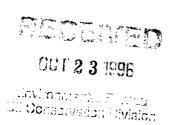
GW - 107


REPORTS

YEAR(S):

1996-1994

JAL No. 4 GROUNDWATER DELINEATION REPORT

October 14, 1996

Prepared For

El Paso Natural Gas Company El Paso, Texas

Project 14683

Prepared By

PHILIP ENVIRONMENTAL SERVICES CORPORATION

7904 Interstate 20 West Midland, Texas 79706 (915) 563-0118

TABLE OF CONTENTS

1. INTRODUCTION	1
2. PROJECT BACKGROUND	1
3. SUBSURFACE INVESTIGATION	1
3.1. GROUNDWATER GRADIENT	
4. ANALYTICAL RESULTS	3
4.1. CLEANUP STANDARDS	3
5. PLUME DELINEATION	4
6. WASTE DISPOSAL AND DISPOSITION	4
7. MONITOR WELL REMOVAL	4
8. CONCLUSIONS AND RECOMMENDATIONS	5
APPENDIX A BORING/DRILLER'S LOGS	
APPENDIX B MONITORING WELL COMPLETION	
APPENDIX C SITE PHOTOGRAPHS	
APPENDIX D LABORATORY ANALYTICAL	

1. INTRODUCTION

Services Philip Environmental Corporation (Philip) has completed the Phase II Site Assessment for the former El Paso Natural Gas (EPNG) Jal No. 4 Gas Plant (the site) located approximately 10 miles north of Jal, New Mexico on Highway 18. report details the installation of three monitoring wells to aid in further delineating the extent of saltwater impacts to the groundwater from a release of plant production water from the site. Additionally, two recovery wells were installed in areas of high total dissolved solids (TDS) and chlorides for purposes of remediation of groundwater.

As per our Phase II Site Assessment Workplan dated April 16, 1996, Philip field personnel were on-site June 17 through July 3, 1996, to oversee the installation of the three monitor wells at the site. In addition to the workplan, EPNG requested the installation of two recovery wells at the site and the removal of two monitoring wells: one located at the Lea County Sheriff's Office at 400 South Highway 18 in Jal, New Mexico; and the second located at the former EPNG laboratory in Jal. Both are former EPNG properties.

2. PROJECT BACKGROUND

The Jal No. 4 gas plant was built by EPNG in 1952 and operated as a gasoline plant, purification plant, dehydration plant and compressor facility. The plant is currently owned and operated by Christie Gas. An

investigation was initiated in 1989 at the request of the New Mexico Oil Conservation Division (NMOCD) following the discovery of a leak in the pond liner. A total of seventeen monitoring wells had been installed prior to this investigation.

3. SUBSURFACE INVESTIGATION

Philip installed three monitoring wells (ACW-12 to ACW-14) to depths of 171, 174, and 177 feet below ground level (bgl) respectively, using a water rotary drilling method. The borings were completed at the top of the red-clay contact. No soil samples were collected from these borings due to the distance of the borings from the initial release.

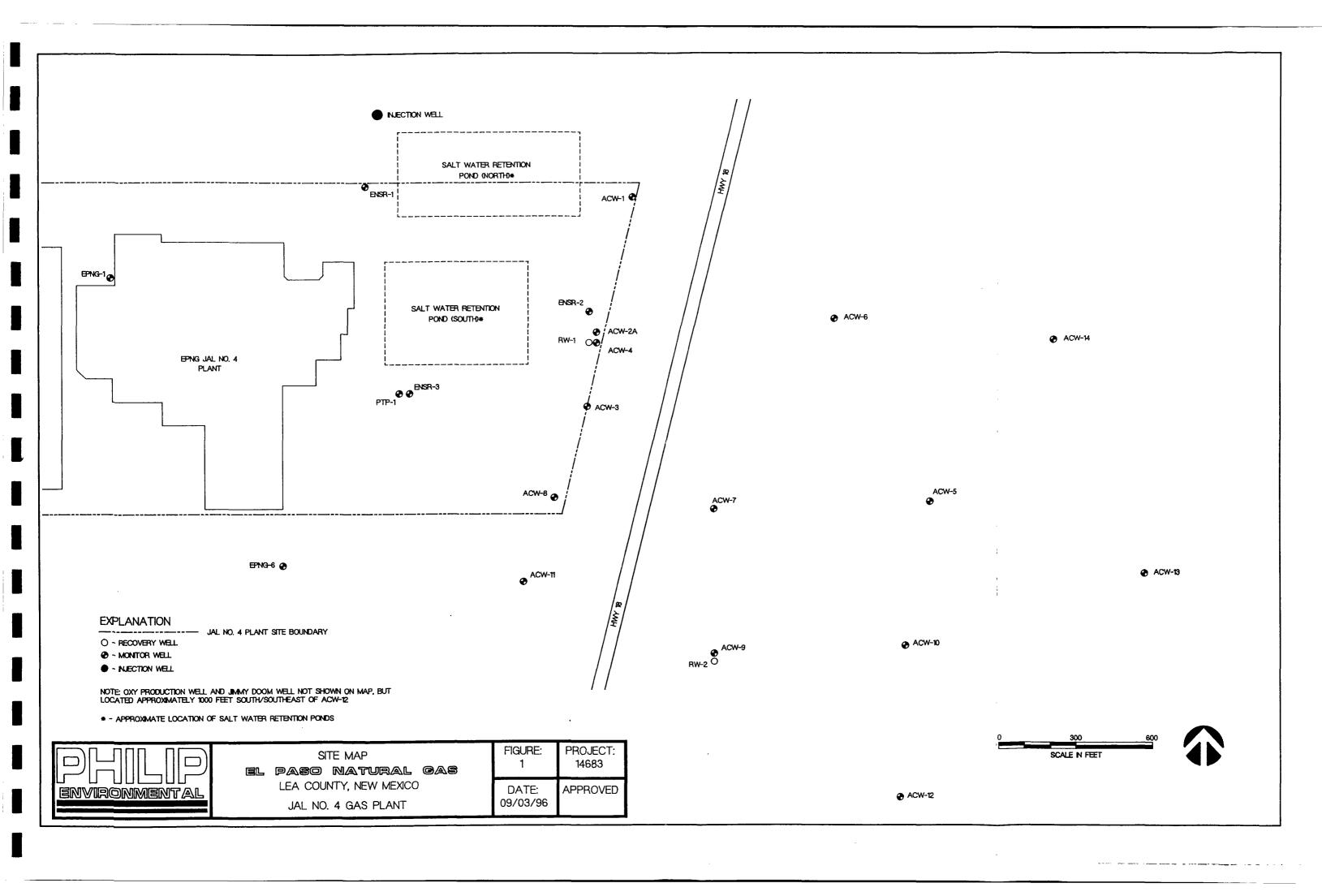
Subsurface conditions were similar in five monitoring/recovery wells installed (Appendix A - Boring Logs). The surface material to a depth of about 25 feet bgl is composed of a tan/red fine grained sand intermixed with some limestone fragments and clay. From 25 feet to approximately 70 feet bgl a tan/red fine grain sand with limestone, sandstone, and some clay intermixed From 70 feet to was observed. approximately 145 feet bgl is composed of red sandstone intermixed with some clay and limestone fragments. From 145 feet to the bottom of the borings a red sandstone with an increasing amount of clay and a decreasing amount of sandstone of the occurs. Each monitoring/recovery wells completed at the red-clay bed interval approximately 170 to 180 feet bgl.

I:\WORD\EPNG.JAL

The three monitoring wells (ACW-12 to ACW-14) were constructed of 4-inch diameter schedule 40 PVC casing with 0.02-inch factory slotted well screen (Appendix B - Monitoring Completion). Twenty feet of screen was placed at the bottom of each boring. A sand pack was then installed from the bottom of each boring to approximately 2 feet above the casing/screen junction. A clean silica sand with a grain size larger than the well screen (sieve size 8 to 16) was used as the sand pack in the annular space between the casing and borehole. Above the sand pack, a 5-foot bentonite plug was installed in the annulus. Above the bentonite plug, a non-shrinking grout with 3 to 5% bentonite was installed in the annulus to two feet bgl. The remaining two feet to the surface was completed with cement. The surface completion for the three wells included an eight inch diameter steel surface riser, a four-foot by fourfoot by four-inch thick concrete pad, and a locking cap on the outer protective casing.

The two recovery wells (RW-1 and RW-2) were completed at depths of 180 and 177 feet bgl respectively, at the top of the red-clay contact. Recovery well RW-1 was installed approximately 10 feet west of ACW-4, and recovery well RW-2 was installed approximately 40 feet south of ACW-11 (Figure 1). Since these recovery wells were installed in existing close proximity to other monitoring wells which had subsequently been sampled, no soil samples were collected or analyzed from the two recovery wells.

The two recovery wells (RW-1 and RW-2) were constructed of 10-inch inside


diameter schedule 160 PVC casing with 0.035-inch factory slotted well screen. Seventy feet of screen was placed at the bottom of the boring. A sand pack was then installed from the bottom of each boring to approximately 2 feet above the casing/screen junction. A clean silica sand with a grain size larger than the well screen (sieve size 8 to 16) was used as the sand pack in the annular space between the casing and borehole. Above the sand pack, a 5-foot bentonite plug was installed in the annulus. Above the bentonite plug, a non-shrinking grout with 3 to 5% bentonite was installed in the annulus to two feet bgl. remaining two feet to the surface was completed with cement.

Due to the close proximity to the chemical loading rack and the high amount of vehicle traffic in the area, the electrical and water lines to be connected to recovery well RW-1 will need to be buried during installation of the remediation system (Appendix C - Photographs). As such, surface completion of recovery well RW-1 will be completed after installation of the remediation system.

The surface of recovery well RW-2 was completed with a fourteen inch inside diameter steel surface riser, a four-feet by four-feet by four-inch thick concrete pad, and a locking cap on the outer protective casing.

Since water rotary was used to drill, the exact location at which groundwater was encountered in the monitoring borings was unknown, but is approximately 100 feet bgl based on previous wells installed at the site. Twenty-four hours after installation, the three monitoring

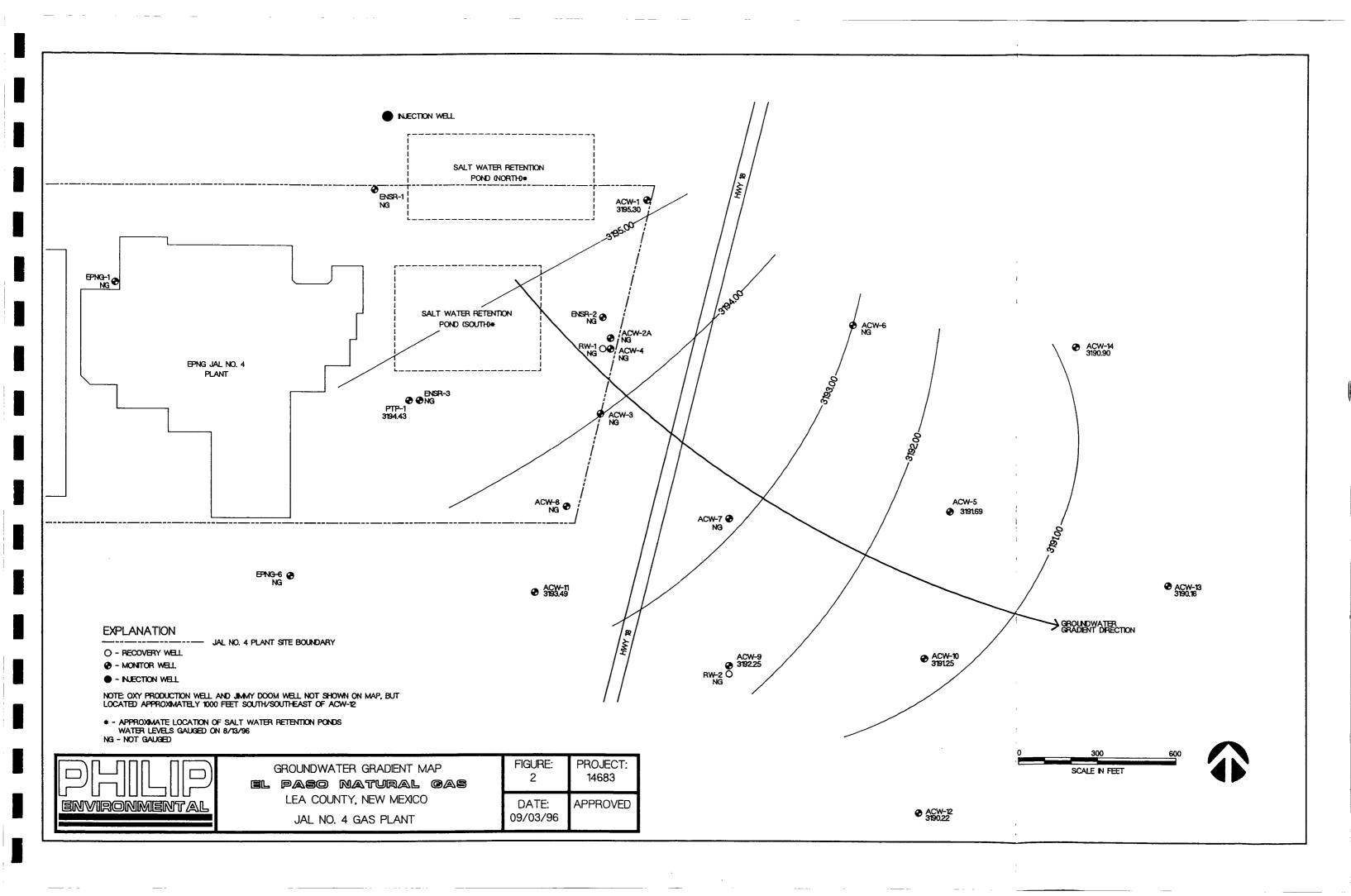
2

wells and two recovery wells were gauged and developed by EPNG personnel by removing at least four well volumes. A four-inch Grundfos pump was lowered into recovery wells RW-1 Approximately and RW-2. 17,280 gallons of water (12 gallons per minute) was removed over a twenty-four hour period from RW-1 and pumped into the south brine pit at the Christie gas plant. Approximately 14,400 gallons of water (10 gallons per minute) was removed over a twenty-four hour period from RW-2 and temporarily stored in a 20,000 gallon frac tank. The frac tank was pumped out and the contents placed in the southern brine pit at Christie Gas.

3.1. GROUNDWATER GRADIENT

On August 13, 1996, EPNG field personnel were on-site to gauge nine (9) of the 22 monitor wells. The groundwater gradient at the site is to the southeast (**Figure 2**). This is consistent with previous gauging events at the site

4. ANALYTICAL RESULTS


On August 13, 14, and 15, 1996, EPNG field personnel collected groundwater samples from the three newly installed monitor wells, seven (7) on-site monitor wells, and two (2) off-site wells for laboratory analysis of benzene, toluene, ethylbenzene, xylenes (BTEX) using EPA method 8020; specific conductance using EPA method 120.1; total dissolved solids (TDS) using EPA method 160.1; and total metals using EPA method SW846-6010 1). (Table No groundwater samples were collected or analyzed for TDS in recovery wells RW-

1 and RW-2 since the wells are installed adjacent to two wells (ACW-4 and ACW-9) with known saltwater-impacts.

Analytical results indicate that the site and adjacent property to the southeast has been impacted with a high salinity and chloride concentrations (Figure 3). TDS results (in excess of 10,000 parts per million (ppm)) are highest at monitor wells ACW-2A, ACW-3, ACW-ACW-8, and ACW-11 located downgradient and south to southeast of the original source release. A decrease in concentration (ranging from 1,700 to 7,920 ppm) occurs in downgradient monitor wells ACW-5, ACW-6, ACW-7, ACW-9, ACW-10, and ACW-12 located on the east-southeast side of Highway The furthest downgradient wells sampled, the Oxy Production well and the Jimmy Doom well, are outside the salinity plume boundary. Although not on the map, these wells are located approximately 1,500 feet downgradient and southeast of ACW-12. In addition, the samples were analyzed for total metals and BTEX. Sample analytical results indicated that the following analytes are above current New Mexico Water Quality Control Commission Regulations for groundwater of less than 10,000 mg/l TDS concentration: 1) fluoride in monitor wells ACW-1, ACW-6, ACW-13, ACW-14 and ACW-14 Dup; 2) sulfate in monitor well ACW-5; 3) iron in monitor well ACW-6; and 4) manganese in monitor well ACW-9. (Appendix D - Laboratory Analytical).

4.1. CLEANUP STANDARDS

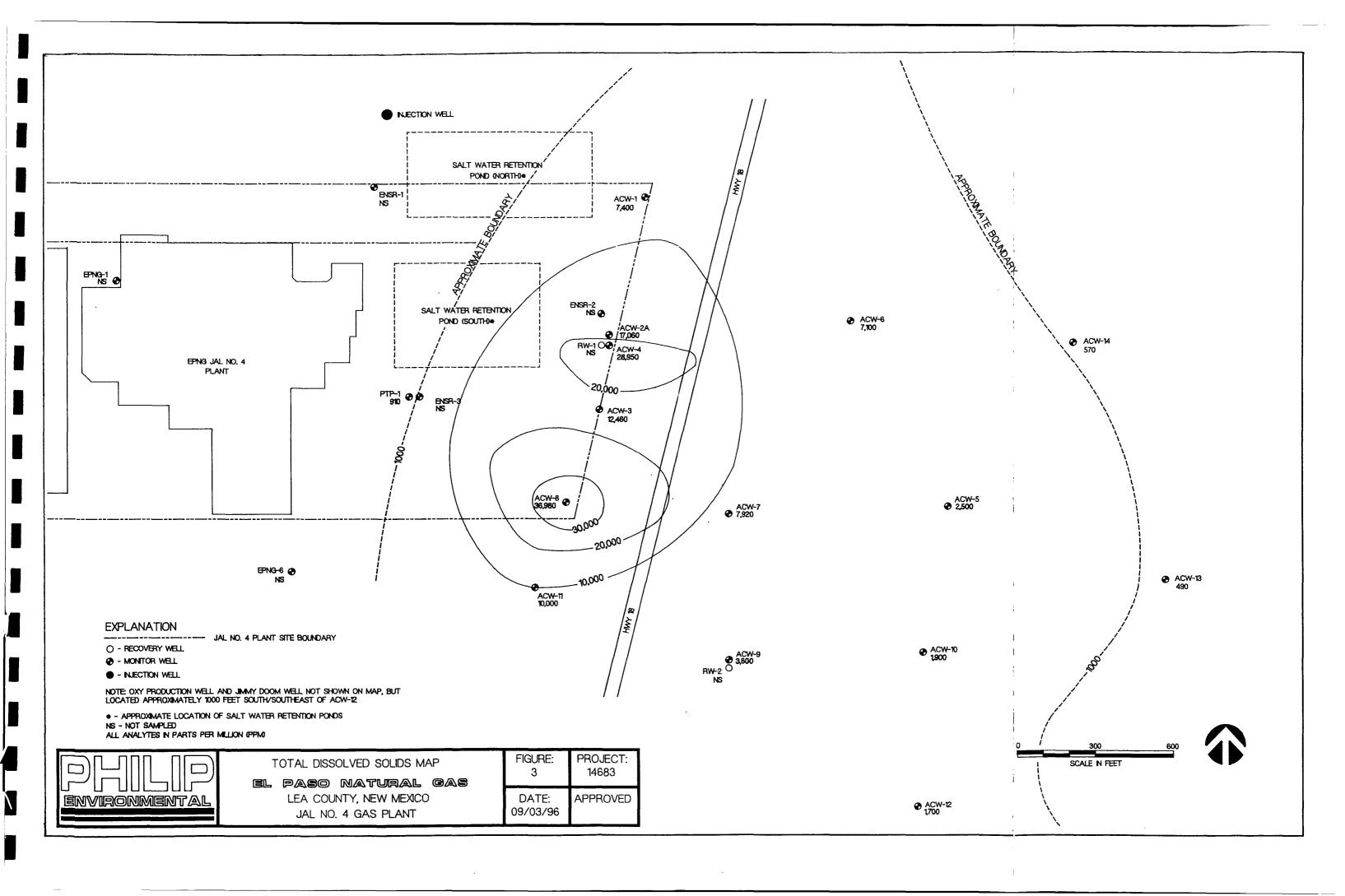
In an agreement between Mr. William Olsen, of the NMOCD and EPNG, the cleanup standards for the site is 1,000

ppm TDS. As of August 13, 1996, 15 of the 22 monitor/recovery wells (ACW-1, ACW-2A, ACW-3, ACW-4, ACW-5, ACW-6, ACW-7, ACW-8, ACW-9, ACW-10, ACW-11, ACW-12, RW-1, RW-2, and ENSR-2) exceed the cleanup limits (Figure 2). Several of the above mentioned monitor wells also have levels of iron, manganese, and sulfate that exceed the New Mexico State cleanup standards and can be remediated in concurrence with the TDS. The high levels of fluoride found in monitor wells ACW-1, ACW-6, ACW-13, ACW-14 and ACW-14 Duplicate are probably naturally occurring in the vicinity and do not warrant any cleanup.

5. PLUME DELINEATION

As of August 13, 1996, the delineation of the TDS plume boundary has not been completed to the north or south of the Jal No. 4 gas plant (Figure 3). furthest upgradient monitor well, ACW-1, is impacted with 7,400 ppm TDS, while the furthest downgradient monitor wells, ACW-11 and ACW-12, have a TDS of 10,000 and 1,700 ppm TDS respectively. With the installation of ACW-13 (490 ppm TDS) and ACW-14 (570 ppm TDS), the eastern extent of the plume has been identified. The western extent of the plume is defined by monitor well PTP-1 (910 ppm TDS). However, since data was not collected from monitor well ENSR-1 during this sampling event, a west to northwest boundary relative to ACW-1 has not been established.

6. WASTE DISPOSAL AND DISPOSITION


The soils generated during drilling activities were spread out adjacent to the monitor/recovery wells since no hydrocarbon impacts were found during this or previous investigations at the site.

The development water generated from the monitor/recovery wells was placed in the southern saltwater retention pond at the Christie Jal No. 4 gas plant.

7. MONITOR WELL REMOVAL

On July 2, 1996, two monitoring wells (one located at the Lea County Sheriff's Office and the second located on the sidewalk of the entrance to the former EPNG laboratory building located across A Street and south of the Sheriff's Office) were permanently removed from the ground. The surface concrete and monitoring well coverings were removed using pickaxes. After removal of the surface concrete, an attempt was made to overdrill the two 35 foot deep monitoring wells and extract the piping from the ground in one piece. However, due to the nature of the grout, approximately five (5) feet of the pipe was extracted from each of the two wells. The two wells were grouted to within a foot of the surface using a bentonite/grout slurry mix consisting of three parts grout and one part bentonite. Concrete was utilized to bring the extracted monitor wells up to surface grade.

I:\WORD\EPNG.JAL

CW-12 ACW-13 ACW-1 2200.00 720.00 88 1700.00 720.00 88 1700.00 720.00 88 1.20 490.00 57 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	STATE Conductance Conduc					TABL	TABLE 1 (continued)				
Sist NMTS ACW-12 ACW-13 ACW-14 ACW-1	SEA CONTINUES CONTINUES				9	ROUNDWATE	R ANALYTICAL	RESULTS			
Name	Conductance Cumbo Carbo Carbo					EPNG JAI	NO. 4 GAS PLA	TNI			
Sist UNITS ACW-12 ACW-14 (Mode) MCW-14 (Mode) M	Sisk					LEA COU	NTY, NEW MEXI	00			
Conductance (img/h) 2200.00 720.00 680.00 510.00	Conductance (umho) 2200.00 770.00 880.00 910.00 710.00 seoked Solids (ugf) 1700.00 490.00 570.00 560.00 590.00 510.00 seoked Solids (ugf) <1.0 <1.0 <1.0 <1.0 <1.0 resele (ugf) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 resele (ugf) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	ANALYSIS	UNITS	ACW-12	ACW-13		ACW-14 DIID		IlloM bord w	limmy Doom Well	New Mexico Water
seoNed Solds (ringh) (700 00 490 00 570 00 550 00 590 00 510 00 460 00 710 ee (ugh) < (-10	besolved Solids (mg/l) 1700,00 490,00 570,00 550,00 590,00 510,00 cere (ug/l) <1,0	Specific Conductance	(nmho)	2200.00		880.00	860.00	000	710.00	650 00	NA NA
Control Cont	Control Cont	Total Dissolved Solids	(mg/l)	1700.00	490.00	570.00	550.00	590.00	510.00	460.00	1000.00
(ugf) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 </td <td> Control Cont</td> <td>Benzene</td> <td>(l/gu))</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>0.1></td> <td>0.1></td> <td><1.0</td> <td><1.0</td> <td>10.00</td>	Control Cont	Benzene	(l/gu))	<1.0	<1.0	<1.0	0.1>	0.1>	<1.0	<1.0	10.00
Name (ugyl) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10	Comparison Com	Toluene	(l/gn)	<1.0	<1.0	1.20	<1.0	<1.0	<1.0	<1.0	750.00
(ugh) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 </td <td>(ug/l) <1,0 <1,0 6.90 <1,0 <</td> <td>Ethylbenzene</td> <td>(l/gu)</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td><1.0</td> <td>750.00</td>	(ug/l) <1,0 <1,0 6.90 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <	Ethylbenzene	(l/gu)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	750.00
(mg/l) <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10<	Image (mg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Xylenes	(l/gu)	<1.0	<1.0	06.9	<1.0	<1.0	<1.0	<1.0	620.00
Indig (Ingl) 0.051 1.40 1.30 0.12 0.08 1.40 Indig (Ingl) 0.051 1.70 2.06 0.91 1.20 1.10 Ingl 0.70 0.42 0.80 94.00 7.90 65.00 0.22 Ingl 0.70 0.42 0.80 94.00 7.90 65.00 0.22 Ingl 0.70 0.74 0.05 0.05 0.05 0.03 0.03 Ingl 0.70 0.70 0.05 0.05 0.01 0.03 0.04 Ingl 0.70 0.70 0.05 0.05 0.01 0.03 0.03 Ingl 0.70 0.70 0.05 0.05 0.01 0.03 0.04 Ingl 0.70 0.70 0.05 0.05 0.01 0.03 0.04 Ingl 0.70 0.70 0.05 0.05 0.01 0.03 0.04 Ingl 0.70 0.70	and Niltrite (mg/l) 0.051 1.40 1.30 1.30 0.12 0.88 and Niltrite (mg/l) 1.20 1.70 2.00 2.00 0.91 1.20 and Niltrite (mg/l) 0.70 0.72 0.88 0.57 0.41 0.66 and (mg/l) 140.00 97.00 96.00 94.00 79.00 85.00 and (mg/l) 40.03 0.064 0.12 0.05 60.03 85.00 and (mg/l) <-0.03 0.064 0.12 0.05 60.03 85.00 and (mg/l) <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 and (mg/l) <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 and (mg/l) <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 and (mg/l) <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 <-1.0 and (mg/l) <-1.0	Nitrate	(hgm)	<1.0	<1.0	<1.0	0,1>	<1.0	<1.0	<1.0	10.00
(mg/l) 120 170 200 0.91 120 110 (mg/l) (mg/l) 120 170 200 0.91 120 110 (mg/l) 1070 97.00 9.057 0.41 55.00 82.00 82.00 (mg/l) 620.00 57.00 110.00 100.00 66.00 85.00 82.00 82.00 (mg/l) 6.10 57.00 110.00 100.00 66.00 85.00 82.00 82.00 m (mg/l) 6.10 6.10 7.10	(mg/l)	Nitrate and Nitrite	(mg/l)	0.051	1.40	1,30	1.30	0.12	0.88	1.40	10.00
(mg/l) (ng/l) (ng/l)<	(mg/l)	Fluoride	(mg/l)	1.20	1.70	2.00	2.00	0.91	1.20	1.10	1,60
(mg/l) (140.00 97.00 96.00 94.00 79.00 55.00 82.00 (mg/l) 520.00 57.00 100.00 94.00 79.00 85.00 82.00 32.00 (mg/l) (mg/l) 0.16 0.058 0.052 0.053 0.033 0.044 (mg/l) (10 0.16 0.058 0.056 0.055 0.053 0.044 (mg/l) (10 (10 (10 0.13 (10 0.04 (mg/l) (10 (10 (10 (10 (10 0.05 0.04 (mg/l) (10 (10 (10 (10 (10 (10 (10 (10 (mg/l) (10 <	(mg/l) (40.00 97.00 96.00 94.00 79.00 55.00 (mg/l) 520.00 57.00 110.00 100.00 66.00 85.00 m (mg/l) <0.033 0.064 0.012 0.05 <0.033 <0.033 n (mg/l) <1.0 0.064 0.012 0.05 <0.011 <0.033 n (mg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 m (mg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 m (mg/l) <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0	Bromide	(mg/l)	0.70	0.42	0.88	0.57	0.41	09'0	0.29	AN
(mg/l)	th (mg/l) 520.00 57.00 110.00 100.00 66.00 85.00 m (mg/l) <0.033	Sulfate	(mg/l)	140.00	97.00	96.00	94.00	79.00	55.00	82.00	00.009
mm (mg/l) <0,033 0,064 0,12 0,05 <0,033 <0,033 <0,033 n (mg/l) <1,1 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 m (mg/l) <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <t< td=""><td>mm (mg/l) <0.033 0.064 0.12 0.05 <0.033 <0.033 mg/l (mg/l) 6.16 0.058 0.055 0.05 0.11 0.088 m (mg/l) <1.0</td> <1.0</t<>	mm (mg/l) <0.033 0.064 0.12 0.05 <0.033 <0.033 mg/l (mg/l) 6.16 0.058 0.055 0.05 0.11 0.088 m (mg/l) <1.0	Chloride	(hgm)	520.00	57.00	110.00	100.00	00.99	85.00	32.00	250.00
(mg/l) 0.16 0.058 0.056 0.11 0.088 0.04 n (mg/l) <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 m (mg/l) <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 m (mg/l) <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 m (mg/l) <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0	(mg/l)	Aluminum	(mg/l)	<0.033	0.064	0.12	0.05	<0.033	<0.033	<0.033	5.00
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td><1.0 <1.0 <1.0 <th< td=""><td>Barium</td><td>(mg/l)</td><td>0.16</td><td>0.058</td><td>0.055</td><td>90'0</td><td>0.11</td><td>0.088</td><td>0.04</td><td>1.00</td></th<></td></th<>	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>Barium</td><td>(mg/l)</td><td>0.16</td><td>0.058</td><td>0.055</td><td>90'0</td><td>0.11</td><td>0.088</td><td>0.04</td><td>1.00</td></th<>	Barium	(mg/l)	0.16	0.058	0.055	90'0	0.11	0.088	0.04	1.00
<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td><1.0 <1.0 <1.0 <th< td=""><td>Berylium</td><td>(l/gm)</td><td><1.0</td><td><1.0</td><td><1.0</td><td>o.h></td><td><1.0</td><td><1.0</td><td><1.0</td><td>NA</td></th<></td></th<>	<1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <1.0 <th< td=""><td>Berylium</td><td>(l/gm)</td><td><1.0</td><td><1.0</td><td><1.0</td><td>o.h></td><td><1.0</td><td><1.0</td><td><1.0</td><td>NA</td></th<>	Berylium	(l/gm)	<1.0	<1.0	<1.0	o.h>	<1.0	<1.0	<1.0	NA
170.00 44.00 36.00 32.00 47.00 58.00 44.00 <1.0	170.00	Cadmium	(l/gm)	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	<1.0	0.01
<1.0 0.005 <1.0 0.006 <1.0 <1.0 <1.0 <0.011	<1.0 0.005 <1.0 0.006 <1.0 <1.0 <0.011	Calcium	(mg/l)	170.00	44.00	36.00	32.00	47.00	58.00	44.00	NA
<-0.011 <-0.011 <-0.011 <-0.011 <-0.011 <-0.011 <-0.006	<0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.005 <0.005 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011<	Chromium	(mg/l)	0.1>	0.005	<1.0	900'0	<1.0	<1.0	<1.0	90.0
<0.006 0.012 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.006 <0.007 <0.012 <0.012 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.002 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 </td <td><0.006 0.012 <0.006 <0.006 <0.006 0.013 0.075 0.13 0.13 0.05 2.30 0.05 <0.022</td> <0.022	<0.006 0.012 <0.006 <0.006 <0.006 0.013 0.075 0.13 0.13 0.05 2.30 0.05 <0.022	Cobalt	(mg/l)	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	90.0
0.075 0.13 0.05 2.30 0.50 0.12 <0.022	0.075 0.13 0.13 0.05 2.30 0.50 <0.022	Copper	(l/gm)	>0.006	0.012	>0.006	>0.006	>0.006	0.13	<0.006	1.00
64.00 64.00 6.0022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.022 < 0.002 < 0.007 15.00 16.001	<0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.022 <0.023 <0.015 <0.015 <0.015 <0.015 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.012 <0.012 <0.012<	Iron	(mg/l)	0.075	0.13	0.13	0.05	2.30	0.50	0.12	1.00
64,00 15,00 16.00 16.00 24.00 17,00 15.00 15.00 0,095 0,015 0,009 0,007 0,015 0,011 0,001 0,001 0,014 0,011 0,016 0,015 0,011 0,011 0,011 0,014 0,011 0,016 0,015 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,014 0,014 0,027 0,017 0,01 0,01 0,01 0,01 0,01 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 0,011 130,00 82,00 110,00 98,00 91,00 57,00 66,00 0,018 0,037 0,037 0,006 0,045 0,054 0,02 0,049 0,012 0,054 0,054 0,02 0,049 0,054 0,	64,00 15,00 16,00 16,00 16,00 16,00 17,00 0,095 0,015 0,009 <0,007	Lead	(l/gm)	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	<0.022	90.0
0.095 0.015 0.009 <0.007 0.078 0.015 <0.007 0.014 <0.011	0.095 0.015 0.009 <0.007 0.078 0.015 0.014 <0.011	Magnesium	· (mg/l)	64.00	15.00	16.00	16.00	24.00	17.00	15.00	NA
0.014 <0.011 0.016 0.015 <0.011 <0.011 <0.011 <0.011	0.014 <0.011 0.016 0.015 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <td>Manganese</td> <td>(l/gm)</td> <td>0.095</td> <td>0.015</td> <td>600.0</td> <td><0.007</td> <td>0.078</td> <td>0.015</td> <td><0.007</td> <td>0.20</td>	Manganese	(l/gm)	0.095	0.015	600.0	<0.007	0.078	0.015	<0.007	0.20
<0.011 <0.011 <0.011 <0.011 <0.011 <0.011 0.57 0.17 0.40 0.16 0.23 0.22 0.14 13.00 8.00 18.00 20.00 5.50 4.40 4.10 <0.011	<0.011 <0.011 <0.011 <0.011 <0.011 <0.011 0.57 0.17 0.40 0.16 0.23 0.22 13.00 8.00 18.00 20.00 5.50 4.40 <0.011	Molybdenum	(mg/l)	0.014	<0.011	0.016	0.015	<0.011	<0.011	<0.011	1.00
0.57 0.17 0.40 0.16 0.23 0.22 0.14 13.00 8.00 18.00 20.00 5.50 4.40 4.10 <0.011	0.57 0.17 0.40 0.16 0.23 0.22 13.00 8.00 18.00 20.00 5.50 4.40 <0.011	Nickel	(l/gm)	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.20
13.00 8.00 18.00 20.00 5.50 4.40 4.10 <0.011	13.00 8.00 18.00 20.00 5.50 4.40 <0.011	Phosphorus	(l/gm)	0.57	0.17	0.40	0.16	0.23	0.22	0.14	NA
<0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 130.00 82.00 110.00 98.00 91.00 57.00 66.00 <0.066	<0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012 <0.012<	Potassium	(l/gm)	13.00	8.00	18.00	20.00	5.50	4.40	4.10	NA
130.00 82.00 110.00 98.00 91.00 57.00 66.00 <0.066	130.00 82.00 110.00 98.00 91.00 57.00 <0.066	Silver	(l/gm)	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	<0.011	0.05
<0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.065 <0.05 <0.05 <0.05 <0.05 <0.05 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054 <0.054	<0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.067 <0.067 <0.045 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075 <0.075<	Sodium	(l/gm)	130.00	82.00	110.00	98.00	91.00	57.00	00.99	NA
0.018 0.038 0.037 0.037 <0.006 0.045 0.05 0.02 0.049 0.018 0.024 0.05 0.12 0.054 690.00 170.00 160.00 150.00 210.00 210.00 170.00	0.018 0.038 0.037 0.037 <0.046 0.045 0.02 0.049 0.018 0.024 0.05 0.12 690.00 170.00 160.00 210.00 210.00 ENSR-2 and ENSR-3 not sampled. NA-Not Available. NS-Not Sampled.	Thallium	(l/gm)	<0.066	>0.066	<0.066	>0.066	<0.066	>0.066	990.0>	NA
0.02 0.049 0.018 0.024 0.05 0.12 0.054 690.00 170.00 160.00 150.00 210.00 210.00 170.00	0.02 0.049 0.018 0.024 0.05 0.12 690.00 170.00 160.00 150.00 210.00 210.00 ENSR-2 and ENSR-3 not sampled. NA-Not Available. NS-Not Sampled. NS-Not Sampled.	Vanadium	(mg/l)	0.018	0.038	0.037	0.037	<0.006	0.045	0.05	NA
690.00 170.00 160.00 150.00 210.00 210.00	690.00 170.00 160.00 150.00 210.00 210.00 ENSR-2 and ENSR-3 not sampled. NA-Not Available NS-Not Sampled	Zinc	(mg/l)	0.02	0.049	0.018	0.024	0.05	0.12	0.054	10.00
	ENSR-2, and ENSR-3, not sampled. NA-Not Available NS-Not Sampled	Hardness (as CaCO3)	(mg/l)	00.069	170.00	160.00	150.00	210.00	210.00	170.00	NA

IABLE 1	GROUNDWATER ANALYTICAL RESULTS	EPNG JAL NO. 4 GAS PLANT	LEA COUNTY, NEW MEXICO

ACW-1 ACW-2A ACW-3 ACW-4 ACW-4 ACW-4 ACW-4 ACW-4 ACW-1 ACW-4 ACW-1 ACW-4 ACW-1 ACW-1 <t< th=""><th>ANALYSIS</th><th>UNITS</th><th></th><th></th><th></th><th></th><th>MONITC</th><th>MONITOR WELL NUMBER</th><th>MBER</th><th></th><th></th><th></th><th></th></t<>	ANALYSIS	UNITS					MONITC	MONITOR WELL NUMBER	MBER				
Dissolved Solution 12000 252200 00 145200 00 14500 00 25200 00 14500 00			ACW-1	ACW-2A	ACW-3	ACW-4	ACW-5	ACW-6	ACW-7	ACW-8	ACW-9	ACW-10	ACW-11
Control Cont	Specific Conductance	(onmho)	12000.00	28230.00	19420.00	14600.00	3400.00	11000.00	12990.00	44500.00	4400.00	2400.00	12000.00
Each Carbon (ug/l) 3.50 NA <10 NA <10 NA 10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <10 <th< td=""><td>Total Dissolved Solids</td><td>(mg/l)</td><td>7400.00</td><td>17060.00</td><td>12460.00</td><td>28950.00</td><td>2500.00</td><td>7100.00</td><td>7920.00</td><td>36980.00</td><td>3600.00</td><td>1900.00</td><td>10000.00</td></th<>	Total Dissolved Solids	(mg/l)	7400.00	17060.00	12460.00	28950.00	2500.00	7100.00	7920.00	36980.00	3600.00	1900.00	10000.00
Cugn	Benzene	(l/gn)	3.50	NA	<1.0	AN	<1.0	4.20	NA	NA	1.40	<1.0	7.90
Rest (lug) <1,0 NA <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0 <1,0	Toluene	(ng/l)	1.20	NA	<1.0	AN	1.20	2.60	AN	AZ	1,60	<1.0	2.20
treatment (rings) 410 NA NA NA NA 610 410 NA NA 610 410 NA NA 610 410 NA 610 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Ethylbenzene	(l/gu)	<1.0	NA	<1.0	AN	<1.0	<2.0	NA	AZ	<1.0	<1.0	c1,0
the teach (iring))	Xylenes	(ng/l)	<1.0	NA	<3.0	AN	<1.0	<2.0	AN	AN	<1.0	<1.0	<1.0
te and Mirrite (mg/l) <10 NA NA 54 <10 NA NA 0.55 ddet (mg/l) 4.90 NA NA 1.00 1.40 NA 1.40 0.15 ddet (mg/l) 2.50 NA NA 1.00 1.50 NA NA 1.40 1.40 1.40 inde (mg/l) 2.70.00 9.60 NA 1.00 1.20 1.20 1.60 0.82 inde (mg/l) 2.70.00 9.60 7.00 1.60 3.90 1.60 1.60 1.60 0.82 ind (mg/l) 2.70.00 9.60 7.00 1.60 3.90 1.60 3.90 1.60 9.80 ind (mg/l) 2.70.00 3.00 1.60 3.00 1.60 3.00 1.60 9.80 9.80 ind (mg/l) 2.70 3.00 3.00 3.00 3.00 4.00 3.00 3.00 3.00	Nitrate	(mg/l)	<1.0	NA	NA	AN	<1.0	<1.0	AA	AN	<1.0	<1.0	<1.0
ride (mg/l) 450 NA NA 0 70 21 00 NA NA 140<	Nitrate and Nitrite	(mg/l)	<1.0	NA	NA	NA	5.40	<1.0	A'N	AN	0.13	0.58	0.18
title (mgf) 150 NA NA 100 180 NA NA 150 0 0 20 title (mgf) 270,00 NA NA 700,00 88,00 NA 180,00 160,00 <td>Fluoride</td> <td>(mg/l)</td> <td>4.90</td> <td>NA</td> <td>AN</td> <td>AN</td> <td>0.70</td> <td>21.00</td> <td>NA</td> <td>AN</td> <td>1.40</td> <td>1.40</td> <td>1.00</td>	Fluoride	(mg/l)	4.90	NA	AN	AN	0.70	21.00	NA	AN	1.40	1.40	1.00
title (mg/l) 3270 00 NA NA 710 00 88 00 NA NA 160 00 450 00	Bromide	(mg/l)	1.90	NA	NA	NA	1.00	1.80	NA	AN	1.20	0.82	2.00
inition (mg/l) 3500.00 9450.00 560.00 500.00 2990.00 14750.00 1200.00 560.00 460.00 14750.00 1200.00 660.00 460.00 <	Sulfate	(mg/l)	270.00	NA	AN	NA	710.00	88.00	NA	AN	180.00	160.00	230.00
Image Imag	Chloride	(mg/l)	3500.00	9450.00	7610.00	16920.00	200.00	2900.00	3990.00	14750.00	1200.00	560.00	4200.00
Imm (mg/l) <12 NA NA 0.03 0.64 NA NA 0.09 0.09 Illum (mg/l) <1,10 NA NA <1,0 <1,0 NA A 0.09 0.09 <1,0 NA A 0.09 0.09 <1,0 NA A 0.09 NA NA A A 0.00 NA A	Aluminum	(mg/l)	<0.033	NA	AN	NA	0.04	3.10	AN	AN	0.38	0.04	<0.033
Injury (mg/l) C10 NA NA NA C10 C10 NA NA C10 C10 NA NA C10	Barium	(mg/l)	0.27	NA	AN	NA	0.03	0.64	NA	AN	0.12	60.0	0.23
Integral Integral	Berylium	(mg/l)	<1.0	NA	NA	NA	<1.0	<1.0	AN	AN	<1.0	<1.0	<1.0
lum (mg/l) 110.00 NA NA 200.00 85.00 NA A 90.00 210.00 milum (mg/l) < < 1.0 NA NA 0.03 0.01 NA A 90.00 210.00 milum (mg/l) < < 1.0 NA NA NA NA A 90.01 A 90.01 NA A 90.01 A 10.00	Cadmium	(//gm)	<1.0	NA	NA	NA	<1.0	<1.0	NA	AN	<1.0	<1.0	<1.0
millim (mg/l) <1.0 NA NA 0.03 0.01 NA NA < 0.01 NA < 0.01 NA < 0.01 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0 < 1.0	Calcium	(mg/l)	110.00	NA	NA	NA	200.00	85.00	NA	AN	490.00	210.00	540.00
lift (mg/l) <0.011 NA NA < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011 < 0.011	Chromium	(mg/l)	<1.0	NA	AN	NA	0.03	10.01	NA	NA	10.01	<1.0	<1.0
Def (mg/l) 0.02 NA NA < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.006 < 0.001 < 0.001 < 0.001 <	Cobalt	(mg/l)	<0.011	NA	AN	NA	<0.011	<0.011	NA	AN	<0.011	<0.011	<0.011
(mg/l) 0.68 NA NA 0.02 4.50 NA NA 0.04 0.04 0.04 0.04 0.04 0.04 0.04 0.02 0.02 NA NA 0.02 0.02 NA NA 0.02 0.02 0.02 NA NA 0.02 <td>Copper</td> <td>(mg/l)</td> <td>0.02</td> <td>NA</td> <td>AN</td> <td>NA</td> <td>>0.006</td> <td><0.006</td> <td>NA</td> <td>AN</td> <td>>0.006</td> <td><0.006</td> <td>0.01</td>	Copper	(mg/l)	0.02	NA	AN	NA	>0.006	<0.006	NA	AN	>0.006	<0.006	0.01
Ling(I) < 0.0022 NA NA < 0.0022 < 0.0022 NA NA < 0.0022 < 0.0022 NA < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0022 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 < 0.0011 <th< td=""><td>Iron</td><td>(mg/l)</td><td>0.68</td><td>NA</td><td>AN</td><td>NA</td><td>0.02</td><td>4.50</td><td>NA</td><td>AN</td><td>99.0</td><td>0.14</td><td>0.28</td></th<>	Iron	(mg/l)	0.68	NA	AN	NA	0.02	4.50	NA	AN	99.0	0.14	0.28
nesium (mg/l) 100,00 NA NA 28,00 23.00 NA NA 71.00 71.00 ganese (mg/l) 0.08 NA A 40.007 0.13 NA NA 6.001 NA A 0.06 NA A 0.01 NA A 0.01 NA NA A 0.01 NA NA A 0.01 NA A 0.01 NA NA A	Lead	(mg/l)	<0.022	NA	AN	NA	<0.022	<0.022	NA	AN	<0.022	<0.022	<0.022
galese (mg/l) 0.08 NA NA < 0.007 0.13 NA NA 0.02 NA NA 0.01 0.01 NA NA 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01 0.01	Magnesium	(mg/l)	100.00	NA	NA	NA	28.00	23.00	NA	AN	160.00	71.00	190.00
bdenum (mg/l) <0.011 NA NA <0.011 0.05 NA NA <0.011 0.05 NA NA <0.011 0.05 NA <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011	Manganese	(mg/l)	0.08	NA	NA	NA	<0.007	0.13	NA	AN	0.65	0.02	90.0
ell (mg/l) <0.011 NA NA <0.011 0.02 NA NA <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.0	Molybdenum	(mg/l)	<0.011	NA	NA	AN	<0.011	90.0	AN	AN	<0.011	<0.011	<0.011
phorus (mg/l) 2.80 NA NA 0.42 1.20 NA NA 1.20 NA 1.00 0.50 sslum (mg/l) 8.60 NA NA 6.30 3.40 NA NA 13.00 7.00 r (mg/l) <0.011	Nickel	(mg/l)	<0.011	NA	NA	AN	<0.011	0.02	AN	AN	<0.011	<0.011	<0.011
ssium (mg/l) 8.60 NA NA 6.30 3.40 NA NA 7.00 7.00 r (mg/l) <0.011	Phosphorus	(mg/l)	2.80	NA	NA	NA	0.42	1.20	AN	AN	1.00	0.50	1.00
r (mg/l) <0.011 NA NA <0.011 <0.011 NA <0.011 NA <0.011 NA <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 <0.011 </td <td>Potassium</td> <td>(mg/l)</td> <td>8.60</td> <td>NA</td> <td>NA</td> <td>AN</td> <td>6.30</td> <td>3.40</td> <td>NA</td> <td>AN</td> <td>13.00</td> <td>7.00</td> <td>24.00</td>	Potassium	(mg/l)	8.60	NA	NA	AN	6.30	3.40	NA	AN	13.00	7.00	24.00
um (mg/l) 2400.00 NA NA 520.00 2900.00 NA NA 730.00 140.00 1	Silver	(mg/l)	<0.011	AN	AN	NA	<0.011	<0.011	NA	AN	<0.011	<0.011	<0.011
tum (mg/l) <0.066 NA NA <0.066 <0.066 NA NA <0.066 <0.066 NA NA <0.066 <0.066 NA NA <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.066 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01	Sodium	(mg/l)	2400.00	NA	NA	NA	520.00	2900.00	NA	AN	730.00	140.00	1700.00
Indign (mg/l) <0.006 NA NA 0.01 0.02 NA NA 0.01 0.02 NA 0.03 0.03 0.02 NA NA 0.03 0.03 0.03 0.03 0.04 NA 0.04 0.03 0.04	Thallium	(mg/l)	<0.066	NA	NA	NA	990.0>	>0.066	AN	AN	<0.066	<0.066	<0.066
(mg/l) 0.01 NA NA 0.03 0.03 NA NA 0.03 0.02 NA 0.03 0.03 0.04 0.04 ness (as CaCO3) (mg/l) 690.00 264.00 702.00 253.00 620.00 310.00 361.00 568.00 1900.00 810.00 tor/Recovery Wells RW-1, RW-2, ENSR-1, ENSR-2, and ENSR-3, not sampled. NA-Not Available NS-not Sampled NS-Not Sampled Above NM Water Quality Control Regulations	Vanadium	(mg/l)	<0.006	NA	NA	NA	0.01	0.02	AN	AN	0.01	0.03	0.01
702.00 253.00 620.00 310.00 361.00 568.00 1900.00 810.00 not sampled. NA-Not Available NS-Not Sampled Above NM Water Quality Control Regulations	Zinc	(l/gm)	0.01	NA	NA	NA	0.03	0.02	NA	AN	0.03	0.04	0.12
not sampled. NA-Not Available NS-Not Sampled	Hardness (as CaCO3)	(l/gm)	00.069	264.00	702.00	253.00	620.00	310.00	361.00	568.00	1900.00	810.00	2100.00
	Monitor/Recovery Wells RN	N-1, RW-2, ENS	SR-1, ENSR-2, 8	and ENSR-3, n		NA-Not Availa		ampled	1	Above NM Wat		ontrol Regulation	ins

8. CONCLUSIONS AND RECOMMENDATIONS

The groundwater at the Jal No. 4 gas plant has been impacted with high concentrations of **TDS** (including chlorides) from a former release from the on-site retention ponds. Fifteen of the 22 on-site monitor/recovery wells (ACW-1, ACW-2A, ACW-3, ACW-4, ACW-5, ACW-6, ACW-7, ACW-8, ACW-9, ACW-10, ACW-11, ACW-12, RW-1, RW-2, and ENSR-2) currently exceed the site cleanup standard of 1,000 ppm TDS. In addition, the following analytes are also above the New Mexico Water Quality Control Commission Regulations: 1) fluoride in monitor wells ACW-1, ACW-6, ACW-13, ACW-14; 2) sulfate in monitor well ACW-5; 3) iron in monitor well ACW-6; and 4) manganese in ACW-9.

As of August 13, 1996, the extent of the TDS plume to the north and south of the existing monitoring wells at the Jal No. 4 gas plant has not been identified. The furthest upgradient wells ACW-1 and ACW-6 (7,400 ppm and 7,100 ppm TDS, respectively) and the furthest downgradient wells ACW-11 and ACW-12 (10,000 ppm and 1,700 ppm TDS, respectively) currently exceed The plume boundary to the standard. east has been identified with the installation and sampling of monitor wells ACW-13 and ACW-14 (490 ppm and 570 ppm TDS respectively). Based on analysis from monitor well PTP-1 (910 ppm TDS), the western boundary of the plume has been delineated.

In order to complete the delineation of the TDS plume at the Jal No. 4 gas plant, Philip recommends the following:

- 1) installation of two monitoring wells to the north of ACW-1 and ACW-6;
- 2) installation of two monitor wells to the south of ACW-11 and ACW-12; and
- 3) sample and analyze monitor well ENSR-1 for TDS (the analysis will determine if the well is inside or outside the plume boundary).

In addition, Philip recommends performing a 24 hour pump test or a slug test on several of the on-site wells in order to determine the aquifer characteristics. This information will be beneficial in determining the placement and design of future recovery wells and remediation systems at the site.

APPENDIX A BORING/DRILLER'S LOGS

Page 1_of 5 Borehole No.ACW-12 Well No.ACW-12.

Project Na	me: <u>El Pa</u>	so Natural Ga	is Jai No. 4	Project No	. 14683		
Borehole L	ocation:	Christie Jal 1	No. 4	Logged By: <u>Jeffrey K</u>	indley		
Drilled By:	Scarbor	ough Drilling		Drilling/Rig Methods	: Water Rot	ary	
				Date/Time Completion	n(s): June 1	8. 1996 at	1600
Air Monito	oring Type	: Not Appl	icable		-		
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
_							
- - - 5				Tan/red fine grain sand		SP	
- - - 10							
- - -							
15 - - -				Tan/red fine grain sand intermixed with limestone fragments	15	SP	- - -
20 - - -							- -
- 25 -				Tan/red fine grain sand intermixed with	25	SP	- -
30 				sandstone		3 1	- - - -
-35							-
- - 40					40		
Comments.	·						

Geologist Signature _

Page 2_of 5 Borehole No.ACW-12 Well No.ACW-12.

					. 14683		
				Logged By: <u>leffrey K</u>			
				Drilling/Rig Methods			
				Date/Time Completio	n(s): <u>June 1</u>	8, 1996 at 1	600
Air Monito	ring Type	Not Appl	icable				
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
_				·			
-				Tan/red fine grain sand		SP	-
45 -					45		-
- -				Tan/red fine grain sand with sandstones		SP	
50 -					50		
- - 55							- -
-							•
- 60				Tan/red fine grain sand with limestone		SP	-
-				fragments			• • •
- -65 -		!					-
-							- -
70 - -	ļ }				70		•
-					:		
75 -				Tan/red fine grain sand intermixed with sandstone and limestone fragments		SP	 - -
-					80		-
80 Comments	:	<u> </u>	<u> </u>		L		
							

Geologist Signature

Page 3 of 5 Borehole No.ACW-12 Well No.ACW-12.

Borehole L Drilled By:	ocation: Scarbor	Christie Jal 1 ough Drilling	No. 4	Logged By: <u>leffrey K</u> Drilling/Rig Methods:	indley Water Rota	ury	
		: Not Appl		Date/Time Completion	n(s): June 1	5. 1990 at	1600
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
				Red sandstone fragments intermixed with fine grain silty sand	100	SS	-
				Red sandstone Fragments		SS	-
Comments	•						

Geologist Signature

Page <u>5 of 5</u> Borehole No.<u>ACW-12</u> Well No<u>ACW-12</u>.

Project Name	: El Paso Natural Ga	s Jal No. 4		o. <u>14683</u>		
			Logged By: Jeffrey	Kindley		
	Scarborough Drilling		Drilling/Rig Method			
			Date/Time Completi	on(s): June 1	8. 1996 at 160	0
Air Monitorii	ng Type; Not Appl	icable				
Depth (feet)	Sample Number Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS	Comments
- - - 165 - -				168		-
170			Red clay with high plasticity (Red Bed)	171	СН	- -
			Boring terminated at 171 feet			· ·
175 - -						- - -
- 180 -						- -
- - -185						· ·
-163						- - -
- 190 -						-
- - - 195						- - - -
173						- - -
- 200						
Comments:						
				· · · · · · · · · · · · · · · · · · ·		
			Geologist Signature	<u>Da</u>	Dan K	mills

Page 4_of 5 Borehole No.ACW-12 Well No.ACW-12

Borehole Location:		No. 4	Logged By: Jeffrey K	indley		
Drilled By: Scarbor			Drilling/Rig Methods Date/Time Completio			
Air Monitoring Type			Date: Time Completio	m(s). Julie I	0. 1990 at 10	
Depth (fect) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (fect)	USCS Symbol	Comments
- - - 125 - - - - 130 - - -						- - - - - - - - - - - - -
135 - - - - 140 - -			Red sandstone with fine grain sand	135	SS	 - - - - - - -
145			Tan/brown fine grain clayey sand intermixed with sandstone fragments	145	SC	 - - - - - - - - - - - - - - - - - -
Comments:						

Geologist Signature _

Page 2_of 5 Borehole No.ACW-13 Well No.ACW-13.

				Project No			
				Logged By: Jeffrey K			
				Drilling/Rig Methods			
Date/Time	Started: _	June 19, 1996	at 0900	Date/Time Completio	n(s): <u>June 2</u>	0. 1996 at	1600
Air Monito	ring Type	: Not Appl	icable				
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
455055606570				Tan/red fine grain sand with limestone fragments	70	SP	
- - - 75 -				Red fine grain sandstone intermixed with fine grain sand and limestone fragments	75	SP	-
- - 80				Tan fine grain sand intermixed with sandstone and limestone fragments		SS	-
Comments.							

Geologist Signature _

Page 3_of 5 Borehole No.<u>ACW-13</u> Well No<u>.ACW-13</u>

Drilled By Date/Time	: Scarbor Started:	ough Drilling	6 at 0900	Logged By: Jeffrey K Drilling/Rig Methods Date/Time Completio	: Water Rota	ary	
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
- - - 					85		- - - - - - -
- - - 95 - -				Red sandstone intermixed with fine grain sand		ss	- - - - - -
100 105 							- - - - - - -
-110 - - - - - -115							- - - - - -
- -120 Comments	:						-
				Geologist Signature	3.3		

Page 4 of 5 Borehole No.ACW-13 Well No.ACW-13.

Project Na	me: <u>El Pa</u>	so Natural Ga	s Jal No. 4	Project No	. 14683		
				Logged By: leffrey K			
Drilled By:	Scarbor	ough Drilling		Drilling/Rig Methods			
		: Not Appl		Date/Time Completio	ii(s). June Zi	0. 1990 at 100	V
All Mollic	ruig rype	. Not Appl	ICAUIC	I	1		
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
- - -							
125		[125		
-				Red sandstone intermixed with white/tan silty clay		ss	
130 							 - - -
135 			!	decreasing amount of sandstone			- - -
- 140 -				increasing amount of clay			: - :
- - 145							- - -
							- -
150 - - -							 - - -
155 							- -
- - 160							- -
Comments	:						
				Geologist Signature	CP	hin K	n llu

Page 5 of 5 Borehole No.ACW-13 Well No.ACW-13

			Project No			
			Logged By: Jeffrey k			
Drilled By: Scarbord			Drilling/Rig Methods Date/Time Completic			
Air Monitoring Type				11(3). <u>14110 2</u>	V. 122V AL 1V	
Depth (feet) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
-						
- - 165 -						- - - - -
- 170 - - - -			Tan/Red sandy silty clay Red clay with high plasticity (Red Bed)	170 172 175	CL CH	- - - - -
-175 - - - -			Boring terminated at 175 feet			 - - -
180 						- - - -
185 						 - -
190 - - -						- - -
- 195 - -						
- 200					1	•
Comments:						

Geologist Signature _

John Kindley

Page 1_of 5 Borehole No.ACW-14 Well No_ACW-14

Project Nai	me: <u>El Pa</u>	so Natural Ga	s Jal No. 4	Project No. <u>14683</u> Logged By: <u>leffrey Kindley</u>						
Borehole L	ocation:	Christie Jal N	lo. 4	Logged By: <u>Jeffrey K</u> Drilling/Rig Methods:	Mater Rota	arv	-			
Drined by:	Started:	June 24 1996	at 1930	Date/Time Completion	n(s): June 2:	5. 1996 at 170	0			
		: Not Appl								
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments			
- - - 5 -				Tan/red fine grain sand		SP				
10 - - - - - -15				Tan/red fine grain clayey sand	10	SP				
- - 20				Tan/red fine grain clayey sand intermixed with limestone fragments	20	SP	- - - - -			
- 25				Tan/red fine grain sand intermixed with limestone and gravel	25	SP	-			
- - 30				Tan/red fine grained sand intermixed with sandstone fragments	30	SP	- - -			
-35 -35 -				Tan fine grain clayey sand intermixed with limestone fragments		sc	-			
Comments	:									
				Geologist Signature	Coffe	n Km	Um			

Page 2_of 5 Borehole No.ACW-14 Well No.ACW-14.

Project Name: EL	Paso Natural G	as Jal No. 4	Project No.	o. 14683			
			Logged By: Jeffrey Kindley				
Drilled By: Scarb			Drilling/Rig Methods: Water Rotary				
			Date/Time Completion(s): June 25, 1996 at 1700				
Air Monitoring Ty	pe: Not App	licable					
Depth (feet) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS	Comments	
45 45 50 				55		- - - - - - - - - - -	
55 - - - 60 - -			Tan fine grain clayey sand intermixed with sandstone fragments	60	SC	 - - - - - - -	
65 - - - - 70 -			Tan fine grain sand intermixed with sandstone fragments		SP	 - - - - - - -	
75 			Red sandstone with some fine grain sand and limestone fragments	75	SS	- - - - - -	
Comments:							

Geologist Signature _

Page 3_of 5 Borehole No.ACW-14 Well No.ACW-14.

Project Na	Project Name: El Paso Natural Gas Jal No. 4 Project No. 14683										
Borehole L	ocation:	Christie Jal 1		Logged By: Jeffrey k							
		ough Drilling		Drilling/Rig Methods		агу					
				Date/Time Completion	on(s): June 2	5. 1996 at 1	700				
Air Monito	ring Type	: Not App	licable								
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS	Comments				
	0,2	•,			-0 -	· · · · · · ·					
				·							
- - -							-				
85 - - -	i		<u>.</u>				 - 				
- 90 -					90		- l - 				
- 95							-) 				
- - 100											
-				Red sandstone intermixed with fine grain		ss	- -				
105 				sandy clay							
- - 110				Clay decreases			-				
-											
115 - -							 - -				
- 120							- ! 				
Comments.											
				0.1.1.8	Call	————	- (f)				

Page 4_of 5 Borehole No.ACW-14 Well No.ACW-14.

				Project No. 14683						
Borehole L	ocation:	Christie Jal N		Logged By: leffrey K						
		ough Drilling		Drilling/Rig Methods						
				Date/Time Completio	n(s): <u>June_2</u>	5. 1996 at	1700			
Air Monito	ring Type	: Not Appl	icable							
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments			
125					130		- - - - - -			
130 135 				Tan medium grain sand intermixed with gravel and limestone		SP	 - - - - - - -			
140 145				Tan fine/medium grain sand intermixed with	140	SP	- - - -			
- - - -150				gravel, limestone and sandstone fragments	150		-			
- 155 - - -				Tan fine/medium grain clayey sand with some sandstone fragments		SC	- - - - -			
160										
Comments:										

Geologist Signature ___

Page 5 of 5 Borehole No.ACW-14 Well No.ACW-14.

