GW - 140

WORK PLANS

2002

ADDITIONAL SUBSURFACE INVESTIGATION REPORT AND MODIFIED STAGE II ABATEMENT PLAN

140 |R-337

SPS-11 SITE
Lea County, New Mexico
NW ¼ of the SE ¼ of Section 18, Township 18 South, Range 36 East
Latitude North 32° 44′ 50.3″
Longitude West 103° 23′ 36.5″

Prepared For: **EOTT Energy Corp.** 5805 East Highway 80 Midland, Texas 79701

ETGI Project # EO 2022

Prepared By:
Environmental Technology Group, Inc.
2540 W. Marland
Hobbs, New Mexico 88240

October 2002

New Mexico Office Manager Senior Project Manager V.P. Operations

Environmental Technology Group, Inc.

Table of Contents

1.0	INTROD	UCTION AND SITE BACKGROUND	1
2.0	SUMMA	RY OF FIELD ACTIVITIES	2
3.0	3.1 Si 3.2 No 3.3 Di	SY/HYDROGEOLOGY te Geology/Hydrogeology ew Mexico Oil Conservation Division Soil Classification istribution of Hydrocarbons in the Unsaturated Zone istribution of Hydrocarbons in the Saturated Zone	2 2 4 4 4
4.0	4.1 Sc	MENT OPTIONS oil Abatement Options roundwater Abatement Options	5 5 5
5.0	SUMMA	RY AND CONCLUSIONS	6
6.0	MONITO	PRING PROGRAM	8
7.0	7.1 So 7.2 G 7.3 D	PROCEDURES oil Sampling roundwater Sampling econtamination of Equipment aboratory Protocol	8 8 9 10 10
8.0	LIMITA	TIONS	10
9.0	REFERE	NCES	11
10.0	DISTRIB	SUTION	12
		Tables	
TABI TABI	LE 2:	Groundwater Elevation Data Soil Sampling Results Groundwater Sampling Results	
		Figures	
FIGU FIGU FIGU	TRE 1: TRE 2: TRE 3: TRE 4: TRE 5:	Site Location Map Site Map Inferred Groundwater Gradient Map Dissolved Phase Benzene Isopleth Map Proposed Soil Boring Location Map	

Appendices

Soil Boring Logs Laboratory Reports Water Well Survey (1-mile radius) APPENDIX A: APPENDIX B:

APPENDIX C:

1.0 INTRODUCTION AND SITE BACKGROUND

The site is located approximately 15 miles west of the town of Hobbs, New Mexico in the NW ¼ of the SE ¼ of Section 18, Township 18 South, Range 36 East. For reference, a site location and site map, are provided as Figures 1 and 2, respectively. The contents of this report are intended to fulfill requirements in accordance with 19 NMAC 15.A19.E (3) and 19.E (4) of the New Mexico Administrative Code (NMAC).

Initial site investigation actions were performed for the EOTT Energy Corporation (EOTT) by other environmental consultants. A total of 25 soil borings/groundwater monitor wells were installed (MW-1 through MW-25) prior to October 1999. Environmental Technology Group, Inc. (ETGI), representing EOTT, assumed control of remedial action planning and oversight responsibility with groundwater gauging and sampling duties in August of 1999. Review of the analytical results following quarterly groundwater monitoring events commencing on this date indicate that the dissolved phase contaminant plume present in the groundwater is not adequately delineated as required by the New Mexico Oil Conservation Division (NMOCD). ETGI is submitting this Modified Stage II Abatement Plan to document remedial actions completed at the site since August 1999 and to propose additional response actions designed to fulfill requirements necessary to complete plume delineation and achieve site closure as set in a verbal agreement between Mr. Bill Olsen and Mr. Randy Bayliss of the NMOCD and representatives for EOTT. In addition, this report complies with regulations as established by the State of New Mexico under NMAC Title 19 standards. The regulatory basis for this Modified Stage II Abatement Plan is 19 NMAC 15.A19 (3) and the NMOCD guidance document Guidelines for Remediation of Leaks, Spills, and Releases, (August 1993).

A review of the data existing for this site indicated the following:

- The soil column consists primarily of loose sand with silty to clay rich layers of limited aerial extent and caliche located irregularly through out the section;
- Hydrocarbon impacted soil is located at or just above the capillary fringe zone in the vadose zone;
- Groundwater at the site occurs at a depth of approximately 56 to 60 feet below grade surface (bgs) as measured from the top of existing well casings;
- The groundwater gradient at the site is approximately 0.003 ft/ft to the southeast;
- The concentration of benzene present in the downgradient well was above the NMOCD regulatory standard indicating that the impacted site groundwater has not been adequately delineated;
- There is no evidence of phase separated hydrocarbons (PSH) present in the soil or groundwater at the site.

2.0 SUMMARY OF RECENT FIELD ACTIVITIES

A total of six monitor wells were installed between May 2000 and December 2001 to further delineate the downgradient extent of impacted groundwater at the site. concentrations detected in samples collected from downgradient monitor wells MW-26 and MW-28 exceeded NMOCD regulatory standards which necessitated the installation of monitor wells MW-29 through MW-31 located in relative downgradient positions, (Figure 3). Review of the laboratory results generated from the initial sampling event conducted on these wells indicated that the dissolved phase benzene plume had reached this area and that plume delineation activities remain incomplete, (Figure 4). Discussion of plans to install additional soil borings and groundwater monitor wells to complete site soil characterization and groundwater delineation is included in Section 5.0 of this Report. Results of the soil and groundwater sampling associated with completion of the plume delineation activity will be submitted under separate cover for review to the appropriate NMOCD offices upon Boring logs reflecting site lithology data and well completion details are completion. Cumulative groundwater elevation, soil sampling data and included as Appendix A. groundwater sampling data, as recorded since August 1999, are provided in Tables 1, 2 and 3, respectively. A groundwater gradient map reflecting data gathered during the most recent monitoring event is attached as Figure 3. Copies of the laboratory reports generated from well installation and sampling activities described herein are included as Appendix B. All soil samples were submitted under chain-of-custody documentation to Environmental Lab of Texas of Odessa, Texas and analyzed for total petroleum hydrocarbons (TPH) utilizing EPA SW 846-8015M GRO/DRO. Selected soil samples were analyzed for Benzene, Toluene, Ethyl benzene and Xylenes (BTEX) utilizing EPA SW 846-8020, and 5030. Groundwater samples were submitted under chain-of-custody documentation and analyzed for required analyts by the methods listed below:

- BTEX constituents using EPA Method SW 846-8021B or BTEX constituents by EPA Method SW846-8260;
- Total Dissolved Solids (TDS) using EPA Method SW 846-160.1;
- Water Quality Metals using EPA Method SW 846-6010, 200.7;
- Chlorides using EPA Method SW 846-9253, and;
- Cations and Anions using EPA Methods 375.4, 325.3 and 310.

3.0 GEOLOGY/HYDROGEOLOGY

3.1 Site Geology/Hydrogeology

A comprehensive site description and analysis of site geologic and hydrologic conditions is not available at this time due to the lack of soil boring / monitor well installation details associated with site characterization work performed by other environmental consultants prior to August 1999. Refer to Section 5.0, Summary and Conclusions, of this report for the proposed drilling program designed to complete site subsurface soil characterization action. Analysis of soil boring logs and core sample laboratory testing results generated from the proposed additional drilling will provide a representative presentation of subsurface properties. At this time, a description of the site geologic / hydrologic conditions will be

limited to specific data gathered during dissolved phase plume delineation actions conducted in the southeastern area of the site and a review of available published data covering this area.

The surface unit consists of a tan to brown, very fine-grained, well sorted sand with calcareous nodules from 5 to 20 feet thick. It is underlain by a discontinuous layer of light gray indurated caliche varying in thickness from 15 to 20 feet thick. A reddish brown, very fine grained discontinuous sand from 20 to 30 feet thick underlies this unit. Groundwater was encountered in this unit at depths varying from 59 feet bgs to 62 feet bgs. In the site vicinity, the surface is composed of unconsolidated wind blown sands and finer materials associated with the Tertiary Ogallala Formation, which serves as a major aquifer for southeastern New Mexico and several High Plains states. Unconfined groundwater is typically present in these sands at varying depths and generally flows from the north to the south. This aquifer is typically characterized by relatively high hydraulic conductivity and transmissivity.

The Ogallala unconformably overlies the Triassic Dockum Group, locally referred to as the "red beds". While sand lenses are present within the Dockum Group, it is typically classified as an aquitard characterized by red silt and micaceous clay in which detectable groundwater is often absent or limited in extent. Where groundwater is present, the aquitard is usually characterized by relatively low hydraulic conductivity and transmissivity.

The site is located in the Southern High Plains physiographic feature as classified in the Lea County Soil Survey by the U.S. Department of Agriculture Soil Conservation Service, January 1974. The average surface elevation in the area ranges between 3,600 to 4,200 feet above sea level with the average surface topography sloping to the south and southeast at approximately 10 feet per mile. The groundwater gradient in the region appears to reflect the topography with a similar slope to the south and southeast with some local variations. The site is located on Kimbrough-Lea complex type soils, which consist of nearly level and gently sloping, gravelly and loamy soil underlain by shallow indurated caliche. This complex varies from approximately 50 percent Kimbrough gravelly loam, 25 percent Lea loam and 25 percent inclusions of Stegall, Arvana, Slaughter and Sharvana soils. The Kimbrough soil is gently sloping and is located on the tops and sides of low ridges while the Lea soil is nearly level and found in swales between the ridges. This coil complex has a rapid water intake and wind erosion is a severe hazard in the region.

Data collected by the United States Weather Bureau indicate that the average annual precipitation in the site vicinity is approximately 12 to 15 inches. This amount occurs primarily as storm events during the period between June and October. Infiltration and evaporation rates are generally high, resulting in limited surface flow from these events. The primary utilization of these lands consists of range, wildlife habitat, and recreational areas. State records, maintained by the New Mexico State Engineer's Office, indicate that the depth to groundwater in the area varies from approximately 25 to 62 feet bgs (Appendix D). The only surface-water body identified in the area is characterized by the U.S. Department of Agriculture as an intermittent lake located approximately 500 feet northwest of the site.

3.2 New Mexico Oil Conservation Division (NMOCD) Soil Classification

Impacted soil at depth is characterized in the NMOCD guidelines as Unsaturated Contaminated Soils. Review of the field data and available state records indicate that the interval between the base of soil contamination and the upper limit of the water table is less than 50 feet, therefore, 20 points would be assigned to the site as a result of this criterion.

The water well database, maintained by the New Mexico State Engineer's Office, was accessed in order to determine the location and type of nearby water wells in the area (Appendix C). The data indicate that there is one water well located within 1,000 feet of the site, therefore, 20 points would be assigned to the site as a result of this criterion.

Figure 1 indicates that there is intermittent surface water within 500 feet of the site. Based on the NMOCD soil classification system 10 points would be assigned to the site as a result of this criterion. The NMOCD guidelines indicate that the site would have a Ranking Score of >19. The action levels for a site with a Ranking Score of >19 points are as follows:

- Benzene 10 ppm
- BTEX 50 ppm
- TPH 100 ppm

3.3 Distribution of Hydrocarbons in the Unsaturated Zone

Soil encountered at depth during the installation of monitor wells MW-26 and MW-28 is considered Unsaturated Contaminated Soil as characterized by NMOCD guidelines due to elevated TPH constituent concentrations. None of the soil samples submitted for analysis from monitor wells MW-26, MW-27 or MW-28 exceed regulatory standards for BTEX constituents. Soil samples collected from monitor well MW-26 contained TPH concentrations above NMOCD regulatory standards as follows: 679 mg/Kg at 40 feet bgs, 1832 mg/Kg at 45 feet bgs, 1570 mg/Kg at 50 feet bgs and 515 mg/Kg at 55 feet bgs. Monitor well MW-28 soil samples contained TPH concentrations exceeding regulatory standards as follows: 743 mg/Kg at 45 feet bgs, 1336 mg/Kg at 50 feet bgs and 1386 mg/Kg at 55 feet bgs. All other soil samples collected from monitor wells MW-27, MW-29, MW-30 and MW-31 were below regulatory levels for BTEX and TPH constituents (Table 2).

The distribution of hydrocarbons in the unsaturated zone has been estimated by utilizing the following techniques:

- Visual observations of subsurface soil samples, and;
- Review of laboratory analyses of soil samples.

3.4 Distribution of Hydrocarbons in the Saturated Zone

Nineteen of the monitor wells located on-site are impacted with dissolved phase benzene or total BTEX constituents above NMOCD regulatory standards. There are no known phase separated hydrocarbons associated with this site. Dissolved phase benzene concentrations exceeding NMOCD regulatory standards recorded from laboratory analysis of groundwater

samples collected during calendar year 2001 varied from a minimum of 0.011 mg/L in MW-2 to a maximum of 7.140 mg/L in MW-14. Review of the cumulative analytical results from groundwater sampling events indicate that benzene and total BTEX concentrations fluctuate at the site. Groundwater in downgradient monitor well MW-29 is impacted with a dissolved phase benzene concentration of 2.340 mg/L indicating that downgradient plume delineation activities are incomplete.

Results of laboratory analyses of regulated metal constituents in the groundwater were below the New Mexico Water Quality Control Commission regulatory standards for all tested analytes.

4.0 ABATEMENT OPTIONS

4.1 Soil Abatement Options

An accurate estimate of the volume of impacted soil present at the site is not available utilizing existing data. Operational issues associated with the remedial technology are described in order to rate the viability of the technology considered.

Abatement of impacted soil at the site is proposed using the following technology:

• Human-Health Based Risk Assessment.

As per the verbal agreement between the NMOCD and representatives of EOTT during a site visit in 2001, the groundwater contaminant plume will be fully defined, additional source area information collected, and a risk assessment completed and submitted to the NMOCD. The groundwater plume will be monitored on a quarterly basis for the near term, following NMOCD approval, and pending the results of the risk based analysis of the site, monitoring frequency may be reduced.

The technology selected to meet NMOCD regulatory cleanup standards is that of a Human-Health Based Risk Assessment technology. A site-specific approach will be employed to assess the probability of likely human exposure pathways with evaluations of the individual constituents of BTEX and TPH concentrations present in the soil. Site Specific Target Levels (SSTL) will be determined using risk assessment technology, and the existing site conditions at that time compared to the SSTL's to evaluate the success or efficiency of the chosen remedial methodology.

4.2 Groundwater Abatement Options

As per the verbal agreement between the NMOCD and representatives of EOTT during a site visit in 2001, the groundwater pump-and-treat system will be removed and extended monitoring instituted at the site. The groundwater contaminant plume will be fully defined and a risk assessment completed and submitted to the NMOCD. The groundwater plume will be monitored on a quarterly basis for the near term, following NMOCD approval, and pending the results of the risk-based analysis of the site, monitoring frequency may be adjusted.

Abatement of impacted groundwater at the site is technically feasible using the following technologies:

- Human-Health Based Risk Assessment
- Natural Attenuation
- Deed Recordation of Impacted Area Against Groundwater Use

The remedial technology selected to meet NMOCD regulatory cleanup standards at this site is utilization of a Human-Health Based Risk Assessment technology. A site-specific approach will be employed to assess the probability of likely human exposure pathways with evaluations of the individual constituents of TPH concentrations present in the soil and BTEX constituents present in the groundwater. Analytical fate-and-transport modeling will provide a means of estimating exposure concentrations and developing risk-based soil and groundwater remediation standards. Under ASTME E-1739 "Standard Guide for Risk-Based Corrective Action Applied at Petroleum Release Sites," modeling is recommended as a conservative first step under Tiers 1 and 2 of the site evaluation process, prior to use of more complex numerical modeling methods under Tier 3.

Natural attenuation will be monitored and used to estimate the degradation rates of the dissolved phase product plume. Dissolved oxygen, pH, temperature, sulfates, carbon dioxide and nitrate will be measured in all monitor wells sampled during each groundwater sampling event to quantify the presence and rate of biodegradation of the dissolved phase contaminant plume.

In order to prevent subsequent unintended or accidental human exposure to petroleum hydrocarbon constituents remaining on-site following risk based closure (if granted), the specific site area will be deed restricted preventing future consideration of development or improvements in the county clerk office, Lovington, Lea County, New Mexico.

5.0 SUMMARY AND CONCLUSIONS

The site has an NMOCD Ranking Score of >19 points. The soil action levels for a site with this score are as follows:

- Benzene 10 ppm
- BTEX 50 ppm
- TPH 100 ppm

A total of six groundwater monitor wells, MW-26 through MW-31, were installed within the time frame of events described in this report. Soil classified as Unsaturated Contaminated Soil by NMOCD Guidelines (August 1993) was discovered at depth in monitor wells MW-26 and MW-28.

Soil located at depths varying between 40 and 55 feet bgs in the area of monitor wells MW-26 and MW-28 appeared to be Unsaturated Contaminated Soil as characterized by NMOCD

guidelines (August 1993). BTEX concentrations recorded in all of the soil samples analyzed were below applicable regulatory standards. Analysis of the soil samples collected from monitor well MW-26 at the above referenced depths contained TPH concentrations varying from 36 mg/Kg to 1832 mg/Kg. Laboratory results from samples collected at monitor well MW-28 at the above referenced depths registered TPH concentrations ranging from 93 mg/Kg to 1386 mg/Kg. None of the soil samples collected from monitor wells MW-27, MW-29, MW-30 and MW-31 registered BTEX or TPH concentrations above regulatory standards. Site excavation technologies are not feasible at this site due to the estimated 500,000 cubic yards of overburden material that would have to be excavated to access the impacted soil.

During the first quarterly monitoring event conducted in calendar year 2002, the dissolved phase benzene concentrations in groundwater samples collected from monitor wells MW-26, MW-27, MW-28, MW-29, MW-30 and MW-31 were 1.690 mg/L, 0.004 mg/L, 2.130 mg/L, 2.340 mg/L, <0.001 mg/L and 0.002 mg/L, respectively. These results indicate that the downgradient extent of the plume has not been delineated. The dissolved phase benzene concentration in select monitor wells on-site has historically registered concentrations above the NMOCD regulatory standard. Phase separated hydrocarbons have never been detected in any on-site groundwater monitor wells. Results of groundwater sampling for New Mexico Water Quality Control Commission metals were below regulatory levels. Refer to Table 2, Groundwater Chemistry, for concentrations of WQCC metals in on-site groundwater.

Based on the field data, the average depth to groundwater at the site is approximately 56 to 60 feet bgs. Data from the New Mexico State Engineer's Office indicate that the depth to groundwater in the general area is approximately 25 to 59 feet bgs.

An accurate estimate of the volume of impacted soil present at the site is not available utilizing existing site data. A soil delineation survey utilizing either an air rotary drilling rig or a hollow stem auger rig will be conducted by installing approximately ten 60-foot deep soil borings at the points shown on Figure 5. Soil borings 9 and 10 will be subsequently converted to a permanent groundwater monitor wells for downgradient groundwater delineation purposes. Core samples will be collected from the capillary fringe zone of selected soil borings and analyzed as outlined in Section 7.1 of this report. Information gained from laboratory analysis of core sampling will be utilized in the estimation of hydraulic parameters needed for completion of a risk based assessment.

ETGI recommends utilization of a risk based assessment technology to achieve site closure. The following assumptions and observations qualify this site for eventual closure from the NMOCD utilizing a human-health risk based assessment technology:

- Exposure Setting: depth to the impacted soil >45 feet bgs and impacted groundwater >55 bgs;
- At Risk Population: environmental technicians only, assuming no site excavation activity; technicians, heavy equipment operators, laborers, site supervisory personnel and local downwind population if site excavation is conducted;
- Exposure Pathways: soil sampling during groundwater monitoring well/soil boring installations and groundwater sampling during regularly scheduled monitoring events, and;

• Exposure Points: soil and groundwater possibilities to the at-risk population identified above.

At this time, the existence of a threat to human exposure to petroleum hydrocarbon impacted soil at this site is limited. Personnel associated with additional on-site plume delineation actions are OSHA trained, experienced in soil and groundwater investigation and sampling methods and will be utilizing personal protective equipment while conducting site investigation activities. The existing SPS water well should be properly plugged and abandoned according to applicable WQCC well closure standards. Filing of Deed Restriction documentation restricting future development or improvements to the area defined in this report in the county clerks office in Lovington, Lea County, New Mexico will reduce human exposure to the regulated constituents on-site to accepted Risk Based Standards.

6.0 MONITORING PROGRAM

All site monitoring wells will be gauged and sampled on a continuing quarterly basis. Each well will be monitored for the presence of PSH and/or depth to groundwater. All of the groundwater monitoring wells, with the exception of those registering a presence of PSH, will be purged and sampled for dissolved phase BTEX constituents. Groundwater sampling methodology proposed at this site is described in Section 7.2, Groundwater Sampling of this report.

The quarterly groundwater monitoring data will be compiled and summarized in an annual report. The annual report will be submitted prior to April 1 of the following calendar year according to NMOCD guidelines.

7.0 QA/QC PROCEDURES

7.1 Soil Sampling

Samples of subsurface soils will be obtained utilizing a split spoon sampler. Representative soil samples will be divided into two separate portions using clean, disposable gloves and clean sampling tools. One portion of the soil sample will be placed in a zip-lock baggie. The baggie will be labeled and sealed for headspace analysis using a photoionization detector calibrated to a 100-ppm isobutylene standard. Each sample will be allowed to volatilize for approximately thirty minutes at ambient temperature prior to conducting the analysis. The soil sample registering the highest PID reading and any sample with a PID reading greater than or equal to 100 ppm will be selected for laboratory analysis.

The other portion of the soil sample will be placed in a duplicate zip-lock baggie and temporarily stored on ice. Upon selection of samples for analysis, the sample will be transferred from the temporary storage baggie to a sterile glass container equipped with a Teflon-lined lid furnished by the analytical laboratory. The container will be filled to capacity to limit the amount of headspace present. Each container will be labeled and placed on ice in an insulated cooler and sealed for shipment to the laboratory. Proper chain-of-custody documentation will be maintained throughout the sampling process.

Soil samples will be delivered to Environmental Lab of Texas, in Odessa, Texas for BTEX, TPH, and Water Quality Metals analyses using the methods described below. All samples will be analyzed within the appropriate holding times following the collection date.

- BTEX concentrations in accordance with EPA SW 846 Method 8021B, 5030, and;
- TPH concentrations in accordance with EPA SW 846 Method 8015M GRO/DRO.
- NMWQCC regulated metals in accordance with EPA SW Methods 6010B and 7470

Core samples will be collected utilizing a Shelby tube sampling device, wrapped in plastic and sealed with duct tape. The core sample will be delivered to South West Laboratory, Inc. in Houston, Texas and analyzed for:

- Hydraulic Conductivity in accordance with ASTM Method D5084;
- Moisture Content in accordance with ASTM Method D2216;
- Wet and Dry Bulk Density in accordance with ASTM Method D2937, and;
- Fractional Organic Carbon in accordance with ASTM Method D2974

7.2 Groundwater Sampling

After purging the wells, groundwater samples will be collected with a disposable Teflon sampler and polyethylene line by personnel wearing clean, disposable gloves. Groundwater sample containers will be filled in the order of decreasing volatilization sensitivity (i.e., BTEX containers will be filled first, poly aromatic hydrocarbons (PAH) containers second and RCRA metals last).

Groundwater samples collected for BTEX analysis will be placed in 40 ml glass VOA vials equipped with Teflon lined caps, provided by the analytical laboratory. The vials will be filled to a positive meniscus, sealed, and visually checked to ensure the absence of air bubbles.

The filled containers will be labeled and placed on ice in an insulated cooler. The cooler will be sealed for transportation to the analytical laboratory. Proper chain-of-custody documentation will be maintained throughout the sampling process.

Groundwater samples will be delivered to Environmental Lab of Texas, in Odessa, Texas for analyses using the methods described below. All groundwater samples collected from existing monitoring wells will be analyzed for dissolved-phase BTEX concentrations in accordance with EPA Method 8021B, 5030. All groundwater samples collected from the newly installed monitoring wells will be analyzed for:

- BTEX constituents in accordance with EPA Method 8021B, 5030;
- PAH in accordance with EPA Method 8270;
- Total dissolved solids in accordance with EPA Method 160.1;
- Anions and cations in accordance with EPA Methods 300 and 6010, and;

• RCRA metals in accordance with EPA Method 6010B, 7470.

7.3 Decontamination Of Equipment

Cleaning of drilling equipment is the responsibility of the drilling company. In general, the cleaning procedures will consist of using high-pressure steam to wash the drilling and sampling equipment prior to drilling and prior to starting each hole. Prior to use, the split spoon sampling tool will be cleaned with Liqui-Nox® detergent and rinsed with distilled water.

