68-3	HEXACHLOROBUTADIENE	0.1	mg/l	0.1	U	
88-06-2	2,4,6-TRICHLOROPHENOL	0.1	mg/l	. 0.1	U	
95-95-4	2,4,5-TRICHLOROPHENOL	0.5	mg/l	0.5	υ	
121-14-2	2,4-DINITROTOLUENE	0.1	mg/l	0.1	U	
118-74-1	HEXACHLOROBENZENE	0.1	mg/l	0.1	U	
87-86-5	PENTACHLOROPHENOL	0.5	mg/l	0.5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0.542	mg/l	0.75	72	23 - 100
321-60-8	2-FLUOROBIPHENYL	0.269	mg/l	0.5	54	21 - 106
367-12-4	2-FLUOROPHENOL	0.403	mg/l	0.75	54	21 - 100
4165-60-0	NITROBENZENE-D5	0.259	mg/l	0.5	52	34 - 111
13127-88-3	PHENOL-D5	0.448	mg/l	0.75	60	15 - 104
1718-51-0	TERPHENYL-D14	0.503	mg/l	0.5	101	33 - 111

U = Less than the Reporting Limit

Blank Spike and Blank Spike Duplicate Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708205

Client Name: Giant Refining Company

ClientProject ID: Not Submitted

Reported on: Thursday, August 28, 1997

BS ID: L-082297LCS BSD ID: L-082297LCSD Sample Matrix: liquid % Moisture: N/A

Date Collected: 22-Aug-97
Date Extracted: 22-Aug-97

Sample Aliquot: 100 Final Volume: 1

Cleanup Method: NONE
Report Basis: N/A

Date Extracted: 22-Aug-97
Date Analyzed: 25-Aug-97
Prep Batch: sv08087b1

Dilution: 1 LEACH DATE: 8/21/97

CASNO	Target Analyte	Spike Added	BS Result	Units	Reporting Limit	BS % Rec.	Control Limits
110-86-1	PYRIDINE	0.5	0.184	mg/l	0.1	37	1 - 83
106-46-7	1,4-DICHLOROBENZENE	0.5	0.215	mg/l	0.1	43	12 - 88
95-48-7	2-METHYLPHENOL	1	0.507	mg/l	0.1	51	21 - 97
108-39-4	3+4-Methylphenol	2	0.98	mg/l	0.1	49	29 - 92
67-72-1	HEXACHLOROETHANE	0.5	0.192	mg/l	0.1	38	18 - 83
98-95-3	NITROBENZENE	0.5	0.22	mg/l	0.1	44	14 - 105
87-68-3	HEXACHLOROBUTADIENE	0.5	0.188	mg/l	0.1	38	16 - 82
88-06-2	2,4,6-TRICHLOROPHENOL	1	0.543	mg/l	0.1	54	24 - 84
95-95-4	2,4,5-TRICHLOROPHENOL	1	0.607	mg/l	0.5	61	19 - 96
121-14-2	2,4-DINITROTOLUENE	0.5	0.235	mg/l	0.1	47	1 - 104
118-74-1	HEXACHLOROBENZENE	0.5	0.256	mg/l	0.1	51	22 - 101
87-86-5	PENTACHLOROPHENOL	1	0.657	mg/l	0.5	66	22 - 111

Blank Spike and Blank Spike Duplicate Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708205

Client Name: Giant Refining Company

ClientProject ID: Not Submitted

Reported on: Thursday, August 28, 1997

CASNO	Target Analyte	Spike Added	BSD Result	Units	Reporting Limit	BSD % Rec.	RPD	RPD Limits
110-86-1	PYRIDINE	0.5	0.171	mg/l	0.1	34	8	50
106-46-7	1,4-DICHLOROBENZENE	0.5	0.233	mg/l	0.1	47	9	50
95-48-7	2-METHYLPHENOL	1	0.586	mg/l	0.1	59	15	50
108-39-4	3+4-Methylphenol	2 .	1.16	mg/l	0.1	58	17	50
67-72-1	HEXACHLOROETHANE	0.5	0.217	mg/l	0.1	43	12	50
98-95-3	NITROBENZENE	0.5	0.264	mg/l	0.1	53	19	50
87-68-3	HEXACHLOROBUTADIENE	0.5	0.217	mg/l	0.1	43	12	50
88-06-2	2,4,6-TRICHLOROPHENOL	1	0.648	mg/l	0.1	65	18	50
95-95-4	2,4,5-TRICHLOROPHENOL	1	0.714	mg/l	0.5	71	15	50
121-14-2	2,4-DINITROTOLUENE	0.5	0.281	mg/l	0.1	56	17	50
118-74-1	HEXACHLOROBENZENE	0.5	0.308	mg/l	0.1	62	19	50
87-86-5	PENTACHLOROPHENOL	1	0.824	mg/l	0.5	82	22	50

Surrogate Recovery BS/BSD

CASNO	Target Analyte	Spike Added	BS % Rec.	BSD % Rec.	RPD	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0.75	54	62	14	23 - 100
321-60-8	2-FLUOROBIPHENYL	0.5	53	58	9	21 - 106
367-12-4	2-FLUOROPHENOL	0.75	50	55	10	21 - 100
4165-60-0	NITROBENZENE-D5	0.5	49	56	13	34 - 111
13127-88-3	PHENOL-D5	0.75	51	56	9	15 - 104
1718-51-0	TERPHENYL-D14	0.5	58	66	13	33 - 111

GC/MS Volatiles Case Narrative

Giant Refining Company

Order Number - 9708205

- 1. This report consists of 1 solid sample received by Paragon on 08-18-97.
- 2. The sample was prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the sample was leached using the TCLP ZHE extraction procedure specified in Method 1311. The TCLP leachate was then analyzed by purging the sample using purge and trap procedures based on Method 5030.
- 3. The sample was analyzed using GC/MS with a RTX-624 capillary column according to protocols based on SW-846 Method 8260. All positive results were quantitated with the average response of the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. The sample was analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All matrix spike recoveries were within acceptance criteria.
- 7. All blank spike and blank spike duplicate recoveries were within the acceptance criteria.
- 8. All surrogate recoveries were within acceptance criteria.
- 9. All internal standard recoveries were within acceptance criteria.

10. All initial and continuing calibration criteria were within acceptance criteria. Method 8260 states any compound exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Phil Tallarico

GC/MS Analyst

Reviewer's Initials

8-27-97

Date

8-27-97

Date

TCLP VOLATILE ORGANICS

Method 8260

Sample ID

Reagent Blank

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted Lab Sample ID: VBLK01 08-25-97

Date Collected: N/A
Date Extracted: N/A
Date Analyzed: 08-25-97

Sample Matrix: Water Sample Volume: 5 mL

EPA HW		CAS		Reporting
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.01
D029	1,1-Dichloroethene	75-35-4	ND	0.01
D022	Chloroform	67-66-3	ND	0.01
D028	1,2-Dichloroethane	107-06-2	ND	0.01
D035	Methyl ethyl ketone	78-93-3	ND	0.01
D019	Carbon tetrachloride	56-23-5	ND	0.01
D040	Trichloroethene	79-01-6	ND	0.01
D018	Benzene	71-43-2	ND	0.01
D039	Tetrachloroethene	127-18-4	ND	0.01
D021	Chlorobenzene	108-90-7	ND	0.01

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
Dibromofluoromethane	91	85-115
Toluene-d8	90	88-110
Bromofluorobenzene	97	85-115

ND = Not Detected

TCLP VOLATILE ORGANICS

Method 8260

Sample ID

TCLP

Reagent Blank

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Client Project ID: Not Submitted
Lab Sample ID: TCLPRB1 08-21-97

Date Collected: N/A
Date Extracted: 08-21-97
Date Analyzed: 08-25-97

Sample Matrix: TCLP Leachate

Sample Volume: 1.0 mL

EPA HW		CAS		Reporting
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.05
D029	1.1-Dichloroethene	75-35-4	ND	0.05
D022	Chloroform	67-66-3	ND	0.05
D028	1,2-Dichloroethane	107-06-2	ND	0.05
D035	Methyl ethyl ketone	78-93-3	ND	0.05
D019	Carbon tetrachloride	56-23-5	ND	0.05
D040	Trichloroethene	79-01-6	ND	0.05
D018	Benzene	71-43-2	ND	0.05
D039	Tetrachloroethene	127-18-4	ND	0.05
D021	Chlorobenzene	108-90-7	ND	0.05

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
Dibromofluoromethane	94	85-115
Toluene-d8	101	88-110
Bromofluorobenzene	103	85-115

ND = Not Detected

TCLP VOLATILE ORGANICS

Method 8260

Sample ID

Pond Sludge

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted Lab Sample ID: 9708205-4

Date Collected: 08-14-97
Date Extracted: 08-21-97

Sample Matrix: TCLP Leachate Sample Volume: 1.0 mL

Date Analyzed: 08-25-97

EPA HW		CAS		Reporting
Number	Analyte	Number	Result (mg/L)	Limit (mg/L)
D043	Vinyl chloride	75-01-4	ND	0.05
D029	1,1-Dichloroethene	75-35-4	ND	0.05
D022	Chloroform	67-66-3	ND	0.05
D028	1,2-Dichloroethane	107-06-2	ND	0.05
D035	Methyl ethyl ketone	78-93-3	ND	0.05
D019	Carbon tetrachloride	56-23-5	ND	0.05
D040	Trichloroethene	79-01-6	ND	0.05
D018	Benzene	71-43-2	ND	0.05
D039	Tetrachloroethene	127-18-4	ИD	0.05
D021	Chlorobenzene	108-90-7	ND	0.05

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
Dibromofluoromethane	96	85-115
Toluene-d8	105	88-110
Bromofluorobenzene	100	85-115

ND = Not Detected

TCLP VOLATILE MATRIX SPIKE RECOVERY

Method 8260

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Lab Sample ID: 9708188-2

Sample Matrix: TCLP Leachate Sample Volume: 1.0 mL

Sample ID

In House

Date Collected: 08-13-97 Date Extracted: 08-21-97 Date Analyzed: 08-25-97

	Spike Added	Sample Concentration	MS Concentration	MS %	QC Limit
Analyte	(mg/L)	(mg/L)	(mg/L)	Rec	Recovery
7 mary to	(mg/L)	(mg/L)	(mgb)	TCC	receivery
Vinyl chloride	0.100	ND	0.094	94	49 - 132
1,1-Dichloroethene	0.100	ND	0.099	99	65 - 126
Methyl ethyl ketone	0.100	ND	0.110	110	68 - 123
Chloroform	0.100	ND	0.101	101	61 - 122
Carbon tetrachloride	0.100	ND	0.098	98	26 - 156
1,2-Dichloroethene	0.100	ND	0.106	106	80 - 113
Benzene	0.100	ND	0.102	102	81 - 108
Trichloroethene	0.100	ND	0.091	91	60 - 129
Tetrachloroethene	0.100	ND	0.097	97	75 - 116
Chlorobenzene	0.100	ND	0.102	102	81 - 107

SURROGATE RECOVERIES

Analyte	% Recovery	% Rec Limits
Dibromofluoromethane Toluene-d8	102 100	86 - 118 88 - 110
Bromofluorobenzene	100	86 - 115

ND = Not Detected Page 1 of 1

TCLP VOLATILE BLANK SPIKE RECOVERY

Method 8260

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted Lab Sample ID: BS1,2 08-25-97

Sample Matrix: Water Sample Volume: 5 mL Sample ID

Blank Spike

Date Collected: N/A
Date Extracted: N/A
Date Analyzed: 08-25-97

	Spike	Sample	BS	BS	QC
	Added	Concentration	Concentration	%	Limit
Analyte	(mg/L)	(mg/L)	(mg/L)	Rec	Recovery
77. 1 11 .1			0.000	100	40 122
Vinyl chloride	0.020	N/A	0.020	100	49 - 132
1,1-Dichloroethene	0.020	N/A	0.020	100	65 - 126
Methyl ethyl ketone	0.020	N/A	0.020	100	68 - 123
Chloroform	0.020	N/A	0.020	101	61 - 122
Carbon tetrachloride	0.020	N/A	0.021	107	26 - 156
1,2-Dichloroethene	0.020	N/A	0.023	116	80 - 113
Benzene	0.020	N/A	0.021	105	81 - 108
Trichloroethene	0.020	N/A	0.023	113	60 - 129
Tetrachloroethene	0.020	N/A	0.021	104	75 - 116
Chlorobenzene	0.020	N/A	0.022	109	81 - 107

	Spike	BS2	BS2		QC
ł	Added	Concentration	%		Limit
Compound	(μg/L)	(μg/L)	REC	RPD	REC
Vinyl chloride	0.020	0.020	100	1	49-132
1,1-Dichloroethene	0.020	0.020	101	0	65-126
Methyl ethyl ketone	0.020	0.020	98	1	68-130
Chloroform	0.020	0.020	101	1	61-122
Carbon tetrachloride	0.020	0.021	107	1	26-156
1,2-Dichloroethene	0.020	0.020	98	17	80-113
Benzene	0.020	0.020	99	6	81-108
Trichloroethene	0.020	0.022	111	2	60-129
Tetrachloroethene	0.020	0.021	104	0	75-116
Chlorobenzene	0.020	0.022	109	0	81-107

SURROGATE RECOVERIES

Analyte	BS1 % Recovery	BS2 % Recovery	% Rec Limits
Dibana official and	06	00	97 119
Dibromofluoromethane	96	99	86 - 118
Toluene-d8	100	98	88 - 110
Bromofluorobenzene	103	100	86 - 115

N/A = Non Applicable

TCLP Pesticides Case Narrative

Giant Refining Company

Order Number - 9708205

- 1. This report consists of 1 solid sample received by Paragon on 08/18/97.
- 2. This sample was extracted and analyzed according to SW-846, 3rd Edition procedures. Specifically, the solid sample was processed through leaching procedures based on Method 1311. The leachate was extracted using continuous liquid-liquid extractors, based on Method 3520.
- 3. The extracts were then analyzed using GC/ECD (electron capture detectors) with a RTX-1701 capillary column according to protocols based on Method 8081. All positive results were then confirmed on a RTX-50 column. The quantitation of each analyte is taken from the primary column unless interferences were encountered, in which case the secondary column was used.
- 4. All samples were extracted and analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All blank spike recoveries were within the acceptance criteria.
- 7. All matrix spike criteria were met with the following exceptions.

Spike Compound

Sample

Criteria

9708205-4MS

Methoxychlor

% Recovery

The recovery of this compound in the blank spike was within control limits, which demonstrated the spike outlier in the matrix spike was due to matrix effects, so no further action is needed.

8.	All surrogate recoveries were within	n acceptable limits with	the following exceptions:
		a acceptable minible with	me rone man enceptions,

Sample

Surrogate

Sample

Surrogate

9708205-4

DCB

9708205-4MS

DCB

The method states that one surrogate is allowed to be outside acceptance criteria without further action.

9. All initial calibration criteria were within acceptance criteria. The continuing calibrations exceeded the acceptance criteria in the following manner:

CCV #1 - Methoxychlor was out high on both columns. Heptachlor, Endrin and DCB were out high on the secondary column.

CCV #2 - Heptachlor, Endrin and DCB were out high on the secondary column.

Because the sensitivity of the instrument increased for these compounds and no targets were found, no further action was taken. The reporting limits are supported.

10. The percent breakdown criteria for Endrin, 4,4'-DDT and the combined breakdown met acceptance criteria.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Marty Brown

GC Analyst

Reviewer's Initials

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE
PAI-ID	Client ID	MATRIX	SAMPLED
9708205-1	River-B (7/31)	Water	07/31/97
9708205-2	River-B (8/12)	Water	08/12/97
9708205-3	NOWP-E	Water	08/14/97
9708205-4	Pond Sludge	Solid	08/14/97

TCLP ORGANOCHLORINE PESTICIDES

Method 8081

Sample ID

TCLP Blank

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Date Collected: N/A

Date Leached: 8/21/97

Date Extracted: 8/22/97

Date Analyzed: 8/26/97

Lab Sample ID: RB1 08/22/97

Sample Volume: 100 mL

Final Volume: 10 mL

Sample Matrix: TCLP Leachate

Cleanup: N/A

EPA HW		CAS		Reporting
Number	Analyte	Number	Conc (mg/L)	Limit (mg/L)
D013	gamma - BHC (Lindane)	58-89-9	ND	0.00050
D031	Heptachlor/Heptachlor Epoxide	76-44-8	ND	0.0010
D012	Endrin	72-20-8	ND	0.0010
D014	Methoxychlor	72-43-5	ND	0.0050
D020	Chlordane (technical)	37-74-9	ND	0.0050
D015	Toxaphene	8001-35-2	ND	0.050

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,4,5,6-Tetrachloro-m-xylene	106	44 - 131
Decachlorobiphenyl	69	48 - 143

ND = Not Detected at or above reporting limits.

TCLP ORGANOCHLORINE PESTICIDES

Method 8081

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Pond Sludge

Lab Sample ID: 9708205-4

Date Collected: 8/14/97 Date Leached: 8/21/97 Date Extracted: 8/22/97 Date Analyzed: 8/26/97

Sample Matrix: TCLP Leachate

Sample Volume: 100 mL

Cleanup: N/A

Final Volume: 10 mL

EPA HW		CAS		Reporting
Number	Analyte	Number	Conc (mg/L)	Limit (mg/L)
D013	gamma - BHC (Lindane)	58-89-9	ND	0.00050
D031	Heptachlor/Heptachlor Epoxide	76-44-8	ND	0.0010
D012	Endrin	72-20-8	ND	0.0010
D014	Methoxychlor	72-43-5	ND	0.0050
D020	Chlordane (technical)	37-74-9	ND	0.0050
D015	Toxaphene	8001-35-2	ND	0.050

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits	
2,4,5,6-Tetrachloro-m-xylene	66	44 - 131	
Decachlorobiphenyl	32 *	48 - 143	

ND = Not Detected at or above reporting limits.

TCLP ORGANOCHLORINE PESTICIDE BLANK SPIKE

Method 8081

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Blank Spike

Date Leached:

8/21/97

Date Extracted:

8/22/97

Date Analyzed:

8/26/97

Sample Matrix: TCLP Leachate

Lab Sample ID: BS1 08/22/97

Cleanup: N/A

Sample Volume: 100 mL

Final Volume: 10 mL

	Spike	BS	BS	QC
	Added	Concentration	Percent	Limits
Analyte	(mg/L)	(mg/L)	Recovery	% Rec
gamma - BHC (Lindane)	0.0040	0.0043	109	78 - 126
Heptachlor	0.0040	0.0047	118	59 - 145
Endrin	0.0040	0.0051	126	77 - 134
Methoxychlor	0.0040	0.0050	125	50 - 150

SURROGATE RECOVERY BS/BSD

Analyte	% Recovery MS	% Rec Limits
2,4,5,6-Tetrachloro-m-xylene	108	44 - 131
Decachlorobiphenyl	69	48 - 143

ND = Not Detected

TCLP ORGANOCHLORINE PESTICIDE MATRIX SPIKE

Method 8081

Sample ID

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-4MS

Sample Matrix: TCLP Leachate

Cleanup: N/A

Pond Sludge

Date Collected:

8/14/97

Date Leached:

8/21/97

Date Extracted:

8/22/97

Date Analyzed:

8/26/97

Sample Volume: 100 mL

Final Volume: 10 mL

	Spike	Sample	MS	MS	QC
	Added	Concentration	Concentration	Percent	Limits
Analyte	(mg/L)	(mg/L)	(mg/L)	Recovery	% Rec
gamma - BHC (Lindane)	0.0040	ND	0.0032	81	78 - 126
Heptachlor	0.0040	ND	0.0026	65	59 - 145
Endrin	0.0040	ND	0.0045	112	77 - 134
Methoxychlor	0.0040	ND	0.0017	43 *	50 - 150

SURROGATE RECOVERY

Analyte	% Recovery MS	% Rec Limits	
2,4,5,6-Tetrachloro-m-xylene	66	44 - 131	
Decachlorobiphenyl	37 *	48 - 143	

ND = Not Detected

TCLP Herbicides Case Narrative

Giant Refining Company

Order Number - 9708205

- 1. This report consists of 1 solid sample received by Paragon on 08/18/97.
- 2. This sample was extracted and analyzed according to SW-846, 3rd Edition procedures. Specifically, the solid sample was processed through leaching procedures based on Method 1311. The leachate was extracted and analyzed based Method 8151 protocols. The leachate was extracted using separatory funnels. The samples are also processed through washing procedures to reduce interferences using the protocols listed in the method. The extracts were then derivitized using the diazomethane procedure contained in the method.
- 3. The extracts were then analyzed using GC/ECD (electron capture detectors) with a DB-1701 capillary column according to protocols based on Method 8151. All positive results were then confirmed on a RTx-20 column. The quantitation of each analyte is the lower of the concentrations obtained from each column. This minimizes the chances of reporting elevated results based on interferences.
- 4. All samples were extracted and analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All blank spike recoveries were within the acceptance criteria.
- 7. All matrix spike recoveries were within acceptance criteria.
- 8. All surrogate recoveries were within acceptance criteria.

9. All initial and continuing calibration criteria were within acceptance criteria.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Marty Brown Date

GC Analyst

Reviewer's Initials

9.4-97

Date

PARAGON ANALYTICS, INC.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

PAI-ID	Client ID	MATRIX	DATE SAMPLED
9708205-1	River-B (7/31)	Water	07/31/97
9708205-2	River-B (8/12)	Water	08/12/97
9708205-3	NOWP-E	Water	08/14/97
9708205-4	Pond Sludge	Solid	08/14/97

TCLP CHLORINATED HERBICIDES

Method 8151

Sample ID

TCLP Blank

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Date Collected: N/A

Lab Sample ID: RB1 08/22/97

Date Leached:

8/21/97

Date Extracted: 8/26/97

Date Analyzed: 8/29/97

Sample Matrix: TCLP Leachate

Cleanup: N/A

Sample Volume: 100 mL

Final Volume: 10 mL

EPA HW		CAS		Reporting
Number	Analyte	Number	Conc (mg/L)	Limit (mg/L)
D016	2,4-D	94-75-7	ND	0.010
D017	2,4,5-TP (Silvex)	93-72-1	ND	0.0010

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,4-Dichlorophenylacetic acid	104	47 - 154

ND = Not Detected at or above client requested reporting limit.

TCLP CHLORINATED HERBICIDES

Method 8151

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-4

Sample Matrix: TCLP Leachate

Cleanup: N/A

Pond Sludge

Date Collected:

8/14/97

Date Leached:

8/21/97

Date Extracted: 8/26/97

Date Analyzed:

8/29/97

Sample Volume: 100 mL

Final Volume: 10 mL

EPA HW		CAS		Reporting
Number	Analyte	Number	Conc (mg/L)	Limit (mg/L)
D016	2,4-D	94-75-7	ND	0.010
D017	2,4,5-TP (Silvex)	93-72-1	ND	0.0010

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,4-Dichlorophenylacetic acid	92	47 - 154

ND = Not Detected at or above client requested reporting limit.

TCLP CHLORINATED HERBICIDES BLANK SPIKE

Method 8151

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Sample ID

Blank Spike

Lab Sample ID: BS1 08/22/97

Date Extracted:

08/26/97

Date Analyzed:

08/29/97

Sample Matrix: TCLP Leachate

Cleanup: N/A

Sample Volume: 100 mL

Final Volume: 10 mL

Analyte	Spike	BS	BS	QC
	Added	Concentration	Percent	Limits
	(mg/L)	(mg/L)	Recovery	% Rec
2,4-D	0.025	0.025	98	55 - 140
Silvex	0.0025	0.0026	104	73 - 134

SURROGATE RECOVERY BS/BSD

Analyte	% Recovery BS	% Rec Limits
2,4-Dichlorophenylacetic acid	99	47 - 154

TCLP CHLORINATED HERBICIDES MATRIX SPIKE

Method 8151

Sample ID

Pond Sludge

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Date Collected:

08/14/97

Date Leached:

08/21/97

Date Extracted:

08/26/97

Date Analyzed:

08/29/97

Sample Matrix: TCLP Leachate

Lab Sample ID: 9708205-4MS

Cleanup: N/A

Sample Volume: 100 mL

Final Volume: 10 mL

Analyte	Spike Added (mg/L)	Sample Concentration (mg/L)	MS Concentration (mg/L)	MS Percent Recovery	QC Limits % Rec
2,4-D	0.025	ND	0.024	98	55 - 140
Silvex	0.0025	ND	0.0026	104	73 - 134

SURROGATE RECOVERY MS/MSD

Analyte	% Recovery MS	% Rec Limits
2,4-Dichlorophenylacetic acid	99	47 - 154

ND = Not Detected

TCLP METALS CASE NARRATIVE

Giant Refining Company Order Number - 9708205

- 1. This report consists of 1 TCLP sample.
- 2. The sample was received intact on 08/18/97. The temperature of the sample upon receipt was 21° Celsius.
- 3. The sample was prepared for analysis based on SW-846, $3^{\rm rd}$ Edition procedures.
 - The sample was processed through the TCLP leaching procedure based on method 1311. The leachate was then digested at a 10 fold dilution as follows.
 - For analysis by Trace ICP, the leachate was digested following method 3010A.
 - For analysis by Cold Vapor AA (CVAA), the leachate was digested following method 7470.
- 4. The leachate was analyzed following SW846 protocols by Trace ICP (Method 6010A) and CVAA (Method 7470). The analysis of silver was done by Trace ICP.
- 5. All standards and solutions are NIST traceable and were used within their recommended shelf life.
- 6. The sample was prepared and analyzed within the established hold times.
- 7. Sample results which are below PAI's standard reporting limits are reported as "ND" on the enclosed report.

All in house quality control procedures were followed, as described below.

- 8. General quality control procedures.
 - A preparation (method) blank and laboratory control sample were digested and analyzed with the samples in each digestion batch. There were not more than 20 samples in each digestion batch.
 - The preparation (method) blank results associated with each batch were below the reporting limits for the requested analytes. This indicates that no contaminants were introduced to the samples during the digestion procedure.
 - The laboratory control sample associated with each batch was within acceptance limits. This indicates complete digestion according to the method.

- All initial and continuing calibration blanks associated with each batch were below the reporting limits for the requested analytes. This indicates a valid calibration and stable instrument conditions.
- All initial and continuing calibration verifications associated with each batch were within acceptance criteria for the requested analytes. This indicates a valid calibration and stable instrument conditions.
- The interference check samples, and high standard readbacks associated with Method 6010A analyses were within acceptance criteria.
- 9. Samples from other Order Numbers were used as the matrix QC samples for this Order Number.
 - A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met.
 - A sample duplicate and spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
 - A serial dilution was analyzed with the Trace ICP batch. All acceptance criteria were met

The data contained in the following report have been reviewed and approved by the personnel listed below:

Darry Patrick

Senior Inorganic Chemist

Reviewer's Initials

Date

Date

CERTIFICATION

Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			1	DATE
PAI	-ID Client	IDN	MATRIX	SAMPLED
970	8205-1 River-B	(7/31) V	later	07/31/97
970	8205-2 River-B	(8/12) V	ater	08/12/97
970	8205-3 NOWP-E	V	Vater	08/14/97
	8205-4 Pond St	udge \$	Solid	08/14/97

TCLP METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: RB 9708205

Sample Matrix: TCLP Leachate

Sample ID

TCLP Blank

Date Collected: N/A

Prep Date: 08/22/97

Date Analyzed: 08/22/97

EPA HW	CAS		Concentration	Reporting
Number	Number	Analyte	mg/L	Limit (mg/L)
D004	7440-38-2	Arsenic	ND	0.1
D005	7440-39-3	Barium	ND	1
D006	7440-43-9	Cadmium	ND	0.05
D007	7440-47-3	Chromium	ND	0.1
D008	7439-92-1	Lead	ND	0.03
D009	7439-97-6	Mercury	ND	0.002
D010	7782-49-2	Selenium	ND	0.05
D011	7440-22-4	Silver	ND	0.1

ND = Not detected at or above the reporting limit.