Project Na	me: <u>El Pa</u>	so Natural Ga	is Jal No. 4	Project No. 14683				
		Christie Jal Nough Drilling		Logged By: <u>leffrey k</u> Drilling/Rig Methods	: Water Rot			
				Date/Time Completion				
		: Not Appl						
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments	
				Decreasing amount of clay and increasing amount of sandstone		SC	- - - - - - - - - - - - - - - - - - -	
				Tan fine to medium grain clayey sand with gravel Red clay of high plasticity (Red Bed) Boring terminated at 182 feet	179 181 182	SP CH		
200								
Comments	·							
						Marak kangga garang ang a		

Geologist Signature _

Page 1_of 5 Borehole No.RW-1 Well No.RW-1

				Project No			
				Logged By: <u>leffrey K</u> Drilling/Rig Methods			
		ough Drilling		Date/Time Completio			
		: Not Appl			··(o)· Carre	K1. 1227 N. 11V	V
	3 77				1		
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
ДO	Ϊ́Ž	SH	ν,		ದವರ	D'S	
-		<u> </u>		Calich gravel (Backfill)			-
-	ļ				2		-
_	•						•
5				To find well and madium and and]	011/	
-				Tan/red well sorted medium grain sand	[[sw	-
-							-
10					10		-
							-
-	ŀ			1	[]	1	
-	}		ı				-
15			i	Tan/red well sorted medium grain clayey sand intermixed with limestone fragments		sw	
-				inclinace with innestone fragments		3**	
-							•
20				}	20	_	
-					ŀ		•
-	{				1		-
- 25				m + 15		25	-
25 -				Tan/red fine grain clayey sand with limestone fragments	{	SP	-
-				· ·			-
-]]]		•
30					30		
-							
-				j			-
- 35							-
-55				Tan fine grain silty clayey sand	}	SP	
<u>-</u>							•
] _				1			-
40				<u> </u>	L		
Comments.	:						
							
					····		

Geologist Signature _

Page 2_of 5 Borehole No.RW-1 Well No.RW-1

Project Name: El Pa	iso Natural Ga	as Jal No. 4	Project No. 14683					
			Logged By: Jeffrey K					
			Drilling/Rig Methods: Water Rotary					
			Date/Time Completion(s): June 25, 1996 at 1700					
Air Monitoring Typ	e: Not Appl	licable		, ,				
Depth (feet) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments		
-45				42		- - - - - - - - -		
50 55 55 			Tan silty clayey sand with sandstone fragments	60	SC			
- - 65 - - - - -70			Red sandstone intermixed with silty clay and gravel		SS	- - - - - - - - -		
- 75 - - - - - -80						- - - - - - - - - - - -		
Comments:			Geologist Signature	L.S	lain it	inly		

Page 3 of 5 Borehole No.RW-1 Well No.RW-1

Project Name: El I	aso Natural G	as Jal No. 4	Project No. 14683					
Borehole Location:	Christie Jal I	Yo. 4	Logged By: Jeffrey Kindley					
Drilled By: Scarbo	rough Drilling		Drilling/Rig Methods	: Water Rot	агу			
			Date/Time Completion	n(s): June 2	3. 1996 at 17	700		
Air Monitoring Ty	pe: Not App	icable						
Depth (feet) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments		
				90		- - - - - - - - -		
95 100 			Tan/red medium grain well sorted sand with sandstone fragments		SP	- - - - - - - - - -		
			Red to Black hydrocarbon stain medium grain sand with sandstone fragments		SP	 		
Comments:								

Geologist Signature

offin Kindly

Page 4 of 5 Borehole No.RW-1 Well No.RW-1

Project Na	me: <u>El Pa</u>	so Natural Ga	s Jal No. 4	Project No.	o. <u>14683</u>		
				Logged By: Jeffrey k	Cindley		
Drilled By:	Scarbor	ough Drilling		Drilling/Rig Methods	: Water Rot	ary	4-00
				Date/Time Completion	on(s): June 2	3. 1996 at	1700
Air Monito	ring Type	: Not Appl	icable				
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
				·			
				Red to black hydrocarbon stained medium grain sand		SP	
- 160							-
Comments	·						

Geologist Signature

Page <u>5 of 5</u> Borehole No.<u>RW-1</u> Well No<u>RW-1</u>

Borehole L Drilled By Date/Time	ocation: : Scarbor Started:	Christie Jal Nough Drilling	No. 4	Logged By: Jeffrey Kindley Drilling/Rig Methods: Water Rotary Date/Time Completion(s): June 23, 1996 at 1700			
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments
				Brown/black silty sandy clay Red clay with high plasticity Boring terminated at 178 feet	170 177 178	CH	
Comments	·						
				Geologist Signature	Cn11	ausa K	milia

Page 1_of 5 Borehole No.RW-2 Well No.RW-2

Borehole L Drilled By: Date/Time	ocation: Scarbor Started:	Christie Jal Nough Drilling	No. 4	Logged By: Jeffrey Kindley Drilling/Rig Methods: Water Rotary Date/Time Completion(s): June 30, 1996 at 1700				
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments	
- - - 5 - -				Tan/red fine grain sand		SP	- - - - - - - - -	
10 - - - - 15 - - - - -				Tan/red fine grain sand with limestone fragments	20	SP	- - - - - - - -	
25 25 30 35 35				Tan/red fine grain clayey sand with limestone fragments	40	sc	- - - - - - - - - - - - - - - - - - -	
Comments:								

Geologist Signature

Joffry Kradby

Page 2 of 5 Borehole No.RW-2 Well No.RW-2

Project Nan	ne: <u>El P</u> a	so Natural Ga	s Jal No. 4	Project No. 14683				
			Vo. 4	Logged By: leffrey Kindley				
		ough Drilling		Drilling/Rig Methods: Water Rotary				
				Date/Time Completion(s): June 30, 1996 at 1700				
Air Monitor	ring Type	: Not Appl	icable					
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS	Comments	
-				· · · · · · · · · · · · · · · · · · ·				
45 - - - -				Tan clayey sand with limestone and sandstone fragments		SC		
50 - - - - - -	;			Tan clayey sand with sandstone	50	sc	Sandstone easily pulverized - by hand	
- - - 60				Clay lense at 60 feet			-	
- - - 65	!						-	
- - - 70	ا						-	
75							- - 	
- - 80						-	-	
Comments:								

Geologist Signature

Page 3 of 5 Borehole No.RW-2 Well No.RW-2

Borehole L	ocation:	Christie Jal N	No. 4	Project No. 14683 Logged By: Jeffrey Kindley Drilling/Rig Methods: Water Rotary				
		June 27, 1996 : Not Appl		Date/Time Completion(s): June 30, 1996 at 1700				
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments	
- - - 85 -					85		-	
90 - - - - 95				Tan/red fine grain clayey sand with sandstone fragments		SC	-	
- 100 - - - - - 105					105		-	
				Tan/red fine grain sandy clay with sandstone fragments		CL	- - - - - - - -	
115 - - - - 120							- - - - -	
Comments:								

Geologist Signature __

RECORD OF SUBSURFACE EXPLORATION

Page 4_of 5 Borehole No.RW-2 Well No_RW-2

Project Name: ELP	aso Natural Ga	is Jal No. 4	Project No. 14683							
			Logged By: Jeffrey Kindley							
Drilled By: Scarbo	rough Drilling		Drilling/Rig Methods	: Water Rot	агу					
			Date/Time Completion(s): June 30, 1996 at 1700							
Air Monitoring Typ	e: Not Appl	icable								
Depth (feet) Sample Number	Sample Interval	Sample Type	Sample Description	Depth Change (feet)	USCS Symbol	Comments				
						- - - - - -				
130 			Decreasing sandstone and increasing amount		CL	-				
- - - 140			of clay			- - - -				
- - - 145						- - - -				
- 150 -						- - - - -				
						- - - -				
160				160		-				
Comments:										

Geologist Signature _

RECORD OF SUBSURFACE EXPLORATION

Page 5_of 5 Borehole No.RW-2 Well No.RW-2

Borehole L	ocation:	so Natural Ga Christie Jal I ough Drilling	No. 4	Logged By: Jeffrey Kindley Drilling/Rig Methods: Water Rotary							
		ough Drilling June 27, 1990	5 at 0800	Date/Time Completion(s): June 30, 1996 at 1700							
Air Monito	ring Type	: Not Appl	licable		,						
Depth (feet)	Sample Number	Sample Interval	Sample Type	Sample Description	USCS Symbol	Comments					
-	0.2	S		·	Depth Change (feet)	î S					
- -				Red sandy clay with sandstone fragments		CL	· •				
165 					165		- -				
-				Red sandy clay with gravel		CL					
170 - -											
- - 175				Red clay with some gravel. Clay is of high	174	СН	- -				
-				Plasticity (Red Bed)	177						
- 180 -				Boring terminated at 177 feet							
-											
185 - -							 - -				
- 190											
							-				
195											
- - 200		ı									
Comments:			I	1							

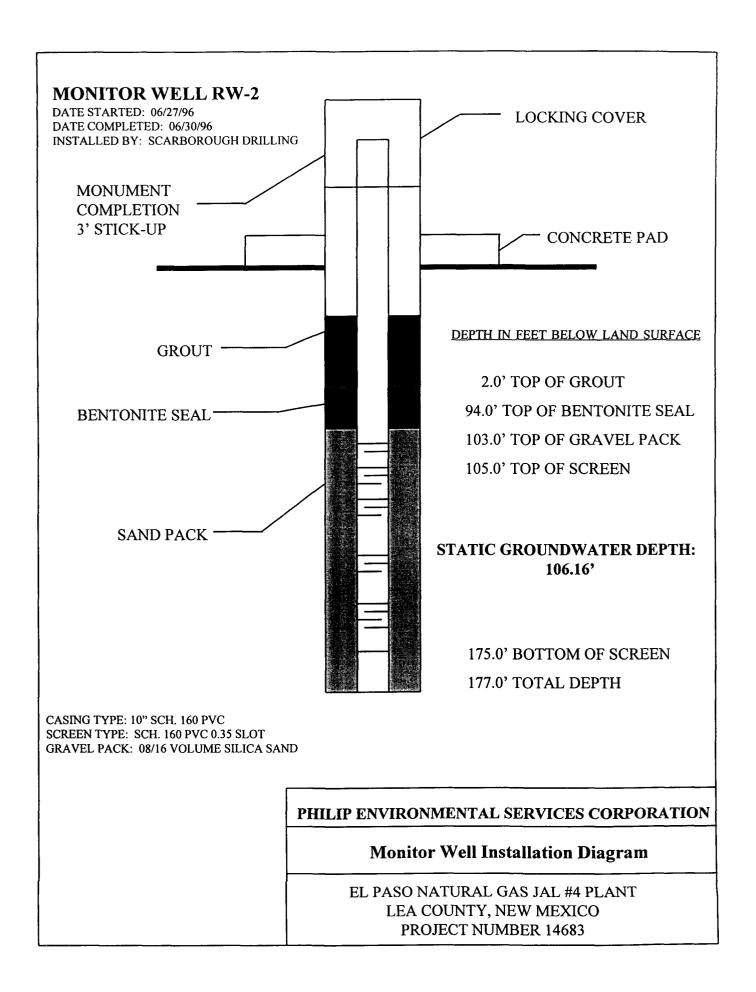
Geologist Signature Kindley

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

(A) Owner of	f well EL	Paso Natu	N Stant	<u>vo.</u>			Own			
Street or City and	Post Office Ad State	EL F	Paso, TX	79901						
Well was drilled	d under Permit	No			10	nd is locate	ed in the: Chris			
10 mi N of	F.Tal Now	Mexico c	n Highwa	v 18						
a	¼ ¼	· ¼	¼ of Se	ction	<u> </u>	Township	Ra	nge		N.M.P.M
b. Tract	No	of Map No			of the					
c. Lot N	0	of Block No	···		of the					
Subdi	vision, recorde	d ín	Lea		Cour	ity.				
d. X=		_ feet, Y=		fe	et, N.M.	Coordinat	e System			Zone in
										Grant.
(B) Drilling (Contractor	Scarborouc	n Drilli	ng, Ind	·	·	License No	WD-1188		
Address		122 N. 24t	h, Lames	a, TX	79331					
Drilling Regan	6-17-96	Com	nleted 6-	18-96	т,	one tools	rotary	Size of	hala	8 : <u>.</u>
Elevation of la	nd surface or _	- · · · · · · · · · · · · · · · · · · ·			at well is.		ft. Total dept	of well1	70	ft.
Completed wel	ilis Kansi	hallow 🔲 a	artesian.		Dep	th to wat	er upon completio	n of well	09.4	ſt.
		Sec	tion 2. PRIN	CIPAL W	ATER-BI	EARING S	STRATA			
Depth	in Feet	Thickness		Descriptio	n of Wat	er-Rearing	Formation		ated \	
From	To	in Feet	n Feet Description of Water-Bearing Formation					(gallons	pern	inute)
· · · · · · · · · · · · · · · · · · ·							·	<u> </u>		
										}
		<u> </u>						 		
	<u> </u>						· · · · · · · · · · · · · · · · · · ·	<u> </u>		
					ORD OF	CASING				
Diameter (inches)	Pounds per foot	Threads per in.	Depth Top	in Feet Botto	Length (feet)		Type of Sh	oe ├──	Perforation From	
4			+ 3	170		173			020	170
4	pvc		- 3	170		173		- 13	-	170
		 		<u> </u>						
	<u> </u>			<u> </u>						
		Secti	ion 4. RECO	RD OF M	UDDING	AND CE	MENTING			
. Depth From	in Feet To	Hole Diameter	Saci of M		Cubic of Ce		Meth	od of Placem	ent	
			4.5 of		0.00					
170	148	8	frac s	and			pumped			<u>-</u>
148	143	8	chip		ļ					
143 2	2	8	Ì		22 sx	cem/be	nt " <u>poüred</u>			
	·	<u> </u>								
					GGING I	RECORD				
Plugging Contr Address							Depth is	Feet	Cu	bic Feet
Plugging Metho	od bo					No.	Тор	Bottom		Cement
Date Well Plug Plugging appro	ged					$-\frac{1}{2}$	+			
I lugging appro		C E				$-\frac{2}{3}$				
 		State Enj	gineer Repres	entative		44_			<u></u>	
D-4- D			FOR USE	OF STA	TE ENGI	NEER OI	NLY			
Date Received		.,			Quad		FWL		_ FSL	
File No		•		Use			_ Location No			

******************************		······································	Section 6. LOG OF HOLE
	in Feet To	Thickness in Feet	Color and Type of Material Encountered
From 0	15	15	tan red fine grained sand
15	25	10	" w/limestone fragments
25	40	15	" w/sandstone
40	45	5	"
45	50	5	" w/sandstone
50	70	20	" w/limestone
70	80	10	" w/sandstone & limestone fragments
80	100	20	red sandstone frags w/fine grained silty sand
100	135	35	red sandstone fragments
135	145	10	red sandstone w/fine grained sand
145	168	23	tan/brn fine grained clayey sand w/sandstone frags
168	170	2	red clay (red bed)
			:
	1		


Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Lane Scarborough

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

(A) Owner o	of well	E1 F	Paso Natu	ral Ga	s Co.			Owner's Well N	to ACW-	-13
Street or	r Post Office A	ddress100_	N. Stant	on						
City and	State	E1_F	Paso, TX	79901						
					and	d is locat	ed in the: Ch	ristie Jal	No 4 F	Plant
10 mi N o	f Jal, NM	on Hwy 18	V of \$0	ation	т	المستطعين		Range		
а	¼ ,	4 ⁷⁴	% 01 36	ction	۱ ــــــــــــــــــــــــــــــــــــ	ownsnip		Kange		N.M.P.M.
h Tract	No	of Man No			of the					
o. maci	110	or map no.			o					
c. Lot N	ło	of Block No.			of the					
	ivision, recorde									
						•				
d. X= _		feet, Y=		fe	et, N.M. C	oordina	te System			Zone in
the		<u> </u>								Grant.
(B) Drilling	Contractor	Scarborou	igh Drill	ing, I	nc.		License	No. WD-118	3	
		122 N 2/	1th Tamos	יבי דיצי	70331					
Address		122 14. 2-	ton Danies	α, ιχ	- 7 7 3 3 1					
	6-19-96		6-2	0-96	~		*********	Size		ο.
Drilling Began	0-13-30	Com	pleted	0 30	гу	pe tools	rotary	Size	of hole _	<u>o</u> in.
Elamatica of la					at wall is		fr. Taral	depth of well_	173	
Elevation of la	ing surface of _				at well is_		II. 101a1	aepin of well	113	II,
Completed we		shallow 🗆 a	rtasian		Dan	th to we	er unon som	pletion of well .	99.5	71 6.
Completed we	31112 2	alallow — a	ii iesiaii.		Бер	iii io wa	ter upon com	pietion of well.		11.
		Sec	tion 2. PRIN	CIPAL W	ATER-RE	ARING	STRATA			
Denth	in Feet				TT DIT DE		011(111)	Е.		V:ald
		Thickness in Feet	1	Description (on of Wate	r-Bearing	Formation		stimated \ lons per n	
From	To				·····			- (642	0113 per 11	
		Ì						i		
	 	+								
		1	i							
	 									
	1									
	 	1								
								i		
L		1								
			Sectio	n 3. REC	ORD OF	CASING				
Diameter	Pounds	Threads	Depth	in Feet	I	Length	T		Perfor	ations
(inches)	per foot	per in.	Тор	Bottom (fee			Туре	of Shoe	То	
	+	 	_						153 · 02	0
4	bvc		+ 3	+ 3 173		176		1	153	173
	 	1								
	ł			1	1					
	1									
	}	1 1		}						
		Secti	on 4. RECO	RD OF M	IUDDING	AND C	EMENTING			
Depth	in Feet	Hole	Sact		Cubic			Method of Pla	cement	
From	То	Diameter	of M	ud	of Cer	nent				
173	151	8	4.5 of	8-16	}		numnad			
	<u> </u>	<u> </u>	frac sa	and			pumped			
151	146	8	100# be	entonit	j e		п			
			chips	5						
146	2	8	1		18 sx (cem/be	nt "			
2			1		concr	ete	poured			
			Section	on 5. PLU	JGGING R	ECORD				
Plugging Cont	ractor									
	lactor					- -	De	pth in Feet		bic Feet
	od					No	Top	Botton		Cement
	gged					- -	100	2000011		
Plugging appr					<u></u>	2				
						- 3				
		State Eng	gineer Repres	sentative		4				
										
			FOR USE	OF STA	TE ENGI	NEER O	NLY			
Date Received	1									
					Quad			FWL	FSI	
							_	_		
File No				Use _			Location	No		

Section 6, LOG OF HOLE

Section 6, LOG OF HOLE							
	in Feet	Thickness	Color and Type of Material Encountered				
From	То	in Feet					
0	10	10	red fine grained sand				
10	20	10	" w/limestone frags				
20	35	15	tan red fine grained sand w/limestone & sandstone frags				
35	70	35	"				
70	75	5	red fine grained sandstone w/some fg sand & limestone frags				
75	85	10	tan fg sand w/sandstone & limestone frags				
85	125	40	red sandstone fragments w/fg sand				
125	170	45	red sandstone w/white tan silty clay				
170	172	2	tan red sandy silty clay				
172	173	1	red/brn clay (red bed)				
			·				
		L	<u> </u>				

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Lane Scarborough

Driller

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

Street o	of well r Post Office Ad 1 State	Idress	100 N. St	anton				Ow	ner's Well No	ACW	-14	
10 mi N o	f Jal, NM o	on Hwy 18						d in the: Chri				
c. Lot l	No	of Block No	Lea		of the							
d. X= _		_ feet, Y=		fo	et, N.I	M. Cod	ordinate	System		-,	Zone in Grant.	
(B) Drilling	Contractor	Scarborou	ıgh Drill	ing, I	nc.			License No	WD-1188	3	·	
Address	· · · · · · · · · · · · · · · · · · ·	122 N. 24	th, Lame:	sa. TX	79.	331						
Drilling Began	_6-24-96	Com	pleted 6-2	25-96		_ Type	tools _	rotary	Size c	f hole_	8in.	
Elevation of la	and surface or _			:	at well	l is		ft. Total dep	th of well	177	ft.	
Completed we	ellis DXI sl	hallow 🗆 :	artesian.		ı	Depth	to wate	r upon completic	on of well	101	. 28 ft.	
		Sec	tion 2. PRIN	CIPAL W	ATER	-BEAI	RING S	TRATA				
Depth From	in Feet To	Thickness in Feet	' 1	Descriptio	on of V	Vater-E	Bearing	Formation		imated ns per	Yield minute)	
Pion	10						(8-1010) pol					
									1			
 			_						+			
	-		_									
L	<u></u>	<u> </u>							<u>.l</u>			
		,	Section	n 3. REC	ORD	OF CA	SING	γ				
Diameter (inches)	Pounds per foot	Threads per in.	Depth Top	in Feet Botte	m	Length m (feet)		Type of Si	hoe	Perforations From To		
4	pvc		+ 3	177		18	10		1	.57	.020 ₁₇₇	
				_								
L	٠		ion 4. RECOI	D 05 M		NC A	UD CEA	(ENTING			J	
Depti	in Feet	Hole	Sack	s	Cu	bic Fe	et		hod of Place	ment		
From 155	177	Diameter 8	6 sx of		of	Ceme	nt					
155	150	8	frac sa 100# ber	and				pumped "				
150	2	8	chips			2Y (**	m√ber					
130			1		1	rete	٠,	poured				
Plugging Cont	tractor			n S. PLU	GGIN	G REC	CORD					
Address						_	No.		n Feet	_ ~	ubic Feet	
	10d gged						1	Тор	Bottom		f Cement	
Plugging appr	oved by:						3					
***************************************		State En	gineer Repres	entative		W. C	4					
			FOR USE	OF STA	TE EN	GINE	ER ON	LY				
Date Received	đ				Quad			FWI		FS	L	

__ Use _____ Location No.___

File No.__

	Section 6. LOG OF HOLE					
Depth	in Feet	Thickness	Color and Type of Material Encountered			
From	То	in Feet				
0	10	10	lt red/brn fg sand			
10	15	5	" w/clay			
15	20	5	w/limestone fragments			
20	25	5	tan fg sand mixed w/limestone & gravel			
25	30	5	" w/sandstone frags			
30	55	25	tan fg clayey sand w/limestone frags			
55	60	5	" w/sandstone frags			
60	75	15	tan fg sand w/sandstone frags			
75	90	15	red sandstone w/some fg sand & limestone grags			
90	130	40	red sandstone w/fg sandy clay			
130	140	10	tan mg sand w/some gravel & limestone			
140	150	10	fg sand w/gravel, limestone & sandstone grags			
150	177	27	tan fine to medium grained clayey sand w/sandstone frags			
			,			
	<u> </u>					
	<u>L</u>	I				

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Lane Scarborough

INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

STATE ENGINEER OFFICE WELL RECORD

Section 1. GENERAL INFORMATION

Street or	f well Post Office Ac State	idressl	00 N. St	anton_			Own	er's Well No.	<u>RW-1</u>	
Well was drilled	d under Permit N of Jal,	No NM on Hwy	, 18		an	d is located	in the: Chris			
b. Tract	No	of Map No			of the					
	o vision, recorde									
		_ feet, Y=		fee			System			
(B) Drilling	Contractor	Scarborouc	h Drilli	ng, Inc	:		License No	WD-118	8	
Address	122 N. 24	th, Lamesa	TX 79	331						
Drilling Began	6-21-96	Com	pleted <u>6-</u>	23-96	Ту	pe tools	rotary	Size of I	hole	15in.
Elevation of la	nd surface or _			a	t well is_		ft. Total depth	of well	179	9ft.
Completed well	ilis 🖾 s	hallow 🗆 :	artesian.		Dep	th to water	upon completion	of well 10	6.16	ft.
		Sec	tion 2. PRIN	CIPAL W	ATER-BE	ARING ST	`RATA			
	in Feet	Thickness in Feet			•	r-Bearing F		Estim (gallons	ated Y	
From	То	in reet					(gailons	per m	inute	
								 		
					····			1		
L	<u> </u>]		<u>-</u> <u>-</u>
				n 3. RECO	ORD OF	CASING	·	· · · · · · · · · · · · · · · · · · ·		
Diameter (inches)	Pounds per foot	Threads per in.	Depth Top	in Feet Botto	Length (feet)		Type of Sh	oe 	Perfora om	tions To
10	pvc		+ 2	179	1	.81		109		³⁵ 179
L	·! ·	Sect	ion 4. RECO	RD OF M	UDDING	AND CEM	ENTING	1		
	in Feet	Hole Diameter	Sac of M	ks	Cubic of Ce	Feet		od of Placem	ent	
From 107	To 179	15	35 sx 8		01 CC1	ment		۵		
			frac sa				pumpe	<u> </u>		
102	107	15 15	chips			cem/ber	t. "			
102	ــــــــــــــــــــــــــــــــــــــ				conci		poure	d		
	ractor			on S. PLU	GGING F	ECORD	Y • • • • • • • • • • • • • • • • • • •		,	
	od:					No.	Depth is	Bottom		bic Feet Cement
Date Well Plug Plugging appro						- 1 2				
		State En	gineer Repres	sentative		- <u>3</u>			-	
		:	· · · · · · · · · · · · · · · · · · ·		TE ENC!	NEER ONI	v			
Date Received	l		FOR USE				FWL		EGI	
Ella Ma				Llee	Quad		Lanting No.			

			Section 6. LOG OF HOLE						
	in Feet To	Thickness in Feet	Color and Type of Material Encountered						
From 0	2	2	caliche/gravėl						
2	10	8	1t red/brn mediem grained sand						
10	20	10	" w/some clay & limestone frags						
20	30	10	1t red fg clayey sand w/limestone frags						
30	42	12	lt tan fg silty sand w/clay						
42	60	18	tan silty clayey sand w/sandstone frags						
60	90	30	lt red/brn sandstone w/silty clay & gravel						
90	105	15	red/brn mg sand w/some sandstone frags						
105	130	25	red to blk hydrocarbon stained mg sand w/sandstone frags						
130	170	40	п						
170	177	7	brn/black silty sandy clay						
177	179	2	red clay w/high plasticity						
		,							
		<u> </u>							
	<u> </u>								

Section 7. REMARKS AND ADDITIONAL INFORMATION

The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.

Lane Scarborough

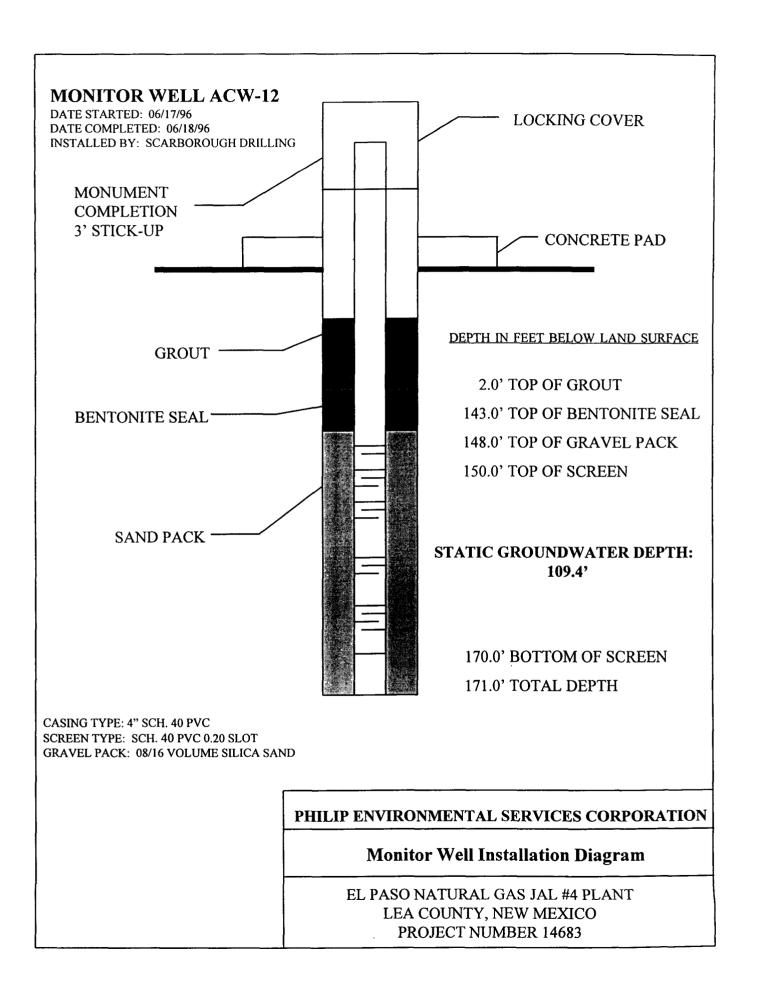
INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

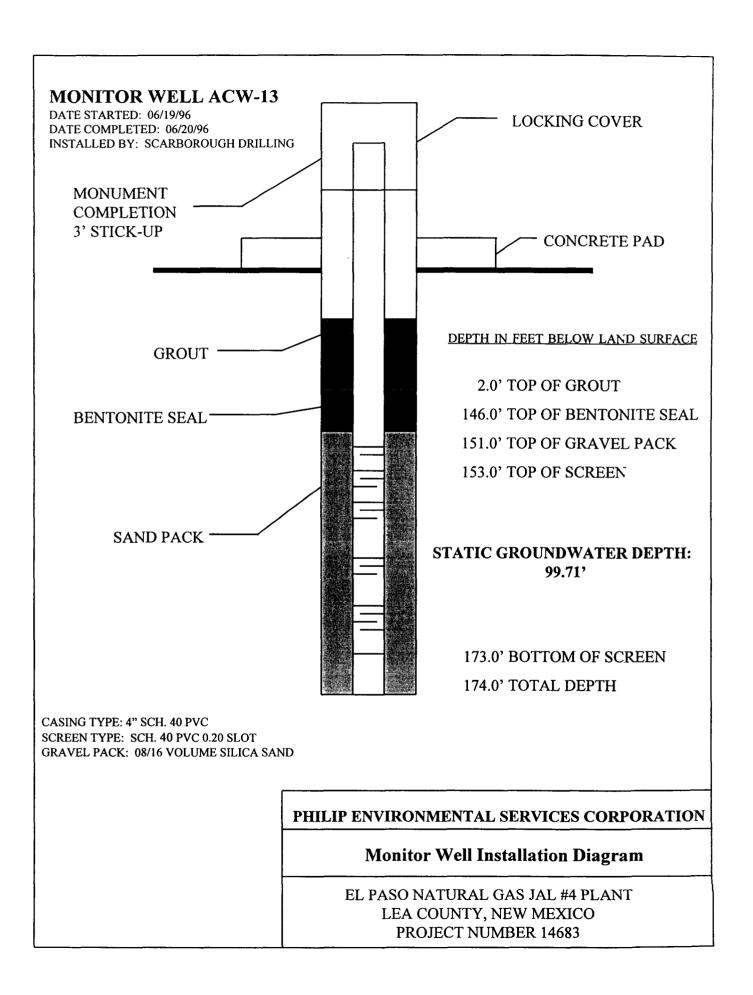
STATE ENGINEER OFFICE WELL RECORD

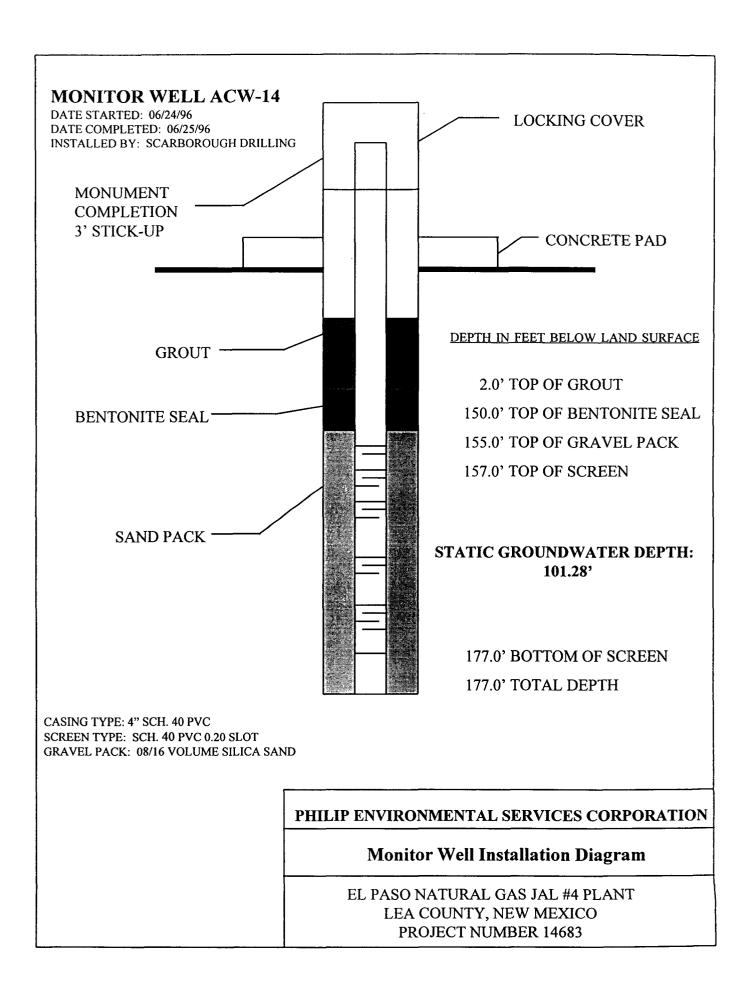
Section 1. GENERAL INFORMATION

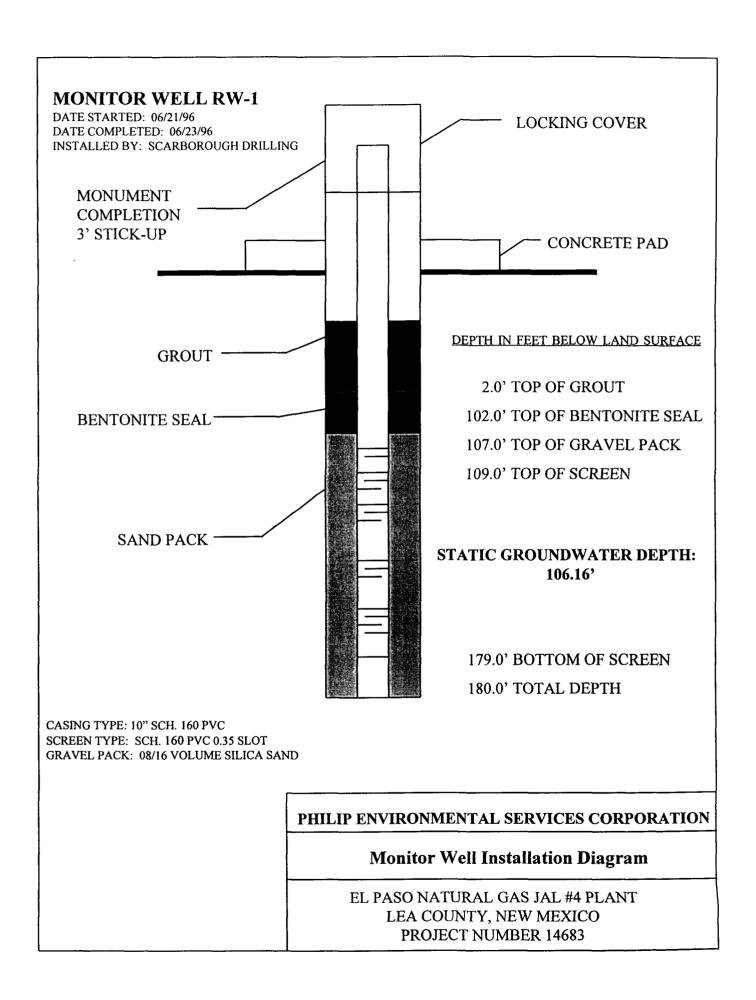
	f well Post Office Ac State	ddress	aso Natur N. Stanto aso, TX	211			Own	ier's Well 1	No. RW-	-2
Well was drilled 10 mi N of	d under Permit Jal, NM (No					ed in the Christ			
							R			
c. Lot N		of Block No			of the_					
d. X= the		_ fcet, Y=		fe	et, N.M	. Coordinat	e System			Zone in Grant.
(B) Drilling (Contractor	Scarbor	ough Dril	lling,	Inc.		License No	WD-118	18	
							rotary			
							ft. Total dept			
Completed wel	lis (X) s	hallow 🔲 a	artesian.		D	epth to wat	er upon completio	n of well _	_106.	16 ft.
	in Feet	Sec Thickness in Feet	tion 2. PRIN		-		STRATA Formation		stimated	
From	То	III Feet						(gar	ions per	minute)
								ļ		
		:						ļ		
	l	1	Sectio	n 3. REC	ORD O	F CASING				
Diameter (inches)	Pounds per foot	Threads per in.	Depth Top	Depth in Feet Top Bottom		Length (feet)	Type of Sh	0e	From	orations To
10	pvc		+ 3	175	-	178			105	.035 175
. Depth	in Feet	Secti Hole	on 4. RECO		Cub	ic Feet		od of Pla		
From 103	To 175	Diameter 15	37 sx 8	3–16	of C	Cement				
94	103	15	frac sa 300# be	ntonit	æ		pumped "	 _		
2 2	94 0	15				cem/be	ntonite " poured			
Plugging Contr	ractor				IGGING	RECORD	·			
Address	 					No.	Depth i			Cubic Feet of Cement
Plugging Metho Date Well Plug							Тор	Botton		
Plugging appro	oved by:	State Ca	gincer Repres	antativa		3				
		State En	Purcer Vebres			4				
Date Received			FOR USE	OF STA		CINEER O	NLY FWL		F:	SL
File No				Use _			Location No			

	Section 6. LOG OF HOLE						
Depth	in Feet	Thickness	Color and Type of Material Encountered				
From	10	in Feet					
0	10	10	red/brn fg sand				
10	20	10	" w/limestone frags				
20	40	20	tan/red fg clayey sand w/limestone frags				
40	50	10	tan clayey sand w/limestone & sandstone frags				
50	85	35	" w/sandstone				
85	105	20	tan to red fg clayey sand w/sandstone frags				
105	160	55	tan to red fg sandy clay w/sandstone frags				
160	165	5	red clay w/some sand & sandstone frags				
165	170	5	red sandy clay w/gravel				
170	175	5	red clay (redbed) w/gravel				
		<u> </u>					


Section 7. REMARKS AND ADDITIONAL INFORMATION


The undersigned hereby certifies that, to the best of his knowledge and belief, the foregoing is a true and correct record of the above described hole.


Lane Scarborough


INSTRUCTIONS: This form should be executed in triplicate, preferably typewritten, and submitted to the appropriate district office of the State Engineer. All sections, except Section 5, shall be answered as completely and accurately as possible when any well is drilled, repaired or deepened. When this form is used as a plugging record, only Section 1(a) and Section 5 need be completed.

APPENDIX B MONITOR WELL COMPLETION

APPENDIX C SITE PHOTOGRAPHS

Project No.: 14683

Drilling of ACW-12

Installation of 4" piping in ACW-12

Project No.: 14683

Drilling of ACW-13

Installation of 4" piping in ACW-13

Project No.: 14683

Drilling of ACW-14

Installation of 4" piping in ACW-14

Project No.: 14683

Drilling of RW-1

Installation of piping for RW-1

Project No.: 14683

Development of RW-1 with Grundfos Pump

Development water from RW-1 pumped to southern brine pit

Project No.: 14683

Drilling of RW-2

Installation of piping for RW-2

Project No.: 14683

Development of RW-2 with a Grundfos pump

21,000 gallon frac tank used to store RW-2 development water

Project No.: 14683

Monitor Well located on Christie Gas property to south of Sheriff's Department

Removal of monitor well on Christie Property

Project No.: 14683

Completed removal of monitor well on Christie Gas property

Removal of monitor well in parking lot of Sheriff's Department property

Project No.: 14683

Completed removal of monitor well on Sheriff's Department propety

Completed monitor well ACW-12

Project No.: 14683

Completed monitor well ACW-13

Completed monitoring well ACW-14

Project No.: 14683

Recovery well RW-1 to be completed after installation of remediation system

Completed recovery well RW-2

APPENDIX D LABORATORY ANALYTICAL

5555 North Service Road Burlington, Ontario, Canada L7L 5H7

Tol: (905) 332-8788 Fax: (905) 332-9169

Certificate of Analysis

CLIENT INFORMATION

LABORATORY INFORMATION

Attention:

Darrell Campbell

Contact:

Ada Blythe, B.Sc., C Chem.

Client Name:

El Paso Natural Gas Company

Project:

AN960104

Project:

Date Received:

96/08/17

Project Desc:

Date Reported:

96/08/30

Address:

8645 Railroad Drive

Submission No.:

6110446

El Paso, TX 79904

Sample No.:

032000-032020

Fax Number:

915-759-2335

Phone Number: 915-759-2228

NOTES:

'-' = not analysed '<' = less than Method Detection Limit (MDI.) 'NA' = no data available

LOQ can by determined for all analytes by multiplying the appropriate MDL X 3.33

Solids data is based on dry weight except for bioto analyses.

Organic analyzes are not corrected for extraction recovery standards except for isotope

dilution methods, (i.e. CARB 429 PAH, all PCDD/F and DBD/DBF analyses)

Methods used by Zenon are based upon those found in Standard Methods for the Examination of Water and Wastewater', Seventeenth Edition. Other methods are based on the principles of MISA or EPA methodologies.

All work recorded herein has been done in accordance with normal professional standards using accepted testing methodologies, quality assurance and quality control procedures except where otherwise agreed to by the client and testing company in writing. Any and all use of these test results shall be limited to the actual cost of the pertinent analysis done. There is no other warranty expressed or implied. Your samples will be retained at Zenon for a period of three weeks from receipt of data or as per contract.

COMMENTS:

"*" = Suspect chloride interference on silver recovery

Please note that for sample 032008 96 no vials were received, therefore the sample was taken from a plastic bottle with headspace.

Certified by:

Page 1

Flow Map

Acw 5, I TUC

1 - 110-130 3,300.87

5 - 105-15 3,254.75

6 - 110-120 3,300.53

9 - 140-160 3,302.47

1 - 11 3 299.33

OTHIR

Acw - 24 - 98 - 118 - 3,300.88 11 - 3 - 112 - 132 - 3,300.34 11 - 4 - 154 - 169 - 3,299.48 11 - 7 - 105 - 115 - 3,295.36

11 -8 140-173 3,297.27 (NSR-1 123-148 3,305.40

Sall the state of the said

RNSR-1 123-148 3,301,60
11 -2 123-148 3,303,80

PT7-1 10-130 3,304,44

SAMPLE KEY

SAMPLE NUMBER: S96-0320 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: FIELD BLANK

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 07:45 SAMPLE DATE: 08/13/96

SAMPLE KEY

SAMPLE NUMBER: S96-0321 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #6

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 09:35 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0322 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #25 14

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:23 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0323 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #25 DUPLICATE

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:23 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0324 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: EMP #3 MIDDLE OF PURGING WELLS

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:50 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0325 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: BAILER BLANK MIDDLE OF SAMPLING

S D CONTINUED:

S D CONTINUED:

SAMPLE TIME: 14:15 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0326 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #9

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:55 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0327 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #10

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 17:20 SAMPLE DATE: 08/14/96

SAMPLE KEY

SAMPLE NUMBER: S96-0328 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: PRODUCTION WELL #1

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 09:52 SAMPLE DATE: 08/15/96

SAMPLE KEY

SAMPLE NUMBER: S96-0329 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #12

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:04 SAMPLE DATE: 08/15/96

BAMPLE KEY

SAMPLE NUMBER: S96-0330 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: OXY PRODUCTION WELL

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:40 SAMPLE DATE: 08/15/96

SAMPLE KEY

SAMPLE NUMBER: S96-0376 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: JIMMY DOOM PRODUCTION WELL

S D CONTINUED:

S D CONTINUED:

SAMPLE TIME: 14:25 SAMPLE DATE: 08/15/96

96/2/6

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0321 032007 96 96/08/14	S96-0322 032008 96 96/08/14	S96-0323 032009 96 96/08/14	\$96-0325 032010 96 96/08/14	S96-0324 032011 96 96/08/14	S96-0326 032012 96 96/08/14	\$96-0327 032013 96 96/08 14
Renzene	1.0	ne/L	4.2	V	V	~	v	7.1	V
Tolinere	0.1) <u>=</u>	2.6	1.2	v	v	1.9	1.6	v
FityDenzene	1.0	£	2.0	v	v	v	v	V	v
m&n-Xvlene	1.0	£	<2.0	5.5	v	v	1.2	V	٧
o-Xviene	1.0	£	0.7	1.4	v	v	v	V	v
Surrogate Recovenes		%						;	(
d4.1 2-Dichlomethane			92	76	94	75	102	95	66
48-Tolishe			88	87	91	92	87	86	06
Bromofluorobenzene			96	z	66	86	93	86	001

Zenon Environmental Laboratories - Certificate of Analysis

96/5/6

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	S96-0328 032014 96 96/08/15	S96-0329 032015 96 96/08/15	S96-0329 032015 96 96/08/15 M. Spike	S96-0329 032015 96 96/08/15 MS % Rec.	S96-0329 032015 96 96:08/15 MS Dup	\$96-0329 032015 96 96/08/15 MSD % Rec.	\$96-0330 032016-96 96:08:15
Benzene	1.0	ug/L	v	V	75	110	54	110	v
Tolumb	1.0	. =	٧	v	53	110	5.4	110	v
Fibeliene	1.0	c	v	٧	54	110	55	110	v
m&p-Xylene	1.0	t	v	٧	110	110	100	100	V
o-Xylene	0.1	•	v	v	53	110	55	110	v
Surrogate Recoveries		%							
d4-1 2-Dichloroethane			93	\$	101	101	<u>3</u>	104	66
d8-Toluene			89	92	98	9.5	001	100	88
Bromofluorobenzene			101	102	86	86	101	101	104

Zenon Environmental Laboratories - Certificate of Analysis

96/2/6

	Client D:		S96-0376			896-0379
	Zenon D.		032017,96		032019 96	032020 96
	Date Sampled:		96/08/15	96/08/15		96/08/15
Component	MDL	Units				
Renzene	1.0	ug/L	v	V	v	1.0
Tolnene	1.0	. =	v	v	2.0	1.5
Fith-thenzene	0.1	t	v	v	v	v
m&n-Xvlene	1.0	e	v	v	v	1.3
o-Xytene	1.0	£	v	v	v	v
Surrogate Recoveries		%				
d4.1 2-Dichlomethane			 	%	86	8
d8-Tolyene			601	98	92	91
Bromofluorobenzene			85	95	107	83

SAMPLE NUMBER: S96-0377 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #13

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 17:21 SAMPLE DATE: 08/15/96

SAMPLE KEY

SAMPLE NUMBER: S96-0378 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: BAILER BLANK AFTER SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 17:52 SAMPLE DATE: 08/15/96

SAMPLE KEY

SAMPLE NUMBER: S96-0379 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: EMP #3 AFTER PURGING WELLS

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 18:00 SAMPLE DATE: 08/15/96

SAMPLE KEY

SAMPLE NUMBER: S96-0381 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #1

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:45 SAMPLE DATE: 08/13/96

SAMPLE KEY

SAMPLE NUMBER: S96-0382 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: BAILER BLANK BEFORE SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 07:50 SAMPLE DATE: 08/13/96

SAMPLE KEY

SAMPLE NUMBER: S96-0383 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #11

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:55 SAMPLE DATE: 08/13/96

SAMPLE NUMBER: S96-0384 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: EMP #3 BEFORE PURGING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 08:00 SAMPLE DATE: 08/13/96

SAMPLE KEY

SAMPLE NUMBER: S96-0385 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #5

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 17:30 SAMPLE DATE: 08/13/96

96/2/6

			Method						
	Client ID:		Blank	S96-0320	S96-0381		896-0383	896-0384	S96-0385
	Zenon ID:		032000 96	03200196	03200296	032003 96	03200496	032005 96	032006 96
	Date Sampled:		96/08/13	96/08/13	96/08/13		96/08/13	96/08/13	96/08/13
Component	MDL	Units							
Benzene	1.0	ng/L	v	v	3.5	v	6.7	1.3	v
Tolucine	1.0	, T	¥	v	1.2	v	2.2	1.9	1.2
Ethylbenzene	1.0	E	v	v	v	V	v	~	V
m&p-Xylene	1.0	•	٧	v	v	v	1.0	V	V
o-Xylene	0.1	£	v	v	v	v	v	V	v
Surrogate Recoveries		%							
d4-1.2-Dichloroethane			95	24	93	76	\$	92	93
d8-Toluene			91	93	16	93	92	8	91
Bromofluorobenzene			\$	101	94	101	98	66	64

Component	Client [D: Zenon [D: Date Sampled: MDL	Units	Method Blank 032000 96 96/08/13	Blank Spike 032000 96 96/08/13	Blank Spike 032000 96 96/08/13 % Recovery
,	1.72.	J			***************************************
pH (20 DEG C)			-	-	-
Phenolphthalem Alkalimity (as CaCO3)	1.0	mg∕l.	<	-	•
Alkalinity (as CaCO3)	1.0	•	<	~	-
Conductivity	4.2	uS/cm	<	-	
TDS (180 °C)	11	mg/ĺ.	<	•	-
Nitrite (us N)	0.050	mg/L	<	~	-
Nitrate and Nitrite (as N)	0.0500	*	<	-	-
Fluoride (probe)	0.03	mg∕l.	0.03	-	-
Bromide	0.010	mg/L	<	_	•
Sulphate (as SO4)	0.10		<	-	_
Chloride	0.50	*	<	-	•
Aluminum	0.030	mg/l,	<0.033	2.2	100
Harium	0.001	111g/ C	<	1,1	100
Beryllium	0.001	*	<	0.55	100
Cadmium	0.002		<	0.55	99
Calcium	0.20	-	< 0.22	11	100
Chromium	0.004	•	. <	1.1	100
Cobalt	0.010	đ	<0.011	1.2	110
Соррег	0.005	**	<0.006	1.1	100
Iron	010.0	•	<0.011	14	110
Lead	0.020	•	<0.022	1.1	110
Magnesium	0.050		<0.055	12	99
Manganese	0.006	•	<0.007	1.1	100
Molybdonum	0.010	•	<0.011	0.55	100
Nickel	0.010		<0.011	0.58	110
Phosphorus	0.060	•	0.075	5.7	110
Potassium	1,000	*	<1.1	11	100
Silver	0.010	-	<0.011	0.57	100
Sodium	0.100		<0.11	11	100
Thallium	0.060	-	<0.066	1.1	100
Vanadium	0.005	-	<0.006	0.57	100
Zinc	0.005	•	<0.006	2.2	100
Hardness (as CaCO3)	1.0	-	-	-	-

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0320 032001 96 96/08/13	\$96-0320 032001 96 96/08/13 Duplicate	S96-0320 032001 96 96/08/13 M Spike	896-0320 032001-96 96/08/13 MS % Rec
ρΗ (20 DEG C)			5.41	5.42	-	_
Phenolphthalem Alkalimity (as CaCO3)	1.0	mg/L	<	<	•	-
Alkalinity (as CaCO3)	1.0		<	<	99	99
, machine (m. s.ms)	•					
Conductivity	4.2	uS/cm	<	•	•	-
TDS (180 °C)	11	mg/L	<	<	-	-
Nitrite (as N)	0.050	mg/L	<	<	0.44	110
Nitrate and Nitrite (as N)	0.0500	"	<	<	2.0	100
(Milate Mari France (2.17)	0.0000					
Fluoride (probe)	0.03	mg/L	0.03	0.03	0.56	110
Bromide	0.010	a ft	<	<	5.1	100
Sulphate (as SO4)	0.10	mg/L "	0.38	0.29	47	94
Chloride	0.50	•	<	-	-	
Chloride	0.50		•			
Aluminum	0.030	mg/L	<0.033	-	-	-
Barium	0.001	•	0.004	-	-	-
Beryllium	0.001	•	<	-	-	-
Cadmium	0.002	•	<	-	-	-
Calcium	0.20	19	0.33	-	-	-
Chromium	0.004	•	<	-	-	-
Cobalt	0.010	•	<0.011	-	-	•
Copper	0.005	•	<0.006	•	-	•
Iron	0.010	w	< 0.011	-	•	-
Lead	0.020	•	<0.022	•	-	-
Magnesiun	0.050	•	0.11	-	-	-
Manganese	0.006	•	<0.007	-	-	•
Molybdenum	0.010	•	<0.011	-	-	-
Nickel	0.010	•	<0.011	-	-	-
Phosphorus	0.060		0.20	-	•	-
Potassium	1.000	•	<1.1	-	-	-
Silver	0.010	•	<0.011	-	-	•
Sodium	0.100		0.30	•	•	-
Thallium	0.060	'n	<0.066	-	-	-
Vanadium	0.005		<0.006	•	•	-
Zinc	0.005		<0.006	-	-	-
Hardness (as CuCO3)	1.0	•	1.3	-	-	-

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	896-0321 032007 96 96/08/14	\$96-0322 032008 96 96/08/14	S96-0322 032008 96 96/08/14 Duplicate
			7 87	9.06	•
pH (20 DEG C)	1.0		/ K /	8.05 <	•
Phenolphthalem Alkalunty (as CaCO3) Alkalunty (as CaCO3)	10	mg/L	1400	160	•
Arkaning (as CaC(75)	10		1400	100	-
Conductivity	4 2	uS/cm	11000	880	880
TDS (180 °C)	11	mg/L	7100	570	•
Nitrite (as N)	0.050	mg/L	<	<	-
Nitrate and Nitrite (as N)	0.0500	•	<	1.3	-
Fluoride (probe)	0.03	mg/L	21	2.0	-
Bromide	0.010	mg/L	1.8	0.88	-
Sulphate (as SO4)	0.10	•	88	96	-
Chloride	0.50	•	2900	110	-
Aluminum	0.030	mg/L	3.1	0.12	-
Barium	0.001	*	0.64	0.055	-
Beryllium	0.001	•	<	<	-
Cadmium	0.002	•	<	<	•
Calcium	0.20	•	85	36	-
Chromium	0.004	•	0.005	<	-
Cobalt	0.010	•	< 0.011	< 0.011	-
Copper	0.005	•	<0.006	<0.006	-
Iron	0.010	п	4.5	0.13	-
Lcad	0.020	٩	<0.022	<0.022	-
Magnesium	0.050		23	16	•
Manganese	0.006	n	0.13	0.009	•
Molybdenum	0.010	•	0.047	0.016	•
Nickel	0.010	•	0.024	<0.011	•
Phosphorus	0.060	•	1.2	0.40	•
Potassium	1.000		3.4	18	•
Silver	0.010	•	< 0.011	< 0.011	•
Sodium	0.100	-	2900	110	-
Thallium	0.060	•	<0.066	< 0.066	-
Vanadium	0.005	**	0.018	0.037	-
Zinc	0.005	•	0.024	0.018	-
Hardness (as CaCO3)	1.0	•	310	160	-

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0323 032009 96 96/08/14	\$96-0323 032009 96 96/08/14 Duplicate	\$96-0323 032009 96 96/08/14 M Spike	\$96-0323 032009 96 96/08/14 MS % Rec
sti (20 lWG C)			0.06			
pH (20 DEG C) Phenolphthalem Alkalmity (as CaCO3)	1.0	a	8 05	•	•	-
Alkalimty (as CaCO3)	1.0	mg/L	< 150	•	-	•
Arkatibity (as Cac.C71)	1.0		130	-	-	•
Conductivity	4.2	uS/cm	860	-	-	-
TDS (180 °C)	П	mg/L	550	•	-	-
Nitrite (as N)	0.050	mg/L	<	-	-	•
Nitrate and Nitrate (as N)	0.0500		1.3	-	-	-
Fluoride (probe)	0.03	mg/L	2.0	-	•	-
Bromide	0.010	mg/L	0.57	-	-	-
Sulphate (as SO4)	0.10	•	94	•	-	-
Chloride	0.50	•	100	-	-	-
Aluminum	0.030	mg/L	0.051	0.034	2.3	100
Barium	0.001	÷	0.051	0.050	1.2	100
Beryllium	0.001	*	<	<	0.56	100
Cadmium	0.002	•	<	<	0.55	100
Calcium	0.20	•	32	32	43	96
Chromium	0.004	•	0.006	<	1.1	100
Cobalt	0.010	*	<0.011	<0.011	1.1	100
Copper	0.005	4	<0.006	<0.006	1.1	100
Iron	0.010	*	0.050	0.039	14	100
Lead	0.020	11	<0.022	<0.022	1.1	100
Magnesium	0.050	•	16	16	27	96
Manganese	0.006	₩	<0.007	<0.007	1.1	100
Molybdenum	0.010	4	0.015	0.017	0.57	100
Nickel	0.010	*	<0.011	<0.011	0.57	100
Phosphorus	0.060	п	0.16	0.18	5.8	100
Potassium	1.000		20	19	30	97
Silver	0.010	*	<0.011	<0.011	0.11	•20
Sodium	0.100	Ħ	98	99	110	94
Thallium	0.060	п	<0.066	<0.066	1.2	110
Vanadium	0.005	P	0.037	0.037	0.59	100
Zinc	0.005	*	0.024	0.014	2.2	100
Hardness (as CaCO3)	1.0	*	150	150	-	-

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0323 032009 96 96/08/14 MS Dup	\$96-0323 032009 96 96/08/14 MSD % Rec
	(LD L	Om		
pH (20 DEG C)			•	-
Phenolphthalem Alkalinity (as CaCO3)	1.0	mg/L	-	-
Alkalinity (as CaCO3)	1.0	н	-	-
Conductivity	4.2	uS/cm	-	-
TDS (180 °C)	11	mg/L	-	-
Nutrite (as N)	0.050	mg/L	-	-
Nitrate and Nitrite (as N)	0.0500	•	-	-
Fluoride (probe)	0.03	mg/L	-	-
Bromide	0.010	mg/L	-	-
Sulphate (as SO4)	0.10		-	-
Chloride	0.50	11	-	•
Aluminum	0.030	mg/L	2.3	100
Barium	0.001	•	1.2	100
Beryllium	0.001		0.56	100
Cadmium	0.002	*	0. 5 6	100
Calcium	0.20	**	43	97
Chromium	0.004	•	1.2	100
Cobalt	0.010	-	1.2	100
Copper	0.005	-	1.2	110
lron	0.010	•	14	110
Lead	0.020	•	1.1	100
Magnesium	0.050	•	27	98
Manganese	0,006		1.1	100
Molybdenum	0.010		0.57	100
Nickel	0.010	-	0.58	110
Phosphorus	0.060	-	5.9	100
Potassium	1.000	•	30	100
Silver	0.010	¥	0.069	•13
Sodium	0.100	-	110	97
Thallium	0.060	•	1.2	100
Vanadium	0.005	•	0.60	100
Zinc	0.005	•	2.3	100
Hardness (as CaCO3)	1.0	•	-	-

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0325 032010 96 96/08/14	\$96-0325 032010 96 96/08/14 Duplicate	S96-0325 032010 96 96/08/14 M Spike	\$96-0325 032010 96 96/08/14 MS % Rec
				-	·	
pH (20 DEG C)		a	5.84	5.73	•	•
Phenolphthalem Alkalimity (as CaCO3)	1.0	mg∕l.	<	<	100	-
Alkalinity (as CaCO3)	1.0		<	<	100	100
Conductivity	4.2	uS/cm	<	•	-	-
TTDS (180 °C)	11	mg/L	<	<	-	-
Nitrite (as N)	0.050	mg/L	<	<	0 49	120
Nitrate and Nitrate (as N)	0.0500	*	<	<	2.1	100
						•
Fluoride (probe)	0.03	mg/L	<	<	0.56	110
Bromide	0.010	A	<	<	5.0	
Sulphate (as SC)4)	0.010 0.10	mg/l.	0.13	0.13	5.0 47	100 94
Chloride	0.10	и	V.13	V.13	-	94
Cilidate	0.50			•	-	•
Aluminum	0.030	mg/L	< 0.033	-	-	-
Barium	0.001	•	<	-	-	-
Beryllium	0.001	,	. <	-	-	-
Cadmium	0.002	•	<	-	-	-
Calcium	0.20	•	<0.22	-	-	-
Chromium	0.004	16	<	-	-	-
Cobalt	0.010	•	<0.011	-	-	-
Copper	0.005	•	<0.006	-	-	-
Iron	0.010	•	<0.011	•	-	-
Load	0.020	•	<0.022	-	-	-
Magnesium	0.050	R	<0.055	•	-	-
Manganese	0.006	P	<0.007	-	-	-
Molybdonum	0.010	•	<0.011	-	-	•
Nickel	0.010	•	<0.011	•	-	-
Phosphorus	0.060	•	<0.066	-	-	-
Potassium	1.000	n	<1.1	-	-	-
Silver	0.010	•	<0.011	÷	•	•
Sodium	0.100	•	<0.11	•	-	-
Thallium	0.060	•	<0.066	-	-	-
Vanadium	0.005	**	<0.006	•	•	-
Zinc	0.005	H	0.006	-	-	•
Hardness (as CaCO3)	1.0	•	<	-	•	•

Campanant	Client ID: Zenon ID: Date Sampled: MD1.	Umia	\$96-0324 032011 96 96/08/14	\$96-0326 032012 96 96/08/14	\$96-0327 032013 96 96/08/14	\$96-0328 032014 ¹ 96 96/08/15
Component	MDI.	Units				
pH (20 DEG C)			8.34	7,36	7.58	7.70
Phenolphthalem Alkalinity (as CaCO3)	1.0	mg/L	<	<	<:	<
Alkalmuty (as CaCO3)	1.0	*1	160	220	170	300
Conductivity	4.2	uS/cm	770	4400	2400	910
TDS (180 °C)	11	mg/L	520	3600	1900	590
Nitrite (as N)	0.050	mg/l.	<	<	<	<
Nitrate and Natrate (as N)	0.0500	"	0.35	0.13	0.58	0.12
Fluoride (probe)	0.03	mg/L	1.9	1.4	1.4	0.91
Bromide	0.010	mg/L	0.70	1.2	0.82	0.41
Sulphate (as SO4)	0.10	п	53	180	160	79
Chloride	0.50	•	110	1200	560	66
Aluminum	0.030	mg/L	< 0.033	0.38	0.041	< 0.033
Barium	0.001	•	0.067	0.12	0.089	0.11
Beryllium	0.001	*	<	<	<	<
Cadmium	0.002	•	<	<	<	<
Calcium	0.20	*	53	490	210	47
Chromium	0.004		<	0.005	<	<
Cobalt	0.010	•	<0.011	<0.011	<0.011	<0.011
Copper	0.005	•	<0,006	<0.006	<0.006	<0.006
lron	0.010	п	0.37	0.66	0.14	2.3
Lead	0.020		<0.022	<0.022	<0.022	<0.022
Magnesium	0.050	•	14	160	71	24
Manganese	0.006		0.032	0.65	0.019	0.078
Molybdenum	0.010		<0.011	<0.011	<0.011	<0.011
Nickel	0.010	•	<0.011	<0.011	<0.011	<0.011
Phosphorus	0.060	-	0.19	1.0	0.50	0.23
Potassium	1.000	-	4.6	13	7.0	5.5
Silver	0.010	-	<0.011	<0.011	<0.011	<0.011
Sodium	0.100	-	80	730	140	91
Thallium	0.060	_	<0.066	<0.066	<0.066	<0.066
Vanadium	0.005		0.019	0.007	0.025	<0.006
Zinc	0.005	11	0.034	0.027	0.037	0.048
Hardness (as CaCO3)	1.0		190	1900	810	210