7.4 Laboratory Protocol

The laboratory will be responsible for proper QA/QC procedures after signing the chain-of-custody form. These procedures are either transmitted with the laboratory reports or are on file at the laboratory.

8.0 LIMITATIONS

Environmental Technology Group, Inc. has prepared this Additional Subsurface Investigation Report and Modified Stage II Abatement Plan to the best of its ability. No other warranty, expressed or implied, is made or intended.

Environmental Technology Group, Inc. has examined and relied upon documents referenced in the report and has relied on oral statements made by certain individuals. Environmental Technology Group, Inc. has not conducted an independent examination of the facts contained in referenced materials and statements. We have presumed the genuineness of the documents and that the information provided in documents or statements is true and accurate. Environmental Technology Group, Inc. has prepared this report in a professional manner, using the degree of skill and care exercised by similar environmental consultants. Environmental Technology Group, Inc. also notes that the facts and conditions referenced in this report may change over time and the conclusions and recommendations set forth herein are applicable only to the facts and conditions as described at the time of this report.

This report has been prepared for the benefit of EOTT. The information contained in this report, including all exhibits and attachments, may not be used by any other party without the express consent of Environmental Technology Group, Inc. and/or EOTT.

9.0 REFERENCES

Guidelines for Remediation of Leaks, Spills and Releases, August 1993 (NMOCD, 1993).

Title 19 NMAC 15.A.19.

<u>Ground-Water Report 6, Geology and Ground-Water Conditions in Southern Lea County, New Mexico</u>; Alexander Nicholson, Jr. and Alfred Clebsch Jr.; United States Geological Survey, New Mexico State Bureau of Mines and Mineral Resources, 1961.

<u>Remediation Engineering Design Concepts</u>; Suthan S. Suthersan, Lewis Publishers, CRC Press, 1997.

Groundwater Contamination, Transport and Remediation, 2 ed.; Bedient, Rifai and Newell, Prentice Hall, 1999.

<u>Practical Techniques for Groundwater and Soil Remediation</u>; Evan K. Nyer, CRC Press LLC, 1993.

<u>Remediation of Petroleum Contaminated Soils</u>; Eve-Riser-Roberts, Lewis Publishers, CRC Press, 1998.

10.0 DISTRIBUTION

Copy 1 & 2: Mr. William C. Olson/Randy Bayliss

New Mexico Oil Conservation Division

Environmental Bureau

1220 South St. Francis Drive Santa Fe, New Mexico 87505

Copy 3 to:

Chris Williams

New Mexico Oil Conservation Division (District 1)

1625 French Drive

Hobbs, New Mexico 88240

Copy 4 to:

Bill Kendrick

Enron

P.O. Box 1188 Room ECN 4533

Houston, Texas 77251-1188

Copy 5 to:

Mike Kelly

EOTT Energy Corp.

2000 W. Sam Houston Parkway

Houston, Texas 77042

Copy 6 to:

Frank Hernandez

Enron Transportation and Services Company

8112 W. Highway 82

Lovington, New Mexico 88260

Copy 7 to:

Environmental Technology Group, Inc.

2540 W. Marland

Hobbs, New Mexico 88240

Copy 8 to:

Environmental Technology Group, Inc.

4600 West Wall Street Midland, Texas 79703

COPY NO.:

Quality Control Reviewer

TABLES

TABLE 1 GROUNDWATER ELEVATION DATA EOTT ENERGY CORPORATION

SPS - 11 LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT 2022C

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 1	08/16/99	3,859.08	-	57.51	0.00	3,801.57
	12/06/99	3,859.08	-	57.30	0.00	3,801.78
	03/24/00	3,859.08	-	56.87	0.00	3,802.21
	06/14/00	3,859.08	_	57.40	0.00	3,801.68
	09/22/00	3,859.08	_	56.50	0.00	3,802.58
	12/28/00	3,859.08	-	56.68	0.00	3,802.40
	03/14/01	3,859.08	_	56.78	0.00	3,802.30
	06/06/01	3,859.08	-	56.94	0.00	3,802.14
	09/28/01	3,859.08	-	57.05	0.00	3,802.03
	11/17/01	3,859.08	-	57.57	0.00	3,801.51
	03/26/02	3,859.08		57.54	0.00	3,801.54
MW - 2	08/16/99	3,860.76	-	57.91	0,00	3,802.85
	12/06/99	3,860.76	_	57.81	0.00	3,802.95
	03/24/00	3,860.76		57.55	0.00	3,803.21
	06/14/00	3,860.76	_	58.05	0.00	3,802.71
	09/22/00	3,860.76	<u>-</u>	57.04	0.00	3,803.72
	12/28/00	3,860.76		57.32	0.00	3,803.44
*****	03/14/01	3,860.76		57.41	0.00	3,803.35
·	06/06/01	3,860.76		57.58	0.00	3,803.18
	09/28/01	3,860.76		57.68	0.00	3,803.08
	11/17/01	3,860.76	<u> </u>	58.00	0.00	3,802.76
	03/26/02	3,860.76		58.20	0.00	3,802.56
MW - 3	08/16/99	3,861.15	_	58.35	0.00	3,802.80
1919 4 - 0	12/06/99	3,861.15		58.30	0.00	3,802.85
	03/24/00	3,861.15		57.98	0.00	3,803.17
	06/14/00	3,861.15		58.50	0.00	3,802.65
	09/22/00		<u>-</u>	57.48	0.00	
	12/28/00	3,861.15 3,861.15	<u>-</u>	57.74	0.00	3,803.67
		 	-		0.00	3,803.41
	03/14/01	3,861.15	-	57.85		3,803.30
	06/06/01	3,861.15	-	58.00	0.00	3,803.15
	09/28/01	3,861.15	-	58.13	0.00	3,803.02
	11/17/01	3,861.15		58.46	0.00	3,802.69
1011	03/26/02	3,861.15	-	58.65	0.00	3,802.50
MW - 4	08/16/99	3,859.62	-	57.95	0.00	3,801.67
	12/06/99	3,859.62		57.82	0.00	3,801.80
·	03/24/00	3,859.62	-	57.03	0.00	3,802.59
	06/14/00	3,859.62	-	57.57	0.00	3,802.05
	09/22/00	3,859.62	-	56.64	0.00	3,802.98
	12/28/00	3,859.62		56.86	0.00	3,802.76
	03/14/01	3,859.62	-	56.96	0.00	3,802.66
	06/06/01	3,859.62	-	57.12	0.00	3,802.50
	09/28/01	3,859.62	-	57.23	0.00	3,802.39
	11/17/01	3,859.62		58.04	0.00	3,801.58
·	03/26/02	3,859.62	-	57.69	0.00	3,801.93
	·				l	Į.

	·	7	ABLE 1 (Co	ntinued)		
WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 6	08/16/99	3,862.47	-	57.93	0.00	3,804.54
	12/06/99	3,862.47	-	57.41	0.00	3,805.06
	03/24/00	3,862.47		57.43	0.00	3,805.04
	06/14/00	3,862.47	-	57.98	0.00	3,804.49
	09/22/00	3,862.47	-	56.82	0.00	3,805.65
	12/28/00	3,862.47	-	57.03	0.00	3,805.44
	03/14/01	3,862.47	-	57.14	0.00	3,805.33
	06/06/01	3,862.47	-	57.35	0.00	3,805.12
	09/28/01	3,862.47	-	57.42	0.00	3,805.05
	11/17/01	3,862.47	-	57.77	0.00	3,804.70
	03/26/02	3,862.47	-	58.05	0.00	3,804.42
MW - 7	08/16/99	3,859.31	-	57.64	0.00	3,801.67
	12/06/99	3,859.31	-	57.50	0.00	3,801.81
	03/24/00	3,859.31	_	57.17	0.00	3,802.14
	06/14/00	3,859.31	-	57.72	0.00	3,801.59
	09/22/00	3,859.31	-	56.79	0.00	3,802.52
	12/28/00	3,859.31	-	56.96	0.00	3,802.35
	03/14/01	3,859.31	-	57.11	0.00	3,802.20
	06/06/01	3,859.31	-	57.20	0.00	3,802.11
	09/28/01	3,859.31	_	57.32	0.00	3,801.99
	11/17/01	3,859.31	-	57.77	0.00	3,801.54
	03/26/02	3,859.31	-	57.82	0.00	3,801.49
MW - 9	08/16/99	3,861.88	-	57.29	0.00	3,804.59
	12/06/99	3,861.88	-	57.00	0.00	3,804.88
	03/24/00	3,861.88	_	56.34	0.00	3,805.54
	06/14/00	3,861.88	-	56.88	0.00	3,805.00
	09/22/00	3,861.88	_	55.86	0.00	3,806.02
	12/28/00	3,861.88	-	56.02	0.00	3,805.86
	03/14/01	3,861.88	-	56.14	0.00	3,805.74
	06/06/01	3,861.88	-	56.30	0.00	3,805.58
	09/28/01	3,861.88	-	56.38	0.00	3,805.50
	11/17/01	3,861.88	-	57.23	0.00	3,804.65
	03/26/02	3,861.88	-	56,95	0.00	3,804.93
MVV - 10	08/16/99	3,860.58	-	59.00	0.00	3,801.58
	12/07/99	3,860.58	-	58.74	0.00	3,801.84
	03/24/00	3,860.58	-	58.68	0.00	3,801.90
	06/14/00	3,860.58	-	59.20	0.00	3,801.38
	09/22/00	3,860.58	-	58.29	0.00	3,802.29
	12/28/00	3,860.58	-	58.47	0.00	3,802.11
	03/14/01	3,860.58	-	58.59	0.00	3,801.99
	06/06/01	3,860.58		58.70	0.00	3,801.88
	09/28/01	3,860.58	_	58.82	0.00	3,801.76
	11/17/01	3,860.58	-	59.06	0.00	3,801.52
	03/26/02	3,860.58	-	59.34	0.00	3,801.24

			ABLE 1 (Co	illiueu)		CORRECTER
,,,,,,,,,	5475	CASING	DEDTH TO	DEDTU TO	DOLL	CORRECTED
WELL	DATE	WELL	DEPTH TO	DEPTH TO WATER	PSH THICKNESS	GROUND WATER ELEVATION
NUMBER		ELEVATION	PRODUCT			
MW - 11	08/16/99	3,860.00	-	58.45	0.00	3,801.55
ļ	12/07/99	3,860.00	-	58.25	0.00	3,801.75
	03/24/00	3,860.00	-	58.11	0.00	3,801.89
	06/14/00	3,860.00		58.59	0.00	3,801.41
	09/22/00	3,860.00	-	57.75	0.00	3,802.25
	12/28/00	3,860.00		57.94	0.00	3,802.06
_	03/14/01	3,860.00	-	58.05	0.00	3,801.95
	06/06/01	3,860.00	-	58.18	0.00	3,801.82
	09/28/01	3,860.00		58.29	0.00	3,801.71
	11/17/01	3,860.00	-	58.56	0.00	3,801.44
	03/26/02	3,860.00	-	58.78	0.00	3,801.22
MW - 12	08/16/99	3,863.10	-	58.98	0.00	3,804.12
	12/07/99	3,863.10	-	58.48	0.00	3,804.62
	03/24/00	3,863.10	-	58.55	0.00	3,804.55
	06/14/00	3,863.10	-	59.05	0.00	3,804.05
	09/22/00	3,863.10	_	57.80	0.00	3,805.30
	12/28/00	3,863.10	-	58.18	0.00	3,804.92
	03/14/01	3,863,10	_	58.28	0.00	3,804.82
	06/06/01	3,863.10	-	58.47	0.00	3,804.63
	09/28/01	3,863.10	-	58.53	0.00	3,804.57
	11/17/01	3,863.10	_	58.84	0.00	3,804.26
	03/26/02	3,863.10	_	59.04	0.00	3,804.06
MW-13	08/16/99	3,862.44	_	57.38	0.00	3,805.06
	12/07/99	3,862.44	_	56.77	0.00	3,805.67
	03/24/00	3,862.44	-	56.92	0.00	3,805.52
	06/14/00	3,862.44	-	57.42	0.00	3,805.02
	09/22/00	3,862.44	-	56.24	0.00	3,806.20
	12/28/00	3,862.44	-	56.58	0.00	3,805.86
	03/14/01	3,862.44	-	56.72	0.00	3,805.72
	06//06/01	3,862.44	-	56.88	0.00	3,805.56
	09/28/01	3,862.44	-	56.98	0.00	3,805.46
	11/17/01	3,862.44	-	57.21	0.00	3,805.23
	03/26/02	3,862.44	-	57.52	0.00	3,804.92
MW - 14	08/16/99	3,862.95	-	58.71	0.00	3,804.24
	12/07/99	3,862.95	-	58.14	0.00	3,804.81
	03/24/00	3,862.95	_	57.97	0.00	3,804.98
	06/14/00	3,862.95	_	58.40	0.00	3,804.55
	09/22/00	3,862.95	-	57.57	0.00	3,805.38
	12/28/00	3,862.95	-	57.72	0.00	3,805.23
	03/14/01	3,862.95	_	57.88	0.00	3,805.07
	06/06/01	3,862.95	-	58.02	0.00	3,804.93
	09/28/01	3,862.95	_	58.14	0.00	3,804.81
	11/17/01	3,862.95		58.58	0.00	3,804.37
	03/26/02	3,862.95	_	58.61	0.00	3,804.34
	30,20,02	0,002.00		30.01	0.00	3,004.04
L		L		<u> </u>	L	1

			TABLE 1 (Co	iunueu)		
		CASING				CORRECTED
WELL	DATE	WELL	DEPTH TO	DEPTH TO	PSH	GROUND WATER
NUMBER	MEASURED	ELEVATION	PRODUCT	WATER	THICKNESS	ELEVATION
MW - 15	08/16/99	3,861.70	-	57.43	0.00	3,804.27
	12/07/99	3,861.70		57.00	0.00	3,804.70
	03/24/00	3,861.70		57.11	0.00	3,804.59
	06/14/00	3,861.70	-	57.51	0.00	3,804.19
	09/22/00	3,861.70	-	56.76	0.00	3,804.94
	12/28/00	3,861.70	-	56.89	0.00	3,804.81
	03/14/01	3,861.70	-	57.00	0.00	3,804.70
	06/06/01	3,861.70	-	57.15	0.00	3,804.55
	09/28/01	3,861.70	-	57.25	0.00	3,804.45
	11/17/01	3,861.70	-	57.50	0.00	3,804.20
.	03/26/02	3,861.70	_	57.57	0.00	3,804.13
MW - 16	08/16/99	3,863.15	-	57.27	0.00	3,805.88
	12/07/99	3,863.15	<u> </u>	56.82	0.00	3,806.33
	03/24/00	3,863.15	-	56.81	0.00	3,806.34
	06/14/00	3,863.15	-	57.24	0.00	3,805.91
	09/22/00	3,863.15		56.46	0.00	3,806.69
	12/28/00	3,863.15	-	56.64	0.00	3,806.51
	03/14/01	3,863.15	-	56.73	0.00	3,806.42
	06/06/01	3,863.15	-	56.85	0.00	3,806.30
	09/28/01	3,863.15	-	56.99	0.00	3,806.16
	11/17/01	3,863.15	-	57.28	0.00	3,805.87
	03/26/02	3,863.15		57.43	0.00	3,805.72
MW - 17	08/16/99	3,859.17	-	59.25	0.00	3,799.92
	12/07/99	3,859.17	_	59.39	0.00	3,799.78
	03/24/00	3,859.17	-	59.57	0.00	3,799.60
	06/14/00	3,859.17		59.72	0.00	3,799.45
	09/22/00	3,859.17	-	59.65	0.00	3,799.52
	12/28/00	3,859.17	-	59.70	0.00	3,799.47
	03/14/01	3,859.17	-	59.66	0.00	3,799.51
	06/06/01	3,859.17	-	59.75	0.00	3,799.42
	09/28/01	3,859.17	-	59.90	0.00	3,799.27
	11/17/01	3,859.17	_	60.02	0.00	3,799.15
	03/26/02	3,859.17	-	60.41	0.00	3,798.76
MW - 18	08/16/99	3,859.98	-	58.99	0.00	3,800.99
	12/07/99	3,859.98	-	58.93	0.00	3,801.05
	03/24/00	3,859.98	-	59.15	0.00	3,800.83
	06/14/00	3,859.98	-	59.42	0.00	3,800.56
	09/22/00	3,859.98	-	58.97	0.00	3,801.01
	12/28/00	3,859.98	-	59.02	0.00	3,800.96
	03/14/01	3,859.98	-	59.15	0.00	3,800.83
	06/06/01	3,859.98	-	59.20	0.00	3,800.78
	09/28/01	3,859.98	-	59.43	0.00	3,800.55
	11/17/01	3,859.98	-	59.44	0.00	3,800.54
	03/26/02	3,859.98	-	59.94	0.00	3,800.04

WELL NUMBER DATE NEASURGED CASING ELEVATION DEPTH TO PRODUCT DEPTH TO WATER CONNECTED ELEVATION MIV - 19 08/16/99 3,862.30 - 60.12 0.00 3,802.18 03/24/100 3,862.30 - 59.95 0.00 3,802.38 08/14/100 3,862.30 - 60.41 0.00 3,802.86 08/2/200 3,862.30 - 59.64 0.00 3,802.86 12/2/8/00 3,862.30 - 59.83 0.00 3,802.38 08/16/11 3,862.30 - 59.98 0.00 3,802.33 08/16/11 3,862.30 - 59.98 0.00 3,802.33 09/28/01 3,862.30 - 59.98 0.00 3,803.31 11/17/101 3,862.30 - 59.19 0.00 3,801.16 MW-20 08/16/99 3,861.30 - 59.27 0.00 3,802.20 03/24/00 3,861.30 - 59.08 0.00 3,802.21				ABLE 1 (Col	itania da j		CODDECTED
NUMBER MEASURED ELEVATION PRODUCT WATER THICKNESS ELEVATION	14/51	DATE	CASING	DEDTU TO	DERTH TO	DOLL	CORRECTED
MVV - 19 08/16/99 3,862.30 - 60.12 0.00 3,802.18 12/07/99 3,862.30 - 59.95 0.00 3,802.35 03/24/00 3,862.30 - 57.97 0.00 3,804.33 06/14/00 3,862.30 - 56.04 1.00 3,802.66 12/28/00 3,862.30 - 59.84 0.00 3,802.47 03/14/01 3,862.30 - 58.92 0.00 3,803.33 06/06/01 3,862.30 - 59.98 0.00 3,803.31 11/17/01 3,862.30 - 59.98 0.00 3,803.11 11/17/701 3,862.30 - 59.19 0.00 3,801.95 03/26/02 3,861.30 - 59.27 0.00 3,801.96 MW - 20 08/16/99 3,861.30 - 59.27 0.00 3,802.24 03/24/00 3,861.30 - 59.13 0.00 3,802.24 03/24/00 3,861.30	l .	1	i i				
12/07/99 3,862.30 - 59.95 0.00 3,802.35				PRODUCT			
03/24/00	MVV - 19	·		<u>-</u>			
08/14/00 3,862.30 - 60.41 0.00 3,801.89 09/22/00 3,862.30 - 59.64 0.00 3,802.66 12/28/00 3,862.30 - 59.83 0.00 3,802.47 03/14/01 3,862.30 - 58.92 0.00 3,803.38 06/06/01 3,862.30 - 59.98 0.00 3,803.31 06/06/01 3,862.30 - 59.98 0.00 3,803.31 11/17/01 3,862.30 - 60.35 0.00 3,803.31 11/17/01 3,862.30 - 60.35 0.00 3,801.95 03/26/02 3,862.30 - 60.64 0.00 3,801.95 03/26/02 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.97 0.00 3,802.17 06/14/00 3,861.30 - 59.13 0.00 3,802.17 06/14/00 3,861.30 - 59.54 0.00 3,802.17 06/14/01 3,861.30 - 59.54 0.00 3,802.17 06/14/01 3,861.30 - 59.11 0.00 3,802.19 09/28/01 3,861.30 - 59.11 0.00 3,802.29 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.59 0.00 3,802.10 09/28/01 3,862.30 - 59.55 0.00 3,801.96 00/22/02 3,862.30 - 59.55 0.00 3,801.96 00/22/00 3,862.30 - 59.55 0.00 3,803.08 03/24/00 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.22 0.00 3,803.04 09/28/01 3,862.30 - 59.55 0.00 3,803.46 09/22/00 3,862.30 - 59.22 0.00 3,803.04 09/22/00 3,862.30 - 59.25 0.00 3,803.04 09/22/00 3,862.30 - 59.92 0.00 3,803.04 09/22/00 3,862.30 - 59.92 0.00 3,803.04 09/22/00 3,862.30 - 59.95 0.00 3,803.40 09/22/00 3,862.30 - 59.95 0.00 3,803.40 09/22/00 3,862.30 - 59.96 0.00 3,803.40 09/22/00 3,862.30 - 59.99 0.00 3,803.40 09/22/00 3,862.30 - 59.99 0.00 3,803.01 09/22/00 3,864.01 - 57.55 0.00 3,806.65 03/24/00 3,864.01 - 57.55 0.00 3,806.67							
09/22/00 3,862.30 - 59.64 0.00 3,802.66 12/28/00 3,862.30 - 59.83 0.00 3,802.47 03/14/01 3,862.30 - 59.92 0.00 3,802.32 06/06/01 3,862.30 - 59.98 0.00 3,802.32 09/28/01 3,862.30 - 59.99 0.00 3,803.11 11/17/01 3,862.30 - 60.35 0.00 3,803.11 11/17/01 3,862.30 - 60.35 0.00 3,801.95 03/26/02 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.57 0.00 3,802.04 03/24/00 3,861.30 - 59.54 0.00 3,802.47 06/14/00 3,861.30 - 58.84 0.00 3,802.49 03/24/01 3,861.30 - 59.54 0.00 3,802.49 03/24/01 3,861.30 - 59.51 0.00 3,802.49 03/24/01 3,861.30 - 59.51 0.00 3,802.49 03/24/01 3,861.30 - 59.51 0.00 3,802.29 03/24/01 3,861.30 - 59.51 0.00 3,802.29 03/24/01 3,861.30 - 59.51 0.00 3,802.29 03/24/01 3,861.30 -				<u> </u>			
12/28/00 3,862.30 - 59.83 0.00 3,802.47							
03/14/01 3,862.30 - 58.92 0.00 3,803.38 06/06/01 3,862.30 - 59.98 0.00 3,803.31 11/17/01 3,862.30 - 59.19 0.00 3,803.11 11/17/01 3,862.30 - 60.35 0.00 3,801.95 03/26/02 3,862.30 - 60.64 0.00 3,801.66 MW - 20 06/16/99 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.06 0.00 3,802.17 06/14/00 3,861.30 - 59.54 0.00 3,802.17 06/14/01 3,861.30 - 59.54 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.49 03/14/01 3,861.30 - 59.01 0.00 3,802.19 06/06/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.10 09/28/01 3,861.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.20 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.04 06/06/01 3,862.30 - 59.55 0.00 3,803.04 06/06/01 3,862.30 - 59.60 0.00 3,803.04 06/06/01 3,862.30 - 59.60 0.00 3,803.04 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,862.30 - 59.89 0.00 3,803.44 06/06/01 3,862.30 - 59.90 0.00 3,803.44 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,862.30 - 59.60 0.00 3,803.44 06/06/01 3,864.01 - 57.55 0.00 3,806.64 06/14/00 3,864.01 - 57.55 0.00 3,806.64 06/06/01 3,864.01 - 57.55 0.00 3,806.64 06/06/01 3,864.01 - 57.55 0.							
06/06/01 3,862.30 - 59.98 0.00 3,802.32 09/28/01 3,862.30 - 59.19 0.00 3,803.11 11/17/01 3,862.30 - 60.35 0.00 3,801.95 03/26/02 3,862.30 - 60.64 0.00 3,801.66 MW - 20 08/16/99 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.06 0.00 3,802.24 03/24/00 3,861.30 - 59.13 0.00 3,802.24 03/24/00 3,861.30 - 59.54 0.00 3,802.76 09/22/00 3,861.30 - 59.54 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.49 03/44/01 3,861.30 - 59.01 0.00 3,802.29 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.97 03/26/02 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,862.30 - 59.55 0.00 3,803.80 03/24/00 3,862.30 - 59.55 0.00 3,803.08 03/24/00 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 08/14/00 3,862.30 - 59.25 0.00 3,803.06 08/14/01 3,862.30 - 59.25 0.00 3,803.06 08/14/00 3,862.30 - 59.25 0.00 3,803.06 08/14/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,862.30 - 59.06 0.00 3,803.01 08/26/01 3,864.01 - 57.55 0.00 3,806.60 08/26/01 3,864.01 - 57.55 0.00 3,806.07 08/26/01 3,864							
09/28/01 3,862.30 - 59.19 0.00 3,803.11							
11/17/01 3,862.30 -							
MW - 20							
MW - 20 08/16/99 3,861.30 - 59.27 0.00 3,802.03 12/07/99 3,861.30 - 59.06 0.00 3,802.24 03/24/00 3,861.30 - 59.13 0.00 3,802.17 06/14/00 3,861.30 - 59.54 0.00 3,801.76 09/22/00 3,861.30 - 58.84 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.19 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.33 0.00 3,801.97 03/26/02 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,862.30 - 59.55 0.00 3,802.75 MW - 21 08/16/99 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30		+					
12/07/99 3,861.30 - 59.06 0.00 3,802.24 03/24/00 3,861.30 - 59.13 0.00 3,802.17 06/14/00 3,861.30 - 59.54 0.00 3,801.76 09/22/00 3,861.30 - 58.84 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.19 06/06/01 3,861.30 - 59.11 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.05 06/14/00 3,862.30 - 59.25 0.00 3,803.46 12/28/00 3,862.30 -	100/	 					
03/24/00 3,861.30 - 59.13 0.00 3,802.17 06/14/00 3,861.30 - 59.54 0.00 3,801.76 09/22/00 3,861.30 - 58.84 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.19 03/14/01 3,861.30 - 59.20 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,803.05 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.46 12/28/00 3,862.30 -	MVV - 20						
06/14/00 3,861.30 - 59.54 0.00 3,801.76 09/22/00 3,861.30 - 58.84 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.29 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,801.96 11/17/01 3,861.30 - 59.34 0.00 3,801.77 03/26/02 3,861.30 - 59.53 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.26 0.00 3,803.04 12/28/00 3,862.30 - 59.60 0.00 3,803.14 06/06/01 3,862.30				-			
09/22/00 3,861.30 - 58.84 0.00 3,802.46 12/28/00 3,861.30 - 59.01 0.00 3,802.29 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.77 03/26/02 3,861.30 - 59.53 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.14 06/06/01 3,862.30 - 59.40 0.00 3,803.01 09/28/01 3,862.30 -		 					
12/28/00 3,861.30 - 59.01 0.00 3,802.29 03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.50 03/26/02 3,861.30 - 59.80 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,803.08 03/24/00 3,862.30 - 59.55 0.00 3,803.05 06/14/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.46 12/28/00 3,862.30 - 59.84 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 06/06/01 3,862.30 -				-			
03/14/01 3,861.30 - 59.11 0.00 3,802.19 06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,861.30 - 59.55 0.00 3,802.75 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,803.08 03/24/00 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.05 09/22/00 3,862.30 - 59.84 0.00 3,803.46 12/28/00 3,862.30 - 59.84 0.00 3,803.01 06/06/01 3,862.30 - 59.16 0.00 3,803.01 09/28/01 3,862.30 -		 					
06/06/01 3,861.30 - 59.20 0.00 3,802.10 09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,861.30 - 59.80 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,803.08 03/24/00 3,862.30 - 59.22 0.00 3,803.05 06/14/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 -		 		-			
09/28/01 3,861.30 - 59.34 0.00 3,801.96 11/17/01 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,861.30 - 59.80 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 59.06 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 09/28/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 -							
11/17/01 3,861.30 - 59.53 0.00 3,801.77 03/26/02 3,861.30 - 59.80 0.00 3,801.50 MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 59.70 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01		 					
03/26/02 3,861.30 - 59.80 0.00 3,801.50 MWV - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,803.46 09/22/00 3,862.30 - 59.06 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 06/06/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.26 12/07/99 3,864.01							
MW - 21 08/16/99 3,862.30 - 59.55 0.00 3,802.75 12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 59.06 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 06/06/01 3,862.30 - 59.29 0.00 3,802.90 11/17/01 3,862.30 - 59.40 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01							
12/07/99 3,862.30 - 59.22 0.00 3,803.08 03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 58.84 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.60 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.60 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 -				-			
03/24/00 3,862.30 - 59.25 0.00 3,803.05 06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 58.84 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.88 12/28/00 3,864.01 -	MW - 21	 					
06/14/00 3,862.30 - 59.70 0.00 3,802.60 09/22/00 3,862.30 - 58.84 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.01 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.70 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,806.241 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.55 0.00 3,806.55 03/24/00 3,864.01 - 57.93 0.00 3,806.46 06/14/00 3,864.01 - 57.37 0.00 3,806.88 12/28/00 3,864.01 -		 		-			
09/22/00 3,862.30 - 58.84 0.00 3,803.46 12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.29 0.00 3,802.90 11/17/01 3,862.30 - 59.40 0.00 3,802.70 03/26/02 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.37 0.00 3,806.88 12/28/00 3,864.01 - 57.55 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.86 12/28/00 3,864.01 - 57.55 <	ļ <u>-</u>	 		-			
12/28/00 3,862.30 - 59.06 0.00 3,803.24 03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.37 0.00 3,806.88 12/28/00 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.64 09/28/01 3,864.01 -		 		-			
03/14/01 3,862.30 - 59.16 0.00 3,803.14 06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.37 0.00 3,806.88 12/28/00 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 -				-			
06/06/01 3,862.30 - 59.29 0.00 3,803.01 09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 -		 		-			
09/28/01 3,862.30 - 59.40 0.00 3,802.90 11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.07		 		 -			
11/17/01 3,862.30 - 59.60 0.00 3,802.70 03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07							
03/26/02 3,862.30 - 59.89 0.00 3,802.41 MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		 					
MW - 22 08/16/99 3,864.01 - 57.81 0.00 3,806.20 12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07				-			
12/07/99 3,864.01 - 57.46 0.00 3,806.55 03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07	2000			-			
03/24/00 3,864.01 - 57.55 0.00 3,806.46 06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07	MVV - 22						
06/14/00 3,864.01 - 57.93 0.00 3,806.08 09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07			3,864.01	-	57.46	0.00	3,806.55
09/22/00 3,864.01 - 57.13 0.00 3,806.88 12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		03/24/00	3,864.01	-	57.55	0.00	3,806.46
12/28/00 3,864.01 - 57.37 0.00 3,806.64 03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		06/14/00	3,864.01		57.93	0.00	3,806.08
03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		09/22/00	3,864.01	-	57.13	0.00	3,806.88
03/14/01 3,864.01 - 57.50 0.00 3,806.51 06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		12/28/00	3,864.01	-	57.37	0.00	3,806.64
06/06/01 3,864.01 - 57.55 0.00 3,806.46 09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		03/14/01	3,864.01	_	57.50		
09/28/01 3,864.01 - 57.75 0.00 3,806.26 11/17/01 3,864.01 - 57.94 0.00 3,806.07		06/06/01	3,864.01	-	57.55		
11/17/01 3,864.01 - 57.94 0.00 3,806.07		09/28/01	3,864.01	-			
		11/17/01		-			
		03/26/02		_			