TCLP METALS

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708205-4

Sample Matrix: TCLP Leachate

Sample ID

Pond Sludge

Date Collected: 08/14/97

Prep Date: 08/22/97

Date Analyzed: 08/22/97

EPA HW	CAS		Concentration	Reporting
Number	Number	Analyte	mg/L	Limit (mg/L)
D004	7440-38-2	Arsenic	ND	0.1
D005	7440-39-3	Barium	2	1
D006	7440-43-9	Cadmium	ND	0.05
D007	7440-47-3	Chromium	ND	0.1
D008	7439-92-1	Lead	ND	0.03
D009	7439-97-6	Mercury	ND	0.002
D010	7782-49-2	Selenium	ND	0.05
D011	7440-22-4	Silver	ND	0.1

ND = Not detected at or above the reporting limit.

TCLP METALS MATRIX SPIKE

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company Lab Sample ID: 9708188-2

Sample ID

In House

Prep Date: 08/22/97

Date Analyzed: 08/22/97

Sample Matrix: TCLP Leachate

Analyte	Spike Added mg/L	Sample Conc. mg/L	MS Conc. mg/L	% Rec (limits 80-120%)	Flags
					, , , , , , , , , , , , , , , , , , , ,
Arsenic	20.0	< 0.1	19.3	97	
Barium	20	3	21	90	
Cadmium	0.50	< 0.05	0.43	86	
Chromium	2.0	< 0.1	1.8	90	
Lead	5.00	< 0.03	4.61	92	
Selenium	20.0	< 0.05	19.5	98	
Silver	0.5	< 0.1	0.5	100	

	MSD	MSD	Relative	
	Conc.	% Rec	% Difference	
Analyte	mg/L	(limits 80-120%)	(limits 0-20%)	Flags
Arsenic	19.3	97	0	
Barium	21	90	0	
Cadmium	0.43	86	0	
Chromium	1.8	90	0	
Lead	4.62	92	0	
Selenium	19.5	98	0	
Silver	0.5	100	0	

TCLP METALS MATRIX SPIKE

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Lab Sample ID: 9708157-1

Sample Matrix: TCLP Leachate

Sample ID

In House

Prep Date: 08/22/97

Date Analyzed: 08/22/97

Analyte	Spike Added mg/L	Sample Conc. mg/L	MS Conc. mg/L	% Rec (limits 80-120%)	Flags
Mercury	0.020	< 0.002	0.020	100	

Analyte	MSD Conc. mg/L	MSD % Rec (limits 80-120%)	Relative % Difference (limits 0-20%)	Flags
Mercury	0.020	100	0	

(800) 443-1511 or (970) 490-1511 PARAGON ANALYTICS, INC.

(970) 490-1522 - Fax 225 Commerce Drive Ft. Collins, CO 80524

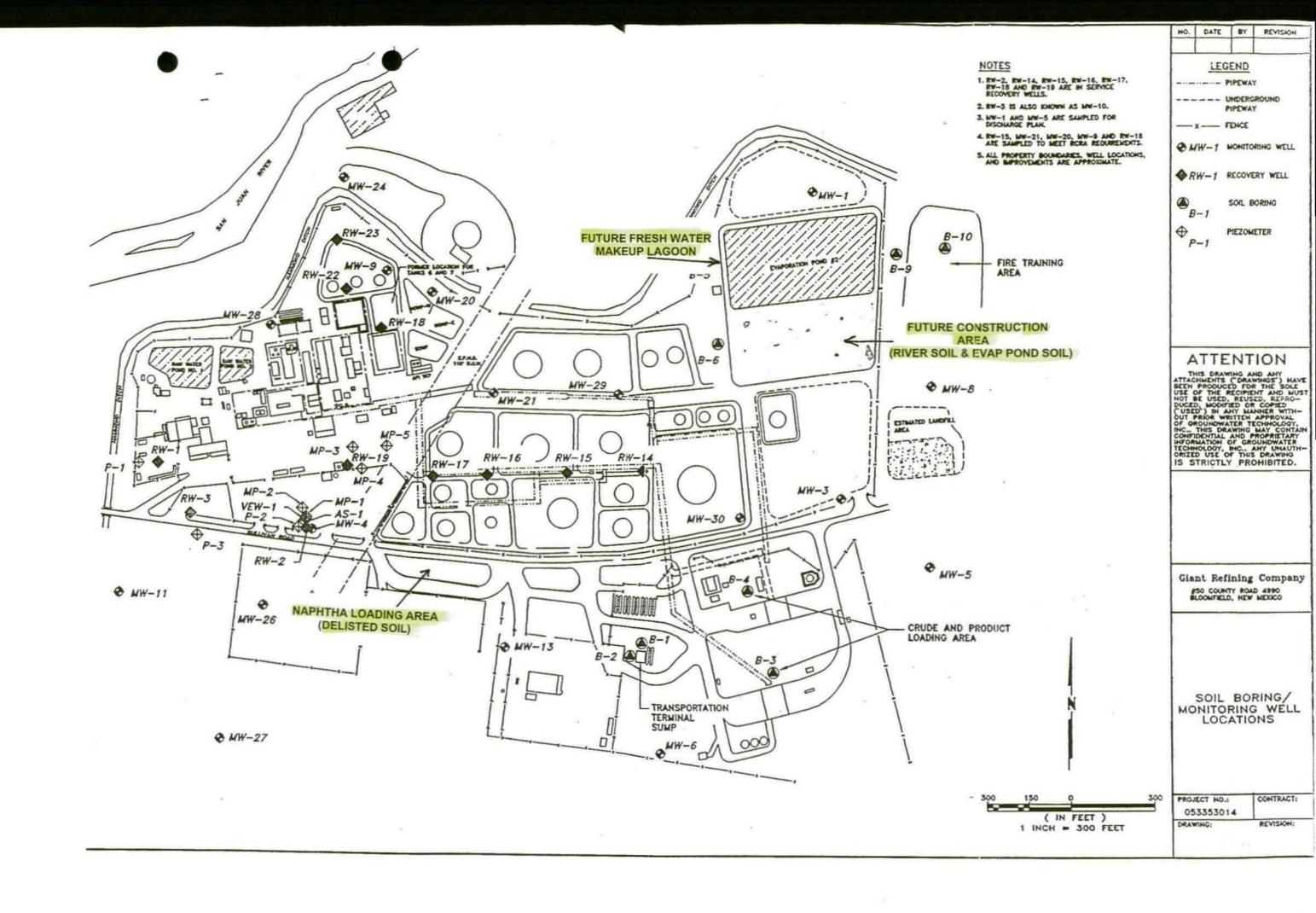
DATE 2/31/57 Page **CHAIN OF CUSTODY**

ö

97.08-20 * *ACCESSION NUMBER (LAB ID)

Vumber of Containers 2 2 Time. Date Time Date 3 7.33 7.5 57/3/13W471-th 770M \overline{X} RELINGUISHED BY: RECEIVED BY: ainisioM % Сотрапу 8315 · Formaldehyde Print Sign. rint ; c 06 / 68 muitnoris 8118197 Date Tritium (H3) 12 Sime Time Date 822 / 972 muibeA PAT Total Uraning (KPA)<u>.</u> muinest siquios ガロイ RELINDUISHED BY: municotula sigotosi ANALYSIS REQUESTED RECEIVED YY: 子公 訓 sads emmes Сотрапу Сотрапу emmed ssord Sign. Print r Gross Alpha / Beta J. [czpecify parameters in comments]. X 1500 Date Time Print Y / S// S// (17 Date Total Metals "(specify in comments) X1 - X0A - X03 - X0T sabioitea 40 - 418/1418 がりが RELINDUISHED BY: 8150 - Herbicides RECEIVED BY: 8310/610 - HPLC PNA's Сотряпу Сотряпу 8080 - PCB's only Sign. Print s'839\sebioitse9 · 0808 S.JOAS SW/JO · OZZ8 \$.20/1 SW/29 · 0978/0478 8020 - BELX ouly 8015m/8020 - Gasoline/BETX 1989ia · .boM 2108 8015 Mod. - Gasoline HANI . 1.814 несто водо сомоусого 0.61 & Grease 9070/9071/413.2 RAD CHEM \$15.00 ea SAMPLERECEIP 11/1000 Broken ※ る ON T Ø. V 166 1.4B ID 17 <u>_</u> FAX NO. 505/637 5011 MATRIX Ź Recd 1345 050 9410 1900 TIME 504 HAZ WASTE \$5.00 ea 7 11/3 1/2 ! 3 DATE GIRM ? B 1-40ml 毫 700/ 15/00 X PROJECT INFORMATION Land PHONE NO. SAMPLEID 2000 PROJECT NUMBER: REPORT TO: 7 1 1 イングル COMPANY: Clyan PROJECT NAME ADDRESS: SAMPLER: COMMENTS: P. D. NUMBER:

DISTRIBUTION: White, Canary - PARAGON ANALYTICS, INC. Pink - Originator


* no not write in Shaded areas

Paragon Analytics, Inc. - Fort Collins, Colorado

CONDITION OF SAMPLE UPON RECEIPT

CLIENT: Giant Refining SHIPPING CONTAIN	ER #:	(oster	
WORKORDER NO. 97-88-205 INITIALS: 5	DAT	ΓE: 8/	113/97
1. Does this project require special handling according to NEESA, Level 3	,	Yes	No
or CLP protocols?		 	
If yes, complete a. and b.			
a. Cooler Temperature			
b. Lot No's.			
c. Airbill Number			
2. Are custody seals on the cooler intact? If so, how many	N/A	Ves	No
3. Are custody seals on sample containers intact?	NA.	Yes	No
4. Is there a Chain of Custody (COC) or other representative documents,		Yes	No
letters or shipping memos?			
5. Is the COC complete?	N/A	Yes	No
Relinquished: Yes No Requested Analysis: Yes No			
6. Is the COC in agreement with the samples received?		Yes	(NO)
No. of Samples: Yes Vo Sample ID's: Yes No	· .		
Matrix: Yes No No. of Containers: Yes No V			
7. Are the samples requiring chemical preservation preserved correctly?	N/A	Ves	No
8. Is there enough sample? If so, are they in the proper containers?		Yes	NO
9. Are all samples within holding times for the requested analyses?		Yes	(II)
10. Were the sample(s) shipped on ice?	N/A	(Pes)	No
11. Were all sample containers received intact? (not broken or leaking, etc.)		Yes	(NO)
12. Are samples requiring no headspace, headspace free?	N/A	(es)	No
13. Do the samples require quarantine?		Yes	160
14. Do samples require Paragon disposal?		Yes	No
15. Did the client return any unused bottles?		Yes	100
Describe "NO" items (except No's 1, 13, &14) (6) - Number & Cont - NOT (B) enly 1 - 862 Soil for sent for Pond Slocks for all 7ests (9) tout if Asia upon Recipt (6) - TCE & Lp. red (1) - 1044 014 Broken - Sites 7; 11 (1914 TO 444 1/2) No No If yes, Date: Name of person contacted: Describe actions taken or client instructions:	J-Samp Ifn Wo	UP-E"	2-8" \$7/31/9
Group Leader's Signature: Date:	_		

Cooler Temperature: 21°c

PARAGON ANALYTICS, INC.

225 Commerce Drive → Fort Collins, CO 80524 → (800) 443-1511 → (970) 490-1511 → FAX (970) 490-1522

October 2, 1997

Mr. Lynn Shelton Giant Refining Company #50 County Road 4990/PO Box 159 Bloomfield, NM 87413

RE: Paragon Workorder: 97-08-247

Client Project Name: Not Submitted Client Project Number: Not Submitted

Dear Mr. Shelton:

Three soil and four water samples were received from Giant Refining Company on August 21, 1997. The samples were scheduled for the following analyses:

pages 1-3
pages 1-4
pages 1-8
pages 1-8
pages 1-8
pages 1-9
pages 1-17

The results for these analyses are contained in the enclosed reports.

Thank you for your confidence in Paragon Analytics, Inc. Should you have any questions, please call.

Sincerely,

Paragon Analytics, Inc.

Victoria Bayly Project Manager

VB/jic

Enclosure: Report

CONDITION OF SAMPLE UPON RECEIPT

CLIENT: Giant Refining SHIPPING CONTAINER #: CI	ober	
	TE: 821	197
1. Does this project require special handling according to NEESA, Level 3,	Yes (No
or CLP protocols?		
If yes, complete a. and b.		
a. Cooler Temperature		
b. Lot No's		
c. Airbill Number		
2. Are custody seals on the cooler intact? If so, how many 2 N/A	(Yes	No
3. Are custody seals on sample containers intact? N/A	Yes	No
4. Is there a Chain of Custody (COC) or other representative documents,	Yes	No
letters or shipping memos?		
5. Is the COC complete? N/A	(Yes)	No
Relinquished: Yes No Requested Analysis: Yes No		
6. Is the COC in agreement with the samples received?	(Yes)	No
No. of Samples: YesNo Sample ID's: YesNo		
Matrix: Yes No No. of Containers: Yes No		
7. Are the samples requiring acid preservation preserved correctly? N/A		No
8. Is there enough sample? If so, are they in the proper containers?	(Yes)	No
9. Are all samples within holding times for the requested analyses?	Yes<	No
10. Were the sample received on ice?	Xes<	No
11. Were all sample containers received intact? (not broken or leaking, etc.)	Yes	No
12. Are samples requiring no headspace, headspace free? N/A	Yes	No
13. Do the samples require quarantine?	Yes	(No)
14. Do samples require Paragon disposal?	(Yes)	No
15. Did the client return any unused bottles?	Yes	(No)
Describe "NO" items (except No's 1, 13, &14):		_
(io) Samples on top of absorbent pad which was on to	p of ic	Ω .
(in Should be on top of sembles)	•	_
(12) all soils contained headspace.		_
Was the client contacted? Yes No		
If yes, Date: Name of person contacted:		
Describe actions taken or client instructions:		_
		_
		-
		=
Group Leader's Signature: Date:		

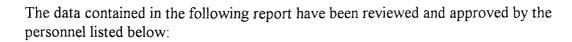
Cooler Temperature: 15°C.

PH ANALYSIS CASE NARRATIVE

Giant Refining Company

Order Number - 9708247

- 1. This report consists of three soil and two water samples.
- 2. The samples were received intact at a temperature of 15° C. on August 21, 1997.
- 3. The samples were prepared for analysis based on SW-846, 3rd Edition procedures. Specifically, the water samples were analyzed following Method 9040. The soil samples were analyzed following Method 9045B.
- 4. All standards and solutions were used within their recommended shelf life.


All in house quality control procedures were followed, as described below.

- 5. General quality control procedures.
 - All initial and continuing calibration verifications associated with each batch were within acceptance criteria for the requested analyte. This indicates a valid calibration and stable instrument conditions.
- 6. A sample from another Order Number was used as the matrix QC sample for the water batch.

PAI sample ID 9708247-1 (River Soil) was used as the matrix QC sample for the soil batch.

■ A duplicate was prepared and analyzed with each batch. All acceptance criteria were met.

000001g.c.

Krista Mobley
Krista Mobley
Increania Technician

9-1/-9) Date

Inorganic Technician

Reviewer's Initials

9497 Date

CERTIFICATION

Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

pH Soil

Method SW846 9045B

Sample Results

Lab Name: Paragon Analytics, Inc.

ClientName: Giant Refining Company

Client Project ID: Not Submitted

Work Order Number: 9708247

Reporting Basis: AS RECEIVED

Matrix: Soil

N/A

Page 1 of 1

Final Volume:

Reported on: Thursday, September 04, 1997

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Units	Detection Limit	Flag	Sample Aliquot
River Soil	9708247-1	8/20/97	N/A	9/1/97	N/A	1	7.8	PH			N/A
Delisted Soil	9708247-2	8/20/97	N/A	9/1/97	N/A	1	7.9	PH			N/A
Evap. Pond Bottoms	9708247-3	8/20/97	N/A	9/1/97	N/A	1	7.9	PH			N/A

Comments:

pH Water

Method SW846 9040

Sample Results

Page 1 of 1

Lab Name: Paragon Analytics, Inc.
ClientName: Giant Refining Company

Client Project ID: Not Submitted Work Order Number: 9708247

Final Volume:

N/A

Reporting Basis: AS RECEIVED

Reported on: Thursday, September 04, 1997

Matrix: Water

Client Sample ID	Lab ID	Date Collected	Date Prepared	Date Analyzed	Percent Moisture	Dilution Factor	Result	Units	Detection Limit	Flag	Sample Aliquot
NOWP-E	9708247-4	8/20/97	N/A	9/1/97	N/A	1	7.6	PH			N/A
Injection Well	9708247-6	8/20/97	N/A	9/1/97	N/A	1	7.5	PH			N/A

Comments:

000004

Paragon Analytics, Inc.

Aromatic Volatile Organics Case Narrative

Giant Refining Co.

Order Number - 9708247

- 1. This report consists of 2 soil samples received by Paragon on 08/21/97.
- 2. These samples were prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the soil samples were prepared by heating and purging 5 grams of sample mixed with 5 mls of reagent water. The calibration curve was also prepared using the heated purge. This procedure, including the heating step, is based on Method 5030.
- 3. The samples were analyzed using a GC with a DB-VRX capillary column and a PID detector according to protocols based on SW-846 Method 8020. All positive results were quantitated using the responses from the initial calibration curve using the internal standard technique. Second column confirmation was performed on all samples with positive results on a DB-624 capillary column.
- 4. All samples were analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All matrix spike and matrix spike duplicate recoveries and RPDs were within acceptance criteria.
- 7. All blank spike and blank spike duplicate recoveries and RPDs were within the acceptance criteria.

- 8. All surrogate recoveries were within acceptance criteria.
- 9. All internal standard recoveries were within acceptance criteria.
- 10. All initial and continuing calibration criteria were within acceptance criteria.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

 M. A. O. R.
 9-12-97

 Marty Brown
 Date

 GC Analyst
 9-1497

Paragon Analytics, Inc.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE
PAI-ID	Client ID	MATRIX	SAMPLED
9708247-1	River Soil	Soil	08/20/97
9708247-2	Delisted Soil	Soil	08/20/97
9708247-3	Evap. Pond Bottoms	Soil	08/20/97
9708247-4	NOWP-E	Water	08/20/97
9708247-5	River-B	Water	08/20/97
9708247-6	Injection Well	Water	08/20/97
9708247-7	Trip Blank	Water	08/20/97

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

Reagent Blank

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Co. Client Project ID: Not Submitted

Date Collected: N/A

Date Extracted: 8/26/97

Lab Sample ID: SRB1 8/26/97

Date Analyzed: 8/26/97

Sample Matrix: Soil % Moisture: 0 %

Results based on wet weight

Sample Weight: 5 g Purge Volume: 5 mL

Dilution Factor: 1

Analyte	Conc (ug/Kg)	Reporting Limit (ug/Kg)
Benzene	ND	0.50
Toluene	ND	0.50
Ethylbenzene	ND	0.50
M,P-Xylene	ND	1.0
O-Xylene	ND	0.50
Total Xylenes	ND	1.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,3,4-Trifluorotoluene	93	69 - 119

ND = Not Detected at or above client requested reporting limit.

AROMATIC VOLATILE ORGANICS

Method 8020

Sample ID

NOWP-E

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Co.

Client Project ID: Not Submitted

Date Collected: 8/20/97

Date Extracted: 8/27/97

Lab Sample ID: 9708247-4

Date Analyzed: 8/27/97

Sample Matrix: Soil % Moisture: 0 %

Results based on wet weight

Sample Weight: 5 g
Purge Volume: 5 mL
Dilution Factor: 1

Analyte	Conc (ug/Kg)	Reporting Limit (ug/Kg)	
Benzene	ND	0.50	
Toluene	ND	0.50	
Ethylbenzene	ND	0.50	
M,P-Xylene	ND	1.0	
O-Xylene	ND	0.50	
Total Xylenes	ND	1.0	

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2,3,4-Trifluorotoluene	92	69 - 119

ND = Not Detected at or above client requested reporting limit.

CHLORIDE

Method 300.0

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted Client Project No. Not Submitted Lab Workorder Number: 9708247

Date Collected: 08/20/97 Date Analyzed: 09/11-12/97

Sample Matrix: Soil

Client ID	Lab Sample ID	Chloride Conc (mg/kg)	Detection Limit (mg/kg)	120
River Soil	Method Blank 9708247-1	ND 280	2 20	400
Delisted Soil Evap. Pond Bottoms	9708247-2 9708247-3	24 43000	2 2 2000	40,000

ND = Not Detected

CHLORIDE MATRIX SPIKE

Method 300.0

Sample ID

Delisted Soil

Lab Name: Paragon Analytics, Inc. Paragon Sample ID: 9708247-2

Date Analyzed: 09/12/97 Sample Matrix: Soil

	Spike	Sample	MS	MS	MS/MSD
	Added	Concentration	Concentration	Percent	Acceptance
Analyte	(mg/kg)	(mg/kg)_	(mg/kg)	Recovery	Limit
Chloride	50	24	71	94	85-115%

	Spike	MSD	MSD		RPD
	Added	Concentration	Percent	RPD	Acceptance
Analyte	(mg/kg)	(mg/kg)	Recovery	%	Limit
Chloride	50	77	106	8	0-20 %

NITRATE Method 300.0

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Client Project No:

Lab Workorder Number: 9708247

Date Collected: 08/20/97 Date Analyzed: 09/12/97

Sample Matrix: Soil

	Client ID	Lab Sample ID	Nitrate as N Conc (mg/kg)	Detection Limit (mg/kg)	xzo
ļ		Method Blank	ND	2	
	River Soil	9708247-1	ND	2	40
Ì	Delisted Soil	9708247-2	13	. 2	40
	Evap. Pond Bottoms	9708247-3	ND	2	40

ND = Not Detected

NITRATE MATRIX SPIKE

Method 300.0

Sample ID

Lab Name: Paragon Analytics, Inc. Paragon Sample ID: 9708247-2 Date Analyzed: 09/12/97

Sample Matrix: Soil

Delisted Soil

	Spike	Sample	MS	MS	MS/MSD
	Added	Concentration	Concentration	Percent	Acceptance
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	Limit
Nitrate as N	50	13	64	102	85-115%

	Spike	MSD	MSD		RPD
	Added	Concentration	Percent	RPD	Acceptance
Analyte	(mg/kg)	(mg/kg)	Recovery	%	Limit
Nitrate as N	50	68	110	6	0-15 %

SULFATE

Method 300.0

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted Client Project No. Not Submitted

Lab Workorder Number: 9708247

Date Collected: 08/20/97 Date Analyzed: 09/11/97

Sample Matrix: Soil

Client ID	Lab Sample ID	Sulfate Conc (mg/kg)	Detection Limit (mg/kg)	150
	Method Blank	ND	10	
River Soil	9708247-1	8000	200	4000
Delisted Soil	9708247-2	1800	100	2000
Evap. Pond Bottoms	9708247-3	7800	1000	2000

ND = Not Detected

SULFATE MATRIX SPIKE

Method 300.0

Sample ID

Lab Name: Paragon Analytics, Inc. Paragon Sample ID: 9708247-2

Date Analyzed: 09/11/97

Sample Matrix: Soil

Delisted Soil

	Spike	Sample	MS	MS	MS/MSD
	Added	Concentration	Concentration	Percent	Acceptance
Analyte	(mg/kg)	(mg/kg)	(mg/kg)	Recovery	Limit_
Sulfate	2000	1827	3864	102	85-115%

	Spike	MSD	MSD		RPD
	Added	Concentration	Percent	RPD	Acceptance
Analyte	(mg/kg)	(mg/kg)	Recovery	%	Limit
Sulfate	2000	3855	101	0.2	0-15 %

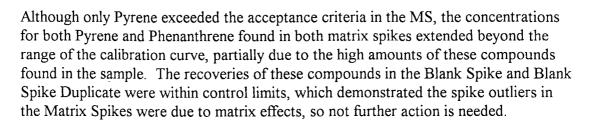
Paragon Analytics, Inc.

PAHs by HPLC Case Narrative

Giant Refining Company

Not Submitted

Order Number - 9708247


- 1. This report consists of 3 soil samples received by Paragon on 8/21/97.
- 2. These samples were extracted and analyzed according to SW-846, 3rd Edition procedures. Specifically, the soil samples were extracted using soxhlet procedures based on Method 3540. These extracts were then processed using Silica Gel cleanup by Method 3630 in an attempt to remove potential interferences.
- 3. The extracts were then analyzed using HPLC with UV and fluorescence detectors with a reverse phase C18 column according to protocols based on Method 8310. All compounds are analyzed using UV at 254 nm. Confirmation is performed for positive results using the fluorescence detector or confirmed by UV at 280 nm for those compounds that do not respond to the fluorescence detector. The quantitation of each analyte is usually taken from the detector that exhibits the fewest interferences. These quantitations minimize the chances of reporting elevated results based on interferences. If compounds do not confirm quantitatively (if the higher amount is greater than twice the lower amount the 2 amounts are considered <u>not</u> to confirm each other quantitatively), then the value is flagged with a "K" and noted on the report page.
- 4. All samples were extracted and analyzed within the established holding times.
- 5. The method blank associated with this project was below the reporting limits for all analytes.
- 6. All Blank Spike and Blank Spike Duplicate recoveries and RPDs were within the acceptance criteria.
- 7. All Matrix Spike and Matrix Spike Duplicate criteria were met with the following exception:

Spike Compound

Sample

Pyrene

MS

8. All surrogate recoveries were within acceptable limits with the following exception:

<u>Sample</u> Surrogate

2-Chloroanthracene

The surrogate recovery was low due to high amounts of interferences. The sample was put through Silica Gel cleanup in an attempt to remove the interferences, but enough interfernce remained after clean-up to make accurate quantitation of the surrogate recovery difficult.

- Due to matrix interferences and high levels of target analytes, samples 2 and 3 were 9. analyzed at a higher dilution. The detection limits have been adjusted accordingly.
- 10. All initial and continuing calibration criteria were within acceptance criteria.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

HPLC Analyst

 $\frac{9-\cancel{5}-9\cancel{7}}{\text{Date}}$

Method 8310

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project-ID: Not Submitted

Lab Sample ID: SRB1 8/25/97

Sample Matrix: Sodium Sulfate

Cleanup: Silca gel % Moisture: 0 %

Results based on wet weight

Reagent Blank

Date Collected: N/A
Date Extracted: 8/25/97
Date Analyzed: 9/10/97

Sample Weight: 30 g Final Volume: 1 mL Dilution Factor: 1

Analyte	Conc (ug/kg)	Reporting Limit (ug/kg)
Naphthalene	ND	15
Acenaphthylene	ND	30
1-Methylnaphthalene	ND	30
2-Methylnaphthalene	ND	30
Acenaphthene	ND	20
Fluorene	ND	3.0
Phenanthrene	ND	2.0
Anthracene	ND	2.0
Fluoranthrene	ND	3.0
Pyrene	ND	2.0
Benzo(a)anthracene	ND	3.0
Chrysene	ND	2.0
Benzo(b)fluoranthrene	. ND	3.0
Benzo(k)fluoranthrene	ND .	2.0
Benzo(a)pyrene	ND	3.0
Dibenzo(a,h)anthracene	ND	3.0
Benzo(g,h,i)perylene	ND	2.0
Indeno(1,2,3-c,d)pyrene	ND	2.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits
2-Chloroanthracene	73	39 - 121

ND = Not Detected at or above client requested reporting limit.

fm

Method 8310

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-1

Sample Matrix: Soil Cleanup: Silca gel

% Moisture: 0 %

Results based on wet weight

Sample ID

River Soil

Date Collected: 8/20/97

Date Extracted: 8/25/97

Date Analyzed: 9/10/97

Sample Weight: 30 g Final Volume: 1 mL Dilution Factor: 1

		Reporting
Analyte	Conc (ug/kg)	Limit (ug/kg)
Naphthalene	24	15
Acenaphthylene	ND ND	30
1-Methylnaphthalene	43	30
2-Methylnaphthalene	61	30
Acenaphthene	ND	20 _
Fluorene	2.6 J	3.0
Phenanthrene	18	2.0
Anthracene	3.4	2.0
Fluoranthrene	12 K	3.0
Pyrene	32	2.0
Benzo(a)anthracene	26	3.0
Chrysene	11 K	2.0
Benzo(b)fluoranthrene	2.5 J, K	3.0
Benzo(k)fluoranthrene	1.2 J, K	2.0
Benzo(a)pyrene	ND	3.0
Dibenzo(a,h)anthracene	3.4	3.0
Benzo(g,h,i)perylene	7.9	2.0
Indeno(1,2,3-c,d)pyrene	1.1 J	2.0

SURROGATE RECOVERY

Recovery % Rec Limits
87 39 - 121
=

ND = Not Detected at or above client requested reporting limit.