	Client ID:		\$96-0329	S96-0330
	Zenon ID:		032015 96	032016 96
	Date Sampled:		96/08/15	96/08/15
Component	MDL	Units		
•				
pH (20 DEG C)			7.79	7.91
Phenolphthalem Alkalımıty (as CaCO3)	1.0	mg/L	<	<
Alkalimity (as CaCO3)	1.0	•	140	160
Conductivity	4.2	uS/cm	2200	710
TDS (180 °C)	11	mg/L	1700	510
Nitrite (as N)	0.050	mg/L	<	<
Nitrate and Nitrite (as N)	0.0500	*	0.051	0.88
(, ,				
Fluoride (probe)	0.03	mg/L	1.2	1.2
6 31	0.010	-a/	0.70	0.60
Bromide	0.10	mg∕l.	140	55
Sulphate (as SO4)	0.10	•	520	85
Chloride	0.30		320	03
Aluminum	0.030	mg/L	< 0.033	< 0.033
Barium	0.001	•	0.16	0.088
Beryllium	0.001	•	<	<
Cadmium	0.002	•	<	<
Calcium	0.20	tt	170	58
Chromium	0.004		<	<
Cobalt	0.010		<0.011	<0.011
Соррег	0.005	•	<0.006	0.13
fron	0.010	•	0.075	0.5 0
Lead	0.020	Ħ	<0.022	<0.022
Magnesium	0.050	•	64	17
Manganese	0.006	•	0.095	0.015
Molybdenum	0.010	٩	0.014	<0.011
Nickel	0.010	•	<0.011	<0.011
Phosphorus	0.060	*	0.57	0.22
Potassium	1.000	•	13	4.4
Silver	0.010		<0.011	< 0.011
Sodium	0.100	*	130	57
Thallium	0.060		<0.066	<0.066
Vanadium	0.005	•	0.018	0.045
Zine	0.005	•	0.020	0.12
Hardness (as CaCO3)	1.0	•	690	210

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0376 032017 96 96/08/15	\$96-0376 032017 96 96/08/15 Duplicate	S96-0376 032017 96 96/08/15 M. Spike	\$96-0376 032017-96 96/08/15 MS % Rec
		011115		p		
ρ(1 (20 DEG €)			7.95	-	•	
Phenolphthalein Alkalimity (as CaCO3)	1.0	mg/L	<	•	-	•
Alkalimity (as CaCO3)	1.0	۴	190	•	-	-
Conductivity	4.2	uS/cm	650	-	•	
TDS (180 °C)	11	mg/L	460	•	-	
Nitrite (as N)	0.050	mg/L	<	-	-	-
Nitrate and Nitrite (as N)	0.0500	*	1.4	-	•	•
Fluoride (probe)	0.03	mg/L	1.1	-	-	-
Bromide	0.010	mg/L	0.29	•	-	-
Sulphate (as SO4)	0.10	4	82	-	-	-
Chloride	0.50	n	32	32	55	92
Aluminun	0.030	mg/L	<0.033	•	-	-
Barium	100.0		0.041	-	-	-
Beryllium	0.001	•	<	-	-	-
Cadmium	0.002	q	<	•	-	-
Calcium	0.20	H	44	-	-	•
Chromium	0.004	٠	<	-	-	-
Cobalt	0.010	•	<0.011	-	-	-
Соррег	0.005	•	<0.006	-	-	-
Iron	0.010	•	0.12	-	-	-
Load	0.020	*	<0.022	-	-	-
Magnesium	0.050	4	15	-	•	-
Manganese	0.006		<0.007	-	-	-
Molybdenum	0.010		<0.011	-	-	-
Nickel	0.010	•	<0.011	-	•	-
Phosphorus	0.060	-	0.14	•	•	•
Potassium	1.000	•	4.1	-	-	-
Silver	0.010	*	<0.011	-	-	-
Sodium	0.100	Ħ	66	-	•	-
Thallium	0.060	4	<0.066	-	-	•
Vanadium	0.005	4	0.050	•	~	-
Zinc	0.005	*	0.054	-	-	-
Hardness (as CaCO3)	1.0	•	170	•	•	•

	Client ID:		\$96-0377	S96-0377	596-0378
	Zenon ID:		032018 96	032018 96	032019 96
	Date Sampled:		96/08/15	96/08/15	96/08/15
Component	MDL	Units		Duplicate	
pH (20 DEG C)			7.98		5.11
Phenolphthalem Alkalmity (as CaCO3)	1.0	mg/L	<	•	<
Alkalimty (as CaCO3)	1.0	и	160	-	<
Conductivity	4.2	uS/om	720	720	<
TDS (180 °C)	11	mg/L	490	-	<
Nitrite (us N)	0.050	mg/L	<	-	<
Nitrate and Nitrite (as N)	0.0500	m	1.4	-	<
Fluoride (probe)	0.03	mg/L	1.7	•	0.03
Bromide	0.010	mg/L	0.42	•	<
Sulphate (as SO4)	0.10	*	97	-	<
Chloride	0.50	٩	57	•	<
Aluminum	0.030	mg/L	0.064	•	0.034
Barium	0.001		0.058	-	<
Beryllium	0.001	•	<	-	<
Cadmium	0.002	•	<	-	<
Calcium	0.20		44	•	0.26
Chromium	0.004	4	0.005	-	<
Cobalt	0.010	•	<0.011		< 0.011
Copper	0.005	•	0.012	-	<0.006
Iron	0.010	•	0.13	•	<0.011
Lead	0.020	•	<0.022	-	<0.022
Magnesium	0.050	•	15	-	0.057
Manganese	0.006	•	0.015	-	<0.007
Molybdenum	0.010		<0.011	•	<0.011
Nickel	0.010	-	<0.011	-	<0.011
Phosphorus	0.060	•	0.17	-	<0.066
Potassium	1.000	_	8.0	-	<1.1
Silver	0.010	_	<0.011	•	<0.011
Sodium Thallium	0.100	-	82	•	0.25
	0.060	-	<0.066	•	<0.066
Vanadium	0.005	_	0.038	•	<0.006
Zinc	0.005	-	0.049	-	0.014
Hardness (as CaCO3)	1.0	*	170	-	<

Communicati	Client ID: Zenon ID: Date Sampled:	7 1. 14	S96-0379 032020 96 96/08/15	\$96-0379 032020 96 96/08/15	\$96-0379 032020 96 96/08/15	S96-0379 032020 96 96/08/15
Component	MDL	Units		Duplicate	M. Spike	MS % Rec
pH (20 DEG C)			8.17	8.13	-	-
Phenolphthalein Alkalimity (as CaCO3)	1.0	mg∕L	<	<	-	-
Alkalimity (as CaCO3)	10	н	130	130	210	79
Conductivity	4 2	u\$/cm	74()	-	-	
TDS (180 °C)	11	mg/L	460	450	-	-
Nitrite (as N)	0.050	mg/L	<	•	-	-
Nitrate and Nitrate (as N)	0.0500	•	0.12	-	-	-
Fluoride (probe)	0.03	mg/L	1.8	1.8	2.4	120
Bromide	0.010	mg∕I.	0.72	0.71	5.6	98
Sulphate (as SO4)	0.10	•	48	48	100	100
Chloride	0.50	٠,	110	-	-	-
Aluminum	0.030	mg∕l.	< 0.033	•	•	-
Barium	0.001	п	0.068	-	-	-
Beryllium	0.001		<	-	-	-
Cadmium	0.002	u	<	-	-	-
Calcium	0.20	11	46	-	-	-
Chromium	0.004	•	<	-	-	-
Cobalt	0.010	-	<0.011	-	-	-
Copper	0.005	•	<0.006	-	-	-
lron	0.010	•	0.47	-	•	-
Lead	0.020	•	<0.022	-	-	-
Magnesium	0.050	•	13	-	-	-
Manganese	0.006	-	0.046	-	-	-
Molybdenum	0.010	а	<0.011	-	-	-
Nickel	0.010	u	< 0.011	-	-	-
Phosphorus	0.060	u	0.16	-	-	-
Potassium	1.000	•	4.3	-	-	-
Silver	0.010	•	<0.011	-	-	•
Sodium	0.100		79	•	-	-
Thallium	0.060	**	<0.066	•	•	-
Vanadium	0.005	-	0.008	-	-	-
Zinc	0.005	-	0.021	-	-	-
Hardness (as CaCO3)	1.0	•	170	•	•	•

	Client ID:		S96-0381	\$96-0381	S96-0381	S96-03x)
	Zenon ID:		032002 96	032002 96	032002 96	032 002 96
	Date Sampled:		96/08/13	96/08/13	96/08/13	96/08/13
Component	MDL	Units		Duplicate	M Spike	MS % Rec
pH (20 DEG C)			8.14	-	-	
Phenolphthalem Alkalımity (as CaCO3)	1.0	mg/L	<	-	-	•
Alkalinuy (as CaCO3)	1.0	*	730	-	•	•
Conductivity	4 2	uS/cm	12000	-	-	-
4DS (180 °C)	1)	mg/L	7400	-	•	-
Nitrite (us N)	0.050	mg/L	<	•	-	-
Nitrate and Nitrite (as N)	0.0500	•	<	-	•	-
Fluoride (probe)	0.03	mg/L	4.9	-	-	-
Bromide	0.010	mg/L	1.9	•	-	-
Sulphate (as SO4)	0.10	•	270	-	•	-
Chloride	0.50	*	3500	3600	4100	110
Aluminum	0.030	mg/L	<0.033	•	-	-
Barium	0.001	•	0.27	-	-	-
Beryllium	0.001	tr	<	-	-	-
Cadmium	0.002	•	<	-	-	-
Calcium	0.20	•	110	-	-	-
Chromium	0.004	-	<	-	•	-
Cobalt	0.010	•	<0.011	-	-	-
Copper	0.005	4	0.019	•	-	-
lron	0.010	•	0.68	-	-	-
Lead	0.020	•	<0.022	-	-	-
Magnesium	0.050		100	-	-	-
Manganese	0.006	-	0.078	•	-	•
Molybdenum	0.010	•	<0.011	-	-	-
Nickel	0.010	•	<0.011	-	-	-
Phosphorus	0.060	•	2.8	-	-	•
Potassium	1.000	**	8 .6	•	-	•
Silver	0.010	•	<0.011	-	-	-
Sodium	0.100	•	2400	-	-	-
Thollium	0.060	π	<0.066	•	-	-
Vanadium	0.005	#	<0.006	•	-	•
Zine	0.005	•	800.0	-	•	-
Hardness (as CaCO3)	1.0	•	690	-	-	-

	Client ID: Zenon ID: Date Sampled:		\$96-0382 032003-96 96/08/13	\$96-0383 032004 96 96/08/13	\$96-0384 032005 96 96/08/13
Component	MDL	Units			
pH (20 DEG C)			8.09	7 29	7.84
Phenolphthalem Alkalimity (as CaCO3)	1.0	ing/L	<	<	<
Alkalinity (as CaCO3)	1.0	п	180	160	150
Conductivity	4.2	uS/cm	1000	12000	790
TDS (180 °C)	11	mg/L	830	10000	540
Nitrite (as N)	0.050	mg/L	<	<	<
Nitrate and Nitrite (as N)	0.0500	•	1.5	0.18	0.39
Fluoride (probe)	0.03	mg/L	2.6	1.0	2.0
Bromide	0.010	mg/L	0.45	2.0	0.52
Sulphate (as SO4)	0.10	**	250	230	58
Chloride	0.50	11	57	4200	110
Aluminum	0.030	mg/L	< 0.033	<0.033	0.57
Barium	0.001	Ħ	0.037	0.23	0.076
Beryllium	0.001	٩	<	<	<
Cadmium	0.002	*	<	<	0.003
Calcium	0.20	*	97	540	57
Chromium	0.004	٦	<	<	0.005
Cobalt	0.010	•	<0.011	<0.011	<0.011
Copper	0.005	ч	0.010	0.013	<0.006
Iron	0.010	*	<0.011	0.28	0.58
Lead	0.020	•	<0.022	<0.022	<0.022
Magnesium	0.050	*	35	190	16
Manganese	0.006	-	<0.007	0.061	0.030
Molybdenum	0.010		<0.011	<0.011	<0.011
Nickel	0.010		<0.011	<0.011	<0.011
Phosphonis	0.060	-	0.69	1.0	0.37
Potassium	1.000	•	5.1	24	4.4
Silver	0.010		<0.011	<0.011	<0.011
Sodium	0.100		80	1700	84
Thallium	0.060	•	<0.066	<0.066	<0.066
Vanadium	0.005	h 	0.032	0.011	0.026
Zinc	0.005	11	0.058	0.12	0.047
i lardness (as CaCO3)	1.0	*	380	2100	210

Component	Client ID: Zenon ID: Date Sampled: MDL	Units	\$96-0385 032006 96 96/08/13	\$96-0385 032006 96 96/08/13 Duplicate	S96-0385 032006 96 96/08/13 M Spike	\$96-0385 032006 96 96/08/13 MS % Rec
pH (20 DEG C)			7.28		-	
Phenolphthalein Alkalinity (as CaCO3)	1.0	ma (I	<	-	-	•
Alkalimity (as CaCO3)	1.0	mg∕l. "	320	-	-	-
Alkaning (as Caccos)	1.0		.120	•	-	-
Conductivity	4.2	uS/cm	3400	-	-	-
TDS (180 °C)	11	mg/L	2500	•	-	-
Nitrite (as N)	0.050	mg/L	<	•	•	-
Nitrate and Nitrite (as N)	0.0500	4	5.4	-	-	-
Fluoride (probe)	0.03	mg/L	0.70	-	-	-
Bromide	0.010	a A	1.0			
Sulphate (as SQ4)	0.010 0.10	mg/L	1.0 71 0	- 710	910	-
Chloride		н	500			99
Chioride	0.50		300	-	-	•
Aluminum	0.030	mg/L	0.035	-	-	•
Barium	0.001		0.027	-	•	-
Bcryllium	0.001	•	<	-	-	-
Cadmium	0.002	•	<	-	-	-
Calcium	0.20	•	200	•	-	-
Chromium	0.004		0.033	-	-	-
Cobalt	0.010	•	<0.011	-	-	-
Copper	0.005	*	<0.006	-	-	-
Iron	0.010	•	0.024	-	-	-
Lcad	0.020	7	<0.022	-	-	-
Magnesium	0.050	•	28	-	-	-
Manganese	0.006		<0.007	-	-	-
Molybdenum	0.010	•	< 0.011	-	-	•
Nickel	0.010		< 0.011	-	•	-
Phosphorus	0.060		0.42	_	-	-
Potassium	1.000	•	6.3	_	-	-
Silver	0.010	-	<0.011		-	•
Sodium	0,100	•	520	-	-	-
Thallium	0.060		<0.066	-	•	-
Vanadium	0.005	H	0.014		•	-
Zinc	0.005		0.033	_	-	-
Hardness (as CaCO3)	1.0	n	620	•		•
•						

Batch Code:	0819MSA1	0819MSA2	0819MSA3
pH (20 DEG C)	032001 96	032010 96	032020 96
	032002 96	032011 96	
	032003 96	032012 96	
	032004 96	032013 96	
	032005 96	032014 96	
	032006 96	032015 96	
	032007 96	032016 96	
	032008 96	032017 96	
	032009 96	032018 96	
		032019 96	
Date analysed	96/08/19	96/08/19	96/08/19
Date prepared	96/08/19	96/08/19	96/08/19
Batch Code:	0819MSA1	0819MSA2	
Phenolphthalein Alkalinity (as CaCO3)	032000 96	032010 96	
•	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
		032020 96	
Date analysed	96/08/19	96/08/19	
Date prepared	96/08/19	96/08/19	
Batch Code:	0819MSA1	0819MSA2	0819MSA3
Alkalinity (as CaCO3)	032000 96	032010 96	032020 96
•	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
Date analysed	96/08/19	96/08/19	96/08/19
Date prepared	96/08/19	96/08 /19	96/08/19

Batch Code:	0819SPA2	0819SPA3	0819SPA4
Conductivity	032000 96	032008 96	032018 96
	032001 96	032009 96	032019 96
	032002 96	032010 96	032020 96
	032003 96	032011 96	
	032004 96	032012 96	
	032005 96	032013 96	
	032006 96	032014 96	
	032007 96	032015 96	
		032016 96	
		032017 96	
Date analysed	96/08/19	96/08/19	96/08/19
Date prepared	96/08/19	96/08/19	96/08/19
Batch Code:	0819MSA1	0819MSA2	0819MSA3
TDS (180 °C)	032000 96	032010 96	032020 96
	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
Dute analysed	96/08/20	96/08/20	96/08/20
Date prepared	96/08/19	96/08/19	96/08/19
Batch Code:	0820DHA1	0820DHA2	
Nitrite (us N)	032000 96	032010 96	
	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	03 200 6 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 9 6	
	032009 96	032019 96	
		032020 96	
Date analysed	96/08/20	96/08/20	
Date prepared	96/08/20	96/08/20	

Batch Code	0820DHA1	0820DHA2	
Nitrate and Nitrate (as N)	032000 96	032010 96	
	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
		032020 96	
Date analysed	96/08/20	96/08/20	
Date prepared	96/08/20	96/08/20	
Batch Code:	0821KRA1	0821KRA2	0821KRA3
Fluoride (probe)	032000 96	032010 96	032020 96
	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
Date analysed	96/08/21	96/08/21	96/08/21
Date prepared	96/08/21	96/08/21	96/08/21
Batch Code:	0820DHA1	0820DHA2	0820DHA3
Bromide	032000 96	032010 96	032020 96
	032001 96	032011 96	
	032002 96	032012 96	
	032003 96	032013 96	
	032004 96	032014 96	
	032005 96	032015 96	
	032006 96	032016 96	
	032007 96	032017 96	
	032008 96	032018 96	
	032009 96	032019 96	
Date analysed	96/08/20	96/08/20	96/08/20
Date prepared	96/08/20	96/08/20	96/08/20

Batch Code:	0820DHA1	0821DHA1	0820DHA2	0820DHA3
Sulphate (as SO4)	032000 96	032006 96	032010 96	032020 96
	032001 96		032011/96	
	032002 96		032012 96	
	032003 96		032013 96	
	032004 96		032014 96	
	032005 96		032015 96	
	032007 96		032016 96	
	032008 96		032017 96	
	032009 96		032018 96	
			032019 96	
Date analysed	96/08/20	96/08/21	96/08/20	96/08/20
Date prepared	96/08/20	96/08/21	96/08/20	96/08/20
Batch Code:	0819MNA3	0820DHA1	0819MNA4	0819MNA5
Chloride	032000 96	032002 96	032008 96	032017 96
	032001 96	032004 96	032009 96	032018 96
	032003 96	032006 96	032010 96	032019 96
	032005 96	032007 96	032011 96	032020 96
		032012 96	032014 96	
		032013 96	032016 96	
		032015 96		
Date analysed	96/08/19	96/08/20	96/08/19	96/08/19
Date prepared	96/08/19	96/08/20	96/08/19	96/08/19
Butch Code:	0819MJA1	0820MJA1	0822AWA1	
Aluminum	032000 96	032009 96	032012 96	
	032001 96	032010 96		
	032002 96	032011 96		
	032003 96	032012 96		
	032004 96	032013 96		
	032005 96	032014 96		
	032006 96	032015 96		
	032007 96	032016 96		
	032008 96	032017 96		
		032018 96		
		032019 96		
		032020 96		
Date analysed	96/08/21	96/08/21	96/08/22	
Date prepared	96/08/19	96/08/20	96/08/22	

Batch Code:	0819MJA1	0820MJA1		
Hardness (as CaCO3)	032001 96	032009 96		
	032002 96	032010 96		
	032003 96	032011 96		
	032004 96	032012 96		
	032005 96	032013 96		
	032006 96	032014 96		
	032007 96	032015 96		
	032008 96	032016 96		
		032017 96		
		032018 96		
		032019 96		
	:	032020 96		
Date analysed	96/08/21	96/08/21		
Date prepared	96/08/19	96/08/2 0		
Butch Code:	0823SM02	0828SM02	0826SM02	0830SM02
Benzene	032000 96	032002 96	032011 96	032008 96
	032001 96	032007 96	032012 96	
	032003 96	032017 96	032016 96	
	032004 96	032018 96	032019 96	
	032005 96	032020 96		
	032006 96			
	032009 96			
	032010 96			
	032013 96			
	032014 96			
	032015 96			
Date analysed	96/08/23	96/08/28	96/08/26	96/08/30
Date prepared	96/08/23	96/08/28	96/08/26	96/08/30

MEI PASO
Natural Ser Compeny

CHAIN OF CUSTODY RECORD

8

20

RECEIVED OF LABORATORY BY: (SIGNERMY) RCEINCA Do Hel Added to BTEX samples TRANSMISSION OPERATIONS LABORATORY B. PASO NATURAL GAS COMPANY BEAS RAILROAD DRIVE B. PASO, TEXAS 79904 RECEIVED BY: (Signature) FAX: 915-541-9335 REMARKS 40ml vials 1 CPX2, STOP, YULLIXZ CONTRACT LABORATORY P. O. NUMBER 915-541-9228 DATECTBLE DATEMNE 2 ી કામ્યાર્ગ RESULTS & INVOICES TO REQUESTED ANALYSIS PELINGUISHED BY: (Signature) RELINGUISHED BY: (Signature) Allehed Y 2 Q × Ø × × X × × X ROMPOSITE OF SANPLE RECEIPT REMARKS Ś 7 A38MLM JATOT BR3MLATMOD 40 Solo-032lg 1 D RECEIVED BY: (Signature) CHARDE CODE A113/96 SAMPLE NUMBER M6-32000 596-0383 596-638A 596-0384 5960342 S910-0383 596-0384 SPe-0395 8 Nu Fel 1100 596-03AD 596-0381 59lg 0385 596-0391 ブギ MATRIX NO N 16 Kitche 1730 140 | Blank | 1250 | 140 9H Ož H 6/18/10/00 OR35 1420 を る M₂0 W 1843 See 1455 1420 15 Stuste 10800 Hat PROJECT NAME TIME RIPKe DYS Secretarions? 8/13/Ke 1245 13 KINE 10750 るまでにく 14/14/h223 REQUESTED TURNAROUND TIME. でを言う。五次 185 C DATE PROJECT NUMBER SAMPLERS (Spre CANNER CO. O ROUTINE 29 9 BELMO Ę 3300

Consiy - EPWG Lib - Pink - Fleid Sampler White - Touting Laboratory

PA-08-0566 (Per

Facsimile Cover Sheet

To: Jeff Kindley

Company: PHILLIP ENVIRONMENTAL

Phone: 915-563-0188 Fax: 915-563-9526

From: Mike Jacobs

Company: El Paso Natural Gas Company

Phone: (915) 541-2501 Fax: (915) 541-5946

Date: September 19, 1996

Pages including this

cover page: 32

Comments:

Jeff:

Here is the latest analytical, well ACW #15 is obviously #14, Production well no. 1 is the on-site well and not RW-1. Use ACW #4 and ACW#9 as being representative of the groundwater at these locations. Included is the Wells, screened intervals (S.I.) and top of casing elevations. The first batch of wells on the sheet are the ones that we use for flow determinations as per requirements from the state.

As always, live long and prosper

Mike Jacobs

C El Paso Natural Sea Company

CHAIN OF CUSTODY RECORD

Page.

RECEIVED TO LABORATORY BY: (SUMMENT) TRANSMISSION OPERATIONS LABORATORY EL PASO NATURAL GAS COMPANY BEAS RALPOAD DRIVE EL PASO, TEXAS 7880A RECEIVED BY: (Signature) FAX: 915-541-5036 REMARKS CONTRACT LABORATORY P. O. NUMBER 27)07 915-541-9228 DATE/TIME 2008x7 RESIGNS & INVOICES TO: RECLIESTED ANALYSIS RELINOUSHED BY: (Signature) RELINOUISHED BY: (Signature) 034 2916 335 X X X 义 R × × COMPOSITE OR SALPLE RECEIPT REJANDES 9 7 TOTAL MUMBERS Ø RECEIVED BY: (Signature) RECEIVED BY: (Signature) CHARGE CODE निमिष्ठ スめ、ス SAMPLE NUMBER 59lo-0398 Sec-0379 596-0387 S96-037K S96-0376 S96-0329 SP6-033D S910-0377 8/10/kg/1100 2 GAMAGE 12-10 18-20 TIME MATRIX 17 desp. 140 4 migs. 1724 H20 15 dith 1204 11h0 A Shirter 1752 H20 ON HIGHEN ITADIANO MC#10952 142 PROJECT NAME के ब्रीतिक 1800 REQUESTED TURNAGUND TIME D PLEST DATE PROJECT MANBER SAMPLERS (SP CARRENCO DROWNE 283 MET NO

White - Teating Laboratory Canary - EPNG Lab Pink - Fleid Sempler

Aude-0666 (Rev. 1:

May 13, 1996

ANALYTICAL REPORT

Transmission Operations Engineering
JAL#4 Monitor Wells
Sample #'s S96-0250 to S96-0252, -0255,
-0257 to -0263
FSD Lab Sample #'s 960426 to 960436
Sampled 5/06, 5/07 and 5/08/96
Sampled by Steve Brisbin

REMARKS:

The samples were received cool and intact.

Distribution:

Darrell Campbell Results Log Book

May 17, 1996

ANALYTICAL REPORT

Transmission Operations Engineering
JAL#4 Monitor Wells
Sample #'s S96-0264 to S96-0266, -0268,
FSD Lab Sample #'s 960449 to 960452
Sampled 5/09/96
Sampled by Steve Brisbin

REMARKS:

The samples were received cool and intact.

Distribution:

Darrell Campbell Results Log Book

EI Paso Natural Bas Company

CHAIN OF CUSTODY RECORD

P496

ſ		-			CON	CONTRACT LABORATORY P. O. NUMBER	æ
PROJECT NUMBER NEWSECT MAJE	7			REQUESTED ANALYSIS			
SAUPLERS: (Sepanda)	5 Place	MIATHO MIATHO STIZOS BARD					
LABID DATE TIME MATRIX SAMPLE NUMBER	имвен		718			Đ.	REMARKS
1150 120 Sto 0364		4	X		9	P.W # 1	
Serie (20) Neo		8	Y		B	Ain Black - At	MEN SAMPLY
C. M. C. M.C.		40	×		#3	#3END ATTEN DURGING	VRGING
2 refer 1835 140		56	×		F	Field Blank	
		-					
		-					
REPROCESHED BY SEGMENT	RECEIVED BY: (Signalure)	(orce		RELINOVASHED BY: (Signature)		DATETIME	RECEIVED BY: (Signature)
=1	RECEIVED 8Y: (Signature)	pline)		RELINGUISHED BY: (Signature)		DATE/THUE REC	RECEIVED OF LABORATORY BY (Sgrana)
300	SAMPLE RECEIPT REMARKS	EMARKS		JR	RESULTS & INVOICES TO	10.	
CARNIER CO.	,					TRANSMISSION OPERATIONS LABORATORY EL PASO NATURAL GAS COMPANY 8645 RAILROAD DRIVE EL PASO TEXAS 73904	IONS & BORATORY COMPANY
CM TS6	CHANGE CODE 100-111-2010	3 or -000	HQ3.4	-11-201C		915.759.2229 FAX 91	FAX 915 759 2035

While . Testing Laboratory . Canary . EPING Lab. Pink . Field Sampler

* M-28 05-06 ;Rev

© El Paso Natural Ses Company

CHAIN OF CUSTODY RECORD

Page

PROJECT NUMBER PROPERT NAME		-	REQUESTED ANALYSIS	CONTRACT LABORATORY P. O. NUABER	ливе я
The Carrier of the Country of the Co					
SAMPLE RES. SOPRIED	16PG	IATMOX IATMOX TIROQIA BAMĐ			
LABID DATE TIME MATRIX SAMPLE NUMBER	MBER				REWARKS
Klike 1435 140 1596-0950		3		#3 EMD BEFORE PLAGELY	P. Pario
16/14 1435 1420 SP6 0851		2		Balta Blask Botage	Potone Sanding
54 Fr 1440 H2D 1596-0852		3		FERD PANK	
		_		Acm #4	
56kg 1942 140 SAC-0854				Acm # 2A	
		3		ACW #3	
				Days White	Well
	7	Ñ		Arn *10	
5 Kg, 1015 HZD 596-0958	7	3		Acu#5	
1985 1440	7	2		ACU 49	
02H 2001	>	3		Anth Pur	
1 Ste 140 140 596-09101	7	T SA		New * 10	-1
(Arme	RECEIVED BY: (Signatury		RELINQUISHED BY: (Signature)	DATETIME	RECEIVED BY (Signarm)
1 July Divini 13/13/16/0530				2/2/90 0820	let Ben
RELINOUISHED BY: (Signature)	RECEIVED BY: ISIGNATURE	(a./ us	RELANCUISHED BY: (Signalura)	DATETIME	MECENED OF LABORATORY BY (Sgrubun)
12	SAMPLE RECEIPT REMARKS	EMARICS	RES	RESULTS & INVOICES TO	
CARMEN CO.				TRANSKISSION OF EL PASO NATURAL 8645 RAILROAD DR	TRANSMISSION OPERATIONS LABORATORY EL PASO NATURAL GAS COMPANY BEAS PALLROAD DRIVE
	CHURGE CODE			EL PASO, TEXAS 79 915-541-9229	1904 FAX: 915-54 -9335
Control County (SAME) and Die Cample					

White . Testing Leboratory Canary . EPMG Leb Pink . Field Sampler

FW-38-0565 (Per

O El Paso Natural San Company

CHAIN OF CUSTODY RECORD

Page

Bailta Black - Middle of soul #3END Middle of Durging TRANSMISSION OPERATIONS LABORATORY EL PASO NATURAL GAS COMPANY 8645 FAILROAD DRIVE EL PASO, TEXAS 19904 RECEIVED BY: (Signature) FAX, 915-541-9335 PEMARKS CONTRACT LABORATORY P. O. NUMBER 460320 915-541-9229 DAFETIME Acw#8 Acw# 7 ACW*II RW T J# 70.5 RESULTS & INVOICES TO REQUESTED ANALYSIS RELINQUISHED BY: (Signatural RELINOUISHED BY: (Signature) COMPOSITE OR Pap SAMPLE RECEIPT REMARKS ન 4 3 3 3 7 RECEIVED BY: (Signature) RECEIVED BY: (Signatura) CHARGE CODE 7 SAMPLE NUMBER SPlo-colled 596.096\$P 14.0 | 596 0.00 D SPAC 1150 140 SPU-5364 4960-9H5 5960-0967 5480-098 ON OLE 1845 七茶 3th 1880C 59Ph 1553 HZD SAFE BIS 11/20 TIME MATRIX 3496 11415 1420 518he 1704 1120 PROJECT NUMBER POLECT NAME 518 hr 1890 PROUESTED TURNAROUND TIME D 76 DATE SAMP_ERS: Signature J ROUTINE CARRIER CO **Z**80 Ø.

White - Testing Laboratory Canary - EPING Lab Pink - Field Sampler

PA-24-2008 (Per

El Paso Natural Bas Company

CHAIN OF CUSTODY RECORD

Page

८भगास्ट PECEIVED OF LASCRATORY BY SQUAMON ACW # W No HO! Added to RECEIVED BY: I Syphature #3 FMP Beioge Ruskins REMARKS Balin Hault Beber Doors Water Well CONTRACT LASCRATORY P. C. NUMBER FEEL Black DATETIME DATETIME 100 # S Bauto. prw #9 Acut 10 My == REQUESTED ANALYSIS RELINDUISHED BY: (Syntare) RELINDUISHED BY (Synature) X118 X X X × × × COMPOSITE OR TOTAL NUMBER OF CONTAINERS Ą 4 4 d) 3 タ (RECEIVED BY: (Signature) RECEIVED BY: (Signature) 5/6/4 1225 AZO SPICODIO 426.433 596-0359 916-0132 1435 1420 SG10 CASI 561 427 Squ-09531 9101112E 1500 1400 1596-0057 964130 1596 CASS 9161731 SPO-0961 4124 596 CD 50 14 (126 She 3963 16131 S96 0555 44171 Slu-0.369 961135 SAMPLE NUMBER 0000 DATECTIME I () (<u>)</u> NATHX 3 133X 110 المدة 5/8/26 | 14/10 | 18 CC 07 02/1/pc! O ₹ PHOSECT NAME (大) 07CC TIME) द्वा 06%11 40 HOUSTHED BY IS THE JUFFE ANDLERS: 15 STANTE DATE POURCE NEWBER A8 10

is Takinn's physion Caran EPNG Lab Pink - Field Sampler

N: 06.0666 (Rev. 3)

TRANSMISSION OPERATIONS LABORATORY EL PASO NATURAL GAS COMPAINY 8645 RAIL ROAD DRIVE EL PASO, TEXAS 79904

RESULTS & INVOICES TO

SAMPLE RECEIPT REMARKS

SECUESTED TURNAROUND TIME

CJ AUSH

D POUTINE

ON THE

U.S.S. GEV. 610

108 47905 let -0001-CC14 -11-8010

CHARGE CODE

SAMPLE NUMBER: S96-0250 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: EMP #3 BEFORE SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:25 SAMPLE DATE: 05/06/96

SAMPLE KEY

SAMPLE NUMBER: S96-0251 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: BAILER BLANK BEFORE SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:35 SAMPLE DATE: 05/06/96

SAMPLE KEY

SAMPLE NUMBER: S96-0252 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: FIELD BLANK

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:40 SAMPLE DATE: 05/06/96

SAMPLE KEY

SAMPLE NUMBER: S96-0253 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #4

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 18:00 SAMPLE DATE: 05/06/96

SAMPLE KEY

SAMPLE NUMBER: S96-0254 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #2A

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 19:42 SAMPLE DATE: 05/06/96

SAMPLE REY

SAMPLE NUMBER: S96-0255 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: DOOMS WATER WELL

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: SAMPLE DATE: 05/07/96

SAMPLE NUMBER: S96-0256 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #3

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 19:45 SAMPLE DATE: 05/07/96

SAMPLE KEY

SAMPLE NUMBER: S96-0257 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #6

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 08:00 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0258 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #5

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 10:15 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0259 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #9

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:25 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0260 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #9 DUPLICATE

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:25 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0261 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #10

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:40 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: \$96-0262 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #11

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 17:04 SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0263 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #1

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: SAMPLE DATE: 05/08/96

SAMPLE KEY

SAMPLE NUMBER: S96-0264 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: PRODUCTION WELL #1

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 11:50 SAMPLE DATE: 05/09/96

SAMPLE KEY

SAMPLE NUMBER: S96-0265 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: BAILER BLANK, MIDDLE OF SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:10 SAMPLE DATE: 05/09/96

SAMPLE REY

SAMPLE NUMBER: S96-0266 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: PUMP BLANK EMP #3, MIDDLE OF SAMPLING

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 12:15 SAMPLE DATE: 05/09/96

SAMPLE KEY

SAMPLE NUMBER: S96-0267 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #7

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 14:15 SAMPLE DATE: 05/09/96

SAMPLE KEY

SAMPLE NUMBER: S96-0268 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: FIELD BLANK

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 13:20 SAMPLE DATE: 05/09/96

SAMPLE KEY

SAMPLE NUMBER: S96-0269 LOCATION: JAL #4 PLANT

MATRIX: WATER

SAMPLE DESCRIPTION: MONITOR WELL ACW #8

S D CONTINUED: S D CONTINUED:

SAMPLE TIME: 15:53 SAMPLE DATE: 05/09/96

SAMPLE NO.: \$96-0264

OA/QC GROUP NO.: Q96-0052

SAMPLE LOCATION: Jal #4 Plant

SAMPLE SITE DESCRIPTION: P.W. #1

SAMPLE DATE (MM/DD/YY): 05/09/96 TIME:11:50

	Analysis	Analysis
	sults (mg/	•/ *
Ammonia (N)		Color
hemical Oxygen_Demand		_ Fluoride
jeldahl Nitrogen_(N)		_ lodide
litrate (N)	_ · <u></u> · <u></u> _	Odor
Hitrite_(N)		Residue,_Total
Oil & Grease		Residue,_Filterable_(TDS) 56.
Organic Carbon		ResidueNonfilterable (TSS)
Orthophosphate (PO ₄)		Residue,_Settleable
Phosphorus, Total (P)		Residue,_Volatile
yanide, Total	·	_ Silica
Yanido, Free		Specific Conductance (umbo) 299
Phenols	·	Sulfate
Ant: imony	·	JULITICE .
Arsenic		Surfactants-MBAS
Barium		
		BHC Isomers
oron		Chlordane
admium		
alcium		Dieldrin
Chromium, Total		Endrin
Chromium, VI		Heptachlor
Copper		Heptachlor Epoxide
fardness_(CaCO ₃)	·	Lindane
Iron		Methoxychlor
-ead		Toxaphene
Magnesium_		2,4-D
Manganese		2,4,5-TP-Silvex
Mercury		2.4,5-T
Vickel		Sulfides
Potassium		Bromoform
Selenium		Bromodichloromethane .
Silver		Carbon_Tetrachloride
Bodium		at 1 . C
Thallium		Chloromethane
linc -	_	Dibromochloromethane .
JH	8.23	Methylene Chloride
Acidity, Total		Tetrachloroethylene .
Alkalinity, Total (CaCO ₂)	82.	Methylene Chloride Tetrachloroethylene 1,1,1-Trichloroethane
Alkalinity, Bicarbonate_(CaCO	3)	Trichloroethylone
romide		Trihalomethanes
Jarbon_Droxide	• _	PCBs ()
Ontoride	31.	Temperature (OC)
Dissolved Oxygen		
COMMENTS:		

ANALYST: John Bennett DATE: 6/21/96

SAMPLE IDENTIFICATION

960449 EPFS SAMPLE ID: SAMPLE NUMBER: S96-0264 **JAL #4** SITE NAME: 05/09/96 SAMPLE DATE: 1150 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: DATE OF BTEX ANALYSIS: 05/14/96 SAMPLE TYPE: Water

6-11-1

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	<3.0	
		Allowed Range
SURROGATE % RECOVERY	102	80 to 120 %

NOTES:

Reported By: mn

DAMPLE NO.: 396-0265

QA/QC GROUP NO.: Q96-0052

DAMPLE LOCATION: Jal #4 Plant

MAMBLE SITE DESCRIPTION: Bailer Blank Middle of Mampling

EAMPLE DATE (MM/DD/YY):05/09/96 TIME: 12:10

	Analys	18		nalysis
	Results (mg/1)	Res	ilra (mg/l
mmonia (N)			Color	
hamical Oxygen_Demand			Fluorido	
jeldahl Nitrogen (N)			Iodide	
itrate (N)			Odor	
			Residue,_Total	
il & Grease			Residue,_Filtcrable_(TDS)	
rganic Carbon			<pre>ResidueNonfilterable (TSS)</pre>	
rthophosphate (PO ₄)			Residue, Scttleable	
hosphorus, Total_(P)			Residue, Volatile	
vanide Toral			Silica	<1
yanido, Free	•		Specific_Conductance_(umho)	1
henols			Sulface	_<12.5
arit, i moriy			Sulfite	
rsenic			Surfactanus-MBAS	
Barium			Turbidity NTU_	· · · ·
Rervllium			BHC Isomers	
loron	<0.	5	Chlordane	
ladmium		·	DDT_lsomers	
'alcium	<1.		Dielarin	
Chromium, Total			Endrin	
Therefore VI			Hebraculor	·
Onner	<0	.01	Heptachlor Epoxide_	
Hardness (CACO.)	<10		Lindane	
Iron	<0	. 05	wetnoxycutor	
head			Toxapnene	-
Magneeium	<1		2,4-D	<u>-</u>
Manganege	<0	. 05	2,4,5-IP-Silvex	
Mercury		•	2,4,5-T	·-
Mickel			Sulfides	• • • • • • • • • • • • • • • • • • • •
Ponassium	_<1		Bromoform	
Salanium		-	BLOWOGICUTOLOMCCHQUE	
Silver		-	Carbon_Tetrachloride	
Sodium	<1			
Thallium		·		
Zinc	<0	.05	Dibromochloromethane	•
рН	5	.86_	Methylene_Chloride	
Acidity, Total		·	_ Tetrachioroethylene	
Alkalinity, Total_(CaCO3)4	•	_ 1.1.1-Trichloroethanc	
Alkalinity, Bicarbonate		•	Trichloroethylene	
Bromide			Trihalomethanes	 •
Carbon_Dioxide			PCBs	
Culoride			Temperature_(OC)	
Dissolved Oxygen		<u>.</u>	Total Petroleum Hydrocarbon	<u>s</u> .
COMMENTS: Nitrate as N				

ANALYST: John Barnett DATE: 6/21/96

EL PASO FIELD SERVICES

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE IDENTIFICATION

EPFS SAMPLE ID: 960450 SAMPLE NUMBER: S96-0265 SITE NAME: **JAL #4** 05/09/96 SAMPLE DATE: 1210 SAMPLE TIME (Hrs): SAMPLED BY: S. Brisbin DATE OF BTEX ANALYSIS: 05/14/96 SAMPLE TYPE: Water

Falls Blank

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	·
ETHYL BENZENE	<1.0	
TOTAL XYLENES	<3.0	
SURROGATE % RECOVERY	103	Allowed Range 80 to 120 %

NOTES:

Reported By: Mh

Approved By: John Sallin

Date: 5/1496__

: AMPLE NO.: 596-0266

OA/QC GROUP NO.: 096 0052

CAMPLE LOCATION: Jal #4 Plant

CAMPLE SITE DESCRIPTION: EMP #3 Middle of Sampling

NAMPLE DATE (MM/DD/YY):05/09/96 TIME: 12:15

	Analysis	Analysis
	ults (mg/l)	Results (mg/
Ammonia (N)		Color
themical Oxygen_Demand		Fluoride 0.5
Geldahl_Nitrogen_(N)	<u> </u>	Iodide
Vitrate (N)	_<1.25	Odor
Nitrite (N)		Residue,_Total
Dil & Grease		Residue,_Filterable_(TDS) 174.
rdanic Carbon		ResidueNonfilterable_(TSS)
orthophosphate (PO ₄)		Residue, Settleable
Phosphorus, Total (P)		Residue,_Volatile
original distriction of the state of the sta		- Silica - 62
'vanide, Free		Specific_Conductance_(umho) 216.
Phenols		Sulfate18.
Ant impro		Sulfite
Argenic	<u> </u>	Surfactants-MBAS
Barium	- <u> </u>	TurbidityNTU
Reryllium	·	BHC Isomers
Boron		BHC_Isomers Chlordane
Cadmium		DDT_Isomers
		Dieldrin
CalciumCaral		Endrin
Chargemiann VI	·	Heptachlor
Chromium, VI	.0.01	Heptachlor_Epoxide
Copper		Lindane
Hardness_(CaCO ₃)		Methoxychlor
Iron		Toxaphene
Lead		2 4-D
Magnesium	10.	2,4-D
manganese	<0.03_	2,4,5-TP-Silvex
Mercury		2,4,5-T
Nickel	•	Sulfides
Polassium	1	Bromoform Promodichloromethano
Selenium		Bromodichloromethane
Silver		Carbon_Tetrachloride
Sodium		
Thallium		
Zinc	<0.05_	-
рН	9.09_	
Acidity, Total		Tetrachloroethylene
Alkalinity, Total_(CaCO3)	4·	_ 1,1,1-Trichloroethane
Alkalinicy, Bicarbonate (CaCC		
Bromide	<1.25_	
Carbon_Dioxide	·_	PCBs()
Chitoride	29	
Dissolved Oxygen	<u> </u>	Total Petroleum Hydrocarbons .
COMMENTS: Nigrate as N		
	, 1	
110	7	1/6:
ANALYST: John Bennet	7.′	DATE: 6/21/96

EL PASO FIELD SERVICES

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE IDENTIFICATION

EPFS SAMPLE ID: 960451 SAMPLE NUMBER: S96-0266 **JAL #4** SITE NAME: 05/09/96 SAMPLE DATE: 1215 SAMPLE TIME (Hrs): SAMPLED BY: S. Brisbin DATE OF BTEX ANALYSIS: 05/14/96 SAMPLE TYPE: Water

3 EMP After Ruge

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	2.46	
TOLUENE	2.02	
ETHYL BENZENE	1.66	
TOTAL XYLENES	< 3.0	
SURROGATE % RECOVERY	97.9	Allowed Range 80 to 120 %

NOTES:

Reported By: MI

Approved By: Alu Swella

MM- 4 NO.: \$96-0267

QA/QC GROUP NO.: Q96 0052

MANTA LOCATION: Jal #4 Plant

SAMELE SITE DESCRIPTION: ACW #7

SAMPLE DATE (MM/DD/YY): 05/09/96 TIME:14:15

	alysis		Analysis
Resul	ts (mg/l		Regules (mg/1
mmonra (N)		Color	
iemical Oxygen Demand	· <u>·</u>	Fluoride	
ctdatd Nicrogen_(N)	·	lodide	
trate (N)	·	Odor	*
trite (N)		Residue,_Total	<u>. </u>
1 & Grease		Residue,_Filterable_(TDS	7920,
rganic Carbon	·	_Residue,_Nonfilterable (TSS)
chophosphale_(PO ₄)		Residue,_Settleable	
nosphorus, Total_(P)		Residue,_Volatile	
vanide, Total	· 	Silica	
/anide, Free		_Specific_Conductance_(um	ho) 12990.
nenols	·	Sulfate	
it imony		Sulfice	
rsenic		Surfactants-MBAS	
irium	·	Turbidity N	TU .
erylliom	·	BHC_Isomers	
oron	·	Curordane	
odmium	·_	DDT_Isomers	
alcium		Dieldrin	
hromium, Total	·		
romium,_VI	<u> </u>	Heptachlor	·
opper		_ Heptachlor_Epoxide	
ardness_(CaCO3)	·	Lindane	
ron			
		Toxaphene	
agnesium	·	2,4-D	
anganese		2,4,5-TP-Silvex	
ercury		2,4,5-T	·
ickel		Sulfides	· · · · · · · · · · · · · · · · · · ·
otassium		Bromoform	
elenium		Bromodichloromethane	
ilver		Carbon_Tetrachloride	•
odium		Chloroform	
hallium	·	Chloromethane	
ine		_ Dibromochloromethane	· · ·
II	7.22	Methylene_Chloride	
cidity, Total		Tetrachloroethylene_	
lkalinity, Total (CaCO ₃)	_361	1,1,1-Trichloroethane	
<pre>lkalinity, Bicarbonate_(CaCO₃)</pre>		Trichloroethylene	
romide	·	Trihalomethanes	
arbon Dioxide		_ PCBs()	· · <u> </u>
hloride	3990		
issolved Oxygen		Total Petroleum Hydrocar	bons
OMMENTS:			

EL PASO FIELD SERVICES

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE IDENTIFICATION

960452 EPFS SAMPLE ID: S96-0268 SAMPLE NUMBER: **JAL #4** SITE NAME: SAMPLE DATE: 05/09/96 1230 SAMPLE TIME (Hrs): SAMPLED BY: S. Brisbin DATE OF BTEX ANALYSIS: 05/14/96 Water SAMPLE TYPE:

Fuld Black

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	-
ETHYL BENZENE	<1.0	
TOTAL XYLENES	<3.0	
_		Allowed Range
SURROGATE % RECOVERY	104	80 to 120 %

NOTES:

Reported By: Mh

Approved By: The July

Date: 5/16/96

TRANSMISSION OPERATIONS LABORATORY SAMPLE REPORT OA/OC GROUP NO.: Q96-0052 MAMPLE NO.: \$96-0269 NAMELE LOCATION: Jal #4 Plant AMPLE SITE DESCRIPTION: ACW #8 SAMPLE DATE (MM/DD/YY): 05/09/96 TIME:15:53 SAMPLE COLLECTED BY: Steve Brisbin Analysis Analysis Results (mg/l) Results (mg/l) Color ______ Ammonia (N) Chemical Oxygen Demand Fluoride Kjcldahl Nitrogen (N) ______ . ___ lodide________ Odor____ Nitrice (N) ______ Residue,_Total____ Oil & Grease ... Residue, Filterable_(TDS) 36980. Organic_Carbon ... Residue, Nontilterable_(TSS) Residue, Nonfilterable (TSS) Orthophosphace_(PO₄)______Residue,_Settleable_____. Phosphorus, Total_(P)______. Residue, Volatile_____. Cyanide, Total _______ Silica______ Cyanide, Free ______ Specific_Conductance_(umbo) 44500 Antimony Sulfite Arsenic . Surfactants-MBAS Turbidity NTU Barium Beryllium _____ BHC_Isomers Boron _____ Chlordane_____ Cadmium ____ DDT_Isomers_____ Calcium _____ Dieldrin _____ Chromium, Total ____Endrin____ Chromium, VI .____ Heptachlor______. Heptachlor_Epoxide____. llardness_(CaCO₃)______Lindane___ fron ________. Methoxychlor_______. liead_______Toxaphene_________ Magnesium . 2,4-D Manganese ______. 2.4,5-TP-Silvex_____. Nickel______Sulfides_____ Potassium _____ Bromoform Selenium _____ Bromodichloromethane _____ Silver _____. Carbon_Tetrachloride_____. Sodium _____ Chloroform_____ Thallium ____ Chloromethane _____ _____Dibromochloromethane Zinc ________6.87_ Mcchylene_Chloride_____ Acidity, Total Alkalinity,_Bicarbonate_(CaCO₃)____.__Trichloroethylene_____. .____Trihalomethanes_____. Bromide

Carbon Dioxide . PCBs () . Chloride . 14750. Temperature (OC) .

ANALYST: John Born H

Dissolved Oxygen___

COMMENTS:

DATE: 6/21/96

Total Petroleum Hydrocarbons

MAMLE NO.: 596-0250

QA/QC GROUP NO.: Q96 0052

AMULE LOCATION: Jal #4 Plant

DAMPIE SITE DESCRIPTION: EMP #3 Before Purging

DAMELE DATE (MM/DD/YY):05/06/96 TIME: 14:25

	Analysi	ទ		Analysi	
	Results (m	g/1)	R	esults ((mg/l
mmoneia (N)	·		Color		
homical Oxygen_Demand			Fluoride	0 .	. 72
jeldahi Nitrogen (N)			Iodide		. ,
trate (N)		c	Odor		
irrite (N)	···		Residue. Total		
(1 & Grease			Residue, Filterable (TDS)	676.	
rganic Carbon			Residue, Nontilterable (TS		
ri hophosphate (PO ₄)			Residue,_Settleable		·
hosphorus, Total (P)			Residue, Volatile		
yanide. Total			Silica	45.	
yanide, Free			Specific_Conductance_(umho		
henols			Sulface	192.	•
nt imony			Sulfite		
rsenic			Surfactants-MBAS		
arium			TurbidityNT'U		
eryllium			BHC_Isomers		
oron	<0.5		Chlordane		
admium			DDT_Isomers		
alcium	132.		Dieldrin		
bromium Total	•		Endrin		•
bromium. VI			Heptachlor		•
topper	<0.0)1	Heptachlor_Epoxide		
lardness (CaCO ₂)	330.		Lindane		·
ron	0.3	3	Methoxychlor		·
ead			Toxaphene		•
Magnesium	21.		2,4-D		•
Manganese	0.0	05	2,4,5 TP-Silvex		•
Mercury			2.4.5-T		•
Nickel					•
Potaggium	6.		Bromoform_		·
Selenium					•
Silver					
Sadium	72.		Chloroform		
Challium			Chloromethane		
Sinc	<0.	05	Dibromochloromethane		
oll	7.0	69			
Acidity, Total			Tetrachloroethylene		·
Alkalinity, Total_(CaCO ₃)_	138.				٠.,
Alkaliniry, Bicarbonate_(C			•		
Riomide			Trihalomethanes		
Carbon Dioxide			PCBs()		_ •
Chloride	123.		Temperature_(^C)		•
Dissolved Oxygen			Total Perroleum Hydrocarb	ons	
COMMENTS: Nitrate as N					
Edulation MICEGIC CO M					

ANALYST: John Bennett

EL PASO FIELD SERVICES

FIELD SERVICES LABORATORY ANALYTICAL REPORT

SAMPLE IDENTIFICATION

	•	
EPFS SAMPLE ID:	960426	,
SAMPLE NUMBER:	S96-0250	
SITE NAME:	JAL #4	
SAMPLE DATE:	05/06/96	
SAMPLE TIME (Hrs):	1425	
SAMPLED BY:	S. Brisbin	
DATE OF BTEX ANALYSIS:	05/12/96	
SAMPLE TYPE:	Water	

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	< 1.0	
TOLUENE	1.14	-
ETHYL BENZENE	< 1.0	
TOTAL XYLENES	< 3.0	
		Allowed Range
SURROGATE % RECOVERY	100	80 to 120 %

NOTES:

Announced and Art. Level is

n..... </15/4/.

Renorted Rv. MA

*AMPLE NO.: 596-0251

QA/QC GROUP NO.: Q96-0052

DAMPLE LOCATION: Jal #4 Plant

NAMPLE SITE DESCRIPTION: Bailer Blank Before Sampling

SAMPLE DATE (MM/DD/YY):05/06/96 TIME: 14:35

Re	Analysis sults (mg/l)) Results (mg/l
Ammonia (N)	·	Color
Themical Oxygen Demand		Fluoride<0.01
Geldahl Nitrogen (N)		
Vitrate (N)	<1.25	Odor
Nitrite_(N)		Residue, Total
Oil & Grease		Residue, Filterable (TDS) <10.
Organic Carbon		Residue, Nonfilterable (TSS)
Drihophosphare (PO ₄)		
chosphorus, Total (P)		Residuc,_Volatile
Cyanide, Free		
thenols		
		- 361.
Arsenic		
Barium		TurbidityNTU
Beryllium		BHC_Isomers_
Boron	<0.5	Chlordane
Cadmium		
Calcium	_	Dieldrin
Chromium, Total		Endrin
Chromium, VI		Heptachlor
Copper	 <0.01	Heptachlor_Epoxide
Hardness (CaCO ₂)		Lindane
Iron	<0.05	Methoxychlor
Lead		Toxaphene
Magnesium	<1.	2,4-D
Manganese	<0.05	2,4,5-TP-Silvex_
Mercury		2,4.5-T
Nickel		Sulfides
Potassium		Bromoform
Selenium		Bromodichloromethane
Silver		Carbon_Tetrachloride
Sodium		Chloroform
Thallium		
Zinc	<0.05	
pll		
Acidity, Total		
Alkalinity, Total (CaCO3)	4	
Alkalinity,_Bicarbonate_(CaC		
Bromide		•
Carbon Dioxide	·	PCBs ()
Chloride	<10.	Temperature_(OC)
Dissolved Oxygen		Total Petroleum Hydrocarbons
COMMENTS: Nitrate as N		
		and the second of the second o
ANALYST: John Bernes	#	/ /-,

SAMPLE IDENTIFICATION

EPFS SAMPLE ID:	960427
SAMPLE NUMBER:	S96-0251
SITE NAME:	JAL #4
SAMPLE DATE:	05/06/96
SAMPLE TIME (Hrs):	1435
SAMPLED BY:	S. Brisbin
DATE OF BTEX ANALYSIS:	05/12/96
SAMPLE TYPE:	Water

REMARKS:

Property

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	<3.0	
		Allowed Range
SURROGATE % RECOVERY	100	80 to 120 %

NCTES:

Reported By: My An

Approved By: Jol- Jarle

Dato: 5/13/94

MAMELE NO.: \$96-0252

QA/QC GROUP NO.: Q96-005%

CAMPLE LOCATION: Jal #4 Plant

AMEND SITE DESCRIPTION: Field Blank

MAMPLE DATE (MM/DD/YY):05/06/96 TIME: 14:40

SAMPLE COLLECTED BY: Steve Brisbin

	alysis		Analysis Bults (mg/l
	ts (mg/		
munOnia (N)		_ Color	
hemical Oxygen_Demand	*	Fluoride	
jeldahl Nitrogen (N)		Iodide	
itrate (N)	_<1.25	Odor	· · ·
itrite (N)		Residue,_Total	·
il & Grease		Residue,_Filterable_(TDS)	
rganic Carbon		_ Residue,_Nonfilterable_(TSS	
rthophosphate (PO ₄)	. <u></u> ·	Residue,_Settleable	·
hosphorus,_Total_(P)		Residue,_Volatile	
yanido, Total		Silica	<1 .
yanido, Pree		<pre> Specific_Conductance_(umbo);</pre>	1
thenols		Sulfate	,<12.5
ntimony		Sulfite	
rsenic		Surfactants-MBAS	
arium		TurbidityNTU_	
Bervllium		BHC_Isomers	·
boron	<0.5	Chlordane	
ladmium		DDT Isomers	<u> </u>
alcium	<1.	Dieldrin	_ <u></u>
Turomium. Total		Engrin	
Thromium. VI	_	Heptachlor	
Copper	<0.01	Heptachlor_Epoxide	
Hardness (CaCO3)	 <1	Lindane	
Iron	<0.05	Methoxychlor	
lead	·	Toxaphene	 ,
Magnesium	<1.	2,4-D	
Manganese	<0.05	2,4,5-TP-S11vex	
Mercury	-	2,4,5-T	·
Nickel		Sulfides	
Potassium	<u> </u>	Bromotorm	
Selenium		Bromodichloromctname	·
Silver		Carbon_Tetrachloride	
Sodium	<u>~1</u>	Chloroform	·
Thallium		Chloromethane	
Zinc	<0.05	Dibromochloromethane	
рН	5.80	Methylene_Chloride	
ACIGICY, IOCAL		Tetrachloroethylene	
Alkalinity, Total_(CaCO3)	4.	1,1,1-Trichloroethane	
Alkalinity, Bicarbonate_(CaCO ₃)		Trichloroethylene	
Browide		Trihalomethanes	
Carbon Dioxide		PCBS(///	
Chloride	<10.	Temperature_(OC)	
	-	Total Petroleum Hydrocarbo	

ANAGYST: John Bennett

DATE: 6/21/96

SAMPLE IDENTIFICATION

960428 EPFS SAMPLE ID: S96-0252 SAMPLE NUMBER: **JAL #4** SITE NAME: 05/06/96 SAMPLE DATE: 1440 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

Fall Cake

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	1.22	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
		Allowed Range
SURROGATE % RECOVERY	100	80 to 120 %

NOTES:

Annound Ru Della Fella

Date: 5/13/96

Renorted Ru. Mh

TRANSMISSION OPERATIONS LABORATORY SAMPLE REPORT MAMPLE NO.: 396-0253 OA/OC GROUP NO.: 096 0052 'AMPLE LOCATION: Jal #4 Plant JAMPLE SITE DESCRIPTION: ACM #4 DAMPLE DATE (MM/DD/YY): 05/06/96 TIME: 18:00 SAMPLE COLLECTED BY: Steve Brisbin Analysis Analysis Results (mg/l) Results (mg/l) _____Color____ Ammonia (N) Chemical Oxygen Demand _____ Fluoride_____ Kjeldahl Nitrogen (N) .___ Iodide_____ Nitrate (N) _____. Odor____ Nitrite (N) Residue, Total Residue, Filterable (TDS) 28950. Organic Carbon ______ Residue, _Nonfilterable_(TSS) Orchophosphace (PO₄) ______ Residue, Settleable______ Phosphorus, Total_(P)_____. Residue,_Volatile_____ Cyanide, Total______ Silica____ Cyanido, Free _______ Specific_Conductance (umho)_44600, Phenols____ Sulface_____ Antimony .____Sulfite_____ Surfactants-MBAS____ Arsenic Barium ______ Turbidity ______ NTU _____ BHC_Isomers_____. Beryllium Boron _____ Chlordane_____. DDT_1somers____ Cadmium_____ Calcium Chromium, Total _____ Endrin_____ ._____Heptachlor_Epoxide_____. Copper Hardness (CaCO₃)_________Lindane______ Iron _____ Methoxychlor_____ Magnesium 2,4-D _____ Mercury 2,4,5-T ______Sulfides______ Nickel____ Potassium _____ Bromoform Selenium ____ Bromodichloromethane _____ Silver _____ Carbon_Tetrachloride _____ Thallium .____ Chloromethane_____ pH 7.19 Methylene Chloride Acidity, Total Tetrachlorosthylene Dibromochloromethane____. Alkalinity, Bicarbonace_(CaCO₃)_____Trichloroethylene______ Trihalomethanes Bromide PCBs___(__) Chloride 16920. Temperature (OC) Dissolved Oxygen Total Petroleum Hydrocarbons COMMENTS: DATE: 6/21/94 ANALYST: John Burnet

TRANSMISSION OPERATIONS LABORATORY SAMPLE REPORT OAMONE NO.: \$96-0254 QA/QC GROUP NO.: Q46-0052

DAMPER LOCATION: Jal #4 Plant

SAMPLE SITE DESCRIPTION: ACW #2A

DAMPLE DATE (MM/DD/YY): 05/06/96

TIME: 19:42

Analysis		
Results (mg		ng/I
Ammoria (N)	Color	
Themaical Oxygen Demand	Fluoride	
Goldahl Nitrogen (N)	Iodide	
Vitrate (N)	Odor	
Nitrice (N)	Residue, Total	
Dil & Grease	Residue, Filterable (TDS) 17060.	
organic Carbon	Residue, Nonfilterable (TSS)	
Orthophosphale_(PO ₄)	Residue,_Settleable	
Phosphorus, Total_(P)	Residue, Volarile	
Cyanide, Total	Silica	
Cyanide, Free	Specific_Conductance_(umho)_28230.	
Phenols	Sulface	
Antimony	Sulfite	
Arsenic	Surfactants-MBAS	
Rarium	NTUNTU	
Beryllium	BHC_Isomers	
Boron	Chlordane	
Cadmium		
Calcium	Dieldrin	
Chromium, Total	Endrin	
Chromium,_V1	Heptachlor Froyida	
Copper	Heptachlor_Epoxide	
Hardness (CaCO ₃)		
Tron		
Lead		
Magnesium		
Manganese		
Mercury		
Nickel		
Potassium Selenium		
Silver		
Sodium	-1 3	
Thallium		
Zinc -	Dibromochloromethane	
рн9.0	05_ Methylene_Chloride	·
Acidity, Total	Tetrachloroethylene	·
Alkalinity, Total_(CaCO ₃)264	1,1,1-Trichloroethane	
Alkalinity, Bicarbonate (CaCO3)1860.	Trichloroethylene	·
Bromide	Trihalomethanes .	• ,
Carbon Dioxide .	PCBs() .	• .
Chloride 9450.	Temperature (OC)	٠
Dissolved Oxygen .	Total Petroleum Hydrocarbons .	<u></u>
COMMENTS:		
100 11	, , , , ,	
ANALYST: John Bennett	DATE: 6/21/96	