			ABLE 1 (CO	,		CORRECTER
14/51.1	DATE	CASING	DEBTH TO	DEDTH TO	DOM	CORRECTED GROUND WATER
WELL	DATE	WELL	DEPTH TO	DEPTH TO WATER	PSH THICKNESS	ELEVATION
NUMBER	MEASURED	ELEVATION	PRODUCT			
MW - 23	08/16/99	3,862.44		56.39	0.00	3,806.05
 	12/07/99	3,862.44	-	56.28	0.00	3,806.16
ļ	03/24/00	3,862.44		56.34	0.00	3,806.10
	06/14/00	3,862.44		56.58	0.00	3,805.86
	09/22/00	3,862.44		56.20	0.00	3,806.24
	12/28/00	3,862.44	-	56.32	0.00	3,806.12
	03/14/01	3,862.44		56.83	0.00	3,805.61
	06/06/01	3,862.44	-	56.50	0.00	3,805.94
<u></u>	09/28/01	3,862.44	-	56.56	0.00	3,805.88
	11/17/01	3,862.44		56.79	0.00	3,805.65
	03/26/02	3,862.44	-	57.00	0.00	3,805.44
MW - 24	08/16/99	3,864.36	-	57.41	0.00	3,806.95
	12/07/99	3,864.36	-	57.19	0.00	3,807.17
	03/24/00	3,864.36	-	57.31	0.00	3,807.05
	06/14/00	3,864.36	-	57.59	0.00	3,806.77
	09/22/00	3,864.36	-	57.09	0.00	3,807.27
	12/28/00	3,864.36	-	57.23	0.00	3,807.13
	03/14/01	3,864.36	-	57.30	0.00	3,807.06
	06/06/01	3,864.36	_	57.38	0.00	3,806.98
<u> </u>	09/28/01	3,864.36	-	57.58	0.00	3,806.78
ļ — — — — — — — — — — — — — — — — — — —	11/17/01	3,864.36	_	57.75	0.00	3,806.61
	03/26/02	3,864.36	-	57.94	0.00	3,806.42
MW - 25	08/16/99	3,864.16	-	56.02	0.00	3,808.14
	12/07/99	3,864.16		55.96	0.00	3,808.20
	03/24/00	3,864.16		56.08	0.00	3,808.08
	06/14/00	3,864.16		56.28	0.00	3,807.88
	09/22/00	3,864.16		55.93	0.00	3,808.23
	12/28/00	3,864.16		56.05	0.00	3,808.11
	03/14/01	3,864.16	_	56.12	0.00	3,808.04
	06/06/01	3,864.16		56.28	0.00	3,807.88
<u> </u>	09/28/01	3,864.16		56.37	0.00	3,807.79
	11/17/01	3,864.16	_	56.51	0.00	3,807.65
	03/26/02	3,864.16		56.74	0.00	3,807.42
MW-26	06/14/00	3,858.79	-	60.10	0.00	3,798.69
	09/22/00	3,858.79	-	60.00	0.00	3,798.79
 	12/28/00	3,858.79		60.08	0.00	3,798.71
<u> </u>	03/14/01	3,858.79	-	60.05	0.00	3,798.74
<u> </u>	06/06/01	3,858.79	-	60.18	0.00	3,798.61
	09/28/01	3,858.79		60.32	0.00	3,798.47
	11/17/01	3,858.79		60.48	0.00	3,798.31
	03/26/02	3,858.79		60.84	0.00	3,797.95
MW-27	06/14/00	3,858.23		59.60	0.00	3,798.63
J	09/22/00	3,858.23		59.50	0.00	3,798.73
	12/28/00	3,858.23		59.54	0.00	3,798.69
	03/14/01	3,858.23	-	59.60	0.00	3,798.63
	06/06/01	3,858.23	-	59.64	0.00	3,798.59
	09/28/01	3,858.23	-	59.88	0.00	3,798.35
	11/17/01	3,858.23	-	59.91	0.00	3,798.32
	03/26/02	3,858.23	-	60.40	0.00	3,797.83

WELL NUMBER	DATE MEASURED	CASING WELL ELEVATION	DEPTH TO PRODUCT	DEPTH TO WATER	PSH THICKNESS	CORRECTED GROUND WATER ELEVATION
MW - 28	06/14/00	3,858.60	-	60.33	0.00	3,798.27
	09/22/00	3,858.60	-	60.29	0.00	3,798.31
	12/28/00	3,858.60	-	60.33	0.00	3,798.27
	03/14/01	3,858.60	-	60.38	0.00	3,798.22
	16/16/01	3,858.60	_	60.40	0.00	3,798.20
-	19/28/01	3,858.60	-	60.63	0.00	3,797.97
	11/17/01	3,858.60	-	60.71	0.00	3,797.89
	03/26/02	3,858.60	-	60.85	0.00	3,797.75
MW - 29	03/26/02	3,858.54	-	61.28	0.00	3,797.26
MW - 30	03/26/02	3,858.35	-	59.75	0.00	3798.60
MW - 31	03/26/02	3,858.52	-	60.70	0.00	3797.82

TABLE 2 SOIL CHEMISTRY EOTT ENERGY CORPORATION

SPS-11 LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT 2022C

SAMPLE	SAMPLE	SAMPLE	MET	THOD: EPA S	W 846-8021B,	5030	METHODS: SW 846-8015M		
LOCATION	DATE	DEPTH	BENZENE			M,P,O- XYLENES	GRO C6-C10	DRO >C10-C28	
MW-29	12/05/01	65'	<0.025	<0.025	<0.025	<0.050	<10	<10	
MW-30	12/06/01	60-62'	. <0.025	<0.025	<0.025	<0.050	<10	<10	
MW-31	12/06/01	60-62'	<0.025	0.026	<0.025	<0.050	<10	<10	

TABLE 3 GROUNDWATER CHEMISTRY EOTT ENERGY CORPORATION

SPS 11 LEA COUNTY, NEW MEXICO ETGI PROJECT # EOT 2022C

		entrations are	SW 846-80	21B, 5030			
SAMPLE	SAMPLE	ETHYL- TOTAL					
LOCATION	DATE	BENZENE	TOLUENE	BENZENE	XYLENES		
MW - 1	08/20/99	6.540	0.078	1.360	0.822		
	12/08/99	5.200	0.386	1.060	0.724		
	03/24/00	0.547	0.098	0.169	0.056		
	06/14/00	2.280	0.060	0.451	0.073		
	09/22/00	0.455	0.115	0.128	0.074		
	12/28/00	1.990	0.050	0.442	0.166		
	03/14/01	2.720	0.199	0.659	0.275		
	06/06/01	3.560	0.155	0.812	5.272		
	09/28/01	1.280	0.065	0.366	0.157		
	11/17/01	6.880	0.121	1.650	1.069		
	03/26/02	1.850	0.049	0.361	0.049		
MW-2	08/19/99	<0.001	<0.001	<0.001	<0.001		
	12/08/99	<0.001	<0.001	<0.001	<0.001		
	03/24/00	0.001	0.001	<0.001	<0.001		
	06/14/00	0.015	0.006	0.007	0.002		
	09/22/00	<0.001	<0.001	<0.001	<0.001		
	12/28/00	0.002	0.001	0.001	<0.001		
	03/14/01	0.001	0.001	<0.001	<0.001		
	06/06/01	0.007	0.120	<0.001	0.019		
	09/28/01	0.001	0.001	<0.001	<0.001		
	11/17/01	0.011	0.002	0.003	0.002		
	03/26/02	<0.001	<0.001	<0.001	<0.001		
MW-3	08/19/99	<0.001	<0.001	<0.001	<0.001		
	12/08/99	<0.001	<0.001	<0.001	<0.001		
	03/24/00	<0.001	0.001	<0.001	<0.001		
	06/14/00	0.003	0.001	0.003	<0.001		
	09/22/00	<0.001	<0.001	<0.001	<0.001		
	12/28/00	<0.001	<0.001	<0.001	<0.001		
	03/14/01	0.004	0.005	0.003	0.003		
	06/06/01	0.006	<0.001	<0.001	0.006		
	09/28/01	0.002	0.002	<0.001	0.001		
	11/17/01	0.006	0.001	0.002	0.002		
	03/26/02	<0.001	<0.001	<0.001	<0.001		
MW - 4	08/19/00	0.009	<0.001	0.002	<0.001		
	12/08/99	0.014	0.002	0.003	<0.001		
	03/24/00	0.015	0.001	0.003	0.001		
	06/14/00	0.021	0.001	0.006	0.001		
	09/22/00	0.015	0.002	0.006	0.003		
	12/28/00	0.011	0.002	0.003	<0.001		
	03/14/01	0.008	<0.001	0.002	<0.001		
	06/06/01	0.019	<0.001	<0.001	0.019		
	09/28/01	0.012	0.001	0.003	0.001		
	11/17/01	0.002	<0.001	<0.001	<0.001		
	03/26/02	<0.001	<0.001	<0.001	<0.001		
		1					

Table 3 (Continued)

All concentrations are in mg/L SW 846-8021B, 5030								
SAMPLE	SAMPLE	377 846-802 IB, 3030						
LOCATION	DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES			
MW - 6	08/19/99	0.009	<0.001	<0.001	<0.001			
	12/08/99	0.011	<0.001	0.002	<0.001			
	03/24/00	0.009	<0.001	<0.001	<0.001			
	06/14/00	0.005	<0.001	0.002	<0.001			
	09/02/00	0.040	<0.001	0.010	0.003			
	12/28/00	0.010	0.001	0.002	<0.001			
	03/14/01	0.021	<0.001	0.004	0.001			
	06/06/01	0.023	<0.001	<0.001	0.036			
	09/28/01	0.027	<0.001	0.004	0.002			
	11/17/01	0.013	<0.001	0.003	0.001			
	03/26/02	0.013	<0.001	<0.001	<0.001			
MW-7	08/19/99	0.039	0.008	0.018	0.009			
	12/08/99	0.108	0.011	0.094	0.210			
	03/24/00	0.044	0.010	0.014	0.006			
	06/14/00	0.014	0.003	0.004	<0.001			
	09/22/00	0.150	0.026	0.084	0.037			
	12/28/00	0.043	0.002	0.040	0.002			
	03/14/01	0.055	0.002	0.057	0.002			
	06/06/01	0.079	<0.005	0.079	0.158			
	09/28/01	0.100	0.004	0.124	0.009			
	11/17/01	0.162	0.004	0.154	0.020			
	03/26/02	0.041	0.001	0.036	0.002			
MW-9	08/19/99	0.725	0.163	0.368	0.356			
	12/08/99	0.058	<0.001	0.022	<0.001			
	03/24/00	0.012	0.002	0.002	<0.001			
	06/14/00	0.041	<0.001	0.024	0.002			
	09/22/00	0.058	<0.001	0.008	0.002			
	12/28/00	0.867	<0.010	0.344	0.043			
	03/14/01	2.520	<0.010	1.120	0.117			
	06/06/01	2.980	<0.005	1.150	4.528			
	09/28/01	2.360	<.200	1.000	0.015			
	11/17/01	1.820	0.002	0.724	0.015			
	03/26/02	0.162	<0.001	0.037	0.001			
MW-10	08/19/99	0.040	0.007	0.006	0.009			
	12/08/99	0.048	0.022	0.021	0.021			
	03/24/00	0.022	0.004	0.005	0.006			
	06/14/00	0.012	0.004	0.007	0,004			
	09/22/00	0.026	0.005	0.016	0.011			
	12/28/00	0.018	0.003	0.015	0.004			
	03/14/01	0.011	0.004	0.013	0.004			
	06/06/01	0.021	<0.001	0.016	0.107			
	09/28/01	0.007	<0.001	0.008	0.001			
	11/17/01	0.014	<0.001	0.001	0.002			
	03/26/02	0.021	<0.001	0.006	<0.001			
		L	<u> </u>	<u>L</u>				

TABLE 3 (Continued)

	All conce	SW 846-8021B, 5030					
SAMPLE	SAMPLE			ETHYL-	TOTAL		
LOCATION	DATE	BENZENE	TOLUENE	BENZENE	XYLENES		
MW-11	08/20/99	1.763	<0.010	<0.010	<0.010		
	12/08/99	2.940	<0.010	<0.010	<0.010		
	03/24/00	1.400	<0.025	<0.025	<0.025		
	06/14/00	0.724	0.002	0.001	<0.001		
	09/22/00	1.970	<0.100	<0.100	<0.100		
	12/28/00	0.250	<0.001	<0.001	<0.001		
	03/14/01	0.105	<0.001	<0.001	<0.001		
	06/06/01	0.073	<0.001	0.013	0.107		
	09/28/01	0.013	<0.001	0.001	<0.001		
	11/17/01 03/26/02	0.032 0.013	<0.00 0.001	0.007 0.004	<0.001 <0.001		
MW-12	08/19/99	0.434	0.006	0.054	0.029		
1919-12	12/08/99	0.604	0.000	0.034	0.023		
	03/24/00	0.012	0.002	<0.001	0.005		
		0.009	<0.002	0.001	<0.003		
	06/14/00	 					
	09/22/00	0.716	0.026	0.310	0.130		
	12/28/00	0.313	0.006	0.063	0.016		
	03/14/01	0.424	0.013	0.037	0.020		
	06/06/01	0.419	0.013	0.052	0.564		
	09/28/01	0.063	0.004	0.008	0.007		
	11/17/01	0.050	0.003	0.006	0.004		
	03/26/02	0.002	<0.001	<0.001	<0.001		
MW-13	08/19/99	<0.001	<0.001	<0.001	<0.001		
	12/08/99	0.001	<0.001	<0.001	<0.001		
	03/24/00	<0.001	<0.001	<0.001	<0.001		
	06/14/00	<0.001	<0.001	<0.001	<0.001		
	09/22/00	0.001	<0.001	0.003	<0.001		
	12/28/00	<0.001	<0.001	<0.001	<0.001		
	03/14/01	0.002	<0.001	0.003	<0.001		
	06/06/01	<0.001	<0.001	<0.001	<0.001		
	09/28/01	0.002	<0.001	<0.001	<0.001		
	11/17/01	0.001	<0.001	<0.001	<0.001		
	03/26/02	<0.001	<0.001	<0.001	<0.001		
MW-14	08/19/99	8.030	0.210	1.310	1.044		
	12/08/99	7.970	0.022	1.180	0.693		
	03/24/00	3.470	<0.025	0.200	0.106		
	06/14/00	1.590	0.016	0.106	0.001		
	09/22/00	3.650	<0.100	0.518	0.229		
	12/28/00	3,970	0,003	0.392	0.254		
	03/14/01	3.920	<0.020	0.483	0.157		
	06/06/01	5.460	<0.005	0.695	6.988		
	09/28/01	4.890	<0.005	0.498	0.297		
	11/17/01	7.140	0.030	0.427	0.567		
	03/26/02	2.460	<0.001	0.186	0.005		
	<u> </u>	1	<u> </u>	l			

TABLE 3 (Continued)

i -	All cortes	entrations are	SW 846-80	21B. 5030					
SAMPLE	SAMPLE								
LOCATION	DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES				
MW-15	08/19/99	0.031	<0.001	0.001	<0.001				
	12/08/99	<0.001	<0.001	<0.001	<0.001				
	03/24/00	0.001	<0.001	<0.001	<0.001				
	06/14/00	0.006	<0.001	<0.001	<0.001				
	09/22/00	0.011	<0.001	0.002	<0.001				
	12/28/00	0.028	<0.001	<0.001	<0.001				
	03/14/01	0.023	<0.001	0.003	<0.001				
	06/06/01	0.020	<0.001	<0.001	0.020				
	09/28/01	0.008	<0.001	<0.001	<0.001				
	11/17/01	0.040	<0.001	0.003	0.001				
	03/26/02	0.006	<0.001	<0.001	<0.001				
MW-16	08/19/99	0.065	0.004	0.002	<0.001				
	12/08/99	0.055	0.025	0.005	0.007				
	03/24/00	0.108	0.028	0.005	0.007				
	06/14/00	0.017	0.002	<0.001	0.001				
	09/22/00	0.036	0.003	<0.001	<0.001				
	12/28/00	0.043	0.032	0.007	0.006				
	03/14/01	0.057	0.036	0.015	0.008				
	06/06/01	0.043	0.016	0.017	0.146				
	09/28/01	0.044	0.027	0.012	0.007				
	11/17/01	0.039	0.025	0.015	0.012				
	03/26/02	0.021	0.004	0.004	0.002				
MVV-17	08/19/99	0.010	0.016	0.008	<0.001				
	12/08/99	0.066	0.068	0.027	0.028				
	03/24/00	0.055	0.063	0.023	0.024				
	06/14/00	0.019	0.023	0.011	0.011				
	09/22/00	0.058	0.059	0.029	0.020				
	12/28/00	0.065	0.080	0.024	0.021				
	03/14/01	0.045	0.057	0.023	0.019				
	06/06/01	0.096	0.058	0.028	0.265				
	09/28/01	0.064	0.090	0.050	0.043				
	11/17/01	0.026	0.041	0.023	0.019				
	03/26/02	0.012	0.022	0.012	0.011				
MW-18	08/19/99	<0.001	<0.001	0.001	<0.001				
	12/08/99	0.004	<0.001	0.002	<0.001				
	03/24/00	<0.001	<0.001	<0.001	<0.001				
	06/14/00	<0.001	<0.001	<0.001	<0.001				
	09/22/00	0.002	<0.001	<0.001	<0.001				
	12/28/00	0.007	<0.001	0.002	0.001				
	03/14/01	<0.001	<0.001	<0.001	<0.001				
	06/06/01	0.005	<0.001	<0.001	0.005				
	09/28/01	0.001	<0.001	<0.001	<0.001				
	11/17/01	0.003	<0.001	0.002	0.001				
	03/26/02	0.004	<0.001	0.001	<0.001				