K = Concentration confirmation does not agree within 50%.

J = Estimated value. Below reporting limits.

RULE

20

Method 8310

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Delisted Soil

Lab Sample ID: 9708247-2

Date Collected: 8/20/97 Date Extracted: 8/25/97 Date Analyzed: 9/11/97

Sample Matrix: Soil Cleanup: Silca gel % Moisture: 0 %

Sample Weight: 30 g Final Volume: 1 mL Dilution Factor: 10

Results based on wet weight

		Reporting
Analyte	Conc (ug/kg)	Limit (ug/kg)
Nambahalana	NID	150
Naphthalene	ND	
Acenaphthylene	ND	300
1-Methylnaphthalene	ND	300
2-Methylnaphthalene	ND	300
Acenaphthene	ND	200
Fluorene	ND	30.0
Phenanthrene	ND	20.0
Anthracene ·	ND	20.0
Fluoranthrene	ND	30.0
Pyrene	ND	20.0
Benzo(a)anthracene	ND	30.0
Chrysene	ND	20.0
Benzo(b)fluoranthrene	21 J	30.0
Benzo(k)fluoranthrene	ND	20.0
Benzo(a)pyrene	ND	30.0 -
Dibenzo(a,h)anthracene	390	30.0
Benzo(g,h,i)perylene	230	20.0
Indeno(1,2,3-c,d)pyrene	ND	20.0

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits	
2-Chloroanthracene	18 *	39 - 121	

ND = Not Detected at or above client requested reporting limit.

J = Estimated value. Below reporting limits.

RVLE 0F 20

^{* =} Out of limits. See case narritive.

Method 8310

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-3

Cleanup: Silca gel % Moisture: 0 %

Sample Matrix: Soil

Results based on wet weight

Evap. Pond Bottoms

Date Collected: 8/20/97 Date Extracted: 8/25/97 Date Analyzed: 9/11/97

Sample Weight: 30 g Final Volume: 1 mL Dilution Factor: 10

Analyte	Conc (ug/kg)	Reporting Limit (ug/kg)
Naphthalene	ND	150
Acenaphthylene	ND	300
1-Methylnaphthalene	ND	300
2-Methylnaphthalene	ND	300
Acenaphthene	ND	200
Fluorene	ND	30
Phenanthrene	26	20
Anthracene	ND	20
Fluoranthrene	49 K	30
Pyrene	33	20
Benzo(a)anthracene	ND	30
Chrysene	ND	20
Benzo(b)fluoranthrene	ND	30
Benzo(k)fluoranthrene	ND	20
Benzo(a)pyrene	ND	30
Dibenzo(a,h)anthracene	16 J	30
Benzo(g,h,i)perylene	ND	20
Indeno(1,2,3-c,d)pyrene	ND	20

SURROGATE RECOVERY

Analyte	% Recovery	% Rec Limits	
2-Chloroanthracene	60	39 - 121	

ND = Not Detected at or above client requested reporting limit.

K = Concentration confirmation does not agree within 50%.

J = Estimated value. Below reporting limits.

RULE 20

POLYNUCLEAR AROMATIC HYDROCARBONS MATRIX SPIKE

Method 8310

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-1

Sample Matrix: Soil Cleanup: Silca gel % Moisture: 0 %

Results based on wet weight

River Soil

Date Collected:

8/20/97

Date Extracted:

8/25/97

Date Analyzed:

9/10/97

Sample Weight: 30 g

Final Volume: 1 mL

Dilution Factor: 1

·	Spike Added	Sample Concentration	MS Concentration	MS Percent	QC Limits
Analyte	(ug/kg)	(ug/kg)	(ug/kg)	Recovery	% Rec
Acenaphthylene	333	ND	200	60	27 - 90
Phenanthrene	33.3	17.6	48.8	93	46 - 96
Pyrene	33.3	31.8	67.6	107 *	43 - 96
Benzo(k)fluoranthene	8.33	1.21	8.04	82	66 - 115
Dibenzo(a,h)anthracene	33.3	3.36	21.6	55	20 - 133

	Spike	MSD	MSD		QC
	Added	Concentration	Percent		Limits
Analyte	(ug/kg)	(ug/kg)	Recovery	RPD	RPD
				-	
Acenaphthylene	333	185	56	8	20
Phenanthrene	33.3	45.5	84	11	20
Pyrene	33.3	62.5	92	15	20
Benzo(k)fluoranthene	8.33	7.76	79	4	20
Dibenzo(a,h)anthracene	33.3	25.2	65	18	20

SURROGATE RECOVERY MS/MSD

Analyte ·	% Recovery MS	% Recovery MSD	% Rec Limits	
2-Chloroanthracene	96	92	39 - 121	

ND = Not Detected

000007

^{* =} Out of limits. See case narritive.

POLYNUCLEAR AROMATIC HYDROCARBONS BLANK SPIKE

Method 8310

Sample ID

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: SBS1 & 2, 8/25/97

Sample Matrix: Sodium Sulfate

Cleanup: Silca gel

Blank Spike

Date Extracted:

8/25/97

Date Analyzed:

9/10/97

Sample Weight: 30 g

Final Volume: 1 mL

Analyte	Spike Added (ug/kg)	BS Concentration (ug/kg)	BS Percent Recovery	QC Limits % Rec
Acenaphthylene	333	186	56	27 - 90
Phenanthrene	33.3	20.5	62	46 - 96
Pyrene	33.3	24.0	72	43 - 96
Benzo(k)fluoranthene	8.33	6.35	76	66 - 115
Dibenzo(a,h)anthracene	33.3	18.6	56	20 - 133

Analyte	Spike Added (ug/kg)	BSD Concentration (ug/kg)	BSD Percent Recovery	RPD	QC Limits RPD
Acenaphthylene	333	198	59	6	20
Phenanthrene •	33.3	22.3	67	8	20
Pyrene	33.3	24.2	73	1	20
Benzo(k)fluoranthene	8.33	7.49	90	17	20
Dibenzo(a,h)anthracene	33.3	22.1	66	17	20

SURROGATE RECOVERY BS/BSD

Analyte	% Recovery BS	% Recovery BSD	% Rec Limits
2-Chloroanthracene	71	71	39 -121

Paragon Analytics, Inc.

TOTAL METALS CASE NARRATIVE

Giant Refining Company

Order Number - 9708247

- 1. This report consists of 3 soil samples.
- 2. The samples were received intact on 08/21/97. The temperature of the samples upon receipt was 15° Celsius.
- 3. The samples were prepared for analysis based on SW-846, 3rd Edition procedures. For analysis by conventional ICP, the samples were digested following method 3050A.
- 4. The samples were analyzed following SW846 protocols by conventional ICP (Method 6010A).
- 5. All standards and solutions are NIST traceable and were used within their recommended shelf life.
- 6. The samples were prepared and analyzed within the established hold times.
- 7. Sample results which are below PAI's standard reporting limits are reported as "ND" on the enclosed report.

All in house quality control procedures were followed, as described below.

- 8. General quality control procedures.
 - A preparation (method) blank and laboratory control sample were digested and analyzed with the samples in this digestion batch. There were not more than 20 samples in the digestion batch.
 - The preparation (method) blank results associated with this batch were below the reporting limits for the requested analytes with the exception of iron. All samples contained concentrations of iron greater than ten times that of the method blank so no further action was required.
 - The laboratory control sample associated with this batch was within acceptance limits. This indicates complete digestion according to the method.
 - All initial and continuing calibration blanks associated with this batch were below the reporting limits for the requested analytes. This indicates a valid calibration and stable instrument conditions.

- All initial and continuing calibration verifications associated with this batch were within acceptance criteria for the requested analytes. This indicates a valid calibration and stable instrument conditions.
- The interference check samples, and high standard readbacks associated with Method 6010A analyses were within acceptance criteria.
- 9. A sample from this Order Number was used as the QC sample for this batch.
 - A matrix spike and matrix spike duplicate were digested and analyzed with this batch. All acceptance criteria for accuracy were met with the following exceptions.

<u>Analyte</u>	Sample ID
Aluminum	9708247-1S & DS
Iron	9708247-1S & DS
Manganese	9708247 - 1S & DS

The concentration of these analytes in the native sample was greater than 4 times the concentration of matrix spike added during the digestion. When sample concentration is that much greater than the spike added, spike recoveries may not be accurate. The Laboratory Control Sample is included to show that the digestion and analysis were in control.

- A sample duplicate and spike duplicate were digested and analyzed with this batch. All acceptance criteria for precision were met.
- A serial dilution was analyzed with this batch. All acceptance criteria were met.

The data contained in the following report have been reviewed and approved by the personnel listed below:

Darryl Patrick

Date

Senior Inorganic Chemist

Reviewer's Initials

9/5/9 Date

CERTIFICATION

Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Paragon Analytics, Inc.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE
PAI-ID	Client ID	MATRIX	SAMPLED
9708247-1	River Soil	Soil	08/20/97
9708247-2	Delisted Soil	Soil	08/20/97
9708247-3	Evap. Pond Bottoms	Soil	08/20/97
9708247-4	NOWP-E	Water	08/20/97
9708247-5	River-B	Water	08/20/97
9708247-6	Injection Well	Water	08/20/97
9708247-7	Trip Blank	Water	08/20/97

TOTAL METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted Lab Sample ID: RB 9708247

Sample ID

Reagent Blank

Date Collected: N/A Prep Date: 08/29/97

Date Analyzed: 09/02/97

Analyte	Concentration mg/kg	Reporting Limit mg/kg
Aluminum	ND	20
Boron	ND	10
Cobalt	ND	1
Copper	ND	1
Iron	30	10
Manganese	ND	1
Molybdenum	ND	1
Nickel	ND	2
Zinc	ND	2

ND = Not detected at or above the reporting limit.

TOTAL METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-1

Sample Matrix: Soil

Sample ID

River Soil

Date Collected: 08/20/97

Prep Date: 08/29/97

Date Analyzed: 09/02/97

		Concentration	Reporting Limit	RULE
	Analyte	mg/kg	mg/kg	20
. 7				
,	Aluminum	5600	20	400
7	Boron	ND	10	200
; 7	Cobalt	4	1	20
1	Copper	6	1	20
1	Iron	8700	10	200
2	Manganese	240	1	20
/	Molybdenum	1	1	70
	Nickel	4	2	40
1	Zinc	20	2	40

ND = Not detected at or above the reporting limit.

TOTAL METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-2

Sample Matrix: Soil

Sample ID

Delisted Soil

Date Collected: 08/20/97

Prep Date: 08/29/97

Date Analyzed: 09/02/97

	Concentration	Reporting Limit	2.ULE 0F 20
Analyte	mg/kg	mg/kg	20
Aluminum	8200	20	400
Boron	ND	10	200
Cobalt	5	1	20
Copper	40	1	20
Iron	13000	10	200
Manganese	310	1	20
Molybdenum	1	1	2.0
Nickel	10	2	40
Zinc	160	2	40

ND = Not detected at or above the reporting limit.

TOTAL METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9708247-3

Sample Matrix: Soil

Sample ID

Evap. Pond Bottoms

Date Collected: 08/20/97

Prep Date: 08/29/97

Date Analyzed: 09/02/97

	Concentration	Reporting Limit	RULE
Analyte	mg/kg	mg/kg	20
Aluminum	4000	20	400
Boron	ND	10	200
Cobalt	2	1	20
Copper	6	1	200
Iron	5700	10	
Manganese	190	1	20
Molybdenum	2	1	20
Nickel	5	2	40
Zinc	39	2	40

ND = Not detected at or above the reporting limit.

5

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Lab Sample ID: 9708247-1

Sample Matrix: Soil

Sample ID

River Soil

Prep Date: 08/29/97

Date Analyzed: 09/02/97

Analyte	Spike Added mg/kg	Sample Conc. mg/kg	MS Conc. mg/kg	% Rec (limits 80-120%)	Flags
Aluminum	200	5580	7320	870	See Note
Boron	100	< 10	80	80	
Cobalt	50	4	51	94	
Copper	25	6	31	100	
Iron	100	8710	10200	1490	See Note
Manganese	50	242	299	114	See Note
Molybdenum	100	1	92	91	
Nickel	50	4	50	92	
Zinc	50	20	66	92	

	MSD Conc.	MSD % Rec	Relative % Difference	
Analyte	mg/kg	(limits 80-120%)	(limits 0-20%)	Flags
Aluminum	6940	680	5	See Note
Boron	80	80	0	
Cobalt	50	92	2	
Copper	31	100	0	
Iron	9120	410	11	See Note
Manganese	288	92	4	See Note
Molybdenum	93	92	1	
Nickel	50	92	0	
Zinc	65	90	2	

Sample results shown on spike page(s) may differ slightly from results on sample page(s).

Where sample concentration is sufficiently high, three significant figures are used to determine spike recoveries and relative percent difference.

Note: Due to the large concentration of analyte in the sample, matrix spike recoveries may not be accurate. The Laboratory Control Sample (LCS) is included on a separate page to show that the digestion and analysis were in control. 00008

NP

TOTAL METALS LABORATORY CONTROL SAMPLE

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Order Number: 9708247

Date Analyzed: 09/02/97

	LCS	LCS	LCS		LCS	
	Result	True Value	%	Accep	tance	Limits
Analyte	mg/kg	mg/kg	Recovery	%	Recov	ery
Aluminum	200	200	100	80	-	120
Iron	100	100	100	80	-	120
Manganese	47	50	94	80	-	120

Paragon Analytics, Inc.

GC/MS Volatiles Case Narrative

Giant Refining Company

Order Number - 9708247

- 1. This report consists of 3 soil samples received by Paragon on August 31, 1997.
- 2. These samples were prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the soil samples were prepared by purging a heated 5 grams of sample mixed with 5 mls of reagent water. The calibration curve was also prepared using the heated purge. This procedure, including the heating step, is based on Method 5030.
- 3. The samples were analyzed using GC/MS with a RTX-624 capillary column according to protocols based on SW-846 Method 8260. All positive results were quantitated with the average response of the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. All samples were analyzed within the established holding times.
- 5. The method blank(8/30/97) had methylene below the reporting limit. This compound was detected in samples -1.-2, so the data were flagged accordingly.
 - The method blank(9/1/97) had methylene chloride above the reporting limit. This compound was detected in sample -3, so the data were flagged accordingly.
- 6. The matrix spike and matrix spike duplicate for the samples was performed on an in house sample provided from a different client. A blank spike and blank spike duplicate were submitted instead.

- 7. All blank spike and blank spike duplicate recoveries and RPDs were within the acceptance criteria.
- 8. All surrogate recoveries were within acceptance criteria, with the exception of sample -2 which had surrogates outside control limits. The sample was re-analyzed to evaluate whether the original outlier was due to matrix effects or laboratory performance. The re-analysis also had surrogates outside the control limits, which demonstrated the presence of matrix effects.
- 9. Internal standards in sample -2 were outside the acceptance criteria. The sample was re-analyzed to determine whether the outliers were due to matrix effects. The reanalyses was also outside the limits, which indicate matrix effects were present.
- 10. Due to matrix interferences and high levels of target analytes samples were analyzed at a higher dilution. The reporting limits have been adjusted accordingly.
- 11. All initial and continuing calibration criteria were within acceptance criteria. Method 8260 states any compound exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Phil Tallarico

GC/M8) Analyst,

Reviewer's Initials

9-4-97

Date

9-4-9

Date

Paragon Analytics, Inc.

SAMPLE NUMBER(S) CROSS-REFERENCE TABLE

Client Name: Giant Refining Company

Client Project ID: Not Submitted

			DATE	
PAI-ID	Client_ID	MATRIX	SAMPLED	
9708247-	1 River Soil	Soil	08/20/97	
9708247-	2 Delisted Soil	Soil	08/20/97	
9708247-	3 Evap. Pond Bottoms	Soil	08/20/97	
9708247-	4 NOWP-E	Water	08/20/97	
9708247-	5 River-B	Water	08/20/97	
9708247-	6 Injection Well	Water	08/20/97	
9708247-	7 Trip Blank	Water	08/20/97	

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID: .

Reported on: Thursday, September 04, 1997

Field ID: LABQC

Lab ID: VA970830-1MB

Sample Matrix: Solid

Date Collected:

30-Aug-97

Sample Aliquot:

5

% Moisture: N/A Cleanup Method: NONE Date Extracted: Date Analyzed:

30-Aug-97 30-Aug-97 Final Volume:

5

Report Basis: NA

Prep Batch:

v08188b3

Dilution:

	1	

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-71-8	DICHLORODIFLUOROMETHANE	10	ug/kg	10	U	
74-87-3	CHLOROMETHANE	10	ug/kg	10	U	
75-01-4	VINYL CHLORIDE	10	ug/kg	10	U	
74-83-9	BROMOMETHANE	10	ug/kg	10	U	
75-00-3	CHLOROETHANE	10	ug/kg	10	U	
75-69-4	TRICHLOROFLUOROMETHANE	5	ug/kg	5	U	
75-35-4	1,1-DICHLOROETHENE	5	ug/kg	5	U	
76-13-1	TRICHLOROTRIFLUOROETHANE	5	ug/kg	5	Ú	
67-64-1	ACETONE	20	ug/kg	20	U	
74-88-4	IODOMETHANE	5	ug/kg	5	U	
75-15-0	CARBON DISULFIDE	5	ug/kg	5	U	
75-09-2	METHYLENE CHLORIDE	4.9	ug/kg	5	J	
156-60-5	TRANS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
1634-04-4	METHYL TERTIARY BUTYL ETHER	5	ug/kg	5	U	
75-34-3	1,1-DICHLOROETHANE	5	ug/kg	5	U	
108-05-4	VINYL ACETATE	20	ug/kg	20	U	
156-59-2	CIS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
78-93-3	2-BUTANONE	20	ug/kg	20	U	
74-97-5	BROMOCHLOROMETHANE	5	ug/kg	5	U	
67-66-3	CHLOROFORM	5	ug/kg	5	U	
71-55-6	1,1,1-TRICHLOROETHANE	5	ug/kg	5	U	
594-20-7	2,2-DICHLOROPROPANE	5	ug/kg	5	U	
56-23-5	CARBON TETRACHLORIDE	5	ug/kg	5	U	
563-58-6	1,1-DICHLOROPROPENE	5	ug/kg	5	U	
107-06-2	1,2-DICHLOROETHANE	5	ug/kg	5	U	
71-43-2	BENZENE	5	ug/kg	5	U	
79-01-6	TRICHLOROETHENE	5	ug/kg	5	U	
78-87-5	1,2-DICHLOROPROPANE	5	ug/kg	5	U	
74-95-3	DIBROMOMETHANE	5	ug/kg	5	U	
75-27-4	BROMODICHLOROMETHANE	5	ug/kg	5	U	
110-75-8	2-CHLOROETHYL VINYL ETHER	10	ug/kg	10	U	
10061-01-5	CIS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	
108-10-1	4-METHYL-2-PENTANONE	20	ug/kg	20	U	
108-88-3	TOLUENE	5	ug/kg	5	U	
10061-02-6	TRANS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	~ ~ ~
79-00-5	1,1,2-TRICHLOROETHANE	5	ug/kg	5	U	1-000
591-78-6	2-HEXANONE	20	ug/kg	20	U	

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID: .

Reported on: Thursday, September 04, 1997

Field ID: LABQC

Sample Matrix: Solid % Moisture: N/A

Date Collected: Date Extracted: 30-Aug-97

Sample Aliquot:

5 5

Lab ID: VA970830-1MB

Cleanup Method: NONE

Date Analyzed: Prep Batch: 30-Aug-97 30-Aug-97 v08188b3

Final Volume: Dilution:

Report Basis: NA

127-18-4	TETRACHLOROETHENE	5	ug/kg	5	U	
142-28-9	1,3-DICHLOROPROPANE	5	ug/kg	5	U	
124-48-1	DIBROMOCHLOROMETHANE	5	ug/kg	5	U	
106-93-4	1,2-DIBROMOETHANE	5	ug/kg	5	U	
544-10-5	1-CHLOROHEXANE	5	ug/kg	5	υ	
108-90-7	CHLOROBENZENE	5	ug/kg	5	U	
630-20-6	1,1,1,2-TETRACHLOROETHANE	5	ug/kg	5	U	
100-41-4	ETHYLBENZENE	5	ug/kg	5	U	
136777-61-2	M+P-XYLENE	5	ug/kg	5	U	
95-47-6	O-XYLENE	5	ug/kg	5	U	
100-42-5	STYRENE	5	ug/kg	5	U	
75-25-2	BROMOFORM	5	ug/kg	5	U	
98-82-8	ISOPROPYLBENZENE	5	ug/kg	5	U	
96-18-4	1,2,3-TRICHLOROPROPANE	5	ug/kg	5	U	
79-34-5	1,1,2,2-TETRACHLOROETHANE	5	ug/kg	5	U	
108-86-1	BROMOBENZENE	5	ug/kg	5	U	
103-65-1	N-PROPYLBENZENE	5	ug/kg	5	U	
95-49-8	2-CHLOROTOLUENE	5	ug/kg	5	U	
108-67-8	1,3,5-TRIMETHYLBENZENE	5	ug/kg	5	U	
106-43-4	4-CHLOROTOLUENE	5	ug/kg	5	U	
98-06-6	TERT-BUTYLBENZENE	5	ug/kg	. 5	U	
95-63-6	1,2,4-TRIMETHYLBENZENE	5	ug/kg	5	U	
135-98-8	SEC-BUTYLBENZENE	5	ug/kg	5	U	
541-73-1	1,3-DICHLOROBENZENE	5	ug/kg	. 5	υ	
99-87-6	P-ISOPROPYLTOLUENE	5	ug/kg	5	U	
106-46-7	1,4-DICHLOROBENZENE	5	ug/kg	5	U	
104-51-8	N-BUTYLBENZENE	5	ug/kg	5	U	
95-50-1	1,2-DICHLOROBENZENE	5	ug/kg	5	Ú	
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	10	ug/kg	10	U	
120-82-1	1,2,4-TRICHLOROBENZENE	5	ug/kg	5	U	
87-68-3	HEXACHLOROBUTADIENE	5	ug/kg	5	U	
91-20-3	NAPHTHALENE	5	ug/kg	5	U	
87-61-6	1,2,3-TRICHLOROBENZENE	5	ug/kg	5	U	

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: LABQC

Sample Matrix: Solid

Date Collected:

30-Aug-97

Sample Aliquot:

Lab ID: VA970830-1MB

% Moisture: N/A

Date Extracted:

30-Aug-97

Final Volume:

Cleanup Method: NONE Report Basis: NA

Date Analyzed:

30-Aug-97

Dilution:

Prep Batch: v08188b3

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	44.9	ug/kg	50	90	74 - 134
1868-53-7	DIBROMOFLUOROMETHANE	46.8	ug/kg	50	94	76 - 127
2037-26-5	TOLUENE-D8	48.2	ug/kg	50	96	83 - 115

U = Less than the Reporting Limit

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: River Soil

Sample Matrix: Solid

Date Collected: 20-Aug-97 Date Extracted: 30-Aug-97 Sample Aliquot: Final Volume:

5 5

Lab ID: 9708247-1

% Moisture: N/A Cleanup Method: NONE

Date Analyzed: 30-Aug-97

Dilution: 1

Report Basis: AS RECEIVED

Prep Batch: v08188b3

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-71-8	DICHLORODIFLUOROMETHANE	10	ug/kg	10	U	
74-87-3	CHLOROMETHANE	10	ug/kg	10	U	
75-01-4	VINYL CHLORIDE	10	ug/kg	10	U	
74-83-9	BROMOMETHANE	10	ug/kg	10	U	
75-00-3	CHLOROETHANE	10	ug/kg	10	U	
75-69-4	TRICHLOROFLUOROMETHANE	5	ug/kg	5	U	
75-35-4	1,1-DICHLOROETHENE	5	ug/kg	5	U	
76-13-1	TRICHLOROTRIFLUOROETHANE	5	ug/kg	5	U	
67-64-1	ACETONE	20	ug/kg	20	U	
74-88-4	IODOMETHANE	5	ug/kg	5	U	
75-15-0	CARBON DISULFIDE	5	ug/kg	5	U	
75-09-2	METHYLENE CHLORIDE	6.6	ug/kg	5	В	
156-60-5	TRANS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
1634-04-4	METHYL TERTIARY BUTYL ETHER	5	ug/kg	5	U	
75-34-3	1,1-DICHLOROETHANE	5	ug/kg	5	U	
108-05-4	VINYL ACETATE	20	ug/kg	20	U	
156-59-2	CIS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
78-93-3	2-BUTANONE	20	ug/kg	20	U	
74-97-5	BROMOCHLOROMETHANE	5	ug/kg	5	U	
67-66-3	CHLOROFORM	5	ug/kg	5	υ	
71-55-6	1,1,1-TRICHLOROETHANE	5	ug/kg	5	U	
594-20-7	2,2-DICHLOROPROPANE	5	ug/kg	5	U	
56-23-5	CARBON TETRACHLORIDE	5	ug/kg	5	U	
563-58-6	1,1-DICHLOROPROPENE	5	ug/kg	5	υ	
107-06-2	1,2-DICHLOROETHANE	5	ug/kg	5	U	
71-43-2	BENZENE	5	ug/kg	5	U	
79-01-6	TRICHLOROETHENE	5	ug/kg	5	U	
78-87-5	1,2-DICHLOROPROPANE	5	ug/kg	5	U	
74-95-3	DIBROMOMETHANE	5	ug/kg	5	U	
75-27-4	BROMODICHLOROMETHANE	5	ug/kg	5	υ	
110-75-8	2-CHLOROETHYL VINYL ETHER	10	ug/kg	10	U	
10061-01-5	CIS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	
108-10-1	4-METHYL-2-PENTANONE	20	ug/kg	20	U	
108-88-3	TOLUENE	5	ug/kg	5	U	

Volatile Organics by GC/MS

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: River Soil
Lab ID: 9708247-1

Sample Matrix: Solid % Moisture: N/A Date Collected: 20-Aug-97 Date Extracted: 30-Aug-97 Date Analyzed: 30-Aug-97 Sample Aliquot: Final Volume:

5 5

Cleanup Method: NONE Report Basis: AS RECEIVED

Prep Batch: v08188b3

Dilution:

RULLOFID

						RULEUR
10061-02-6	TRANS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	100
79-00-5	1,1,2-TRICHLOROETHANE	5	ug/kg	5	U	100
591-78-6	2-HEXANONE	20	ug/kg	20	U	400
127-18-4	TETRACHLOROETHENE	5	ug/kg	5	U	100
142-28-9	1,3-DICHLOROPROPANE	5	ug/kg	5	U	100
124-48-1	DIBROMOCHLOROMETHANE	5	ug/kg	5	U	100
106-93-4	1,2-DIBROMOETHANE	5	ug/kg	5	U	100
544-10-5	1-CHLOROHEXANE	5	ug/kg	5	U	100
108-90-7	CHLOROBENZENE	5	ug/kg	5	U	100
630-20-6	1,1,1,2-TETRACHLOROETHANE	5	ug/kg	5	U	100
100-41-4	ETHYLBENZENE	5	ug/kg	5	U	100
136777-61-	M+P-XYLENE	5	ug/kg	5	Ü	100
95-47-6	O-XYLENE	5	ug/kg	5	U	100
100-42-5	STYRENE	5	ug/kg	5	U	100
75-25-2	BROMOFORM	5	ug/kg	5	U	100
98-82-8	ISOPROPYLBENZENE	5	ug/kg	5	U	100
96-18-4	1,2,3-TRICHLOROPROPANE	5	ug/kg	5	U	100
79-34-5	1,1,2,2-TETRACHLOROETHANE	5	ug/kg	5	U	100
108-86-1	BROMOBENZENE	5	ug/kg	. 5	U	100
103-65-1	N-PROPYLBENZENE	5	ug/kg	. 5	U	100
95-49-8	2-CHLOROTOLUENE	5	ug/kg	5	U	100
108-67-8	1,3,5-TRIMETHYLBENZENE	5	ug/kg	5	U	100
106-43-4	4-CHLOROTOLUENE	5	ug/kg	5	U	100
98-06-6	TERT-BUTYLBENZENE	5	ug/kg	5	υ	100
95-63-6	1,2,4-TRIMETHYLBENZENE	5	ug/kg	5	U	100
135-98-8	SEC-BUTYLBENZENE	5	ug/kg	5	U	100
541-73-1	1,3-DICHLOROBENZENE	5	ug/kg	5	U	100
99-87-6	P-ISOPROPYLTOLUENE	5	ug/kg	5	U	100
106-46-7	1,4-DICHLOROBENZENE	5	ug/kg	5	υ	100
104-51-8	N-BUTYLBENZENE	5	ug/kg	5	U	100
95-50-1	1,2-DICHLOROBENZENE	5	ug/kg	5	U	100
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	10	ug/kg	10	U	800
120-82-1	1,2,4-TRICHLOROBENZENE	5	ug/kg	5	U	100
87-68-3	HEXACHLOROBUTADIENE	5	ug/kg	5	U	100
91-20-3	NAPHTHALENE	5	ug/kg	5	U	100
87-61-6	1,2,3-TRICHLOROBENZENE	5	ug/kg	5	U	100