MMHE NO.: \$96-0255

QAZQC GROUP NO.: Q96 0052

SAMPLE LOCATION: Jai #4 Plant

:AMPLE SITE DESCRIPTION: Dooms Water Woll

DAMPLE DATE (MM/DD/YY):05/07/96 TIME: 09:00

	Analysis		nalysis
	Results (mg/l)		ulta (mg/l
mmonia_(N)		Color	
hemical Oxygen_Demand		Fluoride	0.52
[jeldahl Nitrogen_(N)		lodide	
itrate (N)	1.20	Odor	٠
litrite (N)		Residue, Total	
nil & Grease		Residue,_Filterable_(105)	
rganic Carbon		Residue,_Nonfilterable (TSS)	
): thephosphate (PO ₄)		Residuc, Sectleable	٠.
hosphorus, Total (P)		Residue,_Volatile	- ,
'yanido, Total		Silica	61.
'yanide, Free			619.
heno1s			84.
Antimony			
Arsenic			
3arium			
Beryllium			
Boron	<0.5	Chlordane	
Cadmium		DDT Isomers	
Calcium			
Chromium, Total			
Chromium,_VI		Heptachlor	
Copper		Heptachlor_Epoxide	•
Hardness (CaCOs)	175.	Lindane	
Tron	0.6	Methoxychlor	
Lead		Toxaphene	
Magnegium	17	2,4-D	
Managaga	<0.05	2.4,5-TP-Silvex_	
Marcury		2.4.5-T	
Nickel		Sulfides	
Dot age tum		Bromoform	
Selenium		Carbon_Tetrachloride	
Sodium		Chloroform	
SodiumThallium		Chloromorhane	
	-0.05	Dibromochloromechane	
Zinc	7 73		
pll Anidima trans		Tetrachloroethylene	
Addity, Total (Caco.)		1,1,1-Trichloroethane	
Alkalinity, Total_(CaCO ₃)		Trichloroethylene	
Alkalinity, Bicarbonate (Tribalomethanes	
Bromide		PCBs ()	
Carbon Dioxide		Temperature_(OC)	
Chloride		Total Petroleum Hydrocarbon	S
Dissolved Oxygen		Total For Grade Hydrocarbon.	·
COMMENTS: Nitrate as N			
Λ , Λ	1/2	1 /	

SAMPLE IDENTIFICATION

960429 EPFS SAMPLE ID: S96-0255 SAMPLE NUMBER: **JAL #4** SITE NAME: 05/07/96 SAMPLE DATE: 0900 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: DATE OF BTEX ANALYSIS: 05/12/96 SAMPLE TYPE: Water

ACW- 3

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
		Allowed Range
SURROGATE % RECOVERY	101	80 to 120 %

NOTES:

Amendo Vil. Lide

Date: 5/13/44

SAMPLE NO.: 596-0256

QAZQC GROUP NO.: Q96-0052

SAMPLE LOCATION: Jal #4 Plant

SAMPLE SETE DESCRIPTION: ACW #3

SAMPLE DATE (MM/DD/YY): 05/09/96 TIME:19:45

	Analysis Results (mg/l)	Analysis Results (mg/l
Ammonia (N)		Color
Themical Oxygon Demand	··	Fluoride
Geldahl Nitrogen (N)	·	Iodide
Nitrate (N)	(Odor
Nitrito (N)		Residue, Total
Dil & Grease		Residue, Filterable (TDS) 12460.
Organic Carbon		Residue, Nonfilterable (TSS)
Orthophosphate (PO ₄)		Residue, Settleable
Phosphorus, Total (P)		Residue, Volatile
Cyanide, Total		Silica
Cyanide, Proc		Specific Conductance (umho) 19420.
		Sulfate
Phenols		
		C Farance MDAC
Arsenic		TurbidityNTU
		BHC Isomers
		Chlordane
Boron		DDT_Isomers
Cadmium		Dieldrin
Calcium		Dieldrin
Chromium, Iotal		Endrin
Chromium, VI		Heptachlor Epoxide
Copper		
Hardness_(CaCO ₃)		Lindane
Iron		
Lead		Toxaphene
Magnesium		2,4-D 2,4,5-TP-Silvex
Manganese		
Mercury		2,4,5-T
Nickel		Sulfides
		Bromoform
Selenium		Bromodichloromethane
Silver		Carbon Tetrachloride
Sodium	·	Chloroform
Thallium		Chloromethane
Zinc		Dibromochloromethane
На	6.83	Methylene_Chloride
Acidity, Total		Tetrachloroethylene
Alkalinity, Total_(CaCO ₃		1,1,1 Trichloroethane
Alkalinity, Bicarbonate	-	
Bromide		Trihalomethanes
Carbon Dioxide		PCB9 ()
Chloride		Temperature (OC)
1		Total Petroleum Hydrocarbons
COMMEN'ES:		

DAMPLE NO.: \$96-0257

OA/QC GROUP NO.: Q96-0652

MAMPLE FOCATION: Jal #4 Plant

DAMPLE SITE DESCRIPTION: ACW #6

TIME: 08:00

	Analysis		ysis
	Results (mg/l)		ਬ (mg/1
Ammento (N)		Color	
hemical Oxygen Demand	···	Fluoride	6.4
Goldahl Nirrogen (N)		Iodide	•
Vitrale_(N)	<1.25	Odor	
Nitrite (N)		Residue, Total	•
Oil & Grease		Residue, _Filterable_(TDS)64	60
∍rganic Carbon	·	<pre>Residue,_Nonfilterable_(TSS)</pre>	
Jilhophosphate (PO ₄)	•	Residue, Settleable	 •
Phosphorus, Total (P)		Residue,_Volatile	.
Cyanide, Total		Silica	40.
Cyanide, Free		Specific Conductance_(umho)_106	20
Phenois			48.
		Sulfice	
Arsenic		Surfactants -MBAS	
Barium	***************************************	TurbidityNTU	
Bervllium		BHC_Isomers_	
Boron	1.3	Chlordane	
Cadmium		DDT_Isomers	
On the Same	י דר	Dieldrin	···
		Endrin	
Chromium VI	 ·	Heptachlor	·
Copper		Heptachlor_Epoxide	
Handones (CaCO-)	176	Lindane	
Tran	1/5	Merhovychlor	 '
Iron		Methoxychlor	·
Magnogium		Toxaphene	**************************************
magnes i um		2,4-D	
manganese		2,4,5-TP-Silvex	
		2,4,5-T	
Nickel		Sulfides	—·—
Potassium			
Selenium			و جريم ۽ پسمت
Silver		Carbon_Tetrachloride	
Sodium	2380		
Thallium			
Zinc	<0.05	Dibromochloromethane	
pH	7.69	Methylene_Chloride	
Acidity, Total	·	Tetrachloroethylene	
Alkalinity, Total_(CaCO ₃	1396	1,1,1-Trichloroethane	
Alkalinity, Bicarbonate			. •
Bromide	<1.25_	Trihalomethanes	
Carbon_bioxide	·····	PCBs ()	
Chloride	2880	_ Temperature (^O C)	
Dissolved Oxygen		Total Petroleum Hydrocarbons	·
COMMENTS: Nitrate as N			
	_		
4		/ /	
ANALYST: John Bann	_#1_	DATE: 6/21/96	

SAMPLE IDENTIFICATION

960430 EPFS SAMPLE ID: S96-0257 SAMPLE NUMBER: **JAL #4** SITE NAME: SAMPLE DATE: 05/08/96 0800 SAMPLE TIME (Hrs): SAMPLED BY: S. Brisbin 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	4.08	
TOLUENE	1.58	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
		Allowed Range
SURROGATE % RECOVERY	101	80 to 120 %

NOTES:

Annound Au Id. Trulle

Date: 5/13/44

Banarad Bro 177 M

SAMELE NO.: 596-0258

QA/QC GROUP NO.: Q96-0052

CAMPLE LOCATION: Jal #4 Plant

DAMPLE DITE DESCRIPTION: ACW #5

SAMPLE DATE (MM/DD/YY):05/08/96 TIME: 10:15

	Results $lmg/1$	Results (mg/l)
nmonia (N)	··	Color
memical Oxygen Demand		Fluoride0.42
jeldahl Nitrogen_(N)		Iodide
itrate (N)	5.00	Odor
itrite (N)		Residue, Total
il & Grease		Residue, Filterable (TDS) 2460.
rganic Carbon		Residue, Nonfilterable (TSS)
rthophosphale_(PO ₄)	•	Residue, Sectleable
hosphorus, Total_(P)	•	Residue,_Volacile
yanide, Total		Silica35
yanido, Free		
henols		
ntimony		Sulfite
vsenic		Surfactants-MBAS
arium		
eryllium		· ——
oron	0.8	Chlordane
admium		
alcium	167.	Dieldrin
hromium, Total		
hromium. VI	,	Heptachlor
opper	0.01	Heptachlor_Epoxide
lardness_(CaCO3)		Lindane
ron		Methoxychlor
ead		Toxaphene
Magnesium	24.	2,4-D
langanese		2,4,5-TP-Silvex
lercury		2,4,5-T
lickel	·	Sulfides
'orassium	8.	Bromoform
Selenium		Bromodichloromethane
Silver		Carbon_Tetrachloride
Sodium	506.	Chloroform
Phallium		Chloromethane
Zinc	<0.05	Dibromochloromethane
ЭН	7.15	Methylene Chloride
Acidity, Total	•	
Alkalinity, Total_(CaCO	3) 190.	
Alkalinity, Bicarbonate		
		Trihalomethanes
Carbon_Dioxide		PCBs ()
Chloride	519	Temperature_(OC)
Dissolved Oxygen		Total Petroleum Hydrocarbons
COMMENTS: Nitrate as N		

SAMPLE IDENTIFICATION

960431 EPFS SAMPLE ID: S96-0258 SAMPLE NUMBER: **JAL #4** SITE NAME: 05/08/96 SAMPLE DATE: 1015 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: SAMPLE TYPE: Water

Mry.

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
SURROGATE % RECOVERY	104	Allowed Range 80 to 120 %

NOTES:

Vil Lord

5/2/11

SAMPLE NO.: 596-0259

OA/QC GROUP NO.: Q96 -0012

DAMELE ROCATION: Jal #4 Plant

MAMBLE SITE DESCRIPTION: ACW #9

HAMPLE DATE (MM/DD/YY):05/08/96

TIME: 12:25

A	nalysi	.9		unalysis
Resu	າເສ (ກ	ng/1)	Res	ults (mg/
mmonia (N)			Color	
hemodal Oxygen Demand			Fluoride	0.35
jeldaht Nicrogen (N)			Iodide	-
litrate (N)	<1.7	25	Odor	
fitrite (N)			Residue, Total	
Oil & Grease			Residue, Filterable (TDS)	4210.
organic Carbon			- (i) (maga)	
orthophosphate (PO ₄)			Residue, Settleable	
hosphorus, Total (P)			Residue, Volatile	•
Transide Tratal			Silica	6U.
Cyanide, Free			Specific Conductance (umho)	7530
henois			Sulfate	322.
Antimorty			Sulfite	
Arsenic			Surfactants MBAS	
Barium	·		Turbidity NTU	
Beryllium			BHC Isomers	
Boron		5	Chlordane	
Cadmium		<i></i>	DD1 Igomers	
Calcium	508		Dieldrin	
CalciumChromium, Total	500.		Endrin	
Character VI	<u> </u>		Heptachlor	
Chromium, VI	~ ^.		Heptachlor_Epoxide	
Copper			Lindane	
Hardness (CaCO ₃)			Methoxychlor	
Iron		•	Toxaphene	
Magnesium	193		2.4-D	
Manganese Manganese	_105.	49	2.4.5-TP-Silvex	
Manganese	_		2,4,5-T	
Mercury				
Nickel	17			
Potassium				
Selenium				
Silver	607		-	
Sodium			Chloromethane	
Thallium		•	Dibromochloromet hane	
Zinc	<')	. vo	Dibromochloromethane Methylene Chloride	*
plt	. — в	. , ,	-	
Acidity, Total		٠	_ 16(100110101011)	
Alkalinity, Total_(CaCO ₃)			· -	
Alkalinity, Bicarbonate_(CaCO		·	1.	
Bromide	3	. • _		
Carbon Dioxide	2210	•		
Chloride	_ 2210	`		ns .
Dissolved Oxygen		·	Total Teleporedin Hydroxida.ptv	<u></u> -
COMMENTS: Nitrate as N				
	<i> </i>			
ANALYST: John Bernett	-		La las	
ANALYSTS //. / Decease //			DATE: 6/21/96	

SAMPLE IDENTIFICATION

960432 EPFS SAMPLE ID: S96-0259 SAMPLE NUMBER: SITE NAME: **JAL #4** 05/08/96 SAMPLE DATE: 1225 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

1. Si - Og

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	-
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
SURROGATE % RECOVERY	102	Allowed Range 80 to 120 %

NOTES:

Reported By: FY)

Approved By:

Jed. Lasth

Date: 5/19/4/

SAMPLE NO.: \$96-0260

OA/OC GROUP NO : Q96 0652

MAMPLE LOCATION: Jal #4 Plant

NAMPLE NETE DESCRIPTION: ACW #9 Duplicate

SAMPLE DATE (MM/DD/YY):05/08/96 TIME: 12:25

SAMPLE COLLECTED BY. Stove Brisbin

	nalysis	n	Analysis
	lts $(mg/1)$		anjra (wd/)
Ammonia (N)		Color	
hemical Oxygen_Demand		Fluoride	0.29
Geldahl Nitrogen (N)	·	Iodide	
litraic (N)	<1.25	Odor	·
Nitrite (N)		Residue, Total	· .
Dil & Grease	·	ResidueFiltcrable_(TDS)	
Organic Carbon		Residue, Nonfilterable_(TSS	
Orthophosphate (PO ₄)		ResidueScttleable	
Phosphorus, Total_(P)		Residue, Volatile	·- ·
Cyanide, Total		Silica	35.
Yanide, Free		Specific_Conductance_(umho)	_ 3890.
Phenols		Sulfate	
Antimony		Sulfite	
Arsenic		Surfactants-MBAS	
Barium		TurbidityNTU	
Beryllium		BHC_Isomers	
Boron	<0.5	Chlordane	
Cadmium		DDT_Isomers	
		Dieldrin	
CalciumChromium,_Total			
		Heptachlor	
Chromium, _VI	_ 0.02 _	Heptachlor_Epoxide	
Copper	1010	Lindane	
Mardness_(caco3)	0.5	Methoxychlor	
Tron	0.3	Toxaphene	
Lead		2 A-D	
Magnesium	^{3/.}	2 4 5-TP-Silver	
manganese	0./3	2 4 5-T	
Morcury		Sulfides	··
Nickel	· ,	Bromoform	··
Potassium			
Selenium		Corbon Torrachlorido	
Silver	. ·	Calbon_lettachioride	
Sodium	_ 373	Culorototm	
Thallium_		Chloromethane	
Zinc		Dibromochloromethane	
bн		Methylene_Chloride	
Acidity, Total	- 	Tetrachlorocthylene	
Alkaliniry, Total_(CaCO ₃)	220	1,1,1-Trichloroechane	*
Alkaliniry, Bicarbonate_(CaCO	3)	Trichloroethylono	
Bromide	<1.25_	Trihalomethanes	
Carbon Dioxide		_ PCD3	
Cutoride	_ 1090	Temperature (°C)	
Dissolved Oxygen	<u> </u>	Total Petroleum Hydrocarb	ons
COMMENTS: Nitrate as N			
	/		
ANALYST: John Bennett	<u>′</u>	DATE: 6/21/96	

EL PASO FIELD SERVICES

FIELD SERVICES LABORATORY **ANALYTICAL REPORT**

SAMPLE IDENTIFICATION

960433 EPFS SAMPLE ID: **S96-0260** SAMPLE NUMBER: **JAL #4** SITE NAME: 05/08/96 SAMPLE DATE: 1225 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

ACS STORY

REMARKS: Field Duplicate

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	<1.0	
TOLUENE	<1.0	-
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
		Allowed Range
SURROGATE % RECOVERY	101	80 to 120 %

NOTES:

Me Latel.

Date: \$/3/40

Renarted By YY A

Anninved Rv-

MAMPLE NO.: \$96-0261

OAZOC GROUP NO.: Q96-0052

AMPLE LOCATION: Jal #4 Plant

AMELE SITE DESCRIPTION: ACW #10

** AMPLE DATE (MM/DD/YY):05/08/96 TIME: 14:40

	Analysis Results (mg/l)	Analysis Results (mg/i
mmonia (N)		Color
Nomical Oxygen_Demand		Fluoride0.46
jeldahl Nitrogen_(N)		Iodide
litrate (N)		Odor
litrite (N)		
nit & Grease		
Organic Carbon		
nthophosphate_(PO4)		
hosphorus, Total (P)		Residue,_Volatile
[yanide, Total		
Tyanide, Free		
henols		0 15 .
Ant imony		A 3.61.
Arsenic		Surfactants MBAS
Barium		\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
Reryllium	•	BHC Isomers
Boron	<0.5	Chlordane
Cadmium		DDT_Isomers
Calcium		Dieldrin
Chromium, Total	_	Endrin ·
Chromium, VI		Heptachlor
Copper		Heptachlor_Epoxide
Hardness (CaCO ₃)		Lindane
Iron		
Lead	•	Toxaphene
Magnesium	92.	2,4-D
Manganese	<0.05	2,4,5-1F-S11VEX
Mercury		2,4,5-T
Nickel		Sulfides
Poraggium	8.	Bromoform
Selenium		Bromodichloromethane
Silver		
Sodium	127.	Chloroform
Thallium		
Zinc	<0.05	Dibromochloromethane
pH	7,17	Methylene_Chloride
Acidity, Total		
Alkalinity, Total_(CaCO ₃)	137.	1,1,1-Trichloroethane
Alkalinity, Bicarbonate_(CaCO ₃)	
Bromide		
Carbon Dioxide	 -	PCBs ()
Chloride		Temperature (OC)
Dissolved Oxygen		
COMMENTS: Nitrate as N		
PAGE RELIEF TO A TABLE OF ME IN		

SAMPLE IDENTIFICATION

960434 EPFS SAMPLE ID: S96-0261 SAMPLE NUMBER: **JAL #4** SITE NAME: SAMPLE DATE: 05/08/96 1440 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

1 - 0

REMARKS: Field Duplicate

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	1.22	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	<3.0	
		Allowed Range
SURROGATE % RECOVERY	100	80 to 120 %

NOTES:

and Tun

~ 5/12/G1.

noh

SAMPLE NO.: 596-0262

QA/QC GROUP NO.: Q96-000g

MAMPLE LOCATION: Jal #4 Plant

MAMPLE SITE DESCRIPTION: ACW #11

SAMPLE DATE (MM/DD/YY):05/08/96 TIME: 1/:04

SAMPLE COLLECTED BY: Steve Brisbin

	Analysis	, ·	Analysis
	Results (mg/		Results (mg/.
Ammon (N)		Color	, •
homical Oxygen_Demand	·	Fluoride	0.37
(jeldəhl_Nitrogen_(N)	·	Todide	
Vitrate (N)			
Utrite (N)		Residue,_Total	
Dil & Orease	<u> </u>	_ Residue,_Filterable_(TDS)	
Organic Carbon		Residue,_Nonfilterable_(T	
Orthophosphare (PO ₄)		_ Residue, Settleable	
hosphorus,_Total_(P)	·		
'yanide, Toral	•	Silica	<u>"</u> 50.
yanide, Free		_ Specific_Conductance_(umbo	9840.
Phenois	•	Sulfate	206,
Ant.imony		Sulfite	•
Barium		TurbidityNT	
Bervllium		BHC_Isomers	
Baron	<0.5	Chlordane	
Cadmium		DDT_Isomers	
Calcium	484	Dieldrin	
(hromium (for a)		Endrin	
Chromium, VI		Heptachlor	
Conservation Conse		Heptachlor_Epoxide	
Copper	2110	Lindane	
maraness_(CacO3)	2110	Methowichlor	 '
Lron		Methoxychlor	
Lead	 ·—	Toxaphene	
magnesium		2,4-D	
Manganese		2,4,5-TP-Silvex	
Mercury	·	2,4,5-T	
Nickel	·_	Sulfides	
Potassium		Bromoform	· ·
Selenium		Bromodichloromethane	
Silver		Carbon_Tetrachloride	
Sodium	1160	Chloroform	
Thallium	·	Chloromethane	
Zinc	<0.05_	Dibromochloromethane	
рн	7.25_	Methylone_Chloride	
pH Acidity, Total Alkalinity, Total_(CaCO ₃)_		Tetrachloroethylene	
Alkalinity, Total_(CaCO3)_		1,1,1-Trichloroethane	
Alkalinity, Bicarbonate_(C	CaCO31	Trichloroethylene	
Bromide	<1.25	Trihalomethanes	•
Carbon Dioxide	•	PCBs ()	
Chloride	3120	Temperature (^O C)	•
Dissolved Oxygen			oons .

ANALYST: John Bennett

DATE: 6/21/96

SAMPLE IDENTIFICATION

960435 EPFS SAMPLE ID: S96-0262 SAMPLE NUMBER: **JAL #4** SITE NAME: 05/08/96 SAMPLE DATE: 1704 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: Water SAMPLE TYPE:

P. Can

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	6.76	
TOLUENE	<1.0	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	
SURROGATE % RECOVERY	101	Allowed Range 80 to 120 %

NOTES:

Vil Tall.

and chalqu

MAMILLE NO.: 596-0263

ON/OC CROUP NO.: 096-0052

MANUEL FOCATION: Jal #4 Plant

DAMEDE DESCRIPTION: ACW #1

EAMPLE DATE (MM/DD/YY):05/08/96 TIME: 18:20

Re	Analysis esults (mg/l)	Analysis Results (mg/1)
Ammonia (N)		Color
Chemical Oxygen Demand		Fluoride 2.2
Gieldahl Nitrogen_(N)		Iodide
Nitrate (N)	<1.25	Odor
Nitrite (N)		Residue, Total
Oil & Grease		Residue, Filterable (TDS) 8190
Organic Carbon		
Orthophosphate_(PO ₄)		Residue, Settleable
Phosphorus, Total (P)		Residue Volacile
Cyanide, Total		Silica54.
Cyanido, Free		Specific Conductance (umho) 14620.
Phonois		
Antimony		Sulfite
Arsenic		Surfactants MBAS
Barium		Turbidity NTU .
Beryllium		BHC Isomers
Boxon	— — · <u> </u>	Chlordane
		DDT_Isomers
Cadmium		
Calcium Chromium, Total		· ·
		Heptachlor
Chromium, V1	<u> </u>	Heptachlor_Epoxide
Copper		Lindane
Hardness_(CaCO ₃)		Methoxychlor
Iron		
Lead		2,4-D
Magnesium		2,4,5-TP-Silvex
Manganese		2,4,5-T
Nickel		Bromoform
Potassium	- -°·	Bromodichloromechane
Selenium		Carbon_Tetrachloride
Silver	— '	
Sodium	3070	
Thallium	<u></u>	Chloromethane Dibromochloromethane
Zinc	<0.05_	Mathylana Chloride
pH	8.12_	Methylene_Chloride Tetrachloroethylene
Acidity, Total		<u>.</u>
[Alkalinity, _Total_(CaCO ₃)		1,1,1-fricintoroccumic
Alkalinity, Bicarbonate_(Ca	CO31	
Bromide	<1.25_	Trihalomethanes
Carbon Dioxide	4330	PCBs () Temperature (OC)
Chloride	4130	-
Dissolved Oxygen		TOCAL COLOROUS TAMESONS

ANALYST: John Bennett DATE: 6/21/96

SAMPLE IDENTIFICATION

960436 EPFS SAMPLE ID: S96-0263 SAMPLE NUMBER: **JAL #4** SITE NAME: 05/08/96 SAMPLE DATE: 1820 SAMPLE TIME (Hrs): S. Brisbin SAMPLED BY: 05/12/96 DATE OF BTEX ANALYSIS: SAMPLE TYPE: Water

ACW-1

REMARKS:

EPA Method 8020 (BTEX) RESULTS

PARAMETER	RESULT PPB	QUALIFIER
BENZENE	6.30	
TOLUENE	2.03	
ETHYL BENZENE	<1.0	
TOTAL XYLENES	< 3.0	and the second s
		Allowed Range
SURROGATE % RECOVERY	203	80 to 120 %

NOTES:

Danmard and mh

BFB surrogate recovery is outside acceptable range due to coelution of non-target analyte peak. Recovery of a second surrogate, a,a,a-Trifluorotoluene, was acceptable at 118%.

...... NI full

man distan

FL PASO FIELU SERVICES LAD QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples 344 446, 947 440 through 900452, and 960456 through 900462

ADDITIONAL ANALY FIGAL BLANKS:

SAMPLEID	SOURCE	ug/L	STATUS
AUTO BLANK			
(tenzeno	Horled Water	<10	ACCLETABLE
Uduene	Holled Water	×1.0	ACCEPTABLE
Ethyl berizene	Boiled Water	<10	ACCEPTABLE.
	Boiled Water	<30	ACCEPTABLE

Natrat ac Acceptable

SAMPLE ID	SOURCE	ug/L	STATUS
SOIL VIAL BLANK	Lat MB1461		
Beozene	Vial + Holled Water	<10	ACCUPTABLE
Folgene	Vial + Boiled Water	<1.0	ACCL PT ABLE
f thyt benzeno	Vial - Boiled Water	<10	ACCEPTABLE
Lotal Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative Acceptable

CONTAMINATION	SOURCE	ug/L	STATUS
CARRYOVER CHECK		(Two analyzed with this set)	
Banzene	Vial + Boiled Water	<10	ACCEPTARI F
Loluene	Vial + Hoiled Water	<1.0	ACCEPTABLE
f-thyl banzene	Viat - Boiled Water	<10	ACCEPTABLE
Lotat Xylenes	Vial - Boiled Water	<3.0	ACCEPTABLE

Narrative Acceptable

SAMPLE ID TRIP BLANK	SOURCE 05/14/96	Hgu.	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
foluene	Boiled Water	<1.0	ACCEPTABLE
Cthyl benzana	Boiled Water	<1.0	ACCEPTABLE
Lotal Xylenes	Boiled Water	<30	ACCEPTABLE

Narrative: Acceptable

SAMPLE ID TRIP BLANK	SOURCE (960446)	ug/L	STATUS
Benzene	Boiled Water	<10	ACCEPTABLE
) olderic	Boiled Water	<1.0	ACCEPTABLE
) thy benzene	Boiled Water	<10	ACCUPTABLE
Fotal Xylenes	Rolled Water	حادث عادث عادث عادث عادث عادث عادث عادث ع	ACCEPTABLE

Narrative Acceptable

Reported By

Approved By: The Lattle

Date: 5/16/96

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples 960448, 960449 through 960452, and 960456 through 960462

ABORATORY DUPLICATES:

SAMPLE		SAMPLE	DUPLICATE		ACCEPTABLE		BLE
NUMBER	TYPE	RESULT	RESULT	RPD		YES	NO
960449		ug/L	ug/L		RANGE	····	
Bunzene	Matrix Duplicate	<10	<10	0	+1-35%	Х	
Foluene	Matrix Duplicate	c1 0	<1.0	0	+1-35%	X	
Ethyl benzene	Matrix Duplicate	<10	<10	0	+/- 35 %	X	
m & p Xytene	Matrix Duplicate	<2,0	<2.0	0	+1-35%	X	
n - Xylene	Matrix Duplicate	<10	<1.0	0	<u>+/·35 %</u>	X	

Narrative Acceptable

LABORATORY DUPLICATES:

SAMPLÉ		SAMPLE	[17] The article of the control of t		ACCEPTABLE		
NUMBER	TYPE	RESULT	RESULT		•	YES	NO
960461		ug/L	ւսց/ե		RANGE		
Benzene	Matrix Duplicate	<1.0	<1.0	0	+1- 35 %	X	
Toluene	Matrix Duplicate	<1.0	<1.0	0	•/· 35 %	X	
Ethyl benzene	Matrix Duplicate	<1.0	<1.0	0	•/- 35 %	X	
m & p - Xylene	Matrix Duplicate	<20	<2.0	0	+/- 35 %	x	
o - Xylene	Metrix Duplicate	<1,0	<1.0	0	·1- 35 %	X	

Narrative: Acceptable

LABORATORY SPIKES:

Sample Humbèr 960446		SAMPLE RESULT	SPIKE SAMPLE RESULT	\$	PANGE	ACCEPTABLE YES NO	
Benzene	50.0	<1.0	49.8	99.6	75 - 125 %	X	
Toluene	50.0	<1.0	49.3	98.6	75 - 125 %	X	1
Ethyl benzene	50 0	<1.0	49.1	98.2	75 - 125 %	X	
m & p - Xylene	100.0	. <2.0	97.0	97.0	75 - 125%	×	1
o - Xylene	50.0	<1.0	50.8	101.6	75 - 125 %	X	

Narrative: Acceptable.

LABORATORY SPIKES:

SAMPLE NUMBER 980481	ADOED Ug/C	SAMPLE RESULT ug/L	SPIKE SAMPLE RESUCT UG/L	4	RANGE	ACCEPTABLE YES NO
Benzene	50.0	<1.0	49.3	98.6	75 - 125 %	X
Toluene	50.0	<10	48.7	97.4	75 125%	X
Ethyl benzene	50.0	<1.0	48.3	96.6	75 - 125 %	X
m & p - Xyleme	100.0	<2.0	95.0	95.0	75 - 125%	X
o - Xylene	50.0	<1.0	48.4	96.8	75 - 125 %	X

Narrative: Acceptable

EL PASO FIELD SERVICES

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 900446, 960449 through 960452, and 960456 through 960462.

QA/QC for 05/14/96 Sample Set

LABORATORY CALIBRATION CHECKS, LABORATORY CONTROL SAMPLES:

Nacrativo Acceptable

ABORATORY CALIBRATION CHECKS	S, LABORATURY CON						
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTAE	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
ICV LA-52589		ug/L	ug/L	1		YES	NO
60 ug/l.					RANGE		
Benzine	Standard	50.0	483	96.6	75 - 125 %	X	
' rittette-	Standard	500	48.4	96.8	75 - 125 %	Х	
Ethyl bergene	Standard	500	48 4	968	75 - 1 <i>2</i> 5 %	Х	
m 5 p - Kyteno	Standard	າດວ	967	96.7	75 - 125 %	x	
) Xylene	Standard	50.0	48.5	970	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL		-		
NUMBER	TYPE	RESULT	RESULT	%R		ACCEP	TABLE
LCS LA 45476		ug/L	ug/L			YES	NO
25 ug/L					RANGE		_
Buozena	Standard	250	239	95.6	39 - 150	X	
Foluene	Standard	25.0	24.2	968	46 148	Х	
t thyl henzene	Standard	250	24.2	968	32 - 100	×	
m & p Xylene	Standard	50.0	48.8	976	Not Given	x	
o Xylene	Standard	25.0	24.4	97.6	Not Given	X	
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTAL	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV1 LA-52589		ug/L	ug/L			YES	NO
50 ug/L					RANGE		
Benzene	Standard	50.0	49.1	98.2	75 - 125 %	×	
Loluene	Standard	50.0	490	98.0	75 - 125 %	x	
Lthyl benzono	Standard	50.0	48.8	97.6	75 - 125 %	x	
m & p⊸ Xylene	Standard	100	97 2	97.2	75 · 125 %	x	
о Хуюнь	Standard	500	48.9	97.8	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL			ACCEPTAL	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV2 LA-52689		ug/L	ug/L			YES	NO
60 ug/L		1	{	}	RANGE		
Benzena	Standard	500	49.3	98.6	75 - 125 %	X	
Loluené	Standard	50.0	49.1	98.2	75 - 125 %	x	
Ethyl benzene	Standard	50.0	48.9	97.8	75 - 125 %	x	
m ዲ p - Xylene	Standard	100	96.4	96.4	75 - 125 %	X	
o Xylene	Standard	50.0	489	97,8	75 - 12 5 %	x	
SAMPLE	W17 PP	EXPECTED	ANALYTICAL	<u> </u>		ACCEPTA	BLE
NUMBER	TYPE	RESULT	RESULT	%R			=
CCV3 LA-52589	• • •	ug/L	ug/L			YES	NO
60 ug/L		}	[RANGE	, =-	
Benzene	Standard	50.0	49.2	98.4	75 125%	X	
	1	50.0		976	/5 - 125 %	X	
Loluena	Standard	1 30.00					
Coluctie EfflyFhenzene	Standard	50.0	1	97.0	75 - 125 %	X	
	ĺ	l l	485	97.0 95.4	75 - 125 % 75 - 125 %	x X	

EL PASO FIELD SERVICES LAB QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 960426 through 960436

LABORATORY DUPLICATES:

SAMPLE ID	TYPE	BAMPLE RESULT	DUPLICATE RESULT	RPD	AC	LE	
960430		PPB	:РРВ		RANGE	YES	NO
Benzene	Matrix Duplicate	4.08	4.10	0	+/- 20 %	X	
Toluene	Matrix Duplicate	1.58	1.6	3	+/- 20 %	X	
Ethylbenzene	Matrix Duplicate	<1.0	<1.0	0	+/- 20 %	X	
m & p - Xylene	Matrix Duplicate	<2.0	<2.0	0	+/- 20 %	X	
o - Xylene	Matrix Duplicate	<1.0	<1.0	0	+/- 20 %	X	

Narrative Acceptable

LABORATORY SPIKES:

SAMPLE	SPIKE	SAMPLE	SPIKE		AC	CEPTA	ELE
ID	ADDED	RESULT	SAMPLE	%R			
2nd Analysis	PPB	bbB	RESULT			YE8	NO
960430	<u> </u>	<u> </u>	PPB		RANGE		·
Berizene	50	4.08	53.9	99.6	75 - 125 %	X	
Toluene	50	1.58	51.2	99.2	75 - 125 %	X	
Ethylbenzenc	50	<1.0	51.6	103	75 - 125 %	Χ	
m & p - Xylene	100	<2.0	102	102	75 - 125 %	X	
o Xylene	50	<1.0	52.3	105	75 - 125 %	X	

Narrative: Acceptable.

ADDITIONAL ANALYTICAL BLANKS:

AUTOBLANK	The state of the s	PP8	STATUS
Benzene	Boiled Water	<1.0	ACCEPTABLE
Toluene	Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

SOIL VIAL BLANK	SOURCE Lot MB1461	PPB (Analyzed with this set)	BUTATE
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylhenzene	Vial + Boiled Water	<10	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable.

CONTAMINATION CARRYOVER CHECK	SOURCE	PPB (Two analyzed with this set)	STATUS
Benzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Toluene	Vial + Boiled Water	<1.0	ACCEPTABLE
Ethylbenzene	Vial + Boiled Water	<1.0	ACCEPTABLE
Total Xylenes	Vial + Boiled Water	<3.0	ACCEPTABLE

Narrative: Acceptable

Approved By:

Date: 13 May-96

QUALITY CONTROL REPORT EPA METHOD 8020 - BTEX

Samples: 960426 through 960436

QA/QC for 05/12/96 Sample Set

SAMPLE		EXPECTED	ANALYTICAL		ACC	EPTAB	LE
NUMBER	TYPE	RESULT	RESULT	%R			
ICV LA-62589		PPB	PPB			YES	NO
50 PPB					RANGE		
Benzene	Standard	50.0	47.7	95.4	75 - 125 %	Х	
Toluene	Standard	50.0	48.2	96.4	75 - 125 %	X	
Ethylbenzene	Standard	50.0	48.5	97.0	75 - 125 %	X	
m & p - Xylene	Standard	100	97.0	97.0	75 - 125 %	X	
o - Xylene	Standard	50.0	48.5	97.0	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL		ACC	CEPTAE	BLE
NUMBER	TYPE	RESULT	RESULT	%R			
LCS LA-45476		PPB	PPB			YES	NO
25 PPB					RANGE		
Benzene	Standard	25.0	23.9	95.6	39 - 150	X	
Toluene	Standard	25.0	24.4	97.6	46 - 148	X	
Ethylbenzene	Standard	25.0	24.4	97.6	32 - 160	X	
m & p - Xylene	Standard	50	49.3	98.6	Not Given	×	
o - Xylene	Standard	25.0	24.5	98.0	Not Given	X	
SAMPLE		EXPECTED	ANALYTICAL		AC	CEPTAE	ILE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV LA-52589		PPB	PPB			YE8	NO
50 PPB	<u>.</u>	<u> </u>			RANGE		
Benzene	Standard	50.0	50.3	101	75 - 125 %	X	
Toluene	Standard	50.0	49.8	99.6	75 - 125 %	Χ.	
Ethylenzene	Standard	50.0	49.9	99.8	75 - 125 %	X	
m & p - Xylene	Standard	100	98.7	98.7	75 - 125 %	X	
o - Xylene	Standard	50.0	50,3	101	75 - 125 %	X	
SAMPLE		EXPECTED	ANALYTICAL		AC	CEPTAE	3LE
NUMBER	TYPE	RESULT	RESULT	%R			
CCV LA-52589		PPB	PPB			YES	NO
50 PPB					RANGE		
Benzene	Standard	50.0	50.2	100	75 - 125 %	Х	
Taluene	Standard	50.0	49.9	99.8	75 - 125 %	X	
Ethylbenzene	Standard	50.0	49.6	99.2	75 - 125 %	Х	
m & ρ - Xylene	Standard	100	98.1	98.1	75 - 125 %	X	
o - Xylene	Standard	50.0	49.8	99,6	75 - 125 %	Х	

Nairative. Acceptable.

EL PASO NATURAL GAS COMPANY JAL NO. 4 PLANT PHASE IV GROUNDWATER STUDY

June 1994

El Paso Natural Gas Company 100 N Stanton El Paso, Texas 79901

TABLE OF CONTENTS

		<u>Page</u>
EXEC	CUTIVE	SUMMARYi
1.0	INTRO	DDUCTION1
2.0	METH	ODS OF INVESTIGATION2
3.0	RESU	LTS2
4.0	CONC	LUSIONS2
5.0	RECO	MMENDATIONS3
ТАВ	A	SITE MAPS
TAB	В	ANALYTICAL DATA
TAB	C	RECORD OF SUBSURFACE EXPLORATION
TAB	D	MONITORING WELL COMPLETION DIAGRAMS
TAB	E	LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

EXECUTIVE SUMMARY

On June 14, 1993, El Paso Natural Gas Company (EPNG) initiated the Phase IV monitoring well installation program at the formerly owned Jal No. 4 Plant. This work was performed by Burlington Environmental Inc. (BEI). Jal No. 4 Plant is located approximately 10 miles north of Jal, New Mexico.

Previous investigations at the Plant indicate the presence of a high saline, plant production water plume that extends off site to the east southeast for approximately 1500 feet. New Mexico Water Quality Control Commission (NMWQCC) standards for arsenic, barium, fluoride, sulfate, chloride, and total dissolved solids have been exceeded in groundwater samples from existing monitoring wells.

According to a 1990 K. W. Brown report, the principle water-bearing unit at the site is the Tertiary Ogallala Formation. The Ogallala unconformably overlies water-bearing red-bed sediments of the Docum Group of the Chinle Formation.

Groundwater at the site is unconfined. Locally, the saturated thickness of the Ogallala is approximately 60 feet and the groundwater gradient is approximately 0.0025 ft/ft with a southeasterly flow direction.

BEI's previous investigations recommended the installation of additional monitoring wells to further define the configuration of a contaminant plume high in total dissolved solids (TDS) and inorganic compounds that are regulated by New Mexico Oil Conservation Division (NMOCD) which has jurisdiction over this site.

During June 1993, BEI installed four groundwater monitoring wells off-site to the east and southeast of the Jal No. 4 Plant. Groundwater samples were collected from both the new monitoring wells and on-site monitoring wells selected by EPNG. Depth-to-water measurements were collected and groundwater surface elevations determined.

Fine-grained sands, silty sands, caliche fragments, and interbedded sandstones were observed during monitoring well installation. Depth-to-water measurements indicate that the direction and gradient of the potentiometric surface is consistent with previously reported values. One or more NMWQCC standards were exceeded in all the groundwater samples from on-site and off-site wells, except the sample from upgradient Water Supply Well EPNG-1.

The June 1993 groundwater analytical results indicate both on-site and off-site impact above NMWQCC standards to the Ogallala aquifer for chloride, fluoride, sulfate, arsenic, barium and TDS. In addition, the groundwater sample from on-site Monitor Well ACW-4 exceeded NMWQCC standards for benzene and xylene. Groundwater sample results for June 1993 were generally similar to the groundwater sample results for the July 1992 sampling performed by BEI.

Since NMWQCC standards are exceeded in groundwater, BEI recommends that a remedial design be developed to contain, monitor, and remediate impacted groundwater at the Jal No. 4 Plant.

The remedial design should include the following elements.

- Initiation of a "pump and inject" on-site groundwater recovery and disposal system.
- Installation of two wells at the leading edge of the plume to monitor plume migration.
- Continued quarterly sampling.
- Evaluation of the recovery system following a one-year period of operation.

JAL NO. 4 PLANT PHASE IV GROUNDWATER STUDY

1.0 INTRODUCTION

On June 14, 1993, El Paso Natural Gas Company (EPNG) initiated the Phase IV monitoring well installation program at the formerly owned Jal No. 4 Plant. This work was performed by Burlington Environmental Inc. (BEI). Jal No. 4 Plant is located approximately 10 miles north of Jal, New Mexico, as shown in Figure 1, Tab A.

EPNG began subsurface investigation at the request of the New Mexico Oil Conservation Division (NMOCD) in 1989 when a leak was discovered in the liner of one of the water-storage ponds that contained high salinity plant production water. Previous investigations at the Plant indicate the presence of a high saline, plant production water plume that extends off-site to the east southeast for approximately 1500 feet.

According to a 1990 K. W. Brown report, the principle water-bearing unit at the site is the Tertiary Ogallala Formatron. The Ogallala unconformably overlies water-bearing red-bed sediments of the Dockum Group of the Triassic Chinle Formation.

Groundwater at the site is unconfined. Locally, the saturated thickness of the Ogallala is approximately 60 feet. The groundwater gradient is approximately 0.0025 ft/ft with a southeasterly flow direction.

During June 1993 EPNG contracted BEI to implement the following scope of work:

- Install four groundwater monitoring wells (ACW-8, ACW-9, ACW-10 and ACW-11) at locations specified by EPNG (Figure 2, Tab A), to be screened in the lower portion of the Ogallala Formation (Record of Subsurface Exploration is presented in Tab C and Monitoring Well Completion Diagrams are presented in Tab D);
- Task 2 Collect groundwater samples for constituents analyses presented in Table 1, Tab B (Laboratory Analytical Reports presented in Tab E);
- Task 3 Collect groundwater elevation data; and
- Task 4 Determine the configuration of the plume based on data obtained during Tasks 1 through 3 and information from previous groundwater studies for the site.

2.0 METHODS OF INVESTIGATION

During June 1993, BEI installed four groundwater monitoring wells off-site to the east and southeast of Jal No. 4 Plant. Groundwater samples were collected from the new monitoring wells, existing off-site monitoring wells, on-site monitoring wells, and Water Supply Well EPNG-1. Depth-to-water measurements were collected on June 14, 1993, and groundwater surface elevations calculated for all monitoring wells.

3.0 RESULTS

Fine-grained sands, silty sands, caliche fragments, and interbedded sandstones were observed during monitoring well installation. In the saturated zone below 105 feet is an unconsolidated very fine to fine sand that is both well rounded and well sorted. NMWQCC standards were exceeded in several of the groundwater samples from on-site and off-site wells. The groundwater from upgradient Water Supply Well EPNG-1 did not exceed any NMWQCC standards.

The results of chemical analyses reported by the laboratory are presented in tables as follows:

- Table 2, Tab B Analytical Results for Metal in Groundwater, June 1993;
- Table 3, Tab B Analytical Results for Inorganic Constituents in Groundwater, June 1993;
- Table 4, Tab B Analytical Results for Organic Constituents in Groundwater, June 1993.

Constituents detected above NMWQCC standards are shown shaded on the tables. Depth-to-water measurements, top-of-casing elevations, and screened intervals are present in Table 5, Tab B. Figure 3, Tab A, is a potentiometric surface map for the Jal No. 4 site.

4.0 CONCLUSIONS

The June 1993 groundwater analytical results indicate both on-site and off-site impact to the Ogallala aquifer above NMWQCC standards for inorganic parameters and TDS. In addition, the groundwater sample from on-site Monitor Well ACW-4 exceeded NMWQCC standards for benzene and xylene.

Groundwater samples having inorganic compounds detected above NMWQCC standards coincide with samples having elevated concentrations of TDS. Arsenic, barium, fluoride, sulfate, and chlorine exceed NMWQCC standards in one or more samples as shown shaded in Table 2, Tab B.

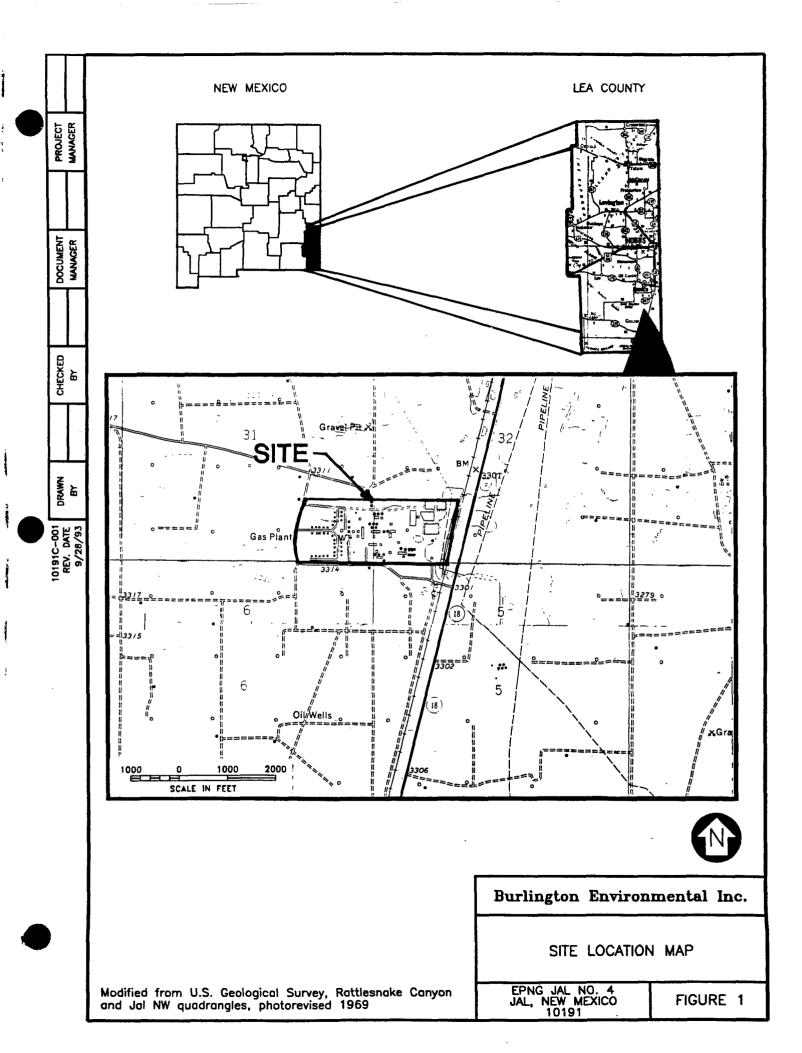
To examine the spatial relationship of the TDS within groundwater, two concentration contour maps were constructed as shown in Figures 4 and 5, Tab A. A cross section showing TDS concentrations is presented as Figure 6, Tab A.

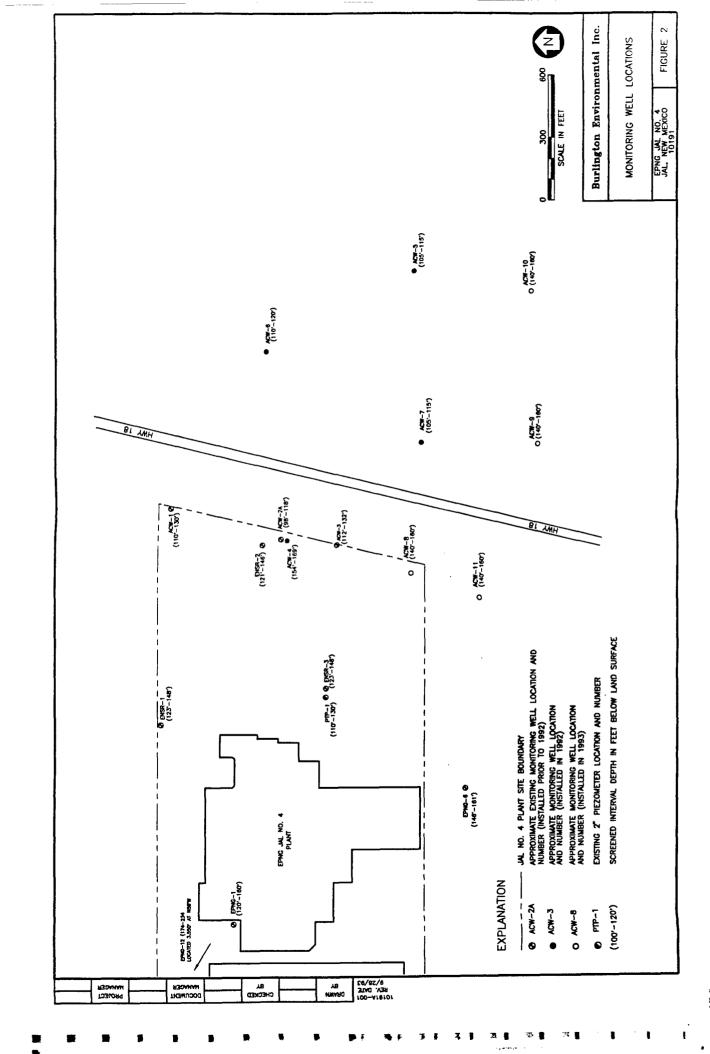
Higher concentrations of TDS were observed in the groundwater from deeper portions of the aquifer at Monitoring Well ACW-4 than were observed at shallower screened Monitor Well ACW-2A. This is expected because groundwater with high TDS is more dense than groundwater with lower concentrations of TDS, therefore, it will tend to sink.

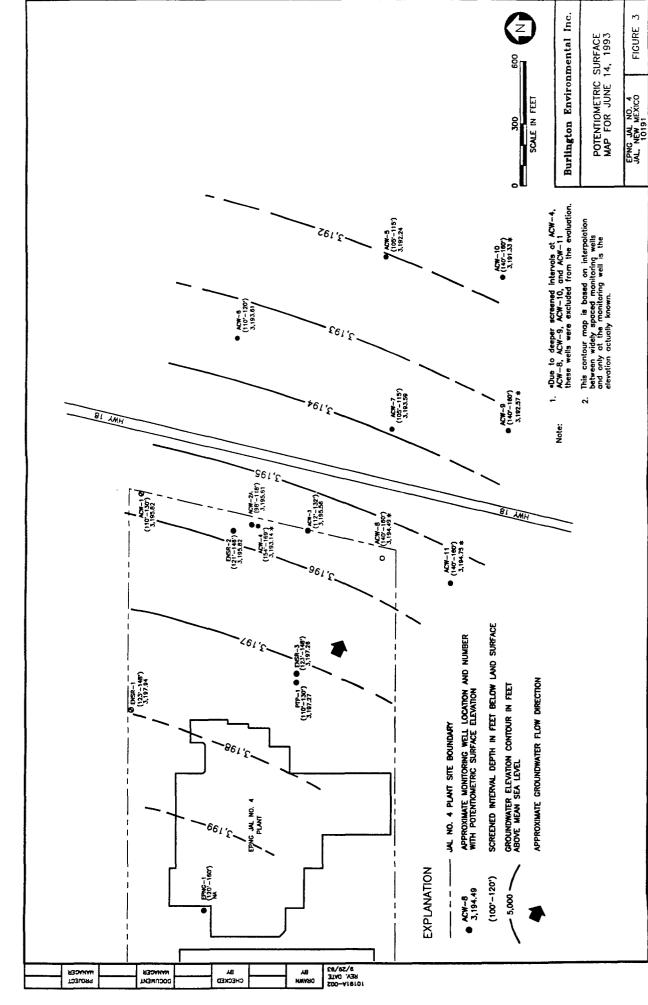
Downgradient of Monitor Wells ACW-4 and ACW-2A concentrations of all contaminants decline. This decline is most likely due to dilution and dispersion effects, or absorption of the contaminants into the soil.

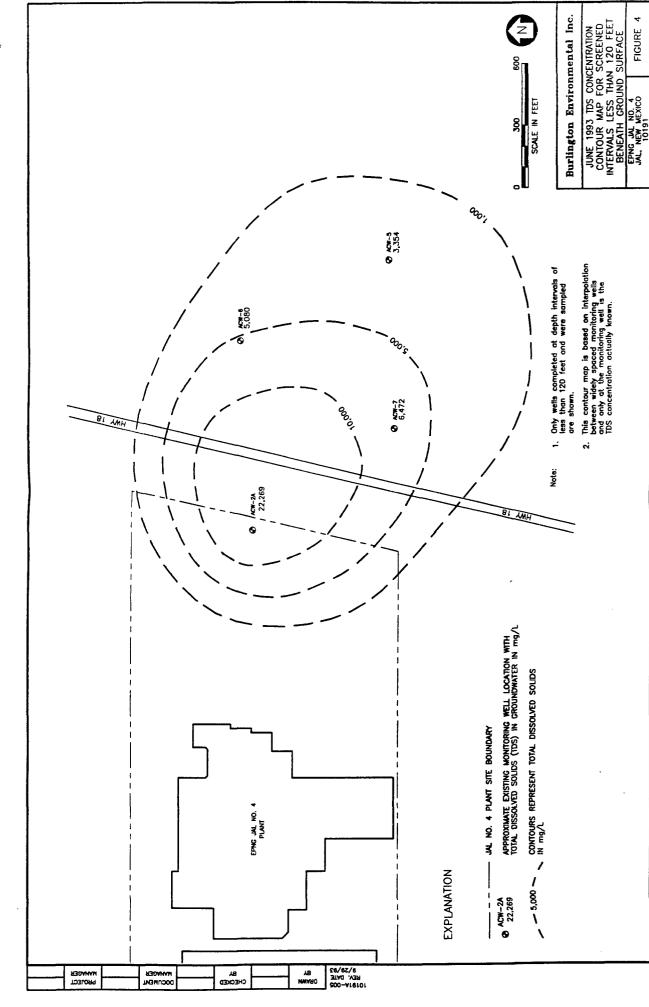
BEI speculates shallow groundwater with lower concentrations of TDS is further downgradient than the deeper groundwater with higher concentrations of TDS. Higher concentrations of contaminants are observed closer to the source. The vertical distribution of contaminants is not well known in the peripheral areas of the plume. For this reason additional samples, collected from proposed off-site nested wells completed to different depths, are needed to more accurately evaluate contaminant distribution throughout the aquifer. This information would be needed to design an optimal remediation system.

Based on the configuration of the TDS plume and the spatial distribution of the other contaminants at the site, BEI believes groundwater pumping of the TDS contaminant plume will simultaneously mitigate all constituents currently in excess of NMQWCC standards.

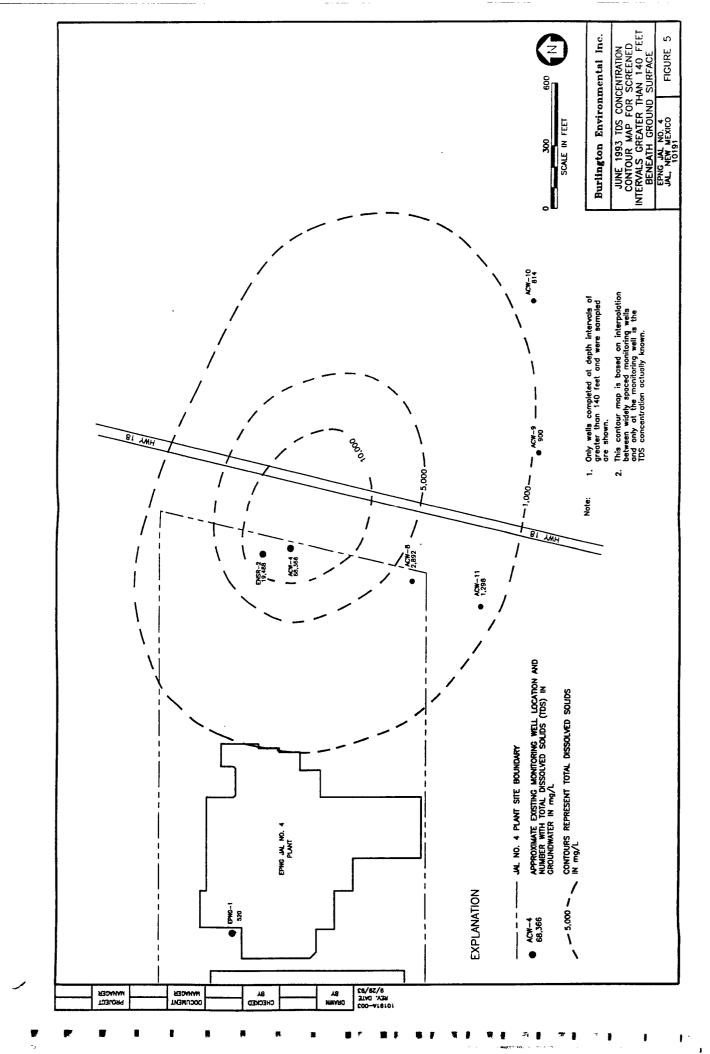

5.0 RECOMMENDATIONS

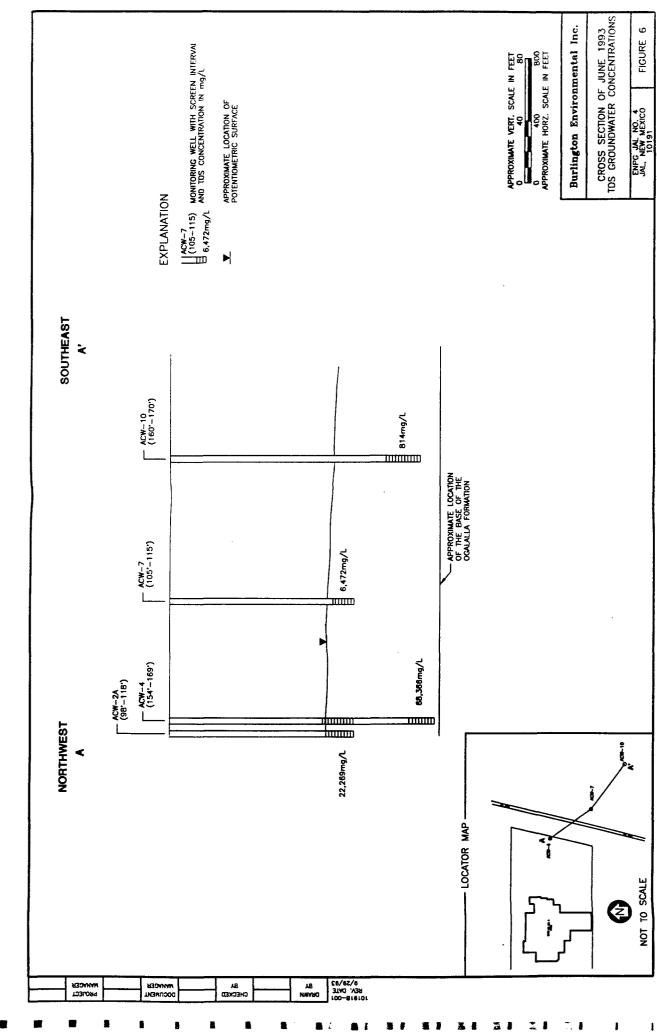

Since NMWQCC standards are exceeded in groundwater, BEI recommends that a remedial design be developed to contain, monitor and remediate impacted groundwater at Jal No. 4 Plant. The remedial design should include the basic elements that follow.


- Initiation of on-site groundwater recovery as soon as possible in the vicinity of Monitoring Well ACW-4. Burlington recommends pumping groundwater from the entire saturated thickness at this location because impact is spread across the full saturated thickness of the aquifer. EPNG should investigate the feasibility of groundwater disposal through a permitted injection well.
- Installation of an additional two well cluster at the downgradient leading edge of the plume. One well should be screened in the upper portion and one in the lower ortion of the Ogallala. These wells will allow for a more concise determination of the plume configuration for remedial design and monitoring purposes.


- Monitoring of the groundwater from the proposed new well cluster and all existing wells.
 The collection of groundwater samples and subsequent chemical analysis for TDS and/or individual contaminants is also advised.
- Depth-to-water at all well locations should be monitored prior to and during initiation of remediation to determine the influence of the recovery operations on the aquifer.
- Depth-to-water measurements should be collected and the configuration of the potentiometric surface determined on a semi-annual basis.
- An evaluation of the effects of pumping should be conducted following a one year period of groundwater recovery.

SITE MAPS





Y

ANALYTICAL DATA

Laboratory Analyses For Samples Collected During June at Jal No. 4 Plant, Jal NM

Monitoring Well Number	Analytes
EPNG-1	Cl, TDS, and EC
ENSR-2	Cl, TDS, EC, As, Ba, Cr, CN, F, Pb, NO ₃ , K, Na, and SO ₄
ACW-2A	Cl, TDS, EC, As, Ba, Cr, CN, F, Pb, NO ₃ , K, Na, and SO ₄
ACW-4	Cl, TDS, EC, K, Na, BTEX, As, Ba, Cr, CN, F, Pb, NO ₃ , and SO ₄
ACW-5	Same as ACW-4
ACW-6	Same as ACW-4
ACW-7	Same as ACW-4
ACW-8	Same as ACW-4
ACW-9	Same as ACW-4
ACW-10	Same as ACW-4
ACW-11	Same as ACW-4

Cl	inorganic chloride;	As	arsenic;
TDS	total dissolved solids;	Ba	barium;
EC	electrical conductivity;	Cr	chromium;
K	potassium;	Pb ·	lead;
Na	sodium;	CN ⁻	cyanide;
NO ₃	nitrate;	F	fluoride;
SO ₄	sulfate; and		
BTEX	benzene, toluene, ethylbenzene	e, xylene.	

¥.