TABLE 3 (Continued)

			SW 846-80	21B, 5030			
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES		
MW-19	08/19/99	<0.001	<0.001	<0.001	<0.001		
	12/08/99	0.008	0.001	0.002	<0.001		
	03/24/00	0.003	<0.001	<0.001	<0.001		
	06/14/00	0.002	<0.001	<0.001	<0.001		
	09/22/00	0.002	<0.001	<0.001	<0.001		
	12/28/00	0.012	<0.001	0.002	<0.001		
	03/14/01	0.008	<0.001	0.002	<0.001		
	06/06/01	0.005	<0.001	<0.001	0.005		
	09/28/01	0.001	<0.001	0.003	<0.001		
	11/17/01	0.005	<0.001	0.003	0.001		
	 		<0.001	0.003	<0.001		
	03/26/02	0.013					
MW-20	08/20/99	0.002	<0.001	<0.001	<0.001		
	12/08/99	0.005	<0.001	0.002	<0.001		
	03/24/00	<0.001	<0.001	<0.001	<0.001		
	06/14/00	<0.001	<0.001	<0.001	<0.001		
	09/22/00	0.002	<0.001	0.001	<0.001		
	12/28/00	0.005	<0.001	<0.001	<0.001		
	03/14/01	<0.001	<0.001	<0.001	<0.001		
	06/06/01	<0.001	<0.001	<0.001	<0.001		
	09/28/01	0.004	<0.001	0.003	<0.001		
	11/17/01 03/26/02	0.007	<0.001 <0.001	0.003	0.001 <0.001		
MW-21	03/20/02	0.701	<0.001	<0.002	<0.001		
10100-21	12/08/99	0.052	<0.01	<0.01	<0.001		
	03/24/00	0.002	<0.001	<0.001	<0.001		
	06/14/00	0.002	<0.001	<0.001	<0.001		
	09/22/00	0.002	<0.001	0.001	<0.001		
	12/28/00	<0.001	<0.001	<0.001	<0.001		
	03/14/01	<0.001	<0.001	<0.001	<0.001		
	06/06/01	<0.005	<0.005	<0.005	<0.005		
	09/28/01	0.003	<0.001	0.003	<0.001		
	11/17/01	0.014	<0.001	0.006	0.002		
	03/26/02	0.004	<0.001	0.003	<0.001		
MW-22	08/19/99	<0.001	<0.001	<0.001	<0.001		
	12/08/99	<0.001	<0.001	<0.001	<0.001		
	03/24/00	<0.001	<0.001	<0.001	<0.001		
	06/14/00	<0.001 <0.001	<0.001 <0.001	<0.001 <0.001	<0.001		
	12/08/00	<0.001	<0.001	<0.001	<0.001 <0.001		
	03/14/01	0.008	<0.001	0.004	<0.001		
	06/06/01	0.005	<0.001	<0.004	0.005		
	09/28/01	0.006	<0.001	0.003	<0.003		
	11/17/01	0.007	<0.001	0.004	0.001		
	03/26/02	0.002	<0.001	<0.001	<0.001		

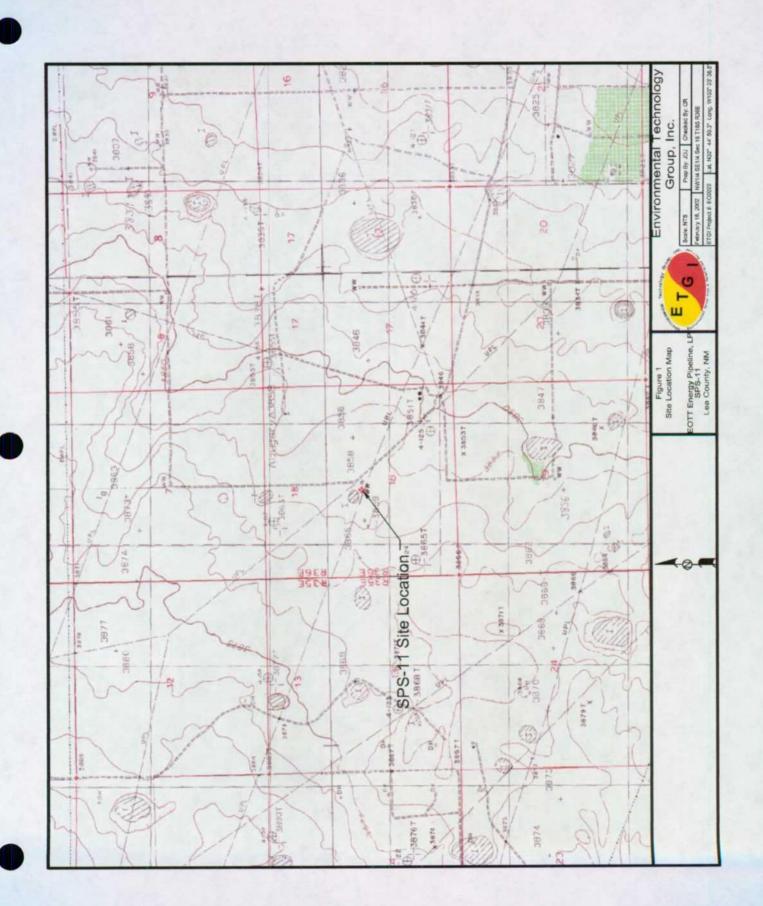
TABLE 3 (Continued)

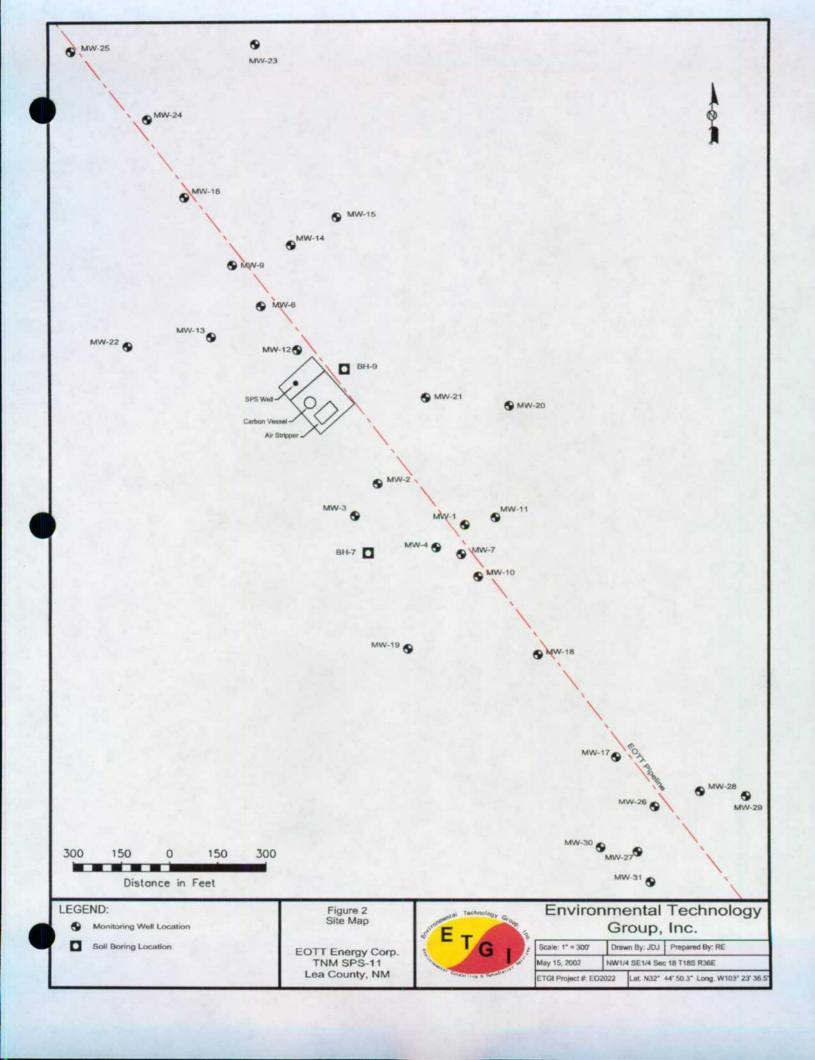
		entrations are	SW 846-80	21B, 5030				
SAMPLE LOCATION	SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES			
MW-23	08/19/99	<0.001	<0.001	<0.001	<0.001			
	12/08/99	0.002	<0.001	<0.001	<0.001			
	03/24/00	<0.001	<0.001	<0.001	<0.001			
	06/14/00	0.007	<0.001	<0.001	<0.001			
	09/22/00	<0.001	<0.001	<0.001	<0.001			
	12/28/00	0.001	<0.001	<0.001	<0.001			
	03/14/01	<0.001	<0.001	<0.001	<0.001			
	06/06/01	0.006	<0.001	<0.001	<0.001			
	09/28/01	<0.001	<0.001	<0.001	<0.001			
	11/17/01	0.004	<0.001	0.002	<0.001			
	03/26/02	0.003	<0.001	<0.001	<0.001			
MW-24	08/19/99	2.290	<0.001	0.023	<0.001			
	12/08/99	0.839	0.007	0.002	0.008			
	03/24/00	0.762	<0.010	<0.010	<0.010			
	06/14/00	0.887	0.013	0.004	0.006			
	09/22/00	0.663	0.012	0.004	0.005			
	12/28/00	1.380	<0.010	<0.010	<0.010			
	03/14/01	1.810	0.045	0.019	0.012			
	06/06/01	0.909	<0.001	<0.001	0.909			
	09/28/01	1.470	0.024	0.015	0.013			
	11/17/01	0.986	0.004	0.011	0.005			
	03/26/02	0.839	0.002	0.005	0.002			
MW-25	08/19/99	<0.001	<0.001	<0.001	<0.001			
	12/08/99	<0.001	<0.001	<0.001	<0.001			
	03/24/00	<0.001	<0.001	<0.001	<0.001			
	06/14/00	0.002	<0.001	<0.001	<0.001			
	09/22/00	<0.001	<0.001	<0.001	<0.001			
	12/28/00	<0.001	<0.001	<0.001	<0.001			
	03/14/01	<0.001	<0.001	<0.001	<0.001			
	06/06/01	0.004	<0.001	<0.001	0.005			
	09/28/01	<0.001	<0.001	<0.001	<0.001			
	11/17/01	0.006	<0.001	0.003	<0.001			
	03/26/02	0.005	<0.001	<0.001	<0.001			
MW - 26	09/22/00	0.021	0.041	800.0	0.019			
	12/28/00	0.386	0.130	0.040	0.039			
	03/14/01	0.731	0.267	0.160	0.106			
	06/06/01	1.010	0.263	0.179	1.864			
	09/28/01	1.700	0.469	0.441	0.285			
	11/17/01	1.600	0.534	0.417	0.321			
	03/26/02	1.690	0.547	0.361	0.086			
		<u> </u>						

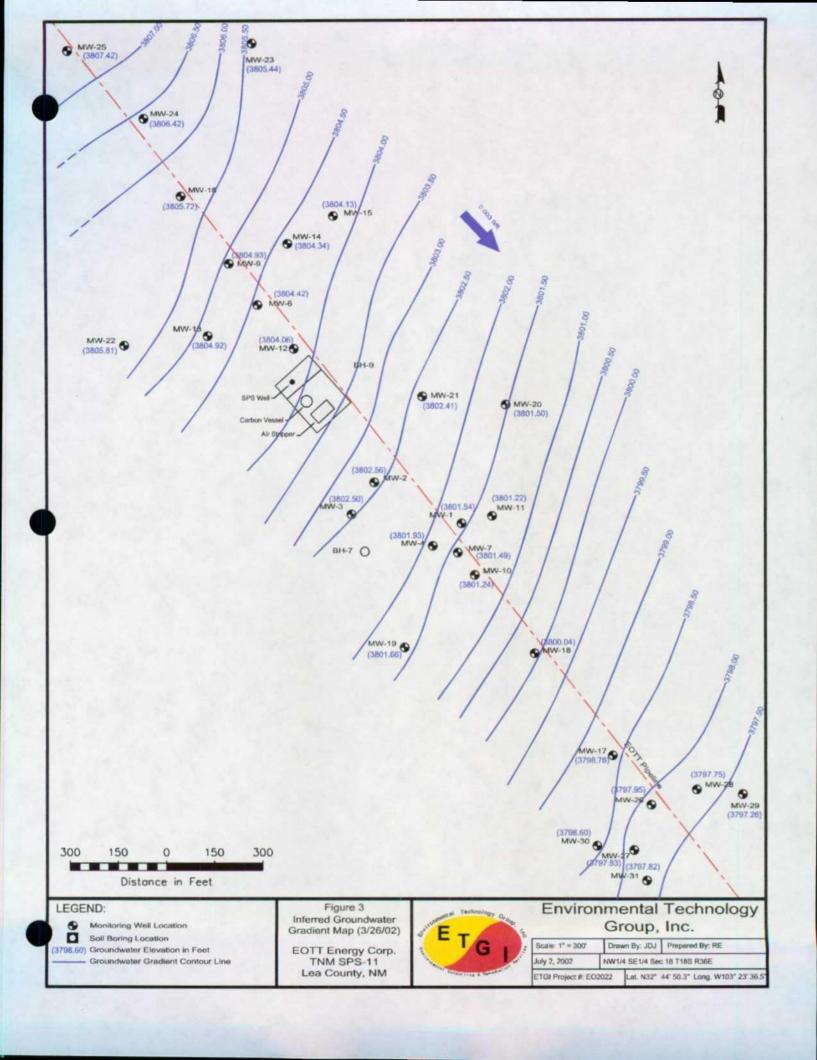
		SW 846-80	21B, 5030	
SAMPLE DATE	BENZENE	TOLUENE	ETHYL- BENZENE	TOTAL XYLENES
09/22/00	<0.001	<0.001	<0.001	<0.001
12/28/00	0.003	0.004	0.002	<0.001
03/14/01	<0.001	0.002	<0.001	<0.001
06/06/01	0.005	<0.001	<0.001	<0.001
09/28/01	0.001	0.002	0.014	<0.001
11/17/01	0.001	0.001	0.001	<0.001
03/26/02	0.004	0.003	0.002	0.001
09/22/00	1.580	0.059	0.374	0.216
12/28/00	4.080	0.073	0.469	0.053
03/14/01	2.730	0.018	0.212	0.045
06/06/01	2.060	0.064	0.121	2.612
09/28/01	2.250	0.027	0.094	0.056
11/17/01	1.490	0.035	0.104	0.077
03/26/02	2.130	0.073	0.226	0.042
03/26/02	2.340	0.002	0.102	0.017
03/26/02	<0.001	<0.001	<0.001	<0.001
03/26/02	0.002	0.001	<0.001	<0.001
	09/22/00 12/28/00 03/14/01 06/06/01 09/28/01 11/17/01 03/26/02 09/22/00 12/28/00 03/14/01 06/06/01 09/28/01 11/17/01 03/26/02 03/26/02 03/26/02	DATE BENZENE 09/22/00 <0.001	SAMPLE DATE BENZENE TOLUENE 09/22/00 <0.001	DATE BENZENE TOLUENE ETHYL-BENZENE 09/22/00 <0.001

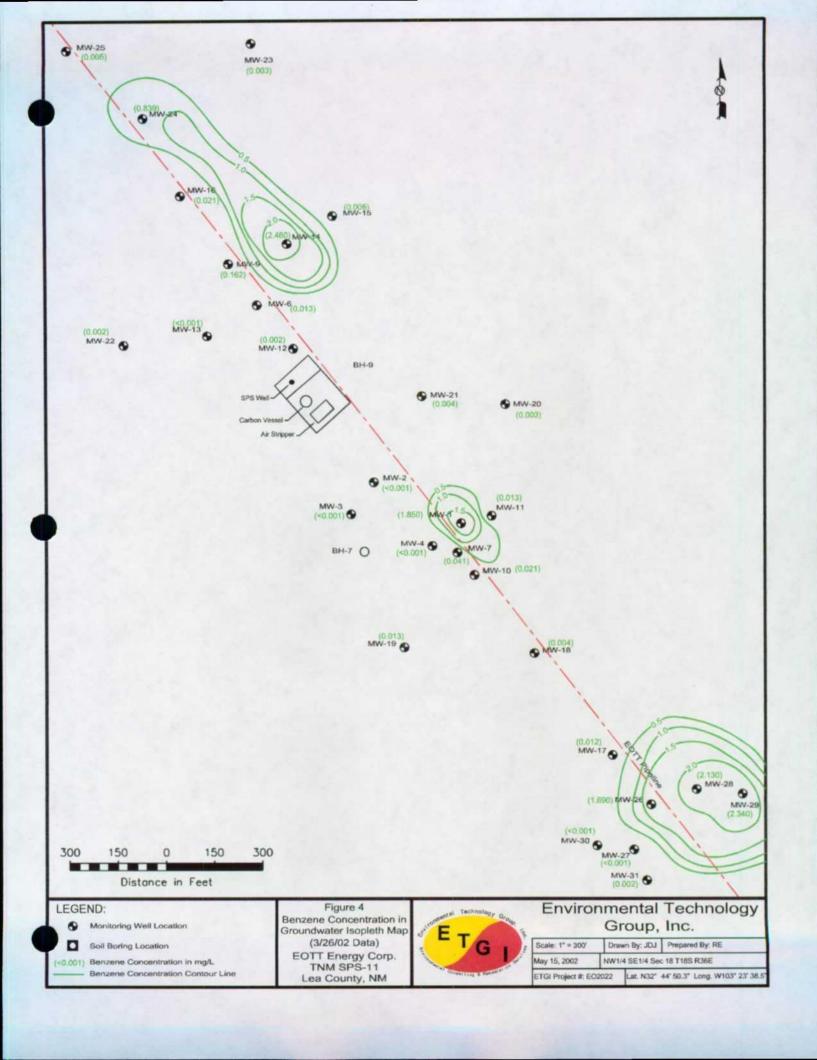
CONCENTRATIONS OF SEMI-VOLATILES IN GROUNDWATER

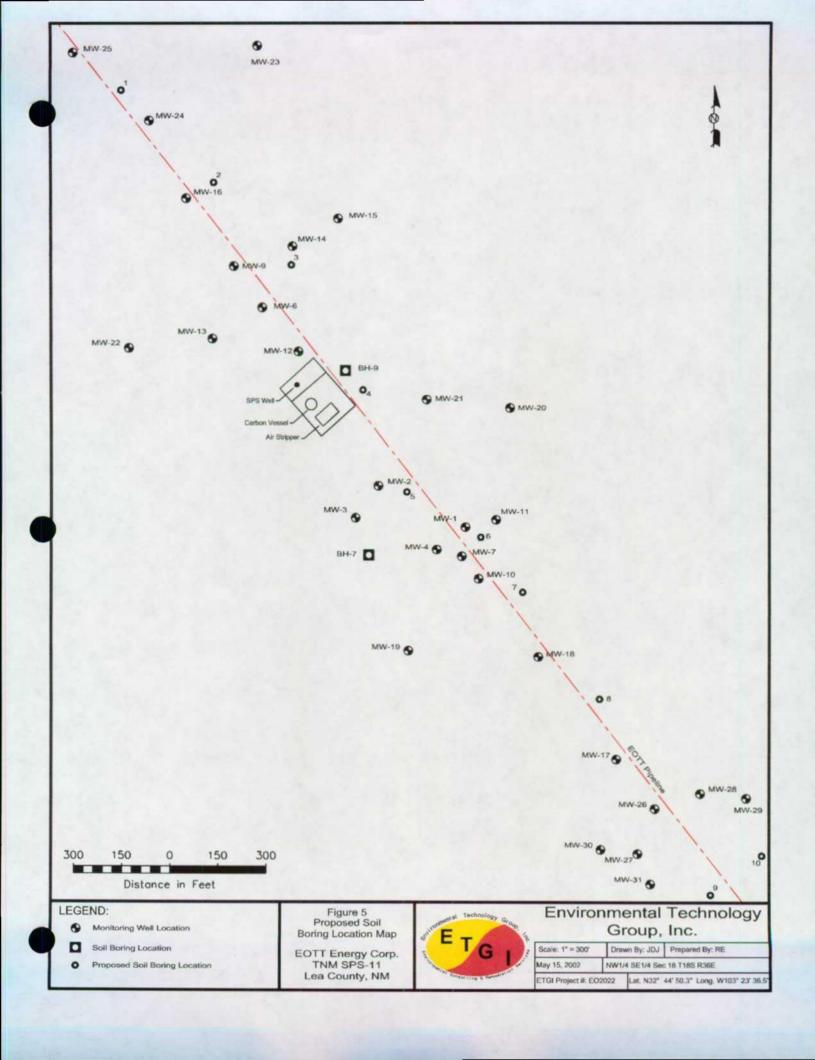
EOTT ENERGY CORP.
SPS-11
LEA COUNTY, NM
ETGI PROJECT # EO 2022

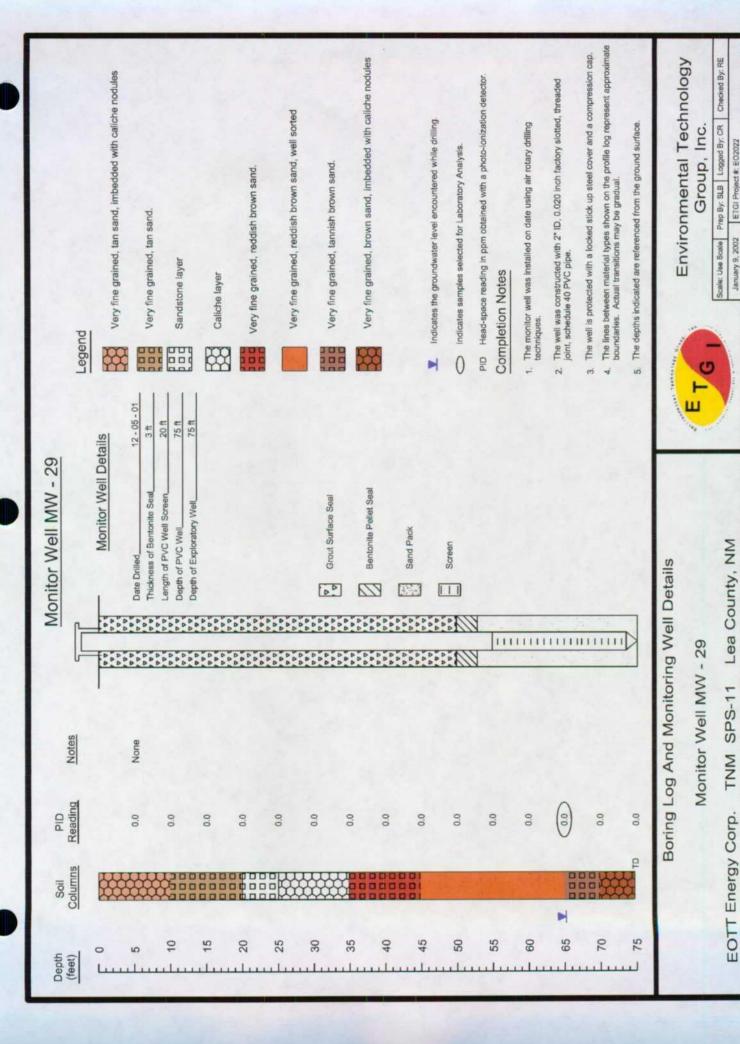

r=			_	iic.		TA 1	ić 1	10.	10	10	10.	10	10	i A		10.	16	10.	70.1	16	10	10	100		10	IO.	=
		Pyrene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
		Phenanthrene	0.005	<0.005 <	<0.005 <	002	005		> 500.0>	<0.005						.005	.005	005		<0.005	<0.005			<0.005	<0.005	905	-
			-			05 <0	05 <0.	05 <0)05 <c< td=""><td></td><td>)05 <c< td=""><td>)> 90</td><td>900'0> 900'0></td><td>)05 <c< td=""><td></td><td>.005 <0</td><td>.005 <0</td><td>005 <0</td><td>.005 <0</td><td>)05 <c< td=""><td>)> 90</td><td>) 05 <(</td><td>)05</td><td>)> SOC</td><td>)05 <(</td><td>005 <0</td><td></td></c<></td></c<></td></c<></td></c<>)05 <c< td=""><td>)> 90</td><td>900'0> 900'0></td><td>)05 <c< td=""><td></td><td>.005 <0</td><td>.005 <0</td><td>005 <0</td><td>.005 <0</td><td>)05 <c< td=""><td>)> 90</td><td>) 05 <(</td><td>)05</td><td>)> SOC</td><td>)05 <(</td><td>005 <0</td><td></td></c<></td></c<></td></c<>)> 90	900'0> 900'0>)05 <c< td=""><td></td><td>.005 <0</td><td>.005 <0</td><td>005 <0</td><td>.005 <0</td><td>)05 <c< td=""><td>)> 90</td><td>) 05 <(</td><td>)05</td><td>)> SOC</td><td>)05 <(</td><td>005 <0</td><td></td></c<></td></c<>		.005 <0	.005 <0	005 <0	.005 <0)05 <c< td=""><td>)> 90</td><td>) 05 <(</td><td>)05</td><td>)> SOC</td><td>)05 <(</td><td>005 <0</td><td></td></c<>)> 90) 05 <()05)> SOC)05 <(005 <0	
			0.005	5 0.033	5 <0.005	5 <0.005	5 <0.005	5 <0.005	5 <0.C	5 0.015	5 < 0.C	5 <0.C	5 <0.0	5 < 0.005	5 0.062	ô	ô	ô	오	5 < 0.005	5 < 0.005	5<0.0	5 < 0.0	5 <0.0	5 <0.005	8	_
		ənəາyq(bɔ-ɛ,Հ,t)onəbni	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.005 <0.005	<0.00	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005 <0.005	<0.005 <0.005 <0.005	<0.005 <0.005	<0.005	<0.005	
		Fluorene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	ô	ô	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	c 0.005	
		Fluoranthene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	3510	Dibenz[a,b]anthracene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	900'0>	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	
- 11	-8270C,	Benzo[a]anthracene	0.005	:0.005	<0.005	<0.005	<0.005	900.0> 900.0> 900.0> 900.0> 900.0> 900.0>	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005	005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005	<0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005 <0.005	<0.005 <0.005 <0.005 <0.005	<0.005	<0.005	
۱	SW846-	Benzo[k]fluoranthene	0.005	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005 <0.005	<0.005	
	EPA 8	Benzo[g,h,i]perylene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
		Benzo[a]pyrene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005 <0.005 <0.005	<0.005	<0.005	
		Benzo[a]pyrene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
		Benzo[a]anthracene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005		<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
		Anthracene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005 <0.005	<0.005	<0.005 <0.005 <0.005	<0.005 <0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005<0.005	<0.005 <0.005	<0.005	<0.005 <0.005	<0.005	<0.005	<0.005	
		Acenaphthylene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	005<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	500.0>	S00.0>	<0.005	005<0.005	<0.005	<0.005	<0.005	<0.005	\$00.0>	
		Acenaphthene	0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	SAMPLE			WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	
		SA	rimit rimit	\vdash	Š	Š	≷	≷	⋛	Ì≷	⋛	Ì≷	⋛	Š	Š	⋛	⋛	≷	⋛	Ì	⋛	⋛	⋛	⋛	⋛	```	
		SAMPLE DATE	Analyt Reporting Limit	8/20/1999	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/20/09	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/20/99	08/20/99	08/19/99	08/19/99	08/19/99	08/19/99	
			nalyt R	_	-	-			_			_	12	- 13	44	- 15	- 16			-	-		_	-		25	
		SAMPLE	۲	MW -	MW - 2	MW - 3	MW - 4	9 - WW	7 - WM	6 - WM	MW - 10	MW - 11	MW-	- MM	MW-	MW-	MW-	MW - 17	MW - 18	MW - 19	MW - 20	MW - 21	MW - 22	MW - 23	MW-	- MM	