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: Delisted Soil
Lab ID: 9708247-2

Sample Matrix: Solid % Moisture: N/A Date Collected: 20-Aug-97
Date Extracted: 30-Aug-97

Sample Aliquot: 5 Final Volume: 5

Cleanup Method: NONE Report Basis: AS RECEIVED

Date Analyzed: 30-Aug-97 Prep Batch: v08188b3 Dilution: 1

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote	RU
75-71-8	DICHLORODIFLUOROMETHANE	10	ug/kg	10	U	1	20
74-87-3	CHLOROMETHANE	10	ug/kg	10	U		20
75-01-4	VINYL CHLORIDE	10	ug/kg	10	U		20
74-83-9	BROMOMETHANE	10	ug/kg	10	U		20
75-00-3	CHLOROETHANE	10	ug/kg	10	U		20
75-69-4	TRICHLOROFLUOROMETHANE	5	ug/kg	5	U ·		100
75-35-4	1,1-DICHLOROETHENE	5	ug/kg	5	U		100
76-13-1	TRICHLOROTRIFLUOROETHANE	5	ug/kg	5	U		10
67-64-1	ACETONE	59	ug/kg	20			40
74-88-4	IODOMETHANE	5	ug/kg	5	υ		10
75-15-0	CARBON DISULFIDE	5	ug/kg	5	U		10
75-09-2	METHYLENE CHLORIDE	2.8	ug/kg	5	J		10
156-60-5	TRANS-1,2-DICHLOROETHENE	5	ug/kg	5	U		10
1634-04-4	METHYL TERTIARY BUTYL ETHER	5	ug/kg	5	U		10
75-34-3	1,1-DICHLOROETHANE	5	ug/kg	5	U		10.
108-05-4	VINYL ACETATE	20	ug/kg	20	U		40
156-59-2	CIS-1,2-DICHLOROETHENE	5	ug/kg	5	U		10
78-93-3	2-BUTANONE	13	ug/kg	20	J,B		40
74-97-5	BROMOCHLOROMETHANE	5	ug/kg	5	U		10
67-66-3	CHLOROFORM	5	ug/kg	5	U		10
71-55-6	1,1,1-TRICHLOROETHANE	5	ug/kg	5	υ		10
594-20-7	2,2-DICHLOROPROPANE	5	ug/kg	5	U		16
56-23-5	CARBON TETRACHLORIDE	5	ug/kg	5	U		10
563-58-6	1,1-DICHLOROPROPENE	5	ug/kg	5	U		10
107-06-2	1,2-DICHLOROETHANE	5	ug/kg	5	U		10
71-43-2	BENZENE	5	ug/kg	5	U		10
79-01-6	TRICHLOROETHENE	5	ug/kg	5	U		10
78-87-5	1,2-DICHLOROPROPANE	5	ug/kg	5	U		10
74-95-3	DIBROMOMETHANE	5	ug/kg	5	U		10
75-27-4	BROMODICHLOROMETHANE	5	ug/kg	5	U		10
110-75-8	2-CHLOROETHYL VINYL ETHER	10	ug/kg	10	U		7.0
10061-01-5	CIS-1,3-DICHLOROPROPENE	5	ug/kg	5	U		10
108-10-1	4-METHYL-2-PENTANONE	20	ug/kg	20	U		40
108-88-3	TOLUENE	5	ug/kg	5	U		10

000009

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: Delisted Soil
Lab ID: 9708247-2

Sample Matrix: Solid % Moisture: N/A Date Collected: 20-Aug-97 Date Extracted: 30-Aug-97 Date Analyzed: 30-Aug-97 Sample Aliquot: Final Volume:

5 5

Cleanup Method: NONE Report Basis: AS RECEIVED

Prep Batch: v08188b3

Dilution:

	Report Basis: AS RE	CEIVED	Prep Batch: V	0010000		Rule of 20
10061-02-6	TRANS-1,3-DICHLOROPROPENE	5	ug/kg	5	υ	100
79-00-5	1,1,2-TRICHLOROETHANE	5	ug/kg	5	U	100
591-78-6	2-HEXANONE	20	ug/kg	20	U	400
127-18-4	TETRACHLOROETHENE	5	ug/kg	5	U	100
142-28-9	1,3-DICHLOROPROPANE	5	ug/kg	5	U	100
124-48-1	DIBROMOCHLOROMETHANE	5	ug/kg	5	U	100
106-93-4	1,2-DIBROMOETHANE	5	ug/kg	5	U	100
544-10-5	1-CHLOROHEXANE	5	ug/kg	5	U	100
108-90-7	CHLOROBENZENE	5	ug/kg	5	U	100
630-20-6	1,1,1,2-TETRACHLOROETHANE	5	ug/kg	5	U	100
100-41-4	ETHYLBENZENE	5	ug/kg	5	U	100
136777-61-	M+P-XYLENE	5	ug/kg	5	U	100
95-47-6	O-XYLENE	5	ug/kg	5	U	100
100-42-5	STYRENE	5	ug/kg	5	U	100
75-25-2	BROMOFORM	5	ug/kg	5	U	100
98-82-8	ISOPROPYLBENZENE	5	ug/kg	5	U	100
96-18-4	1,2,3-TRICHLOROPROPANE	5	ug/kg	5	U	100
79-34-5	1,1,2,2-TETRACHLOROETHANE	5	ug/kg	5	U	100
108-86-1	BROMOBENZENE	5	ug/kg	5	U	100
103-65-1	N-PROPYLBENZENE	5	ug/kg	5	U	100
95-49-8	2-CHLOROTOLUENE	5	ug/kg	5	U	100
108-67-8	1,3,5-TRIMETHYLBENZENE	5	ug/kg	5	U	100
106-43-4	4-CHLOROTOLUENE	5	ug/kg	5	U	100
98-06-6	TERT-BUTYLBENZENE	5	ug/kg	5	U	100
95-63-6	1,2,4-TRIMETHYLBENZENE	5	ug/kg	5	U	100
135-98-8	SEC-BUTYLBENZENE	5	ug/kg	5	U	100
541-73-1	1,3-DICHLOROBENZENE	5	ug/kg	5	U	100
99-87-6	P-ISOPROPYLTOLUENE	5	ug/kg	5	U	100
106-46-7	1,4-DICHLOROBENZENE	5	ug/kg	5	U	100
104-51-8	N-BUTYLBENZENE	5	ug/kg	5	U	100
95-50-1	1,2-DICHLOROBENZENE	5	ug/kg	5	U	100
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	10	ug/kg	10	U	200
120-82-1	1,2,4-TRICHLOROBENZENE	5	ug/kg	5	U	100
87-68-3	HEXACHLOROBUTADIENE	5	ug/kg	5	U	100
91-20-3	NAPHTHALENE	5	ug/kg	5	U	100
87-61-6	1,2,3-TRICHLOROBENZENE	5	ug/kg	5	U	100

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: LABQC

Lab ID: VA970901-1MB

Sample Matrix: Solid

% Moisture: N/A

Date Collected:

01-Sep-97

Sample Aliquot:

Cleanup Method: NONE

Date Extracted: Date Analyzed: 01-Sep-97 01-Sep-97 Final Volume:

Report Basis: NA

Prep Batch:

v08247b1

5 Dilution:

5

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-71-8	DICHLORODIFLUOROMETHANE	10	ug/kg	10	U	
74-87-3	CHLOROMETHANE	10	ug/kg	10	U	
75-01-4	VINYL CHLORIDE	10	ug/kg	10	U	
74-83-9	BROMOMETHANE	10	ug/kg	10	U	i
75-00-3	CHLOROETHANE	10	ug/kg	10	U	
75-69-4	TRICHLOROFLUOROMETHANE	5	ug/kg	5	υ	
75-35-4	1,1-DICHLOROETHENE	5	ug/kg	5	U	
76-13-1	TRICHLOROTRIFLUOROETHANE	5	ug/kg	5	U	
67-64-1	ACETONE	20	ug/kg	20	U	
74-88-4	IODOMETHANE	5	ug/kg	5	U	
75-15-0	CARBON DISULFIDE	5	ug/kg	5	U	
75-09-2	METHYLENE CHLORIDE	16	ug/kg	5		
156-60-5	TRANS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
1634-04-4	METHYL TERTIARY BUTYL ETHER	5	ug/kg	5	U	
75-34-3	1,1-DICHLOROETHANE	5	ug/kg	5	U	
108-05-4	VINYL ACETATE	20	ug/kg	20	U	
156-59-2	CIS-1,2-DICHLOROETHENE	5	ug/kg	5	U	
78-93-3	2-BUTANONE	20	ug/kg	20	U	
74-97-5	BROMOCHLOROMETHANE	5	ug/kg	5	U	
67-66-3	CHLOROFORM	5	ug/kg	5	U	
71-55-6	1,1,1-TRICHLOROETHANE	5	ug/kg	. 5	U	
594-20-7	2,2-DICHLOROPROPANE	5	ug/kg	5	U	
56-23-5	CARBON TETRACHLORIDE	5	ug/kg	5	U	
563-58-6	1,1-DICHLOROPROPENE	5	ug/kg	5	U	
107-06-2	1,2-DICHLOROETHANE	5	ug/kg	5	U	
71-43-2	BENZENE	5	ug/kg	5	U	
79-01-6	TRICHLOROETHENE	5	ug/kg	5	U	
78-87-5	1,2-DICHLOROPROPANE	5	ug/kg	5	U	
74-95-3	DIBROMOMETHANE	5	ug/kg	5	U	
75-27-4	BROMODICHLOROMETHANE	5	ug/kg	5	U	
110-75-8	2-CHLOROETHYL VINYL ETHER	10	ug/kg	10	U	<u> </u>
10061-01-5	CIS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	
108-10-1	4-METHYL-2-PENTANONE	20	ug/kg	20	U	
108-88-3	TOLUENE	5	ug/kg	5	U	
10061-02-6	TRANS-1,3-DICHLOROPROPENE	5	ug/kg	5	U	
79-00-5	1,1,2-TRICHLOROETHANE	5	ug/kg	5	U	
591-78-6	2-HEXANONE	20	ug/kg	20	U	

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: LABQC Lab ID: VA970901-1MB Sample Matrix: Solid % Moisture: N/A

Date Collected: Date Extracted:

01-Sep-97 01-Sep-97

Sample Aliquot: Final Volume:

5 5

Cleanup Method: NONE Report Basis: NA

Date Analyzed: 01-Sep-97 Prep Batch: v08247b1

Dilution:

	Report Basis: NA	гіер	Batch: VU8.	24701		
127-18-4	TETRACHLOROETHENE	5	ug/kg	5	U	
142-28-9	1,3-DICHLOROPROPANE	5	ug/kg	5	U	
124-48-1	DIBROMOCHLOROMETHANE	5	ug/kg	5	U	
106-93-4	1,2-DIBROMOETHANE	5	ug/kg	5	U	
544-10-5	1-CHLOROHEXANE	5	ug/kg	5	U	
108-90-7	CHLOROBENZENE	5	ug/kg	5	U	
630-20-6	1,1,1,2-TETRACHLOROETHANE	5	ug/kg	5	U	
100-41-4	ETHYLBENZENE	5	ug/kg	5	U	
136777-61-2	M+P-XYLENE	5	ug/kg	5	U	
95-47-6	O-XYLENE	5	ug/kg	5	U	
100-42-5	STYRENE	5	ug/kg	5	U	
75-25-2	BROMOFORM	5	ug/kg	5	U	
98-82-8	ISOPROPYLBENZENE	5	ug/kg	5	U	
96-18-4	1,2,3-TRICHLOROPROPANE	5	ug/kg	5	U	
79-34-5	1,1,2,2-TETRACHLOROETHANE	5	ug/kg	5	U	
108-86-1	BROMOBENZENE	5	ug/kg	5	U	
103-65-1	N-PROPYLBENZENE	5	ug/kg	5	U	
95-49-8	2-CHLOROTOLUENE	5	ug/kg	5	U	
108-67-8	1,3,5-TRIMETHYLBENZENE	5	ug/kg	5	U	
106-43-4	4-CHLOROTOLUENE	5	ug/kg	5	U	
98-06-6	TERT-BUTYLBENZENE	5	ug/kg	5	U	
95-63-6	1,2,4-TRIMETHYLBENZENE	5	ug/kg	5	U	
135-98-8	SEC-BUTYLBENZENE	5	ug/kg	5	U	
541-73-1	1,3-DICHLOROBENZENE	5	ug/kg	. 5	U	
99-87-6	P-ISOPROPYLTOLUENE	5	ug/kg	5	U	
106-46-7	1,4-DICHLOROBENZENE	5	ug/kg	5	U	
104-51-8	N-BUTYLBENZENE	5	ug/kg	5	U	
95-50-1	1,2-DICHLOROBENZENE	5	ug/kg	5	U	
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	10	ug/kg	10	U	
120-82-1	1,2,4-TRICHLOROBENZENE	. 5	ug/kg	5	U	
87-68-3	HEXACHLOROBUTADIENE	5	ug/kg	5	Ú	
91-20-3	NAPHTHALENE	5	ug/kg	5	۲	
87-61-6	1,2,3-TRICHLOROBENZENE	5	ug/kg	5	U	

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: Evap. Pond Bottoms

Sample Matrix: Solid

Date Collected: 20-Aug-97

Sample Aliquot:

Lab ID: 9708247-3

% Moisture: N/A

Date Extracted: 01-Sep-97

Final Volume:

5

Cleanup Method: NONE Report Basis: AS RECEIVED

Date Analyzed: 01-Sep-97 Prep Batch: v08247b1

Dilution:

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-71-8	DICHLORODIFLUOROMETHANE	50	ug/kg	50	U	1000
74-87-3	CHLOROMETHANE	50	ug/kg	50	U	1000
75-01-4	VINYL CHLORIDE	50	ug/kg	50	U	1000
74-83-9	BROMOMETHANE	50	ug/kg	50	U	1000
75-00-3	CHLOROETHANE	50	ug/kg	50	U	1000
75-69-4	TRICHLOROFLUOROMETHANE	25	ug/kg	25	U	300
75-35-4	1,1-DICHLOROETHENE	25	ug/kg	25	U	002
76-13-1	TRICHLOROTRIFLUOROETHANE	25	ug/kg	25	U	500
67-64-1	ACETONE	340	ug/kg	100		2000
74-88-4	IODOMETHANE	25	ug/kg	25	U	500
75-15-0	CARBON DISULFIDE	25	ug/kg	25	U	500
75-09-2	METHYLENE CHLORIDE	17	ug/kg	25	J,B	500
156-60-5	TRANS-1,2-DICHLOROETHENE	25	ug/kg	25	U	500
1634-04-4	METHYL TERTIARY BUTYL ETHER	25	ug/kg	25	U	500
75-34-3	1,1-DICHLOROETHANE	25	ug/kg	25	U	520
108-05-4	VINYL ACETATE	100	ug/kg	100	U	2000
156-59-2	CIS-1,2-DICHLOROETHENE	25	ug/kg	25	U	500
78-93-3	2-BUTANONE	95	ug/kg	100	J	2000
74-97-5	BROMOCHLOROMETHANE	25	ug/kg	25	U	500
67-66-3	CHLOROFORM	25	ug/kg	25	U	500
71-55-6	1,1,1-TRICHLOROETHANE	25	ug/kg	25	U	500
594-20-7	2,2-DICHLOROPROPANE	25	ug/kg	25	U	500
56-23-5	CARBON TETRACHLORIDE	25	ug/kg	25	U	720
563-58-6	1,1-DICHLOROPROPENE	25	ug/kg	25	U	500
107-06-2	1,2-DICHLOROETHANE	25	ug/kg	25	U	500
71-43-2	BENZENE	25	ug/kg	25	U	500
79-01-6	TRICHLOROETHENE	25	ug/kg	25	U	500
78-87-5	1,2-DICHLOROPROPANE	25	ug/kg	25	U	500
74-95-3	DIBROMOMETHANE	25	ug/kg	25	U	500
75-27-4	BROMODICHLOROMETHANE	25	ug/kg	25	U	500
110-75-8	2-CHLOROETHYL VINYL ETHER	50	ug/kg	50	U	1000
10061-01-5	CIS-1,3-DICHLOROPROPENE	25	ug/kg	25	U	500
108-10-1	4-METHYL-2-PENTANONE	20	ug/kg	100		2000
108-88-3	TOLUENE	25	ug/kg	25		200

Volatile Organics by GC/MS

Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: Evap. Pond Bottoms Lab ID: 9708247-3

Sample Matrix: Solid % Moisture: N/A

Date Collected: 20-Aug-97 Date Extracted: 01-Sep-97 Date Analyzed: 01-Sep-97

Sample Aliquot: Final Volume:

Cleanup Method: NONE Report Basis: AS RECEIVED

Prep Batch: v08247b1

Dilution:

RULE OF 20

						ROLE
10061-02-6	TRANS-1,3-DICHLOROPROPENE	25	ug/kg	25	U	500
79-00-5	1,1,2-TRICHLOROETHANE	25	ug/kg	25	U	500
591-78-6	2-HEXANONE	100	ug/kg	100	U	2000
127-18-4	TETRACHLOROETHENE	25	ug/kg	25	U	200
142-28-9	1,3-DICHLOROPROPANE	25	ug/kg	25	U	500
124-48-1	DIBROMOCHLOROMETHANE	25	ug/kg	25	U	500
106-93-4	1,2-DIBROMOETHANE	25	ug/kg	25	U	500
544-10-5	1-CHLOROHEXANE	25	ug/kg	25	U	500
108-90-7	CHLOROBENZENE	25	ug/kg	25	U	500
630-20-6	1,1,1,2-TETRACHLOROETHANE	25	ug/kg	25	U	500
100-41-4	ETHYLBENZENE	25	ug/kg	25	U	500
136777-61-	M+P-XYLENE	25	ug/kg	25	U	500
95-47-6	O-XYLENE	25	ug/kg	25	U	500
100-42-5	STYRENE	25	ug/kg	25	U	500
75-25-2	BROMOFORM	25	ug/kg	25	U	500
98-82-8	ISOPROPYLBENZENE	25	ug/kg	25	U	500
96-18-4	1,2,3-TRICHLOROPROPANE	25	ug/kg	25	U	500
79-34-5	1,1,2,2-TETRACHLOROETHANE	25	ug/kg	25	U	500
108-86-1	BROMOBENZENE	25	ug/kg	25	U	500
103-65-1	N-PROPYLBENZENE	25	ug/kg	25	U	500
95-49-8	2-CHLOROTOLUENE	25	ug/kg	25	U	500
108-67-8	1,3,5-TRIMETHYLBENZENE	25	ug/kg	25	U	500
106-43-4	4-CHLOROTOLUENE	25	ug/kg	25	U	500
98-06-6	TERT-BUTYLBENZENE	25	ug/kg	25	U	570
95-63-6	1,2,4-TRIMETHYLBENZENE	25	ug/kg	25	U	500
135-98-8	SEC-BUTYLBENZENE	25	ug/kg	25	U	500
541-73-1	1,3-DICHLOROBENZENE	25	ug/kg	25	U	500
99-87-6	P-ISOPROPYLTOLUENE	25	ug/kg	25	U	500
106-46-7	1,4-DICHLOROBENZENE	25	ug/kg	25	U	500
104-51-8	N-BUTYLBENZENE	25	ug/kg	25	U	500
95-50-1	1,2-DICHLOROBENZENE	25	ug/kg	25	U	500
96-12-8	1,2-DIBROMO-3-CHLOROPROPANE	50	ug/kg	50	U	500
120-82-1	1,2,4-TRICHLOROBENZENE	25	ug/kg	25	U	500
87-68-3	HEXACHLOROBUTADIENE	25	ug/kg	25	U	500
91-20-3	NAPHTHALENE	25	ug/kg	25	U	500
87-61-6	1,2,3-TRICHLOROBENZENE	25	ug/kg	25	U	500

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

Field ID: LABQC

Sample Matrix: Solid

Date Collected:

01-Sep-97

Sample Aliquot:

mple Aliquot:

5 5

Lab ID: VA970901-1MB

% Moisture: N/A Cleanup Method: NONE Date Extracted: Date Analyzed:

01-Sep-97 01-Sep-97 Final Volume:

5

Report Basis: NA

Prep Batch:

v08247b1

Dilution:

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	48.5	ug/kg	50	97	74 - 134
1868-53-7	DIBROMOFLUOROMETHANE	49.5	ug/kg	50	99	76 - 127
2037-26-5	TOLUENE-D8	52.8	ug/kg	50	106	83 - 115

U = Less than the Reporting Limit

Blank Spike and Blank Spike Duplicate Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

BS ID: VA970830-1LCS

Sample Matrix: Solid % Moisture: N/A

Date Collected: Date Extracted: 30-Aug-97 30-Aug-97 Sample Aliquot:

5 Final Volume: 5

BSD ID: VA970830-1LCSD

Cleanup Method: NONE Report Basis: N/A

Date Analyzed: Prep Batch:

30-Aug-97 v08188b3

Dilution:

CASNO	Target Analyte	Spike Added	BS Result	Units	Reporting Limit	BS % Rec.	Control Limits
75-35-4	1,1-DICHLOROETHENE	20	17.9	ug/kg	5	89	59 - 136
71-43-2	BENZENE	20	19.3	ug/kg	5	97	76 - 123
79-01-6	TRICHLOROETHENE	20	20	ug/kg	5	100	74 - 127
108-88-3	TOLUENE	20	19.9	ug/kg	5	99	75 - 124
108-90-7	CHLOROBENZENE	20	20.3	ug/kg	5	101	75 - 124

CASNO	Target Analyte	Spike Added	BSD Result	Units	Reporting Limit	BSD % Rec.	RPD	RPD Limits
75-35-4	1,1-DICHLOROETHENE	20	17	ug/kg	5	85	5	25
71-43-2	BENZENE	20	17.7	ug/kg	5	89	9	23
79-01-6	TRICHLOROETHENE	20	18.4	ug/kg	5	92	8	25
108-88-3	TOLUENE	20	18.3	ug/kg	5	92	7	24
108-90-7	CHLOROBENZENE	20	18.4	ug/kg	5	92	9	24

Surrogate Recovery BS/BSD

CASNO	Target Analyte	Spike Added	BS % Rec.	BSD % Rec.	RPD	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	50	90	90	0	74 - 134
1868-53-7	DIBROMOFLUOROMETHANE	50	99	97	2	76 - 127
2037-26-5	TOLUENE-D8	50	96	92	4	83 - 115

Volatile Organics by GC/MS

Blank Spike and Blank Spike Duplicate Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9708247

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Thursday, September 04, 1997

BS ID: VA970901-1LCS

Sample Matrix: Solid

Date Collected: 01-Sep-97

5 Sample Aliquot:

BSD ID: VA970901-1LCSD

% Moisture: N/A

Date Extracted: 01-Sep-97 Final Volume: 5

Cleanup Method: NONE

Date Analyzed: 01-Sep-97 Dilution:

Report Basis: N/A

Prep Batch:

v08247b1

CASNO	Target Analyte	Spike Added	BS Result	Units	Reporting Limit	BS % Rec.	Control Limits
75-35-4	1,1-DICHLOROETHENE	20	19.9	ug/kg	5	100	59 - 136
71-43-2	BENZENE	20	19.9	ug/kg	5	99	76 - 123
79-01-6	TRICHLOROETHENE	20	20.1	ug/kg	5	101	74 - 127
108-88-3	TOLUENE	20	21	ug/kg	5	105	75 - 124
108-90-7	CHLOROBENZENE	20	19.3	ug/kg	5	96	75 - 124

CASNO	Target Analyte	Spike Added	BSD Result	Units	Reporting Limit	BSD % Rec.	RPD	RPD Limits
75-35-4	1,1-DICHLOROETHENE	20	18.9	ug/kg	5	94	6	25
71-43-2	BENZENE	20	19.1	ug/kg	5	96	3	23
79-01-6	TRICHLOROETHENE	20	18.2	ug/kg	5	91	10	25
108-88-3	TOLUENE	20	19.3	ug/kg	5	97	8	24
108-90-7	CHLOROBENZENE	20	18.5	ug/kg	5	92	4	24

Surrogate Recovery BS/BSD

CASNO	Target Analyte	Spike Added	BS % Rec.	BSD % Rec.	RPD	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	50	105	102	3	74 - 134
1868-53-7	DIBROMOFLUOROMETHANE	50	102	102	0	76 - 127
2037-26-5	TOLUENE-D8	50	105	101	4	83 - 115

QUALITY ASSURANCE DATA REVIEW

Date: September 17, 1997

Paragon Workorder: 97-08-247

Analysis: General Chemistry Analysis

The data contained in the following report have been reviewed and approved by the personnel listed below:

Victoria L. Bayly Project Manager

CERTIFICATION

Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete, and correct within the limits of the methods employed.

A case narrative ___ is _XX_ is not included with this report.

000001

PHENOLS STANDARD METHODS 5530 D

Lab Name: Paragon Analytics, Inc.

Date Collected: August 20, 1997

Client Name: Giant Refining Company

Date of Analysis: September 5, 1997

Client Project ID: Not Submitted

Sample Matrix: Soil

Lab Sample ID: 97-08-247

SAMPLES

	Sample ID	Client ID	Method	Concentration (ppm)	Detection (ppm)	X50
91	Lab Blank 7-08-247-01	NA River Soil	5530-D 5530-D	<0.05 <1.0	0.05 1.0	1,00 20.1
1	7-08-247-02 7-08-247-03	Delisted Soil Evap. Pond Bottoms	5530-D 5530-D	2.8 <2.0	1.0 2.0*	40.

^{*}Detection limit elevated due to matrix interferences.

PHENOLS STANDARD METHODS 5530 D

Lab Name: Paragon Analytics, Inc.

Date Collected: August 20, 1997

Client Name: Giant Refinery Company

Date of Analysis: September 5, 1997

Client Project ID: Not Submitted

Sample Matrix: Soil

Lab Sample ID: 97-08-247

DUPLICATE

Sample ID	Client ID	Sample Conc (ppm)	Duplicate Conc (ppm)	Relative Percent Deviation(%)
97-08-247-01	River Soil	<1.0	<1.0	<20

MATRIX SPIKE

Sample ID	Client Sample ID	Spike Amount (ppm)	Percent Recovery	QC Acceptance Limits (%)
97-08-247-01	River Soil	0.40	102	80 - 120

LAB CONTROL SAMPLE

Sample ID	Client ID	LCS True Value (ppm)	LCS Conc . Found (ppm)	Confidence Interval (ppm)
Independent Reference Material	NA	0.116	0.095	0.093 - 0.139

PARAGON ANALYTICS, INC.