ANALYTICAL RESULTS FOR METALS IN GROUNDWATER, JUNE, 1993

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

	Upgradient	0n-Si	On-Site Downgradient		Off-Sit	Off-Site Downgradient	!	
Parameter	EPNG-1 (120'-160')	ACW-2A (98'-118')	ENSR-2 (121'-146')	ACW-4 (154'-169')	ACW-6 (110'-120')	ACW-7 (105'-115')	ACW-5 (105'-115')	Wacc Standard
Arsenic (μg/L)	NA	QN	1,500	QN	71.8	18.8	QN	100
Barium (µg/L)	ĄN	1,030	152	909	765	1600	55.8	1000
Chromium (µg/L)	NA	Q	QN	Q	4.1	8.6	32.3	20
Lead (µg/L)	AN	Q	ON	Q X	QN	QN	2	20
Potassium (µg/L)	Ą	27,000	29,600	196,000	6,530	7,570	007'6	No Standard
Sodium (µg/L)	¥.	6,100,000	000'000'59	16,400,000	1,910,000	2,044,000	513,000	No Standard

Hg/L NA ND NOCC

Micrograms per Liter
Not Analyzed for this Parameter
Not Detected Above Reporting Limit
New Mexico Water Quality Control Commission
Feet
Shadow indicates WOCC standard has been exceeded

F-1-4-18-10

ANALYTICAL RESULTS FOR METALS IN GROUNDWATER, JUNE, 1993 Continued

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

		New	New Wells		
Parameter	ACW-8 (140'-160')	ACW-9 (140'-160')	ACW-10 (140'-160')	ACW-11 (140'-160')	WQCC Standard
Arsenic (μg/L)	S	S	QN	Q X	100
Barium (µg/L)	7.67	90.0	126	64.2	1000
Chromium (µg/L)	24.8	8.0	10.2	5.9	20
Lead (µg/L)	Q	Q	QN	Q	20
Potassium (µg/l)	34,100	12,500	14,200	10,100	No Standard
Sodium (µg/L)	305,000	121,000	109,000	212,000	No Standard

Micrograms per Liter Not Detected Above Reporting Limit New Mexico Water Quality Control Commission Feet

Hg/L ND WQCC

Table 3

ANALYTICAL RESULTS FOR INORGANIC CONSTITUENTS IN GROUNDWATER, JUNE, 1993

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

	Upgradient	0n-Si	On-Site Downgradient		Off-Si	Off-Site Downgradient		
Parameter	EPNG-1 (120'-160')	ACN-2A (98'-118')	ENSR-2 (121'-146')	ACW-4 (154'-169')	ACW-6 (110'-120')	ACW-7 (105'-115')	ACW-5 (105'-115')	WQCC Standard
Chloride (mg/L)	86.1	810,016	\$76'6	922'87	5,205	3,351	80 T.	250
Total Cyanide (µg/L)	NA	Q	QN	QN	QN	QN	Q.	200
Fluoride (mg/L)	NA	23.	\$ 0.9	ON.	20.6	60	Q	1.6
Nitrate (mg/L)	KA	Q	QN	QN	8.3	ON.	8.2	10
Sulfate (mg/L)	N	3.7	340	2757	194	88.5	1,00,1	009
Conductance (µmhos/cm)	246	28,639	29,964	92,033	8,082	9,733	3,995	No Standard
Total Dissolved Solids (TDS) (mg/L)	520	692,22	19,488	991,189	5,080	2,712	3,354	1,000

Milligrams per Liter
Micrograms per Liter
Not Analyzed for this parameter
Not Detected Above Reporting Limit
Micromhos per centimeter
New Mexico Water Quality Control Commission umhos/cm mg/t #g/t NA NO

Feet Shadow indicates WQCC standard has been exceeded

1

Pathor

ANALYTICAL RESULTS FOR INORGANIC CONSTITUENTS IN GROUNDWATER, JUNE, 1993 Continued

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

•		Nex	New Wells		
Parameter	ACW-8 (140'-160')	ACW-9 (140′-160′)	ACW-10 (140'-160')	ACW-11 (140'-160')	Wacc Standard
Chloride (mg/L)	25	E	023	938	250
Total Cyanide ($\mu g/L$)	Q.	Ð	Š	QN	200
Fluoride (mg/L)	•		**	*	1.6
Nitrate (mg/L)	0.41	S	0.63	0.56	10
Sulfate (mg/L)	150	81.0	82.1	4.67	909
Conductance (µmhos/cm)	1,973	1,097	796	1,727	No Standard
Total Dissolved Solids (TDS) (mg/L)	28,2	006	814	862	1,000

Miligrams per Liter	Micrograms per Liter	Not Detected Above Reporti	Micromhos per centimeter	New Mexico Water Quality Co	Feet	Shadow indicates WQCC stank	
mg/L	#8/L	Q	truhos/cm	Macc			

standard has been exceeded Control Commission ing Limit

ANALYTICAL RESULTS FOR ORGANIC CONSTITUENTS IN GROUNDWATER, JUNE, 1993

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

		On-Sit	e Downgradient		Off-Si	Off-Site Downgradient		
Parameter	EPNG-1 (120'-160')	ACW-2A ENSR-2 (98'-118') (121'-146')	ENSR-2 (121'-146')	ACW-4 (154'-169')	ACW-6 (110'-120')	ACW-7 (105'-115')	ACW-5 (105'-115')	Wacc Standard
Benzene (#a/L)	AN	AN.	4N	% %	4	۲.	S	0
10 L	į				•	;	2	2
Toluene (µg/L)	NA NA	N.	WA	132	2.5	6.4	Q	750
Ethylbenzene (μ g/L)	NA	NA A	NA	Q.	1.2	7.0	Q.	750
Xylenes (μg/L)	NA A	NA	¥ _N	021.1	6.4	1.5	ð	620
Total BTEX (µg/L)	NA	NA NA	Y.	1,337.6	13.2	16.6	Q	No Standard

HB/L NA ND ND CC

Micrograms per Liter
Not Analyzed for this Parameter
Not Detected Above Reporting Limit
New Mexico Water Quality Control Commission
Feet
Shadow indicates WQCC standard has been exceeded

ANALYTICAL RESULTS FOR ORGANIC CONSTITUENTS IN GROUNDWATER, JUNE, 1993 Continued

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Sample Description (Name and Depth of Screened Interval)

		New	New Wells		
Perameter	ACW-8 (140'-160')	ACW-9 (140'-160')	ACW-9 ACW-10 ACW-11 (140'-160') (140'-160')	ACW-11 (140'-160')	WQCC Standard
Benzene (μg/L)	1.4	QN	Q	QN	10
Toluene (μg/L)	1.2	QX	QN	Q	750
Ethylbenzene (μg/L)	QN	QN	Q	QN	750
Xylenes(μg/L)	QN	QN	1.7	Q.	950
Total BTEX (μg/L)	2.6	QN	1.7	Q	No Standard

Micrograms per Liter Not Detected Above Reporting Limit New Mexico Water Quality Control Commission Feet

#9/L ND WOCC

| |

1149000

*

SUMMARY OF GROUNDWATER LEVEL DATA (JUNE 14, 1993)

PHASE IV GROUNDWATER STUDY JAL NO. 4 PLANT

Well Number	Top of Concrete Pad Elevation	Screened Interval Depth (Feet)	Measuring Point Elevation (Top of Casing) (Feet MSL)	Static Water Level (Depth to Water) (Feet)	Groundwater Elevation (Feet MSL)
ACW-1	3,298.29"	110-130	3,300.87	105.05	3,195.82
ACW-2A	3,289.02	98-118	3,300.88	105.27	3,195.61
ACW-3	3,298.75	112-132	3,300.34	104.78	3,195.56
ACW-4	3,998.05	154-169	3,299.48	106.34	3,193.14
ACW-5	3,293.23	105-115	3,294.75	102.51	3,192.24
ACW-6	3,298.75	110-120	3,300.53	106.92	3,193.61
ACW-7	3,293.76	105-115	3,295.41	101.82	3,193.59
ENSR-1	¥.	123-148	3,305.40	107.46	3,197.94
ENSR-2	N	121-146	3,301.60	105.78	3,195.82
ENSR-3	V.	123-148	3,303.80	106.54	3,197.26
PTP-1	3,302.10	110-130	3,304.41	107.14	3,197.27
EPNG-1	NA	120-160	NA	109.22	A N
ACW-8	3,296.04	140-160	3,297.27	102.78	3,194.49
ACW-9*	3,299.91	140-160	3,302.47	109.90	3,192.57
ACW-10*	3,295.05	140-160	3,297.57	106.24	3,191.33
ACW-11	3,297.20	140-160	3,299.33	104.58	3,194.75

MSL * *

Mean Sea Level Elevation data not available Wells installed during Phase IV Elevation of ground surface next to well

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation To p	of Casing 3297.27
Borehole Location	ACW-8
GWL Depth	102.78
Logged By	Michael Watson
Drilled By	L. Scarborough
Date/Time Started	6-14-93 / 1130
Date/Time Compl	eted 6-15-93 / 0900

Boreho	ole #	#	ACW-	8	
Well #			ACW-	8	
Page	1	of	5		

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By
Personnel On-Site
Contractors On-Site
Client Personnel On-Site
Michael Watson
Scarborough Drilling
Steve Brisbin

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ina	Drilling Conditions
			, ,	·	Symbol			nits: NE	-	& Blow Counts
(Feet)	interval	Number	Recovery	Classification System: USCS	Sympol	Change				& Blow Counts
			(inches)			(feet)	BZ	BH	<u> </u>	
0			[]			į				
				Red-brown fine SAND, dry.	SP		0	0	0	
									i	
								ļ	ĺ	
									l	
5			1			5			1	1
				Brown-red fine-medium SAND.	SP		0	0	0	
				Diowin too lino modium on the.	Ŭ.		ľ	"	"	
I -						•			İ	
									ļ	
10						10				
				Brown fine-medium clayey SAND.	SC		0	0	0	
	ļ	į								
										j
15						15		1		1
				Brown fine-medium SAND with trace silt with	SP		0	0	0	
				limestone pieces (caliche).	Ŭ.	1	"		"	1
	1			intestone pieces (canche).				l	ŀ	
 	ĺ					1		1		
l								l]	1
20									1	
				Brown fine-medium SAND with trace sitt	SP		0	0	0	
				calcium carbonate fragments.						ļ
						1				
										1
25						25				
	:			Lt. brown fine SAND with sandstone fragments.	SP	1	0	0	0	1
 	:			magnetic	J -			"	•	1
I								1		
 										
-										
30				l			_			
 				Lt. brown fine SAND with sandstone fragments.	SP]	0	0	0	1
								i		
								1	ŀ]
35				Lt. brown fine SAND with trace silt and						
				sandstone fragments.	SP		0	0	0	
							_] -	
 						(ļ	1	
[
I									1	
40									1	
							<u></u>		<u> </u>	

Comments:		
	Geologist Signature	

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation	Top of	Casing	3297.27
Borehole Loc	ation	ACW-8	
GWL Depth	102	.78	
Logged By	Mi	ichael Wat	son
Drilled By	L	Scarborou	igh
Date/Time St	arted	6-14	-93 / 1130
Date/Time Co	ompleted	6-15	-93 / 0900

Boreho	ole #	ŧ	ACW	-8	
Well#			ACW	-8	
Page	2	of	5		

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson
Personnel On-Site Michael Watson
Contractors On-Site Scarborough Drilling
Client Personnel On-Site Steve Brisbin

	1		Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	uscs	Lithology	Air	Monitor	ina	Drilling Conditions
(Feet)	Interval	Number	Recovery	· · · · · · · · · · · · · · · · · · ·	Symbol	Change		nits: NC	_	& Blow Counts
fi sed	"IUCIVED	HUINDE	(inches)	Giasinoadon System. Good	,	(feet)	BZ	BH	s	a sion cooms
40	 		(mones)			40	52	Un.		
4 0				Lt. tan very fine SAND with trace silt.	SP	-	0	0	0	
I	1			Lt. tan very fine SAND with trace sit.	SF		U	U	U	
]								
 					Ī					
_					ì	1		}		
45			1			ĺ :				
L				Lt. tan fine SAND with trace silt.	SP		0	0	0	
l L		1								
	1							1		
	1									
50		1								
		[Į		İ
 	1				l	1		1		
I -								ĺ		
 	1							[
I	1	1				55				
55	1 .			TAIL - F- OAND - M Art - F		35	_			
 				Lt. brown fine SAND with sandstone fragments	SP		0	0	0	
_										
L										
L]				
<u> </u>		ł								
	i			Lt. brown fine SAND with sandstone fragments.						
	İ	ł			ļ			İ		
		1			ļ					
						1				
65						65				
	1	1		Brown fine-medium SAND with sandstone	SP	1	0	0	0	
	1			fragments. Sandstone fragments very well	. .	į.	-	-	•	
l				cemented.				ļ		
I -		1]	oliiolitou.						
70	}	1						1	1	
I ├─ ′°		1								
 		1								
I	Ī		1	·						
] []		1	ł	
 										İ
75		l						1		
_		1								
IL		1				1		1	l	1
		i	[]		Ī					
IΓ		1]			1	
80	-		(1	ţ		 	
		l								
		1					1			
			-							

Comments:		
	•	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation	Top of Casing 3297.27
Borehole Location	ACN-8
GWL Depth	102.78
Logged By	Michael Watson
Drilled By	L. Scarborough
Date/Time Started	6-14-93 / 1130
Date/Time Complet	ted 6-15-93 / 0900

Borehole	#		ACW-	8	
Well #			ACW-	8	_
Page 3	3	of	5		

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By
Personnel On-Site
Contractors On-Site
Client Personnel On-Site
Michael Watson
Scarborough Drilling
Steve Brisbin

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	uscs	Lithology	Air	Monitor	ina	Drilling Conditions
(Feet)	Interval		Recovery		Symbol	Change		nits: NC	_	& Blow Counts
(, 000)	WILCI VED	Hallios	(inches)	Canalitation Cystem. Cocc	Oybo.	(feet)	1		s	a blow coulds
80			(IIICHES)		l	(leed	- 52	Вп	ٿ	
~						1				
i ⊢ i		i e			ŀ					
 -										
⊢					l					
!					ŀ					
85							_		_	
!				Brown SAND with sandstone fragments.	SP		0	0	0	
 					I					
.									ļ	
					ŧ					
90					•					
					I					
					l					•
					•					
95					Ī	95		ļ		
				Lt. brown fine SAND with some well	SP	i i	0	0	0	
				cemented fragments.						
					•					
					1					
100										
· · · ·				Lt. brown fine SAND with some well	SP		0	0	0	
				cemented sandstone fragments.	<u> </u>		_			
				comonica canacione magmente.	ł					
					l				ļ	
105					l	105				
103				Brown-tan fine grain SAND with very well	SP	105	0	0	0	
I				cemented sandstone fragments.	SF		U	0		
1				cemented sandstone magments.	ľ			1	}	
					1					
 					l					
110				T-6 1 0000 11 11 11	-	110				
I				Tan fine grain SAND, well sorted, well	SP		0	0	0	
 		') !	rounded.	1					
 										
!		;			Ī					
115										
I L					I					
				'	ł]]		
				•	ł					
120					I					
					l			1		
									L	
							_			

Comments	
	·
	Geologist Signature

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Top	of Casing 3297.27	
Borehole Location	ACW-8	
GWL Depth	102.78	
Logged By	Michael Watson	
Drilled By	L. Scarborough	
Date/Time Started	6-14-93 / 1130	
Data/Time Comple	6.15-93 / 0900	

Borehole	#		ACW	-8		
Well #			ACW	-8		
Page 4		of	5		~~	

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson
Personnel On-Site Michael Watson
Contractors On-Site Scarborough Drilling
Client Personnel On-Site Steve Brisbin

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ina	Drilling Conditions
(Feet)	Interval	Number	Recovery		Symbol	Change		nits: NC		& Blow Counts
(r beg	, micervan	Number	(inches)	olasiiisasoii systeiii.	5 ,55.	(feet)	BZ	вн	s	25.05525
120			(inches)		!	1,000			r –	
'20			i l	Tan fine SAND, well sorted, well rounded.	SP	1	0	0	0	l I
-				Tall line SAND, well solled, well rounded.	Sr				"	
!										
-			1		ł					
a=					ŀ					
125	,				ł	1				
! -										
130						130				
		1		Lt. brown very fine SAND.	sw] :	0	0	0	
		1			1					
135	j									
	İ]							
		1								
					ŧ					
					ł					
140					l					
					1			1	}	1
					•					
					l					
145	ŀ				Į					
'."	ł			Lt. brown very fine SAND.	sw		0	0	0	l i
-	ļ			LE DIOWIT VOLY INTO OFTIVE.					"	
i										
!]				l		}]
150					l	į į	1		1	
I	ļ			Lt. brown very fine SAND.	sw		0	0	0	
!	1			LL DIOWN VERY RITE SAIND.	3''			٦		
I ⊢									[
!]		l				1	
155					I					
155	ļ				l	Į į			1	1
I									1	1
I -					i				[
! -	1						l			ļ 1
I					ł					1
<u> </u>										1
	1						1			!
			l		<u></u>]	L	L	1	1

Comments:		
	Geologist Signature	_

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation _	Top o	f Casino	3297.27
Borehole Loc	ation	ACW-8	3
GWL Depth	1	02.78	
Logged By	٨	lichael W	atson
Drilled By	L	. Scarbore	ough
Date/Time St	arted	6-1	4-93 / 1130
Date/Time Co	ompleted	6-1	5-93 / 0900

Boreho	le #		ACW-	-8	
Well #			ACW-	-8	 _
Page	5	of	5		 _

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson

Personnel On-Site Michael Watson

Contractors On-Site Scarborough Drilling

Client Personnel On-Site Steve Brisbin

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ina	Drilling Conditions
	Interval							nits: ND		
(Feet)	Interval	Number	Recovery	Classification System: USCS	Symbol	Change				& Blow Counts
			(inches)			(feet)	BZ	BH	8	
160										l l
				Brown very fine SAND with some sandstone	SP	160	0	0	0	
				fragments.						
					i i				ì	1
1 -					1					l l
165					1				1	
I ├─ ' ⁰⁵				Drawn For CAND with alay, conditions	SP	1	_		o	
I				Brown fine SAND with clay, sandstone	٦r	j !	0	0	U	
I				fragments.	•					!
					ł					
					1					1
170]
				Brown fine SAND with sandstone fragments,	SC	170	0	0	0	
				clay, red clay.						
			1	,,				•		
! ├				173' TERMINATION OF BORING		i		Ì		İ
175				175 TERMINATION OF BORING	•				ļ	j
I			1		ŧ					
! -					Ì					[
					1	}				
					Ì				ł	
					ı					
					1			\ \	 	
							1			
!						ŀ		i		
I					•					1
!										1
					•			1		
I					i					
					i					
			·		1					
-		}			•	}		<u> </u>	1	
								1	1	
					1	ļ		1		
I								1		
I						1		1		
1 ⊢		}							ł	
						i				
- - - -			}		•	1	1	1	1	
]				İ			
					i		1			
1		[1	
	L		1		A	<u> </u>	11	L	<u> </u>	

Comments:		
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

	Page 1	of 3		
Project Name	EPNG - Jal #4			
Project Number	10191	Phase	77	
Project Location	lel New Mexico			

Borehole #

Well #

ACW-9

ACW-9

Elevation Top	of Casing 3302.47
Borehole Location	ACV-9
GWL Depth	109.90
Logged By	Michael Watson
Drilled By	L. Scarborough
Date/Time Started	6-15-93 / 1445
Date/Time Comple	6.16-93 / 1315

Well Logged By
Personnel On-Site
Contractors On-Site
Client Personnel On-Site
Michael Watson
Scarborough Drilling
Steve Brisbin

Drilling Method Mud Rotary / Air Rotary
Air Monitoring Method HNU

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	uscs	Lithology	Air	Monitor	ing	Drilling Conditions
	Interval		Recovery		Symbol	Change		nits: NC	-	& Blow Counts
,, 554		. 10111001	(inches)	Committee of parties of the committee of		(Teet)	BZ	BH		C 5.5 550116
0			(1101103)			1,204				
_ 1			1	Lt. brown-red fine SAND with trace clay, dry.	SP		0	0	0	
- 1				La diowii iod iiio di iio di iio iiia ia ado diay, ary.	Ŭ.					
 -	ł					5				
 				Lt. brown fine SAND with trace clay with			0	0	0	
10	Ì			sandstone fragments.]		
├ · · ·										
								1		
<u></u>										
– 1										1
20					SP					
-	ļ		,							
 										
	i									
			İ							1
30										
				Lt. brown fine-medium SAND with trace clay			0	0	0	
				and limestone fragments.						
			1	,						
								1		
40										}
<u> </u>	1							1		
						;				
	ļ			!						
50						50				
				Lt. brown-tan fine-medium SAND w/sandstone	SP		0	0	0	1
				fragments very well cemented.						
								-		
60	ĺ		l		Ī					
								1	1	
								1		İ
L										
70										
				Lt. brown-tan fine-medium SAND w/sandstone			0	0	0	Į.
				fragments and some limestone fragments.						1
								1		
80										
_	į									
į.		l			I		!	l	l	1

Comments:		
	•	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation	Top of	Casing	3302.47
Borehole Loc	cation	ACW-9	
GWL Depth	109	.90	
Logged By	Mic	hael Wats	on
Drilled By	L.S	Scarborou	gh
Date/Time Si	arted	6-15-	93 / 1445
Date/Time C	ompleted	6-16-	93 / 1315

Borehole #	ACW-9	
Well #	ACW-9	
Page 2	of 3	

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson

Personnel On-Site Michael Watson

Contractors On-Site Scarborough Drilling

Client Personnel On-Site Steve Brisbin

Drilling Method Mud Rotary / Air Rotary
Air Monitoring Method HNU

		-	Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ing	Orilling Conditions
(Feet)	Interval	Number	Recovery	Classification System: USCS	Symbol	Change	U	nits: ND	U	& Blow Counts
			(inches)			(feet)	BZ	ВН	S	
80						80				
				Lt. brown-tan fine-medium SAND with	SP		0	0	0	
			,	sandstone fragments.						
					l					
					1					1
90					<u> </u>	90	_ :			
!				Lt. brown fine-medium SAND.			0	0	0	
!			i l		•					
100					SP					
_					l					
!										
1 ⊢										
- 440						440				
110				Brown fine to medium SAND with sandstone		110	_			
 					l		0	0	0	
-				fragments.						
I						·				1
120					SP					
120					31					1
<u> </u>										
					ł					
130										1
				Brown fine to medium SAND.	l		0	0	0	1
	1				l					
			ì							1
140										
										i
						1	'			
					I					
150					I					
					1		'			
			ļ		I					
										•
	·				1)				Ì
160			[
					l	<u> </u>			l	

Comments:	 		 	
	 		 	
		Geologist Signature		

Burlington Environmental Inc.

Nonro	e Ho	ac	
Farmington,	New	Mexico	87401
(505) 326-22	62 F	AX (505	326-238

Elevation	Top	o£	Casing 3302.47			
Borehole Loc	cation		ACW-9			
GWL Depth_		109	9.90			
Logged By	ged By Michael Watson					
Drilled By		LS	Scarborough			
Date/Time S	tarted		6-15-93 / 1445			
Date/Time C	omplete	ed	6-16-93 / 1315			

Boreho	le#	<u>.</u> '	ACW-	9	
Well #			ACW-	9	
Page	3	of	3		

Project Name EPNG - Jal #4 Project Number 10191 Phase 77 Project Location Jal, New Mexico

Well Logged By Michael Watson Personnel On-Site Michael Watson Contractors On-Site Scarborough Drilling Client Personnel On-Site Steve Brisbin

Drilling Method Mud Rotary / Air Rotary Air Monitoring Method

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monito	ina	Drilling Conditions
(Feet)	Interval		Recovery		Symbol	Change		nits: NC		& Blow Counts
, , , , ,			(inches)		-,	(feet)	BZ	BH	s	
160			(inches)		1	(1000)	- 52	- Bir	Т	
1 -]		ľ				1	
I ⊢	ļ									1
I -										i i
	}			Brown fine-medium SAND with red clay, soft,	SC	168.5		1	1	f I
170			1	medium plasticity.				ł	1	<u>.</u>
				Red CLAY with some sand and gravel, clay	CL	171				1
				soft, medium plasticity.	İ			Ì	1	
				171' - TERMINATION OF BORHOLE					1	1
			-						1	
			1		l	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \		1		1
					i .			1	l	1
									i	1
-						1				
I ⊢ .		İ	İ							
1 -									}	1
_					ł				l	
										1
1 _										1
								İ		
	!							1	,	1
					f				1	1
									ļ	
								l		1
	,								1	
i ⊢									l	
I	l									
I								1		
I										
								1	1	
										1
-										
								1		
								1	1	
		,								
									ł	
								1		1
										
1										
L			·		<u> </u>				1	

Comments:		
· · · ·	 •	
	 Geologiet Signature	

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Top	of Casing 3297.57
Borehole Location	ACW-10
GWL Depth	106,24
Logged By	Michael Watson
Drilled By	L Scarborough
Date/Time Started	6-16-93 / 1530
Date/Time Comple	ted 6-17-93 / 1200

Borehole # ___ ACW-10

Well # __ ACW-10

Page _ 1 __ of _ 3

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson
Personnel On-Site Michael Watson
Contractors On-Site Scarborough Drilling
Client Personnel On-Site Steve Brisbin

			Sample			Depth			-	
Depth	Sample	Sample	Type &	Sample Description	uscs	Lithology	Air	Monitor	ina	Drilling Conditions
(Feet)	interval	Number	Recovery		Symbol	Сналде	4	nits: NC	-	& Blow Counts
V 000		1144111201	(inches)	Charling and Cycle in Cook	O,DO.	(feet)	BZ	BH	s	a glow dounts
0			(IIICIIOS)		!	freed	B2	- Bri		
				Red brown fine SAND with trace sitt, dry.	SP		0	0	0	
				ned blown line SAND with trace sitt, dry.	Sr		"	"	"	
 					Ì	_			1	
! -			[14 L	- 00	5	_	۱ ـ		
!				Lt. brown-red medium-fine SAND with	SP		0	0	0	
10				trace clay.			_		_	
I				Red-brown fine-medium SAND with trace clay.	SP	!	0	0	0	
					Ī				1	
									ĺ	
					l		1			
20					I	1				
					1	-	}	}	1	
	'				l					
					l	1				
									l	
30					Ī	30				
				Tan fine SAND, trace silt and sandstone		1	0	0	0	1
				fragments.	l					
				~.*·	l	•			i	
 -					ı					
40							ţ		1	1
 "					i	1	İ		i	
I - !										
I							ŀ			
I										
								}		
50					SP					
									1	
I <u>L</u> Ì]	1
60										
				Tan fine SAND with silt.	Ī .		0	0	0	
							ļ	1		
	į									
70										
∎⊨										
∎├─── 								1		
! ├										
 										
80										
								ĺ	1	1
								l]	

Comments:		
	•	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Top	of Casing 3297.57
Borehole Location	1 ACW-10
GWL Depth	106.24
Logged By	Michael Watson
Drilled By	L. Scarborough
Date/Time Started	6-16-93 / 1530
Date/Time Compl	eted 6-17-93 / 1200

Borehole #	ACW-10
Well #	ACW-10
Page 2 c	f 3

Project Name	EPNG - Jal #4		
Project Number	10191	Phase	77
Project Location	Jal, New Mexico		

Well Logged By	Michael Watson
Personnel On-Site	Michael Watson
Contractors On-Site	Scarborough Drilling
Client Personnel On-Site	Steve Brisbin

			Sample		7	0	-		_	
Depth	Sample	Sample	Type &	Sample Description	USCS	Depth	٠.			
	-					Lithology		Monitor		Drilling Conditions
(Feet)	interval	Number	Recovery	Classification System: USCS	Symbol	Change		nits: NC		& Blow Counts
			(inches)			(feet)	BZ	BH	s	
80					<u> </u>	80	ĺ	ļ		
				Red-brown SAND with silt and clay and		1	0	0	0	
				sandstone fragments.	į		ļ		1	1 :
			1		SP		İ			
					1					
90					Į	90	ŀ		}	
				Tan fine-medium SAND with sandstone	i	1	0	0	0	
			1	fragments.			1	Ì]	1
							l			
					ł			1		
100					ł			1		
l]	Tan medium SAND, well sorted.	1		0	0	0	
-				ran modium omito, wen solled.	SP			١	"	
					٥٢]
							1	1		
110					1		1		1	
├─ '''					ľ			į		
-						•	İ	ł		
	1		}				1			
									l	
120										
				Tan fine SAND with sandstone fragments.	i		0	0	0	
					1		İ			
										ļ
		_			l					
130		•								
					}		1			
					l		1		l	ļ
							l	1		
140					•	İ			 	
					1		ł			
i						.				
 					1					!
150			ļļ		l					
I ├── ' ³⁰									ŀ	
l					•				ļ	
									1	
									1	1
1 6 0										
					Į.		ļ			į i
			<u> </u>		<u> </u>					

Comment	its:	·
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation 1	op of Casing 3297.57
Borehole Local	on ACW-10
GWL Depth	106.24
Logged By	Michael Watson
Drilled By	L. Scarborough
Date/Time Star	ed 6-16-93 / 1530
Date/Time Con	pleted 6-17-93 / 1200

Boreho	le#		ACW-1	0
Well #			ACW-1	0
Page	3	of	3	

Project Name	EPNG - Jal #4			
Project Number	10191	Phase	77	
Project Location	Jal, New Mexico			

Well Logged By	Michael Watson
Personnel On-Site	Michael Watson
Contractors On-Site	Scarborough Drilling
Client Personnel On-Site	

			Sample		T	Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ring	Drilling Conditions
(Feet)	Interval		Recovery		Symbol	Change		nits: NC		& Blow Counts
()			(inches)		1	(feet)	8Z	вн	s	
160			(,,,,,,,,,,		1	, , , , ,			Γ -	
'''									1	
 						165				
				Medium-fine brown SAND with red clay and	SP					
				sandstone fragments.	J.	169	0	0	0	
170					CL	109	"	١	0	
				Red clay.	UL.	}				
 				172' - TERMINATION OF BORHOLE				Ì		
			1						1	
 						1	ŀ			
l					l	[[Ì	
					I					
					•			1		
					İ			1]
					I		1			
_					ł					
					l	,	ļ	ļ	l	
					1			i	1	
					1		Ì	j		
						ĺ]	1	1	
						ĺ				
							1			
					ł		ļ	l	ļ	
					I				ĺ	
					ı					
 					ł					
								•		
					•		ŀ		ł	
 			{		Į.		 		1	
					ł				İ	
 					ŀ					
]							
 					•					
					1	}		1	}	
— — —										
					i		1	į		
					1				1	
- - -]		l		1			
							[
					1	}	{	1	}	1
						1	l			
L					Į.					1
ļ							1			
					<u> </u>		<u> </u>		<u> </u>	

comments:		
	•	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Top	of Casing 3299.33
Borehole Location	ACW-11
GWL Depth	104.58
Logged By	Michael Watson
Drilled By	L Scarborough
Date/Time Started	6-17-93 / 1615
Data/Time Comple	6.18.03 / 0815

Borehole #	ACW-11	
Well #	ACW-11	
Page 1	of 3	

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By
Personnel On-Site
Contractors On-Site
Client Personnel On-Site
Steve Brisbin
Michael Watson
Scarborough Drilling
Steve Brisbin

				Sample			Depth				
Depth	s	ample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ing	Drilling Conditions
(Feet)	l tr	nterval	Number	Recovery	Classification System: USCS	Symbol	Change	U	nits: NO	u i	& Blow Counts
				(inches)	· ·		(feet)	BZ	вн	s	
E	D				Brown-red fine SAND with some silt, dry.	SP	·				
10	0				Brown-red medium-fine SAND with silt.		10	0	0	0	
-					Brown-red medium-fine clayey SAND.	SC		0	0	0	
20	0		!		Brown-red medium-fine clayey SAND with well cemented sandstone pieces.			0	0	0	
30	0				Tan medium-fine SAND with some clay and sandstone pieces.	sw	30	0	0	o	
40	0				Lt. brown medium SAND well sorted, some sandstone fragments.	SP	40	0	0	0	
50	0				Tan medium SAND well sorted with limestone (caliche?) pieces.	SP	50	0	0	0	
60	0										
70	0								:		
B4	۰						80			:	

Comments:	 	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation	Top of	Casing 3299.33
Borehole Lo	cation	ACV-11
GWL Depth	104	
Logged By	Mic	chael Watson
Drilled By	L. 9	Scarborough
Date/Time S	tarted	6-17-93 / 1615
Date/Time C	ompleted	6-18-93 / 0815

Boreho	le #	ŧ	ACW-	11	
Well #			ACW-	11	
Page	2	of	3		

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By
Personnel On-Site
Michael Watson

Michael Watson

Contractors On-Site
Scarborough Drilling

Client Personnel On-Site
Steve Brisbin

			Sample			Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	Air	Monitor	ing	Drilling Conditions
(Feet)	Interval	Number	Recovery	Classification System: USCS	Symbol	Change	U	nits: ND	U	& Blow Counts
1			(inches)			(feet)	BZ	ВН	S	
80					l "	80				
				Tan-brown medium SAND well sorted.	SP		0	0	0	
		Ì			l					
		}			•					
					1					1
90										1
			}	Tan-brown medium SAND well sorted with	1		0	0	0	
]	1 1	well cemented sandstone pieces.	ŀ	Ì				
				·	f					
					l					1
100										
					•	1				
					l					
110			ļ		l .	110				
				Brown medium SAND well sorted.		1	0	0	0	
					Į.					
						·				
120										
					Į.					
		ŀ		SAND.						
					Ē					
			i l		l	[]			ļ	ļ
130		Ì			SP					
		Ì					0	0	0	
					l		-			
					•					
					ł					1
140					l	[l
'."					I					
				SAND.				i		
					l	•				
					l					
150			,							
		[l	!	0	0	0	
					Į				1	
		1			I					
		1								
160		1					·]]
1 —										
1										
			-							

Comments	:	
	•	
	Goologist Signature	

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation	Top of Casing 3299.33	
Borehole Loc	ation ACW-11	_
GWL Depth_	104.58	
Logged By	Michael Watson	
Drilled By	L. Scarborough	_
Date/Time Si	arted 6-17-93 / 1615	_
Date/Time Co	mpleted 6-18-93 / 0815	

Boreho	le#		ACW	/-11	
Well #			ACW	/-11	
Page	3	of	3		

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

Well Logged By Michael Watson
Personnel On-Site Michael Watson
Contractors On-Site Scarborough Drilling
Client Personnel On-Site Steve Brisbin

			Sample		•	Depth				
Depth	Sample	Sample	Type &	Sample Description	USCS	Lithology	A1-	Monitor	4	Drilling Conditions
(Feet)	Interval	Number	Recovery	Classification System: USCS	Symbol Change		Units: NDU			& Blow Counts
155			(inches)			(feet)	BZ	ВН	s	
160									ļ	[
					I	167			1	
				Brown SAND with red clay, clay soft,	SC	1	0	0	0	
170				medium plasticity.		170				
	,			Red CLAY with brown-tan sand, some gravel.			0	0	0	
				170' - TERMINATION OF BOREHOLE					•	
I				170 - TEMMINATION OF BONEFIOLE			}			
▋├╴							1			1
▋├							1			
									ĺ	
I	j					1				
I									1	
			}							
										1
]]							
!							1			
							1			
! -							1			
_										
							ļ			
I							1]
										!
1										
					l					
					•					
▋Ĺ										
					ł					
			ļ <u> </u>							
I										
					l					
							l			
⊪ !						}				
⊪			1 I				1			1
!										
						j				
									ĺ	
					L				<u> </u>	l

Comments	S:
	Geologist Signature

MONITORING WELL COMPLETION DIAGRAMS

Burlington Environmental Inc. 4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Well Location GWL Depth Installed By

Top of Casing 3299.33 ACW-11 104.58 Scarborough Drilling

Date/Time Started Date/Time Completed

6/18/93 6/18/93 Borehole # ACW-11 Well # ACW-11 Page 1 of 1

Project Name Project Location

EPNG - Jal #4 Project Number 10191 Phase Jal, New Mexico

On-Site Geologist Personnel On-Site Contractors On-Site

Client Personnel On-Site

Michael Watson Michael Watson Scarborough Drilling Steve Brisbin

Depths in Reference to Ground Surface Top of Protective Casing +2.7 Top of Riser +2.2 Material Item Depth Ground Surface (feet) Top of Protective Casing 2.70 **Bottom of Protective Casing** 2.30 Top of Permanent Borehole Casing **Bottom of Permanent Borehole** Casing Top of Concrete **Bottom of Concrete** 1.00 Top of Grout 1.00 **Bottom of Grout** 131.00 Top of Well Riser 4" Sch 40 PVC 2.20 **Bottom of Well Riser** 140.00 4" .010 slotted, Sch 40 PVC Top of Well Screen 140.00 Top of Seal -131.0 XXX Bottom of Well Screen 160.00 XXX Top of Peltonite Seal 131.00 Top of Gravel Pack -138.0 **Bottom of Peltonite Seal** 138.00 Top of Screen -140.0 Top of Gravel Pack 12 - 20 Silica 138.00 **Bottom of Gravel Pack** 160.50 Top of Natural Cave-In Bottom of Natural Cave-In -104.58 Top of Groundwater Bottom of Screen -160.0 **Bottom of Borehole** -170.0 Total Depth of Borehole 170.00

Comments:

Boring was backfilled with bentonite from 170 - 160.5.

Geologist Signature	
• •	

Burlington Environmental Inc.

4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Well Location	Top of Casing 3297.57 ACW-10
GWL Depth	106.24
Installed By	Scarborough Drilling
Date/Time Started	6/17/93
Date/Time Completed	6/17/93

Borehole # ACW-10

Well # ACW-10

Page 1 of 1

EPNG - Jal #4

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

On-Site Geologist Michael Watson
Personnel On-Site Michael Watson
Contractors On-Site Scarborough Drilling
Client Personnel On-Site Steve Brisbin

	ence to Ground Surface				\exists	Top of Protective Casing Top of Riser	+3.00
Item	Material	Depth (feet)				Ground Surface	
Top of Protective Casing		+ 3.00					
Bottom of Protective Casing		- 2.00					
Top of Permanent Borehole							
Casing							
Bottom of Permanent Borehole							
Casing							
Top of Concrete		+ 3.00					
Bottom of Concrete		- 1.00					
Top of Grout		- 1.00					
Bottom of Grout		- 131.00					
Top of Well Riser	4" Sch 40 PVC	+ 2.50					
Bottom of Well Riser		- 140.00					
Top of Well Screen	4" .010 slotted, Sch 40 PVC	- 140.00				Top of Seal	-131.0
Bottom of Well Screen		- 160.00) > > > > > > > > > > > > > > > > > > >	X	XXX		
Top of Peltonite Seal		- 131.00	þo	X	XXX		
Bottom of Peltonite Seal		- 138.00	X	×	××	Top of Gravel Pack	-138.0
Top of Gravel Pack	12 - 20 Silica	- 138.00				Top of Screen	-140.0
Bottom of Gravel Pack		- 160.50					
Top of Natural Cave-In							
Bottom of Natural Cave-In							
Top of Groundwater		-106.24				Bottom of Screen	-160.0
Total Depth of Borehole		- 172.00				Bottom of Borehole	-172.0

Comments:	Boring was backfilled with bentonite from 172 - 160.5.	
	- South was sackly from with beneditie 111/m 1/2 - 11/10. J.	
	Geologist Signature	

Burlington Environmental Inc.

4000 Monroe Road

Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

Elevation Well Location **GWL Depth** Installed By

Top of Casing 3302.47 ACW-9 109.90 Scarborough Drilling

Date/Time Started Date/Time Completed

6/16/93 6/16/93

Borehole #_ ACW-9 Well # ACW-9 Page 1 of 1

Project Name EPNG - Jal #4
Project Number 10191 Phase

Project Location Jal, New Mexico

On-Site Geologist Personnel On-Site Contractors On-Site Michael Watson Michael Watson

Scarborough Drilling Client Personnel On-Site Steve Brisbin

Depths in Refere	ence to Ground Surface				Top of Protective Casing Top of Riser	+3.0
Item	Material	Depth (feet)			Ground Surface	
Top of Protective Casing		+ 3.00				
Bottom of Protective Casing Top of Permanent Borehole Casing Bottom of Permanent Borehole Casing		- 2.00				
Top of Concrete		+ 3.00				
Bottom of Concrete		- 1.00				
Top of Grout		- 1.00				
Bottom of Grout		- 131.00				
Top of Well Riser	4* Sch 40 PVC	+ 3.00				
Bottom of Well Riser		- 140.00				
Top of Well Screen	4° .010 slotted, Sch 40 PVC	- 140.00			Top of Seal	-131.0
Bottom of Well Screen		- 160.00	0000 0000	XXX		
Top of Peltonite Seal		- 131.00	XXX XXX	XXX		
Bottom of Peltonite Seal		- 138.00	XXX	XXX	Top of Gravel Pack	-138.0
Top of Gravel Pack	12 - 20 Silica	- 138.00			Top of Screen	<u>-140.0</u>
Bottom of Gravel Pack		- 160.50				
Top of Natural Cave-In						
Bottom of Natural Cave-In		-				
Top of Groundwater		-109.90		\exists	Bottom of Screen	-160.0
Total Depth of Borehole		- 171.00		######################################	Bottom of Borehole	-171.0

Comments:

Boring was backfilled with bentonite from 171 - 160.5.

Geologist Signature

Burlington Environmental Inc.

4000 Monroe Road Farmington, New Mexico 87401 (505) 326-2262 FAX (505) 326-2388

 Elevation
 Top of Casing 3297.27

 Well Location
 ACW-8

 GWL Depth
 102.78

 Installed By
 Scarborough Drilling

 Date/Time Started
 6/15/93

 Date/Time Completed
 6/15/93

| Borehole # | ACW-8 | | Well # | ACW-8 | | Page 1 | of 1 |

Project Name EPNG - Jal #4
Project Number 10191 Phase 77
Project Location Jal, New Mexico

On-Site Geologist
Personnel On-Site
Contractors On-Site
Client Personnel On-Site
Michael Watson
Michael Watson
Scarborough Drilling
Steve Brisbin

Depths in Refere	ence to Ground Surface			3	Top of Protective Casing	+1
Item	Material	Depth (feet)		1	Top of Riser Ground Surface	+1.
Top of Protective Casing		+ 1.50		Γ		
Bottom of Protective Casing Top of Permanent Borehole Casing		- 3.20				
Bottom of Permanent Borehole Casing						
Top of Concrete		+ 0.30				
Bottom of Concrete		- 1.00				
Top of Grout		- 1.00				
Bottom of Grout		- 125.00				
Top of Well Riser	4* Sch 40 PVC	+ 1.50		-		
Bottom of Well Riser		- 140.00				
Top of Well Screen	4" .010 slotted, Sch 40 PVC	- 140.00			Top of Seal	12
Bottom of Well Screen		- 160.00	boxo k	0X0 0X0		
Top of Peltonite Seal		- 125.00	koxo k	0X0 0X0		
Bottom of Peltonite Seal		- 138.00	XXXX X	000 1	Top of Gravel Pack	-13
Top of Gravel Pack	12 - 20 Silica	- 138.00		1	Top of Screen	-14
Bottom of Gravel Pack		- 160.50				
Top of Natural Cave-In						
Bottom of Natural Cave-In						
Top of Groundwater		-102.78			Bottom of Screen	-160
Total Depth of Borehole		- 173.00		ु । —	Bottom of Borehole	-17:

Comments:	Boring was	backfilled wit	h bentonite	from	173 -	- 160.5.	
			•				

Geologist Signature

LABORATORY ANALYTICAL REPORTS AND CHAIN-OF-CUSTODY RECORDS

BURLINGTON ENVIRONMENTAL

210 West Sand Bank Road P.O Box 330 Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX

CHAIN-OF-CUSTODY RECORD

C.O.C. SERIAL NO.

5037

BE-34 (1/92)		į												
					LAB NOTES	F.							NOTES	SHIPPING NOTES
			7	/			1 !							
0	V	AZ AZ		EF	B	<u>0</u>	_	6.16.33	6.		5	rang X		Day!
DATE TIME	SIGNATURE	SIGN		7	RECEIVED BY	RECI	TIME	DATE	D		URE	SIGNATURE	HED BY	RELINQUISHED BY
			\prod	H										
			+	-		-	-				-			
							-				+			
			+	-		+								
			\prod											
			+	-			+				+			
70		<	+	\perp			_	2	IL EPNG-1	Monitor Whell EPNG-1	K	1622	6-16-43	EPNG-1
7B	407B	~		1	-			2	1 Acw-2a	Monitor Well Acu- 2a	<	1626		Acw-Za
Inorganic Chloride by STAND Method	Thor	7		_	-	_	2	7	Well ACW-4		/	1135	6-15-93	Acm-4
	- 1	· N		_	_			ນ	Well ENSR-2	Manbar We	ノ	1532	67643	ENSK-2 6-1643
No 115 FPA 6010 7005.	SEE	\ \ !	7			_	4	7	11 ALW-8	Manitar Well ALW-8	V	1455	-16-43	ACW #8 6-16-43
B	CHEMI	1 / N / SE	70.	1 2 / Kg/ C			Br	NO. C	SAMPLE LOCATION		GRAB	TIME	DATE	SAMPLE NO.
(CHEMICAL ANALYSIS REQUEST 6/18	\	\ \		79	19 []	XXXX	A	AIN				ATAS		LAB DESTINATION
REMARKS L	/ / /	É		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	\ \ '\	SE SE	TY NAI	IERS			V02	Thompon	Rober	SAMPLERS
	<u>\</u>	G,) //	P6 	₹ \}	E OF	<u> </u>	77	MAJOR TASK		10191	NUMBER /	PROJECT NUMBER
	PRESER-		4			5						JAL # 4		PROJECT NAME
			3)	3)									FAX	618/281-5120 FAX

BURLINGTON ENVIRONMENTAL

BE-34 (1/92)															
				TES	LAB NOTES									NOTES	SHIPPING NOTES
											-				
							1								
6/22/13 085		ST OF		of sect	E	05.27		6-21-93			(\$		hood	Z
DATE TIME	SIGNATURE	SIGN				TIME		DATE			E	SIGNATURE	Sic		
				D BY	RECEIVED BY			-			-			SHED BY	RELINQUISHED BY
					+		+	+							
			-		+	1	+	+			+				
			\bot		-		-	+			+				
					-										
								+			-				
			-					+			-				
₹ %		7	-	-		_	2	7	Menidor Well Accu-11	nitor We	V A		0945	19.93	ACW-11
		\	_	_	_	-	2	7	II ACW-9	Manifor Well ACW-9	く		1615	6 17.93	
method 407 B	Metho	<	-	_	_	-			Manter Well Acm-5	inter We	M		1700	61,93	1 1
49	Inorg	<				-		7	Monitor Well ACW-7	onitor W	くる		1740	6-17-13	1€W-7
		<	-		-	_		7	Monitar Well Acust	oniter W	くろ		1400	6.18.73	ACYY-66.18.93
by USEPA 60	ME K. Na	<u> </u>	-	-	-	-	7	3	Maritor Well HOW-10	miler 1/1			1430	6-18-53	ACW-106-18-93
	CHE	ICAS	1 5/18	IVV.	Y CY >	DE A C.	$\overline{}$	NO. (OCATION	SAMPLE LOCATION	GRAB	COMP	TIME	DATE	SAMPLE NO.
FORM NUMBER IF APPLICABLE)	\	×	W.	٠,	A 12	夕 〉		OF.					TAS	INATION	LAB DEST
REMARKS 162 BA	//3/	Ę		10	4.	d,	ע	上			500		bert Thempson	Ro	SAMPLERS
61221	VALIVES			~	€	PE 05/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/5/		<u>L</u>	77	MAJOR TASK	Z		19191	NUMBER	PROJECT NUMBER
	PRESER-	\	\	٧	2	% S		<u> </u>			7 #	JAL#	EPNG -	_	PROJECT NAME
	7													2236-0330 FAX	Columbia, IL 62236-0330 618/281-7173 618/281-5120 FAX
COC SERIAL NO	500		ÖRD	REC(700 Y	CHAIN-OF-CUSTODY REC		¥	_	£*				Bank Road	210 West Sand P.O. Box 330

4- 9-94

CLIENT: BURLINGTON ENVIRONMENTAL, INC. REPORT: 700505MT(173)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER

ATAS # : 7005.05 DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4
SAMPLE ID : EPNG-1

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		IN	ORGANICS		
TDS CONDUCTANCE INORGANIC CHLORIDE	20 2 0.2	mg/L umhos/cm mg/L	520 746 86.1	07-08-93 07-07-93 06-19-93	EPA 160.1 SM 205 SM 407B

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

REPORT: 700502MT(173)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 DATE: 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER
ATAS # : 7005.02
DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4

SAMPLE ID : ENSR-2

	REPORTIN			DATE	METHOD
PARAMETER	LIMIT	UNITS	RESULTS	ANALYZED	REFERENCE
		INC	ORGANICS		
TDS	20	mg/L	19488	07-08-93	EPA 160.1
CONDUCTANCE	2	umhos/cm	29964	07-07-93	SM 205
INORGANIC CHLORIDE	20.0	mg/L	9943	06-20-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-25-93	SM 412D
FLUORIDE	0.2	mg/L	40.3	06-19-93	EPA 300.0
NITRATE-SPEC.	0.10	mg/L	ND	07-02-93	SM 4188
SULFATE	2.0	mg/L	340	06-19-93	EPA 300.0
		1	METALS		
ARSENIC	500.0	ug/L	1500	06-30-93	SW 6010
BARIUM	50.0	ug/L	152	06-30-93	SW 6010
CHROMIUM	50.0	ug/L	ND	06-30-93	SW 6010
LEAD	300.0	ug/L	ND	06-30-93	SW 6010
POTASSIUM	5000.0	ug/L	29600	06-30-93	SW 6010
SODIUM	5000.0	ug/L	65000000	06-30-93	SW 6010

mg/L = PARTS PER BILLION(PPB) mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC. REPORT: 700504MT(173)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 DATE : 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER ATAS # : 7005.04 DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4

SAMPLE ID : ACW-2A

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INC	ORGANICS		
TDS	29	mg/L	22269	07-08-93	EPA 160.1
CONDUCTANCE	2	umhos/cm	28639	07-07-93	SM 205
INORGANIC CHLORIDE		mg/L	10916	06-20-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-25-93	SM 412D
FLUORIDE	0.2	mg/L	53.1	06-19-93	
NITRATE-SPEC.	0.10	mg/L	ND	07-02-93	
SULFATE	0.2	mg/L	3.7	06-19-93	EPA 300.0
		1	METALS		
ARSENIC	500.0	ug/L	ND	06-30-93	SW 6010
BARIUM	50.0	ug/L	1030	06-30-93	SW 6010
CHROMIUM	50.0	ug/L	ND	06-30-93	SW 6010
LEAD	300.0	ug/L	ND	06-30-93	SW 6010
	5000.0	ug/L	27000	06-30-93	SW 6010
	5000.0	ug/L	6100000	06-30-93	SW 6010

lg/L = PARTS PER BILLION(PPB)mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT:

BURLINGTON ENVIRONMENTAL, INC.

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 DATE: 07-08-93

REPORT:

700503MT(173)

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER ATAS # : 7005.03 DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4
SAMPLE ID : ACW-4

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INC	ORGANICS		
TDS	20	mg/L	68366	07-08-93	EPA 160.1
CONDUCTANCE	2	umhos/cm	92033	07-07-93	SM 205
INORGANIC CHLORIDE		mg/L	48226	06-20-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-25-93	SM 412D
FLUORIDE	0.2	mg/L	ND	06-19-93	EPA 300.0
NITRATE-SPEC.	0.10	mg/L	ND	07-02-93	SM 4188
SULFATE	20.0	mg/L	1547	06-19-93	EPA 300.0
		1	METALS		
ARSENIC	500.0	ug/L	ND	06-30-93	SW 6010
BARIUM	5.0	ug/L	606	06-30-93	SW 6010
CHROMIUM	5.0	ug/L	ND	06-30-93	SW 6010
LEAD	300.0	ug/L	ND	06-30-93	SW 6010
POTASSIUM	5000.0	ug/L	196000	06-30-93	SW 6010
	5000.0	ug/L	16400000	06-30-93	SW 6010

pg/L = PARTS PER BILLION(PPB)

mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703504MT(172)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER : 7035.04 ATAS # DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4
SAMPLE ID : ACW-5

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INC	RGANICS		
INORGANIC CHLORIDE TOTAL CYANIDE FLUORIDE NITRATE SULFATE CONDUCTANCE TDS	E 20.0 10.0 0.2 1.0 20.0 2	mg/L ug/L mg/L mg/L umhos/cm mg/L	815 ND ND 8.2 1091 3995 3354	06-23-93 06-30-93 06-23-93 07-02-93 06-23-93 06-23-93 07-07-93	SM 407B SM 412D EPA 300.0 SM 418B EPA 300.0 SM 205 EPA 160.1
		M	ETALS		
ARSENIC BARIUM CHROMIUM LEAD POTASSIUM SODIUM	10.0 5.0 1.0 3.0 500	ug/L ug/L ug/L ug/L ug/L ug/L	ND 55.8 32.3 ND 9400 513000	07-05-93 07-01-93 07-01-93 06-30-93 07-01-93	SW 7060 SW 6010 SW 7191 SW 7421 SW 6010 SW 6010

⁼ NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

TIRONMENTAL, INC. REPORT: 703502MT(172)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 DATE: 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER
ATAS #: 7035.02
DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4

SAMPLE ID : ACW-6

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INO	RGANICS		
INORGANIC CHLORIDE	20.0	mg/L	2205	06-23-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-30-93	SM 412D
FLUORIDE	0.2	mg/L	20.6	06-23-93	EPA 300.0
NITRATE	1.0	mg/L	8.3	07-02-93	SM 418B
SULFATE	0.2	mg/L	194	06-23-93	EPA 300.0
CONDUCTANCE	2	umhos/cm	8082	06-23-93	SM 205
TDS	20	mg/L	5080	07-07-93	EPA 160.1
		м	ETALS		
ARSENIC	10.0	ug/L	71.8	07-05-93	SW 7060
BARIUM	5.0	ug/L	492	07-01-93	SW 6010
CHROMIUM	1.0	ug/L	4.1	07-01-93	SW 7191
LEAD	3.0	ug/L	ND	06-30-93	SW 7421
POTASSIUM	500	ug/L	6530	07-01-93	SW 6010
SODIUM	5000	ug/L	1910000	07-02-93	SW 6010

ug/L = PARTS PER BILLION(PPB) mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC. REPORT: 703503MT(172)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER ATAS # : 7035.03 DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4
SAMPLE ID : ACW-7

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INO	RGANICS		
INORGANIC CHLORIDE	20.0	mg/L	3351	06-23-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-30-93	SM 412D
FLUORIDE	0.2	mg/L	3.8	06-23-93	EPA 300.0
NITRATE	0.10	mg/L	ND	07-02-93	SM 418B
SULFATE	0.2	mg/L	88.5	06-23-93	EPA 300.0
CONDUCTANCE	2	umhos/cm	9733	06-23-93	SM 205
TDS	20 .	mg/L	6472	07-07-93	EPA 160.1
		м	ETALS		
ARSENIC	10.0	ug/L	18.8	07-05-93	SW 7060
BARIUM	5.0	ug/L	1600	07-01-93	SW 6010
CHROMIUM	1.0	ug/L	8.6	07-01-93	SW 7191
LEAD	3.0	ug/L	ND	06-30-93	SW 7421
POTASSIUM	500	ug/L	7570	07-01-93	SW 6010
SODIUM	5000	ug/L	2044000	07-02-93	SW 6010

ug/L = PARTS PER BILLION(PPB) mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC. REPORT: 700501MT(173)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE: 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER ATAS # : 7005.01 DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4
SAMPLE ID : ACW-#8

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		IN	ORGANICS		
TDS	40	mg/L	2892	07-08-93	EPA 160.1
CONDUCTANCE	2	umhos/cm	1973	07-07-93	SM 205
INORGANIC CHLORIDE	2.0	mg/L	552	06-19-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-25-93	SM 412D
FLUORIDE	0.2	mg/L	1.9	06-19-93	EPA 300.0
NITRATE-SPEC.	0.10	mg/L	0.41	07-02-93	SM 4188
SULFATE	2.0	mg/L	150	06-19-93	EPA 300.0
		1	METALS		
ARSENIC	50.0	ug/L	ND	06-30-93	SW 6010
BARIUM	5.0	ug/L	79.7	06-30-93	SW 6010
CHROMIUM	5.0	ug/L	24.8	06-30-93	SW 6010
LEAD	30.0	ug/L	ND	06-30-93	SW 6010
POTASSIUM	500.0	ug/L	34100	06-30-93	SW 6010
SODIUM	500.0	ug/L	305000	06-30-93	SW 6010

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC. REPORT: 703505MT(172)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER ATAS # : 7035.05 DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4 SAMPLE ID : ACW-9

PARAMETER	REPORTING LIMIT	UNITS	RESULTS	DATE ANALYZED	METHOD REFERENCE
		INO	RGANICS		
INORGANIC CHLORIDE TOTAL CYANIDE FLUORIDE NITRATE SULFATE CONDUCTANCE TDS	20.0 10.0 0.2 1.0 0.2 2 30	mg/L ug/L mg/L mg/L mg/L umhos/cm mg/L	472 ND 1.7 ND 81.0 1097	06-23-93 06-30-93 06-23-93 07-02-93 06-23-93 06-23-93	SM 407B SM 412D EPA 300.0 SM 418B EPA 300.0 SM 205 EPA 160.1
		М	ETALS		
ARSENIC BARIUM CHROMIUM LEAD POTASSIUM SODIUM	10.0 5.0 1.0 3.0 500	ug/L ug/L ug/L ug/L ug/L ug/L	ND 90.0 8.0 ND 12500 121000	07-05-93 07-01-93 07-01-93 06-30-93 07-01-93	SW 7060 SW 6010 SW 7191 SW 7421 SW 6010 SW 6010

ug/L = PARTS PER BILLION(PPB) mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT:

BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703501MT(172)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER
ATAS # : 7035.01
DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4

SAMPLE ID : ACW-10

1	REPORTING			DATE	METHOD
PARAMETER	LIMIT	UNITS	RESULTS	ANALYZED	REFERENCE
		INO	RGANICS		
INORGANIC CHLORIDE	20.0	mg/L	420	06-23-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-30-93	SM 412D
FLUORIDE	0.2	mg/L	1.7	06-23-93	EPA 300.0
NITRATE	0.10	mg/L	0.63	07-02-93	SM 418B
SULFATE	0.2	mg/L	82.1	06-23-93	EPA 300.0
CONDUCTANCE	2	umhos/cm	964	06-23-93	SM 205
TDS	20	mg/L	814	07-07-93	EPA 160.1
		м	ETALS		
ARSENIC	10.0	ug/L	ND	07-05-93	SW 7060
BARIUM	5.0	ug/L	126	07-01-93	SW 6010
CHROMIUM	1.0	ug/L	10.2	07-01-93	SW 7191
LEAD	3.0	ug/L	ND	06-30-93	SW 7421
POTASSIUM	500	ug/L	14200	07-01-93	SW 6010
SODIUM	500	ug/L	109000	07-01-93	SW 6010

ug/L = PARTS PER BILLION(PPB) mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT:

BURLINGTON ENVIRONMENTAL, INC.

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

ATTN: KATHY BLAINE

REPORT: 703506MT(172)

DATE : 07-14-93

SAMPLE MATRIX: WATER
ATAS #: 7035.06
DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4

SAMPLE ID : ACW-11

F	REPORTING	3		DATE	METHOD
PARAMETER	LIMIT	UNITS	RESULTS	ANALYZED	REFERENCE
		INO	RGANICS		
INORGANIC CHLORIDE	20.0	mg/L	638	06-23-93	SM 407B
TOTAL CYANIDE	10.0	ug/L	ND	06-30-93	SM 412D
FLUORIDE	0.2	mg/L	1.7	06-23-93	EPA 300.0
NITRATE	1.0	mg/L	0.56	07-02-93	SM 418B
SULFATE	0.2	mg/L	79.4	06-23-93	EPA 300.0
CONDUCTANCE	2	umhos/cm	1727	06-23-93	SM 205
TDS	20	mg/L	1298	07-07-93	EPA 160.1
		м	ETALS		
ARSENIC	10.0	ug/L	ND	07-05-93	SW 7060
BARIUM	5.0	ug/L	94.2	07-01-93	SW 6010
CHROMIUM	1.0	ug/L	5.9	07-01-93	SW 7191
LEAD	3.0	ug/L	ND	06-30-93	SW 7421
POTASSIUM	500	ug/L	10100	07-01-93	SW 6010
SODIUM	500	ug/L	212000	07-01-93	SW 6010

mg/L = PARTS PER BILLION(PPB)
mg/L = PARTS PER MILLION(PPM)

ND = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

REPORT: 700503BX(173)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER ATAS # : 7005.03

DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4
SAMPLE ID : ACW-4

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	20.0	ug/L	85.6	06-21-93	SW 8020
TOLUENE	20.0	ug/L	132	06-21-93	SW 8020
ETHYLBENZENE	20.0	ug/L	ND	06-21-93	SW 8020
LENES	20.0	ug/L	1120	06-21-93	SW 8020
TOTAL BTEX		ug/L	1337.6		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

724 % *

^{* =} OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN - COELUTING PEAKS

ND = NOT DETECTED ABOVE REPORTING LIMIT

ug/L = PARTS PER BILLION(PPB)

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

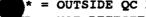
ATTN: KATHY BLAINE

REPORT: 703504BX(174)

DATE : 07-14-93

SAMPLE MATRIX: WATER ATAS # : 7035.04

DATE SUBMITTED: 06-22-93


PROJECT : #10191 - EPNG-JAL#4
SAMPLE ID : ACW-5

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	ND	06-25-93	SW 8020
TOLUENE	1.0	ug/L	ND	06-25-93	SW 8020
ETHYLBENZENE	1.0	ug/L	ND	06-25-93	SW 8020
LENES	1.0	ug/L	ND	06-25-93	SW 8020
TOTAL BTEX		uq/L	ND		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

209 % *

* = OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703502BX(174)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE: 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER

: 7035.02

ATAS # DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4 SAMPLE ID : ACW-6

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	4.6	06-25-93	SW 8020
TOLUENE	1.0	ug/L	2.5	06-25-93	SW 8020
ETHYLBENZENE	1.0	ug/L	1.2	06-25-93	SW 8020
LENES	1.0	ug/L	4.9	06-25-93	SW 8020
TOTAL BTEX		ug/L	13.2		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

199 % *

* = OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

D = NOT DETECTED ABOVE REPORTING LIMIT

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

ATTN: KATHY BLAINE

SAMPLE MATRIX : WATER

ATAS # : 7035.03

DATE SUBMITTED: 06-22-93 PROJECT: #10191 - EPNG-JAL#4

SAMPLE ID : ACW-7

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	3.2	06-25-93	SW 8020
TOLUENE	1.0	ug/L	4.9	06-25-93	SW 8020
ETHYLBENZENE	1.0	ug/L	7.0	06-25-93	SW 8020
LENES	1.0	ug/L	1.5	06-25-93	SW 8020
TOTAL BTEX		ug/L	16.6		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

214 % *

REPORT: 703503BX(174)

DATE : 07-14-93

* = OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN ND = NOT DETECTED ABOVE REPORTING LIMIT

BURLINGTON ENVIRONMENTAL, INC.