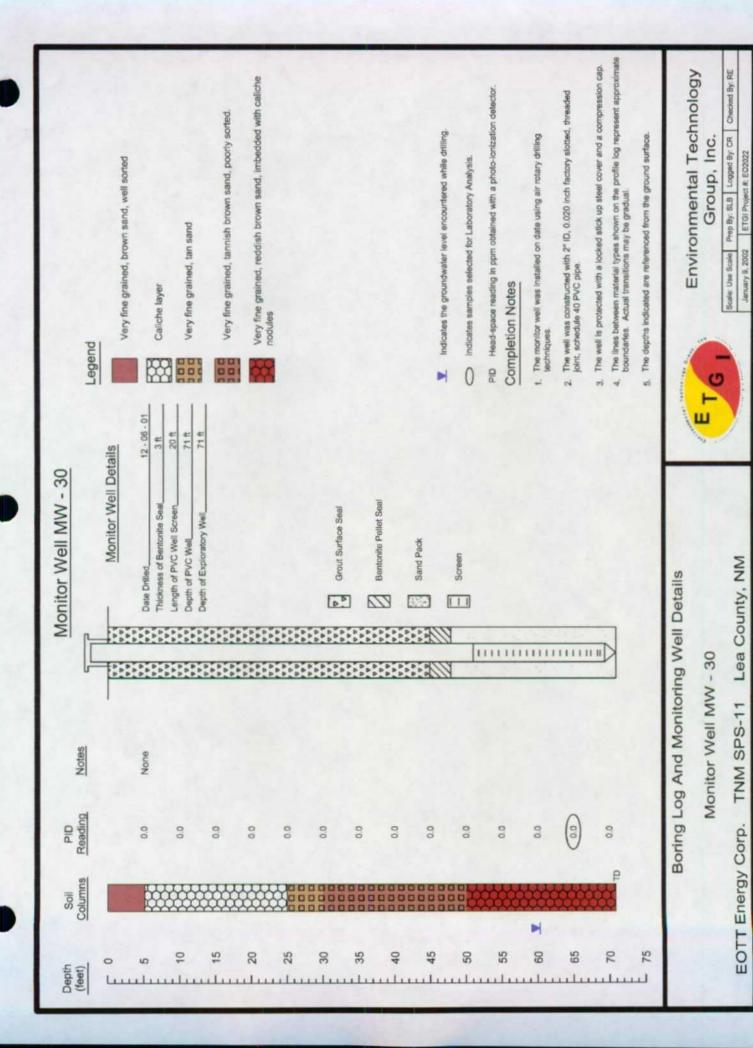

CONCENTRATIONS OF METALS IN GROUNDWATER

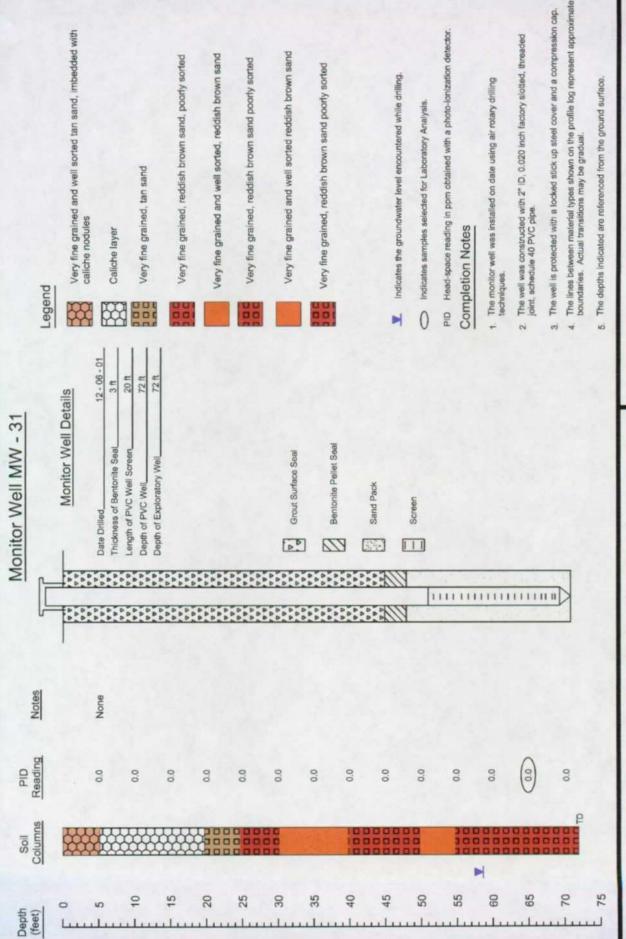

EOTT ENERGY CORP.
SPS-11
LEA COUNTY, NM
ETGI Project # EO 2022


		_			_	_	_			_	_	_		_		_		_		_	_	_	_	_	_
	əniZ	<0.0200	<0.0200	<0.0200	0.049 <0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200	<0.0200		<0.0200	<0.0200	<0.0200			<0.0200	<0.0200	<0.0200	<0.0200	<0.0200		<0.0200	_
	muibsnsV	<0.0500 <0.0200	0.022	0.031	0.049	<0.0500 <0.0200	<0.0500 <0.0200 <0.0200	<0.0500 <0.0200	1.120 <0.0500 <0.0200 <0.0200	<0.0500 <0.0200	ਨੀ	0.037	40.0200	<0.0200	0.034	0.029	<0.0200	0.035		1			0.045	<0.0200	_
	niT	<0.0500	<0.0500	<0.0500	0.456 <0.0500	<0.0500	<0.0500	00500	<0.0500	¢0.0500	<0.0500	<0.0500	0.443 <0.0500 <0.0200	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	<0.0500	1.710 <0.0500	<0.0500		<0.0500	<0.0500 <0.0200	_
j	muitnost2	0.918	0.673	0.421	0.456	0.766	0.989						0.443	0.789		0.802	0.881	0.648	0.839		0.645	0.575	1.130	0.622	_
	muibo&	40.600	25.800	38.700		36.000	19 200	44 200			40 100	31.500	80.400	50.900	44.600	36.100	29.600	32.300	44.400	43.700	34.000		51.400	40.200	1
	Silver	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050		<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	-	_	_		<0.0050	<0.0050	<0.0050	<0.0050	\vdash	<0.0050	_
	muinele2	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	<0.0050	_
	muisestoq	2.420	3.260	3.020	2.890	4.120	2.350	3.520	3.590	4.040	4.620	3.150	4.140	4.750	5.300	4.410	4.190	3.780	4.520	\Box	4.240	_	5.520	3.310	_
	Nickel	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	
72.2	Мођъбепит	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	<0.050	
1, 258.1, 2,	Метситу	<0.00020 <0.050 <0.0100	18.300 < 0.0150 < 0.00020 < 0.050 < 0.0100	8.220 <0.0150 <0.00020 <0.050 <0.0100	<0.015G <0.00020 <0.050	<0.0030 16.500 <0.015q <0.00020 <0.050 <0.0100	<0.00020 <0.050 <0.0100	0.434 <0.00020 <0.050 <0.0100	<0.00020 <0.050 <0.0100	<0.00020	<0.0030 23.200 0.033 <0.00020 <0.050 <0.0100	11.500 <0.0150 <0.00020 <0.050 <0.0100	<0.0030 57.600 0.443 <0.00020 <0.050 <0.0100	18.500 < 0.015 0.00020 < 0.050 < 0.0100	<0.0030 21.400 0.041 <0.00020 <0.050 <0.0100	<0.00020 <0.050 <0.0100	<0.0030 18.700 0.015q <0.00020 <0.050 <0.0100	<0.00020 <0.050 <0.0100	<0.00020 <0.050 <0.0100		<0.00020 <0.050 <0.0100	<0.0030 15.700 0.032 <0.00020 <0.050 <0.0100	<0.00020 <0.050	<0.0030 13.500 <0.0150 <0.00020 <0.050	
17, 245.	Manganese	0.330	<0.0159	<0.0150	<0.015q	<0.0159	0.327		0.232	0.114	0.033	<0.0150	0.443	<0.0150	0.041		k0.0150				0.310	0.032	0.114	<0.0150	Ĺ
781, 200	muisengsM	<0.0030 49.100 0.330	_		9.860	16.500	44.300		25.000	18.300	23.200		57.600		21.400	18.650 0.027	18.700	15.900 0.018	<0.0030 16.100 0.031	<0.0030 40.400 0.115	13.200	15.700	32.300	13.500	
EPA SW846-6010B, 7470, 7761, 200.7, 245.1, 258.1, 272.2	bsed	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030 37.200	<0.0030	<0.0030 18.300	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	<0.0030	
W846-601	lron	7.790	0.266	0.145	0.219	0.277	3.990	18.300	2.470	0.648	0.632	0.605	4.070	0.937	2.210	1.170	0.409	1,150	0.281	7.060	1.760	L	3.520	0.091	
EPA ?	Соррег	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	<0.0100	
	Cobatt	<0.0200 <0.0100	<0.0200 <0.0100	<0.005 <0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.005 <0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.005 <0.0200 <0.0100	<0.005 <0.0200 <0.0100	<0.0200 <0.0100	<0.005 <0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200 <0.0100	<0.0200	
	Chromium	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	\$0.00 \$0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	<0.005	
	muiolaO	112.000	114.000	65.200	70,200	117,000	117.000	142.000	223.000	203.000	167.000	112.000	198.000	157.000	198.000	235,000	140.000	173.000	261.000	713.400	268.000		292.000	107.000	
	тиітьеЭ	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	<0.0010	
	Boron	0.257	0.113	0.087	0.103	0.152	0.121	0.187	0.127	0.170	0.169	0.141	0.388	0.192	0.159	0.142	0.120	0.115	0.164	0.143	0.130	0.136	0.155	0.129	
	Berylium	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	<0.0040	
	mui188	1 030	0.018	0.010	0 105	0.164	1.020	0.550	<0.0040	0.172	0.238	0.135	0.730	0.118	0.259	0.213	0.176	0.162	0.130	0.335	0.369	0.267	0.378	0.119	
	oinearA	0.061	0.014	0.007	0.012	900.0	0.027	0.039	0.052	0.027	0.027	0.008	0.056	0.005	0.00	0.010	<0.0050	900.0	900.0	Н	0.011	0.008	0.023	0.008	
	munimulA	0.157	0.141	0.160	0.170	0.184	0.150	1.140	1.820	0.519	0.700	0.708	0.862	1 380	2.440	1.620	0.467	1.850	0.604	11.100	3.000	3.140	4.860	0.206	
	SAMPLE	WATER	WATER	08/19/99 WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	08/19/99 WATER	WATER	WATER	WATER	WATER	WATER	WATER	WATER	
	SAMPLE	08/20/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/19/99	08/20/89	08/20/99	08/19/99	08/19/99	08/19/99	08/19/99	
	SAMPLE	MW - 1	MW-2 (MW-3	MW - 4	MW-6	MW - 7	9 - WM	MW - 10	MW - 11	MW - 12	MW - 13	MW- 14 (MW - 15 (MW - 16	MW - 17	MW - 18	MW - 19	MW-20	MW-21	MW-22	MW - 23	MW - 24	MW-25 (


FIGURES







APPENDICES

APPENDIX A SOIL BORING LOGS

Boring Log And Monitoring Well Details

Monitor Well MW - 31

Lea County, NM TNM SPS-11 EOTT Energy Corp.

Environmental Technology Group, Inc.

Checked By: RE Scale: Use Scale Prep By: SLB Logged By: CR

ETGI Project #: E02022 Jamuary 9, 2002

APPENDIX B LABORATORY REPORTS

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCI Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/20/99

F: 74	FIELD CODE	BENZENE	TOLUENE	ETHYLBENZENE	m,p-XYLENE	o-XYLENE
ELT#	FIELD CODE	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)
19308	MW-2	<0.001	<0.001	<0.001	<0.001	<0.001
19309	MW-3	< 0.001	< 0.001	<0.001	<0.001	<0.001
19310	MW-4	0.009	<0.001	0.002	<0.001	<0.001
19311	MW-6	0.009	< 0.001	<0.001	<0.001	< 0.001
19312	MW-7	0.039	0.008	0.018	0.005	0.004
19313	MW-9	0.725	0.163	0.365	0.252	0.104
19314	MW-10	0.040	0.007	0.006	0.006	0.003
19315	MW-12	0.434	0.006	0.054	0.026	0.003
19316	MW-13	<0.001	<0.001	<0.001	0.001	<0.001
19317	MW-14	8.03	0.210	1.31	0.680	0.364
19318	MW-15	0.031	< 0.001	0.001	<0.001	<0.001
19319	MW-16	0.065	0.004	0.002	0.002	< 0.001
19320	MW-17	0.010	0.016	0.008	<0.001	0.004
19321	MW-18	< 0.001	< 0.001	0.001	<0.001	<0.001
19322	MW-19	< 0.001	<0.001	<0.001	<0.001	<0.001
19323	MW-22	< 0.001	<0.001	<0.001	<0.001	<0.001
19324	MW-23	<0.001	< 0.001	<0.001	<0.001	<0.001
19325	MW-24	2.29	<0.001	0.023	0.010	<0.001
19326	MW-25	<0.001	<0.001	<0.001	<0.001	<0.001
% IA		89	86	86	84	85
% EA	4	88	85	85	83	84
BLAN		<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8020,5030

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Analysis Date: 08/21/99

		Nitrates	
ELT#	FIELD CODE	mg/L	······································
19308	MW-2	0.2	
19309	MW-3	0.3	
19310	MW-4	1.0	
19311	MW-6	0.2	
19312	MW-7	0.5	
19313	MW-9	0.5	
19314	MW-10	<0.1	
19315	MW-12	<0.1	
19316	MW-13	0.8	
19317	MW-14	0.5	
19318	MW-15	0.1	
19319	MW-16	<0.1	
19320	MW-17	<0.1	
19321	MW-18	<0.1	
19322	MW-19	0.7	
19323	MW-22	0.9	
19324	MW-23	2.0	
19325	MW-24	<0.1	
19326	MW-25	<0.1	
	QUALITY CONTROL	8.6	
	TRUE VALUE	10.0	
	% PRECISON	86	
	BLANK	<0.1	

Methods: EPA 353.2

Polard K July

9-3-99

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-2

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19308	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND		•	114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	,	% RECOVERY				
Nitrobenzene-d5 SURR		60				
2-Fluorobiphenyl SURR		61				
Terphenyl-d14 SURR		30				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K Tuttle

4-3-

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-3

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19309	RPD	%EA	%lA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		66				
2-Fluorobiphenyl SURR		71				

51

ND= NOT DETECTED

Terphenyl-d14 SURR

Method: EPA SW 846 8270C, 3510

Raland K. Tuttle

9-3-0

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-4

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#			
EPA SW846 8270 (mg/l)	LIMIT	19310	RPD	%EA	%IA
Naphthalene	0.005	ND			106
Acenaphthylene	0.005	ND			114
Acenaphthene	0.005	ND	7.73	94	116
Fluorene	0.005	ND	7.70	U -1	114
Phenanthrene	0.005	ND			122
Anthracene	0.005	ND			122
Fluoranthene	0.005	ND			122
Pyrene	0.005	ND	8.42	99	126
Benzo[a]anthracene	0.005	ND			122
Chrysene	0.005	ND			128
Benzo[b]fluoranthene	0.005	ND			108
Benzo[k]fluoranthene	0.005	ND			128
Benzo (a)pyrene	0.005	ND			118
Indeno[1,2,3-cd]pyrene	0.005	ND			132
Dibenz[a,h]anthracene	0.005	ND			136
Benzo[g,h,i]perylene	0.005	ND			132
	•	% RECOVERY			

50

Nitrobenzene-d5 SURR 2-Fluorobiphenyl SURR 49 Terphenyl-d14 SURR

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-6

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99

Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19311	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo(a)anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo(g,h,i)perylene	0.005	ND			132	
	•	% RECOVER	Y			
Nitrobenzene-d5 SURR	-	61				
2-Fluorobiphenyl SURR		57				
Terphenyl-d14 SURR		17				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Ralanck Julie B

9-3-99

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-7

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19312	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	,	% RECOVERY				
Nitrobenzene-d5 SURR		64				
2-Fluorobiphenyl SURR		58				
Terphenyl-d14 SURR		30				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K. Tuttle

4-3-49

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19313	RPD	%EA	%IA
Naphthalene	0.005	0.015			106
Acenaphthylene	0.005	ND			114
Acenaphthene	0.005	ND	7.73	94	116
Fluorene	0.005	ND			114
Phenanthrene	0.005	ND			122
Anthracene	0.005	ND			122
Fluoranthene	0.005	ND			122
Pyrene	0.005	ND	8.42	99	126
Benzo[a]anthracene	0.005	ND			122
Chrysene	0.005	ND			128
Benzo[b]fluoranthene	0.005	ND			108
Benzo[k]fluoranthene	0.005	ND			128
Benzo [a]pyrene	0.005	ND			118
Indeno[1,2,3-cd]pyrene	0.005	ND			132
Dibenz[a,h]anthracene	0.005	ND			136
Benzo[g,h,i]perylene	0.005	ND			132
	,	% RECOVERY			
Nitrobenzene-d5 SURR		69			
2-Fluorobiphenyl SURR		62			
Terphenvi-d14 SURR		15			

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Ralade Juill

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-10

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19314	RPD	%EA	%lA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	,
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		54				
2-Fluorobiphenyl SURR		54				
Terphenyl-d14 SURR		45				
•						

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K. Tuttle

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-12

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

REPORT	ELT#				
LIMIT	19315	RPD	%EA	%IA	
0.005	ND			106	
		7.73	94		
				114	
0.005	ND			122	
0.005	ND			122	
0.005	ND			122	
0.005	ND	8.42	99	126	
0.005	ND			122	
0.005	ND			128	
0.005	ND			108	
0.005	ND			128	
0.005	ND			118	
0.005	ND			132	
0.005	ND			136	
0.005	ND			132	
•	% RECOVERY				
	70				
	68				
	21				
	0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005 0.005	UMIT 19315 0.005 ND	LIMIT 19315 RPD 0.005 ND	LIMIT 19315 RPD %EA 0.005 ND	LIMIT 19315 RPD %EA %IA 0.005 ND 106 0.005 ND 7.73 94 116 0.005 ND 114 0.005 ND 112 0.005 ND 122 0.005 ND 128 0.005 ND 128 0.005 ND 128 0.005 ND 128 0.005 ND 138 0.005 ND 138 0.005 ND 132

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Rula dk Jano

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-13

Sampling Date: 08/19/99

Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19316	RPD	%EA	%IA	·-···
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		61				
2-Fluorobiphenyl SURR		61				
Terphenyl-d14 SURR		30				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

9-5-6

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-14

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19317	RPD	%EA	%IA	
Naphthalene	0.005	0.062			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		75				
2-Fluorobiohenyl SURR		64				

2-Fluorobiphenyl SURR 64 Terphenyl-d14 SURR

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

alc_dtfilel

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-15

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

1015C Extraction Date: 08/25/99
Analysis Date: 08/29/99
ounty, N.M.