225 Commerce Drive Ft. Collins, CO 80524

(800) 443-1511 or (970) 490-1511 (970) 490-1522 · Fax

*ACCESSION NUMBER (LAB ID) - イナッタ・マイナ

CHAIN OF CUSTODY DATE 8/20/17 Page 1 of 1

			OMMENTS: * SEE ATTACHED LIS		TE DISPOSAL: THE WASTE	AT: RUSH DUE	Æ.	ROJECT INFORMATION PROJECT NUMBER:	TRIP BLANK	INTECTION WELL 8/20 1015 H.D		RIVER-B 8/200940 HW	NOWP- E 9/20 09554,0	POTTOMS 8/20 1005 SOIL	POND	TED SOIL P/20 1025	RIVER SOIL 8/20 0950 SOIL	SAMPLE ID DATE TIME MATRIX	PHONE NO. FAX NO.	1505/632 7/68 (505/632	111 15	SAMPLER:		BLOOMFIELD,	1	MNG	REPORT TO: LYNN SHELTON
			ST		RAD CHEM \$15.00 ea	REC'D GOOD COND/COLD?	CHAIN DE CUSTODY SEALS Y/N	SAMPLE RECEIPT TOTAL NO. OF CONTAINERS	9	86		35	04	63		3Z	01	Oil & Gr 418.1 · 8015 M 8015 m/s	TRPI od od	Gas Die:	70/5 colin sel	9071 ne				8	
Company	Print	Sign.	RECEIVED BY:	Company CIANT	RETURN	Print YNN SHELDW Date	Killym Spalla	RELINQUISHED BY:				X	X					8020 · E 8240/82 8270 · G 8080 · F 8080 · F 8310/61 8150 · F 8141/61 TOX · EG	260 - GC/M Pesti PCB's 10 - F Verbi	GC/ S S cide s on dPLU cide	VMS VOC s/Pl y C Pl est	C's CB's VA's					A
Company DAT	Date Print 13 11	Time Sign.	1 RECEIVED BY:	Company FO		W Date Print	Time Sign.	1 RELINQUISHED BY:										Total M. TCLP: * Gross A. Gross G. Gamma Isotopic	etals (spec Ipha amm Spec	ify p Be a	peci parai eta	fy in					ANALYSIS REQUESTED
Company	Date Print	Time Sign.	2 RECEIVED BY:	Сотрапу		Date Print	Time Sign.	2						e			8-12	Isotopic Total Ur Radium Tritium Strontiu 8315 - F	aniu 226 (H3) ım 8:	m (f	KPA. 18						
Ť	Dai	Tin	ED BY:	W		Da	Tin	RELINQUISHED BY:		X	•	110	×	×		X	×	% Moist	ure				اک	<i></i>	*		

W

7

Number of Containers

NEW MEXICO ENERGY, MINERALS & NATURAL RESOURCES DEPARTMENT

OIL CONSERVATION DIVISION
AZTEC DISTRICT OFFICE
AZTEC NM 87410
(505) 334-6178 FAX: (505) 334-6170
http://www.rd.stats.nm.us/ocd/District III/3distric.htm

GARY E. JOHNSON

Jennifer A. Salisbury

Certified Receipt #P 471 215 204

January 27, 1998

Giant Refining Company-Bloomfield GW-001 Attn Lynn Shelton Environmental Manager PO Box 159 Bloomfield NM 87413

RE: Initial Accident Report for an Accident Which Occurred 1/09/98

Dear Mr. Shelton:

The initial report is being returned unapproved.

- Although the cover letter was signed, the C-141 lacks an official signature.
- 2. The drawing referred to is not attached to the C-141.
- 3. There are volume discrepancies between the cover letter and the C-141 report form.
- 4. The entire volume of the release is used to determine whether or not notice is required. The bar ditch which received fluid is a watercourse by OCD definition and on a public right-of-way outside your Discharge Plan Facility.
- 5. The description of the cause, remedial action and initial cleanup steps lack enough detail.

Mr. Lynn Shelton Page Two January 27, 1998

Final approval of the remedial action and cleanup will be under Rule 116(D) through the NMOCD Environmental Bureau which has authority under Giant Refining Company-Bloomfield's Discharge Plan GW-1.

Please feel free to call me at (505) 334-6178 Ext 11 or Denny Foust at Ext 15 if you have questions.

Sincerely,

Frank T. Chavez
District Supervisor

FTC\sh

Enclosures (2)

xc: Environmental Bureau-Santa Fe Environmental File DGF File

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413

505 632-8013

JAN 2 1 1998

OIL CON. DIV. DIST. 3

January 19, 1998

Denny Foust NMOCD - Aztec 1000 Rio Brazos Road Aztec, New Mexico 87410

Re:

116 Spill Report Giant Refining Company - Bloomfield GW-001

Dear Mr. Foust:

Giant Refining Company - Bloomfield submits two C-141 report forms regarding a recent release at this facility. None of the released material left the refinery property.

The release consisted of approximately 70 barrels of water, sulfur and iron chelate, with over 45 barrels recovered and taken to the process wastewater system at the refinery.

This material had been removed from the sulfur recovery unit as a result of maintenance operations there. This combination of sulfur, iron chelate and water is known by Giant to be non-hazardous.

Giant is proceeding with cleanup activities.

Sincerely:

Lvnn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

Enclosure

cc: John Stokes, Refinery Manager

Kathleen O'Leary, Corporate Counsel, Giant Industries, Inc.

District I - (505) 393-6161 P. O. Box 1940 Hobbs, NM 88241-1980 District II - (505) 748-1283 811 South First Artesia, NM 88210 District III - (505) 334-6178 1000 Rio Brazos Road Aztec, NM 87410 District IV - (505) 827-7131

* Attach Additional Sheets If Necessary

State of New Mexico Energy Minerals and Natural Resources Dartment Oil Conservation Division

2040 South Pacheco Street Santa Fe, New Mexico 87505 (505) 827-7131 Form C- 141 Originated 2/13/97

Submit 2 copies to Appropriate District Office in accordance with Rule 116

District IV - (505) 827-7131							
Rele	ase Notification	and Correct	tive Action				
	OP	ERATOR		[XX 1:	nitial Report		Final Repor
Name		Contact	t				
Giant Refining Company - Bloomfi	eld		<u>nn Shelton</u>				
Address #50 County Board 4000		Telepho / 5 /		2			
#50 County Road 4990 Facility Name		Fadlity	05) 632-801	3			
1		1	• •				
Same		ı ke	finery				
Surface Owner	Mineral Owner			Le	ase No.		
N/A	N/A	·			N/A		
	LOCATION	OF RELEAS	E				
Unit Letter Section Township Range Feet from			East/West Line	County			
I 27 29N 11W				San	Juan		
	* * * * * * * * * * * * * * * * * * *						
	NATURE (OF RELEASE					
Type of Release Water			of Release bbls.		Volume Recove		
Source of Release			d Hour of Occurren	œ J	Date and Hour o		overv
Water from vacuum truck			00 pm 1/9/	1	Same		,
Astro-Lucia di ana Masi sa Cisara 2	VV		To Whom?	30	Jame		
	XX Not Required		~				
By Whom?		Date ar	nd Hour				
Was a Watercourse Reached?		If YES.	Volume Impacting	he Waterco	wsel 5	15	i ME F
Yes XX No					ではい	15	IV E
If a Watercourse was Impacted, Describe Fully.*					-UU JAN	2	1 1993
in a macrosole was impacted, 200 ise really.							
					17.	: ; , , , , , ,	
Describe Cause of Problem and Remedial Action Taken.*						_	,
An 80 bbl. load was removed from							
iron chelate. The load was dumpe and ran into ditch on property.							
and ran into ditten on property.		adilica ap a		p. 00c3			
Describe Area Affected and Cleanup Action Taken.*							
Excess water was removed, soil w	vas left to dr	ry out pend	ing removal	of ma	iterial. M	late	rial
released is known to be non-haza	irdous and wil	i be nandi	ed as sucn.	(see	attached	araı	wing)
Describe General Conditions Prevailing (Temperature, Precipita	ition, etc.).*						
Clear, cold, 40-45°F, 5 mph wind	l from SSW. dr	~v					
l orear, cora, ro to r, o impir write	. 110111 0011, 01	J					
I hereby certify that the information given above is true and co	implete to the best of		OT COM				
my knowledge and belief.			OIL CON	SERVATIO	N DIVISION		
Signature: Printed Name:		Approved by					
Lynn Shelton		District Superviso	or:				
Environmental Manager		Approval Date:		Expir	ation Date:		
Date: 1/19/98 Phone:(505) 632-8013	Conditions of A	pproval:		Attached		

PARAGON ANALYTICS, INC.

225 Commerce Drive • Fort Collins, CO 80524 • (800) 443-1511• (970) 490-1511 • FAX (970) 490-1522

February 2, 1998

Ms. Lynn Shelton Giant Refining Company #50 Country Road 4990/ PO Box 15 Bloomfield, NM 87431

RE: Paragon Workorder: 98-01-152

Client Project Name: Not Submitted Client Project Number: Not Submitted

Dear Ms. Shelton:

Two soil samples were received from Giant Refining Company on January 1, 1998. The samples were scheduled for the following analyses:

GC/MS Volatiles GC/MS Semivolatiles

pages 1-8

pages 1-9

Metals

pages 1-12

The results for these analyses are contained in the enclosed reports.

Thank you for your confidence in Paragon Analytics, Inc. Should you have any questions, please call.

Sincerely,

Paragon Analytics, Inc.

Victoria Bayly

Project Manager

VB/arp

Enclosure: Report

225 Commerce Drive Ft. Collins, CO 80524 PARAGON ANALYTICS, INC.

(800) 443-1511 or (970) 490-1511 (970) 490-1522 · Fax

CHAIN OF CUSTODY DATE 1/20/18 Page

*ACCESSION NUMBER (LAB ID) 980(152

			COM	SAA	P.0 7.41	PRI	Ρ8ι	-4)		Z				E.	F	7			SA		AD	CO
32	ALU	*	COMMENTS: * 7	SAMPLE DISPOSAL:	P.O. NUMBER:	PROJECT NUMBER: PROJECT NAME:	PROJECT INFORMATION		Q	Shorts.	Jose:				BACKG ROUND		CILLFURI	SAI	(SDS)632	SAMPLER:		ADDRESS:	COMPANY:
MACNESIUM RADIUM SELEVIUM ARSENIC	ALUMINUM, CADMIUM, MANGANESE	tor	122		STANDARD		NATION		oder	17				7103	ROUN			SAMPLE ID	5		L	1	611
1111	m, c	+OTAL METALS-	TOLP-16SS	HAZ W					(M)	ST-FE						[[1 7105		7013	and the second	BLOOMFIELD INM	1.0. BOX 159	GIANT REFINING-
1 26	ADA	ME 1	655	HAZ WASTE \$5.00 ea	RUSH QUE				300	10 Cours					1/20	1 1	1/20 21/1	DATE 1	D		nfie	1 10	REFI
	$\eta U \alpha$	AL	#6		UE Z LO			.X	lola	 				230 S			205 5	TIME M	(505)632 FAX N	H	WO	y	NING
is i	N		HE2BS +		12 3		So:) " "		like	200000	48.00	411 kajac. / r	Soil	1880	- Constitution of	7105	MATRIX		Ho	L		1
clev	ANG	CHROME, LEAD,	1	RAD CHEM \$15.00 ea	SEALS INTACT? Y/N/NA REC'O GOOD COND/COLD?	TOTAL NO. OF CONTAINERS CHAIN OF CUSTODY SEALS Y I N	SAMPLE RECEIPT							02		-	O1/	LAB ID	391/		87413		810 cm 450
NUM	ANE	me	PESTS	5.00 ea	OND/COLD?	CONTAINERS	EIPT						13441.4		88.4.3	- Sainty	3	0il & Gred 418.1 - Ti		/9071/4	13.2		0
L	36	K	8			Y/N												8015 Mod 8015 Mod					
356	1/2	15																8015m/80	020 - Gas		ETX		
5	1 ROW			RETURN												-		8020 · BE 8240/826		ים עמריי			
b,	-								_	<u> </u>	-	-	-	-	-			8270 · GC			, 		
Сот	Print	Sign.	REC	Com	Prh	3/	REL.		-					\vdash				8080 · Pe	sticides/	PCB's	P. P		
Сотралу		-	RECEIVED BY:	Company	PHENNY SHE	3	RELINQUISHED B											8080 - PC					
4		1	BY:	0	2	B	SHED		_		<u> </u>	<u> </u>	_	_	<u> </u>			8310/610 8150 · He		PNA's			
9				A	13	3	BY:	_	_	-	-	-	<u> </u>	<u> </u>				8150 · HE		ticides			
×				7	NOLTS	11	P	_		-	-	-	-	-	-			TOX - EO					
	Date	Time		12	9 1 m	72	*	-	-	+-	-	-	+	Y	-			Total Me			omments,	60	10
		, eg	<u>سر</u>	1	100	Z .		T				-					X	TCLP: *(s	pecify par	ameters	in comm	ents)	
Company	Print	Sign.	REC!	Сотралу	Print	Sign.	REL!											Gross Alp					
any	<	\boxtimes	RECEIVED BY	Allei			Vauis	_	_	<u> </u>	<u> </u>	<u> </u>		_		-		Gross Gar		· ·			
C_{-}	5	D	1%	#			RELINQUISHED BY:	_	-	 	-	-	╄-	-	-	-		Gamma S Isotopic F					
7	\$	125					13.		\vdash	\vdash	-	-	-	-	╁	-		Isotopic U					
, -	2	X		×				-	\vdash	\vdash	-	-	-	 	1	-	-	Total Ura		A)			
	Date 2	2:4	3		Date	Time				1	†		1					Radium 2	26 / 228				
	20	15	12				~											Tritium (l					
Company	Print	Sign.	RECEIVED BY:	Company	Print	Sign.	RELINQUISHED BY:			-	_		_	_				Strontiun					
ЭПУ			VED L	any			SINDI	<u> </u>	<u> </u>	-	-	-	-	-	-	 		8315 · Fo		/de			
			13%				HED B	<u> </u>	-	-	-	-	-	7	\vdash	 	E	70 IVIOISTU					
							17.	\vdash	-	-	-	-	+	7	+-	-	2	 					
								\vdash	+	-	-	-	-	ळ		C	X	 					
	Da	7		[Di	Ti.		 	-	+	+-	†	1	*	-	† _ `	 	1			4		

Wumber of Containers

Paragon Analytics, Inc. - Fort Collins, Colorado

CONDITION OF SAMPLE UPON RECEIPT

CLIENT: Grant Ref BIMHO SHIPPING CONTAINER	#: <u> </u>	soler	<u> </u>
WORKORDER NO. 9801157 9801152 INITIALS: 35	DAT	re: \	21/98
1. Does this project require special handling according to NEESA, Level 3,		Yes	(No)
or CLP protocols?			
If yes, complete a. and b.			
a. Cooler Temperature			
b. Lot No's.			
c. Airbill Number			
2. Are custody seals on the cooler intact? If so, how many	N/A	Yes	No
3. Are custody seals on sample containers intact?	N/A)	Yes	No
4. Is there a Chain of Custody (COC) or other representative documents,		Yes	No
letters or shipping memos?			
5. Is the COC complete?	N/A	Yes	No
Relinquished: Yes / No Requested Analysis: Yes / No			
6. Is the COC in agreement with the samples received?		Yes	No
No. of Samples: Yes No Sample ID's: Yes No No			
Matrix: Yes No No. of Containers: Yes No			
7. Are the samples requiring chemical preservation preserved correctly?	N/A	Yes	No
8. Is there enough sample? If so, are they in the proper containers?		Yes	No
9. Are all samples within holding times for the requested analyses?		Yes	No
10. Were the sample(s) shipped on ice?	N/A	Yes	No
11. Were all sample containers received intact? (not broken or leaking, etc.)		Yes	No
12. Are samples requiring no headspace, headspace free?	N/A	Yes	No
13. Do the samples require quarantine?		Yes	No
14. Do samples require Paragon disposal?		Yes	No
15. Did the client return any unused bottles?		Yes (No)
Describe "NO" items (except No's 1, 13, &14):			
(,).		· · · · · · · · · · · · · · · · · · ·	
			- .
			-
Was the client contacted? YesNo			-
If yes, Date: Name of person contacted:			
Describe actions taken or client instructions:			
			-
			
			_
Group Leader's Signature: Date:			
		-	

Cooler Temperature: 6°C

Paragon Analytics, Inc.

GC/MS Volatiles Case Narrative

Giant Refining Company

Order Number - 9801152

- 1. This report consists of 1 soil sample received by Paragon on January 21, 1998.
- 2. These sample was prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the sample was leached using the TCLP ZHE extraction procedure specified in Method 1311. The TCLP leachate was then analyzed by purging the sample using purge and trap procedures based on Method 5030.
- 3. The sample was analyzed using GC/MS with a RTX-624 capillary column according to protocols based on SW-846 Method 8260B. All positive results were quantitated with the average response of the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. The sample was analyzed within the established holding times.
- 5. There were no target compounds detected in the method blank..
- 6. All laboratory control spike and laboratory control spike duplicate recoveries and RPDs were within the acceptance criteria with the exception of the RED for 2-butanone. The recoveries in both spike were within the acceptance criteria. There were no hits detected in the sample, so no further action was required.
- 7. Matrix spike and matrix spike duplicate data were not requested by this client, so a laboratory control spike and laboratory control spike duplicate were performed instead.

- 8. All surrogate recoveries were within acceptance criteria.
- 9. All internal standard recoveries were within acceptance criteria.
- 10. All initial calibration criteria were within acceptance criteria. Method 8260 states any compound exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.
- 12. All continuing calibration criteria were met.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Phil Tallarico

GC/MS Analyst

Reviewer's Initials

1-29-90

Date

1-29-98

Date

Sample Number(s) Cross-Reference Table

Paragon OrderNum: 9801152

Client Name: Giant Refining Company

Client Project Name:

Client Project Number: None Given

Client PO Number:

Client Sample	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
SULFUR/SOIL	9801152-1	<u> </u>	Soil	1/20/98	14:05
BACKGROUND/SOIL	9801152-2		Soil	1/20/98	14:30
SULFUR/SOIL	9801152-3		Leachate	1/20/98	

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID: None given

Reported on: Wednesday, January 28, 1998

Field ID: LABQC

Lab ID: VB980123-1MB

Sample Matrix: liquid

Date Collected: 22

22-Jan-98

Sample Aliquot:

1MB

% Moisture: N/A

Date Extracted: 23-Jan-98

Final Volume:

Cleanu

Cleanup Method: NONE Report Basis: NA Date Analyzed: 23-Jan-98
Prep Batch: v01119

Dilution:

5

5

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-01-4	VINYL CHLORIDE	0.01	mg/l	0.01	U	
75-35-4	1,1-DICHLOROETHENE	0.005	mg/l	0.005	U	
78-93-3	2-BUTANONE	0.02	mg/l	0.02	U	
67-66-3	CHLOROFORM	0.005	mg/l	0.005	U	
56-23-5	CARBON TETRACHLORIDE	0.005	mg/l	0.005	U	
107-06-2	1,2-DICHLOROETHANE	0.005	mg/l	0.005	U	
71-43-2	BENZENE	0.005	mg/l	0.005	U	
79-01-6	TRICHLOROETHENE	0.005	mg/l	0.005	U	
127-18-4	TETRACHLOROETHENE	0.005	mg/l	0.005	U	
108-90-7	CHLOROBENZENE	0.005	mg/l	0.005	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	0.0507	mg/l	0.05	101	86 - 115
1868-53-7	DIBROMOFLUOROMETHANE	0.0485	mg/l	0.05	97	86 - 118
2037-26-5	TOLUENE-D8	0.0543	mg/l	0.05	109	88 - 110

U = Less than the Reporting Limit

Method SW8260--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Wednesday, January 28, 1998

Field ID: SULFUR/SOIL Lab ID: 9801152-3

Sample Matrix: liquid % Moisture: N/A

Date Collected: 20-Jan-98 Date Extracted: 23-Jan-98 Sample Aliquot: Final Volume:

5 5 Dilution: 5

Cleanup Method: NONE Report Basis: AS RECEIVED

Date Analyzed: 23-Jan-98 Prep Batch: v01119

LEACH DATE: 1/22/98

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-01-4	VINYL CHLORIDE	0.05	mg/l	0.05	U	
75-35-4	1,1-DICHLOROETHENE	0.025	mg/l	0.025	U	
78-93-3	2-BUTANONE	0.1	mg/l	0.1	U	
67-66-3	CHLOROFORM	0.025	mg/l	0.025	U	
56-23-5	CARBON TETRACHLORIDE '	0.025	mg/l	0.025	U	
107-06-2	1,2-DICHLOROETHANE	0.025	mg/l	0.025	U	
71-43-2	BENZENE	0.025	mg/l	0.025	U	
79-01-6	TRICHLOROETHENE	0.025	mg/l	0.025	U	
127-18-4	TETRACHLOROETHENE	0.025	mg/l	0.025	U	
108-90-7	CHLOROBENZENE	0.025	mg/l	0.025	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	0.0482	mg/l	0.05	96	86 - 115
1868-53-7	DIBROMOFLUOROMETHANE	0.048	mg/l	0.05	96	86 - 118
2037-26-5	TOLUENE-D8	0.0544	mg/l	0.05	109	88 - 110

U = Less than the Reporting Limit

Method SW8260--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Wednesday, January 28, 1998

Field ID: LABQC Lab ID: LRB1012298 Sample Matrix: liquid % Moisture: N/A

Date Collected: 22-Jan-98 Date Extracted: 23-Jan-98 Sample Aliquot: 5 Final Volume: 5

Cleanup Method: NONE Report Basis: AS RECEIVED Date Analyzed: 23-Jan-98 Prep Batch: v01119 Dilution: 5 LEACH DATE: 1/22/98

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
75-01-4	VINYL CHLORIDE	0.05	mg/l	0.05	U	
75-35-4	1,1-DICHLOROETHENE	0.025	mg/l	0.025	U	
78-93-3	2-BUTANONE	0.1	mg/l	0.1	U	
67-66-3	CHLOROFORM	0.025	mg/l	0.025	U	
56-23-5	CARBON TETRACHLORIDE	0.025	mg/l	0.025	U	
107-06-2	1,2-DICHLOROETHANE	0.025	mg/l	0.025	U	
71-43-2	BENZENE	0.025	mg/l	0.025	U	
79-01-6	TRICHLOROETHENE	0.025	mg/l	0.025	U	
127-18-4	TETRACHLOROETHENE	0.025	mg/l	0.025	U	
108-90-7	CHLOROBENZENE	0.025	mg/l	0.025	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	0.0495	mg/l	0.05	99	86 - 115
1868-53-7	DIBROMOFLUOROMETHANE	0.0526	mg/l	0.05	105	86 - 118
2037-26-5	TOLUENE-D8	0.0526	mg/l	0.05	105	88 - 110

U = Less than the Reporting Limit

Blank Spike and Blank Spike Duplicate Method SW8260

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID: None given

Reported on: Wednesday, January 28, 1998

BS ID: VB980123-1LCS

Sample Matrix: liquid

Date Collected:

Sample Aliquot:

5 5

BSD ID: VB980123-1LCSD

% Moisture: N/A Cleanup Method: NONE

Date Extracted: Date Analyzed:

23-Jan-98 Final Volume: 23-Jan-98

Dilution: 1

Report Basis: N/A

Prep Batch:

v01119

22-Jan-98

CASNO	Target Analyte	Spike Added	BS Result	Units	Reporting Limit	BS % Rec.	Control Limits
75-01-4	VINYL CHLORIDE	0.02	0.0249	mg/l	0.01	125	49 - 132
75-35-4	1,1-DICHLOROETHENE	0.02	0.0213	mg/l	0.005	106	73 - 127
78-93-3	2-BUTANONE	0.02	0.0294	mg/l	0.02	147	26 - 156
67-66-3	CHLOROFORM	0.02	0.0198	mg/l	0.005	99	68 - 123
56-23-5	CARBON TETRACHLORIDE	0.02	0.0184	mg/l	0.005	92	80 - 113
107-06-2	1,2-DICHLOROETHANE	0.02	0.0226	mg/l	0.005	113	61 - 122
71-43-2	BENZENE	0.02	0.0184	mg/l	0.005	92	60 - 129
79-01-6	TRICHLOROETHENE	0.02	0.0183	mg/l	0.005	92	85 - 121
127-18-4	TETRACHLOROETHENE	0.02	0.015	mg/l	0.005	75	75 - 116
108-90-7	CHLOROBENZENE	0.02	0.0164	mg/l	0.005	82	85 - 119

CASNO	Target Analyte	Spike Added	BSD Result	Units	Reporting Limit	BSD % Rec.	RPD	RPD Limits
75-01-4	VINYL CHLORIDE	0.02	0.0226	mg/l	0.01	113	10	20
75-35-4	1,1-DICHLOROETHENE	0.02	0.0189	mg/l	0.005	94	12	20
78-93-3	2-BUTANONE	0.02	0.0227	mg/l	0.02	114	25	20
67-66-3	CHLOROFORM	0.02	0.019	mg/l	0.005	95	4	20
56-23-5	CARBON TETRACHLORIDE	0.02	0.0174	mg/l	0.005	87	6	20
107-06-2	1,2-DICHLOROETHANE	0.02	0.0224	mg/l	0.005	112	1	20
71-43-2	BENZENE	0.02	0.0188	mg/l	0.005	94	2	20
79-01-6	TRICHLOROETHENE	0.02	0.0184	mg/l	0.005	92	0	20
127-18-4	TETRACHLOROETHENE	0.02	0.0143	mg/l	0.005	71	5	20
108-90-7	CHLOROBENZENE	0.02	0.0155	mg/l	0.005	77	6	20

Surrogate Recovery BS/BSD

CASNO	Target Analyte	Spike Added	BS % Rec.	BSD % Rec.	RPD	Control Limits
460-00-4	4-BROMOFLUOROBENZENE	0.05	107	100	7	86 - 115
1868-53-7	DIBROMOFLUOROMETHANE	0.05	108	100	8	86 - 118
2037-26-5	TOLUENE-D8	0.05	106	112	6	88 - 110

986045

ATIFRM 608FC

COMMENTS:

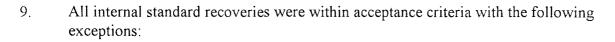
		A		TIME	(0:0)		1						
	TUMBLE	15 land	END	DATE	1/23/93		T	>					
	TUM	8		TIME	05:4		-						
			START	DATE	1/22/98								
	QUOT		FLUID	(mL)	00/		, L						
	ZHE ALIQUOT		ALIQUOT	(GRAMS)	MA	S	→						
•			TUM.	#		7	П		~	2			
7	ON		% SOLID	DRY/TOT	()					122/		o O	
EX980122-4	PERCENT SOLID DETERMINITATION		DRY WT.	OF SAMP.						(In)	7	p-62-1	
Ŋ	ID DETER		BEAKER	WEIGHT						->-		5	
	ENT SOL		FILTER	WEIGHT									
	PERCI		INT. SAM.	WEIGHT									
A STATE OF THE STA			FREE	LIQ. Y/N	2/4 V	NA	アオー						
CIAN:			SAMPLE	MATRIX	P//h	19-02 Solid)105						
TECHNICIAN:_		INITIALS	SAMPLE SAMPLE	#	MB	19-02	152-01 501						

Factorial Committee of the Committee of

WORKORDER #: 98-01-119, 152

SET UP DATE: 1/22./44

TCLP ZX


Paragon Analytics, Inc.

GC/MS Semivolatiles Case Narrative

Giant Refining Company

Order Number - 9801152

- 1. This report consists of 1 water sample received by Paragon on January 21, 1998
- 2. The sample was prepared and analyzed according to SW-846, 3rd Edition procedures. Specifically, the sample was tumbled by Method 1311. This TCLP leachate was then extracted using continuous liquid-liquid extractors, based on Method 3520.
- 3. The samples were analyzed using GC/MS with a DB-5.625 capillary column according to protocols based on SW-846 Method 8270C. All positive results were quantitated against the initial calibration standards using the internal standard technique. The identification of positive results was achieved by a comparison of the retention time and mass spectrum of the sample versus the daily calibration standard.
- 4. The samples were extracted and analyzed within the established holding times.
- 5. There were no target compounds detected in the method blank.
- 6. All laboratory control spike and laboratory control spike duplicate recoveries and RPDs were within the acceptance criteria.
- 7. The matrix spike was not analyzed due to the dilution at which the neat sample was analyzed. At this dilution all spiked compounds would have been diluted below the detection limit.
- 8. All surrogate recoveries were within acceptance criteria.

2

Internal Standard	Sample	Direction
acenaphthene-10	LCS	low
phenanthrene-10	LCS	low
chrysene- ₁₂	LCS	low

The extract was reanalyzed with similar results. All QC criteria was within acceptance criteria, so no further action was required.