REPORT:

700501BX(173)

210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

DATE : 07-08-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER

ATAS # : 7005.01

DATE SUBMITTED: 06-17-93

PROJECT : #10191/77 - JAL #4
SAMPLE ID : ACW-#8

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	1.4	06-21-93	SW 8020
TOLUENE	1.0	ug/L	1.2	06-21-93	SW 8020
<u>E</u> THYLBENZENE	1.0	ug/L	ND	06-21-93	SW 8020
LENES	1.0	ug/L	ND	06-21-93	SW 8020
TOTAL BTEX		uq/L	2.6		

QA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

104 %

D = NOT DETECTED ABOVE REPORTING LIMIT

^{* =} OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

CLIENT:

BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703505BX(174)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330

DATE : 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER
ATAS # : 7035.05
DATE SUBMITTED: 06-22-93

PROJECT : #10191 - EPNG-JAL#4

SAMPLE ID : ACW-9

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	ND	06-25-93	SW 8020
TOLUENE	1.0	ug/L	ND	06-25-93	SW 8020
ETHYLBENZENE	1.0	ug/L	ND	06-25-93	SW 8020
LENES	1.0	ug/L	ND	06-25-93	SW 8020
TOTAL BTEX		ug/L	ND		

QA/QC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

109 %

^{* =} OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

ug/L = PARTS PER BILLION(PPB)

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703501BX(174)

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 DATE: 07-14-93

ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER
ATAS # : 7035.01
DATE SUBMITTED: 06-22-93

PROJECT: #10191 - EPNG-JAL#4

SAMPLE ID : ACW-10

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	ND	06-24-93	SW 8020
TOLUENE	1.0	ug/L	ND	06-24-93	SW 8020
ETHYLBENZENE	1.0	ug/L	ND	06-24-93	SW 8020
YLENES	1.0	ug/L	1.7	06-24-93	SW 8020
TOTAL BTEX		uq/L	1.7		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

103 %

ND = NOT DETECTED ABOVE REPORTING LIMIT

^{* =} OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

CLIENT:

BURLINGTON ENVIRONMENTAL, INC.

REPORT: 703506BX(174)

210 WEST SAND BANK ROAD P.O. BOX 330

DATE : 07-14-93

COLUMBIA, IL 62236-0330 ATTN: KATHY BLAINE

SAMPLE MATRIX: WATER

ATAS # : 7035.06

DATE SUBMITTED: 06-22-93
PROJECT : #10191 - EPNG-JAL#4
SAMPLE ID : ACW-11

PARAMETER	REPORTING LIMIT	UNIT	RESULTS	DATE ANALYZED	METHOD REFERENCE
GAS CHROMATOGRAPHY					
BENZENE	1.0	ug/L	ND	06-25-93	SW 8020
TOLUENE	1.0	ug/L	ND	06-25-93	SW 8020
ETHYLBENZENE	1.0	ug/L	ND	06-25-93	SW 8020
LENES	1.0	ug/L	ND	06-25-93	SW 8020
TOTAL BTEX		ug/L	ND		

OA/OC SURROGATE RECOVERY

BROMOFLUOROBENZENE (65-135%)

98 %

* = OUTSIDE QC LIMIT ON BOTH ORIGINAL AND RERUN

ND = NOT DETECTED ABOVE REPORTING LIMIT

LABORATORY QUALITY CONTROL SEQUENCE

METHOD

: EPA 8020

QA SEQUENCE NO: 2B592

INSTRUMENT ID : 2B

LABORATORY BLANK

MATRIX

ATAS NO. : B1

SAMPLE ID

: BLANK

SAMPLE AMOUNT : 5.0 G ANALYSIS DATE : 06-24-93

DILUTION FACTOR : 1.00

ANALYSIS TIME : 13:38

COMPOUND	QUANTITATION LIMIT (PPB)	AMOUNT FOUND (PPB)
BENZENE	1.0	ND
TOLUENE	1.0	ND
ETHYLBENZENE	1.0	ND
TOTAL XYLENES	1.0	ND
DRROGATE RECOVER	Y (BROMOFLUOROBENZENE):	98 %

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

COMPOUND	SPIKE CONC. (PPB)	7017.06 SAMPLE CONC. (PPB)	7017.06 MS MATRIX SPIKE CONC.(PPB)	PERCENT RECOVERY
BENZENE	20.0	ND	20.6	102.8 %
TOLUENE	20.0	ND	20.3	101.5 %
ETHYLBENZENE	20.0	ND	20.0	100.2 %
TOTAL XYLENES	40.0	ND	39.9	99.8 %

	7017.06 MSD MATRIX SPIKE DUP. CONC.(PPB)	PERCENT RECOVERY	RELATIVE PERCENT DIFFERENCE
BENZENE	19.9	99.4 %	3.36 %
TOLUENE	19.9	99.3 %	2.29 %
ETHYLBENZENE	19.6	97.8 %	2.37 %
TOTAL XYLENES	39.0	97.5 %	2.33 %

875 Fee Fee Road • Maryland Heights, MO 63043 • (314) 434-4570 - FAX (314) 434-0080

LABORATORY QUALITY CONTROL SEQUENCE

METHOD

: EPA 8020

INSTRUMENT ID

: 1B

LABORATORY BLANK

MATRIX

: W

ATAS NO. : B1

SAMPLE ID

: BLANK

DILUTION FACTOR : 1.00

SAMPLE AMOUNT : 5.0 G ANALYSIS DATE : 06-25-93

ANALYSIS TIME : 14:33

COMPOUND	QUANTITATION LIMIT (PPB)	AMOUNT FOUND (PPB)
BENZENE	1.0	ND
TOLUENE	1.0	ND
ETHYLBENZENE	1.0	ND
TOTAL XYLENES	1.0	ND

RROGATE RECOVERY (BROMOFLUOROBENZENE):

102 %

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

NO MS/MSD RESULTS

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

REPORT: QC0630MT(173)

210 WEST SAND BANK ROAD P.O. BOX 330 COLUMBIA, IL 62236-0330

DATE : 07-08-93

ATTN: KATHY BLAINE

QA/QC

DESCRIPTION		PARAMETER	RESULTS	
METHOD BLANK	06-30-92	BARIUM	<5.0	ug/L
METHOD BLANK	06-30-92	ARSENIC	<50.03	ug/L
METHOD BLANK	06-30-92	CHROMIUM	<5.0	ug/L
METHOD BLANK	06-30-92	LEAD	<30.0	ug/L
METHOD BLANK	06-30-92	POTASSIUM	<500.0	ug/L
METHOD BLANK	06-30-92	SODIUM	<500.0	ug/L
METHOD BLANK	06-20-92	CHLORIDE	<0.2	mg/L
METHOD BLANK	06-20-92	SULFATE	<0.2	mg/L
METHOD BLANK	06-19-92	CHLORIDE	<0.2	mg/L
METHOD BLANK	06-19-92	FLUORIDE	<0.2	mg/L
METHOD BLANK	06-19-92	SULFATE	<0.2	mg/L
METHOD BLANK	07-02-92	NITRATE	<0.10	mg/L
METHOD BLANK	06-25-92	TOTAL CYANIDE	<10.0	ug/L
BLANK SPIKE	06-30-92	ARSENIC	99 %	RECOVERY
BLANK SPIKE	06-30-92	BARIUM	99 %	RECOVERY
BLANK SPIKE	06-30-92	CHROMIUM	105 %	RECOVERY
BLANK SPIKE	06-30-92	LEAD	103 %	RECOVERY
BLANK SPIKE	06-30-92	POTASSIUM	99 %	RECOVERY
BLANK SPIKE	06-30-92	SODIUM	97 %	RECOVERY
BLANK SPIKE	06-20-92	CHLORIDE	98 %	RECOVERY
BLANK SPIKE	06-20-92	SULFATE	94 %	RECOVERY
BLANK SPIKE	06-19-92	FLUORIDE	98 %	RECOVERY
BLANK SPIKE	06-19-92	CHLORIDE	100 %	RECOVERY
BLANK SPIKE	06-19-92	SULFATE	96 %	RECOVERY
BLANK SPIKE	07-02-92	NITRATE	102 %	RECOVERY
BLANK SPIKE	06-25-92	TOTAL CYANIDE	102 %	RECOVERY

CLIENT: BURLINGTON ENVIRONMENTAL, INC.

210 WEST SAND BANK ROAD P.O. BOX 330

COLUMBIA, IL 62236-0330 ATTN: KATHY BLAINE

REPORT: QC0623MT(172)

DATE 07-14-93

QA/QC

DESCRIPTION		<u>PARAMETER</u>	RESULTS	
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	06-23-93	FLOURIDE	<0.2	mg/L
	06-23-93	CHLORIDE	<0.2	mg/L
	06-28-93	SULFATE	<0.2	mg/L
	07-02-93	NITRATE	<0.10	mg/L
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	06-30-93	TOTAL CYANIDE	<10.0	ug/L
	06-30-93	LEAD	<3.0	ug/L
	07-01-93	BARIUM	<5.0	ug/L
	07-01-93	SODIUM	<500	ug/L
METHOD BLANK METHOD BLANK METHOD BLANK METHOD BLANK	07-01-93	POTASSIUM	<500	ug/L
	07-02-93	CHROMIUM	<1.0	ug/L
	07-05-93	ARSENIC	<10.0	ug/L
	07-02-93	NITRATE	<0.10	ug/L
BLANK SPIKE	06-23-93	FLOURIDE	103 %	RECOVERY
BLANK SPIKE	06-23-93	CHLORIDE	98 %	RECOVERY
BLANK SPIKE	06-23-93	SULFATE	94 %	RECOVERY
BLANK SPIKE	07-02-93	NITRATE	102 %	RECOVERY
BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE BLANK SPIKE	06-30-93 06-30-93 07-01-93 07-01-93 07-02-93	TOTAL CYANIDE LEAD BARIUM SODIUM POTASSIUM CHROMIUM	92 % 118 % 100 % 100 % 102 % 93 %	RECOVERY RECOVERY RECOVERY RECOVERY RECOVERY
BLANK SPIKE	07-05-93	ARSENIC	92 %	RECOVERY
BLANK SPIKE	07-02-93	NITRATE	102 %	RECOVERY

LABORATORY QUALITY CONTROL SEQUENCE

METHOD

: EPA 8020

INSTRUMENT ID : 2B

LABORATORY BLANK

MATRIX

: W

ATAS NO. : B1

SAMPLE ID SAMPLE ID : BLANK SAMPLE AMOUNT : 5.0 G

DILUTION FACTOR : 1.00

ANALYSIS DATE : 06-21-93

ANALYSIS TIME : 10:59

COMPOUND QUANTITATION LIMIT AMOUNT FOUND (PPB) (PPB) BENZENE 1.0 ND TOLUENE 1.0 ND ETHYLBENZENE 1.0 ND TOTAL XYLENES 1.0 ND

RROGATE RECOVERY (BROMOFLUOROBENZENE):

98 %

MATRIX SPIKE/MATRIX SPIKE DUPLICATE RESULTS

COMPOUND	SPIKE CONC. (PPB)	6994.08 SAMPLE CONC. (PPB)	6994.08 MS MATRIX SPIKE CONC.(PPB)	PERCENT RECOVERY
BENZENE	20.0	ND	19.1	96 %
TOLUENE	20.0	1.7	20.7	95 %
ETHYLBENZENE	20.0	ND	20.8	104 %
TOTAL XYLENES	40.0	1.1	42.6	104 %

	6994.08 MSD MATRIX SPIKE DUP. CONC.(PPB)	PERCENT RECOVERY	RELATIVE PERCENT DIFFERENCE
BENZENE	18.1	90 %	6.4 %
TOLUENE	19.4	89 %	6.5 %
ETHYLBENZENE	19.8	99 %	4.9 %
TOTAL XYLENES	40.5	98 %	5.9 %

EXPANDED HYDROGEOLOGY STUDY FOR THE EL PASO NATURAL GAS COMPANY JAL 4 FACILITY: PHASE 2

RECEIVED

prepared for

APR 2 9 1991

El Paso Natural Gas Company El Paso, Texas

OIL CONSERVATION DIV. SANTA FE

prepared by

K. W. Brown & Associates, Inc. 500 Graham Road College Station, Texas 77845

January 1991

Sidney H. Johnson Project Manager

Michael P. Sherrier Contributing Author

Michael Trojan

Division Director/Regional Manager

Robert C. Speake, Jr.

QC Reviewer

TABLE OF CONTENTS

		age
1.0	INTRODUCTION	. 1
2.0	REVIEW OF PHASE 1 REPORT—PERTINENT POINTS	. 2
3.0	WELL INSTALLATION, DEVELOPMENT, AND SURVEY. 3.1 WELL INSTALLATION. 3.2 WELL DEVELOPMENT. 3.3 WELL SAMPLING. 3.4 SAMPLE ANALYSIS AND DISCUSSION OF RESULTS. 3.5 WELL SURVEY.	3 3 5 5
4.0	AQUIFER CHARACTERISTICS 4.1 PUMP TEST	. 9 . 10
5.0	PLUME CONFIGURATION	. 14
6.0	GROUNDWATER MODELING 6.1 DESCRIPTION OF THE MODEL	. 16 . 17 . 19
7.0	REMEDIATION	. 27
8.0	CONCLUSIONS AND RECOMMENDATION	. 33
9.0	REFERENCES	. 35
	LIST OF FIGURES	
Figu Figu Figu Figu Figu Figu		. 11 . 13 . 15 . 22 . 23 . 28

LIST OF TABLES

Table 1.	Parameters Monitored During Well Development	5
	Analytical Parameters and Test Methods	
	Laboratory Results.	
Table 4.	Well Elevations	8
Table 5.	Results of Pump Test	12
Table 6.	Input Requirements for the USGS MOC Solute Transport Model	20
Table 7.	Input Data-USGS MOC Groundwater Flow/Contaminant Transport Model	21
Table 8.	Total Dissolved Solids in Drinking Water for Livestock	24
Table 9.	Summary of Pump-and-Treat Options	26
Table 10.	Estimated Remedial Costs	30

LIST OF APPENDICES

APPENDIX A—Bore Logs/Well Completions

APPENDIX B-Analytical Data

APPENDIX C—Pump Test Data

APPENDIX D—Model Calibration Run Output

1.0 INTRODUCTION

In August 1990, K. W. Brown & Associates, Inc. (KWB&A) prepared a report (KWB&A, 1990) that addressed the hydrogeologic setting of the El Paso Natural Gas Company (EPNG) Jal 4 facility (Jal 4). In addition to presenting the hydrogeologic setting, the report offered information on the regional and local geology as well as the climatic setting. Since this information is fully discussed in the Phase 1 report, it will not be repeated here. Rather, this report will focus on events that have transpired since the submittal of the Phase 1 report.

Events conducted under the Phase 2 effort include installing four monitoring wells and one piezometer, conducting a pump test to empirically determine hydraulic conductivity, storativity, and transmissivity of the aquifer, and calibrating the model which was used in Phase 1 with site specific data gathered during the Phase 2 investigation. Although four monitoring wells were installed, only three are functional. A full discussion on the monitoring well installation is presented in Section 3.1.

2.0 REVIEW OF PHASE 1 REPORT—PERTINENT POINTS

The Phase 1 effort indicated Jal 4 is situated over the Ogallala aquifer. Water quality in the area upgradient of Jal 4, characterized by EPNG well 12 (EPNG 12), was relatively good as compared to water retrieved from downgradient wells. Depth to water at the site was approximately 100 to 110 feet and the groundwater was found to exist under unconfined conditions. The hydraulic gradient was determined to be 0.0018 ft/ft and the flow direction was determined to be to the southeast.

It was also determined that the area receives an average annual precipitation of 8 inches and the surface soils are of a sandy texture. Texture of the underlying sediments varies from sandy to cemented sandstones and caliche.

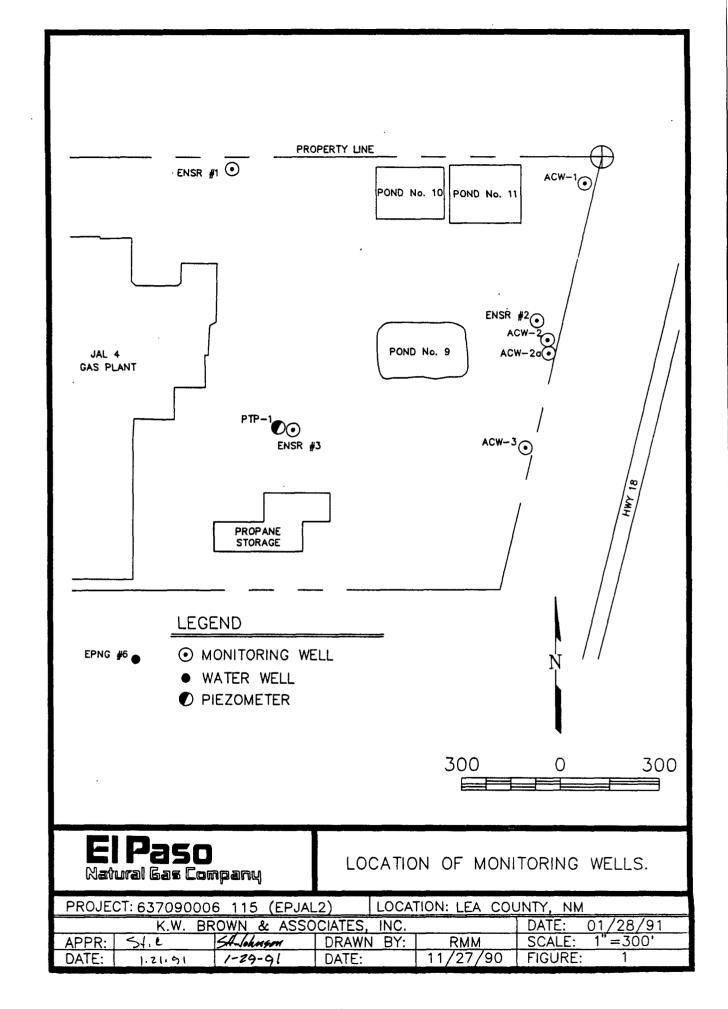
Analytical results for groundwater samples collected from on-site monitoring wells illustrated a large concentration of saline water in the area where old-wastewater ponds were once located. The configuration of the saline plume was determined to trend from the northwest to the southeast along the axis of the groundwater flow direction. In addition to identifying the presence of "saltwater", several organic constituents, including but not limited to BETX, naphthalenes, and phenols were identified in the Phase 1 investigation.

Groundwater data known and assumed about the site were used to predict the configuration of the plume identified. Since firm data for each of the hydrologic parameters were not available during Phase 1, reasonable estimates were made. The computer simulation illustrated the plume extended from Jal 4 to the southeast, under Highway 18, for a distance of approximately 300 feet.

3.0 WELL INSTALLATION, DEVELOPMENT, AND SURVEY

Information presented in this section describes the installation and completion of the monitoring wells installed by KWB&A during the Phase 2 investigation.

3.1 WELL INSTALLATION


A total of four monitoring wells and one piezometer were installed during the Phase 2 field activities. It was originally intended that three monitoring wells would be installed, however, one of the wells could not be developed properly and it was necessary to install a replacement well. The locations of all monitoring wells are illustrated on Figure 1; the ACW-series wells were installed during the Phase 2 effort. Locations for the ACW wells were selected so they would be perpendicular to axis of the documented groundwater plume. Additionally, they were placed to the east as far as possible, while remaining on EPNG property, in an effort to further define the downgradient configuration of the plume.

Each of the wells, and the piezometer, were installed by West Texas Water Well Service. The drill rig used was a Badger 2000 rotary that could drill either on air or using water/mud. Each of the wells at the site was drilled using the rotary mud wash and completed using 4-inch schedule 40 PVC flush-thread casing with 0.010 machine slot screens. Stainless-steel centralizers were used to hold the PVC screen in the center of the bore hole during completion. An 8/16 Brady sand was tremmied in place around the screen and a bentonite seal was placed above the sand. The thickness of the seal ranged from 2 feet to 11 feet. A standard neat cement was used to seal the annular space from the bentonite seal to the ground surface. The well head assembly consists of a locking steel casing and a 4'x4'x4" concrete pad. Construction details and the geologic logs are included in Appendix A.

During the first field trip, conducted November 12-17, 1990, two of the three monitoring wells and the piezometer were successfully installed. One of the wells, ACW-2, would not produce sufficient water to allow the well to be developed. Therefore, the decision was made to install a replacement well. The replacement well is designated as ACW-2a and was installed on December 10, 1990.

3.2 WELL DEVELOPMENT

Upon completion, a 4-inch submersible pump was used to purge water from each of the wells. During purging, the pH, electrical conductivity (EC), and the temperature of the well was monitored. As these values stabilized and the turbidity of the purged water cleared, the well was considered completely developed and ready for sampling. As part of the well development

procedure, a surge block was used to dislodge loose particles from the screened portion of the formation and the well screen. As mentioned previously, it was not possible to develop ACW-2 due to the low yield of the well. Therefore, ACW-2a was installed. ACW-2a's development was consistent with the development of the other wells. Table 1 lists the final values for the parameters monitored during the development of the wells.

Table 1. Parameters Monitored During Well Development.

Parameter	ACW-1	ACW-2a	ACW-3
Purged volume (gallons)	967	538	800
Stable pH (S.U.)	9.71	7.78	6.64
Stable EC (µmhos/cm)	22,000	16,500	35,000
Stable temperature (Celsius)	18.9	16.6	19.5

3.3 WELL SAMPLING

Each of the completed monitoring wells installed by KWB&A during the Phase 2 effort was sampled to determine local groundwater quality. Upon completion of the well development, a dedicated disposable bailer was lowered into each well to retrieve samples. Once retrieved, samples were placed into appropriate containers with the appropriate preservatives. Each sample was logged in on a chain-of-custody form and placed on ice in the field to preserve the integrity of the samples. Upon completing the sampling, the ice chests containing the samples were sealed and shipped via Federal Express to Analytical Technologies in Tempe, Arizona.

3.4 SAMPLE ANALYSIS AND DISCUSSION OF RESULTS

During the Phase 1 effort, a large list of organic and inorganic constituents were selected for analysis. Based on the Phase 1 analytical results, the list of constituents selected for the Phase 2 analysis was reduced. The analytical parameters selected for Phase 2 are listed in Table 2.

Table 2. Analytical Parameters and Test Methods.

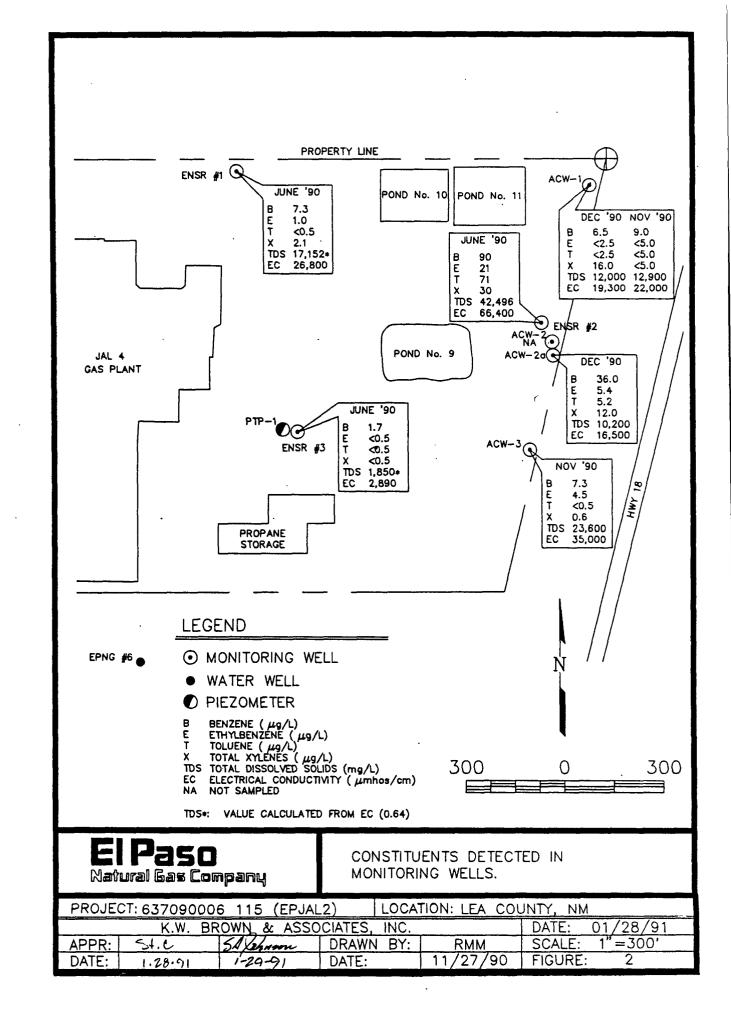
Parameter	Method
Total phenols	420.2 (Reference 1)
Total dissolved solids	160.1 (Reference 1)
Benzene	8020M (Reference 2)
Toluene	8020M (Reference 2)
Ethylbenzene	8020M (Reference 2)
Xylene	8020M (Reference 2)

Reference 1: Methods for Chemical Analysis of Water and Wastes, March 1983 EPA-600 4-79-020.

Reference 2: SW 846, 3rd Edition.

Analytical results for the samples indicate the presence of benzene in each of the three wells; the remaining volatiles appear in one or more of the wells. With the exception of the presence of $36~\mu g/L$ benzene in ACW-2a, all concentrations for volatiles are below the standards established by the New Mexico Water Quality Control Commission (WQCC). Phenols, as measured by an analytical method to quantify "total phenols", is above the 0.005 mg/L standard. Figure 2 graphically illustrates the concentrations of constituents noted in the ACW wells. For comparison purposes, values from the ENSR wells obtained during the Phase 1 report have been included to illustrate the concentrations of constituents present in the ENSR wells. In addition to the relative concentrations of organic constituents, the figure presents concentrations of some inorganic indicators.

Without exception, the total dissolved solid (TDS) content of the groundwater extracted from the ACW wells is above the upper WQCC limit for usable water. However, as was discussed in the Phase 1 report, groundwater being sampled by the monitoring wells is from an area which is impacted by past wastewater disposal practices at Jal 4. Therefore, the high TDS of the water is not representative of background water quality.


The quality of the local groundwater was established during Phase 1 by sampling EPNG well 12, which is located upgradient of the facility. A complete discussion on the water quality for this well is presented in Section 3.3 of the Phase 1 report. In general terms, however, it can be stated that the water quality from EPNG 12, as determined by major cations and anions, is considerably better than that measured in monitoring wells. Furthermore, the disparity in water quality can be illustrated by comparing EC values for EPNG 12 (background) and the ACW wells (downgradient). EPNG 12 has an EC value of 695 μ mhos/cm, whereas the average EC value for the three ACW wells is 24,500 μ mhos/cm.

Comparison of the EC values measured during Phase 2 with those gathered during Phase 1, indicate the configuration of the plume, as it was presented on Figure 4 of the Phase 1 report, were reasonably accurate. Specifically, the concentrations noted in the ACW wells fall within the predicted EC isopleths.

Numerical values for organic and inorganic parameters from Phase 2 are presented in Table 3 and Appendix B.

3.5 WELL SURVEY

Each of the ACW monitoring wells, and the piezometer, were surveyed by KWB&A field personnel. Although the survey can't be certified, the locations and elevations are considered to be accurate. The elevations for the ACW wells were established by back-sighting on ENSR 2. The elevation of ENSR 2 was then used as a benchmark to calculate the elevation of the well. Likewise, ENSR 3 was used as a benchmark for the survey of the piezometer. Table 4 lists the

casing elevations established for the wells and the piezometer; ENSR wells and EPNG wells are included for completeness.

Table 3. Laboratory Results.

Parameter	WQCC Standard	ACW-1 11/16/90	ACW-1 12/14/90	ACW-2a 12/13/90	ACW-3 11/16/90
Total phenols (mg/L)	0.005	0.15	0.07	0.24	0.10
Total dissolved solids (mg/L)	1,000 lower, 10,000 upper	12,900	12,000	10,200	23,600
Electrical conductivity (µmhos/cm)	No standard	22,000	19,300	16,500	35,000
Benzene (µg/L)	10	9.0	6.5	36	7.3
Ethylbenzene (µg/L)	75 0	<5.0	<2.5	5.4	4.5
Toluene (µg/L)	75 0	<5.0	<2.5	5.2	<0.5
Total xylenes (µg/L)	620	<5.0	16	12	0.6

Table 4. Well Elevations.

Well Identification	Casing Elevation (ft. above MSL)
ACW-1	3,300.87
ACW-2	3,301.07
ACW-2a	3,300.88
ACW-3	3,300.34
PTP-1 (Piezometer)	3,304.41
ENSR 1	3,305.40
ENSR 2	3,301.60
ENSR 3	3,303.80
EPNG 1	3,308.60
EPNG 5	3,308.90
EPNG 6	3,305.30
EPNG 12	3,324.90

4.0 AQUIFER CHARACTERISTICS

The primary focus of the Phase 2 effort was to gather accurate data for physical aquifer characteristics needed to predict the migration of the plume at the site. To this end, a piezometer was installed near ENSR 3 for the sole purpose of conducting a pump test. The piezometer was designated as PTP-1 (Pump Test Piezometer). The completion detail for this piezometer is included in Appendix A. Data from the pump test was used in conjunction with analytical data from the monitoring wells.

4.1 PUMP TEST

By pumping a well and observing the behavior of adjacent wells screened at similar depths, one can calculate the transmissivity¹ and storage coefficient² of the aquifer by the application of an appropriate method of analysis. These numbers define the geometry of the cone-of-depression surrounding a pumping well. For example, an aquifer having high transmissivity will have a very broad cone-of-depression, extending for, in some cases, miles in all directions away from the pumping well. Conversely, an aquifer possessing a low value for transmissivity will have a cone-of-depression that is tightly wrapped around the pumping well. Additionally, an aquifer with a low storage coefficient, for a given rate of pumpage, will generate more drawdown³ than an aquifer having a higher storage coefficient (Freeze and Cherry, 1979). By having these hydraulic descriptors available, it is possible to model the hydraulics of an aquifer system.

On November 12, 1990, the first of two separate pump tests was conducted. This pump test, however, did not continue to a satisfactory conclusion. Approximately 52 minutes into the test, the pump failed in such a manner that it could not be repaired in the field. An attempt was made to analyze the data collected during this "brief" pump test to determine whether or not useful data could be extracted. It was decided that the test was simply too short to offer credible data. Therefore, a decision was made to repeat the test at a later date.

The second pump test was conducted during December. The methods and results presented in the following sections are from the second pump test.

Transmissivity is defined as the rate at which water of prevailing kinematic viscosity is transmitted through a unit width of aquifer under a unit hydraulic gradient (Todd, 1980).

Storage coefficient is defined as the volume of water that an aquifer releases from or takes into storage per unit surface area of aquifer per unit change in the component of hydraulic head oriented normal to that surface (Todd, 1980).

³ Drawdown is simply the numerical difference between pumping and nonpumping water levels in an aquifer.

4.1.1 Pump Test Methods

Pretest conceptual modeling demonstrated that a sufficiently-high pumping rate (i.e., 20 GPM) could be maintained in the pumping well (ENSR-3) for inducing drawdown in the piezometer, without the generation of excessive drawdown in the pumping well. For the pump test, an Aeromotor A20B-75 submersible pump was used to withdraw water from ENSR-3. A gate valve and flow meter were used to control and determine the pumping rate during the test.

A two-channel data logger (SE1000B), manufactured by In-Situ, Inc. (Laramie, Wyoming), was used to collect readings of water levels via pressure transducer in both the pumping and observation well. This device was programmed to sample the transducers on a logarithmic interval for the first few minutes of the test, where it then assumed an arithmetic, or linear, sampling rate. By having values of water levels on a logarithmic schedule initially, it is possible to evaluate the effects of pumping during the early portion of the test. The SE1000B records readings from a pressure transducer placed below the expected level of drawdown. For the observation well, the pressure transducer was placed at a depth within the screened interval of the casing. The pressure transducer for the pumping well was placed at the top of the pump, below the static water level.

4.1.2 Pump Test Procedure

Water level measurements were taken in the pumping well prior to initiation of the pump test. This procedure was performed to obtain a baseline value for the pre-pumping water level in each well and to calibrate the data logger.

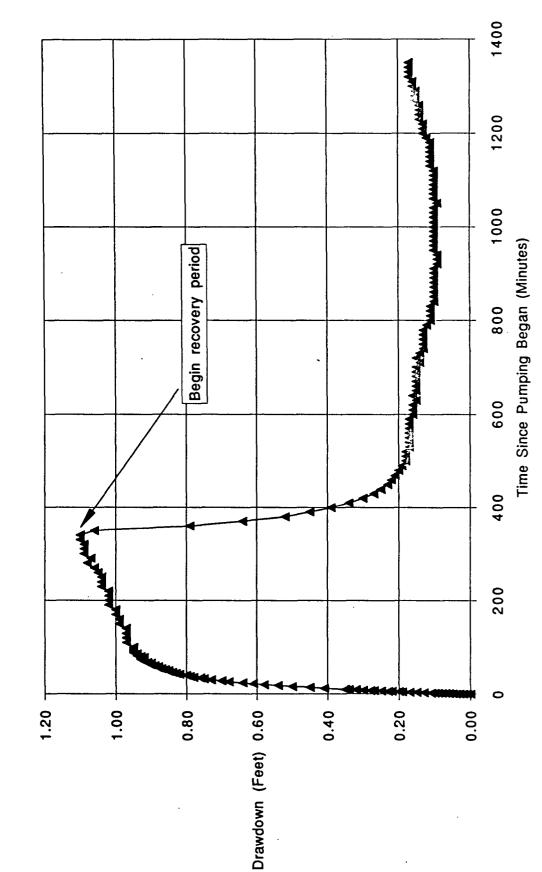
The pump test began at 11:38 am and ended at 5:28 pm on December 11, 1990. From the start of the test, the gate valve was fully opened to obtain the highest pumping rate possible. An average pump rate of 13.37 GPM was maintained during the test.

4.1.3 Results of Pump Test

The variation in drawdown vs time for the observation well is presented in Figure 3. The figure shows that during pumping, the recorded drawdown in the observation well ranged from 0 to 1.1 feet. Figure 3 also shows the recovery curve for the observation well. The recorded recovery in the observation well ranged from 1.1 to 0.09 feet.

The raw data obtained by the data logger for the pumping and recovery periods are available in Appendix C. The recovery portion of the time/drawdown curve for PTP-1 was analyzed using the type curve solution of the Theis equation. The Theis equation assumes nonsteady, radial flow in a confined aquifer, without vertical leakage from overlying or underlying aquitards, and constant well discharge. Although it was determined that the aquifer was unconfined, the drawdown to saturated thickness ratio was acceptable to warrant application of the Theis method. Based upon the type curve solution of the recovery data, the values of transmissivity, storage coefficient, and hydraulic conductivity are given in Table 5.

Pumping/Recovery Curves for Observation Well PTP-1



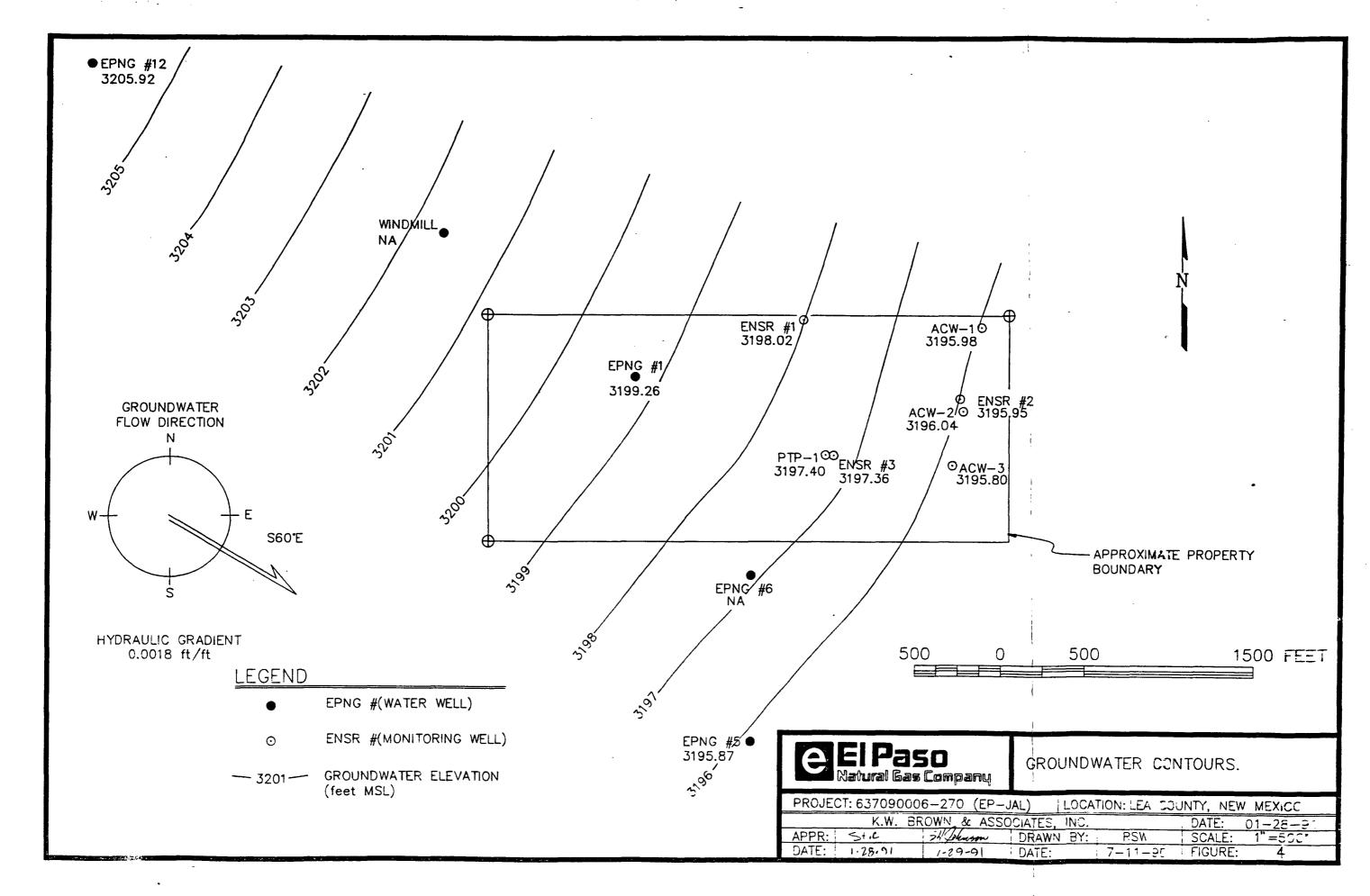
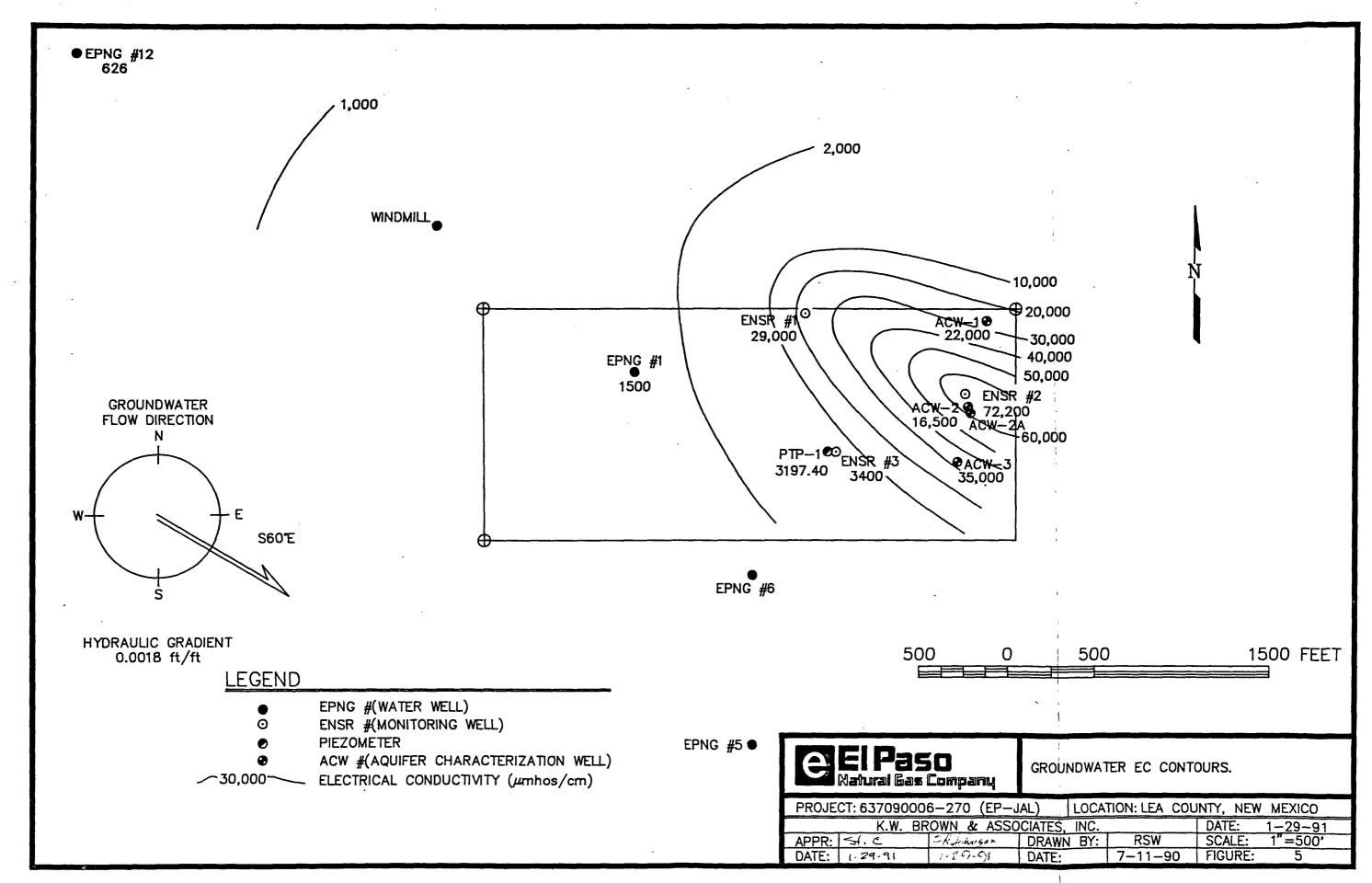

Figure 3. Pumping/Recovery Curves for Observation Well PTP-1.

Table 5. Results of Pump Test.

Observation Well	Transm	nissivity	Storage	Coefficient	Hydraulic Conductivity
PTP-1	Theis Analysis: 6,128 GPD/FT	Theis Recovery: 3,800 GPD/FT	Theis Analysis: 0.0152	Theis Recovery: Not Possible	4.5 x10 ⁻³ cm/sec

4.2 HYDRAULIC GRADIENT AND FLOW DIRECTION

The hydraulic gradient and flow direction were established by Phase 1 data and were thoroughly explained in the Phase 1 report. It was determined during the Phase 2 effort that the hydraulic gradient was stable at 0.0018 ft/ft. Likewise, a southeast groundwater flow direction was again confirmed. In fact, the direction of groundwater flow did not differ from that presented in the Phase 1 report. The Phase 1 report documented a flow direction of N125°E (S55°E) and the Phase 2 data indicates a flow direction of N120°E (S60°E). Figure 4 illustrates the groundwater contours as determined by Phase 2 data. Methods used to make the Phase 2 determinations are consistent with the methods described in Section 4.3 of the Phase 1 report.



5.0 PLUME CONFIGURATION

The configuration of the plume as it was presented on Figure 4 and discussed in Section 4.5 of the Phase 1 report are considered to be reasonably accurate. This assessment is based on data collected for the ACW monitoring wells which support the predictions made by the Phase 1 report. Figure 5 collectively illustrates the EC data collected from the Phase 1 sampling effort and data from Phase 2. From this figure, it is apparent that the plume is oriented in a north-west to southeast position. Likewise, it is clearly evident that the plume is restricted to the area where wastewater ponds were previously located. Predictions of the southeast extent of the plume have been calculated using a contaminant transport model. Results of this effort are offered in Section 6.4.

The conclusion reached during Phase 1 that the groundwater quality beneath the area where the wastewater ponds were located has been impacted by past activities, was supported by Phase 2 data. Specifically, the electrical conductivity of groundwater in the area of the old ponds was drastically greater than background and trace levels of organic constituents were present. Additionally, each of the ACW wells exhibited a distinctive "propane" odor (i.e., mercaptans were present).

It is interesting to note the difference in water quality between ENSR-3 and ACW-3. ENSR-3 is relatively clean when compared to the other monitoring wells. However, ACW-3 yields water which contains trace levels of organic constituents and elevated levels of salts (as suggested by EC and TDS). The most plausible cause for the difference is their location relative to the now closed wastewater ponds. ENSR-3 is in an upgradient position of the ponds (e.g., Ponds 6 and 7) and ACW-3 is in a downgradient position.

6.0 GROUNDWATER MODELING

A thorough discussion of the model used to predict the configuration of the plume is presented in the Phase 1 report (Section 4.6). Moreover, predictions on the configuration and "character" of the plume were also presented in the Phase 1 report. However, the Phase 1 modeling effort was hampered because site-specific data were not available concerning the physical characteristics of the aquifer. Also, the locations of the ENSR monitoring wells (those used for the Phase 1 work) were not optimum for predicting plume configuration and migration. Hence, the Phase 2 effort was undertaken to better position monitoring wells and to collect accurate values for physical aquifer characteristics.

Unlike the previous sections of this report, where the reader is referred back to the Phase 1 report for information, this section on groundwater modeling has been extracted from the first report in its entirety. This was done because the modeling effort is the keystone of the Phase 2 effort and a complete discussion is warranted even though it is, in many respects, redundant with the Phase 1 report. In reading this section, it will become apparent that much of the text is identical; however, the numerical values have been revised to reflect Phase 2 data.

6.1 DESCRIPTION OF THE MODEL

The mathematical model used to simulate groundwater flow and solute transport in the uppermost aquifer at the Jal 4 site is a two-dimensional finite-difference model that computes values of hydraulic head (sum of pressure and elevation heads) and reactive or nonreactive solute concentration on a rectangular grid having equal spacing between nodes. The model was written by Konikow and Bredehoeft (1978), and is typically referred to as the USGS Method of Characteristics (MOC) model. The program is capable of generating transient or steady-state solutions for the hydraulic head field.

In a review of mathematical models for the U.S. Nuclear Regulatory Agency (NRC), Thomas et al. (1982) state that MOC "... is a well-tested and well-documented code that would be well-suited for solving single-aquifer problems. Its high degree of acceptance makes it stand out among solute transport codes ..."

The model has undergone verification by comparison with several analytical models and has demonstrated excellent comparisons (Thomas et al., 1982). Field validation has been carried out for chloride movement at the Rocky Mountain Arsenal (Konikow, 1977), and for radionuclide transport at the National Reactor Testing Station (Robertson, 1974).

6.2 MODEL ASSUMPTIONS

In order to effect a practical solution to complex hydrogeologic problems, a number of simplifying assumptions have been invoked by the model authors (Konikow and Bredehoeft, 1978); the following is a synopsis of those assumptions

- Darcy's Law is valid and hydraulic head gradients are the only significant driving mechanism for fluid flow.
- 2. The porosity and hydraulic conductivity of the aquifer are constant in time, and porosity is uniform in space.
- 3. Gradients of fluid density, viscosity, and temperature do not affect the velocity distribution.
- 4. Ionic and molecular diffusion are negligible contributors to the total dispersive flux.
- 5. Vertical variations in head and concentration are negligible (i.e., computed values of head and concentration are averaged over the thickness of the aquifer).
- 6. The aquifer is homogeneous and isotropic with respect to the coefficients of longitudinal and transverse dispersivity.

There are no reasons to believe that Darcy's Law is not valid for description of the flow system at Jal 4. Factors governing the validity of Darcy's Law are: (a) fluid density, (b) pore fluid velocity, (c) average pore (grain size) diameter, and (d) dynamic fluid viscosity. Readers trained in the field of fluid mechanics will recognize these factors as those variables that define the Reynolds Number:

$$N_{R} = \frac{\rho VD}{\mu} \tag{1}$$

Where:

N_R = Reynolds Number

 ρ = fluid density

V = pore fluid velocity

D = average pore (grain size) diameter

u = dynamic fluid viscosity

Most agree that the upper limit for the validity of Darcy's Law is when the N_R rises above the range 1 to 10. Thus, given the prevailing conditions at Jal 4, it is asserted that assumption (1) is met at both waste management areas.

Obviously, porosity and hydraulic conductivity are spatially-varying quantities for naturally-occurring aquifers. Without extensive field and laboratory measurements, the spatial distribution of the parameters remains unknown. The assignment of point estimates for porosity represents a significant departure from reality, and the application of assumption (2)

is questionable. Given the limitations constraining the study, however, the approximation of some variables by point estimates and supplementing these estimates with site-specific values is deemed acceptable.

The high levels of EC in the groundwater beneath Jal 4 (i.e., up to 70,000 µmhos/cm), suggest a significant concentration of dissolved salts. It is possible that the groundwater contains salt levels in sufficient quantities to affect its density and viscosity. Although groundwater temperature may remain fairly constant throughout the year, density and viscosity will probably vary as a function of position (laterally and vertically) within the aquifer, and assumption (3) may not be valid.

The dispersion coefficient is generally defined as follows (Freeze and Cherry, 1979):

$$D_l = \alpha_l v_l + D^* \tag{2}$$

Where:

 D_1 = coefficient of hydrodynamic dispersion

 α_1 = dispersivity along flow path 1

 v_1 = average linear groundwater velocity

D = coefficient of molecular diffusion

For assumption (4) to be met, the first term in equation (2) must overshadow the second term; a quick calculation shows this to be the case:

Let

 α_1 = 100 feet (selected through trial and error)

v₁ = 9 feet/year (based on field data)

 $D^* = 5 \times 10^{-9} \text{ ft}^2/\text{sec}$ (Freeze and Cherry, 1979)

 $\alpha_1 v_1 = 2.9 \times 10^{-5} \text{ ft}^2/\text{sec}$

Thus, the first term dominates the expression by four orders-of-magnitude, and the contribution to the dispersion coefficient by the diffusion coefficient is negligible.

With regard to assumption (5), where vertical gradients are absent, the variation of hydraulic head with depth is nonexistent. That is to say that, along a vertical line, the total head is constant, and this portion of assumption (5) is valid. The vertical variation of solute concentration with depth is much less known, and the viability of assumption (5) in this regard is in question. However, the small aquifer thickness at Jal 4 should aid in uniform mixing of solute.

Finally, it is generally recognized that dispersivity is a scale-dependent quantity. Molz et al. (1983) summarized the problematic nature of dispersivity measurement as follows: "... the greater the travel distance in a tracer test used to measure dispersivity, the larger the dispersivity value that is calculated." This phenomenon is largely attributed to vertical variations in aquifer hydraulic conductivity. Thus, at the current level of knowledge regarding dispersivity,

precise spatial distributions for this parameter are very difficult to determine. Assumption (6) is considered to be reasonable in light of the absence of concrete methods with which to measure field values of longitudinal and transverse dispersivity.

6.3 INPUT REQUIREMENTS

The principal data required by the model to generate a solution are given in Table 6. Table 7 lists all of the parameter values used during the model runs. The model runs illustrate calibration of the model (Run 1) and recovery of impacted groundwater. The calculations are discussed below and the computer output is included as Appendix D.

Model Calibration

Hydraulic head contours were generated from water level measurements made in the monitoring wells on-site. These wells included ENSR-1, -2, -3, ACW-1, -2a, -3 and EPNG-1.

The primary constituent focused on during calibration was EC. EC was used as the "contaminant" in the model, and the assumption was made that no adsorption processes would be simulated. That is, the modeled contaminant would move at the velocity of the groundwater.

The procedure generally involved identifying parameters with the least-known values, and utilizing those as the parameters that would be varied throughout the trial-and-error procedure. For this analysis, pond water EC, pond leakage rate, and longitudinal and transverse dispersivity were the most-unknown parameters available.

The remainder of the parameters, such as transmissivity, aquifer recharge, and porosity were estimated by the modelers based on experience and knowledge of the site, or were determined empirically through field testing.

It was assumed that the ponds had leaked at a constant rate, with constant pond water EC, for a period of 30 years. Thus, Run 1 extended from 1961 through 1990. Figure 6 is a graph of observed versus computed EC. For a good calibration, these data points should lie on a 45-degree line. As is apparent from an examination of this figure, all data points lie on a 45-degree line, or deviate slightly. ACW-2a is the only well that does not fit well. EC is overpredicted at this location, suggesting that perhaps this well would need to be pumped for an additional time to achieve steady-state conditions. The configuration of the plume at the end of the calibration run is illustrated in Figure 7.

6.4 GROUNDWATER MODELING RESULTS

Information presented in this section is intended to provided qualitative predictions on the status of groundwater conditions at the site. Because it was necessary to make assumptions to supplement the available site-specific data, the numerical values presented are not offered

Table 6. Input Requirements for the USGS MOC Solute Transport Model.

Parameter	Spatially ¹ Varying?	Temporally ² Varying?
Number of time steps	N/A	Yes
Simulation duration (Years)	N/A	N/A
Number of nodes in X-direction	N/A	No
Number of nodes in Y-direction	N/A	No
X-direction nodal spacing (Feet)	No	No
Y-direction nodal spacing (Feet)	No	No
Number of pumping or injection wells	Yes	N/A
Flow rate of pumping or injection wells (Ft3/sec)	Yes	Yes
Effective porosity	No	No
Longitudinal dispersivity (Feet)	No	No
Transverse dispersivity (Feet)	No	No
X-direction transmissivity (Ft2/sec)	Yes	No
Y-direction transmissivity (Ft2/sec)	Yes	No
Storage coefficient	No	No
Distribution coefficient (cm3/g)	No	No
Aquifer bulk density (g/cm3)	No	No
Half-life of solute (Seconds)	N/A	N/A
Saturated thickness of aquifer (Feet)	Yes	No
Diffuse discharge/recharge (Ft/sec)	Yes	No
Initial water table or piezometric surface elevation (Feet)	Yes	N/A
Initial solute concentration in aquifer (mg/L)	Yes	N/A
Vertical hydraulic conductivity of confining layer (Ft/sec)	Yes	No
Thickness of confining layer (Feet)	Yes	No
Source dimensions (Feet)	Yes	No
Source concentrations (mg/L)	Yes	No
Constant head boundaries (Feet)		
No-flow boundaries	Yes	No

¹ Does the quantity vary in a horizontal plane?

 $^{^{2}}$ Does the quantity vary in time?

Table 7. Input Data-USGS MOC Groundwater Flow/Contaminant Transport Model.

	Calibration
Parameter	Value
Number of columns	20
Number of rows	20
Column width (Feet)	200
Row height (Feet)	200
Max. no time steps	30
Duration (Years)	30
Storage coefficient	0
Porosity	0.2
Longitudinal dispersivity (Feet)	100
Transverse dispersivity (Feet)	. 30
Transmissivity (Feet^2/day)	9.48E-03
Distribution coefficient (cm^3/g)	0
Aquifer thickness (Feet)	65
Hydraulic conductivity (cm/sec.)	4.45E-03
Aquifer recharge (In./Yr.)	0.1
Pond 1; Cell 3 leakage rate (Feet/year)	20.5
Pond 7; Cell 2 leakage rate (Feet/year)	12.6
Pond 7; Cell 4 leakage rate (Feet/year)	11.0
Pond 11; Cell 5 leakage rate (Feet/year)	14.2
Pond 1; Cell 3 water EC (mmhos/cm)	150
Pond 7; Cell 2 water EC (mmhos/cm)	7 5
Pond 7; Cell 4 water EC (mmhos/cm)	40
Pond 11; Cell 5 water EC (mmhos/cm)	120

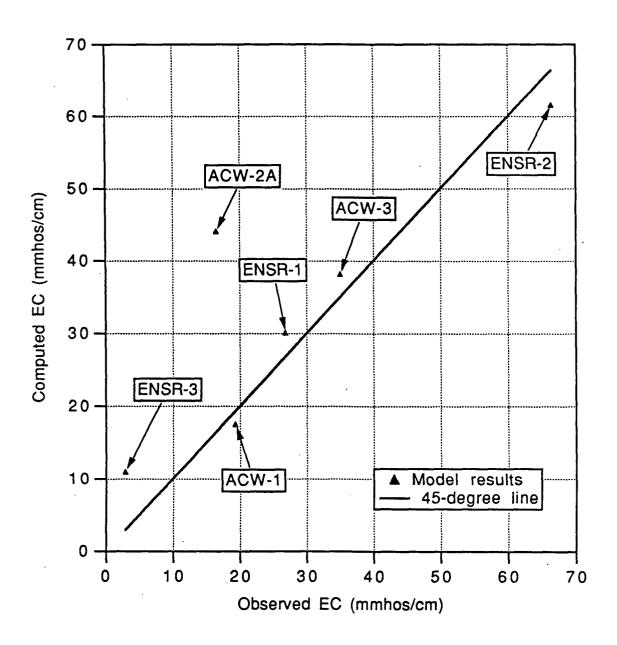
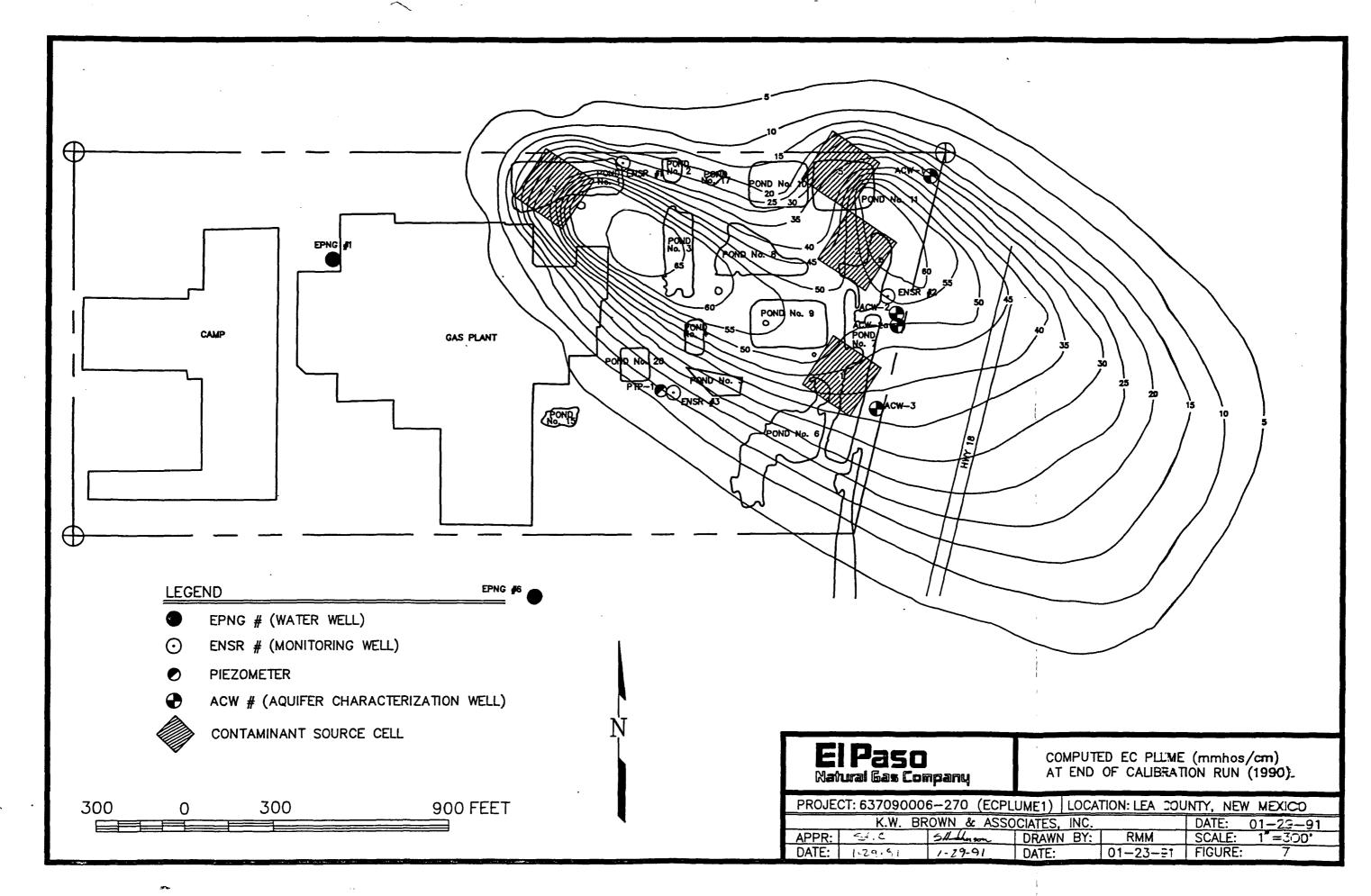



Figure 6. Correlation of Observed and Computed EC.

as quantitatively-precise results. Nevertheless, the modeling results are considered to be representative of future conditions at the site.

Results from the groundwater modeling exercise indicate that the axis of the plume is oriented from the northwest to the southeast along the prevailing groundwater flow direction. The area affected by the plume encompasses the majority of the plant which at one time was occupied by wastewater ponds as well as an area to the southeast of the EPNG eastern property line. The lateral extent of the plume, as predicted by the model, extends to the east beyond Highway 18 for a distance of approximately 1,100 feet. This 1,100-foot distance corresponds with the 5,000 µmhos EC contour (roughly equivalent to a TDS of 3,200 mg/L). These EC and TDS values do not represent "background" conditions. Rather, they approximate the lower range for livestock use. Table 8 illustrates the recommended TDS drinking water values for livestock.

Table 8. Total Dissolved Solids in Drinking Water for Livestock.

Animal Type	TDS (mg/L)
Small Animals	3,000
Poultry	5,000
Other Animals	7,000

Source: Freeze and Cherry, 1979.

7.0 REMEDIATION

Remediation alternatives presented in the Phase 1 report were limited to a pump-and-treat scenario. Limiting remediation to this type of option is based on two factors: the high concentration of salt in the plume and the low levels of organics present. This situation does not warrant in situ treatment to deal with the organic constituents. In fact, the low concentrations and the high salinity would ensure that treatment would be costly and largely ineffective. Additionally, the pump-and-treat remedial approach was suggested because it is believed that the New Mexico Oil Conservation Division will require this type of remediation, if remediation is required.

One option which was not suggested in Phase 1, but which may need to be considered, is the "do nothing" option. Although a plume has been documented, and the source of the plume is most certainly from EPNG operations, it is not known what the overall surrounding water quality is like. The Phase 1 effort documented that the water upgradient from the facility is relatively good. However, the area around Jal 4 is clearly an oil and gas producing area and these areas are notorious for impacting groundwater. Therefore, it is possible that although Jal 4 is situated on "good" water, it may be that on a regional scale the groundwater quality has been degraded. If indeed this is the case, OCD may be receptive to a "do nothing" approach. The "do nothing" approach would further be strengthened if EPNG can demonstrate that there are no receptors in a downgradient location.