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19318	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		64				
2-Fluorobiphenyl SURR		64				
Terphenyl-d14 SURR		29				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K. Tuttle

9-3-99

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-16

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19319	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND .	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		66				
2-Fluorobiphenyl SURR		61				

26 Terphenyl-d14 SURR

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-17

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19320	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		64				
2-Fluorobiphenyl SURR		63				
Terphenyl-d14 SURR		17	•			

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K Tuttle

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-18

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19321	RPD	%EA	%IA	
Naphthalene	0.005	ND	•		106	
Acenaphthylene	0.005	ND .			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND ·			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		68				
2-Fluorobiphenyl SURR		68				

11

ND= NOT DETECTED

Terphenyl-d14 SURR

Method: EPA SW 846 8270C, 3510

Ralan UK Junto Raland K. Tuttle

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

1-AX. 913-320-401

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-19

Sampling Date: 08/19/99 Receiving Date: 08/19/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19322	RPD	%EA	%iA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		70				
2-Fluorobiphenyl SURR		71				
Terphenyl-d14 SURR		38				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K Julie Baland K. Tuttle

9-3-99

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-22

Sampling Date: 08/19/99

Receiving Date: 08/19/99

Extraction Date: 08/25/99

Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19323	RPD	%EA	%lA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
ndeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		62				
2-Fluorobiphenyl SURR		65				
Terphenyl-d14 SURR		41				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K Tuttle

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ loed Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-23

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/26/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19324	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND		• •	114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
ndeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	Ç	% RECOVERY				
Nitrobenzene-d5 SURR		69				
2-Fluorobiphenyl SURR		70	•			
Terphenyl-d14 SURR		18				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Ralan OK Jour

12-3-4

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-24

Sampling Date: 08/19/99 Receiving Date: 08/19/99 Extraction Date: 08/26/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19325	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo(g,h,i)perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR		87				
2-Fluorobiphenyl SURR		79				
Terphenyl-d14 SURR		38				
		· •				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Ralan CK Julub

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project #. SPS-11 EU

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-25

Sampling Date: 08/19/99

Receiving Date: 08/19/99 Extraction Date: 08/26/99

Analysis Date: 08/29/99

EPA SW846 8270 (mg/l)	REPORT LIMIT	ELT# 19326	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo(k)fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		65				
2-Fluorobiphenyl SURR		67				
Terphenyl-d14 SURR		53				

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Raland K. Tuttle

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCl Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/31/99 Analysis Date: Hg 8/26/99

Analyta (madi)	MW-2 19308	MW-3 19309	MW-4 19310	MW-6 19311	MW-7 19312	Reporting Limit	%IA	%EA	BLANK	RPD
Analyte (mg/L)	19306	19309	19310	19311	19312	CITIRE	/0IA	/ola	DLAINN	AFD
Aluminum	0.1410	0.1600	0.1700	0.1840	0.1500	0.0500	110	102	<0.0500	0.45
Arsenic	0.0140	0.0070	0.0120	0.0060	0.0270	0.0050	102	102	<0.0050	2.64
Barium	0.1760	0.1000	0.1050	0.1640	1.020	0.0100	104	100	<0.0100	0.98
Beryllium	ND	ND	ND	ND	ND	0.0040	97	98	<0.0040	2.02
Cadmium	ND	ND	ND	ND	ND	0.0010	96	90	<0.0010	2.20
Calcium	114.0	65.20	70.20	117.0	117.0	1.000	103	*	<1.000	1.75
Chromium	ND	ND	ND	ND	ND	0.0050	96	92	<0.0050	0.54
Cobalt	ND	ND	ND	ND	ND	0.0200	102	93	<0.0200	0.43
Copper	ND	ND	ND	ND	ND	0.0100	101	102	<0.0100	0.78
Iron	0.2660	0.1450	0.2190	0.2770	3.990	0.0500	106	*	<0.0500	1.46
Lead	ND	ND	ND	ND	ND	0.0030	99	92	<0.0030	2.15
Magnesium	18.30	8.220	9.860	16.50	44.30	1.000	104	*	<1.000	1.61
Manganese	ND	ND	ND	ND	0.3270	0.0150	97	92	<0.0150	1.13
Mercury	ND	ND	ND	ND	ND	0.00020	93	103	<0.00020	15.25
Molybdenum	ND	ND	ND	ND	ND	0.050	98	93	<0.050	1.71
Nickel	ND	ND	ND	ND	ND	0.0100	98	91	<0.0100	0.00
Potassium	3.260	3.020	2.890	4.120	2.350	1.000	109	*	<1.000	2.46
Selenium	ND	ND	ND	ND	ND	0.0050	99	74	<0.0050	10.26
Silver	ND	ND	ND	ND	ND	0.0050	94	92	<0.0050	0.00
Sodium	25.80	38.70	29.40	36.00	19.20	1.000	112	*	<1.000	1.20
Tin	ND	ND	ND	ND	ND	0.0500	*	88	<0.0500	13.87
Vanadium	0.0220	0.0310	0.0490	ND	ND	0.0200	98	95	<0.0200	0.42
Zinc	ND	ND	ND	ND	ND	0.0200	99	99	<0.0200	0.20
Boron	0.113	0.087	0.103	0.152	0.1 21	0.050	120	83	<0.050	*
Strontium	0.673	0.421	0.456	0.766	0.989	0.050	98	80	<0.050	2.87

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Raland K Tuttle

9-3-99 Date

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCI Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/31/99 Analysis Date: Hg 8/26/99

	MW-9	MW-10	MW-12	MW-13	MW-14	Reporting				
Analyte (mg/L)	19313	19314	19315	19316	19317	Limit	%IA	%EA	BLANK	RPD
Aluminum	1.140	1.820	0.7000	0.7080	0.8620	0.0500	110	102	<0.0500	0.45
Arsenic	0.0390	0.0520	0.0270	0.0080	0.0560	0.0050	102	102	<0.0050	2.64
Barium	0.5500	0.4700	0.2380	0.1350	0.7300	0.0100	104	100	<0.0100	0.98
Beryllium	ND	ND	ND	ND	ND	0.0040	97	98	<0.0040	2.02
Cadmium	ND	ND	ND	ND	ND	0.0010	96	90	<0.0010	2.20
Calcium	142.0	223.0	167.0	112.0	198.0	1.000	103	*	<1.000	1.75
Chromium	ND	0.0070	ND	ND	ND	0.0050	96	92	<0.0050	0.54
Cobalt	ND	ND	ND	ND	ND	0.0200	102	93	<0.0200	0.43
Copper	ND	ND	ND	ND	ND	0.0100	101	102	<0.0100	0.78
Iron	18.30	2.470	0.6320	0.6050	4.070	0.0500	106	*	<0.0500	1.46
Lead	ND	ND	ND	ND	ND	0.0030	99	92	<0.0030	2.15
Magnesium	37.20	52.00	23.20	11.50	57.60	1.000	104	*	<1.000	1.61
Manganese	0.4340	0.2320	0.0330	ND	0.4430	0.0150	97	92	<0.0150	1.13
Mercury	ND	ND	ND	ND	ND	0.00020	93	103	<0.00020	15.25
Molybdenum	ND	ND	ND	ND	ND	0.050	98	93	<0.050	1.71
Nickel	ND	ND	ND	ND	ND	0.0100	98	91	<0.0100	0.00
Potassium	3.520	3.590	4.620	3.150	4.140	1.000	109	*	<1.000	2.46
Selenium	ND	ND	ND	ND	ND	0.0050	99	74	<0.0050	10.26
Silver	ND	ND	ND	ND	ND	0.0050	94	92	<0.0050	0.00
Sodium	44.20	25.10	40.10	31.50	80.40	1.000	112	*	<1.000	1.20
Tin	ND	ND	ND	ND	ND	0.0500	*	88	<0.0500	13.87
Vanadium	ND	ND	ND	0.0370	ND	0.0200	98	95	<0.0200	0.42
Zinc	ND	ND	ND	ND	ND	0.0200	99	99	<0.0200	0.20
Boron	0.187	0.127	0.169	0.141	0.388	0.050	120	83	<0.050	*
Strontium	0.997	1.12	0.983	0.540	0.443	0.050	98	80	<0.050	2.87

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Baland K Tuttle

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCI Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/31/99 Analysis Date: Hg 8/26/99

	MW-22	Reporting				
Analyte (mg/L)	19323	Limit	%IA	%EA	BLANK	RPD
Aluminum	3.000	0.0500	110	102	<0.0500	0.45
Arsenic	0.0110	0.0050	102	102	<0.0050	2.64
Barium	0.3690	0.0100	104	100	<0.0100	0.98
Beryllium	ND	0.0040	97	98	<0.0040	2.02
Cadmium	ND	0.0010	96	90	<0.0010	2.20
Calcium	268.0	1.000	103	*	<1.000	1.75
Chromium	0.0140	0.0050	96	92	<0.0050	0.54
Cobalt	ND	0.0200	102	93	<0.0200	0.43
Copper	ND	0.0100	101	102	<0.0100	0.78
Iron	1.760	0.0500	106	*	<0.0500	1.46
Lead	ND	0.0030	99	92	<0.0030	2.15
Magnesium	13.20	1.000	104	*	<1.000	1.61
Manganese	0.0310	0.0150	97	92	<0.0150	1.13
Mercury	ND	0.00020	93	103	<0.00020	15.25
Molybdenum	ND	0.050	98	93	<0.050	1.71
Nickel	ND	0.0100	98	91	<0.0100	0.00
Potassium	4.240	1.000	109	*	<1.000	2.46
Selenium	ND	0.0050	99	74	<0.0050	10.26
Silver	ND	0.0050	94	92	<0.0050	0.00
Sodium	34.00	1.000	112	*	<1.000	1.20
Tin	ND	0.0500	*	88	<0.0500	13.87
Vanadium	0.0550	0.0200	98	95	<0.0200	0.42
Zinc	ND	0.0200	99	99	<0.0200	0.20
Boron	0.130	0.050	120	83	<0.050	*
Strontium	0.645	0.050	98	80	<0.050	2.87

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Raland K. Tuttle

9-3-99

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCl Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/31/99

Analysis Date: Hg 8/26/99

	MW-15	MW-16	MW-17	MW-18	MW-19	Reporting				
Analyte (mg/L)	19318	19319	19320	19321	19322	Limit	%IA	%EA	BLANK	RPD
Aluminum	1.380	2.440	1.620	0.4670	1.850	0.0500	110	102	<0.0500	0.45
Arsenic	0.0050	0.0090	0.0100	ND	0.0060	0.0050	102	102	<0.0050	2.64
Barium	0.1180	0.2590	0.2130	0.1760	0.1620	0.0100	104	100	<0.0100	0.98
Beryllium	ND	ND	ND	ND	ND	0.0040	97	98	<0.0040	2.02
Cadmium	ND	ND	ND	ND	ND	0.0010	96	90	<0.0010	2.20
Calcium	157.0	198.0	235.0	140.0	173.0	1.000	103	*	<1.000	1.75
Chromium	ND	0.0080	0.0060	ND	0.0070	0.0050	96	92	<0.0050	0.54
Cobalt	ND	ND	ND	ND	ND	0.0200	102	93	<0.0200	0.43
Copper	ND	ND	ND	ND	ND	0.0100	101	102	<0.0100	0.78
Iron	0.9370	2.120	1.170	0.4090	1.150	0.0500	106	*	<0.0500	1.46
Lead	ND	ND	ND	ND	ND	0.0030	99	92	<0.0030	2.15
Magnesium	18.50	21.40	18.65	18.70	15.90	1.000	104	*	<1.000	1.61
Manganese	ND	0.0410	0.0270	ND	0.0180	0.0150	97	92	<0.0150	1.13
Mercury	ND	ND	ND	ND	ND	0.00020	93	103	<0.00020	15.25
Molybdenum	ND	ND	ND	ND	ND	0.050	98	93	<0.050	1.71
Nickel	ND	ND	ND	0.0590	ND	0.0100	98	91	<0.0100	0.00
Potassium	4.750	5.300	4.410	4.190	3.780	1.000	109	*	<1.000	2.46
Selenium	ND	ND	ND	ND	ND	0.0050	99	74	<0.0050	10.26
Silver	ND	ND	ND	ND	ND	0.0050	94	92	<0.0050	0.00
Sodium	50.90	4460	36.10	29.60	32.30	1.000	112	*	<1.000	1.20
Tin	ND	ND	ND	ND	ND	0.0500	*	88	<0.0500	13.87
Vanadium	ND	0.0340	0.0290	ND	0.0350	0.0200	98	95	<0.0200	0.42
Zinc	ND	ND	ND	ND	ND	0.0200	99	99	<0.0200	0.20
Boron	0.192	0.159	0.142	0.120	0.115	0.050	120	83	<0.050	*
Strontium	0.789	0.915	0.802	0.881	0.648	0.050	98	80	<0.050	2.87

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Raland K Tuttle

7-5-9

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCl Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/19/99 Receiving Date: 08/19/99 Analysis Date: 08/30/99 Analysis Date: Hg 8/28/99

ł	MW-23	MW-24	MW-25	Reporting				
Analyte (mg/L)	19324	19325	19326	Limit	%IA	%EA	BLANK	RPD
Aluminum	3.140	4.860	0.2060	0.0500	117	95	<0.0500	3.91
Arsenic	0.0080	0.0230	0.0080	0.0050	107	108	<0.0050	2.45
Barium	0.2670	0.3780	0.1190	0.0100	97	89	<0.0100	5.38
Beryllium	ND	ND	ND	0.0040	106	108	<0.0040	5.71
Cadmium	ND	ND	ND	0.0010	101	102	<0.0010	6.06
Calcium	147.0	292.0	107.0	1.000	105	*	<1.000	0.87
Chromium	0.0130	0.0210	ND	0.0050	97	96	<0.0050	5.32
Cobalt	ND	ND	ND	0.0200	115	102	<0.0200	5.44
Copper	ND	ND	ND	0.0100	104	99	<0.0100	5.83
Iron	1.820	3.520	0.0910	0.0500	104	*	<0.0500	0.69
Lead	ND	0.0040	ND	0.0030	106	104	<0.0030	9.35
Magnesium	15.70	32.30	13.50	1.000	102	*	<1.000	0.00
Manganese	0.0320	0.1140	ND	0.0150	98	84	<0.0150	1.01
Mercury	ND	ND	ND	0.00020	95	108	<0.00020	4.74
Molybdenum	ND	ND	ND	0.050	100	102	<0.050	5.23
Nickel	ND	ND	ND	0.0100	102	91	<0.0100	4.98
Potassium	3.790	5.520	3.310	1.000	102	*	<1.000	6.78
Selenium	ND	0.0050	ND	0.0050	102	114	<0.0050	10.00
Silver	ND	ND	ND	0.0050	96	88	<0.0050	7.06
Sodium	41.70	51.40	40.20	1.000	100	*	<1.000	0.49
Tin	ND	ND	ND	0.0500	*	82	<0.0500	14.23
Vanadium	0.0380	0.0450	ND	0.0200	106	103	<0.0200	5.57
Zinc	0.0220	0.0210	ND	0.0200	105	104	<0.0200	5.42
Boron	0.136	0.155	0.129	0.050	113	88	<0.050	6.61
Strontium	0.575	1.13	0.622	0.050	*	*	<0.050	*

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Raland K. Tuttle

9-3-99 Data

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/loed/HCl Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 08/20/99 Receiving Date: 08/20/99

Analysis Date: 08/23/99

ELT#	FIELD CODE	BENZENE (mg/L)	TOLUENE (mg/L)	ETHYLBENZENE (mg/L)	m,p-XYLENE (mg/L)	o-XYLENE (mg/L)
19343	MW-1	6.54	0.078	1.36	0.605	0.217
19344	MW-11	1,73	<0.010	<0.010	<0.010	<0.010
19345	MW-20	0.002	<0.001	<0.001	<0.001	<0.001
19346	MW-21	0.701	<0.001	<0.001	<0.001	<0.001

% IA	89	86	86	84	85
% EA	88	85	85	83	84
BLANK	<0.001	< 0.001	<0.001	< 0.001	< 0.001

METHODS: EPA SW 846-8020,5030

Baland K Tuttle

9-3-99 Date

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: JESSE TAYLOR P.O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 08/20/99 Receiving Date: 08/20/99 Analysis Date: 08/21/99

Nitrates ELT# FIELD CODE mg/L 19343 MW-1 0.7 <0.1 19344 MW-11 19345 MW-20 <0.1 19346 MW-21 < 0.1

QUALITY CONTROL	8.6
TRUE VALUE	10.0
% PRECISON	86
BLANK	<0.1

Methods: EPA 353.2

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-1

Sampling Date: 08/20/99 Receiving Date: 08/20/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19343	RPD	%EA	%IA	
					4.00	
Naphthalene	0.005	0.033			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
	•	% RECOVERY				
Nitrobenzene-d5 SURR	-	72				

Nitrobenzene-d5 SURR 72
2-Fluorobiphenyl SURR 58
Terphenyl-d14 SURR 19

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Rala-CK Timb

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-11

Sampling Date: 08/20/99 Receiving Date: 08/20/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19344	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo(a)anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		69				

Nitrobenzene-d5 SURR 69 2-Fluorobiphenyl SURR 66 Terphenyl-d14 SURR 16

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Data

Ralan CK Jules
Raland K. Tuttle

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-20

Sampling Date: 08/20/99 Receiving Date: 08/20/99

Extraction Date: 08/25/99 Analysis Date: 08/29/99

TTA 0141040 0070 (#1)	REPORT	ELT#	222	0/54	0/14
EPA SW846 8270 (mg/l)	LIMIT	19345	RPD	%EA	%IA
Naphthalene	0.005	ND			106
Acenaphthylene	0.005	ND			114
Acenaphthene	0.005	ND	7.73	94	116
Fluorene	0.005	ND			114
Phenanthrene	0.005	ND			122
Anthracene	0.005	ND			122
Fluoranthene	0.005	ND			122
Pyrene	0.005	ND	8.42	99	126
Benzo[a]anthracene	0.005	ND			122
Chrysene	0.005	ND			128
Benzo[b]fluoranthene	0.005	ND			108
Benzo[k]fluoranthene	0.005	ND			128
Benzo [a]pyrene	0.005	ND			118
Indeno[1,2,3-cd]pyrene	0.005	ND			132
Dibenz[a,h]anthracene	0.005	ND			136
Benzo[g,h,i]perylene	0.005	ND			132
	•	% RECOVERY			
Nitrobenzene-d5 SURR		63			
2-Fluorobiphenyl SURR		64			
Terphenyl-d14 SURR		42			

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

<u>(2)</u>

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Field Code: MW-21

Sampling Date: 08/20/99 Receiving Date: 08/20/99 Extraction Date: 08/25/99

Analysis Date: 08/29/99

	REPORT	ELT#				
EPA SW846 8270 (mg/l)	LIMIT	19346	RPD	%EA	%IA	
Naphthalene	0.005	ND			106	
Acenaphthylene	0.005	ND			114	
Acenaphthene	0.005	ND	7.73	94	116	
Fluorene	0.005	ND			114	
Phenanthrene	0.005	ND			122	
Anthracene	0.005	ND			122	
Fluoranthene	0.005	ND			122	
Pyrene	0.005	ND	8.42	99	126	
Benzo[a]anthracene	0.005	ND			122	
Chrysene	0.005	ND			128	
Benzo[b]fluoranthene	0.005	ND			108	
Benzo[k]fluoranthene	0.005	ND			128	
Benzo [a]pyrene	0.005	ND			118	
Indeno[1,2,3-cd]pyrene	0.005	ND			132	
Dibenz[a,h]anthracene	0.005	ND			136	
Benzo[g,h,i]perylene	0.005	ND			132	
		% RECOVERY				
Nitrobenzene-d5 SURR		62				

Nitrobenzene-d5 SURR 62
2-Fluorobiphenyl SURR 60
Terphenyl-d14 SURR 22

ND= NOT DETECTED

Method: EPA SW 846 8270C, 3510

Rala de Julul

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HCl Project #: SPS-11 EOT 1015C

Project Name: SPS-11

Project Location: Lea County, N.M.

Sample Date: 08/20/99 Receiving Date: 08/20/99 Analysis Date: 08/31/99 Analysis Date: Hg 8/26/99

	MW-1	MW-11	MW-20	MW-21	Reporting				
Analyte (mg/L)	19343	19344	19345	19346	Limit	%IA	%EA	BLANK	RPD
Aluminum	0.1570	0.5190	0.6040	11.10	0.0500	110	102	<0.0500	0.45
Arsenic	0.0610	0.0270	0.0060	0.0090	0.0050	102	102	<0.0050	2.64
Barium	1.030	0.1720	0.1300	0.3350	0.0100	104	100	<0.0100	0.98
Beryllium	ND	ND	ND	ND	0.0040	97	98	<0.0040	2.02
Cadmium	ND	ND	ND	ND	0.0010	96	90	<0.0010	2.20
Calcium	112.0	203.0	261.0	713.4	1.000	103	*	<1.000	1.75
Chromium	ND	ND	ND	0.0470	0.0050	96	92	<0.0050	0.54
Cobalt	ND	ND	ND	ND	0.0200	102	93	<0.0200	0.43
Copper	ND	ND	ND	ND	0.0100	101	102	<0.0100	0.78
Iron	7.790	0.6480	0.2810	7.060	0.0500	106	*	<0.0500	1.46
Lead	ND	ND	ND	ND	0.0030	99	92	<0.0030	2.15
Magnesium	49.10	18.30	16.10	40.40	1.000	104	*	<1.000	1.61
Manganese	0.3300	0.1140	0.0310	0.1150	0.0150	97	92	<0.0150	1.13
Mercury	ND	ND	ND	ND	0.00020	93	103	<0.00020	15.25
Molybdenum	ND	ND	ND	ND	0.050	98	93	<0.050	1.71
Nickel	ND	ND	ND	ND	0.0100	98	91	<0.0100	0.00
Potassium	2.420	4.040	4.520	9.350	1.000	109	*	<1.000	2.46
Selenium	ND	ND	ND	ND	0.0050	99	74	<0.0050	10.26
Silver	ND	ND	ND	ND	0.0050	94	92	<0.0050	0.00
Sodium	40.60	39.00	44.40	43.70	1.000	112	*	<1.000	1.20
Tin	ND	ND	ND	ND	0.0500	*	88	<0.0500	13.87
Vanadium	ND	ND	0.0280	0.0980	0.0200	98	95	<0.0200	0.42
Zinc	ND	ND	0.0230	0.0610	0.0200	99	99	<0.0200	0.20
Boron	0.257	0.170	0.164	0.143	0.050	120	83	<0.050	*
Strontium	0.918	0.833	0.839	1.71	0.050	98	80	<0.050	2.87

ND = Below Reporting Limit

METHOD: EPA SW846-6010B, 7470

Paland K Tuttle

	It was In a Total Total	of Toros	Tre 13500 Water	Fact Oderers Torse 79763	79763	J	Coc;	88			•	
Lin	onmental Lar	J UL LEADS	9 TIIC: 12000 WEST 9	Ĵ	3-1713	CHAIN-OF	custop	Y RECOR	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST	YSISHEC	VVEST	
								/	PAGE	101	7	
Project Manager:			Phone #:	9916-497 (516)			NA	ANAI VSIS BEOILEST	Officer	A		
JESSE	E TAYLOR		FAX#:				1					
Company Name & Address:	ETGI P.O. BOX	4845		•					010			
	MIDLAND	TX 79704				9S (•s		79 7°			
Project#:			Project Name:			3H d	вн		#6 98			
5	SPS-11 EOT	EOT 1015C	SPS-1	11		1 9 10	49 1		[] []			
Project Location:			Sampler Stenature:	mature:		O PO	O P		- S 1d=			
	LEA COUNTY NI	•	X Can	B					1H- 7 -			
			10	PRESERVATIVE SA	SAMPLING		88		13H 31			
			now	6661		1.81	alitalo		, J			
LAB USE)	FIELD CODE	COULY	AlamelA NATER JIO II III III IIII	IONE NO3	ІМЕ	CCLP M STEX 8	CLP Se CLP V Clai Me	101 .D 2	DOM IIN NH C			
10 20 %	22.2.3	" 7	S		1	- · .		3 L	7 7		-	_
2007	₹ I		(4) K	2 -			-				-	-
19309	HW-3				1/34		-					
01881	MW-4				1245							
19311	MW-6				8445							
19312	HW-7				1220							
19313	HW-9				1000							
19314	MW-10				1230							
19315	MW-12			<i>y</i>	1954		_					4
19316	HW-13				6434							
19317	HW-14				1635							
19.318	MW-15			-	1620		_					
Reiffiquished by:	Date		Times:	Respired by:	7 REMARKS	ŀ			K. Jarran		(505) \$70	7290-0
Ten Ou	How 19	AUG 99	1640	Kalanoktubu	MATL	RE	Sucrs ro.	. <u>.</u>				
Relinquished by:	Date:		Tlaca:	Received by:		KEN U IBOG U HOBBS	W. CAUE,	E, SUR,	LE, SUR, APTB 88240-0485	∞		
Relinquished by:	Date		Times:	Received by Laboratory:	INVOICE	TRE TO:	180	LEUNAH FKOST POH 1015M	Kost M			
												7

pnmental Lab of Texas, Inc. 12600 West I	From #: (915) 664-9166 SPACE TOULD PART:	*Address: E761 P.O. 130× 4845 MIDLAND TX 79704	Project Name:	Sampler Signature:	25 98 98 98 98 98 98 98 98 98 98 98 98 98 9	C C NATREN PRESERVATIVE SAMPLING OF SAMPLI	HOSON SERVING	MATE SOIL HINGS SCILLED OTHER HINGS ICE HINGS	1 X X X X X X X X X X X X X X X X X X X	7. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1.	18 - 18		HW-23	MW			Times: Received by:	Sutter 19 Aug 99 1649 Kalan Of Just Dust 2 Results To:	Date: Times: Received by: 16.06 1	Date: Times: Received by Laboratory: INVOICE 1
Environm	Project Manager:	Company Name & Address	Project#:	Project Location:	LEA		# mg	(LAB USE)						19225			Relinquished by:	How Kutto	Relinquished by:	Relinquished by:

CHAIN-OF-CUSTODY RECORD AND ANALYSIS QUEST Pref 1 of 1	ANALYSIS REQUEST	(Ø100) (Z	H&F) '888 (Ø0	768 A	\$\$ (E 5	√ ims2 _ _	TOS PAH PAH	χ × ×								K. Durron (Sus) 374-9677	rs: \\arte\	ORUE SUR, APTB	
		l		Ba Cd Cr	0502) 8A 6A 8A 6A	118.1 118.1	BTEX TCLP Total	X			- -			· · · · · · · · · · · · · · · · · · ·		REMARKS	PESML	1696 W.	• • • • • • • • • • • • • • • • • • • •
12600 West I-	Phone #: (915)664-9166 FAX#:	høtht	Project Name: 0/5C S PS-11	SIL	MAT	35 35		1259 1259 X X X X X X X X X		1325	3H21 A					(1710 Kilade Jan MARIL	Times: Received by:	Times: Received by Laboratory: T.W.
ronmental Lab of Texas, Inc.	TE8SE TAYLOR	ETGI PO. BOK 4845 MINLAND, TK		LEA PONNITY.	6,,,,,,,,,,	FIELD CODE		Hw-1	Hw- 11	6	١,					Date:	the		Date:
En	Project Manager:	Company Name & Address:	Project #:	Project Location:		2	(LABUSE)	[C1343]	19344	19345	JUSHC 1					Relipquished by.	Sanly	Réimquished by:	Relinquished by:

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 505-392-3760

Sample Type: Water

Sample Condition: Intact/Iced/HCI

Project #: EOT1015C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 12/08/99 Receiving Date: 12/10/99 Analysis Date: 12/13/99

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L	
22208	MW-1	5.20	0.386	1.06	0.501	0.223	
22209	MW-2	< 0.001	<0.001	<0.001	<0.001	<0.001	
22210	MW-3	< 0.001	<0.001	<0.001	<0.001	<0.001	
22211	MW-4	0.014	0.002	0.003	0.002	<0.001	
22212	MW-6	0.011	< 0.001	0.002	<0.001	<0.001	
22213	MW-7	0.108	0.011	0.094	0.018	0.003	
22214	MW-9	0.058	<0.001	0.022	0.004	< 0.001	
22215	MW-10	0.048	0.022	0.021	0.013	0.008	
22216	MW-11	2.94	<0.010	<0.010	<0.010	<0.010	
22217	MW-12	0.604	0.012	0.080	0.030	0.004	
22218	MW-13	0.001	<0.001	<0.001	<0.001	<0.001	
%	. IA	93	89	90	90	90	
	EA	91	88	89	89	88	
	LANK	<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: EPA SW 846-8021B,5030

Raland K Juch

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 505-392-3760

Sample Type: Water

Sample Condition: Intact/Iced/HCI

Project #: EOT1015C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 12/08/99 Receiving Date: 12/10/99

Analysis Date: 12/13 & 12/14/99

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L
22219	MW-14	7.97	0.022	1.18	0.459	0.233
22220	MW-15	< 0.001	<0.001	< 0.001	<0.001	<0.001
22221	MW-16	0.055	0.025	0.005	0.005	0.002
22222	MW-17	0.066	0.068	0.027	0.019	0.009
22223	MW-18	0.004	<0.001	0.002	0.002	<0.001
22224	MW-19	0.008	0.001	0.002	0.002	<0.001
22225	MW-20	0.005	<0.001	0.002	0.001	<0.001
22226	MW-21	0.052	< 0.001	<0.001	<0.001	<0.001
22227	MW-22	<0.001	<0.001	< 0.001	<0.001	<0.001
22228	MW-23	0.002	<0.001	< 0.001	<0.001	<0.001
22229	MW-24	0.839	0.007	0.002	0.006	0.002
22230	MW-25	<0.001	<0.001	<0.001	<0.001	<0.001
% IA		94	91	91	91	91
% EA		115	90	91	91	91
BLANK		<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: EPA SW 846-8021B,5030

Raland K. Tuttle

12-15-99 Date

Environmental Lab of Texas, Inc. 12600 West 1-20 East Cessa, Texas 79763 (915) 563-1800 FAX (915) 563-1713 CHAIN-OF-CUSTOBY RECORD AND ANALYSIS REQUEST (200, 048)	Phone #: (2/5) 664-9/66 FAX#: (525-) 392-3760	4845 M. Quano 14 79704	Project Name:	werry NM Sampler Signature:	MATRIX PRESERVATIVE SAMPLING & &	######################################	2 V X V X V X V X V X V X V X V X V X V		8	*	2 6	- 1	w 9	0/0	1.11	21/	13 14 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Date: Thines: Recepted For REMARKS (CSULT ! KINTON)	Date: Times: Refliked by.	Times: Rec
Environmental Lab	Project Mannett: Jesse axtor	Company Name & Address: 5-75-1	ĺ	ounty. N.			27308 mus 1	MW.	1 1	M M	MIS	MM	mm	mal	Joseph mw 11	1 MM	MW 13	Relinquished by: Date:	Ä	Rellhquished by: Date:

AMALTER TOPE AND THE Name: The field of the 96 f f f f f f f f f f f f f f f f f f	(915) 563-1800	(915) 563-1800		FAX (915) 563-1713	CHAIN-0	7.CC	STOD	V REC	chain-of-custody record and analysis request ${\cal COC} {\cal OS}$	LYSIS RE	QUEST	
AND THE TIMES IN THE STATE TO THE MATTER TO	131	9) 664-) 852-	9166 3760			¥	(LYSIS	REQUEST			
THE CODE TIME STANDARD CODE TO SAMPLE STANDARD COLOR TO SAMPLE SAMPLE STANDARD COLOR TO SAMPLE SA	YOK.	(\	79204		99							
AND 19 TOLD VOISIBLES STANDARD SANDERS STANDARD	1	Project Nam			Pb Hg S							******
MW 22 MANTER AND THE STANDINGS OF MANTER SAMPLING SAMPLIN	nunty N	Sampler Sign	umor God	P			······································					
### 10 CODE ### 12		E MATRIX	PRESERVATIVE METHOD	SAMIPLING								
MW 19 MW 22 MW 23 MW 23 MW 23 MW 23 MW 24 MW 25 MW		те/Ато В ЭТ Л	AE		1.814							
MW 14 Mu 15 Mu 20 Mu 20 Mu 22 Mu 23 Mu 23 Mu 23 Mu 24 Mu 25 Mu 25 Mu 27 Mu 25 Mu 27 Mu	ONLY	Volu	NOI ICE HNC		НЧТ			SOT	ист			
May 15 May 17 May 20 May 25 May 25 May 25 May 25 May 25 May 25 May 26 May 26 May 27 May 26 May 27 May 26 May 27 May 26 May 27 May 26 May 27 May 27 May 27 May 26 May 27 May 28 May 28		\overline{Z}			F						-	}
MW 18 MW 20 MW 22 MW 23 MW 24 MW 25 MW 25 MW 25 MW 25 MW 25 MW 25 MW 27 MW 25 MW 26 MW	MW											-
MWW 13 MWW 20 MWW 21 MWW 22 MWW 23 MWW 23 MWW 23 MWW 23 MWW 23 MWW 23 MWW 24 MWW 25 MWW 25	IMW /			6/0/			-					-
MW 18 MW 20 MW 21 MW 23 MW 23 MW 23 MW 23 MW 23 MW 24 MW 25 MW 26 MW 26 MW 27 MW 26 MW 26 MW 27 MW 26 MW 27 MW 26 MW	mm/			1439			-				-	-
MW 20 MW 21 MW 23 MW 23 MW 23 MW 24 MW 25 MW	MW/			1421								
M. W. 22 M. W. 22 M. W. 23 M. W. 24 M. W. 24 M. W. 24 M. L. 29 M. M	MW			1410			 -					-
M. W. 2.2 M. W. 2.3 M. W. 2.5 M. W. 2.5 M. W. 1.0 M. M. M. 1.0 M. 1.0 M. M. M. M. 1.0 M. M. M. M. M. 1.0 M. M	MW			9421			-				-	
71 W 23 72 W 1000 W 10				12%								-
71 W 23 72 W 1000 W 10				1047								-
7h w 24 Thres: Date: Date: Date: Date: Date: Thres: Received by: Received by Laboratory: Author: Aut				100%								-
on laser 12985 1300 Recholopy: Date: Times: Received by: Date: Times: Received by Laboratory: Layon Calvidity	62 mm			1000	>		-					-
Date: Times: Received by: 1 - 10 - 57 11 - 1	on lases Date:	<u> </u>	Recolledor:	REMA	WS WILL	1	650	15.47	11	4771		-
Date: Times: Received by Laboratory:	Duc	TImes:		1								
		Than	Received by Laborator	<u> </u>	Muone	~	1		W Last	10	<i>n</i> / 0	ی

63 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST COLORDO OSTO COC. 0570	YSIS	i		Ba Cd Cr	# 64 64 1 24 8/	ETEX 8(12.1) TOLP Metals TCLP Volatile TCLP Volatile TCLP Semi V TOS RCI	C840 X						MARKS RESUSTS H. CYTOW		Luvoire Lemma fast 1015 m
	Phone #: (915) 664-9166 FAX#: (505) 392-3760	MOLAND 1x 79704	Project Name : SP-//	Sampler Signature		Volume/Amou Volume/Amou Soul Scubge HNO3 HCL HOCL HOCL HOCL HOCL HOCL HOCL HOCL	2 X X X X X X Z						Times: Recovery by: /300	Times: Received by	Recei
Environmental Lab of Tex	Project Manager: Jesse Mylor	Company Name & Address: 676.7	Project #:	Project Location:		LAB USE) (LAB USE)	COOP MW25	22730					Relinquished by: Date: 2999	Relinquished by	Relinquished by: Date:

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310 FAX: 505-392-3760

SampleType: Water

Sample Condition: Intact/ Iced/HCI

Project #: EOT 1015C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 03/24/00 Receiving Date: 03/25/00 Analysis Date: 3/27-3/29/00

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m.p-XYLENE mg/L	o-XYLENE mg/L
24291	MW 1	0.547	0.098	0.169	0.042	0.014
24292	MW 2	0.001	0.001	<0.001	<0.001	<0.001
24293	MW 3	< 0.001	0.001	<0.001	< 0.001	<0.001
24294	MW 4	0.015	0.001	0.003	0.001	<0.001
24295	MW 6	0.009	<0.001	<0.001	<0.001	<0.001
24296	MW 7	0.044	0.010	0.014	0.004	0.002
24297	MW 9	0.012	0.002	0.002	< 0.001	<0.001
24298	MW 10	0.022	0.004	0.005	0.004	0.002
24299	MW 11	1.40	< 0.025	<0.025	<0.025	<0.025
24300	MW 12	0.012	0.002	< 0.001	0.004	0.001
24301	MW 13	< 0.001	<0.001	<0.001	< 0.001	<0.001
24302	MW 14	3.47	< 0.025	0.200	0.069	0.037
24303	MW 15	0.001	< 0.001	<0.001	< 0.001	<0.001
24304	MW 16	0.108	0.028	0.005	0.005	0.002
24305	MW 17	0.055	0.063	0.023	0.017	0.007
24306	MW 18	< 0.001	<0.001	< 0.001	< 0.001	<0.001
24307	MW 19	0.003	<0.001	< 0.001	<0.001	<0.001
24308	MW 20	< 0.001	< 0.001	<0.001	<0.001	<0.001
24309	MW 21	0.002	<0.001	<0.001	<0.001	<0.001
24310	MW 22	< 0.001	<0.001	<0.001	<0.001	<0.001
24311	MW 23	<0.001	<0.001	<0.001	<0.001	<0.001
24312	MW 24	0.762	<0.010	<0.010	<0.010	<0.010
24313	MW 25	<0.001	<0.001	<0.001	<0.001	<0.001
	% IA	101	92	91	100	87
i	% EA	97	87	87	94	85
	BLANK	<0.001	<0.001	<0.001	<0.001	<0.001

METHODS: SW 846-8021B,5030

Ralam ax Jull

3-30-00

LAWAILE LONDAIN FROST LOISM CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST # OCO ANALYSIS REQUEST MAIL Cosurs RCI SOI TCLP Semi Volaliles TCLP Volatiles Total Metals Ag As Ba Cd Cr Pb Hg Se TCLP Metals Ag As Ba Cd Cr Pb Hg Se HdI 1.814 BTEX 8(12(1/5/18)) REMARKS 1332 14 1140 1043 1037 1148 1003 (915) 563-1800 FAX (915) 563-1713 SAMPLING 2 Environmental Lab of Texas, Inc. 12600 West 1-20 East Odesra, Texas 79763 **HIME** Phone #: 815) 664 - 9166 FAX#: (Jed) 352-5760 42.5 **3TA**0 Received by Laboratory: Sampler Stepature: PRESERVATIVE METHOD **NER** иои 1x 29204 1-505 Received by: ICE ниоз нсг Project Name: **O.LHEK** ernbee MATRIX Call ЯIA 2821 NOS MIDEAND **ЯЗТА**М Times: Times InuomA\smulo\ # CONTAINERS N 3-2400 OCHU SE 1.0.80x 4 Bus Project Manager: JESS MY CON Date: Date Date: FIELD CODE Company Name & Address: FTEL for inse now of 11/2 Mil MV MM DW ME U Mar Project Location: Relinquished by:

(LAB USE)

ONLY

78

Project #:

26212 542 93 46242 Sb 2h2 902h2 T9245 242 98

16242

Kelinquished by:

Reling laked by

24300

24.301

ट्यंटक

LAVORE LONNANT FROST WISM M. Himon CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST ANALYSIS REQUEST # 200 MAIL Hosurts RCI SOI TCLP Semi Volaliles TCLP Volatiles Total Metals Ag As Ba Cd Ct Pb Hg Se TCLP Metals Ag As Ba Cd Cr Pb Hg Se BTEX 8020/2/1800 REMARKS DAY BAY 660 147 8/2/ 1210 1203 200/ aza/ 5201 SAMIPLING (915) 563-1800 FAX (915) 563-1713 TIME Environmental Lab of Texas, Inc. 12600 West 1-20 East Ouessa, Texas 79763 Phone #: 815 664 - 9166 FAX#: (Jed) 352 - 5760 12-5 Received by Laboratory: **3TA**0 Limes low ОТНЕВ PRESERVATIVE METHOD иои MIDLAND IX 19704 Received by: ICE Received ниоз Sampler Signature: нсг Project Name: ОТНЕК ernoee 150 ЯΙΛ TIOS 1235 **ИЗТАW** Times: Times: Tlmes: InuomAlamuloV # CONTAINERS 3-24-00 COCOM SE P. U. BUX 4 BUS Project Manager: JESSE MYROM Date: FIELD CODE Company Name & Address: FTCL 27 MW MW 20 for insc (1 MW 11/10 1) WIL 18 MM 12 MUS MW 13 52 MW asso * Anno Relinquisted by. Retingulahed by: Project Location: Relinquished by: 24312 24303 24309 /LAB USE / 24302 34308 243Ch2 70545 #30H 24365 24310 11842 ONLY **KB#** Project #:

INVOICE CONNENT FROST LOISAN CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST 100 × ANALYSIS REQUEST MAIL Hosury RCI SOI TCLP Semi Volaliles TCLP Volatiles Total Metals Ag As Ba Cd Cr Pb Hg Se TCLP Metals Ag As Ba Cd Cr Pb Hg Se HqT 1.814 4545/0208 X3TB REMARKS (915) 563-1800 FAX (915) 563-1713 SAMIPLING 3-24 1935 Environmental Lab of Texas, Inc. 12600 West 1-20 East Odessa, Texas 79763 TIME Phone #: \$15) 664 - 9166 FAX# (Jed) 352 - 3760 **BTA**0 g nonumy Received by Laboratory: Sumpler Signature: **РЕНТО** PRESERVATIVE METHOD NONE MIDIAND IX 19704 Received by: ICE коин нсг Project Name: O.LHEB SEUDGE MATRIX AIR 1235 ROIL ЯЭТАМ Times: InuomA\smuloV # CONTAINERS 25- Merrol P.O. BOX 4 BUS Project Manager: JESSE MYROM Date: Date Date: FIELD CODE Company Name & Address: FTEL for insc MW 2 Project Location: Relinquished/by: Rolfnquished by: /LAB USE \ 24313 **LAB**# ONLY Project #:

Zal.	Texas 79763 Texas 79763 CRAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST	 4882 ANALYSIS REQUEST			S 2H 49 5		SAMPLING	2.020 2.81 1.81 A etate QA etat Baliteic	STEU BY A TIME BY FRH 4	6-14 M25X						4	F.K. HOOD OPFIL	4.62	LANDICE: EOTT TOISM	
	, 12600 West I-20 East Odessa, Texas 79763	Phone #: (725) 397 485		HOBBE NAN	Project Name:	Sampler Signarifye:	MATREY PRESERVATIVE	METHOD	OTHER HOOS HOCF HOCF OLHER VIU ZONCE ZONC MALER							Received by:	2	your Bureau Bay	Received by Laboratory:	
	Environmental Lab of Texas, Inc. 12600 Wert 1-20 East Odesta, Texas 79763	Jesse Jayeak	1	Address CTG I			5	ЛЭИІЛ	I CONT.							Date: Times:	Date: Time:	1-14-00	Дле: Тле:	
	Enviro	Project Numeru:	2	L. Ompany Name & Address:	Project#:	Project Location		-	(LABUSE)	1102						Kellnguished by:	Rellaquished by.	The state of the s	Hellnquishes by	

ENVIRONMENTAL LAB OF

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 505-392-3760

FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ 32 deg. F

Project#: EOT 2022C Project Name, SPS-11 Project Location, Lea County

Sampling Date: 06/03/00 Receiving Date: 06/03/00 Analysis Date: See Below

ELT#	FIELD CODE	Sulfate mg/L	Chloride mg/L	Carbonate mg/L	Bicarbonale mg/L	TDS mg/L
oroue			27		101	~ "4
26256	WM 5e	52.8	27	0	134	274
26257	MW 27	59.7	35	٥	133	282
26258	MW 28	47,2	27	0	241	366
	QUALITY CONTROL	54.2	5495	•	*	
	TRUE VALUE	50.0	5000	-	٠.	•
	% PRECISION	108	110	4	*	h
	ANALYSIS DATE	06/06/00	06/06/00	06/06/00	06/06/00	06/05/00

METHODS: EPA 375.4, 325.3, 310, 160,1

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310

FAX: 505-392-3760

Sample Type: Water .

Sample Condition: Intact/ Iced/ 32 deg. F.

Project#: EOT 2022C Project Name: SP5-11 Project Location: Lea County

Field Code: MW 25

Sampling Date: 06/03/00 Receiving Date: 06/03/00 Analysis Date: 06/05/00

EPA SW846 8270 (mg/L)	REPORT LIMIT	ELT# . 26256	RPO	%EA	%DEV	
And the state of t						
Naphthalene	0.005	ND			7.4	
Acenaphthylene	0.005	ND			2.5	
Acenaphthene	0.005	ND	1	81	8.6	
Fluorene	0.005	NO			₹.O-	
Phenanthrene	0.005	NO			3.4	
Anthracene	0,005	ND			1.3	
Fluoranthene	0.00\$	ND			2.3	
Fyrene	0.005	ND	٦	82	-9,0	
Benzo[a]anthracene	0.005	ND			-2.4	
Chrysene	0,005	ND			-5.4	
Banzo[b]fluoranthene	0.005	NO			-7.1	
Benzo[k]fluoranthene	0.005	ND			9,1	
Benzo (a)pyrene	0.005	ND			-50	
Indeno[1.2.3-cd]pyrene	0.005	ND			0,9	
Dibenz(a,h)anthracene	0,005	ND			0.2	
Benzo(g.h.i)perylene	0.005	ND			6.2	
		% RECOVERY				
Nitrobenzene-d5 SURR		99				
2-Fluorobiphenyl SURR		97				

ND= not detected at report limit. Method: EPA SW 846 8270C , 3510

p-Terphenyl-o14 SURA

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310 FAX: 505-392-3760

Sample Type: Water

Sample Condition: Intact/ Iced/ 32 deg. F

Project #: EOT 2022C
Project Name: SPS-11
Project Location: Lea County

Field Code: MW 27

Sampling Date: 06/03/00 Receiving Date: 06/03/00 Analysis Date: 06/05/00

EPA SW546 8270 (mg/L)	REPORT LIMIT	ELT# 26257	RPD	%EA	%DEV	
					~ .	
Naphthalene	0,005	ND			7.4	
Acenaphthylene	0.005	ND			2.5	
Acenaphthene	0.005	ND	1	18	6,6	
Fluorene	0.005	ND '			-0.3	
Phonanthrone	0.005	NO			3.4	
Anthracene	Q, Q Q\$, ND ,			1.3	
Fluoranthene	0.005	ND			2.3	
Pyrene	0.005	ND	1	82	-9.0	
Benzo(a)anthracene	0.005	ND			-2.4	
Chrysene	0.005	ND			-5.4	
Benzo[b]fluoranthene	0.005	ND.			~7.1	
Benzo(k)fluoranthene	0.005	ND			9.1	
Benzo [a]pyrene	0.005	ND			-5.0	
Indeno(1,2,3-cd)pyrene	0.005	ND			0.9	
Dibenz(a,h)anthracene	0,005	ND			0.2	
Benzo[g.h.i]perylene	0.005	ND			6.2	
		% RECOVERY				
Nitrobenzene-d5 SURR		100				
2-Fluorobiphenyl SURR		98				
p-Terphenyl-d14 SURR		90				

ND= not detected at report limit. Method: EPA SW 846 82700 ; 3510

Polancia Turle

ENVIRONIVENTAL

LAB OF C, INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-392-3760

Sample Type: Water

Sample Condition: Intact/ Iced/ 32 deg. F

Project #: EOT 2022C Project Name: SPS-11 Project Location; Lea County

Field Code: MW 28

Sampling Date: 06/03/00 Receiving Date: 06/03/00 Analysis Date: 06/05/00

	REPORT	ELT#			
EFA SW845 8270 (mg/L)	LIMIT	26258	RPD	%EA	%DEV
					7.4
Naphthalene	0.005	ND			7.4
Acenaphthylene	0.005	ND			2.5
Acenaphthane	0.005	ND	7	81	6.6
Fluorene	0,005	ND			-0,3
Phenanthrene	0,005	ND			3.4
Anthracene	0,005	ND			1.3
Fluoranthene	0.005	ND			2.3
Pyrene	0,005	ND	7	82	-9.0
Benzo[a]anthracene	0.005	ND			-2.4
Chrysene	0.005	ND			-5.4
Benzo(b)fluoranthene	0,005	ND			-7.1
Benzo[k]fluoranthene	0.005	ND			9.1
Benzo (a)pyrene	0.005	ND			-5.0
Indeno[1,2,3-cd]pyrene	0,005	ND			0.9
Dibenz[a,h]anthracene	0.005	ND			0.2
Benzo(g.b.) perylene	0.005	ND			6.2
		% RECOVERY			
Nitrobenzene-d5 SURR		98			

2-Fluorobiphenyl SURR 97 p-Terphenyl-d14 SURR 92

ND= not detected at report limit.
Method: EPA SW 846 8270C 3510

Raland K Turtle

"Don't Treat Your Soil Like Diri!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 505-392-3760 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/Iced/HNO3/ 32 deg, F

Project #: EOT 2022C Project Name: SPS-11 Project Location: Lea County Sample Date: 06/03/00 Receiving Date: 06/03/00 Analysis Date: 06/08/00

Analyte (mg/L)	MW 26 26256	MW 27 26257	MW 28 26258	Report Limit	% A	%EA	BLANK	RPD
Aluminum	22,8	6.82	15.4	0.0500	94	96	<0.0500	0.52
Arsenio	0.0160	ND	0.0140	0,0050	94	100	<0.0050	2.02
Barium	0.5880	0.1470	0.4090	0,0100	97	96	<0.0100	0.00
Beryllium	ND	ND	ND	0.0040	102	104	<0.0040	1.90
Cadmium	0.0030	0.0020	0.0040	0,0010	96	98	<0.0010	0.00
Calcium	298.0	266.0	655 .0	1 000	98	N/A	<1.000	0.16
Chromium	0.0980	0,0530	0,0860	0.0050	98	101	<0,0050	0.49
Cobalt	0.0240	ND	ND	0.0200	100	102	<0.0200	0.20
Copper	0.0220	ND	0.0130	0.0100	101	83	<0.0100	0.93
Iron	18,20	4.660	9.730	0.0500	103	97	<0,0500	1.83
Lead	0.0180	ND	0,0070	0.0030	94	98	<0.0030	0.00
Magnesium	26,80	16.80	30.30	1.000	100	N/A	<1.000	0.57
Manganese	0.5920	0,0900	0,2450	0.0150	97	98	< 0.0150	0.20
Mercury	ND	NO	ND	0.00020	104	101	<0,00020	4.04
Malybdenum	ND	ND	ND	0.050	97	98	<0.050	0.20
Nickel	0.0490	0.0190	0.0330	0.0100	95	95	<0.0100	0.00
Potassium	8.070	4.910	8,180	1.000	85	N/A	<1.000	N/A
Selenium	ND	ND	ND	0 0050	96	102	<0.0050	4.00
Silver	ND	ND	ND	0.00500	98	104	<0.0050	0.00
Sodium	32,70	33.60	40,60	1.000	105	N/A	<1.000	0 45
Tin	ND	ND	NO	0.0500	98	98	<0.0500	0.10
Vanadium	0.1390	0.0450	0.0880	0.0200	97	99	<0.0200	0.00
Zinc	0.0530	ND	0.0590	0.0200	99	91	<0.0200	0.00
Boron	0.119	0 106	0 144	0.050	105	103	<0.050	0.00
Strontium	0,584	0.522	0.994	0.050	98	67#	<0.050	54,51#