- 10. Due to high levels of tentatively identified compounds, the sample was analyzed at a higher dilution. The reporting limits have been adjusted accordingly.
- 11. All initial calibration criteria were met. Method 8270B states any compound exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Gary R. Brook

GC/MS Manager

Paragon Analytics, Incorporated

Sample Number(s) Cross-Reference Table

Paragon OrderNum: 9801152

Client Name: Giant Refining Company

Client Project Name:

Client Project Number: None Given

Client PO Number:

Client Sample	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
SULFUR/SOIL	9801152-1		Soil	1/20/98	14:05
BACKGROUND/SOIL	9801152-2		Soil	1/20/98	14:30
SULFUR/SOIL	9801152-3		Leachate	1/20/98	

Method SW8270--TCLP Leachate Method Blank

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Monday, February 02, 1998

Field ID: LABQC

Sample Matrix: liquid

Date Collected:

Sample Aliquot:

Lab ID: EX980127-4MB

% Moisture: N/A Cleanup Method: NONE

22-Jan-98 Date Extracted: 22-Jan-98 Date Analyzed: 30-Jan-98

Final Volume: Dilution: 1

Report Basis: NA

Prep Batch: EX980127-4

LEACH DATE: 1/22/98

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
110-86-1	PYRIDINE	0.1	mg/l	0.1	U	
106-46-7	1,4-DICHLOROBENZENE	0.1	mg/l	0.1	U	
95-48-7	2-METHYLPHENOL	0.1	mg/l	0.1	U	
108-39-4	3+4-METHYLPHENOL	0.1	mg/l	0.1	U	
67-72-1	HEXACHLOROETHANE	0.1	mg/l	0.1	U	
98-95-3	NITROBENZENE	0.1	mg/l	0.1	U	
87-68-3	HEXACHLOROBUTADIENE	0.1	mg/l	0.1	U	
88-06-2	2,4,6-TRICHLOROPHENOL	0.1	mg/l	0.1	U	
95-95-4	2,4,5-TRICHLOROPHENOL	0.5	mg/l	0.5	U	
121-14-2	2,4-DINITROTOLUENE	0.1	mg/l	0.1	U	
118-74-1	HEXACHLOROBENZENE	0.1	mg/l	0.1	U	
87-86-5	PENTACHLOROPHENOL	0.5	mg/l	0.5	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0.682	mg/l	0.75	91	23 - 100
321-60-8	2-FLUOROBIPHENYL	0.35	mg/l	0.5	70	21 - 106
367-12-4	2-FLUOROPHENOL	0.54	mg/l	0.75	72	21 - 100
4165-60-0	NITROBENZENE-D5	0.346	mg/l	0.5	69	34 - 111
4165-62-2	PHENOL-D5	0.607	mg/l	0.75	81	15 - 104
1718-51-0	TERPHENYL-D14	0.404	mg/l	0.5	81	33 - 111

U = Less than the Reporting Limit

Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Monday, February 02, 1998

Field ID: SULFUR/SOIL Lab ID: 9801152-3

Sample Matrix: liquid % Moisture: N/A

Date Collected: 20-Jan-98 Date Extracted: 22-Jan-98 Sample Aliquot: 100 Final Volume:

Dilution: 50

Cleanup Method: NONE Report Basis: AS RECEIVED

Date Analyzed: 30-Jan-98 Prep Batch: EX980127-4

LEACH DATE: 1/22/98

CASNO	Target Analyte	Result	Units	Reporting Limit	Result Qualifier	Result Footnote
110-86-1	PYRIDINE	5	mg/l	5	U	
106-46-7	1,4-DICHLOROBENZENE	5	mg/l	5	U	
95-48-7	2-METHYLPHENOL	5	mg/l	5	U	
108-39-4	3+4-METHYLPHENOL	5	mg/l	5	U	
67-72-1	HEXACHLOROETHANE	5	mg/l	5	U	
98-95-3	NITROBENZENE	5	mg/l	5	U	
87-68-3	HEXACHLOROBUTADIENE	5	mg/l	5	U	
88-06-2	2,4,6-TRICHLOROPHENOL	5	mg/l	5	U	
95-95-4	2,4,5-TRICHLOROPHENOL	25	mg/l	25	U	
121-14-2	2,4-DINITROTOLUENE	5	mg/l	5	υ	
118-74-1	HEXACHLOROBENZENE	5	mg/l	5	U	
87-86-5	PENTACHLOROPHENOL	25	mg/l	25	U	

Surrogate Recovery

CASNO	Surrogate Analyte	Result	Units	Spike Amount	Percent Recovery	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0	mg/l	0.75	0	23 - 100
321-60-8	2-FLUOROBIPHENYL	0	mg/l	0.5	0	21 - 106
367-12-4	2-FLUOROPHENOL	0	mg/l	0.75	0	21 - 100
4165-60-0	NITROBENZENE-D5	0	mg/l	0.5	0	34 - 111
4165-62-2	PHENOL-D5	0	mg/l	0.75	0	15 - 104
1718-51-0	TERPHENYL-D14	0	mg/l	0.5	0	33 - 111

U = Less than the Reporting Limit

Blank Spike and Blank Spike Duplicate Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Monday, February 02, 1998

BS ID: EX980127-4LCS
BSD ID: EX980127-4LCSD

Sample Matrix: liquid % Moisture: N/A

Date Collected: 22-Jan-98
Date Extracted: 22-Jan-98

Sample Aliquot: 1
Final Volume:

Cleanup Method: NONE Report Basis: N/A

Date Analyzed: 30-Jan-98
Prep Batch: EX980127-4

Dilution: 1 LEACH DATE: 1/22/98

1

CASNO	Target Analyte	Spike Added	BS Result	Units	Reporting Limit	BS % Rec.	Control Limits
110-86-1	PYRIDINE	0.5	0.328	mg/l	0.1	66	1 - 83
106-46-7	1,4-DICHLOROBENZENE	0.5	0.3	mg/l	0.1	60	12 - 88
95-48-7	2-METHYLPHENOL	1	0.728	mg/l	0.1	73	21 - 97
108-39-4	3+4-Methylphenol	2	1.23	mg/l	0.1	62	29 - 92
67-72-1	HEXACHLOROETHANE	0.5	0.305	mg/l	0.1	61	18 - 83
98-95-3	NITROBENZENE	0.5	0.39	mg/i	0.1	78	14 - 105
87-68-3	HEXACHLOROBUTADIENE	0.5	0.262	mg/l	0.1	52	16 - 82
88-06-2	2,4,6-TRICHLOROPHENOL	1	0.578	mg/l	0.1	58	24 - 84
95-95-4	2,4,5-TRICHLOROPHENOL	1	0.63	mg/l	0.5	63	19 - 96
121-14-2	2,4-DINITROTOLUENE	0.5	0.298	mg/l	0.1	60	1 - 104
118-74-1	HEXACHLOROBENZENE	0.5	0.4	mg/l	0.1	80	22 - 101
87-86-5	PENTACHLOROPHENOL	1	0.569	mg/l	0.5	57	22 - 111

Blank Spike and Blank Spike Duplicate Method SW8270--TCLP Leachate

Lab Name: Paragon Analytics, Inc.

Work Order Number: 9801152

Client Name: Giant Refining Company

ClientProject ID:

Reported on: Monday, February 02, 1998

CASNO	Target Analyte	Spike Added	BSD Result	Units	Reporting Limit	BSD % Rec.	RPD	RPD Limits
110-86-1	PYRIDINE	0.5	0.289	mg/l	0.1	58	13	50
106-46-7	1,4-DICHLOROBENZENE	0.5	0.273	mg/l	0.1	55	9	50
95-48-7	2-METHYLPHENOL	1	0.621	mg/l	0.1	62	16	50
108-39-4	3+4-Methylphenol	2	1.07	mg/l	0.1	53	16	50
67-72-1	HEXACHLOROETHANE	0.5	0.272	mg/l	0.1	54	12	50
98-95-3	NITROBENZENE	0.5	0.337	mg/l	0.1	67	15	50
87-68-3	HEXACHLOROBUTADIENE	0.5	0.224	mg/l	0.1	45	14	50
88-06-2	2,4,6-TRICHLOROPHENOL	1	0.494	mg/l	0.1	49	17	50
95-95-4	2,4,5-TRICHLOROPHENOL	1	0.548	mg/l	0.5	55	14	50
121-14-2	2,4-DINITROTOLUENE	0.5	0.258	mg/l	0.1	52	14	50
118-74-1	HEXACHLOROBENZENE	0.5	0.354	mg/l	0.1	71	12	50
87-86-5	PENTACHLOROPHENOL	1	0.513	mg/l	0.5	51	11	50

Surrogate Recovery BS/BSD

CASNO	Target Analyte	Spike Added	BS % Rec.	BSD % Rec.	RPD	Control Limits
118-79-6	2,4,6-TRIBROMOPHENOL	0.75	87	78	11	23 - 100
321-60-8	2-FLUOROBIPHENYL	0.5	70	59	17	21 - 106
367-12-4	2-FLUOROPHENOL	0.75	75	65	14	21 - 100
4165-60-0	NITROBENZENE-D5	0.5	82	70	16	34 - 111
4165-62-2	PHENOL-D5	0.75	86	73	16	15 - 104
1718-51-0	TERPHENYL-D14	0.5	86	73	16	33 - 111

Ex980122-5

Paragon Analytics, Inc.

FRM 623FC2 (28/Aug/97)

TOXICITY CHARACTERISTIC LEACHING PROCEDURE (TCLP) WORKSHEET

WORKORDER #: 95-01-1/5 / 19, 38 / 49, 52 DATE/TIME START: 1/22/98 17:3 RPM: 50 DATE/TIME END: 1/23/98 945 RPM: 30 SAMPLE ID INIT. HCI FINAL FLUID SAMPLE FLUID COMMENTS PH # WT. (gm) (mL) WB, N/H - 1 N/A 2000 118-01 (1,39) 3,5 1,61 100 9		LYST: KM	ANA			2_ ,	149,15	19, 138	118.1	5-01-	WORKORDER#: 9
DATE: 1/22 798 945 RPM: 36 SAMPLE ID INIT. HCl FINAL FLUID SAMPLE FLUID COMMENTS pH # WT. (gm) (mL) 1/8 - 0 1/39 3,5 161 1009		30	RPM:	17:3	2/98	r: <u> /2</u>	Æ STAR	DATE/TIN	I	V.,	
MB, N/A 7 1 N/A 2000 118-01 138 3,5 1,61 1 1009		<u> </u>	RPM:	945	198	1/22	Æ END:	DATE/TIN	I		DATE: 1/22/98
MB, N/A 7 1 N/A 2000 118-01 138 3,5 1,61 1 1009		COMMENTS						,	HCI	INIT.	SAMPLE ID
118-01 138 3,5 1,61 1009			mL)	(1		u ——	#	pH_		pН	A-G
			<u> </u>	20	<u> </u>	$\mathcal{N}//$	1			N/A-	(7)8,
10 01 679					29	100		1,61	3.5	9,38	118-01
								1.61		6,79	119-01
138-04 6,74 1.63											174 - 04
149-04 6 51 1.155			1					T :			1119 - 011
			-	 							141-04
152-01 9.26 t 1.73 t t		· · · · · · · · · · · · · · · · · · ·	<u>+</u>	<u> </u>		<u></u>	-+-	11/2		4,26	132-01
								<u> </u>		ļ	
140			4	i /							
	1		1								
0.18				8/	0						
				·	10	\top					
					+		1				
				<u> </u>		/_	1 / M				
							1				
				-				<u> </u>			
				 			<u> </u>				
										- /	
				<u> </u>						1	
											1.2
	,										

2	$\overline{}$
BALANCE ID	
* · CL 1D	_

SOP #

J. 1-23-98 40 1-29-98

15200**0** 3550 3540 SONI SOX COMMENTS 3520 CLE 1/20198 DATE VIAL Ind FINAL NATER SOIL OTHER Leachafe SURROGATE CODE A: 1283-69-93 VOL 1293-68-01 **EXTRACT** FINAL KD DATE Q □ DATE GPC <u>4</u>2 8270 FCLP SV 625 the last N/ N/ N/ 108:00 129 INIT KD DATE MATRIX SPIKE A: OFF TIME 5 1/20 | SA A VOL SPKRWIT MATRIX SPIKE ٤ EXTRACTION 120 CE SPKRWIT 1) alicenter SURROGATE 7 A VOL FINAL 12.8 98-01-152 EX980127-4 1/27/98 (3) **2** × PH ADJUST 11 - 13 12.8 PREP N L S SET UP DATE/ TIME: 00 AL AMOUNT WORKORDER #s MS INITIALS 52-03 BATCH# 1650 NUMBER LCS L mB

1

ATIFRM609FC

Bb-62-1 B

RECIEVED BY/DATE:

DCM Lot #:

235 COMMERCE DIVE, FOR COLLIS CO 80524

Paragon Analytics, Inc.

METALS CASE NARRATIVE

Giant Refining Company

Order Number - 9801152

- 1. This report consists of 2 soil samples, one was analyzed for TCLP metals, the other for total metals.
- 2. The samples were received cool and intact on 01/21/98.
- 3. The samples had been correctly preserved for the requested analyses.
- 4. The samples were prepared for analysis based on SW-846, 3rd Edition procedures.

One sample was processed through the TCLP leaching procedure based on method 1311. The leachate was then digested at a 10 fold dilution.

For analysis by Trace ICP, the leachate was digested following method 3010A.

For analysis by Cold Vapor AA (CVAA), the leachate was digested following method 7470A.

For total analysis by Trace ICP, the soil sample was digested following method 3050B.

5. The leachate was analyzed following SW846 protocols by Trace ICP (Method 6010A) and CVAA (Method 7470A). The analysis of silver was done by Trace ICP

The soil was analyzed following SW846 protocols by Trace ICP (Method 6010A).

- 6. All standards and solutions are NIST traceable and were used within their recommended shelf life.
- 7. The samples were prepared and analyzed within the established hold times.
- 8. Sample results which are below PAI's standard reporting limits are reported as "ND" on the enclosed report.

All in house quality control procedures were followed, as described below.

- 9. General quality control procedures.
 - A preparation (method) blank and laboratory control sample were digested and analyzed with the samples in each digestion batch. There were not more than 20 samples in each digestion batch.

- The preparation (method) blank results associated with each batch were below the reporting limits for the requested analytes. This indicates that no contaminants were introduced to the samples during the digestion procedures.
- The laboratory control samples associated with each batch were within acceptance limits. This indicates complete digestions according to the method.
- All initial and continuing calibration blanks associated with each batch were below the reporting limits for the requested analytes. This indicates a valid calibration and stable instrument conditions.
- All initial and continuing calibration verifications associated with each batch were within acceptance criteria for the requested analytes. This indicates a valid calibration and stable instrument conditions.
- The interference check samples, and high standard readbacks associated with Method 6010A analyses were within acceptance criteria.
- 10. A sample from another Order Number was used as the QC sample for each TCLP batch and the client's sample was used as the QC sample for the total batch.
 - A matrix spike and matrix spike duplicate were digested and analyzed with each batch. All acceptance criteria for accuracy were met with the following exception.

	<u>Analyte</u>	Sample ID
Soil:	Aluminum	9801152-2MS & MSD
	Iron	9801152-2MS & MSD
	Manganese	9801152-2MS & MSD

The concentration of aluminum, iron and manganese in the native sample was greater than 4 times the concentration of matrix spike added during the digestion. When sample concentration is that much greater than the spike added, spike recoveries may not be accurate. The laboratory control sample results are included to show that the digestion and analysis were in control.

- A matrix duplicate and spike duplicate were digested and analyzed with each batch. All acceptance criteria for precision were met.
- A serial dilution was analyzed with each ICP batch. All acceptance criteria were met.

The data contained in the following report have been reviewed and approved by the personnel listed below:

Senior Inorganic Chemist

CERTIFICATION

Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Paragon Analytics, Incorporated

Sample Number(s) Cross-Reference Table

Paragon OrderNum: 9801152

Client Name: Giant Refining Company

Client Project Name:

Client Project Number: None Given

Client PO Number:

Client Sample	Lab Sample Number	COC Number	Matrix	Date Collected	Time Collected
SULFUR/SOIL	9801152-1		Soil	1/20/98	14:05
BACKGROUND/SOIL	9801152-2		Soil	1/20/98	14:30
SULFUR/SOIL	9801152-3		Leachate	1/20/98	

Date Printed: Thursday, January 29, 1998

TOTAL METALS

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Lab Sample ID: RB 9801152

Sample ID

Reagent Blank

Date Collected: N/A Prep Date: 01/22/98

Date Analyzed: 01/23/98

	Concentration	Reporting Limit
Analyte	mg/kg	mg/kg
Aluminum	ND	20
Arsenic	ND	1
Barium	ND	10
Cadmium	ND	0.5
Chromium	ND	1
Iron	ND	10
Lead	ND	0.3
Magnesium	ND	100
Manganese	ND	1
Selenium	ND	0.5

ND = Not detected at or above the reporting limit.

TOTAL METALS

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted

Lab Sample ID: 9801152-2

Sample Matrix: Soil

Sample ID

BACKGROUND/SOIL

Date Collected: 01/20/98

Prep Date: 01/22/98

Date Analyzed: 01/23/98

	Concentration	Reporting Limit
Analyte	mg/kg	mg/kg
Aluminum	6700	20
Arsenic	4	1
Barium	190	10
Cadmium	ND	0.5
Chromium	6	1
Iron	12000	10
Lead	6.9	0.3
Magnesium	3500	100
Manganese	240	1
Selenium	ND	0.5

ND = Not detected at or above the reporting limit.

TOTAL METALS MATRIX SPIKE

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Lab Sample ID: 9801152-2

Sample ID

BACKGROUND/SOIL

Prep Date: 01/22/98

Date Analyzed: 01/23/98

Sampl	e M	[atrix	Soil
Dainpi	C TAT	Lauin.	SOIL

	Spike Added	Sample Conc.	MS Conc.	% Rec (limits	
Analyte	mg/kg	mg/kg	mg/kg	80-120%)	Flags
T Hirary to	1 1116/115	mg/Kg	1 116/116	1 30 12070)	1 1455
Aluminum	200	6650	7890	620	See Note
Arsenic	200	4	219	108	
Barium	200	190	370	90	
Cadmium	5.0	< 0.5	5.1	102	
Chromium	20	6	26	100	
Iron	100	12000	12200	200	See Note
Lead	50.0	6.9	56.6	99	
Magnesium	4000	3500	7300	95	
Manganese	50	239	290	102	See Note
Selenium	200	< 0.5	209	105	

	MSD	MSD	Relative	
	Conc.	% Rec	% Difference	
Analyte	mg/kg	(limits 80-120%)	(limits 0-20%)	Flags
Aluminum	7 940	645	1	See Note
Arsenic	220	108	0	
Barium	370	90	0	
Cadmium	5.1	102	0	
Chromium	26	100	0	
Iron	12300	300	1	See Note
Lead	57.0	100	1	
Magnesium	7400	, 98	1	
Manganese	299	120	3	See Note
Selenium	210	105	0	

Sample results shown on spike page(s) may differ slightly from results on sample page(s).

Where sample concentration is sufficiently high, three significant figures are used to determine spike recoveries and relative percent difference.

Note: Due to the large concentration of analyte in the sample, matrix spike recoveries may not be accurate. The Laboratory Control Sample (LCS) is included on a separate page to show that the digestion and analysis were in control.

TOTAL METALS LABORATORY CONTROL SAMPLE

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Client Project ID: Not Submitted

Order Number: 9801152

Date Analyzed: 01/23/98

Control limits: 80 - 120%

	LCS	LCS	LCS
	Result	True Value	%
Analyte	mg/kg	mg/kg	Recovery
Aluminum	180	200	90
Iron	100	100	100
Manganese	52	50	104

TCLP METALS

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Client Project ID: Not Submitted Lab Sample ID: RB 9801152

Sample Matrix: TCLP Leachate

Sample ID

TCLP Blank

Date Collected: N/A

Prep Date: 01/23, 26/98

Date Analyzed: 01/23, 26/98

EPA HW	CAS		Concentration	Reporting
Number	Number	Analyte	mg/L	Limit (mg/L)
D004	7440-38-2	Arsenic	ND	0.1
D005	7440-39-3	Barium	ND	1
D006	7440-43-9	Cadmium	ND	0.05
D007	7440-47-3	Chromium	ND	0.1
D008	7439-92-1	Lead	ND	0.03
D009	7439-97-6	Mercury	ND	0.002
D010	7782-49-2	Selenium	ND	0.05
D011	7440-22-4	Silver	ND	0.1

ND = Not detected at or above the reporting limit.

TCLP METALS

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company

Client Project ID: Not Submitted Lab Sample ID: 9801152-3

•

Sample Matrix: TCLP Leachate

Sample ID

SULFUR/SOIL

Date Collected: 01/20/98 Prep Date: 01/23, 26/98

Date Analyzed: 01/23, 26/98

EPA HW	CAS		Concentration	Reporting
Number	Number	Analyte	mg/L	Limit (mg/L)
D004	7440-38-2	Arsenic	ND	0.1
D005	7440-39-3	Barium	ND	1
D006	7440-43-9	Cadmium	ND	0.05
D007	7440-47-3	Chromium	ND	0.1
D008	7439-92-1	Lead	ND	0.03
D009	7439-97-6	Mercury	ND	0.002
D010	7782-49-2	Selenium	ND	0.05
D011	7440-22-4	Silver	ND	0.1

ND = Not detected at or above the reporting limit.

TCLP METALS MATRIX SPIKE

Lab Name: Paragon Analytics, Inc.

Client Name: Giant Refining Company

Lab Sample ID: 9801119-3

Sample Matrix: TCLP Leachate

Sample ID

In House

Prep Date: 01/23/98

Date Analyzed: 01/23/98

Analyte	Spike Added mg/L	Sample Conc. mg/L	MS Conc. mg/L	% Rec (limits 80-120%)	Flags
Arsenic	20.0	0.2	23.3	115	
Barium	20	5	25	102	
Cadmium	0.50	0.16	0.72	113	
Chromium	2.0	< 0.1	2.1	104	
Lead	5.00	0.03	5.46	108	
Selenium	20.0	< 0.05	22.4	112	
Silver	0.5	< 0.1	0.5	108	

	MSD	MSD	Relative	
	Conc.	% Rec	% Difference	
Analyte	mg/L	(limits 80-120%)	(limits 0-20%)	Flags
Arsenic	23.8	118	2	
Barium	25	102	0	
Cadmium	0.73	115	2	
Chromium	2.1	105	2	
Lead	5.55	110	2	
Selenium	22.8	114	2	
Silver	0.5	109	1	

TCLP METALS MATRIX SPIKE

Lab Name: Paragon Analytics, Inc. Client Name: Giant Refining Company Lab Sample ID: 9801138-5

Sample Matrix: TCLP Leachate

Sample ID

In House

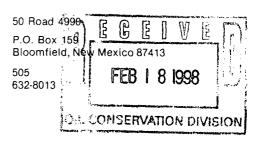
Prep Date: 01/26/98

Date Analyzed: 01/26/98

Analyte	Spike Added mg/L	Sample Conc. mg/L	MS Conc. mg/L	% Rec (limits 80-120%)	Flags
Mercury	0.020	< 0.002	0.020	100	

	MSD	MSD	Relative	
	Conc.	% Rec	% Difference	
Analyte	mg/L	(limits 80-120%)	(limits 0-20%)	Flags
Mercury	0.020	100	0	

STATE OF NEW MEXICO OIL CONSERVATION DIVISION


MEMORANDUM OF MEETING OR CONVERSATION

Telephone Personal	Time /:30/	27	Date 2-25-98
Originating Party	<u> </u>		Other Parties
MARK ASALEY			SHELTON - GIDNI
Subject SOIL ANALYSIS FOR		1	
Discussion THE REPORTED I		MONE	R THAN THE
BOCK BROWN SOL S of REFORER) PROPERT	UMPLE TOXEN 9	FROM BY	TRAME ST CORNER FROM REELVERY.
Conclusions or Agreements CURRENT SULFUR CHARRESTENDEN.		IS NO	T-N-CEPTOBLE FOR THE
Distribution	Sig	gned	Tach Relig

February 12, 1998

Mr. Roger Anderson Environmental Bureau chief New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Re:

Analytical Data C-141 Written Follow-up & Background Soil Data

Giant Refining Company - Bloomfield GW-001

Dear Mr. Anderson:

Giant Refining Company - Bloomfield submits analytical data, including all QA/QC, for the water/sulfur spill that was reported to the OCD on January 19 and January 30, 1998.

The water/sulfur sample was analyzed for TCLP constituents (less herbicides and pesticides). Results were non-detect for all analytes. Giant proposes to return the water/sulfur/soil that is being stored in a temporary lined berm to the regular sulfur storage area.

Additionally, a background soil sample was analyzed for heavy metals. Results of that analysis and the QA/QC is included for your review. This sample was taken at your request after Giant proposed a one time beneficial use for soils that are being stored on site. Hopefully, this provides sufficient documentation to satisfy OCD requirements and an approval to use the soil in a beneficial manner will be granted.

If you have any questions, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

Enclosure

cc: Denny Foust, NMOCD - Aztec

cc w/o enclosure: John Stokes, Refinery Manager

Kathleen O'Leary, Corporate Counsel

February 25, 1998

CERTIFIED MAIL RETURN RECEIPT NO. P-288-259-037

Mr. Lynn Shelton Environmental Manager Giant Refining Co. P.O. Box 159 Bloomfield, NM 87413

RE: Disposal of Soils on Site

Bloomfield Refinery (GW-001 San Juan County, New Mexico

Dear Mr. Shelton:

The New Mexico Oil Conservation Division (OCD) has completed a review of the Giant Refining Co. (Giant) request dated November 4, 1997 and the follow-up background soil analysis dated February 12, 1998 for disposal of soils on site. The request consists of the following:

- 1. Using the EPA delisted soils as fill in a low lying area near the refinery's naptha loading racked.
- 2. Using the river terrace and evaporation soils as fill in the south unlined evaporation lagoon.

Based on the information provided, Giant's request is approved with the following conditions:

- 1. All soils will be overlain with clean fill soil to act as a cap to minimize potential migration of remaining contaminants.
- 2. The use of the above mentioned soils will be a one time application.
- 3. (BJ) will notify the OCD Aztec District Office at least 72 hours prior to all activities.

Please be advised that OCD approval does not relieve Giant of responsibility for compliance with any other federal, state or local laws and/or regulations.

Mr. Lynn Shelton February 26, 1998 Page 2

If you have any questions, please call me at (505) 827-7155.

Sincerely,

Mark Ashley Geologist

xc: OCD Aztec Office

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

March 18, 1998

Roger Anderson Environmental Bureau Chief New Mexico Oil Conservation Division 2040 South Pacheco Santa Fe, New Mexico 87505

Re: Groundwater Sampling Giant Refining Company - Bloomfield GW-001

Dear Mr. Anderson:

Giant Refining Company - Bloomfield submits the analytical results from the last groundwater sampling event, as required by this facility's discharge plan.

A copy of the analytical data for the RCRA wells is included for your information.