Since no one can predict the stance to be adopted by OCD, a remedial action plan which calls for the withdrawal and injection of groundwater has been developed. A total of eight pumping configurations were explored to determine the optimum approach. Options investigated ranged from a single pumping well to an entire well field consisting of 17 pumping wells located across the entire plume. Table 9 lists the characteristics of each pump-and-treat option and a qualitative assessment of the effectiveness of each design. Of the eight configurations, three are discussed in the following sections to illustrate the range of pump-and-treat scenarios. [For the purpose of this exercise, the μ mhos/cm concentrations of the groundwater were converted to mmhos/cm (example: 10,000 μ mhos/cm = 10 mmhos/cm).]

In reviewing these options it will be important to note that they will require the installation of wells on property not owned by EPNG. As such, special consideration may be warranted.

	Results	Poor	Poor			Fair		Fair	,		Excellent. Plume has,	been split, however	and a portion remains	across Highway 18.		Poor		Poor		Fair			Excellent		
	• Remarks	Wells spotted in plume "hot spots."	Same as #1 with addition of six injection wells	and one additional pumping well. Net pumpage	is 0 (soil flushing problem).	Net pumpage is 0.		Same as #3 except injection well pump	rate is decreased to 4 GPM, yielding a	net pumpage of 8 GPM.	Same as #4 except injection wells are	shut in after five years. Pumping wells are	allowed to pump for an additional five years.			Only one production well is specified in	this option.	Same as #6 except duration is increased	to 10 years.	Wells are spotted on 400-foot centers	and are located within the 10 mmhos/cm	contour.	Four production wells are shut-in after	five years. Pump rate of three centerline	wells is increased to 20 GPM.
S.	Duration (Years)	5 (1990) - 1995)	5	(1990 - 1995)		5	(1990 - 1995)	5	(1990 - 1995)		5	(1990 - 1995)		ເດ	(1995-2000)	2	(1990 - 1995)	5	(1990 - 2000)	5	(1990 - 1995)		വ	(1995 - 2000)	
reat Option	Net Pumpage (GPM)	œ	0			0		8			8			40		20		20		85			110		
Summary of Pump-and-Treat Options.	No. Inj. Wells (Rate)	Ο,	9	(6.67 GPM)		8	(5 GPM)	8	(4 GPM)		8	(4 GPM)		0		0		0		0			0		
Summary of	No. Prod. Wells (Rate)	3 (10 GPM)	4	(10 GPM)	:	4	(10 GPM)	4	(10 GPM)		4	(10 GPM)		4	(10 GPM)	1	(20 GPM)	1	(20 GPM)	17	(5 GPM)		13	(5 & 20 GPM)	
Table 9.	Pump-and- Treat Option	1	2					4			വ					9		7		8					

7.1 PUMP-AND-TREAT REMEDIAL OPTIONS

As stated previously, three of the eight pump-and-treat remedial options were selected to illustrate the range of alternatives. The following text highlights the main components of these options.

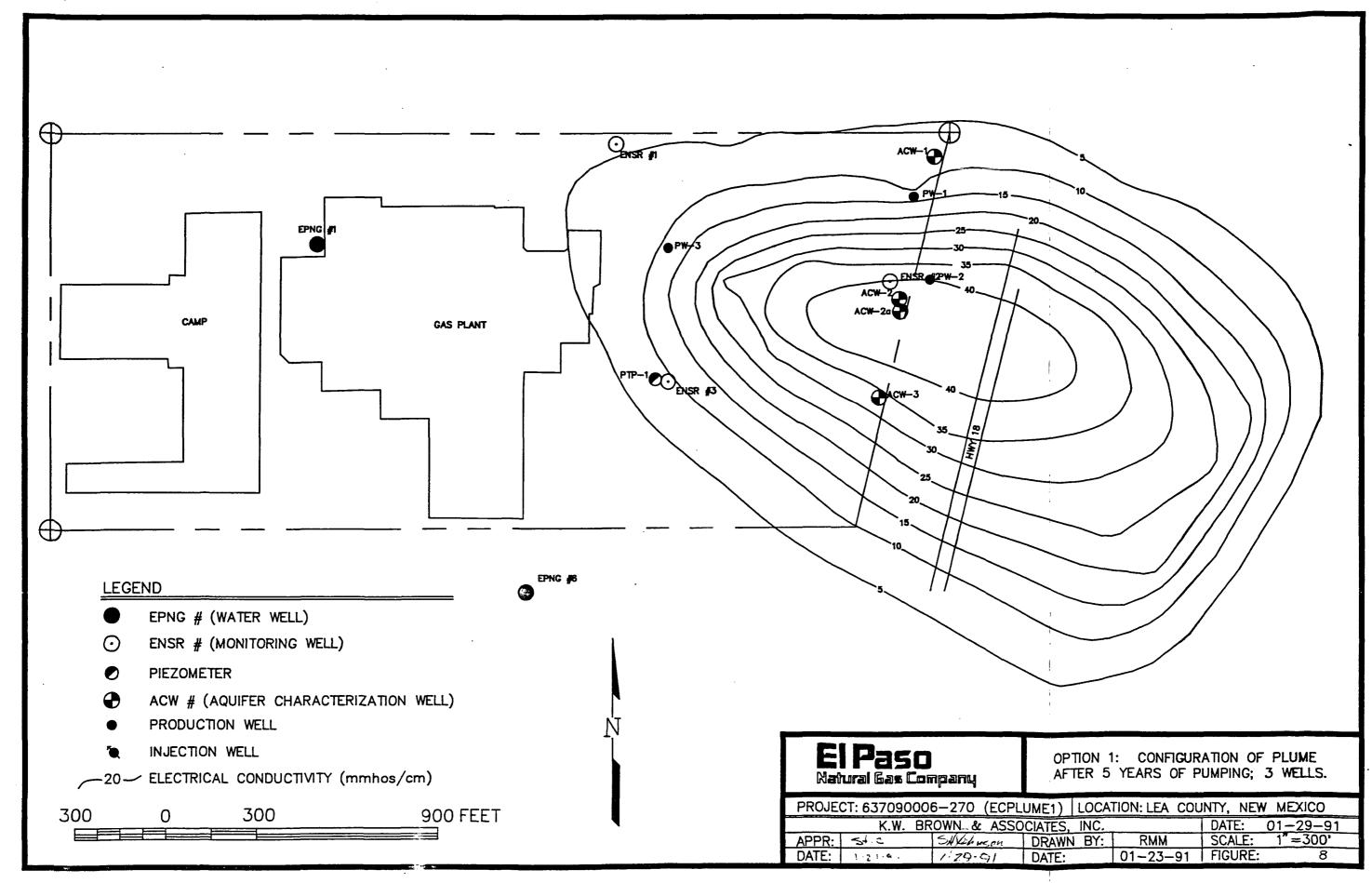
Option #1: Three pumping wells in the plume "hot spots."

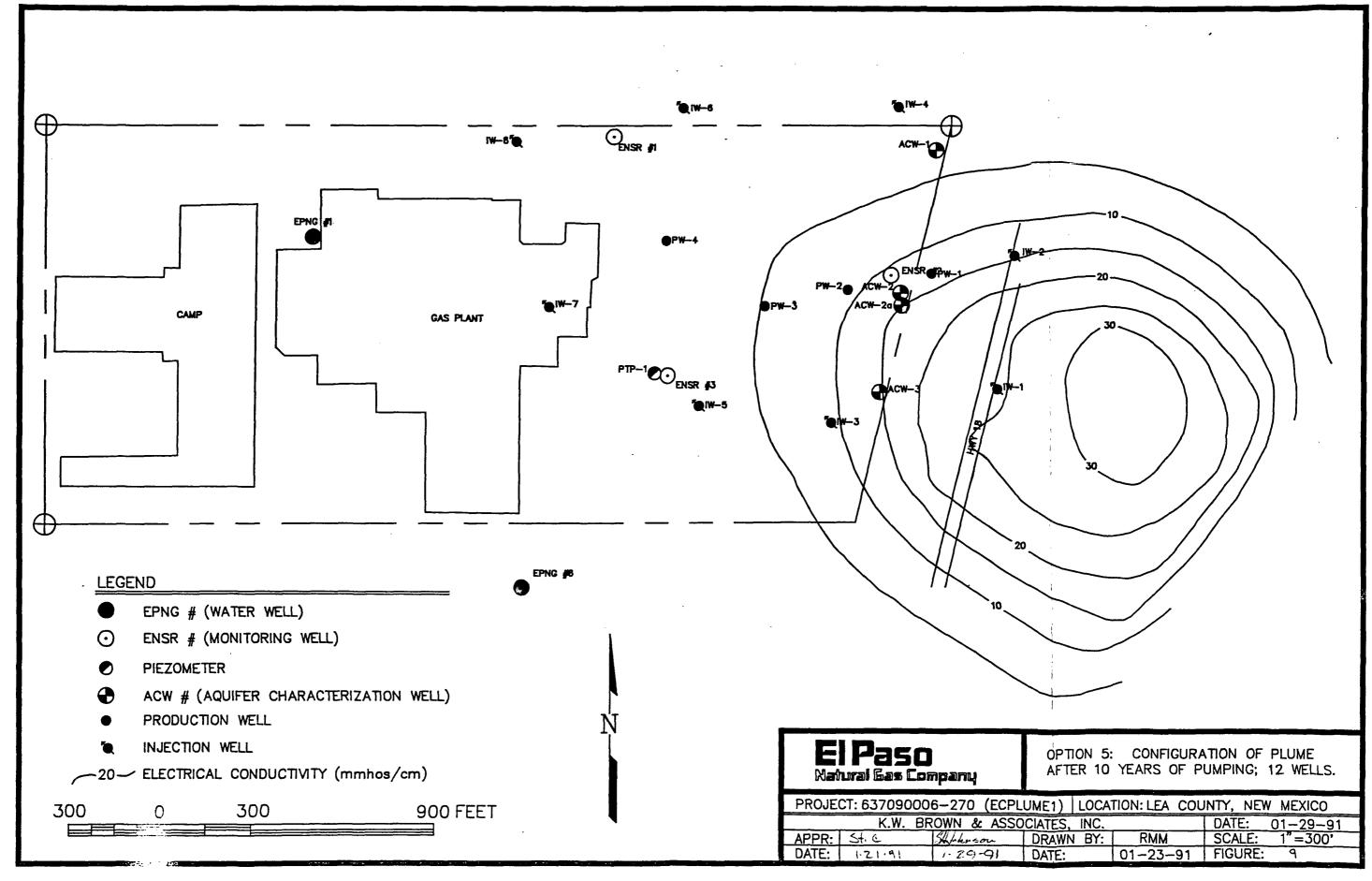
This option consisted of locating a pumping well within each of the highest EC concentrations in the plume. Figure 8 illustrates the location of each of the three pumping wells. Based on firsthand knowledge of the aquifer, these wells were pumped at 10 gallons per minute (GPM). It is doubtful that a pumping rate in excess of this value can be sustained for a significant period of time. Net pumpage was 30 GPM.

A simulation duration of five years was chosen. The simulation was initiated at the end of the calibration period, and extended from 1990 to 1995. As is obvious upon examination of Figure 8, there has been some progress toward remediating the plume, but a significant mass of salt remains in the aquifer.

Option #5: Eight injection wells and four production wells

This option consisted of a total of eight injection wells and four pumping wells, all located within the property boundary of Jal 4. Figure 9 shows the location of each well. Each injection well injected water at an EC level of 0 mmhos/cm and at a rate of 4 GPM. Each production well was pumped at 10 GPM, yielding a net withdrawal of groundwater from the aquifer of 8 GPM. This option also spanned the period 1990-1995.


After five years, the injection wells were shut-in, and the recovery wells were allowed to pump for an additional five years (1995-2000) at 10 GPM.


As shown by Figure 9, the portion of the plume on EPNG property has been remediated to below 5 mmhos/cm. But, the portion of the plume that has migrated offsite, located to the east of Highway 18, remains at EC levels as high as 30 mmhos/cm, indicating the need for pumping/injection in this area.

Option #8: Well field

This option employs 17 pumping wells spotted throughout the plume. The intent of this option was to determine the maximum effort that would have to be expended to most effectively diminish EC levels of the groundwater beneath Jal 4.

The well field was designed by locating wells on 400-foot centers within the 10 mmhos/cm contour, as defined by the EC distribution at the end of the calibration period. Each well was pumped at 5 GPM for five years (1990-1995). After five years, four production wells were shutin, and the three wells that were located on the centerline of the plume at that time were in-

creased to 20 GPM. The balance of the wells was left to pump at 5 GPM. This segment extended from 1995-2000.

Figure 10 indicates that the highest computed EC contour is 8 mmhos/cm (5,120 mg/L TDS), a value that is below the computed upper WQCC standard of 15.6 mmhos/cm (10,000 mg/L TDS). Thus, Option #8 appears to be the most effective at moderating the groundwater contamination associated with Jal 4.

7.2 PUMP-AND-TREAT REMEDIAL COSTS

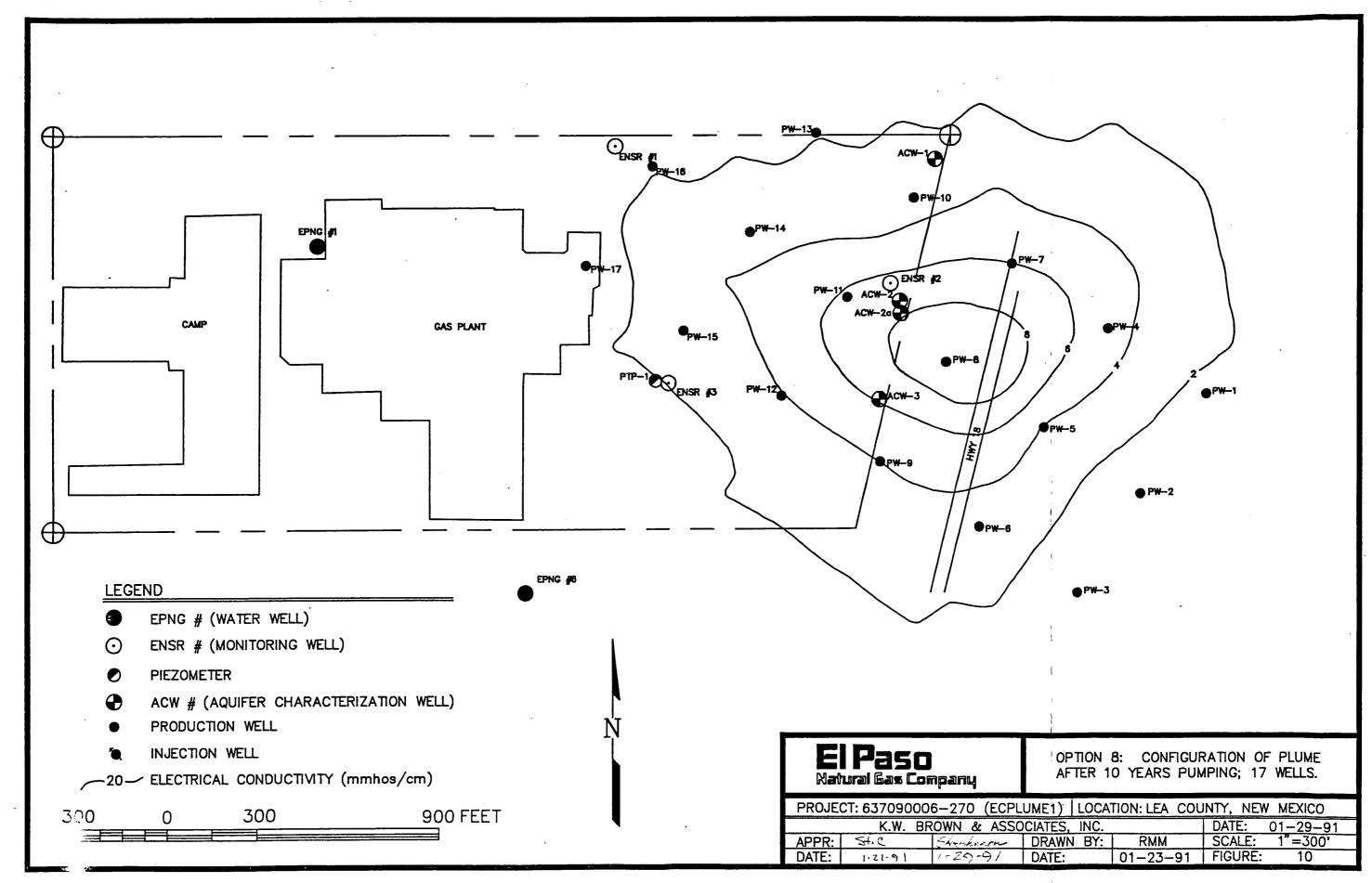

To calculate the costs of the three remedial options presented, unit costs were devised for each element. The primary element of the cost estimate is the installation of the wells and oversight of their installation. Disposal costs have not been included; it is assumed that EPNG will be able to use the EPNG injection well that is situated near the northern boundary of Jal 4. Ancillary costs associated with the wells include plumbing between the recovery wells and the disposal well, running electricity to each of the wells, and annual analytical requirements. Also, maintenance costs have been excluded since it is anticipated that EPNG personnel from the Jal Lab will be able to supervise the system. Table 10 presents the estimated costs for the remedial effort. These costs are offered for comparison purposes only. Itemized costs would be required prior to implementing any activities.

Table 10. Estimated Remedial Costs.

Item	Option #1	Option #5	Option #8
Wells required	3 Pumping wells	4 Pumping wells/ 8 Injection wells	17 Pumping wells
Well installation and materials (3)	\$18,000	\$41,000	\$95,000
Electrical	\$14,250 (1)	\$18,250 (1)	\$45,500 (2)
Plumbing	\$1,200 (6)	\$1,200 (6)	\$3,200 (7)
Annual analytical (4)	\$600	\$800	\$4,800
Consulting costs (5)	\$19,600	\$35,600	\$44,100
Total cost	\$53,650	\$96,850	\$192,600

- Note 1: Assumes 1,500 feet of wire installed at \$3.50/ft + pump savers.
- Note 2: Assumes 7,000 feet of wire installed at \$3,50/ft.
- Note 3: Assumes a \$5,000/well installation cost for pumping wells. Assumes a \$2,000/well installation cost for injection wells.
- Note 4: Assumes two samples per year for TDS,EC, BETX and total phenols. Two additional samples per year for EC and TDS. Annual cost per pumping well = \$200.
- Note 5: Costs associated with the installation of wells and field report at the completion of the project. Groundwater modeling would require additional costs.
- Note 6: Assumes 2,000 feet of pipe installed at \$0.60/ft.
- Note 7: Assumes 8,000 feet of pipe installed at \$0.60/ft.

From these cost estimates, it is clearly evident that effective remediation of the site will be costly. It is equally evident that remediation will only address a portion of the problem in that,

although the groundwater quality is improved, it is not returned to background conditions. Also, the remediation will require time to be effective. During the remediation period, there will be a need for routine maintenance and monitoring. It is also conceivable that during the course of the remediation effort the data being collected will suggest that modifications to the system will be needed.

8.0 CONCLUSIONS AND RECOMMENDATION

Conclusions derived from the Phase 2 effort in many respects parallel those offered in the Phase 1 report. The presence of a groundwater contaminant plume whose origin is seemingly tied to the past operation of the wastewater ponds was confirmed. Likewise, the southeasterly groundwater flow direction and the low hydraulic gradient, as presented in Phase 1, were verified.

The waste constituents noted in the groundwater plume during Phase 2 were consistent with Phase 1 findings. Although the analytical list was drastically reduced for the second phase, the constituents noted included BETX, phenols, and elevated levels of salt (as determined by measuring TDS and EC). Interpretation of the Phase 1 and Phase 2 data clearly suggest a source of recharge to the aquifer which contained volatile hydrocarbons, phenolic compounds, naphthenes, and large quantities of salt.

Physical testing determined the aquifer had a hydraulic conductivity of $4.5 \times 10-3$ cm/sec, a transmissivity of 6.128 GPD/ft, and a storage coefficient of 0.0152. These values are appropriate for the type of aquifer documented at the site. Moreover, these values approximated the values assumed for the modeling effort conducted during Phase 1.

It is our assessment that only two options, or a variation between the two options, will be appropriate. These options are: (a) justify to OCD the "do nothing" approach or, (b) implement a pump-and-treat system. The merits of choosing either approach will focus on salts present in the groundwater, not organics. This position is warranted because the levels of organics are low and the current TDS of the water renders it unusable. Therefore, any remediation that may be required must deal with removal of salts. If the salts are removed, it is reasonable to predict that the organics will be addressed.

It is our recommendation that EPNG explore all aspects of the "do nothing" option prior to instigating additional work at the site. If the pump-and-treat option is ultimately required, our calculations predict that a minimum of 10 years will be required to remove just a portion of the plume. It will be possible to speed up the process by installing higher capacity wells, more wells, or both. Given the pump-and-treat option is based on the assumption that recovered water can be injected near the site, it will be important to determine the capacity of the injection well. Hence, prior to selecting a final well field design, it will be necessary to gain information on the performance of the injection well.

In the event recovery of the groundwater plume is required, and the injection well is deemed unsuitable, it will be necessary to explore options such as treating the water by reverse osmosis

or trucking the water to a different disposal well. In either case, the costs for the project will increase dramatically.

9.0 REFERENCES

Freeze, R. A. and J. A. Cherry. 1979. Groundwater, Prentice-Hall, Inc., Englewood Cliffs, NJ.

KWB&A. 1990. Expanded Hydrogeology Study for the El Paso Natural Gas Company Jal 4 Facility. K. W. Brown & Associates, Inc. document prepared for EPNG Environmental & Safety Affairs Department.

Konikow, L. F. 1977. Modeling Chloride Movement in the Alluvial Aquifer at the Rocky Mountain Arsenal, Colorado. USGS Water-Supply Paper 2044.

Konikow, L. F. and J. D. Bredehoeft, 1978. Computer Model of Two-Dimensional Solute Transport and Dispersion in Ground Water. In: Techniques of Water Resources Investigations of the U.S. Geological Survey, Chapter C2, Book 7.

Molz, F. J., O. Guven and J. G. Melville. 1983. An Examination of Scale-Dependent Dispersion Coefficients. Vol. 21, No. 6, Ground Water.

Robertson, J. B. 1974. Digital Modeling of Radioactive and Chemical Waste Transport in the Snake River Plain Aquifer at the National Reactor Testing Station, Idaho. USGS Open-File Report IDO-22054.

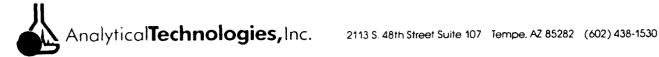
Thomas, S. D., B. Ross and J. W. Mercer. 1982. A Summary of Repository Siting Models. Report to the U.S. Nuclear Regulatory Commission, NUREG/CR-2782.

Todd, D. K. 1980. Groundwater Hydrology. Second Edition. John Wiley & Sons, Inc., New York, NY.

APPENDIX A

Bore Logs/Well Completions

dwos	Samp Sect) MSI MSI MSI MSI MSI MSI MSI MSI MSI MSI	Geologic Description	Moni Well Piezometer	Design Specification
)			Flevations: 1 3301.02 2 3300.87
	10	Ţ,	7	N./A 4
	+ 20	n		N/A ×
	+ 30	consolidated.		Type of Casing: 🖾 PVC Sched. 40 Flush Thread
	-	10-20' SAND, light reddish brown, fine to medium-		Stoinless Steel Steel
		grained, moderately sorted, moderately con-		Casing Diameter: \$\Bigcap 2" \Bigcap 3" \Bigcap 4" \Bigcap 6" \Bigcap
	0ç 	Carbonate content.	* * * * * * * * * * * * * * * * * * *	Screen Slot: □0.008 ⊠0.010 □
	09 +	75.60	* * * * * * * * * * * * * * * * * * *	Screen Style: Machine Slot Wire Wrap
	70		* * * * * * * * * * * * * * * * * * *	Sand Pack: 8/16 Brady
				Bentonite Seal: 1/2" Pellets XHole Plug Slurry
			, , , , , , , , , , , , , , , , , , ,	
	2	25-60' -		Grout Type: Portland Weight: ~12 lbs/gal
	001 <u>+</u>	gravel, poorly to very poorly sorted.	* * *	Bore Hole Diameter: 8"0.
	110	65-110' SAND, light orange to tan, silt to medium-	* * * * * * * * * * * * * * * * * * *	Drill Rig: Hollow Stem 🖾 Rotary 🗀
	120		* * * * * * * * * * * * * * * * * * *	Drilled By. West Texas Water Well Service
	+130		4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Date: 11
	140	Exceptions:		Date D-T-W MSL Date Field pH Field EC
	150	3	* * * * * * * * * * * * * * * * * * *	/90 104.86
		present.	102.31	11/18/30 104.89 3195.98
	 	115—140' SAND, light greenish brown, very fine to fine— grained, moderately well sorted, poorly	110.	
		consolidated.	1111	
		Samples collected on 5ft intervals	<u> </u>	Comments: Augered with air to 80, then switched to mud due to instability of the hole.
			1111111	
			135.4	ACW-1 (Aquifer Characterization Well)
			140,	JAL 4 GAS PLANT
			Depths in Feet	Project: EPNG 637090006
		ST=Shelby Tube SS=Solit Spoon X C=Cuttings	from Ground Surface (Not to Scale)	
1		-> \ loods ands-ss		3


-	T				
Samp Samp	(NSL)	Depta (Feet	Geologic Description	Monit of Well	Design Specifications
_		-			Elevations: 1 3301.59 2 3301.07
	+	0 -	5' SAND, dark gray brown, clay to medium-	1	(feet MSL) 3 3298.84 4 3298.55
	+-	- 20	grained sand, poorly sorted, moderately		Coordinates: X N/A Y
		- 30	consolidated.		Type of Casing: N PVC Sched. 40 Flush Thread
		- 40	10' SAND, light reddish brown, clay to medium— grained sand, moderately sorted, moder—		Casina Diameter: 2" 3" ×4" 6"
	 -	- 50	ately consolidated, slight Calcium Carbonate	* * * * * * * * * * * * * * * * * * *	Screen Slot: 0.008 🖾 0.010
		09 -			Screen Style: Machine Slot Wire Wrap
		- 70	15-50 SAND, tan to light orange brown, silt to medium—arained sand, moderately to moderately		Sand Pack: 8/16 Brady
		8	well sorted (very fine to fine-grained sand),	2 2 2	Bentonite Seal: \$\infty\$1/2" Pellets \$\infty\$ Hole Plug \$\infty\$ Slurry
			Calcium Carbonated content. black carbon—	# # # # # # # # # # # # # # # # # # #	11/4" Pellets
. ::		3 5	iferous (?) fleck at 40-45',	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	Grout Type: Portland Weight: ~12 lbs/gal
:		3	SE 110' CAND to built oils to medice control	* * *	
		- 110	55-110 SAND, tan to buff, silt to medium grained sand moderately to moderately well-sorted	g T T	Drill Rig: Hollow Stem 🗖 Rotary 🗀
		-120	(very fine to fine-grained sand), poorly con-	* * * * * * * * * * * * * * * * * * *	Orilled By. West Texas Water Well Service
		- 130	solidated, signt Calcium Carbonate content, black carboniferous(?) flecks (up to 3.0mm) at		Date: 11
			55' and below 75'.	\$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$ \$	Date D-T-W MSL Date Field pH Field EC
		- 140	Exceptions:	4 4 2 2	90 105 19 3195 88
	+-	- 150	60 - Well consolidated, high Calcium Car-	. C	90 105 03
			prisent.	102.01	3
				, 888, A	
	 	-	113-140 SAND, light greenish brown, line to mediant—	<u> </u>	
<u></u>			slight Colcium Carbonate content, black car-	<u> </u>	Comments: Drilled on air to 70', then switched to
		,	bonierous(?) ilecks throughout. Exceptions:		mud to keep hole open.
			115' - moderately well sorted (very fine to	<u> </u>	
			line-grained sand).	126' =	
	+		Samples collected on 5ft intervals	+10	ACW-2 (Aquifer Characterization Well)
				140'	JAL 4 GAS PLANT
	 +-			Depths in Feet	Project: EPNG 637090006
	+			from Ground Surface	DDOMNI 0, ACCOUNTY
			ST=Shelby Tube SS=Split Spoon X C=Cuttings	(INOL LO SCOLE)	N.W. BRUWIN & ASSUCIATES, INC.

Design Specifications	Elevations: 1 3299.39 2 3300.88 (feet MSL) $\frac{3}{3}$ 3297.02 4 3296.70 Coordinates: X N/A Y N/A Type of Casing: \square PVC Sched. 40 Flush Thread	Casing Diameter: ☐ 2" ☐ 3" ☒ 4" ☐ 6" ☐	Sand Pack: 8/16 Brady Bentonite Seal: 1/2" Pellets NHole Plug Slurry 1/4" Pellets	Rotory Service sier	Date D-T-W MSL Date Field pH Field EC 12-11-90 100.87 3200.01 12-12-90 7.78 16,500 12-12-90 104.78 3196.10 104.78 16,500	Comments: Drilled with mud; backwashed hole and lost bottom 17 feet. Hole collapsed as the bentonite seal was set; a second seal was installed.	ACW-2a (Aquifer Characterization Well) JAL 4 GAS PLANT Project: EPNG 637090006 Location: Jal, New Mexico K.W. BROWN & ASSOCIATES, INC.
Monite Well Piezometer	3					118,	Depths in Feet from Ground Surface (Not to Scale)
Geologic Description	22			55–110		115—140 SAND, light greenish brown, tine to medium—grained, moderately sorted, poorly consolidated, slight Calcium Carbonate content, black carboniferous(?) flecks throughout. Exceptions: 115' — moderately well sorted (very fine to fine—grained sand).	ST=Shelby Tube SS=Split Spoon C=Cuttings
myS Samp % Rec Depth (MSL) Depth (Feet)	+ 10 + 20 + 30	+ 40	70 + 80 + 90 + 100	+ 110 + 120 + 130	140	1 1 1	

Specification	Elevations: 1 3300.35 2 3300.34 (feet MSL) 3 3298.75 4 3298.14	g: 🔀 PVC Sched. 40 Flush Thru	Casing Diameter: \$\int 2^n \in 3^n \times 4^n \in 6^n \in \times \text{Screen Slot:} \in 0.008 \times 0.010 \in \text{Screen Style:} \times \text{Machine Slot} \in \text{Wire Wrap} \in \text{Sand Pack:} \times \text{Rada.}	g g	Rig: Hollow Stern Stratary Carbon Service 3d By: West Jexas Water Well Service 1ed By: M. Sherrier pletion Date: 11/15/90	Uate U-1-W MSL Date Field pH Field EU 11/16/90 104.01 3196.33 11/16/90 6.64 35000 11/18/90 104.54 3195.80	Comments: Drilled on air to 70', then drilled on mud due to instability of the hole.	ACW-3 (Aquifer Characterization Well) JAL 4 GAS PLANT Project: EPNG 637090006 Location: Jal, New Mexico K.W. BROWN & ASSOCIATES, INC.
Monit Well	Piezometer 1					(27.79	721	Depths in Feet from Ground Surface (Not to Scale)
Geologic Description	5' SAND, dark orangerained sand, por	consolidated. 10' SAND, light orange brown, silt to medium—grained sand, poorly sorted, moderately consolidated, slight Calcium Carbonate	content. 15' SAND, buff to yellowish buff, silt to medium—grained sand, moderately sorted, moder—ately well consolidated, moderate Calcium Carbonate content.	20—30' SAND, tan, very fine to medium—grained, moderately sorted (very fine to fine—grained sand), poorly to moderately consolidated, slight Calcium Carbonate content, black carboniferous(?) flecks	35–55'	Carbonate content, Calcite Tragments present at 35' and 55'. 60-125' SAND, tan, very fine to medium-grained, moderately sorted to moderately well sorted (fine to very fine-grained sand), moder-	ately consolidated, moderate valcium var- bonate content. Exceptions: 65' - well sorted (very fine grained), poorly consolidated. 75-80' and 90' - well consolidated, high Calcium Carbonate content, Calcite	130–140' SAND, light greenish brown, very fine to medium grained, moderately well sorted (fine to very fine grained sand), poorly consolidated, slight Calcium Carbonate content. Samples collected on 5ft intervals SS=Split Spoon C=Cuttings
eet) Rec epth damp aamp samp	N) 0 2 S	20 + 30 + 40	2 09 2	+ + + + + + + + + + + + + + + + + + +	+ 110 + 120 + 130	140	1-1-1-1	1-1-1-1-

APPENDIX B

Analytical Data

ATI I.D. 011731

December 11, 1990

K.W. Brown & Associates 500 Graham Road College Station, TX 77845

EPNG-Jal 637090006-270 Project Name/Number:

Attention: Sid Johnson

On 11/20/90, Analytical Technologies, Inc. received a request to nalyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

Michael G. Barry

Project Manager

RVW:clf Enclosure Robert V. Woods

Laboratory Manager

CLIENT: K.W. BROWN & ASSOCIATES

: 637090006-270

PROJECT NAME : EPNG-JAL

OJECT #

DATE RECEIVED: 11/20/90

REPORT DATE : 12/07/90

ATI I.D. : 011731

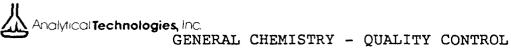
ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01	ACW-1	AQUEOUS	11/17/90
02	ACW-3	AQUEOUS	11/16/90
03	QC-1	AQUEOUS	11/17/90
04	TRIP BLANK	AQUEOUS	11/17/90

---- TOTALS ----

MATRIX # SAMPLES
AQUEOUS 4

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from the date of this report. If an extended storage period is required, please contact cur sample control department before the scheduled disposal date.


GENERAL CHEMISTRY RESULTS

ATI I.D. : 011731

CLIENT : K.W. BROWN & ASSOCIATES PROJECT # : 637090006-270 DATE RECEIVED: 11/20/90

PROJECT NAME : EPNG-JAL REPORT DATE : 12/07/90

PARAMETER	UNITS	01	02	03	
PHENOLICS, TOTAL TOTAL DISSOLVED SOLIDS	MG/L	•		<0.02 10	

: K.W. BROWN & ASSOCIATES

PROJECT # : 637090006-270

PROJECT NAME : EPNG-JAL

ATI I.D. : 011731

			SAMPLE	DUP.		SPIKED	SPIKE	8
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT	RPD	SAMPLE		REC
PHENOLICS, TOTAL	MG/L	01173103	<0.02	<0.02	NA	0.24	0.25	96
PHENOLICS, TOTAL	MG/L	01299903	<0.02	<0.02	NA	0.25	0.25	100
TOTAL DISSOLVED SOLIDS	MG/L	01169604	000	900	_	NA	NA	NA

% Recovery = (Spike Sample Result - Sample Result) Spike Concentration

RPD (Relative Percent Difference) = (Sample Result - Duplicate Result) Average Result

ATI I.D. : 01173101

TEST : BTEX (8020)

CLIENT : K.W. BROWN & ASSOCIATES DATE SAMPLED : 11/17/90
PROJECT # : 637090006-270 DATE RECEIVED : 11/20/90
PROJECT NAME : EDNG_JAL DATE EXTRACTED : N/A

PROJECT NAME : EPNG-JAL DATE EXTRACTED : N/A CLIENT I.D. : ACW-1 DATE ANALYZED : 11/26/90

SAMPLE MATRIX : AQUEOUS UNITS : UG/L

DILUTION FACTOR: 10

COMPOUNDS	RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	9.0 <5.0 <5.0 <5.0
SURROGATE PERCENT RECOVERIES	

ATI I.D.: 01173102

TEST : BTEX (8020)

TOTAL XYLENES

CLIENT : K.W. BROWN & ASSOCIATES DATE SAMPLED : 11/16/90 PROJECT # : 637090006-270 DATE RECEIVED : 11/20/90

PROJECT NAME : EPNG-JAL DATE EXTRACTED : N/A

CLIENT I.D. : ACW-3 DATE ANALYZED : 11/26/90

SAMPLE MATRIX : AQUEOUS UNITS : UG/L

DILUTION FACTOR: 1

COMPOUNDS RESULTS

BENZENE 7.3

TOLUENE <0.5

ETHYLBENZENE 4.5

0.6

SURROGATE PERCENT RECOVERIES

ATI I.D.: 01173103

TEST : BTEX (8020)

CLIENT : K.W. BROWN & ASSOCIATES
PROJECT # : 637090006-270 DATE SAMPLED : 11/17/90 DATE RECEIVED : 11/20/90 PROJECT NAME : EPNG-JAL CLIENT I.D. : QC-1 DATE EXTRACTED : N/A DATE ANALYZED : 11/21/90

SAMPLE MATRIX : AQUEOUS : UG/L

DILUTION FACTOR: 1

COMPOUNDS	RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5

SURROGATE PERCENT RECOVERIES

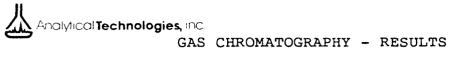
ATI I.D.: 01173104

TEST : BTEX (8020)

CLIENT : K.W. BROWN & ASSOCIATES PROJECT # : 637090006-270 PROJECT NAME : EPNG-JAL CLIENT I.D. : TRIP BLANK SAMPLE MATRIX : AQUEOUS	DATE SAMPLED : 11/17/90 DATE RECEIVED : 11/20/90 DATE EXTRACTED : N/A DATE ANALYZED : 11/21/90 UNITS : UG/L DILUTION FACTOR : 1
COMPOUNDS	RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	<0.5 <0.5 <0.5 <0.5

SURROGATE PERCENT RECOVERIES

REAGENT BLANK


TEST : BTEX (8020)

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: K.W. BROWN & ASSOCIATES : 637090006-270 : EPNG-JAL	ATI I.D. : 011731 DATE EXTRACTED : 11/26/90 DATE ANALYZED : 11/26/90 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5

SURROGATE PERCENT RECOVERIES

BROMOFLUOROBENZENE (%)

101

REAGENT BLANK

TEST : BTEX (8	0	2	0	١.
---------------	---	---	---	---	----

CLIENT PROJECT # PROJECT NAME CLIENT I.D.	: K.W. BROWN & ASSOCIATES : 637090006-270 : EPNG-JAL : REAGENT BLANK	ATI I.D. : 011731 DATE EXTRACTED : 11/21/90 DATE ANALYZED : 11/21/90 UNITS : UG/L DILUTION FACTOR : N/A
COMPOUNDS		RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES		<0.5 <0.5 <0.5 <0.5

SURROGATE PERCENT RECOVERIES

OUALITY CONTROL DATA

ATI I.D. : 011731

TEST : BTEX (8020)

CLIENT

: K.W. BROWN & ASSOCIATES

PROJECT #

: 637090006-270

PROJECT NAME : EPNG-JAL

REF I.D. : 01171502

DATE ANALYZED: 11/21/90

SAMPLE MATRIX : AQUEOUS

UNITS

: UG/L

COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED SAMPLE	DUP. % REC.	RPD
BENZENE TOLUENE ETHYLBENZENE XYLENES	<0.5 <0.5 <0.5 <0.5	10 10 10 30	12 11 11 35	120 110 110 117	11 11	120 110 110 117	0 0 0

% Recovery = (Spike Sample Result - Sample Result) 100 Spike Concentration

X 100

Average of Spiked Sample

Anclytical **Technologies,** Inc.
Phoenix, Arizona

Chain

Chain of Custody

DATE 11/16/50 PAGE 1 OF

NUMBER OF CONTAINERS DISTRIBUTION: White, Canary - ANALYTICAL TECHNOLOGIES, INC. Pink - ORIGINATOR X X 3 \overline{D} Analytical Technologies, Inc. Signature: RECEIVED BY: (LAB) The 8 EP Tox Metals by TCLP The 8 EP Tox Metals by Total Digestion The 8 EP Tox Metals by EP Tox Prep. (1310) Printed Name: The 13 Priority Pollutant Metals Company: SDWA Volatiles (502, 1/503, 1) SDWA Secondary Standards ଧ SDWA Primary Standards ANALYSIS REQUEST Ë Date Oate: Eme: RELINOUISHED BY: Signature: RECEIVED BY Volatile Organics GC/MS (624/8240) Printed Name: Base/Neutral/Acid Compounds GC/MS (625/8270) Printed Name: Company: Сотрапу: Signature: Herbicides (615/8150) Date 11/19/90 Time: 5:06 Pesticides/PCB (608/8080) Date: īme: REDINGUISHED BY: Aromatic Hydrocarbons (602/8020) San Diego (619)458-9141 · Phoenix (602)438-1530 · Seattle (206)228-8335 · Pensacola (904)474-1001 Chlorinated Hydrocarbons (601/8010) Company: $X \mid X$ Printed Name: Diesel/Gasoline/BTXE (MOD 8015/8020) Company: Signature (MOD 8015) Gas/Diesel Petroleum Hydrocarbons (418.1) <u>~</u> ર TIME | MATRIX | LABID 2 J M RECEIVED GOOD COND./COLD SAMPLE RECEIPT TOTAL NO. OF CONTAINERS LAB NUMBER 01173 Pickup (will call) CHAIN OF CUSTODY SEALS 420 = = 409) 经格一 PHONE NUMBER K.W. Brown + Assoc SAMPLE DISPOSAL INSTRUCTIONS しられるのろ INTACT? Return DATE TAT: 🔲 24HR 🗀 48 HRS🗀 1 WK 🗀 2 WKS PROJECT NO: 1,3704006-270 Some PROJECT INFORMATION 贫 PROJECT NAME: EPN G 500 L SAMPLERS: (Signature) Blank SAMPLEID 40909 PROJECT MANAGER: 3 ☐ ATI Disposal ACW- # COMPANY: ACW COMPANY: ADDRESS: Trio ADDRESS: ATI Labs: BILL 70: P.O. NO.: Comments g₹

ATI I.D. 012694

January 3, 1991

K.W. Brown & Associates 500 Graham Road College Station, TX 77845

Project Name/Number: EPNG/JAL #4 637090006-270

Attention: Sid Johnson

On 12/14/90, Analytical Technologies, Inc. received a request to analyze aqueous sample(s). The sample(s) were analyzed with EPA methodology or equivalent methods. The results of these analyses and the quality control data, which follow each set of analyses, are enclosed.

For client sample ACW-1 approximately 14 ug/l of MTBE was detected; for client sample ACW-2A approximately 95 mg/l of MTBE was detected. Conductivity analyses were added on 12/17/90 per Sid Johnson. Due to the levels of heavy hydrocarbons in client's samples accurate surrogate recoveries could not be obtained.

If you have any questions or comments, please do not hesitate to contact us at (602)438-1530.

Jane Humphress Foote Project Manager

RVW:dkm Enclosure Robert V. Woods Laboratory Manager

ACCESSION #: 012694

PARAMETER	METHOD
Phenols, Total	420.21
TDS	160.1 ¹
BTEX	8020M ²

Reference(s): 1 Methods for Chemical Analysis of Water and Waste EPA 600/4-79-020 Mar. 1983.

² SW 846, 3rd Edition

CLIENT : K.W. BROWN & ASSOCIATES

DATE RECEIVED: 12/14/90

PROJECT # : 637090006-270

PROJECT NAME : EPNG/JAL #4

REPORT DATE : 12/27/90

ATI I.D. : 012694

ATI #	CLIENT DESCRIPTION	MATRIX	DATE COLLECTED
01 02	ACW-1 ACW-2A	AQUEOUS AQUEOUS	12/13/90 12/13/90
03	TRIP BLANK	AQUEOUS	12/13/90

---- TOTALS ----

MATRIX # SAMPLES
----AQUEOUS 3

ATI STANDARD DISPOSAL PRACTICE

The samples from this project will be disposed of in thirty (30) days from th date of this report. If an extended storage period is required, please contac our sample control department before the scheduled disposal date.

GENERAL CHEMISTRY RESULTS

ATI I.D.: 012694

CLIENT : K.W. BROWN & ASSOCIATES
PROJECT # : 637090006-270 DATE RECEIVED : 12/14/90

PROJECT NAME : EPNG/JAL #4 REPORT DATE : 12/27/90

		•	•
~			
PARAMETER	UNITS	0.1	0.2
CONDUCTIVE (IDEEO / CM)		10200	16500
CONDUCTIVITY, (UMHOS/CM)		19300	16500
PHENOLICS, TOTAL	MG/L	0.07	0.24
TOTAL DISSOLVED SOLIDS	MG/L	12000	10200

GENERAL CHEMISTRY - QUALITY CONTROL

CLIENT : K.W. BROWN & ASSOCIATES

PROJECT # : 637090006-270 PROJECT NAME : EPNG/JAL #4

ATI I.D.: 012694

			SAMPLE	DUP.	•	SPIKED	SPIKE	8
PARAMETER	UNITS	ATI I.D.	RESULT	RESULT	RPD	SAMPLE	CONC	REC
CONDUCTIVITY (UMHOS/CM)		01269402	16500	16700	1	NA	NA	NA
PHENOLICS, TOTAL	MG/L	01269801	<0.02	<0.02	NA	0.26	0.25	104
TOTAL DISSOLVED SOLIDS	MG/L	01269402	10200	10200	0	NA	NA	NA

Average Result

ATI I.D.: 01269401

TEST : BTEX (8020)

TEST : BTEX (8020)		
CLIENT : K.W. BROWN & ASSOCIATES PROJECT # : 637090006-270 PROJECT NAME : EPNG/JAL #4 CLIENT I.D. : ACW-1 SAMPLE MATRIX : AQUEOUS	DATE SAMPLED DATE RECEIVED DATE EXTRACTED DATE ANALYZED UNITS DILUTION FACTOR	: 12/14/90 : N/A : 12/20/90 : UG/L
COMPOUNDS	RESULTS	
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	6.5 <2.5 <2.5 16	
SURROGATE PERCENT RECOVERIES		
BROMOFLUOROBENZENE (%)	1400 *	

^{*} Result out of limits due to sample matrix interference

ATI I.D. : 01269402

TEST : BTEX (8020)

CLIENT	: K.W. BROWN & ASSOCIATES	DATE SAMPLED : 1	2/13/90
PROJECT #	: 637090006-270	DATE RECEIVED : 1	2/14/90
PROJECT NAME	: EPNG/JAL #4	DATE EXTRACTED : N	,
CLIENT I.D.	: ACW-2A		2/18/90
SAMPLE MATRIX	: AQUEOUS	UNITS : U	G/L
		DILUTION FACTOR:	1

COMPOUNDS	RESULTS
BENZENE TOLUENE ETHYLBENZENE TOTAL XYLENES	36 5.4 5.2 12
SURROGATE PERCENT RECOVERIES	•
BROMOFLUOROBENZENE (%)	451 *

^{*} Result out of limits due to sample matrix interference

ATI I.D. : 01269403

TEST : BTEX (8020)

TOLUENE

ETHYLBENZENE

TOTAL XYLENES

CLIENT	: K.W. BROWN & ASSOCIATES	DATE SAMPLED : 12/13/90	
PROJECT #	: 637090006-270	DATE RECEIVED : 12/14/90	
PROJECT NAME	: EPNG/JAL #4	DATE EXTRACTED : N/A	
CLIENT I.D.	: TRIP BLANK	DATE ANALYZED : 12/17/90	
SAMPLE MATRIX	: AQUEOUS	UNITS : UG/L	
	•	DILUTION FACTOR: 1	
COMPOUNDS	> *	RESULTS	
BENZENE		<0.5	

<0.5

<0.5

SURROGATE PERCENT RECOVERIES

REAGENT BLANK

TEST : BTEX (8020

TOTAL XYLENES

ATI I.D. : 012694 CLIENT : K.W. BROWN & ASSOCIATES DATE EXTRACTED : 12/18/90 PROJECT # : 637090006-270 DATE ANALYZED : 12/18/90 PROJECT NAME : EPNG/JAL #4 UNITS : UG/L CLIENT I.D. : REAGENT BLANK DILUTION FACTOR: N/A COMPOUNDS RESULTS <0.5 BENZENE TOLUENE < 0.5 ETHYLBENZENE < 0.5

< 0.5

SURROGATE PERCENT RECOVERIES

QUALITY CONTROL DATA

ATI I.D. : 012694

TEST : BTEX (8020)

CLIENT

: K.W. BROWN & ASSOCIATES

PROJECT #

: 637090006-270

PROJECT NAME : EPNG/JAL #4 REF I.D. : 01299906

DATE ANALYZED: 12/18/90

SAMPLE MATRIX : AQUEOUS

UNITS

: UG/L

COMPOUNDS	SAMPLE RESULT		SPIKED SAMPLE	% REC	DUP. SPIKED.SAMPLE	DUP. % REC.	RPD
BENZENE	<0.5	10	9.6	96	9.7	97	1
TOLUENE	<0.5	10	9.6	96	9.7	97	1
ETHYLBENZENE	<0.5	10	9.7	97	9.9	99	2
XYLENES	<0.5	30	30	100	30	100	0

```
% Recovery = (Spike Sample Result - Sample Result)
           Spike Concentration
RPD (Relative % Difference) = (Spiked Sample - Duplicate Spike)
                             Result Sample Result
                             _____X
                                                          100
                              Average of Spiked Sample
```

Analytical**Technologies,**Inc. Phoenix, Arizona

Chain of Custody

DATE 12.12.35 PAGE OF

илмвей об соитыиевз Date: <u>=</u> PHILIP AND A THE Analytical Teqhodogies Inc. 2 RECEIVED BY: (LAB) 2. RELINCUISHED BY: Printed Name: Signature: Company: Time: Oate: Date: ANALYSIS REQUEST RELINQUISHED BY: 1. RECEIVED BY: Printed Name: Date: Date: Printed Name: Milke Shercier 12/13/19 Company: Printed Name: Time: Par Signature: Signature: Company: Date: ë E RELINQUISHED BY: RECEIVED BY: Printed Name: Signature Signature: Company: XIIS ∞ ァ 9 06-18-21 16-27 SOMONER TOTAL NUMBER OF CONTAINERS □24HRS □48HRS □1WK 🕱2WKS LABNUMBER 01264U RECEIVED GOOD COND./COLD fax report by Pickup (will call) LAB ID CHAIN OF CUSTODY SEALS COLEGE STATION TEXAS 17845 SAMPLE DISPOSAL INSTRUCTIONS

SAMPLE DISPOSAL INSTRUCTIONS

SAMPLE DISPOSAL INSTRUCTIONS MATRIX WARRA (400)690 9280 PHONE NUMBER WATER K.W. BROWN & ASSOCIATES, INC **INTACT?** TIME 500 GRAHAM ROAD RS AGENTE NORMAN 1213 PURCHASE ORDER NUMBER: 4/1074 4022001 DATE PROJECT NUMBER: 63705006-270 verbals ASAP PROJECT NAME: EPNG / JAL #4 PROJECT INFORMATION PROJECT MANAGER: <>(D) SAM & SAMPLERS: (Signature) SAMPLEID BAK KW-24 かり COMPANY: COMPANY: ADDRESS: ADDRESS: ACW-BILL TO: を見り Comments: TAT:

San Diego (619) 458-9141 · Phoenix (602) 438-1530 · Seattle (206) 228-8335 · Pensacola (904) 474-1001 DISTRIBUTION: White, Canary - ANALYTICAL TECHNOLOGIES, INC. Pink - ORIGINATOR ATI Labs:

APPENDIX C

Pump Test Data

EL PASO NATURAL GAS COMPANY JAL #4 PLANT

Pump Test Calculations

Theis analysis:

From match point on graph:

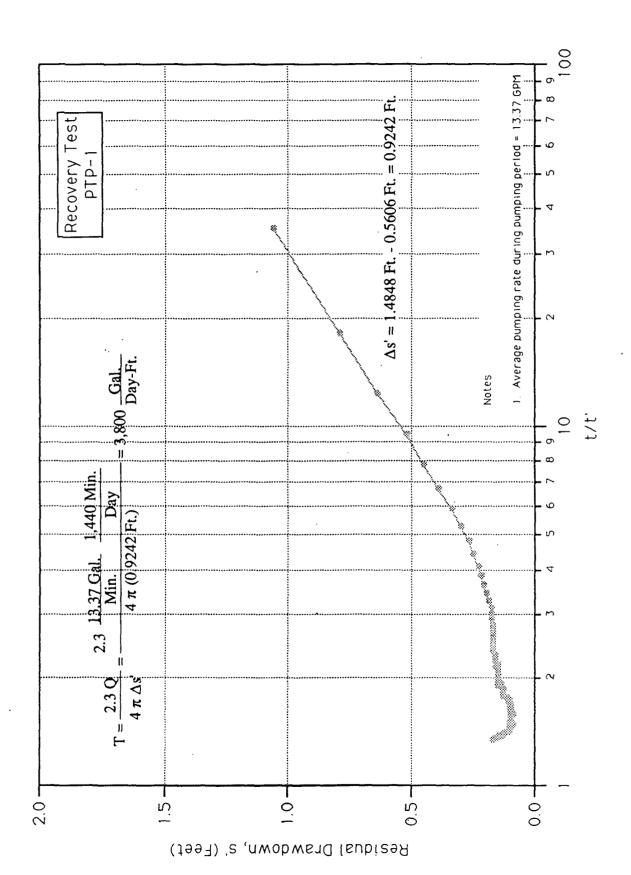
$$u = 10^{-3}$$

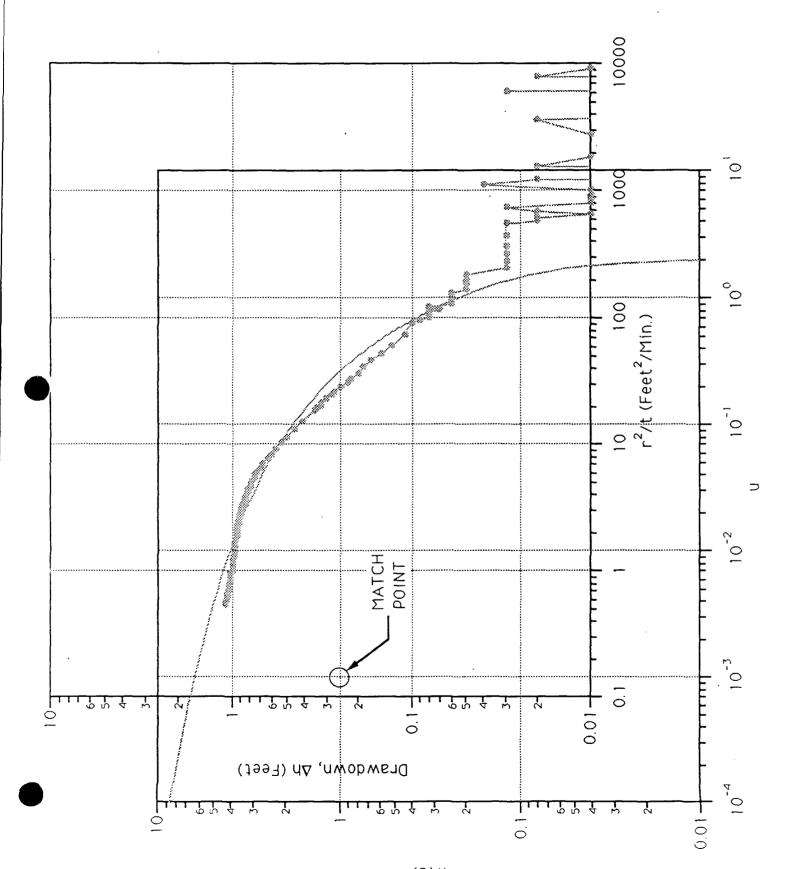
$$W(u) = 1$$

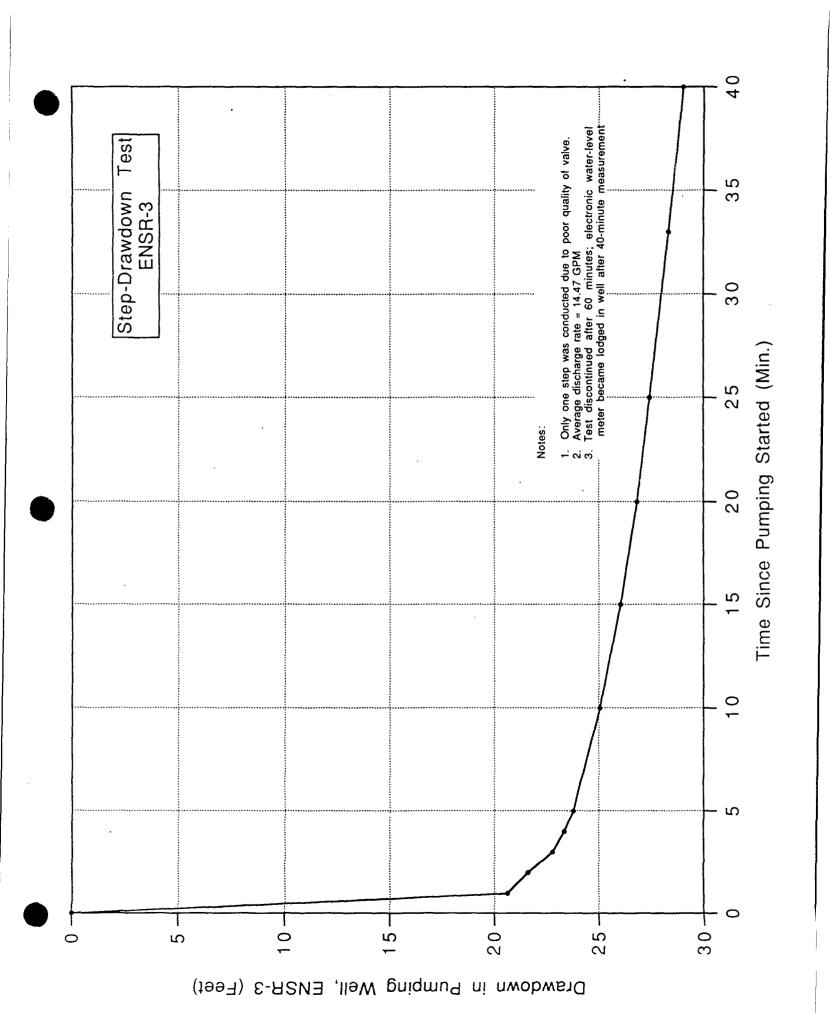
$$r^2 / t = 0.15 Ft^2 / Min.$$

$$\Delta h = 0.25 Feet$$

$$T = \frac{Q}{4\pi\Delta h}W(u) \tag{1}$$


$$T = \frac{\left(13.37 \frac{Gal.}{Min.}\right) \left(1,440 \frac{Min.}{Day}\right)}{\left(4\pi\right) (0.25 \, Feet)} (1) = 6,128 \, Gal./Day/Ft.$$


$$S = \frac{4Tu}{r^2/t} \tag{2}$$


$$S = \frac{(4) \left(\frac{6,128 \ Gal.}{Day\text{-}Ft.}\right) \left(\frac{Day}{1,440 \ Min.}\right) \left(\frac{Ft^3}{7.48 \ Gal.}\right) \left(10^{-3}\right)}{\left(\frac{0.15 \ Ft.^2}{Min.}\right)} = 0.0152$$

$$T = 6,128 \frac{Gal.}{Day-Ft.}$$

$$S = 0.0152$$

SE1000B

Environmental Logger

12/19/90 11:44

Unit# 00705 Test# 0

INPUT 1: Level (F) TOC

Reference	0
Scale factor	19.99
Offset	-0.03

Step# 0 12/11/90 11:38

Elapsed	Time	Value	
	0		0.01
	0.0033		0.01
	0.0066		0.01
	0.0099		0.01
	0.0133		0.01
	0.0166		0.01
	0.02		0.01
	0.0233		0.02
	0.0266		0
•	0.03		0.03
	0.0333		0
	0.05		0.02
	0.0666		0.01
	0.0833		0
	0.1		0.01
	0.1166		0.02
	0.1333		0
	0.15		0.02
	0.1666		0.04
	0.1833		0.01
	0.2		0.01
	0.2166		0.01
	0.2333		0.01
	0.25		0.03
	0.2666		0.02
	0.2833		0.01
	0.3		0.02
	0.3166		0.02
	0.3333		0.03
•	0.4167		0.03
	0.5		0.03

0.5833	0.03
0.6667	0.03
0.75	0.03
0.8333	0.05
0.9167	0.05
1	0.05
1.0833	0.05
1.1667	0.06
1.25	0.06
1.23 1.3333 1.4166 1.5	0.06 0.06 0.08
1.5833	0.07
1.6667	0.08
1.75	0.08
1.8333	0.08
1.9167	0.09
2	0.1
2.5	0.11
3	0.13
3.5	0.15 •
4	0.17
4.5	0.19
5	0.2
5.5	0.22
6	0.23
6.5	0.25
7	0.27
7.5	0.28
8	0.3
8.5	0.32
9	0.32
9.5	0.34
10	0.35
12	0.41
14	0.45
16	0.5
18	0.54
20	0.58
22	0.61
24	0.64
26	0.68
28	0.7
30	0.73
32	0.75
34	0.76
36	0.78
38	0.79

40 42 44 46 48 50 52 54 56 58 60 62 64 66 68	0.8 0.82 0.83 0.84 0.85 0.85 0.86 0.87 0.88 0.89 0.9 0.9
70 72	0.92 0.92
74	0.93
76	0.93
78	0.92 0.93
80 82	0.93
84	0.94
86	0.94
88	0.95
90	0.95
92 94	0.95 0.95
96	0.95
98	0.95
100	0.95
110	0.97
120	0.97
130 140	0.97 0.97
150	0.99
160	0.99
170	1
180	1 1.02
190 200	1.02
210	1.02
220	1.02
230	1.04
240	1.04 1.04
250 260	1.04
270	1.06

280	1.08
290	1.07
300	1.09
310	1.09
320	1.09
330	1.1
340	1.1
350	1.06 0.79
360 370	0.79
380	0.52
390	0.45
400	0.39
410	0.34
420	0.3
430	0.27
440	0.25
450	0.23
460	0.22
470	0.21
480	0.2
490	0.19 0.18
500 510	0.18
520	0.18
530	0.17
540	0.17
550	0.17
560	0.17
570	0.17
580	0.17
590	0.17
600	0.16
610	0.16
620	0.16
630	0.15
640	0.16 0.15
650	0.15
660 670	0.15
680	0.15
690	0.15
700	0.15
710	0.14
720	0.15
730	0.14
740	0.13
750	0.13

760 770 780 790 800 810 820 830 840 850 860 870 880 890	0.13 0.13 0.13 0.12 0.11 0.11 0.11 0.1 0.1 0.1 0.1
910	0.1
920 930	0.09 0.09
94.0	0.09 0.1
950 960	0.1
970	0.1
980 990	0.1 0.1
1000	0.1
1010	0.1
1020 1030	0.1 0.1
1040	0.1
1050	0.09
1060 1070	0.1 0.1
1070	0.1
1090	0.1
1100	0.1 0.1
1110 1120	0.1
1130	0.11
1140 1150	0.11 0.11
1160	0.11
1170	0.11
1180 1190	0.11 0.12
1200	0.13
1210	0.13
1220 1230	0.13 0.14

1240	0.14
1250	0.14
1260	0.14
1270	0.15
1280	0.15
1290	0.15
1300	0.16
1310	0.16
1320	0.17
1330	0.17
1340	0.17
1350	0.17