If you require additional information, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

Enclosure

GIANT REFINING COMPANY - BLOOMFIELD GROUNDWATER MONITORING - GW-1A

Well #MW-1

Elevation at T.O.W.	Depth to Water	Elevation at T.O.P.	pH	Aylence (wan)	Xvlenes (total)	Ethylbenzene	Toluene	Benzene	Total Kjeidani Nitrogen	Ammonia	Nitrate, Nitrite as N	Cyanide	Phenois	Sulfate	Chloride	Total Dissolved Solids	Manganese	Iron	Boron	Lead	Chromium	Cadmium	Barium	Arsenic	Date of Sample	PARAMETER
ft	ft	ft	s.u.	ag.	IIG/I	l/gu	ug/I	ug/l	mg/I	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l	mg/l		TINU
0.01	0.01	0.01	0.01	0.0	0.5	0.5	0.5	0.5	0.0	0.07	0.05	0.01	0.05	10	5	10	0.02	0.03	0.1	0.005	0.02	0.001	0.02	0.01		PQL
				010	620	750	750	10			10	0.2	0.005	600	250	1000	0.2		0.75	0.05	0.05	0.01		0.1		STANDARD
5498.18	17.6	5515.78	7.4	i	S	ND	ND	ND	1.0	1-1	8.7	ND	ND	502	110	€ 12303	,0.7.81)	S	0.2	ND	ND	ND	0.01	ND	11/1//9/	RESULT
5499.08	16.7	5515.78	7.62		ND	ND	ND	ND	1.0	0.6	17.3	ND	ND	511	260	1590	0.665	ND	0.2	ND	ND	ND	0.02	ND	5/23/97	RESULT
5498.04	17.74	5515.78	7.6		ND O	ND	ND	ND	1.0	, 1		ND	ND	246	152	882	0.505	2.1	ND	ND	ND	ND	ND	ND	11/20/96	' (
5505.08	10.7	5515,78	7.3		0.4	ND	0.3	ND	7.0	0.6	7.6	ND	ND	531	728	2390	0.17	0.2	0.34	ND	ND	0.007	0.01	ND	5/31/96	RESULT
5498.13	17.65	5515.78	7.16		ND	ND	ND	ND	10	3.9	15.00	ND	ND	960	1300	4400	9.22	0.19	0.71	ND	ND	0.003	ND	ND	G6///ZL	RESULT RESULT
5500.14	15.64	5515.78	7.00		ND	ND	ND	ND		4.0	3.00	ND	ND	899	1730	4850	7.20	1.00	0.40	ND	ND	0.002	ND	ND	C6/22/G	
5499.59	16.19	5515.78	7.31		ND	ND	ND	ND			5./25	ND	0.055	815.5	1070.5	3516	0.943	46.268	0.268	0.086	0.018	0.01	0.25	0.016	1984/1985	RESULT

GIANT REFINING COMPANY - BLOOMFIELD GROUNDWATER MONITORING - GW-1A

Well #MW-5

0.2 1.2 ND ND ND ND ND ND ND ND ND ND ND ND ND ND 17.00 7.41 5545.13 5545.13 43.98 41.85	5 3	4.5*	45.56	46.42	44.2		0.01	ft	Depth to Water
			מח חי						
	\vdash	5545.13	5545.13	5545.13	5545.13		0.01	ft	Elevation at T.O.P.
	ND	7	7.1	7.07	6.64		0.01	s.u.	рН
	ND						Ī	Į.	
		ND	ND	ND	ND	620	0.5	ug/l	Xylenes (total)
	ND	ND	ND	ND	ND	750	0.5	ug/l	Ethylbenzene
	ND	ND	ND	ND	ND	750	0.5	ug/l	Toluene
1.2		ND	ND	ND	ND	10	0.5	ug/l	Benzene
0.2		3.5		3.4	2.2		0.5	mg/l	Total Kjeldahl Nitrogen
	ND	0.6	ND	0.4	0.3		0.07	mg/l	Ammonia
19.30 24		14.5	.2	13.5	4 12.23	10	0.05	mg/l	Nitrate, Nitrite as N
ND 0.013	ND	ND	ND	ND	ND	0.2	0.01	mg/l	Cyanide
		ND	ND	ND	ND	0.005	0.05	mg/l	Phenols
943 1299	780	918	912	879	49023	600	10	mg/l	Sulfate
3180 1402		2260	2810	2690	© 2530 >	250	5	mg/l	Chloride
		6350	5660	6250	4 6240,	1000	10	mg/l	Total Dissolved Solids
		0.58	0.187	0.155	(0.302)	0.2	0.02	mg/l	Manganese
		0.72	6.2	0.2	ND	1	0.03	mg/l	Iron
	0.81 (0.54	0.6	0.5	0.5	0.75	0.1	mg/l	Boron
ND 0.015		0.72	ND	ND	ND	0.05	0.005	mg/l	Lead
		ND	0.04	ND	ND ·	0.05	0.02	mg/l	Chromium
ND 0.015	ND	ND	ND	ND	ND	0.01	100.0	mg/l	Cadmium
		0.03	0.03	0.02	0.02	1	0.02	mg/l	Barium
ND 0.004	ND	ND	ND	ND	ND	0.1	0.01	mg/l	Arsenic
-	-	0,01,00	1111000	0,10,0					Date of Sample
_		5/31/96	11/20/96	5/23/97	11/17/97				Date of Sample
RESULT RESULT	RESULT RE	RESULT	RESULT	RESULT	RESULT	STANDARD	PQL	UNIT	PARAMETER

ASSAIGAI ANALYTICAL LABORATORIES, INC.

7300 Jefferson, N.E. • Albuquerque, New Mexico 87109 • (505) 345-8964 • FAX (505) 345-7259

3332 Wedgewood, E-5 • El Paso, Texas 79925 • (915) 593-6000 • FAX (915) 593-7820

GIANT REFINING-BLOOMFIELD attn: LYNN SHELTON PO BOX 159 BLOOMFIELD NM 87413

	* explanation of codes
В	Analyte detected in Method Blank
E	Result is estimated
М	See explanatory memo

Assaigai Analytical Laboratories, Inc.

Certificate of Analysis

Client: C

GIANT REFINING-BLOOMFIELD

MONITOR WELL FB-05

Project: **9711127**

MONITOR WELLS

mat P. mil

William P. Biava: President of Assaigai Analytical Laboratories, Inc.

WATER

Collect	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Date
				8010-20				
1/17/97	9711127-01A	X97400	Benzene	< 1.0	ug / L	1	XG.1997.315 - 4	11/21/97
		X97400	Ethylbenzene	< 1.0	ug / L	1	XG.1997.315 - 4	
		X97400	O-Xylene	< 1.0	ug / L	1	XG.1997.315 - 4	
		X97400	P/M-Xylenes	< 2.0	ug/L	2	XG.1997.315 - 4	
		X97400	Toluene	< 1.0	ug / L	1 .	XG.1997.315 - 4	
ient ample ID	MONI	TOR WELL-	05		Sample N Matrix	NATER		
Collect	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	<u>Run Group -</u> #	Run Date
				8010-20		SKY Enra	T	
1/17/97	9711127-02A	X97400	Benzene	< 1.0	ug / L	1 ;	XG.1997.315 - 5	11/21/97
		X97400	Ethylbenzene	< 1.0	ug / L	1 :	XG.1997.315 - 5	
		X97400	O-Xylene	< 1.0	ug / L	1	XG.1997.315 - 5	
		X97400	P/M-Xylenes	< 2.0	ug / L	2	XG.1997.315 - 5	
		X97400	Toluene	< 1.0	ug / L	1	XG.1997.315 - 5	
				PA-200 series AA-GF			2	
1/17/97	9711127-02B	M97858	Cadmium	< 0.0010	mg / L	0.001	MW.1997.962 - 25	12/05/9
		M97858	Lead	< 0.002	mg / L	0.002	MW.1997.946 - 14	12/01/97
				EPA-200.7 ICP			N v v	
1/17/97	9711127-02B	M97853	Barium	0.02	mg / L	0.01	MW.1997.963 - 19	12/04/97
		M97853	Boron	0.5	mg / L	0.1	MW.1997.963 - 19	
		M97853	Chromium	< 0.04	mg / L	0.04	MW.1997.963 - 19	
		M97853	Iron	< 0.2	mg / L	0.2	MW.1997.963 - 19	
		M97853	Manganese	0.302	; mg/L	0.01	MW.1997.963 - 19	
			SW	/846-7000 series AA-GF			9	
4/47/07	9711127-02B	M97857	Arsenic	< 0.005	mg / L	0.005	MW.1997.947 - 17	12/02/97

Page 1 of 5

Coyote Reports

ver 1.0 / 971212

Report Date

1/5/98 3:21:20 PM

Certificate of Analysis

Client: GIAN

GIANT REFINING-BLOOMFIELD

Project: 9711127 MONITOR WELLS

				EPA-160 series				
11/17/97	9711127-02C	WTDS-430	Total Dissolved Solids	6240	mg / L	10	MT.1997.328 - 5	11/21/97
				EPA-300 series				
11/17/97	9711127-02C	W97531	Chloride	2530	mg/L	0.5	MW.1997.1068 - 7	12/03/97
		W97530	Sulfate	902	mg / L	0.5	MW.1997.939 - 10	11/26/97
				EPA-300 series				
11/17/97	9711127-02D	W97520	Nitrate, Nitrogen	12.2	mg N/ L	0.2	MW.1997.909 - 26	11/19/97
				SM-4500				
11/17/97	9711127-02D	W97521	Ammonia	0.3	mg / L	0.2	MW.1997.908 - 11	11/20/97
		W97522	Kjeldahl Nitrogen, Total	2.2	mg / L	0.2	MW.1997.910 - 14	
				PA-335 / SM-4500				
11/17/97	9711127-02E	W97523	Cyanide	< 0.02	mg / L	0.02	MW.1997.916 - 10	11/20/97
			SI	и-9065 / EPA-420.1		AASSAN LA LA		
11/17/97	9711127-02F	W97533	Phenol	< 0.05	mg/L	0.05 E	MW.1997.952 - 8	12/03/97
Client Sample ID	MONI	TOR WE	L-L-01		Sample V Matrix	VATER :		
<u>Collect</u>	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Date
			SV	V846-8020 Volatiles				
11/17/97	9711127-03A	X97417	Benzene	< 1.0	ug / L	1	XG.1997.324 - 6	11/26/97
		X97417	Ethylbenzene	< 1.0	ug/L	1	XG.1997.324 - 6	
		X97417	o-Xylene	< 1.0	ug/L	1	XG.1997.324 - 6	
		X97417	p/m Xylenes	< 2.0	ug / L	2	XG.1997.324 - 6	
		X97417	Toluene	< 1.0	ug/L	1	XG.1997.324 - 6	
			EP	A-200 series AA-GF				
11/17/97	9711127-03B	M97858	Cadmium	< 0.0010	mg/L	0.001	MW.1997.962 - 26	12/05/97
		M97858	Lead	< 0.002	mg/L	0.002	MW.1997.946 - 15	12/01/97
				EPA-200.7 ICP				
11/17/97	9711127-03B	M97853	Barium .	0.01	mg / L	0.01	MW.1997.963 - 20	12/04/97
		M97853	Boron	0.2	mg / L	0.1	MW.1997.963 - 20	
		M97853	Chromium	< 0.04	mg / L	0.04	MW.1997.963 - 20	
		M97853	Iron	< 0.2	mg / L	0.2	MW.1997.963 - 20	
		M97853	Manganese	0.781	mg / L	0.01	MW.1997.963 - 20	
			SW8	46-7000 series AA-GF				
11/17/97	9711127-03B	M97857	Arsenic	< 0.005	! mg/L	0.005	MW.1997.947 - 18	12/02/97
				EPA-160 series				
11/17/97	9711127-03C	WTDS-430	Total Dissolved Solids	1230	mg/L	10	MT.1997.328 - 6	11/21/97
				EPA-300 series		in in the second		
11/17/97	9711127-03C	W97530	Chloride	110	mg / L	0.5	MW.1997.939 - 11	11/26/97
		W97530	Sulfate	502	mg/L	0.5	MW.1997.939 - 11	
				EPA-300 series	- 1			
11/17/97	9711127-03D	W97520	Nitrate, Nitrogen	8.7	mg N/ L	0.2	MW.1997.909 - 24	11/19/97
				SM-4500				
11/17/97	9711127-03D	W97521	Ammonia	1.1	mg / L	0.2	MW.1997.908 - 13	11/20/97
		W97522	Kjeldahl Nitrogen, Total	1.6	mg / L	0.2	MW.1997.910 - 15	
				EPA-335 / SM-4500				
11/17/97	9711127-03E	W97523	Cyanide	< 0.02	mg / L	0.02	MW.1997.916 - 7	11/20/97
			11.12 18.3 1. 1. 1. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	M-9065 / EPA-420.1				40/22/2=
11/17/97	9711127-03F	W97533	Phenol	< 0.05	! mg / L	0.05 E	MW.1997.952 - 9	12/03/97

Certificate of Analysis

Client:

GIANT REFINING-BLOOMFIELD Project: 9711127

MONITOR WELLS

Walker		TOR WE	_L-7_2_1		Matrix	VATER		
Collect	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit '	Run Group - #	Run Date
1/17/07	9711127-04A	X97407		8010-20				
1/1//9/	9711127-04A		Benzene	700	ug / L	1	XG.1997.316 - 4	11/25/97
		X97407	Ethylbenzene	170	ug / L	1	XG.1997.316 - 4	
		X97407	O-Xylene	< 10	ug / L	1 :	XG.1997.316 - 4	
		X97407	P/M-Xylenes	470	ug / L	2	XG.1997.316 - 4	
		X97407	Toluene	< 10	ug/L	1	XG.1997.316 - 4	
1/17/07	9711127-04B	ATEL 44407		UBCONTRACT			<u> </u>	
1111131	9/1112/-046	ATEL-11127	Total Organic Carbon	26	mg/l		MT.1997.447 - 1	12/07/97
1/17/07	9711127-04C	ATEL 44407		UBCONTRACT			<u> </u>	
1/1/19/	9/1112/-046	ATEL-11127	Total Organic Halides	240	ug/l		MT.1997.447 - 2 -	11/26/97
lient ample ID					IWALIIX	VATER		
Collect	<u>Fraction</u>	QC Group	Analyte	Result 8010-20	Units	Limit *	Run Group - #	Run Date
1/17/97	9711127-05A	X97407	Benzene	17000				44/05/07
17177	37 11127-03A	X97407	Ethylbenzene	3400	ug/L	1 :	XG.1997.316 - 7	11/25/97
		X97407	O-Xylene	4700	ug/L ug/L	1 :	XG.1997.316 - 7 XG.1997.316 - 7	
		X97407	P/M-Xylenes	14000	ug / L	2	XG.1997.316 - 7 XG.1997.316 - 7	
		X97407	Toluene	20000	ug/L	1	XG.1997.316 - 7	
		737407		UBCONTRACT	i ug/L		AG. 1997.310 - 7	
1/17/97	9711127-05B	ATEL-11127	Total Organic Carbon	49 UBCONTRACT	mg/l		MT.1997.447 - 9	12/07/97
1/17/97	9711127-05C	ATEL-11127	Total Organic Halides	78	ug/l		MT.1997.447 - 10	11/26/97
					ug/i	i_	1411.1557.447 - 10	11120131
ient imple ID		TOR WEI			Sample V Matrix	VATER		
oliect	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Date
				8010-20		22.0	· <u></u>	
1/18/97	9711127-06A	X97407	Benzene	< 1.0	· ug / L	1	XG.1997.316 - 6	11/25/97
		X97407	Ethylbenzene	< 1.0	ug / L	1	XG.1997.316 - 6	
		X97407	O-Xylene	< 1.0	ug / L	1	XG.1997.316 - 6	
		X97407	P/M-Xylenes	< 2.0	ug / L	2	XG.1997.316 - 6	
		X97407	Toluene	< 1.0	ug/L	1	XG.1997.316 - 6	
ent	MONI	TOR WEI	-L-20		Sample Matrix	VATER		
ample ID	ali arakea kanasa		Analyte	Result	Units	Limit *	Run Group - #	Run Dat
ample ID	<u>Fraction</u>	QC Group	•	140.0000 17.1.41			ī Ķ	
imple ID	S Charles	QC Group		346-8020 Volatiles		2. 200 St. St. St. Co. C. St. St. St.		
ample ID Collect	S Charles	<u>QC Group</u> X97417		160	ug/L	1	XG.1997.324 - 7	11/26/97
imple ID <u>ollect</u>	<u>Fraction</u>		SW8			1	XG.1997.324 - 7 XG.1997.324 - 7	11/26/97
imple ID ollect	<u>Fraction</u>	X97417	Benzene	160	ug/L		-	11/26/97
ample ID Collect	<u>Fraction</u>	X97417 X97417	SW8 Benzene Ethylbenzene	160 51	ug/L ug/L	1	XG.1997.324 - 7	11/26/97
ample ID Collect	<u>Fraction</u>	X97417 X97417 X97417	Benzene Ethylbenzene o-Xylene p/m Xylenes Toluene	160 51 69	ug/L ug/L ug/L	1	XG.1997.324 - 7 XG.1997.324 - 7	11/26/97
ample ID Collect	<u>Fraction</u>	X97417 X97417 X97417 X97417	Benzene Ethylbenzene o-Xylene p/m Xylenes Toluene	160 51 69 200	ug/L ug/L ug/L ug/L	1 1 2	XG.1997.324 - 7 XG.1997.324 - 7 XG.1997.324 - 7	11/26/97

Certificate of Analysis

Client:

GIANT REFINING-BLOOMFIELD

Project: **9711127**

MONITOR WELLS

11/18/97	9711127-07C	ATEL-11127	Total Organic Halides	SUBCONTRACT < 5.0	ug/l		MT.1997.447 - 3	12/02/97
Client		n emagement, et hee					1001.1007.447 - 0	12102131 Carol 7 198
Sample ID	MONI	TOR WEI	LL-FB-09		Sample \ Matrix	NATER		
<u>Collect</u>	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Dat
			C.	SW846-8020 Volatiles				
11/18/97	9711127-08A	X97423	Benzene	< 1.0	ug/L	1 .	XG.1997.325 - 6	12/01/97
		X97423	Ethylbenzene	< 1.0	ug / L	1	XG.1997.325 - 6	
		X97423	o-Xylene	< 1.0	ug / L	1	XG.1997.325 - 6	
		X97423	p/m Xylenes	< 2.0	ug / L	2	XG.1997.325 - 6	
		X97423	Toluene	< 1.0	ug/L	1	XG.1997.325 - 6	
Client Sample ID	MONI	TOR WE	LL-09		Sample \ Matrix	NATER		
Collect	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Dat
				SW846-8020 Volatiles	17.00			
11/18/97	9711127-09A	X97417	Benzene	17000	ug/L	1 :	XG.1997.324 - 8	11/26/97
		X97417	Ethylbenzene	830	ug/L	1	XG.1997.324 - 8	
		X97417	o-Xylene	370	ug/L	1 .	XG.1997.324 - 8	
		X97417	p/m Xylenes	5700	ug / L	2 .	XG.1997.324 - 8	
		X97417	Toluene	760	ug/L	1	XG.1997.324 - 8	
				SUBCONTRACT				
1/18/97	9711127-09B	ATEL-11127	Total Organic Carbon	71	mg/l		MT.1997.447 - 5	12/07/97
				SUBCONTRACT		esióls.		
1/18/97	9711127-09C	ATEL-11127	Total Organic Halides	< 5.0	ug/l		MT.1997.447 - 6	12/02/97
				EPA-300 series				
1/18/97	9711127-09E	W97520	Nitrate, Nitrogen	< 0.2	mg N/ L	0.2	MW.1997.909 - 29	11/19/9
				SM-4500	Salved - 13 Co			
1/18/97	9711127-09E	W97521	Ammonia	< 1.0	mg/L	0.2	MW.1997.908 - 14	11/20/9
		W97522	Kjeldahl Nitrogen, Total	4.8	mg / L	0.2	MW.1997.910 - 16	
Client Sample (D	* RW-1	8			Sample \ Matrix	NATER ∞		
Collect	Fraction	QC Group	Analyte	Result	Units	Limit *	Run Group - #	Run Dat
	17,400,077	<u>go oroup</u>		8010-20			ran oroup	
11/18/97	9711127-10A	X97407	Benzene	4700	ug / L	1	XG.1997.316 - 5	11/25/97
		X97407	Ethylbenzene	1200	ug / L	1	XG.1997.316 - 5	
		X97407	O-Xylene	< 100	ug / L	1 ;	XG.1997.316 - 5	
		X97407	P/M-Xylenes	380	ug / L	. 2	XG.1997.316 - 5	
		X97407	Toluene	140	ug / L	1	XG.1997.316 - 5	
				SUBCONTRACT				
11/18/97	9711127-10B	ATEL-11127	Total Organic Carbon	50	mg/l		MT.1997.447 - 8	12/07/9
	0171127 102	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	Constitution of the consti	SUBCONTRACT	Sallon 2 - Seals			
11/18/97	9711127-10C	ATEL-11127	Total Organic Halides	180	ug/l	<u> </u>	MT.1997.447 - 7	12/02/9
Client Sample ID	TRIP	BLANK		Contract	Sample N	WATER		
			.	D14			B C	
<u>Collect</u>	<u>Fraction</u>	QC Group	Analyte	Result	Units	Limit *	Run Group - #	<u>Kun Dat</u>
11/18/97	9711127-11A	X97407	Benzene	8010-20 < 1.0	ug / L	1	XG.1997.316 - 9	11/26/9

Certificate of Analysis

Client: GIANT REFINING-BLOOMFIELD
Project: 9711127 MONITOR WELLS

11/18/97 9711127-11A	X97407		Ethylbenzene	< 1.0	ug / L	1	: 1	XG.1997.316 - 9	11/26/97
	X97407	11000	O-Xylene	< 1.0	ug / L	1		XG.1997.316 - 9	
	X97407		P/M-Xylenes	< 2.0	ug / L	2		XG.1997.316 - 9	
	X97407		Toluene	< 1.0	ug / L	1		XG.1997.316 - 9	

GIANT F	REFINING	COMPAN	Y - BLOOI	MFIELD		
GROUNDWA	TER MON	IITORING -	RCRA PAR	T B PERMIT		
		UP GRADIEI		DOWN GRA		
PARAMETER	UNIT	MW-21	RW-15	MW-20	MW-9	RW-18
Date of Sample		11/17/97	11/17/97	11/18/97	11/18/97	11/18/97
HYDROCARBON						
INDICATORS						
Benzene	mg/l	0.7	17	0.16	17	4.7 ·
Ethylbenzene	mg/l	0.17	3.4	0.051	0.83	1.2
Toluene	mg/l	ND	20	0.31	0.76	0.14
Xylenes (total)	mg/l	0.47	14	0.2	6.07	380
pН	s.u.	6.99	7.13	6.81	7.04	6.88
рН	s.u.	6.99	7.13	6.82	7.03	6.89
рН	s.u.	6.99	7.13	6.81	7.02	6.89
рН	s.u.	6.99	7.13	6.84	7.01	6.88
Specific Conductance	us/cm	765	555	322	216	280
Specific Conductance	us/cm	747	556	320	218	260
Specific Conductance	us/cm	744	545	318	257	257
Specific Conductance	us/cm	749	554	324	269	269
Total Organic Carbon	mg/l	26.0	49.0	36.0	71.0	50
Total Organic Halogen	mg/l	0.24	0.078	<0.005	<0.005	0.18
GROUNDWATER	1				1	
LEVELS					!	
Elevation - TOP	feet	5518.62	5533.44	5516.46	5519.77	5526.08
Depth to Water	feet	20.0	33.6	18.3	21.8	27
Elevation - GW	feet	5498.62	5499.84	5498.16	5497.97	5499.08
HC Thickness	feet	0	0	0	0	0
Elevation - Liquid	feet	5498.62	5499.84	5498.16	5497.97	5499.08
Total Depth from TOP	feet	30.44	43.6	27.12	34.94	39.7

WELL PUMPING & SAMPLING LOG

WELL#	MW-1	MW-5	MW-21	RW-15	MW-20	MW-9	RW-18
PURGE DATE	11-17-97	[11-17-97	11-17-97	11-17-97	11-18-97	11-18-97	11-18-97
PURGE TIME	11:55	X 09:15	13:05	14:10	08:55	10:15	 } 11:4d
TOP OF LIQUID	17'6"	44'2"	20'0"	33'6"	18'3"	21'8"	27'0"
TOP OF WATER	17'6"	44'2"	20'0"	33′6"	18,3.	21'8"	27'0"
PUMP DEPTH	21'6"	46'4"	30'4"	43'6"	27'1"	34'0"	39'7"
IMMISC. LAYER	Ala	I N/N	NA	NA	W/A	l N/A	I N A
FLOW RATE	U.55 GPW			,		0.92 GPm	
PUMP TIME	7	7	,		·		
PUMP METHOD	10 000	NA	25 may	30 MIN	20 Min	20 Min	A/N
	Purge P.	Ba:lex	Purge P.		Purge P.	Purge P.	BATIER
SAMPLE TIME	12:15	11:10	13:40	14:40	09:20	10:45	12:45
LIQUID DEPTH	NA	N/A	AM	NA	NA	AN	AIN
1) pH	772			IS I			
	7.39	6.63	6.99	7.13	6.81	7.04	6.88
SP. COND.	287	1425	765	555	322	216	280
2) pH	7.40	6.64	6.99	7.13	6.82	7.7	7 5-1
						7.03	6.89
SP. COND.	289	1423	747	556	320	218	260
3) pH .	7.40	6.64	6.99	7.13	6.81	7.02	6.89
SP. COND.	284	1420	744	545	318	219	
	201	[720]	/ 77	272	_510	219	257
4) pH	7.40	6.65	6.991	7.13	6.84	7.01	6.88
SP. COND.	284	1417	749	554	324	216	269
						-	
SAMPLER'S SIGNA	ATURE .	·			·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·- ·		
COMMENTS	* HAN	ماء ج ام	ما				
	<u> </u>	or DATE	<u></u>				

BLOOMFIELD REFINERY #50 COUNTY ROAD 4990 P. O. BOX 159 BLOOMFIELD, NM 87413

PHONE - (505) 632-8013 FAX - (505) 632-3911

DATE: 3/3/98
TO: MARK ASHLEY
COMPANY: NMOCD
FAX NUMBER: (505) 827 8177
FROM: LYNNSHELTON
PAGE 1 of 2
MESSAGE: HERE IS THE EXPLANATION FOR THE
HIGHER REPORTING LIMITS. I'LL CALL YOU
TO DISCUSS. Lynn
WARTE/SNIFWY SPILL

9. All internal standard recoveries were within acceptance criteria with the following exceptions:

Interpol Standard	Sample	Direction Linear Control
acenaphthene-10	LCS	low
phenanthrene-10	LCS	low
chrysene-12	LCS	low

The extract was reanalyzed with similar results. All QC criteria was within acceptance criteria, so no further action was required.

- Due to high levels of non-target compounds, the sample was analyzed at a higher 10. dilution. The reporting limits have been adjusted accordingly. The sample could not be analyzed at a dilution that would meet all TCLP regulatory limits without causing instrument failure. Cleanup methods such as GPC affect heavy non-chromatographic compounds. GPC cleanup would not have an effect on the non-target compounds detected in this extract.
- All initial calibration criteria were met. Method 8270B states any compound 11. exceeding 15% RSD is to be quantitated with a higher order curve. Several compounds from the curve were within the acceptance limit but exceeded the 15% RSD criteria and should be analyzed with a higher curve such as quadratic. We quantitated these compounds using the average response factor due to a software programming problem associated with Hewlett-Packard MSDs. The manufacturer is now aware of the problem and is working on a solution.

The data contained in the following report have been reviewed and approved by the personnel listed below. In addition, Paragon Analytics, Inc. certifies that the analyses reported herein are true, complete and correct within the limits of the methods employed.

Gary R. Brook

GC/MS Manager

Reviewer's Initials

NOT A CLEPTABLE.
NEED TO RESOMPLE.
CONVERSATION
WY LYNN SHELTON
ON 3-6-98

PARAGON ANALYTICS, INC.

TOTAL P.02

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413

505 632-8013

March 18, 1998

Mr. Warren Arthur (6EN-HX) USEPA Region VI 1445 Ross Avenue, Suite 1200 Dallas, Texas 75202-2733

Re:

Monthly Progress Report EPA ID No. NMD 089416416

Administrative Order on Consent U.S. EPA Docket No. VI-303-H

Dear Mr. Arthur:

In accordance with VI.5.b. of the Order, Giant Refining Company - Bloomfield (GRC) submits this monthly progress report.

Interim Measures (IM) Progress

1. Interim Measures, including product recovery from onsite recovery wells, continues. The product recovery wells have been shut in and the pumps removed for maintenance. Additional groundwater measurements will be taken between now and April 15, 1998.

Corrective Measures Study (CMS)

1. GRC is still waiting for the submission of the groundwater model for this facility. Additional groundwater measurements have been taken and one more round of measurements will be taken to document fluctuatuions in elevation due to seasonal changes.

A remediation plan was submitted for the remediation of the river bank area. OCD has approved the plan with conditions. Giant plans to start the bidding process, for implementation of the plan, this month.

If you require additional information, please contact me at (505) 632 8013.

Sincerely:

Lynn Shelton

Environmental Manager

Giant Refining Company - Bloomfield

TLS/tls

cc:

John Stokes, Refinery Manager

Roger Anderson, NMOCD Benito Garcia, NMED

February Report

April 20, 1998

APR 23 1998

Mr. Roger Anderson
Environmental Bureau Chief
NMOCD
2040 South Pacheco
Santa Fe, New Mexico 87505

50 Road 4990 P.O. Box 159 Bloomfield, New Mexico 87413 505 632-8013

Re:

Permit Modifications GW-001

Giant Refining Company - Bloomfield, San Juan County

Dear Mr. Anderson:

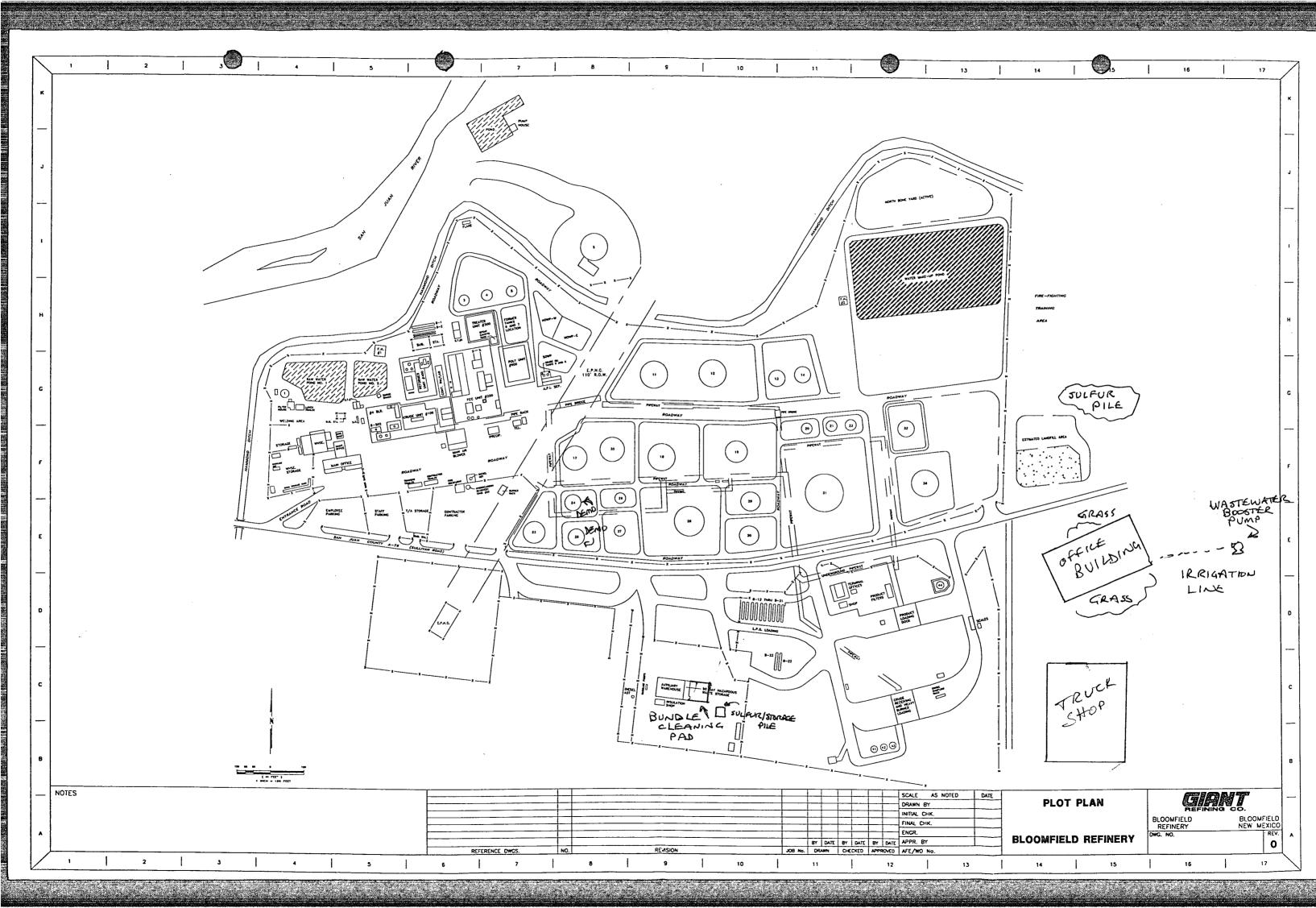
Giant Refining Company - Bloomfield submits TCLP data for the sulfur/soil pile that is currently being stored within a plastic lined berm. The first TCLP that was received contained flawed data due to laboratory problems. Giant wishes to place that soil with the other sulfur that is being stored east of the refinery (see drawing).

Additionally, Giant wishes to list the concrete heat exchanger bundle pad that is situated east of the <90 storage building in our current permit. This concrete pad is used to clean (hydroblast) heat exchanger bundles during shutdowns. It is occasionally used to store soils that are contaminated while awaiting receipt of analytical data.

Giant is supplying a facility drawing to show the locations of the mentioned items.

Finally, Giant wishes to use 120+ gallons per day (during the warm months) of refinery wastewater to irrigate grass and plants around the new office building. Ample data has been supplied to your office documenting the non-hazardous nature of that water. This will be a beneficial use of that water as it is less water that would, otherwise, be pumped into the injection well.

If you need information, please call me at 1 (505) 632 8013.


Sincerev:

Lynn Shelton

Environmental Manager Giant Refining Company

TLS/tls

Enclosue

[RACEANALYSIS, INC.

CLIENT GIANT REFINING COMPRESSION A 6701 Aberdeen Avenue, Suite 9

BLOOMFIELD, NM 87413

P.O. BOX 159

SAMPLE TYPE:

CLIENT SAMPLE ID :

Sulfur Soil

Solid

SUBMITTED BY: SAMPLED BY:

Lynn Shelton

SUBMITTAL DATE :

03-24-98

EXTRACTION DATE:

SAMPLE DATE ...: 03-23-98

AUTHORIZED BY CLIENT P.O.

L. SHELTON

Lynn Shelton

SAMPLE SOURCE

Lubbock, Texas 79424 800 • 378 • 1296 806 • 794 • 1296 El Paso, Texas 79922 888 • 588 • 3443 915 • 585 • 3443

E-Mait: lab@traceanalysis.com

FAX 806 • 794 • 1298

FAX 915 SHAPEN NO.

981039

INVOICE NO.: 22101848

REVIEWED BY: REPORT DATE: 04-04-98

PAGE

TCLP Metals

		D .	DATA	TABLE			
		,	= +	Detection	Analysis	Mothod	Analyst
Arco	ľ	<0.050	mq/L	0.050	03-30-98 SW846	7061	N. Munir
Rari		65.0	3	5 _. 0	SW846	7080A	N. Munir
באליו.	. :	<0.25	7	0.25	SW846	7130	
Chec	mium (TCIP)	<0.50	₹ }	0.50	SWB46	7190	_
- lead		<0.75		0.75	SW846	7420	_
E 1		010.0		0.010		7471A	N. Munir
5010		<0.050	3 4/	0.050	SW846	7741A	•
Silv	Silver (TCLP)	<0.25	mg/L	0.25	SW846	7760A	•

MAINTEA RESULTS HECHTED HELDY AND ONLY TO THE SAMPLER

MANAGING DIRECTOR

(1) Copy to Client

ent By: TRACEANALYSIS;

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso, Texas 79922. 868 • 588 • 3443

806-794-1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 - 585 - 4944

E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR

GIANT REFINING COMPANY - BLOOMFIELD

Attention: Lynn Shelton

P. O. Box 159

Bloomfield, NM 87413

April 07, 1998

Receiving Date: 03/24/98

Sample Type: Soil Project No: NA Project Location: NA Extraction Date: 03/30/98 Analysis Date: 03/31/98 Sampling Date: 03/23/98 Sample Condition: 1 & C Sample Received by: WW

Project Name: NA

TCLP VOLATILES (mg/L)	EPA LIMIT	Reporting Limit	T 94444/981 039 Sulfur Soil	QC	RPD	%EA	%IA
Vinyl chloride	0.20	0.1	ND	116	10	80	116
1,1-Dichloroethene	0.70	0.1	ND	100	5	78	100
Methyl Ethyl Ketone	200.0	1.0	ND	110	20	85	110
Chloroform	6.00	0.1	ND	99	10	115	99
1,2-Dichloroethane	0.50	0.1	ND	98	10	95	98
Benzene	0.50	0.1	ND	101	10	105	101
Carbon Tetrachloride	0.50	0.1	0.05	96	5	113	96
Trichloroethene	0.50	0.1	ND	102	5	98	102
Tetrachloroethene	0.70	0.1	ND	102	5	78	102
Chlorobenzene	100.00	0.1	ND	99	10	85	99
1,4-Dichlorobenzene	7.50	0.1	ND	99	11	91	99

SURROGATES	% Recovery
Dibromofluoromethane	103
Toluene-d8	100
4-Bromofluorobenzene	99

ND = Not Detected

METHODS: EPA SW 846-1311, 8260.

CHEMIST: AG

Director, Dr. Biair Leftwich

4-7-58

ent By: TRACEANALYSIS;

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

Lubbock, Texas 79424 El Paso. Texas 79972

800-376-1296 USH - 588 - 3443 806 · /94 · 1296

FAX 806 - 794 - 1298

E-Mail: lab@maceanelysis.com

915+585+3443

FAX 915 = 585 = 4944

ANALYTICAL RESULTS FOR

GIANT REFINING COMPANY - BLOOMFIELD Analysis Date: 04/01/98

Attention: Lynn Shelton

P. O. Box 159

Bicomfield, NM 87413

Extraction Date: 03/27/98

Sampling Date: 03/2398

Sample Condition: Intact & Cool

Sample Received by: VW

Project Name: NA

April 06, 1998

Receiving Date: 03/24/98

Sample Type: Soil Project No: NA Project Location: NA

T94444/981039

			1 24444 20 103	.				
TCLP Semi-Volatiles	EPA	Reporting	Sulfur					
(mg/L)	Limit	Limit	Soil	QC	RPD	%EA	%IA	
Pyridine	5.0	0.05	ND	72	103*	48	90	-
1,4-Dichlorobenzene	7.5	0.05	ND	84	1	69	105	
o-Cresol	200.0	0.05	ND	85	1	58	106	
m.p-Cresol	200.0	0.05	ND	92	4	108	115	
Hexachloroethane	3.0	0.05	ND	85	7	62	106	
Nitrobenzene	2.0	0.05	ND	85	6	60	106	
Hexachlorpbutadiene	0.6	0.05	ND	84	9	67	105	
2,4,6-Trichlorophenol	2.0	0.05	ND	88	0	78	110	
2.4,5-Trichtorophenol	400.0	0.05	ND	89	1	84	111	
2,4-Dinitrotoluene	0.13	0.05	ND	78	3	78	98	
2,4-D	10.0	0.05	ND	90	4	83	113	
Hexachlorobenzene	0,13	0.05	ND	66	2	56	83	
2,4,5-TP	1.0	0.05	ND	67	9	58	84	
Pentachlorophenol	100.0	0.05	ND	65	10	.51	81	

% RECOVERY Surrogates

2-Fluorophandi	27
Phenol-dB	18
Nitrobenzene-d5	48
2-Fluorobiphenyl	48
2,4,6-Tribromophenol	60
Terphenyl-d14	56

*NOTE: RPD out of range <20%.

ND - Not Detected

Methods: EPA SW 846-1311, 8270.

CHEMIST: MB

Director, Dr. Blair Leftwich

4-6-98

DATE

Submittal of samples constitutes agreement to Terms and Conditions listed arreverse side of C.O.C.O.G.		Relinquished by: Date: Time:	Cate.	Date: T	1444 SHELTON 3/28/04 4:08 AM		" 42 TRIP BLANK	3-AMON 17 "	" 40 FILTERS	" 39 SULFUR SOIL	" 38 SULFUR QUARD BED	" STEWEUR GUARD SED - B	" 36 SULFUR GUARD BEO-M	9818 SULFUR GUARD BED-T	LAB # FIELD CODE (LAB USE)		roject Location:	TIO BOOK #5	(It different from above) SAme	MY SH	BX 189	Company Name: GIANT REFINING CO B.	Haccanalysis, 11	
Conditions listed arreverse side of C.O.C. ORIGINAL COPY	101 Spyle 10100	Received a paboratory Date: Time:	Corc	Received hy:		Received by: Date: Time:	1 18-1 14	3 10ml × × × × × × × × × × × × × × × × × × ×	5111 86/12/2 X X 1800 7	1 X X X X X X X X X X X X X X X X X X X	2 ' × × / 1030	> ×	> x	010, 86kgr X X X	# CONTAINE Volume/Amo WATER SOIL AIR SLUDGE SOLID HCL HNO3 ICE NONE DATE TIME		Samplet Signature:	Pioject Walnes:			BLADMFIELD, NM87413 (SDS)632 3911	BLOOMEILLO Phone 1: (505)632 8013	1 (800) 378 1296	6701 Aberdeen Avenue, Stc. 5
Carrior # 46 5 17 887 857 01 1001 529 5		Temp 14 ° C	Headspace O / N TRUE BLOWLK DIXL			I AR USE REMARKS:		X	×	XXX	XXX	×	*	***	MTBE 8020 BTEX 8020/6 TPH PAH 8270 Total Metals TCLP Metals TCLP Semi 'S RCI GC.MS Vol. GC/MS Sem PCB'S 8080/6 BOD. TSS. F	Ag As Ag A Bs Volatil 8240/ II. Vol. 7608 PH	s Ba (es 8260/6 8270/	524 625 9 H	PD H	g Se		ANALYSIS REQUEST (Circle or Specify Method No.)	LAB Order ID #	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST

Page ____of__

6701 Aberdeen Avenue, Suite 9 4725 Ripley Avenue, Suite A

March 20, 1998

Project No: NA

Receiving Date: 03/11/98

Sample Type: Water

Project Location: NA

TA #: T93285/980903

Lubbock, Texas 79424 El Paso, Texas 79922

800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

ANALYTICAL RESULTS FOR GIANT REFINING COMPANY

Attention: Lynn Shelton

P. O. Box 159

Bloomfield, NM 87413

PAGE 1 of 2 Prep Date: 03/17/98 Analysis Date: 03/17/98 Sampling Date: 03/10/98

Sample Condition: Intact & Cool

Date

Sample Received by: WW

Project Name: NA

FIELD CODE: Qtr Inj Well						
8260 Compounds	Reporting Limit	Concentration (ug/L)	QC	RPD	EA	IA
Dichlorodifluoromethane	1	ND				
Chloromethane	1	ND				
Vinyl chloride	2	ND	119			119
Bromomethane	5	ND				
Chloroethane	1	ND				
Trichlorofluoromethane	1	ND				
1,1-Dichloroethene	1	ND	110	5	115	110
Methylene chloride	5	ND				
trans-1,2-Dichloroethene	1	ND				
1,1-Dichloroethane	1	ND				
Chloroform	1	ND	96			96
1,2-Dichloroethane	1	ND				
1,1,1-Trichloroethane	1	ND				
Carbon Tetrachloride	1	ND				
Benzene	1	ND		5	111	
1,2-Dichloropropane	1	ND	102			102
Trichloroethene	1	ND		6	114	
cis-1,3-Dichloropropene	1	ND				
trans-1,3-Dichloropropene	1	ND				
Toluene	1	ND	107	7	114	107
1,1,2-Trichloroethane	1	ND				
2-chloroethyl Vinyl Ether	1	ND				
Dibromochloromethane	1	ND				
Tetrachloroethene	1	ND				
Chlorobenzene	1	ND	105	5	110	105
1,1,1,2-Tertachloroethane	1	ND				
Ethylbenzene	1	ND	108			108
Bromoform	1	ND				
1,1,2,2-Tetrachloroethane	1	ND				
1,4-Dichlorobenzene	1	ND				
1,3-Dichlorobenzene	1	ND				
1,2-Dichlorobenzene	1	ND				
THE DIGITION OF THE PROPERTY O	% Recovery	1,12				
Dibromofluoromethane	98					
Toluene-d8	99					
4-Bromofluorobenzene	99			7	_	
METHODS: EPA SW 846-5030, 8260.				5- 1	28-9	B
Chemist: AG		/				

Director, Dr. Blair Leftwich

6701 Aberdeen Avenue, Suite 9 Lubbock, Texas 79424

BLOOMFIELD, NM 87413

806 • 794 • 1296 FAX 806 • 794 • 1298

CLIENT GIANT REFINING COMPANY Texas 79922 888 • 588 • 3443 915 • 585 • 3443 SAMPLE NO. :

980903

P.O. BOX 159

INVOICE NO.: 22101796

REPORT DATE: 03-25-98

REVIEWED BY: MA7

: 1 OF

CLIENT SAMPLE ID : QTR INJ WELL

SAMPLE TYPE: Water

SAMPLED BY LS SUBMITTED BY: LS

SAMPLE SOURCE ...: --

ANALYST K. Costa

AUTHORIZED BY : L. SHELTON

CLIENT P.O.

SAMPLE DATE ...: 03-10-98 SUBMITTAL DATE: 03-11-98

EXTRACTION DATE: --

ANALYSIS DATE .: 03-23-98

REMARKS -

Sample received with headspace.

Petroleum Contaminants by 8020A

D A T A	TABLE		
Parameter	Result	Unit	Detection Limit
Benzene	<0.20	ug/L	0.20
Toluene:	.29	ug/L	0.20
Ethylbenzene:	<0.20	ug/L	0.20
Total Xylenes:	1.9	ug/L	0.20
•	4	-37 -	

ANALYTICAL RESULT(S) REPORTED HEREIN APPLY ONLY TO THE SAMPLEIS)

(1) Copy to Client

6701 Aberdeen Avenue, Suite 9

Lubbock, Texas 79424

806 • 794 • 1296 800 • 378 • 1296

FAX 806 • 794 • 1298

CLIENT GIANT REFINING COMPANY E-Mail: lab@traceanalysis.com

888 • 588 • 3443 915 • 585 • 3443

3 FAX 915 • 585 • 4944 **SAMPLE NO. :**

980903 INVOICE NO.: 22101796

P.O. BOX 159 BLOOMFIELD, NM 87413

REPORT DATE: 03-25-98

REVIEWED BY: May

PAGE

: 2 OF 2

DATA

TABLE

(Cont.)

Surrogate Information -

Percent

Recovery

Range

aaa Trifluorotoluene

100.0

77-120

BLOOMFIELD, NM 87413

P.O. BOX 159

CLIENT GIANT REFINING & Chips & Chips

E-Mail: lab@traceanalysis.com

22101796 03-25-98 INVOICE NO.: REPORT DATE:

REVIEWED BY: PAGE

L. SHELTON AUTHORIZED BY

OTR INJ WELL

Water LS LS

SUBMITTED BY

SAMPLE SOURCE ...:

SAMPLED BY

SAMPLE TYPE: CLIENT SAMPLE ID:

SAMPLE DATE ...: 03-10-98 CLIENT P.O.

03-11-98 SUBMITTAL DATE: EXTRACTION DATE:

Inorganic Chemistry - Total Metals

	Q	DATA	TABLE		
Parameter	Result	Unit	Detection Limit	Analysis Date Test Method	Analyst
Total Arsenic	0.014	mg/L	0.005	03-22-98 SM 3113B	N. Munir
Total Barium	<1.0	mg/L	1.0	03-17-98 SM 3111D	N. Munir
Total Cadmium:	<0.05	mg/L	0.05	03-17-98 SM 3111B	N. Munir
Total Calcium	120	mg/L	1.0	03-17-98 SM 3111D	N. Munir
Total Chromium	<0.10	mg/L	0.10	03-17-98 SM 3111B	N. Munir
Total Lead	<0.15	mg/L	0.15	S	N. Munir
Total Magnesium	39.	mg/L	1.0	03-17-98 SM 3111B	N. Munir
Total Mercury	<0.001	mg/L	0.001	ΣS	N. Munir
	27.	mg/L	1.0	Š	N. Munir
Total Selenium	<0.005	mg/L	0.005	Š	N. Munir
Total Silver	<0.002	mg/L	0.002	S	N. Munir
Total Sodium	920	mg/L	1.0	S	N. Munir

ANALYTICAL REGULTIS) REPORTED HEREIN APPLY DNLY TO THE GAMPLE16) TESTED. FURTHERMORE, THIS REPORT CAN DNLY BE COPIED IN 1TS ENTIRETY.

(1) Copy to Client

GIANT REFINING COMPANYenue, Suite A

BLOOMFIELD, NM 87413

P.O. BOX 159

CLIENT

E-Mail: lab@traceanalysis.com

806 • 794 • 1296 FAX 806 • 794 • 1298 915 • 585 • 3443 FAX 915 **SAMPLE NO.**

22101796 03-25-98 INVOICE NO.: REPORT DATE:

REVIEWED BY:

PAGE

L. SHELTON AUTHORIZED BY CLIENT P.O.

OTR INJ WELL

Water

CLIENT SAMPLE ID : SAMPLE TYPE: SAMPLED BY SUBMITTED BY SAMPLE SOURCE ...:

LS

SAMPLE DATE ...: 03-10-98 SUBMITTAL DATE: 03-11-98

EXTRACTION DATE:

Inordanic Non-Metals

	1	DATA	TABLE			
Parameter Bicarbonate Carbonate Chloride Electrical Conductivity PH Sulfate Total Dissolved Solids	Result 330 <5.0 (1200) 6700 7.7 400 (3500)	Unit mg/L mg/L umhos/cm S.U. mg/L mg/L	Detection Limit 5.0 5.0 5.0 5.0	Analysis Date 03-23-98 03-23-98 03-20-98 03-12-98 03-11-98 03-11-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98 03-16-98	Analyst A. Donohue	

ANALYTICAL RESULTISI REPORTED HEREM APRLY ONLY TO THE SAMPLEIS) TESTED. FURTHERMORE, THIS REPORT CAN ONLY BE COPIED IN ITS ENTIRETY.

QUALITY CONTROL REPORT

QC IDENTIFIER: 31-032398-1

INSTRUMENT : HEWLETT PACKARD GC5890 PID/ELCD

REFERENCE NOTEBOOK:

ANALYZED BY : K. Costa ANALYZED ON : 03-23-98

REFERENCE PAGE:

TEST DESCRIPTION ..: Petroleum Contaminants by 8020A

SAMPLES IN THIS RUN: 980903

980907

CALIBRATION CHECK -

PARAMETER PARAMETER	UNIT	TRUE VALUE	FOUND VALUE	%RECOVERY
Benzene	ug/L	10	9.57	95.7
Toluene	ug/L	10	9.71	97.1
Ethylbenzene	ug/L	10	9.73	97.3
Total Xylenes	ug/L	30	29.0	96.7
Benzene	ug/L	10	9.63	96.3
Toluene	ug/L	10	9.72	97.2
Ethylbenzene	ug/L	10	9.44	94.4
Total Xylenes	ug/L	30	28.6	95.3
Benzene	ug/L	10	9.70	97.0
Toluene	ug/L	10	9.95	99.5
Ethylbenzene	ug/L	10	9.81	98.1
Total Xylenes	ug/L	30	29.4	98.0

BLANK SPIKES

PARAMETER	UNIT	SAMPLE RESULT	SPIKE CONC.	[- SAMPLE A RESULT 1	ND SPIKE -] % % RESULT 2 REC1 REC2 RPD%
Benzene	ug/L	<0.20	10.	9.99	99.9
Toluene	ug/L	<0.20	10.	10.3	103.0
Ethylbenzene	ug/L	<0.20	10.	10.0	100.0
Total Xylenes	ug/L	<0.20	30.	30.2	100.7

METHOD BLANKS -

PARAMETER	UNIT	RESULT				
Benzene	ug/L	<0.20				
Toluene	ug/L	<0.20				
Ethylbenzene	ug/L	<0.20				
Total Xylenes	ug/L	<0.20				

QUALITY CONTROL REPORT

QC IDENTIFIER: 31-032398-1

REFERENCE NOTEBOOK :

REFERENCE PAGE:

INSTRUMENT : HEWLETT PACKARD GC5890 PID/ELCD

ANALYZED BY : K. Costa ANALYZED ON : 03-23-98

NOTE -

1) NC: Not Calculable because result is < 5 times the MDL

2) NP: Not Practical because sample result is 4 times or more greater than spike added.

3) Percent Recovery is:

Sample+Spike Result - Sample Result x 100 Spike Amount

4) Relative Percent Difference (RPD) is:

Sample Result - Replicate Result x 100 (Sample Result + Replicate Result)/2

	*								 												_			,										
Submittal of s	, and distinct of	Relinguished		Relinguished by:	7637	Relipquished by	7								(11,001)	20012	LAB #		Project Location:	Project #:	(If different from above)	Contact Person	Address:	L z										
samples cons	4	P.	\ \	- I	HELTEN)	64 1/	S			- -					WTK	5			tion:		om above)		Box 159	me: IANT	ICEA	>								
titutes agreem	Caro.	Date:		Date:	3/10/98	Date:							,		200	ļ	FIELD CODE			<u> </u>		SHELTON	}	REFIN	HaceAllalysis,	ماما								
Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of C.O.C	i ii ic.	Time:		Time:	asih	Time:									WELL		m					NON	BLOOMFIELD	GIANT REFINING COMPANY	515, 1									
ıd Condit		Received		Rece		Rece			 						0	0	# CONTAIN	ERS					Nm 87413	MPA	IIIC.	5								
ons listed			١.	Received by:		Received by:									101	4	Volume/Amo	ount					478	3	·									
\$	Many 1	ahor	\						 						>	-+	WATER		6				13			01 A								
revers		200		Ŋ	\				 					_	-	-	SOIL AIR	MATRIX	5 K	1 3	Project Name:		Ç ĕ	り 習	Tel (berd								
se si	X	5							 								SLUDGE	R	3 4		<u>:</u>		(2027)	C505)637	000)	een /								
de of C.O.C.	W.	1		_															Sign	e Name			7	2	1	Aven								
	White Sealing	Date		Date:	\	Date:									<u> </u>	۷	HCL	PR	V g	Sampler Signature		77	632	8	ا دی ا									
	19			١		1			 						_>	<u> </u>	HNO3	MET	T		1													
		╛		ا⊫	!	_d			 						_ /		NONE	PRESERVATIVE METHOD	2)			1/2	8013	Fax 8 12	· '								
		Time:		Time:		Time:			 						- -	7	NONE	J.	H	7			3911	K	96	Lubt								
	00														3/1048	4/ /2	DATE	SAMPLING							Fax (000) 794 1290 178 1296	Lubbock, Texas 79424								
		.													310		TIME	oLING								s 79424								
Carr	Log-	Temn	Heads	nta.													MTBE 8020									СН								
Carrier # UPS	Log-in Review	3	Headspace	‡	_ [_			 			 		-+	-	-	BTEX 8020	602							,	CHAIN-OF-CUSTODY								
3	ew		8	\odot	ONLY	AR HSE											PAH 8270								LAB	-OF								
N			$\langle \cdot \rangle$	z	7	2											Total Metals							<u></u>	Orde	no-								
=			Z	Z	z			m	m	m	ň	ſ	•	71			 		ļ						TCLP Metal		As Ba	Cd C	r Pb F	łg Se	ANALYSIS REQUEST (Circle or Specify Method No.		LAB Order ID #	STO
NO33		٥				_			 			-		-+			TCLP Semi		les					ANALYSIS	#	ץם(
C			,,			REM			 								RCI							SIS		REC								
0	ļ		2 VOA'S			REMARKS:					ļ					_	GC.MS Vol.							RE(얽								
4.60			Ø			Š			 			-					GC/MS Sen PCB's 8080		. 8270	J/625				REQUEST fy Method No		Ö								
i			V						 							-	Pest. 8080/							No No		Ž								
618									 								BOD, TSS,	PH)		₽ Z								
دو															>	<	GIAN	rf	AR	AM	ETE	RL	. <i>LS</i> 7			RECORD AND ANALYSIS								
								-							_				.,						.	REQUEST								
							ļ	-		-	-	<u> </u>					Turn Around	Time	of dif	terent	trom	standa	ard —	1		JES								
							}	1	}	1	}	1			-		Hold								{	-								

Page____of___