SE1000B

Environmental Logger

12/19/90 11:48

Unit# 00705 Test# 0

INPUT 2: Level (F) TOC

Reference	0
Scale factor	10.18
Offset	-0.11

Step# 0 12/11/90 11:38

Elapsed	Time	Value	
	0		3.28
	0.0033		1.39
	0.0066`		-0.73
	0.0099		-0.26
	0.0133		1.3
	0.0166		1.93
	0.02		1.47
	0.0233		1.1
	0.0266		1.46
	0.03		2.08
	0.0333		2.36
	0.05		3.1
	0.0666		3.95
	0.0833		4.73
	0.1		5.5
	0.1166		6.23
	0.1333		6.93
	0.15		7.58
	0.1666		8.21
	0.1833	•	8.8
	0.2		9.4
	0.2166		9.96
	0.2333		10.49
	0.25		10.98
	0.2666		11.47
	0.2833		11.91
	0.3		12.35
	0.3166		12.75
	0.3333		13.13
	0.4167		14.7
	0.5		15.75

0.5833	16.57
0.6667	17.34
0.75	18.02
0.8333	18.61
0.9167	19.14
1	19.63
1.0833	20.04 20.38
1.1667 1.25	20.69
1.3333	20.98
1.4166	21.26
1.5	21.54
1.5833	21.81
1.6667	22.06
1.75	22.29
1.8333	22.52
1.9167	22.72
2	22.92
2.5	23.57
, 3	23.57
3.5	23.57
4	23.57
4.5	23.57
5	23.57
5.5	23.57
6	23.57
6.5	23.57
7	23.57
7.5 8	23.57 23.57
8.5	23.57
9	23.57
9.5	23.57
10	23.57
12	23.57
14	23.54
16	23.54
18	23.55
20	23.55
22	23.58
24	23.59
26	23.59
28	23.59
30	23.58
. 32	23.59
34	23.59
36	23.59
38	23.59

40	23.58
42	23.59
44	23.59
46	23.59
48	23.58
50	23.59
52	23.58
54	23.58
56	23.58
58	23.59
60	23.58
62	23.58
64	23.58
66	23.58
68	23.58
70	23.58
72	23.58
	·
74	23.59
76	23.58
78 ·	23.58
80	23.58
82	23.58
8 4	23.58
86	23.58
88	23.58
90	23.58
92	23.58
94	23.58
96	23.58
98	23.57
100	23.58
110	23.57
120	23.57
130	23 <i>.</i> 56
140	23.56
150	23.55
160	23.55
170	23.54
180	23.54
190	23.54
200	23.53
210	23.53
220	23.53
230	23.53
240	23.53
250	23.52
260	23.52
270	23.52
_ · ·	

280 290 300	23.52 23.51 23.51
310	23.51
320	23.5
330	23.5
340	23.5
350	12.82
360	-1.08
370	25.22
380	25.22
390	25.22
400	25.22
410	25.22
420	25.22
430	25.22
440	25.22
450	25.22
460	25.22
470	25.22
480	25.22
490	25.22
500	25.22
510	25.22
520	25.22
530	25.22
540	25.22
550	25.22
560	25.22
570	25.22
580	25.22
590	25.22
600	25.22
610	25.22
620	25.22
630	25.22
640	25.22
650	25.22
660	25.22
670	25.22
680	25.22
690	25.22
700	25.22
710	25.22
720 730	25.22 25.22
730 740	25.22 25.22
7 4 0 750	25.22 25.22
730	25.22

760	25.22
770	25.22
780	25.22
790	25.22
800	25.22
810 820	25.22 25.22
830	25.22
840	25.22
850	25.22
860	25.22
870	25.22
880	25.22
890	25.22
900	25.22
910	25.22
920 930	25.22 25.22
940	25.22
950	25.22
960	25.22
970	25.22
980	25.22
990	25.22
1000	25.22
1010	25.22
1020	25.22
1030 1040	25.22 25.22
1040	25.22
1060	25.22
1070	25.22
1080	25.22
1090	25.22
1100	25.22
1110	25.22
1120	25.22
1130	25.22
1140	25.22
1150 1160	25.22
1170	25.22 25.22
1180	25.22 25.22
1190	25.22
1200	25.22
1210	25.22
1220	25.22
1230	25.22

1240	25.22
1250	25.22
1260	25.22
1270	25.22
1280	25.22
1290	25.22
1300	25.22
1310	25.22
1320	25.22
1330	25.22
1340	25.22
1350	25.22

APPENDIX D

Model Calibration Run Output

U.S.G.S. METHOD-OF-CHARACTERISTICS MODEL FOR SOLUTE TRANSPORT IN GROUND WATER EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

GRID DESCRIPTORS

20	200.0	200.0	
(NUMBER OF ROWS) =	(X-DISTANCE IN FEET) =	(Y-DISTANCE IN FEET) =	TIME PARAMETERS
NY	XDEL	YDEL	

П	30.000	00.0	٥.	
II	11	ij	II	
(NO. OF PUMPING PERIODS)	(PUMPING PERIOD IN YEARS)	(TIME INCREMENT MULTIPLIER)	(INITIAL TIME STEP IN SEC.)	HYDROLOGIC AND CHEMICAL PARAMETERS
NPMP	PINT	TIMX	TINIT	HYDRC

0.200	100.0		0:30	1.000000	
Ħ	H	•	11	11	
(EFFECTIVE POROSITY)	(LONGITUDINAL DISPERSIVITY)	(RATIO OF TRANSVERSE TO	LONGITUDINAL DISPERSIVITY)	(RATIO OF T-YY TO T-XX)	EXECUTION PARAMETERS
POROS	BETA	DLTRAT		ANFCTR	٠

0.10E-01	100		0.500	3200	ത
11	11.		11	H	11
ı	(MAX.NO.OF ITERATIONS - ADIP)	(MAX.CELL DISTANCE PER MOVE	OF PARTICLES - M.O.C.)	(MAX. NO. OF PARTICLES)	(NO. PARTICLES PER NODE)
TOL	ITMAX	CELDIS		NPMAX	CINGTON

30		0				0		
COMPLETE PRINTOUT) =	(MOVE INTERVAL FOR CHEM.	CONCENTRATION PRINTOUT) =	(TIME STEP INTERVAL FOR	VELOCITY PRINTOUT; 0=NEVER;	-1=FIRST TIME STEP;	-2=LAST TIME STEP) =	(PRINT OPTION-DISP.COEF.	0=NO; 1=FIRST TIME STEP;
	NPNTMV		NPNTVL				NPNTD	

```
202
                                                                                                                                             0
                                                                                                                                 ***
                           u
                                        11
                                                                                                                                Ħ
             (NO. OF OBSERVATION WELLS
                                                                                                                                (PRINT OPT.-CONC. CHANGE)
                         FOR HYDROGRAPH PRINTOUT)
                                                               (TIME STEP INTERVAL FOR
                                      OF PUMPING WELLS)
                                                                                         FILE UNIT 7; 0=NEVER;
                                                                             VELOCITY PRINTOUT ON
                                                                                                       -1=FIRST TIME STEP;
                                                                                                                                            (REACTION SPECIFIER)
                                                                                                                    -2=LAST TIME STEP)
2=ALL TIME STEPS)
                                                  FOR NODE IDENT.)
                                       NO.
                                                                                                                                            IREACT
             NUMOBS
                                                   NCODES
                                                              NPNCHV
                                                                                                                                 NPDELC
                                       NREC
```

0.31558E+(0.31558E+(0.31558E+(0.31558E+08

X-Y SPACING:

200.00

TRANSMISSIVITY MAP (FT*FT/SEC)

0.00E+00 9.48E-03 0.00E+00 9.48E-03 0.00E+00
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 9.48E-03 9.48E-03 9.48E-03 9.48E-03
0.00E+00 0.00E+00 9.48E-03 0.00E+00 9.48E-03 0.00E+00

.48E-0	0.00E+00	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.48E-0	.00E+0	.00E+0	.00E+0	
.48E-0	48E	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.485-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
.48E-0	9.48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
.48E-0	9.48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
48E-0	48E	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
48E-0	9.48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
48E-0	9,48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
48E-0	9.48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	.00E+0	
48E-0	9.48E-03	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.48E-0	.00E+0	0.00E+00	_
08+0	.48E-03	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	8E-0	0E+0	00E+00	ER THI

000000000000 00000000000 00000000000 000000000000 655.00 655.0 655.0 655.0 655.0 655.0 655.0 655.0 00000000000 0000000000 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 00000000000000 6655.0 6655.0 6655.0 6655.0 6655.0 6655.0 00000000000 665.0 665.0 665.0 665.0 665.0 665.0 655.0 655.0 655.0 655.0 655.0 655.0 655.0 000000000000 000000000000 0000000000000 000000000000 00000000000 655.0 655.0 655.0 655.0 655.0 655.0 000000000000 0000000 65.0 (FI/SEC) 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 0 DISCHARGE 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 65.0 AND 65.0 65.0 65.0 65.0 65.0 0.0 RECHARGE 65.0 65.0 65.0 65.0 65.0 0.0 0000000 DIFFUSE

00E+00 64E-10 64E-10 64E-10 00E+00 64E-10 .00E+00 64E-10 .00E+00 64E-10 00E+00 64E-10 .00E+00 64E-10 64E-10 00E+00 64E-10 00E+00 64E-10 .00E+00 64E-10 .00E+00 64E-10 O 0 0 0 -2.64E-10 -2.64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 64E-10 64E-10 64E - 1064E-10 -2.64E-10 -2.64E-10 64E - 10-2.64E-10 -2.64E-10 64E-10 -2.64E-10 64E-10 64E-10 -2.64E-10 64E-10 -2.64E-10 .64E-10 64E-10 64E-10 64E-10 64E-10 -2.64E-10 -2. -2. -2. -2. -2. -2.64E-10 -2.64E-10 .64E-10 0.00E+00 -2.64E-10 64E-10 64E-10 -2.64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E - 1064E-10 64E-10 64E-10 64E-10 64E-10 64E - 1064E-10 64E-10 64E - 1064E - 1064E-10 64E - 1064E - 1064E-1 64E - 1-2.6 -2 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 -2.64E-10 64E-10 -2.64E-10 -2.64E-10 -2.64E-10 64E - 1064E - 1064E-10 -2.64E-10 64E-10 64E-10 64E-10 64E - 1064E-10 64E - 1064E-10 64E - 1064E - 10-2.(-2.6 -2.6 64E-10 64E - 1064E - 1064E - 1064E-10 64E - 1064E - 1064E - 1064E-10 64E - 1064E - 1064E-1 64E-1 64E-1 -2.64E-10-2.64E-10-2.64E-10.64E-10 -2.64E-10 -2.64E-10 64E-10 -2.64E-10 -2.64E-10 .64E-10 -2.64E-10 .64E-10 -2.64E-10 .64E-10 -2.64E-10-2.64E-1 -2.64E-1 -2.64E-1 -2.64E-1 -2.64E-1 -2.64E-1 -2.64E-1 -2.64E-1-2.64E-1 64E-1 .64E-1 .64E-1 .64E-1 -2. -2. -2. 7 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 -2.64E-10 64E - 10.64E-10 -2.64E-10 64E-10 .64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E - 1064E-10 64E-10 64E-10 64E - 1064E-10 64E-1 -2.64E-10 -2.64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 00E+00 64E-10 64E-10 64E - 1064E-10 -2. -2. -2. -2. -2. -2. -2. 64E-10 00E+00 64E-10 64E-10 64E-10 64E-10 64E-10 64E-10 64E - 1064E-10 64E - 1064E-1 64E-1 64E-1 64E - 164E-1-2 -2.64E-10 0.00E+00 -2.64E-10 -2.64E-10 0.00E+00 -2.64E-10 -2.64E-10 0.00E+00 -2.64E-10 0.00E+00 .64E-10 -2.64E-10 0.00E+00 .64E-10 .00E+00 0.00E+00 -2.64E-10 0.00E+00 0.00E+00 -2.64E-10 0.00E+00 0.00E+00 -2.64E-10 .00E+00 .64E-10 0.00E+00 -2.64E-10 .00E+00 .64E-10 .00E+00 .64E-10 .00E+00 .00E+00 .64E-10 .00E+00 .64E-10 .00E+00 N

900 900 900	1.46E-04 0.00E+00 0.00E+00	1.46E-04 0.00E+00 0.00E+00	1.46E-04 0.00E+00 0.00E+00	1.46E 0.00E 0.00E = 32	9 0 0 0 0 0	1.46E 0.00E 0.00E NCE CE	.46E-0 .00E+0 .00E+0	.46E- .00E+ .00E+	000
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	6E-0 6E-0	6E-0	.00E+0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0		.46E-0	.00E+0
.46E-0	.46E-0 .46E-0	.46E-	.46E-0	.46E-U	.46E-U	.46E-0 .46E-0	.46E-0.	46E-0	.00E+0 .46E-0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.00E+0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	46E-0	. 46E-	.00E+0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	46E-	.46E-0	.00E+0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.00E+0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	. 40E+0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.00E+0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.00E+0
.46E-U .00E+0	.46E-0 .46E-0	.46E-0 .46E-0	.46E-0	.46E-0 .46E-0	.46E-0 .46E-0	.46E-0 .46E-0	.46	4. 4.	.00E+0 .46E-0
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.00E+0	.46E-0 46E-0	.46E-0 46E-0	46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.00E+0
.46E-U	.46E-U .46E-0	.46E-U .46E-0	.46E-0	.46E-0 .46E-0	.46E-0 .46E-0	.46E-0 .46E-0	1.46E-04 1.46E-04	1.46E-04 1.46E-04	.00E+0.
.00E+0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0
.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	00日100.
.46E-0	.46E-U	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.46E-0	.005+0
0+300.	.00E+	.00E+	.00	.00E+0	.00E+0	.00E+0	٥.	0.00E+00	.00E+0
0.00E+00 0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00	0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00	0.00E+00 0.00E+00 EC)	0.00E+00 0.00E+00 . MAP (FT/S	0.00E+00 0.00E+00 ERMEABILTY
			1	•					

9 11 PARTICLES; IF EXCEEDED, PARTICLES ARE REGENERATED)

00	0 (> 0	> (0	0	0	0	0	0	0	0	0	0	0	ò	0												
н 0	0	> (O (0	0	0	0	0	0	0	0	0	0	0	0	~	0						9		9		9	,	9
10	0	> (O (0	0	0	0	0	0	0	0	0	0	0	0	, 	0			RGE) 三 三		90-国		350E-06) 三 三
н 0	0	> (0	0	0	0	0	0	0	0	0	0	0	0	0	-	0		<u>년</u>	RECHA			-0.400E-06		650E		320		.450E-06
0 ח	0	> (0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0		MADE	RE			9		0		0		0
10	0	O	0	0	0	0	0	0	0	0	0	0	0	0	0		0	Ŋ	BEEN										
ч 0	0)	0	0	0	0	0	0	0	0	0	0	0	0	0	٦	0	Ш		Ω̈́.	_	_		_		_		_	
ч 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦	0	IED	HAVE	CONC	.70	00.		150.00		00.		00.	
н 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, ,	0	IFI		CE	O	75		150		40		120	
0 17	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	, ,	0	SPEC	ASSIGNMENTS	OUR									
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	ťΩ	GNIZ	Ś									
-10	0	0	0	0	4	0	0	0	0	0	m	0	0	0	0	М	0	CODE	SSI		1	7		1		1		1	
0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	٦	0	٠.		NCE	0+日	D+3()王十()E+C)王+(
0 1	0	0	0	0	0	7	0	0	0	0	0	0	0	0	0	Н	0	ENT	LOWING	LEAKA	100	100		0.100E+01		0.100E+01		0.100E+0	
٦0	0	0	0	0	0	0	S	0	0	0	0	0	0	0	0	,_	0	UI :		그	0	0		0		o.		0	
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	NODE	FOL:					•					
0 1	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0	OF N	THE	NO.									
н 0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	Н	0				~	7	ì	m	١.	4		2	
10	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	-	0	8		CODE	•								
00	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0												

VERTICAL PERMEABILITY/THICKNESS (FT/(FT*SEC))

0.00E+00	0.00E+00 0.00E+00
0.00E+00	1.00E+00
0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00 0.00E+00	1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 0.00E+00
0.00E+00	1.00E+00 1.00E+00
0.00E+00	1.00E+00 1.00E+00
0.005+00	1.00E+00 1.00E+00
0.00E+00	0.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00 1.00E+00

000 E + + 0 0 0 0 0 0 E + + 0 0 0 0 0 0	
000000000000000000000000000000000000000	4000000
00000000000000000000000000000000000000	4000000
	94.
00000000000000000000000000000000000000	40000000
	94
000 000 000 000 000 000 000 000 000 00	40000000
	40000000
	6 6 0 0 0 0 0 0 0
	4.0000000
00000000000000000000000000000000000000	6 6 0 0 0 0 0
	94 0000.00
00 00 00 00 00 00 00 00 00 00 00 00 00	4.00000000
	96 .000000000000000000000000000000000000
00 00 00 00 00 00 00 00 00 00 00 00 00	9.000000000000000000000000000000000000
	4.0 .0000000000000000000000000000000000
### ### ### ### ### ### ### ### ### ##	4.0000000
	40000000
00 00 00 00 00 00 00 00 00 00 00 00 00	4.0000000
X A H H O O O O O O O O O O O O O O O O O	

ate
g
Calibra
7.7
Cal
O
JT
ŏ
4.
AL#
A
GJ
Ž
: EPNG
0
ς.
V.)
>
I
000
\subseteq
\subseteq
.ng:M(
ling:M(
ling:M(
ling:M(
y:Modeling:MG
y:Modeling:MG
y:Modeling:MG
y:Modeling:MG
y:Modeling:MG
y:Modeling:MG
ling:M(

1/10/1 10:04 AM

	0.000000000000000000000000000000000000
0	94.000000000000000000000000000000000000
	9.4.0 0.00000000000000000000000000000000
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	944.00000000000000000000000000000000000
0.00.00.00.00.00.00.00.00.00.00.00.00.0	946 000000000000000000000000000000000000
0.00.00.00.00.00.00.00.00.00.00.00.00.0	0.000000000000000000000000000000000000
96. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 100. 100.	0.000000000000000000000000000000000000
0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0. 0	0.000000000000000000000000000000000000
0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 0. 0. 0 HEAD DISTRIBUT NUMBER OF TIME TIME (SE	0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.0

9

Page

0.0000000	0.000000	0.000000	0.0000000	0.0000000	0.0000000	0.0000000	0.0000000	0.00000000
0.000000			0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
0.0000000			0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0	0.000000.0
0.0000000			0.0000000	0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0
0.000000			0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
0.0000000	0.0000000		0.0000000	0.0000000	0.0000000	0.000000.0	0.000000.0	0000000.0.
0.0000000	7	7	100.0000000	100.0000000	100.0000000	100.0000000	100.0000000	100.0000000
100.000000	100.000000	100.000000	100.	100.0000001	100.0000000		100.0000000	100.0000000
0.000000	0.000000	0.0000000	0	0.0000000	0.0000000	0.000000.0	0.000000.0	0.000000.0
0.0000000			0.000000.0	0.000000.0	0.00000000	0.0000000	0.000000.0	0.000000.0

ITERATION PARAMETERS
0.616850E-02
0.144040E-01
0.336346E-01
0.785398E-01
0.183397
0.428249
1.00000 CONCENTRATION

0.00000	0.00000E+00	0.00000E+00	0.00000E+00	0.00000E+00	0
II	II	ll	11	11	il
TIME (SECONDS)	CHEM. TIME (SECONDS)	CHEM. TIME (DAYS)	TIME (YEARS)	CHEM. TIME (YEARS)	NO. MOVES COMPLETED

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
- -1	Н	Н	Н	٦	Н	Н	~	٦	٦	Н	٦	Н	-	٦	1	7	٦
~	-	1	~	-	1	٦.	-	7	7	Н	7	Н	Н	7	,–1		٦
Н	٦	Н	Н	٦	,I	~	Н	~	7	, i	Н		-1	, - 1	1	7	Н
⊣	-1	Н	Н	Н	Н	Н	Н	Н	Н	۲	, - 1	Н	-		-	٦	⊣
Н	٦	Н	Н	Н	Н	~	Ч	⊣	Н	, ,	,	Ļ	Н	⊣	٦	Н	Н
7	7	Н	7	Н	-1	Н	Ч	, 	Н	٦	Н	Н	٦	, 	Н	Н	٦
7	Н	Н	Н	, - 1	Н	Н	Н	Н	H	-1	, - 1	⊣	ᆏ	-1	-1	, 1	П
7	Н	Н	Н	Н	Н	Н	П	Н	Н	, ,	Н	ᆫ	, - 1	-	Н	, ,	Н
٠,	Н	٦	Н	Н	٦	⊣	Н	Н	Н	Н	, - 1	Н	٦	Н	Н	Н	٦
H	Н	Н	Н	Н	7	H	Н	7	Н	Н	Н	٦	Н	Н		Н	Н
7	-	Н	Н	7	~	 1	٦	-	⊣	Н	Н	٦	П	Н	Н	, ,	Н
~	-	٦	7	-	٦		Н	Н	1	-	٦	Н	, - 1	٦,	Н	-1	-1
~	7	-	-	٦	-	Н	1	7	, -1	Н	7	-	႕	Н	٦	7	٦.
7	7	H	٦	٦	H	-	7		_	٦	~	Н	٦	Н	-	Н	Н
₩	7	-	႕	7	٦	, - 1	н	٦	7	Н	Н	7	۲	Н	Н	Н	႕
H	-	H	-	Н	~	-	Н	٦	Н	Н	Н	-	Н	Н	Н	⊣	Н
↔	٦	, - 1	-	٦	-	-	-	~		-	႕	7	H	Н	Н	⊣	7
↔	7	-			٦	7	٦	-	7	٦	Н	-	H	Н	Н	H	1
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1/10/91 10:04 AM

Hydrogeology: Modeling: MOCHDI V. 3.0: EPNGJAL#4.OUT Calibrate

STABILITY CRITERIA --- M.O.C. NUMBER OF ITERATIONS =

0.20000E+08 0.51042E+08 NTIMV = TMV (MAX. INJ.) = 2.00E+07 TIMV (CELDIS) TIMV =

2

~ 1.58E+07 NTIMD = 0 NMOV = 2
THE LIMITING STABILITY CRITERION IS MAXIMUM INJECTION RATE
MAX. INJECTION OCCURS AT CELL IX = 9 IY = 14
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP 0.15779E+08 0.72612E+08 1.58E+07 TIMEVELO = TIMEDISP =

0.15779E+08 0.31558E+08 SUMTCH = SUMTCH = 0.15779E+08 0.15779E+08 11 11 TIMV TIMV IMOV 1). EPNG/JAL #4 - CALIBRATION (NEW RUN 2970 0.31558E+08 0.31558E+08 TIM(N) TIM(N)

	3.0:EPNGJAL#4.OUT Calibrate
	I V.
_	I
	Hydrogeology: Modeling: MOC
	AM
	10:04
_	

11	
Page	

0.500 1.000 TIME (YEARS)	0.500 1.000 TIME (YEARS)	0.500 1.000 TIME (YEARS)
0.7 0.6 CONC. (MG/L)	0.7 0.9 CONC.(MG/L)	0.7 6.9 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)
1 2 Z	. H W Z	
×	×	×
×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

0.500 1.000 TIME (YEARS)	0.500
0.7 1.3 CONC. (MG/L)	0.7
97.5 97.5 HEAD (FT)	95.7
HOZ	7 7

×

OBS.WELL NO.

NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

0.15779E+08 2 0.15779E+08 H H H TIM(N) = 0.31558E+08 TIMV NP = 2970 IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

SUMTCH = 0.47336E+08

~

SUMTCH = 0.63115E + 08

1.500 2.000 TIME (YEARS)	1.500 2.000 TIME (YEARS)
0.8 0.9 CONC. (MG/L)	1.5 6.3 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)
. H & Z	. 12 Z
×	≻ 1
×	×
OBS.WELL NO.	OBS.WELL NO.

1.500 2.000 TIME (YEARS)

2.4 3.8 CONC. (MG/L)

97.5 97.5 HEAD (FT)

 $\neg \land z$

×

OBS.WELL NO.

1.500 2.000 TIME (YEARS)

7.4 7.9 CONC. (MG/L)

95.5 95.5 HEAD (FT)

- 0 Z

×

OBS.WELL NO.

S

1/10 10:04 AM

ω

95.7 95.7 7

19.2 19.0

1.500 2.000

NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS; TIME STEP

0.31558E+08 TIM(N)

3077

0.15779E+08 11 II

TIMV IMOV

0.78894E+08 SUMTCH =

II

TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

0.15779E+08 11

0.94673E+08 SUMTCH =

> × OBS.WELL NO.

95.9 95.9 HEAD (FT)

1 2 Z

CONC. (MG/L)

TIME (YEARS) 2.500

92.8

4.4

2.500

	3.000 TIME (YEARS)
1 CallDiace	6.5 CONC. (MG/L)
):EPNGJAL#4.00	95.8 HEAD (FT)
m	ΝZ
Modeling:MOC. I V. 3.0:EPNGJAL#4.001 Calibrate	×
.ogy:	×
Hydrogeology:	OBS.WELL NO.

2.500 3.000 TIME (YEARS)
13.0 13.2 CONC. (MG/L)
95.5 95.5 HEAD (FT)
10Z
×
OBS.WELL NO.

2.500

~

SUMTCH = 0.11045E+09	SUMTCH = 0.12623E+09	
SUMTCH =	SUMTCH =	
0.15779E+08	2 0.15779E+08	
	n #	
TIMV	NP = 3077 IMOV IIM(N) = 0.31558E+08 IIMV	(NEW RUN 1).
0.31558E+08	3077 0.31558E+08	CALIBRATION
11	11 11	#4 -
(N) MIT	NP TIM(N)	EPNG/JAL

1/10/91 10:04 AM

3.500 4.000 TIME (YEARS)	3.500 4.000 TIME (YEARS)	3.500 4.000 TIME (YEARS)	3.500 4.000 TIME (YEARS)	3.500
2.7 3.0 CONC. (MG/L)	6.7 7.2 CONC. (MG/L)	18.3 25.2 CONC. (MG/L)	10.0 22.7 CONC. (MG/L)	26.8 23.8
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7
N 2 1		1 2 Z	N 2 1	7 7
≻	×	×	> +	

×

OBS.WELL NO.

×

OBS.WELL NO.

×

OBS.WELL NO.

×

OBS.WELL NO.

11 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

1/10/91 10:04 AM

0.15779E+09 0.14201E+09 SUMTCH = SUMTCH = ~ 0.15779E+08 0.15779E+08 11 II TIMV IMOV TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1). 0.31558E+08 3131 0.31558E+08 11 TIM(N) NP TIM(N)

4.500 5.000 TIME (YEARS)	
3.9 4.8 CONC. (MG/L)	
95.9 95.9 HEAD (FT)	
N 2 1	
>	
×	
OBS.WELL NO.	

TIME (YEARS) 4.500 CONC. (MG/L) 95.8 95.8 HEAD (FT) - 0 Z × OBS.WELL NO.

26.8 27.7 95.5 95.5 7

4.500

× OBS.WELL NO.

HEAD (FT)

Z

CONC. (MG/L)

TIME (YEARS)

28.3

4.500

97.5 97.5 HEAD (FT)

Z 2 1

 \succ

×

OBS.WELL NO.

CONC. (MG/L)

TIME (YEARS)

25.9

95.7

7

4.500

11 NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP (HEADS UNCHANGED) NUMBER OF ITERATIONS = 0

= 0.31558E + 08NOTE TIM(N)

0.15779E+08 --- IMOV= H NPTM. EQ. NPMAX TIMV

SUMTCH = PT. NO. =3069

0.17357E+09

N

CALL GENPT

TIM(N) = 0.31558E+08 EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

TIMV

0.15779E+08

0.18935E+09 SUMTCH = Page 18

5.500 6.000 TIME (YEA RS)	. 5.500 6.000 TIME (YEARS)	5.500 6.000 TIME (YEARS)	5.500 6.000 TIME (YEARS)
5.2 5.3 5.3 CONC. (MG/L)	5.8 6.8 CONC. (MG/L)	26.1 25.0 CONC. (MG/L)	27.3 26.5 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
Z S J	L 0 Z	N 2 1	N 2
>	>-	>-	×
×	×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

2 11 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

TIM(N) = 0.31558E+08NP = 2970

TIMV = 0.15779E+08 IMOV = 2

SUMTCH = 0.20512E+09

5.500

42.1

95.7 95.7

7

Hydrogeology: Modeling: MO I V. 3.0: EPNGJAL#4.0UT Calibrate

= 0.15779E+08

SUMTCH = 0.22090E+09

TIM(N) = 0.31558E+08 TIMV = EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

1/10 10:04 AM

6.500 7.000 TIME (YEARS)	6.500 7.000 TIME (YEARS)	6.500 7.000 TIME (YEARS)
5.2 7.5 CONC. (MG/L)	7.7 8.5 CONC. (MG/L)	27.2 26.2 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)
1 2 Z	. H & Z	N, 2 N
>-	Ж	×
×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

6.500

24.5

97.5

20 Page .

 $^{\circ}$

 \succ

×

OBS.WELL NO.

97.5 HEAD (FT)

CONC. (MG/L) 24.5

39.8

95.7 95.7

7

0.25246E+09

SUMTCH =

0.15779E+08

H 11

TIMV

TIM(N) = 0.31558E+08 TIMV. EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

2970

0.31558E+08

11

TIM(N) NP

0.15779E+08

0.23668E+09

SUMTCH =

2

NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

6.500

TIME (YEARS) 7.000

95.9 95.9 7 2 Z

× OBS.WELL NO.

HEAD (FT)

CONC. (MG/L)

7.500

1/10/91 10:04 AM

7.500 .8.000 TIME (YEARS)	7.500 8.000 TIME (YEARS)	7.500 8.000 TIME (YEARS)	7.500
13.4 11.8 CONC. (MG/L)	25.1 26.3 CONC. (MG/L)	24.8 22.3 CONC. (MG/L)	, 45.5 44.1
95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7 95.7
HNZ	Z 2 1	Z 2 1	7 7
		≻	
X	×		
×	×	×	
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	

11 OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP NUMBER OF ITERATIONS = 0

2

0.26824E+09 0.28402E+09 SUMTCH = SUMTCH = 0.15779E+08 2 0.15779E+08 H 11 H TIM(N) = 0.31558E+08 TIMV NP = 3077 IMOV TIM(N) = 0.31558E+08 TIMV TIMV

8.500	8.500	8.500	8.500	
9.000	9.000	9.000	9.000	8.500
TIME (YEARS)	TIME (YEARS)	TIME (YEARS)	TIME (YEARS)	9.000
7.7	13.8	25.6	23.2	40.7
8.5	14.0	27.5	21.4	
CONC. (MG/L)	CONC. (MG/L)	CONC. (MG/L)	CONC. (MG/L)	
95.9	95.8	95.5	97.5	95.7
95.9	95.8	95.5	97.5	
HEAD (FT)	HEAD (FT)	HEAD (FT)	HEAD (FT)	
1 2 N	L 0 Z		Z 07	7 7

×

×

OBS.WELL NO.

×

OBS.WELL NO.

×

OBS.WELL NO.

×

×

~ 11 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP SUMTCH = 2 0.15779E+08 0.15779E+08 ĮĮ. 11 11

TIME (YEARS) 9.500 CONC. (MG/L) 95.9 95.9 HEAD (FT) 7 N P OBS.WELL NO.

TIME (YEARS) 9.500 CONC. (MG/L) 14.6 14.5 95.8 95.8 HEAD (FT) H O Z × OBS.WELL NO.

Calibrate
#4.0UT C
3.0:EPNGJAL#4.
>
I
drogeology: Modeling: MO
Mode]
logv:
drogeology: Mode
7

Page 24

0.000 9.500 10.000	TIME (YEARS)
0.7 29.6 30.5	
0.0	HEAD (FT)
010	z
	X
	×
	OBS.WELL NO.

9.500 10.000 TIME (YEARS)	9.500
32.5 38.4 CONC. (MG/L)	37.8 38.0
97.5 97.5 HEAD (FT)	95.7
Z % H	7 7
·	
>+	
×	

OBS.WELL NO.

NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

~

TIM(N) = 0.31558E+08 TIMV NP = 3131 IMOV TIM(N) = 0.31558E+08 TIMV FPNG/JAI, #4 - CALIBRATION (NEW RUN 1).
TIM(N) = NP = TIM(N) = TIM(N) = EPDNG / JAI, #4 -

0	
S	
1	

1/10/91 10:04 AM

10.500 11.000 TIME (YEARS)	10.500 11.000 TIME (YEARS)	10.500 11.000 TIME (YEARS)	10.500 11.000 TIME (YEARS)	10.500
9.8 10.6 CONC. (MG/L)	15.4 12.8 CONC. (MG/L)	30.8 29.8 CONC. (MG/L)	38.6 35.9 CONC. (MG/L)	46.6
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7 95.7
Z 2 1	Z 2 H	N 2 1	. N	н с
*	×	> -	*	
×	×	×	×	
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	

0.36291E+09

0.37869E+09

1/10/91 10:04 AM

SUMTCH = SUMTCH = 0.15779E+08 0.15779E+08 11 11 II IMOV TIMV IMOV NP = 2970 IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1). 2916 0.31558E+08 NP TIM(N) NP

11.500 12.000 TIME (YEARS)	11.500	TIME (YEARS)
10.5 10.7 	13.7	CONC. (MG/L)
95.9 95.9 HEAD (FT)	დ დ თ თ	HEAD (FT)
Z 2 1	. 40	7 N
¥		≯
×		×
OBS.WELL NO.		OBS WELL NO.

TIME (YEARS)

11.500

29.1 30.5 CONC. (MG/L)

95.5 95.5 HEAD (FT)

Z 2 1

×

OBS.WELL NO.

×

11.500 12.000 TIME (YEARS)	11.500
35.2 30.4 CONC. (MG/L)	46.2
97.5 97.5 HEAD (FT)	95.7
Z 7 1	7 7
>	
×	
OBS.WELL NO.	

11 CERATIONS = 0 (HEADS UNCHANGED)
OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP NUMBER OF ITERATIONS = 0

	SUMTCH = 0.39447E+09	SUMTCH = 0.41025E+09
11	SUMTCH =	SUMTCH =
TIME STEP	Φ.	J &
MPLETE THIS	0.15779E+08	0.15779E+08
TO COL	11 1	1 11
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP	TIM	THOY TIMA (NEW RUN 1).
OF PARTICLE	0.31558E+08	TIM(N) = 0.31558E+08 TIMC EPNG/JAL #4 - CALIBRATION (NEW RUN 1).
NO.	H	#4 ====================================
	TIM(N)	NP TIM(N) EPNG/JAL

 \succ

×

1/10 10:04 AM

12.500 13.000 TIME (YEARS)	12.500 13.000 TIME (YEARS)	12.500 13.000 TIME (YEARS)	12.500
15.2 19.1 CONC. (MG/L)	29.7 28.8 CONC. (MG/L)	30.7 31.1 CONC. (MG/L)	52.4
95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7
Z 25 15	N 2 1	Z 2 H	7 7
×	· >	×	
×	×	×	
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	

2 11 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP SUMTCH = SUMTCH = 2 0.15779E+08 0.15779E+08 II

0.42603E+09

0.44181E+09

PUMPING PERIOD NO.

13.500 14.000 TIME (YEARS)	13.500 14.000 TIME (YEARS)
12.0 12.5 CONC. (MG/L)	18.1 19.8 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)
1 2 N	1 2 N
×	X
×	×
OBS.WELL NO.	OBS.WELL NO.

13.500 14.000 TIME (YEARS) CONC. (MG/L) 27.3 28.2 97.5 97.5 HEAD (FT) 4 0 Z × OBS.WELL NO.

13.500 14.000 TIME (YEARS)

29.5 29.0 CONC. (MG/L)

95.5 95.5 HEAD (FT)

7 N

30

Page

0.000 13.500 14.000

0.7 49.9 46.7

7 7 0

0.0 95.7 95.7

2

11

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

(HEADS UNCHANGED)

NUMBER OF ITERATIONS = 0

0.45759E+09 SUMTCH =

> 1). EPNG/JAL #4 - CALIBRATION (NEW RUN

11 ij

0.15779E+08

0.15779E+08

II

TIMV IMOV TIMV

3077

0.31558E+08

TIM(N) NP

0.31558E+08

TIM(N)

0.47336E+09 H SUMTCH

> × OBS.WELL NO.

7 N P

HEAD (FT)

95.9 95.9

CONC. (MG/L)

TIME (YEARS)

14.500 15.000

14.4

95.8 95.8 HEAD (FT)

4 0 Z

×

OBS.WELL NO.

CONC. (MG/L)

20.2 20.8

TIME (YEARS) 14.500

r Calibrate		30.3 31.8 CONC. (MG/L)
Hydrogeology: Modeling: MOC. J. V. 3.0: EPNGJAL#4.OUT Calibrate		95.5 95.5 HEAD (FT)
3.0		N 2 1
>		
OI		
eling:MoC	7	>-
10d	,	•
logy:N	o	×
odeo		NO.
Hydr	m	OBS.WELL NO.
AM		

14.500 15.000 TIME (YEARS)

14.500
47.1
95.7
2 1

14.500 15.000 TIME (YEARS)

CONC. (MG/L)

26.0 36.1

97.5 97.5 HEAD (FT)

7 2 L

×

OBS.WELL NO.

NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

~

SUMTCH = 0.48914E+09	0	SUMTCH = 0.50492E +	
0.15779E+08	. 5	0.15779E+08	
II	11	II	
TIMV	IMOV	TIMV	CALIBRATION (NEW RUN 1).
0.31558E+08	3131	0.31558E+08	CALIBRATION
11	11	II	ı
TIM (N)	NP	TIM (N)	EPNG/JAL #4

15.500 16.000 TIME (YEARS)	15.500 16.000 TIME (YEARS)	15.500 16.000 TIME (YEARS)	15.500 16.000 TIME (YEARS)	15.500
14.5 15.1 CONC. (MG/L)	21.0 21.8 CONC. (MG/L)	32.5 32.6 CONC. (MG/L)	42.2 41.5 CONC. (MG/L)	43.3 51.0
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7 95.7
Z 2 Z		N 2 1	H 2 Z	1 2 .
>-	×	≻	*	
×	×	×	× .	
OBS, WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	

0.31558E+08 NOTE ll TIM(N)

1/10/91 10:04 AM

0.15779E+08 --- IMOV= TIMV = NPTM.EQ.NPMAX TIMV

SUMTCH =

0.52070E+09

CALL GENPT

NO. = 3069PT.

0.53648E+09 SUMTCH =

0.15779E+08

ij

TIMV

TIM(N) = 0.31558E+08 TIM EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

OBS.WELL NO.

 \succ

95.9 95.9 HEAD (FT) H O Z

CONC. (MG/L)

16.3 16.0

TIME (YEARS) 16.500 17.000

20.1 21.0

CONC. (MG/L)

HEAD (FT) 95.8 95.8

7 N N

×

OBS.WELL NO.

TIME (YEARS) 16.500 17.000

95.5 95.5 HEAD (FT)

- 2 Z

×

OBS.WELL NO.

CONC. (MG/L)

31.7 31.1

16.500 17.000 TIME (YEARS)

16.500 17.000 TIME (YEARS)
38.9 38.2 CONC. (MG/L)
97.5 97.5 HEAD (FT)
4 Z Z
×
×
OBS.WELL NO.

16.500 17.000 51.4 95.7 7

11

2 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

0.15779E+08 0.15779E+08 II

TIM(N) = 0.31558E+08 TIMV NP = 2970 IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

0.55226E+09 0.56804E+09 SUMTCH = SUMTCH =

3.0:EPNGJAL#4.OUT Calibrate
>
H
Hydrogeology:Modeling:MOC
) 10:04 AM
1/10

17.500 18.000 TIME (YEARS)	17.500 18.000 TIME (YEARS)	17.500 18.000 TIME (YEARS)	17.500 18.000 TIME (YEARS)
14.9 16.4 CONC. (MG/L)	21.8 23.8 CONC. (MG/L)	32.3 31.7 CONC. (MG/L)	32.6 32.9 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
N 2 H	1 2 Z	Z 2 1	H & Z
>-	≻₁	>-	**
×	×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

2 H NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

17.500 18.000

50.7

95.7

7

0.58382E+09 0.59959E+09 SUMTCH = SUMTCH = 0.15779E+08 0.15779E+08 11 11 11 TIM(N) = 0.31558E+08 TIMV NP = 2970 IMOV $TIM(N) \stackrel{\Rightarrow}{\Rightarrow} 0.31558E+08$ TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

35 Page

18.500 19.000 TIME (YEARS)	18.500 19.000 TIME (YEARS)	18.500 19.000 TIME (YEARS)	18.500 19.000 TIME (YEARS)
16.2 16.0 CONC.(MG/L)	26.6 26.2 CONC.(MG/L)	31.1 32.0 CONC. (MG/L)	33.4 29.1 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
. Z Z	N 2 1	N 2 1	Z 20 H
¥	>+	≯	, >
×	×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

Ŋ

1/10/91 10:04 AM

 ∞

95.7

18.500

54.7 ~ ~

11 NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

0.31558E+08 3077 II TIM(N)

0.15779E+08 11 11 TIMV IMOV TIMV

0.61537E+09 SUMTCH =

2

TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

0.15779E+08

0.63115E+09 SUMTCH =

> × OBS.WELL NO.

95.9 95.9 Z 2 1

HEAD (FT)

CONC. (MG/L)

15.5

TIME (YEARS) 19.500

92.8

19.500

28.2

1/10 1 10:04 AM

, ~	
٠.	
ਨੌ	
ď	
177	

œ ~	
Page 38	20,000 TIME: (YEARS)
Calibrate	28.8 CONC. (MG/L)
leling:Mod I V. 3.0:EPNGJAL#4.OUT Calibrate	95.8 HFAD (FT)
т М	7 2
>	
I	
leling:MOC	>

×

OBS.WELL NO.

HEAD (FT)

95.5 95.5

7 7 F

 \times

OBS.WELL NO.

HEAD (FT)

97.5

HNZ

×

OBS.WELL NO.

51.0 51.6

95.7 95.7

7

0.64693E+09

SUMTCH =

~

II

OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

NUMBER OF ITERATIONS = 0

0.66271E+09

SUMTCH =

2 0.15779E+08 0.15779E+08

> II II H

TIMV IMOV TIMV

0.31558E+08 CALIBRATION (NEW RUN

EPNG/JAL #4 -

TIM(N) ΝP

0.31558E+08

11 П

TIM (N)

3077

19.500 20.000 TIME (YEARS)

20.500 21.000 TIME (YEARS)	20.500 21.000 TIME (YEARS)	20.500 21.000 TIME (YEARS)	20.500 21.000 TIME (YEARS)	20.500
14.7 14.7 CONC. (MG/L)	29.3 29.8 CONC. (MG/L)	34.0 34.5 CONC. (MG/L)	37.5 43.6 CONC. (MG/L)	48.8
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7 95.7
1 2 N	Z 2 1	1 2 N	1 S Z	1.2
Ж	>	>	¥	

×

OBS.WELL NO.

×

OBS.WELL NO.

×

OBS.WELL NO.

×

Page 40

Hydrogeology: Modeling: MOCMI V. 3.0: EPNGJAL#4.0UT Calibrate

1/10/91 10:04 AM

~ 11 NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP (HEADS UNCHANGED) NUMBER OF ITERATIONS = 0

0.67849E+09 0.69427E+09 SUMTCH = SUMTCH = 0.15779E+08 0.15779E+08 II H II TIMV IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1). 0.31558E+08 3131 ii 11 TIM(N)

TIME (YEARS) 21.500 22.000 CONC. (MG/L) 15.4 16.7 HEAD (FT) 95.9 95.9 7 N F × × OBS.WELL NO.

TIME (YEARS) 21.500 22.000 CONC. (MG/L) 30.9 HEAD (FT) 95.8 95.8 H O Z × OBS, WELL NO.

21.500 22.000 35.0 34.3 95.5 95.5 7

page

 $\boldsymbol{\times}$ OBS.WELL NO.

1/10/91 10:04 AM

z

HEAD (FT)

TIME (YEARS) CONC. (MG/L)

42.6

21.500 22.000

CONC. (MG/L)

95.7 7

55.2

OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP NUMBER OF ITERATIONS = 0

0

0.31558E+08 11 TIM(N) NP

11 11

0.15779E+08

11

TIMV

2 0.15779E+08

0.72582E+09 SUMTCH =

0.71005E+09

SUMTCH =

NP = 2970 IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

×

OBS.WELL NO.

7 2 Z

97.5 97.5 HEAD (FT)

TIME (YEARS)

21.500 22.000

22.500 23.000 TIME (YEARS)	22.500 23.000 TIME (YEARS)	22.500 23.000 TIME (YEARS)	22.500 23.000 TIME (YEARS)
16.5 15.6 CONC. (MG/L)	31.4 32.0 . CONC. (MG/L)	33.8 34.7 CONC. (MG/L)	39.4 33.4 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
N 2 1	Z 2 1	7	ZVI
X	X	*	≯
×	×	×	×
NO.	ON	NO.	NO.
OBS.WELL NO.	OBS, WELL NO.	OBS.WELL NO.	OBS.WELL NO.

~ " NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED) NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

TIM(N) = 0.31558E+08NP = 2970

IIMV = 0.15779E+08 IMOV = 2

SUMTCH = 0.74160E+09

22.500 23.000

55.0 55.1

95.7 95.7

7

0.15779E+08 11 TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

1/10 10:04 AM

0.75738E+09 SUMTCH =

23.500 24.000 TIME (YEARS)	23.500 24.000 TIME (YEARS)	23.500 24.000 TIME (YEARS)
17.0 16.9 CONC. (MG/L)	34.7 35.9 CONC. (MG/L)	34.3 33.9 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)
. Z Z	1 2 N	1 2 N
¥	>-	>-
×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

23.500

33.8

97.5

t 0
brat
Calibra
.our
3.0:EPNGJAL#4.OUT Cal
.0:EPN
I V. 3.
H
eling:Mod
eology:Mod
Hydroge

Page 44

 \succ × OBS.WELL NO.

0 Z

HEAD (FT) 97.5

34.3

24.000 TIME (YEARS)

CONC. (MG/L)

23.500 24.000

59.5

95.7

42

0.77316E+09 SUMTCH =

2

11

)F ITERATIONS = 0 (HEADS UNCHANGED)
NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP

NUMBER OF ITERATIONS = 0

0.78894E+09

TIM(N) = 0.31558E+08 TIMV

NP = 3077 IMOV

TIM(N) = 0.31558E+08 TIMV

EPNG/JAL #4 - CALIBRATION (NEW RUN 1).

0.15779E+08

11

0.31558E+08

TIM(N) NP

SUMTCH =

× OBS.WELL NO.

ZVH

HEAD (FT) 95.9 95.9

CONC. (MG/L) 16.8 16.3

24.500 25.000 TIME (YEARS)

×

24.500 25.000 TIME (YEARS)	24.500 25.000 TIME (YEARS)	24.500 25.000 TIME (YEARS)
35.9 38.0 CONC. (MG/L)	35.0 34.7 CONC. (MG/L)	29.7 30.8 CONC. (MG/L)
95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
1 2 N	. L 2 Z	. 1 N
>-	×	>-
×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

2 OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP NUMBER OF ITERATIONS = 0

24.500 25.000

57.8 55.6

95.7

7

0.82050E+09

0.80472E+09

25.500 26.000 TIME (YEARS)	25.500 26.000 TIME (YEARS)	25.500 26.000 TIME (YEARS)	25.500 26.000 TIME (YEARS)	25.500 26.000
16.9 15.4 CONC. (MG/L)	38.6 38.8 CONC. (MG/L)	35.5 36.6 CONC. (MG/L)	28.4 38.0 CONC. (MG/L)	56.5
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)	95.7 95.7
1 2 N	H 0 Z	N 2 L	Z V I	1 2 3

×

OBS.WELL NO.

×

OBS.WELL NO.

×

OBS.WELL NO.

 \succ

×

1/10 10:04 AM

2 li NUMBER OF ITERATIONS = 0 (HEADS UNCHANGED)

NO. OF PARTICLE MOVES REQUIRED TO COMPLETE THIS TIME STEP 0.83628E+09 0.85206E+09 SUMTCH = SUMTCH = 0.15779E+08 0.15779E+08 8 11 11 IMOV TIMV TIMV 0.31558E+08 H TIM(N) NP

TIME (YEARS) 26.500 27.000 CONC. (MG/L) 95.9 95.9 HEAD (FT) - ~ z × × OBS.WELL NO. 26.500 27.000 TIME (YEARS) CONC. (MG/L) 39.6 40.5 HEAD (FT) 95.8 95.8 4 0 Z × OBS.WELL NO.

Calibrate
g:MOCADI V. 3.0:EPNGJAL#4.OUT C
. V. 3
Hydrogeology: Modeling: MOCADI

_	\sim
5	3"
	W
	\mathcal{D}
	σ
_	5.

0.000 26.500 27.000 TIME (YEARS)	26.500 27.000 TIME (YEARS)
0.7 37.0 37.6 CONC. (MG/L)	44.1 43.1 CONC. (MG/L)
0.0 95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
Z 2 H 0	L 2 Z
×	×
×	×
OBS.WELL NO.	OBS.WELL NO.

26.500 27.000

54.2

95.7 95.7

7

PT. 1
= 0.15779E+08 X IMOV= 2
TIMV NPTM.EQ.NPMAX
= 0.31558E+08 NOTE ***
TIM(N)

$$TIM(N) = 0.31558E+08$$
 $TIMV = 0.15779E+08$ $EPNG/JAL #4 - CALIBRATION (NEW RUN 1).$

$$SUMTCH = 0.88361E+09$$

0.86783E+09 CALL GENPT

SUMTCH = NO.=3069

	٠4
	Σ
	AM
	マ
	: 04
	-
	10
	•
	_
	10/91
	K.
_	\sim
	\sim
	7
	1

	Calibrate
	OUT
	I V. 3.0:EPNGJAL#4.0UT Calibrate
	>
<i>(</i> ,)	Hydrogeology: Modeling: MOCA V.

49	
Page	,
)

TIME (YEARS)

CONC. (MG/L)

HEAD (FT)

z

×

OBS.WELL NO.

27.500 28.000 JIME (YEARS)	27.500 28.000 5) TIME (YEARS)	27.500 28.000 5) TIME (YEARS)	27.500 28.000 L) TIME (YEARS)
17.5 17.4 CONC. (MG/L)	42.0 42.1 CONC. (MG/I	37.1 36.7 CONC. (MG/1	40.6 39.9 CONC. (MG/L
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
N 2 1	1 2 Z	. 10 Z	N 2
¥	>	>+	×
×	×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

27.500 28.000

60.0 59.4

95.7

7

0.89939E+09

0.91517E+09

1/10/91 10:04 AM

SUMTCH = SUMTCH = 1 0.15779E+08 2 0.15779E+08 11 11 li B IMOV TIMV IMOV TIM(N) = 0.31558E+08 TIMV EPNG/JAL #4 - CALIBRATION (NEW RUN 1). 2970 0.31558E+08 2970 11 11 TIM(N) NP

28.500 29.000 TIME (YEARS)	28.500 29.000 TIME (YEARS)
16.4 17.6 CONC. (MG/L)	42.3 43.7 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)
1 0 Z	N 2 1
·	
> 1	×
×	· ×
OBS.WELL NO.	OBS.WELL NO.

28.500 29.000 TIME (YEARS)

CONC. (MG/L)

37.5

95.5 95.5 HEAD (FT)

7 N P

×

5.1	
ade	
ية.	

28.500 29.000 TIME (YEARS)	28.500		0000000 00000001 2759260 94.0000001 2759260 94.2766869 2659814 94.2673735 5644150 94.2673735 5414170 94.5667613 5414170 94.5667613 8549475 94.8613091 81582497 95.0968395 94.8613091 81582497 95.0968395 96.1755575 96.23345 96.00000002 6944947 95.6964114 0753959 96.1407814 0118887 96.0141621 3436171 96.3944246 3463659 96.3487196 6963263 96.6990100 0592025 97.0668236 4728460 97.5094949
33.7 34.2) CONC. (MG/L)	59.4		0.0000000 94.00000001 94.2732907 94.2732907 94.5649949 94.5410143 94.5410143 94.5410143 94.8415479 94.8415479 95.0926925 95.0926925 95.0926925 95.0926925 95.3870432 95.0926925 95.0926925 95.0926925 95.0926925 96.0081477 96.0081427 96.0081427 96.0081427 96.0081427 96.0081427 96.0081427 97.0587899 97.0587899
97.5 97.5 HEAD (FT	95.7 95.7		0.0000000 94.00000001 94.2702868 94.2702868 94.5510656 94.5510656 94.8142546 95.1070629 95.3915622 95.8912021 96.0000006 96.0003899 96.0003899 96.0003899
1 2 N	2 1		0.00000001 94.0000001 94.2676980 94.2658412 94.5454748 94.5423771 95.0919432 95.0919432 95.3717224 95.3717224 95.3717224 95.3717224 95.3717224 95.3717224 95.3717224 95.379709 96.0083090 96.1785055 96.5704691 96.5704691
×		UNCHANGED)	0.0000000 94.0000001 94.2658097 94.2669900 94.5417033 94.8127683 94.8127683 95.0844669 95.0844669 95.3950948 95.3950948 95.6469063 95.6469063 95.6469063 96.0130029 96.2442439 96.2442439 96.2442439
.WELL NO.		0 (HEADS UT) 30 0.94673E+09 0.30000E+02	0.0000000 94.0000001 94.2657421 94.2687377 94.5399713 94.8110968 94.8110968 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403 95.0833403
OBS.		TIONS = ROW EPS = DS) = (0.0000000 94.0000001 94.2666284 94.2710805 94.5385216 94.5534322 94.8102880 95.0837391 95.1222104 95.3663703 95.426561 95.7310084 95.3663703 95.426561 96.0405959 96.2876065 96.2876065 96.2876065
		NUMBER OF ITERA HEAD DISTRIBUTION NUMBER OF TIME ST TIME (SECON) TIME (DAYS)	0.0000000 94.0000001 0.00000000 94.2738393 0.0000000 94.5596764 0.0000000 95.1415827 0.0000000 95.7695427 0.0000000 95.7695427 0.0000000 96.3814757 0.0000000 96.3814757 0.0000000

52
Page

20599 00006 19492 10778 10778 91849 60438 00000 00000	
99999999999999999999999999999999999999	00000
8893 1711 1711 1423 1394 1999 1000	1 1 1 0 0 4 4 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
7. 4499 7. 9028 7. 8476 7. 8476 7. 2935 7. 2935 7. 2935 7. 2939 7. 5534 7. 99999 7. 0000	0 1 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
24 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	
444734 852039 843525 264223 254065 1116877 1116877 1116877 000000 000000	00000000000000000000000000000000000000
$\begin{array}{cccccccccccccccccccccccccccccccccccc$. @@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@@
0130 6303 11737 11737 11737 13309 13309 13734 13734 10000 10000	111
7.7.4 7.8.7.8 8.2.88.2.840 99.5.440 99.5.50 99.5.50 99.5.50 99.5.50 99.5.50	44000000000000000000000000000000000000
wwwwr1r0wwww00	4457776666677788888888888888888888888888
40129 332836 332865 40129 440048 69999 699999 600000	80000000000000000000000000000000000000
00000000000000000000000000000000000000	00000000000000000000000000000000000000
00000000000000000000000000000000000000	994 998 998 998 998 998 100 100 100 100 100 100 100 10
.4410 .8062 .8400 .2274 .2505 .1055 .1138 .9999 .0000	00000000000000000000000000000000000000
	00477 004000000000000000000000000000000
88873 189853 14705 15796 17178	111 60000000000000000000000000000000000
7.445 7.808 7.844 8.228 8.228 8.228 9.105 9.105 9.999 0.000 0.000 0.000 0.000 0.000 0.000 0.000	44000000000000000000000000000000000000
000 000 000 000 000 000 000 000 000 00	448880000 1 1 0 0 0 0 0 0 0
55840 10242 30557 30557 633527 633527 633527 05162 18606 99999 999999 00000 000000 1 ROW	8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8 8
97.4 997.8 997.8 998.2 998.6 999.1 999.9 999.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0	00000000000000000000000000000000000000
1783 1000 1899 1000 1000 1000 1000 1000 1000	00000000000000000000000000000000000000
A 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4	00 00 00 00 00 00 00 00 00 00
97. 97. 98. 98. 99. 99. HEAD	DRAWD

0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	
-95	-95	9.6-	96-	96-	-97	-97	-97	-98	86-	- 99	-99	-100	0	0	
-95		96-	96-	96-	-97	-97	-97	-98	-98	-99	66-		0	0	
-95	-95	96-	96-	96-	16-	-97	-97	-98	-98	-99	-99	-100	0	0	
-95	-95					-97		- 98	- 98	-99	-99	-100	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	-98	-99	- 99	-100	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	-98	-99		-100	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	-98	-99		-100	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	-98	66-	66-	-100	0	0	•
-95	-95	9	9	9	9	-97	9	-98	6	-99	9	0	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	-98	-99	66-	-100	0	0	•
-95	96-	0	96-	96-	-97	-97	-98	0	-98		66-	-100	0	0	
-95	-95	96-	96-	96-	-97	-97	-97	-98	- 98	-99	-99	-100	0	0	_
	-95		0	96-	-97	-97	-97	-98	-98	66-	66-	-100	0	0	FT**3
		96-		0	-97	-97	-97	86-	-98				0	0	NI)
-95		96-					-97	86-	-98	661	-99	-100	0	0	NCE
-95		96-			σ	9		86-					0	0	BALAN
-95	-95	6	σ	96-	-97	-97	-97	86-	- 98	-99	66-	-100	0	0	MASS
-95	-95	96-	96-	96-	-97	-97	-97	86-	86-	661	0	-100	0	0	TIVE
0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	CUMULATIVE
													•		-

-0.73257E+08 0.00000E+00 0.72327E+08 0.00000E+00 -0.11153E+09 -0.39203E+08 0.34054E+08 26.489 PUMPAGE AND E-T WITHDRAWAL WATER RELEASE FROM STORAGE LATIVE NET LEAKAGE MASS BALANCE RESIDUAL NET PUMPAGE (AS PERCENT) LEAKAGE OUT OF AQUIFER LEAKAGE INTO AQUIFER CUMULATIVE CUMULATIVE ERROR

STEP REQUIRED TO COMPLETE THIS TIME -0.77379E-01 0.00000E+00 -0.11781E+00 -0.41409E-01 -0.77379E-01 NO. OF PARTICLE MOVES II PUMPAGE AND E-T WITHDRAWAL (TPUM) RECHARGE AND INJECTION LEAKAGE OUT OF AQUIFER (ONET) NET WITHDRAWAL NET LEAKAGE

SUMTCH = 0.15779E+08 0.15779E+08 II П П IMOV TIMV $_{
m IIMV}$ 2970 0.31558E+08 0.31558E+08 11 Ħ TIM(N) TIM(N)

CONCENTRATION

JMTCH = 0.93095E + 09

11

SUMTCH = 0.94673E+09

0.94673E+09 0.10958E+05 0.30000E+02 0.30000E+02

11

11

TIME (YEARS) CHEM. TIME (YEARS)

CHEM. TIME (DAYS)

II

0.31558E+08 0.94673E+09

H П

TIME (SECONDS) CHEM. TIME (SECONDS)

DELTA T

	~	-	Н	Н	Н	Н	٦	Н	1	Н	Н	Н	٦	Н	1	-1	Н	Н	0
	Н	, - 1	Н	, ,	٦	Н	۲	,	H	7	T	-	Н	~	_	~	۲	Н	0
	-	Н	Н	٦	-	Н	М	Н	Н	-	,	Н	Н	٦	~	Н	-	Н	0
	1	Н	٦	7	٦	Н	۲	Н	.←	-	-	7		-	7	Н	-	Н	0
	H	Н	~	H	Н	-1	Н	Н	Н	٦	Н	Н	- -1	٦	~	Н	Н	~	0
	H	-	٦	٦	Н	Н	Н	7	7	1	٦	7	Н	П	H	7	7	П	0
	7	7	Н	Н	1	_	П	Н	7	Н	7	Н	П	H	П	1	П	7	0
	Н	2	7	7	7	ო	m	m	m	က	7	٦	Н	ı	Н	٦	7	н	0
	е	4	2	7	ω	თ	10	11	11	10	ω	2	က	₩	Н	 1	Н	ᆏ	0
	ω	10	14	18	22	27	28	32	35	38	37	29	14	4	7	-1	٦	-	0
	12	17	22	27	33	38	41	57	69	81	86	Н	124	23	ß	7	Н	7	0
	11	16	22	28	33	39	44	20	46	44	42	30	14	4	7	П	-1	Н	0
	12	17	56	33	40	20	61	70	34	17	10	9	က	ч	, H	٦	Н	٦	0
2	6	15	23	33	41	48	57	69	87	20	9	7	-	-	7	-	٦	,-1	0
	4	7	10	14	16	18	18		13	9	7	7	7	٦	٦	Н	٦	-1	0
TED =	2	7	က	4	S	Ŋ	'n	4	ന	7	Н	Н	٦	Н	Н	Н	Н	Н	0
MOVES COMPLETED	Н	Н	Н	7	7	7	-	-	7	П	-	٦	Н	-	~	-1		Н	0
VES (Н	٦	٦	Н	7	٦	7	H	٦,	7	Н	Н	H	Н	٦	7	Н	Н	0
NO. MC	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
~																			

00000000000000000

COMPARE RESIDUAL WITH NET FLUX AND MASS ACCUMULATION: 0.00000E+00 0.00000E+00 0.00000E+00 0.74035E+10 0.11794E+09 0.14225E+10 0.13046E+10 -0.61416E+10 0.13125E+10 0.13046E+10 MASS ADSORBED ON SOLIDS= CHANGE TOTL.MASS STORED= INITIAL MASS DISSOLVED PRESENT MASS DISSOLVED INITIAL MASS ADSORBED CHANGE MASS DISSOLVED OUTFLOW OUT BOUNDARIES LOST BY DECAY MASS PUMPED OUT PUMPED IN INFLOW MINUS MASS MASS

0.10618E+00 EPNG/JAL #4 - CALIBRATION (NEW RUN 1). (AS PERCENT) ERROR

0.79151E+07

II

MASS BALANCE RESIDUAL

1/10 10:04 AM

29.500 30.000 TIME (YEARS)	29.500 30.000 TIME (YEARS)	29.500 30.000 TIME (YEARS)	29.500 30.000 TIME (YEARS)
17.6 17.5 CONC. (MG/L)	43.5 44.1 CONC, (MG/L)	37.0 38.2 CONC. (MG/L)	34.7 30.1 CONC. (MG/L)
95.9 95.9 HEAD (FT)	95.8 95.8 HEAD (FT)	95.5 95.5 HEAD (FT)	97.5 97.5 HEAD (FT)
Z 2 1	H 22 Z	N 2 1	N 2 1
>-	×	×	≻
× .	×	×	×
OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.	OBS.WELL NO.

29.500	30.000
	61.1
95.7	95.7
-	2