ND = Below Reporting Limit

METHOD: EPA SW846-6010E, 7470

Raland K. Tuttle

*G-9-0*0 Date

de⊁:SO 00 60 unt

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ 29 deg. F

Project #: EOT 2015c Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 06/14/00 Receiving Date: 06/17/00 Analysis Date: 06/21/00

			DELITE IE	TOLLIENE	PTINI NPANTAL	100 EVE	- 10% ENE	TOTAL
ELT#	F	IELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m.p-XTLENE _mg/L	o-XTLENE mg/L	BTEX mg/L
							iii.g.c	
26989		MW 1	2.28	0.060	0.451	0.060	0.013	2.86
26990		MW 2	0.015	0.006	0.007	0.002	<0.001	0.030
26991		MW 3	0.003	0.001	0.003	< 0.001	<0.001	0.007
26992		MW 4	0.021	0.001	0.006	0.001	< 0.001	0.029
26993		MW 6	0.005	< 0.001	0.002	<0.001	<0.001	0.007
26994		MW 7	0.014	0.003	0.004	< 0.001	<0.001	0.021
26995		MW 9	0.041	< 0.001	0.024	0.002	<0.001	0.067
26996		MW 10	0.012	0.004	0.007	0.002	0.002	0.027
26997		MW 11	0.724	0.002	0.001	<0.001	<0.001	0.727
26998		MW 12	0.009	<0.001	0.001	<0.001	< 0.001	0.010
26999		MW 13	<0.001	<0.001	<0.001	< 0.001	< 0.001	<0.001
27000		MW 14	1.59	0.016	0.106	0.010	<0.010	1.72
27001		MW 15	0.0 06	< 0.001	< 0.001	<0.001	< 0.001	0.006
27002		MW 16	0.017	0.002	<0.001	0.001	< 0.001	0.020
27003		MW 17	0.019	0.023	0.011	0.007	0.004	0.064
27004		MW 18	<0.001	< 0.001	<0.001	<0.001	<0.001	< 0.001
	% IA		91	87	86	94	87	
	% EA		96	91	93	102	94	
	BLANK		<0.001	<0.001	<0.001	<0.001	<0.001	

METHODS: SW 846-8021B,5030

Umesh Bao, Ph. D

6/23/07)

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 915-520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ 29 deg. F

Project #: EOT 2015c Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 06/14/00 Receiving Date: 06/17/00 Analysis Date: 06/21/00

FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L	BTEX mg/L
MW 19	0.002	<0.001	<0.001	<0.001	<0.001	0.002
MW 20	< 0.001	<0.001	<0.001	< 0.001	< 0.001	< 0.001
MW 21	0.002	<0.001	< 0.001	< 0.001	<0.001	0.002
MW 22	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	<0.001
MW 23	0.007	< 0.001	<0.001	< 0.001	<0.001	0.008
MW 24	0.887	0.013	0.004	0.004	0.002	0.910
MW 25	0.002	< 0.001	<0.001	<0.001	<0.001	0.002
	MW 19 MW 20 MW 21 MW 22 MW 23 MW 24	MW 19 0.002 MW 20 <0.001 MW 21 0.002 MW 22 <0.001 MW 23 0.007 MW 24 0.887	MW 19 0.002 <0.001 MW 20 <0.001	MW 19 0.002 <0.001 <0.001 MW 20 <0.001	MW 19 0.002 <0.001 <0.001 <0.001 MW 20 <0.001	FIELD CODE mg/L d0.001 d0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001

% IA	88	86	86	94	87
% EA	85	82	81	84	80
BLANK	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001

METHODS: SW 846-8021B,5030

Umesh Rao, Ph. D.

23/17 Date

1C. 12600 West L-20 East Odeser, Texas 79763 (915) 563-1800 FAX (915) 563-1713 (915) 563-1800 FAX (915) 563-1713	754 4832 ANN 397-4701	2 s	Name:	Cre	Be Cd	RVATIVE SAMPLING	2.1 A 2 A 2 BA Bei	8020 418.	TCLP Total	X X X K-14 1217 X X X	1120		72.85	103/	1245	7600	(300	1207	00//	1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1/ 1	Received by: REMARKS	FR - HOBY OFFICE		Uniah Rom.	Received by Laboratory:
S, Inc. 12600 West (915)	Phone #: GOS FAX #: GOS	and HOBBS	Project Name :	Sampler	4	NATRI	luu	35	Volume SOIL SOIL AIR	2 1/ x											Times:	1600	Thees:	140 pm	
Environmental Lab of Texas, In	Project Munager: Ses Ayles A	Company Name & Address: ETG, I	Project:	Project Loration:	Les moth sim			FIELD CODE	(LAB USE)	2468 mw /	2490 mm 2	240 11 may 3	24992 must		26994 mw 7	2695 mer 9	20996 MW 10	24997 MW 11	24998 mw 12	2699 mw 13	-	And love 6-16-06	Relinquished by. Date:	Dens 2 - 5 6 - 17 - co	Relinquinfed by: Date:

S) 563-1713 CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST	4882 ANALYSIS REQUEST	•5	S gH dq v		24 gA		HGT TGLP1 MIMOT TGLP7	1 / W/W / W/W	Jacob	Miss-	1320	13,13	7887	//ct	1/4/2 SAI	9.00	MAC	J 1935 V	REMARKS 100 1107 - U.D.	The Result; 511 [10]	20°F	TAVACE, EOT 1050
12600 West 1-20 East Odessa, Texas 79763 (915) 563-1800 FAX (915) 561-1713	-668 (Sas)	34/	iame: PC-11	Sampler Signature:	PRESERVATIVE		OTHER HUO3	X X											Received by:	Describing has	3	Received by Laboratory:
12600	Phone #: FAX #: (SASSI HORBE	Freject N	Sampler		i/vmour	SCOULT NOT NOT NOT NOT NOT NOT NOT NOT NOT NO												Times:	Times:	1 to Dan	Times:
Environmental Lab of Texas, Inc.	1655c / Ayeak	Company Name & Address FT& Z 25 40 20 May 1	1	To the state of th	11000	TIELD CODE		14	muss	D14/6	· I		}	02 MM	mw 21	MW22	MWES			F. 14/10	Sup.	by: Date
Env	Project Manager	Company Na	Project #:	Project Location		LAB*	(LAB USE)	27000	10 012	20012	27003	hool2	27005	270 OC	1902	27008	27009	27019	Rellinguished by:	Religionished Fr		Retinquished

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: BETH ALDRICH P.O BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ -4deg C

Project #: EOT 2022C Project Name: SPS-11 Project Location: Lea Co., N.M. Sampling Date: 09/22/00 Receiving Date: 09/27/00 Analysis Date: 10/03/00

ELT#		FIELD CODE	BENZENE MB/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p.XYLENE mg/L	o-XYLENE mg/L
31349		MW-1	0.455	0.115	0.128	0.051	0.023
31350		MW-2	< 0 001	<0.001	< 0.001	< 0.001	< 0.001
31351		MW-3	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
31352		MW-4	0.015	0.002	0.006	0.002	0.001
31353		MW-6	0.040	< 0.001	0.010	0.003	< 0.001
31354		MW-7	0.150	0 026	0.084	0.022	0.015
31355		MW-9	0.058	< 0.001	0.008	0.002	< 0.001
31356		MW-10	0.026	0.005	0 016	0.006	0 005
	%IA		95	101	96 100	102	101 114
	%EA Filank		104 <0.001	110 <0.001	109 <0.001	114 <0.001	<0.001

METHODS: EPA SW 846-8021B ,5030

Rajaha K. Tuttle

10-6-00

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN. BETH ALDRICH

P O. BOX 4845 MIDLAND, TEXAS 79704 FAX: 915-520-4310

FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ -4deg, C

Project #: EOT 2022C Project Name: SPS-11 Project Location: Lea Co., N.M.

Sampling Date:	09/22/00
Receiving Date:	09/27/00
Analysis Date: 1	0/04/00

•		BENZENE	TOLUENE	ETHYLBENZENE	m,p XYLENE	o-XYLENE	
ELT#	FIELD CODE	mg/t,	mg/L	mg/L	mg/L	mg/L	
31357	MW-11	1.97	<0 100	<0.100 ·	<0.100	<0.100	
31358	MW-12	0.716	0.026	0.310	0.091	0.039	
31359	MW-13	0.001	< 0.001	0 003	< 0.001	< 0.001	
31360	MW-15	0.011	< 0.001	0.002	< 0.001	< 0.001	
31361	MW-16	0.036	0.003	< 0.001	< 0.001	< 0.001	
31362	MW-17	0.058	0.059	0.029	0.014	0.006	
31363	MW-18	0.002	< 0.001	< 0.001	<0.001	<0.001	
31364	MW-19	0.002	< 0.001	0.002	< 0.001	< 0.001	
31365	MW-20	0.002	< 0.001	0.001	< 0.001	<0.001	
31366	MW-21	0.002	< 0.001	0.001	< 0.001	< 0.001	
31367	MW-22	< 0.001	< 0.001	<0.001	< 0.001	< 0 001	
31368	MW-23	< 0.001	< 0.001	< 0.001	<0.001	< 0.001	
31369	MW-24	0.663	0.012	0.004	0.003	0.002	
%IA		104	96	98	102	95	
%EA		97	89	. 96 87	90	95 84	
BLAN	ıĸ	< 0.001	<0.001	<0.001	<0.001	<0 001	

METHODS: EPA SW 846-8021B ,5030

Raland K. Tuttle

10-6-00

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: BETH ALDRICH

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ -4deg. C

Project #: EOT 2022C Project Name: SPS-11 Project Location: Lea Co., N.M. Sampling Date: 09/22/00 Receiving Date: 09/27/00 Analysis Date: 10/04/00

		BENZENE	TOLUENE	ETHYLBENZENE	m.p.XYLENE	o-XYLENE
ELT#	FIELD CODE	mg/L	mg/L	mg/L	mg/L	mg/L
21270	MW OF	-0.001	.0.001	-0.001	-0.001	-0.001
31370	MW-25	< 0.001	<0.001	<0.001	<0.001	<0.001
31371	MW-26	0.021	0.041	0.008	0.013	0.006
31372	MW-27	< 0.001	<0.001	<0 001	< 0.001	<0.001
31373	MW-28	1.58	0.059	0.374	0.192	0.024
31374	EB-1	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001
31375	MW-14	3.65	< 0.100	0.518	0.229	< 0.100
%IA %EA		95 93	101 99	96 95	102 100	101 99

METHODS: EPA SW 846-8021B,5030

Reland K Tuttle

10-6-00

Fraject Muniger. Fraject Muniger. Loss 1855 Loss 1855 Loss 1855 Loss 1855 A COUNTY MUNICAL COORE Loss 1855 A COUNTY MUNICAL 31355 MINU C 31355 M	TAZ WAN MARLE WA	Prone #: Sandler Fix	METHOD WETTOD STATE OF THE STAT	REMARKS REM	TCLP Metals Ag As Ba Cd Cr Pb Hg Se Total Metals Ag As Ba Cd Cr Pb Hg Se	TOLD CONTINUES OF THE PARTY OF	7 TOS	ANALYSIS REQUEST TOLP Semi Volaliles RCI RCI	rsis request	7	25%	
	s	That:	Accirca by:	N X	Resurry	, עני עני) ~ T	1/2	HOBBS	OFF	OFFICE	u.
Retinquished by:	Date	Tlnca:	Received by Laboratory:	MAIL	8	Esurs	۲	EOT	K			

vironmental	Lab of Tex	vironmental Lab of Texas, Inc. 12600 Wett-20 B	-20 E Ddesta, Texas 79763		(, , ,					
		(915) 54			y-of-cu	stop (COC #	CHAIN-OF-CUSTODY RECORD AND ANALYSIS REQUEST COC # 234	is reque	21	
Project Manager		Phone N: 605)	397-188	7					0	1	T
BETH A	LORICH	FAX#: G	(Ga) 397-476			ž	. 7 515 1	ANALYSIS ICEQUESI	506	ئە كى	
Company Mame & Address: FTG Z	75									F	
2540	40 W MARL	RLAND HOURS	s Nm								
i		Project Name	ne:							-	
401 202	2.5	う _.	カート						·		
Project Location		Sampler Signature:	mature:	<u> </u>							
LEN COUN	14	Show	200			<u>ا</u> ساح					·
		i	PRESERVATIVE SAMPLING METHOD		€A QA						·
		now	Morre	()SI	218)						
(43 %) FIELD	FIE_D CODE		НЕВ ЭИЕ 203 31	18 X3	aM 9J IaM Is	LP Ser	S				
ony /		375 200 200 200 200	HO ITO	MIT TB	DT.		เอา เอก				
31371 MW-2	9	7 2 1	1 X 928	1203 1					-	-	
31372 MW 27	7.7									-	
MEN	2.8			601						-	
63				1215		ļ					
31375 mm 14			ラファ	1 0460							
						_				-	1
						-				1	
											T
0.0											
Hounganger by	Pale:	Three:	Received by:	REMARKS.	KS.	., U	E01.	K	Rec. 4%		
Relicentabed by:	Date:	7ीयवः	Received by:	1 XX	Resurns	aci	7 <	Habbes	OFFICE	ر دره	
Relinquished by:	Dates	Тла:	Received by Laboratory;	MAIL	4	Esurs	۲.	EOT) .	

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC. ATTN: BETH ALDRICH P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ -2.0 deg. C

Project #: EOT 2022C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 12/28/00 Receiving Date: 12/30/00 Analysis Date: 01/01/01

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L	
35769	MW 1	1.99	0.050	0.442	0.110	0.056	
3 57 70	MW 2	0.002	0.001	0.001	< 0.001	< 0.001	
35771	MW 3	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
35772	MW 4	0.011	0.002	0.003	< 0.001	< 0.001	
85773	MW 6	0.010	0.001	0.002	< 0.001	< 0.001	
5774	MW 7	0.043	0.002	0.040	0.002	< 0.001	
35775	MW 9	0.867	< 0.010	0.344	0.043	< 0.010	
5776	MW 10	0.018	0.003	0.015	0.002	0.002	
5777	MW 11	0.250	< 0.001	< 0.001	< 0.001	< 0.001	
35778	MW 12	0 313	0.006	0.063	0.012	0 004	
35779	MW 13	< 0.001	< 0 001	< 0.001	< 0.001	< 0 001	
35780	MW 14	3.97	0.003	0.392	0.239	0.015	

%IA	89	89	91	96	S 2
%EA	87	88	88	93	89
BLANK	<0.001	<0 001	< 0.001	<0.001	< 0.001

METHODS: EPA SW 846-8021B,5030

Raland K. Tuttle

01-014-01

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: BETH ALDRICH P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 915-520-4310

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ -2.0 deg C

Project #: EOT 2022C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 12/28/00 Receiving Date: 12/30/00 Analysis Date: 01/03/01

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/l.	m,p-XYLENE mg/L	o-XYLENE mg/L	
35781	MW 15	0.028	< 0.001	< 0.001	< 0.001	< 0.001	
35782	MW 16	0.043	0 032	0.007	0.004	0.002	
35783	MW 17	0.065	0.080	0.024	0.014	0.007	
35784	MW 18	0.007	<0.001	0.002	0.001	< 0.001	
35785	MW 19	0.012	< 0.001	0.002	< 0.001	<0.001	
35786	MW 20	0.005	< 0.001	0.001	< 0.001	< 0.001	
35787	MW 21	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
35788	MW 22	<0.000	< 0.001	< 0.001	< 0.001	< 0.001	
35789	MW 23	0.001	< 0.001	< 0.001	< 0.001	< 0.001	
35790	MW 24	1.38	< 0.010	< 0.010	< 0.010	<0.010	
35791	MW 25	< 0.001	<0.001	< 0.001	<0.001	<0.001	
35792	MW 26	0.386	0.130	0.040	0.025	0.014	
35793	MW 27	0.003	0.004	0.002	<0.001	<0.001	
35794	MW 28	4.08	0.073	0.469	0.150	0.038	
35795	EB 1	< 0.001	<0 001	< 0.001	< 0.001	< 0.001	
%IA		102	107	102	105	104	
%EA		99	92	90	88	93	
BLAN	IK	<0.001	<0.001	< 0.001	< 0.001	<0.001	

METHODS: EPA SW 846-8021B,5030

Raland K Tuttle

01-04-01

				- 1.						7	200	E S	0		Page /	ō
Omental Technology Groun		For Use On EO	COLLENERGY		CORP. Projects Only			CHA	CHAIN-OF-CUSTODY	-CUS	TODY		ANA	AND ANALYSIS REQUEST	REQU	EST
I Was a superior of the superi	/vc 103	4600 Wast wat Muland, TX 79703 Tel (915) 522-1139 Fax (915) 520-4310	2540 West Marland Hobbs, NM 88242 Tel (505) 397-4882 Fax (505) 397-4701	•	EOTT ENERGY CORP. East Business 20 TX 78702 (915) 687-3400 (915) 582-2781	5805 Michand Tel Fax 2781	1G - K			A 0	ANALYSIS REQUEST (Circle or Specily Melhod No.)	SIS RI pecify I	SOUE	ST No.)		
Project Manager	HOIDE		EOTT Leak Number	oer:			-			- 01	-					
;			ETGI Project Number	nber: £07	3	22 C				b/JOAL						
Project Locaton	XZ }		Sampler Signature:	E 1												
1	i .		MATRIX	PRESERVATION METHOD	VATION	SAMPLING	LING	·-····································						€197		
LAB# FIEL	FIELD CODE	AINERS	3	,		2000			С (8100 New) tild aA gA alt	sametov o	2608 2608		SEID STE SAOII		
			SENDG: VIK	NSHRO'S HNO'S HCF	NONE	3TAG	TIME	TEN 80151 1511 418 1	DYS8 HA9		TCLP Sem	8 səliləs v Semi Yola	1 0at 2CT	1Alaneda)		
35769 MW	_	2 V X		X	Х	12.18 /4	1460	×								
MW	Ŋ					(/)	1286									
ML	3					/3	1315							-		
# MM IZLIESE	7						1330									
35773 MW 6	٥						14, B									
34	1 r						1340	- -		_			_			
ì	6					97	31/11		_	1			\dashv		_	
3 ¥	\$\$ -					7	60	_		1		1		\dashv	1	_
35777 AW						7	155%			1		-		1		
35778 MW 12	77						1527		1			-			_	
35779	13					"	1200						1	1	_	
35764 RW 14	41			7			J-27.51	_						二		킈
Relinquished by: Da	Date:	Time:	Received by:	Date	te:	Time:	<u>K</u>	REMARKS		Rep	2	, ,	ک			
Amon (does	12 36-00	7.00	Orm De	Don	13.30	0,70	90	IT &		Kesucrs!		£ 1	10880H			
:kq	Dafe:	Time:	Received at	_ab by	Date:	Tune		-		, ,	•	: },				
J. E. S. March	17:30.00	12:30	- Leine Tillinengla-30-00	right	والهجماء		1230	s l	3000	. ,	2	_				
			3													

vroomental Technology Group In

Hanager	Factor F	ne 31 Technology	19. Gro.,	FCT USE ON EOT	SOTT ENERGY	CV COR	RP. Projects Only	Only	_	CHA	O-N	LOU'S	TOD	Y AN	ANALY	O IO A	RECUE	TO LE
The control of the	Color Colo	E.	,	לובואל וספואו מספר	25.50 Water Manual		T ENERGY CORU			<u>.</u>				2	<u> </u>	ורוטיט	ב ב ב	S E E
PETT Log Number PETT PE	PETAL MORCAL FIGURATION FINE ID CODE FINE	u 🏃		4600 Wesi wali Maland, T. 79703 Tel (915) 522-1139 Fax (915) 520-4310	25+U VVSK Marian Hobbs, NM 8824 Te! (505) 397-488 F&x (505) 397-470		ii Business 20 (79702 3) 687-3400 (915) 582	2781	L			4 9	NAL)	SIS F	(EQUI	EST (No.)		
Fig. Control	The first control of the fir	roject Manager		ملايد مين يدمي المحتود ميدان يستني مد		ber:						0,					F	
MATTER MATTER	Fig. Cont. Min. Sample Signalia Mat. Ma				ETGI Project Nu		2082	, ,				(> UB01						
The collision of the	The color of the	roject Location	~ 1		Sampler Signatur	, ,	1.	1	T		- (
MALEN DOLLAR MALEN MALEN	HELD CODE	454	1	7		222	1428 V				Ajuo (_	_	
The code	The code				MATRIX	MET	HOD	SAMPL	ING.							£ 92		
Mar. 15	MALE 16 MALE 1	LAB#	FIELD CODE	JunomA	Ε			2600	781	2001 XTI				8098	00/ZB Sau	(5/4 875 2noi		
Mus 16 Mus 18 Mus 28 Mus 28	Mus 16 Mus 17 Mus 18 Mus 21 Mus 24 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 27 Mus 27 Mus 27 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 27 Mus 27 Mus 28 Mus 28			Volume	ЯІА	HNO3		DATE [1,815 H9T				8 seutsiov		Cauonsi		
Mus 24 Mus 24 Mus 24 Mus 24 Mus 25 Mus 25 Mus 25 Mus 25 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 27 Mus 26 Mus 27 Mus 28 Mus 47 Mus 47	May 14 May 18 May 28 May 26 May 27 May 26 May 26 May 26 May 27 May 27 May 27	<u>&</u>	-	>		X	χ	28				-						
Mww 12 Mww 22 Mww 24 Mww 26 Mww 26	May 17 May 18 May 24 May 24 May 24 May 25 May 25 May 26 May 27 May 26 May 26 May 27 May 26 May 26 May 26 May 27 May 26 May 26 May 27 May 26 May 26 May 26 May 27 May 27 May 26 May 27 May 27 May 28 May 28		1/4 Call					74:	6.5									-
May 28 May 21 May 21 May 23 May 25 May 25	May 18 May 24 May 24 May 24 May 25 May 25 May 26 May 26	•	Fres 17					91	60									
Mus 29 Mus 24 Mus 24 Mus 24 Mus 24 Mus 25 Mus 25 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 28 Mus 27 Mus 28 Mus 28	Mus 29 Mus 21 Mus 24 Mus 24 Mus 25 Mus 25 Mus 25 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28	35784	7 LOS 100					//	146									
Mus 28 Mus 24 Mus 25 Mus 25 Mus 25 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 27 Mus 28 Mus 28	Mus 28 Mus 24 Mus 24 Mus 25 Mus 25 Mus 25 Mus 26 Mus 27 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26 Mus 26 Mus 26 Mus 26 Mus 27 Mus 26 Mus 26	357.85						51	38									
Mw. 23 Mw. 23 Mw. 25 Mw. 25 mw. 26 Mw. 26	Mw. 21 Mw. 23 Mw. 24 Mw. 25 Ww. 26 Mw. 25 Ww. 26 Ww. 26	35⊤8¢	Myw 200'					9/	26									
M \understar 23 M \understar 23 M \understar 25 M \und	Mw. 23 Mw. 24 Mw. 24 Mw. 25 Mw. 26 Mw. 26	35787	* 17 17 X					7/	X									
Mw24 mw25 mw26 mw27 mw26 mw26 mw26 mw26 mw26 mw26 mw26 mw27 mw26 mw27 mw26 mw27	Mw23 Mw24 mw25 mw26 mw26 J426 J626 J626 J626 J626 J3-36-00 Journal Manuary 12:30:00, 12:30	35 T B%	Mw 22					.//	30						\dashv			
Mw. 25 mw. 26 mw. 26 mw. 26 Mww. 26 Mww. 26 Meceived by: Date: Time: REWARKS: Mate: Time: Received at Lab by: Date: Time: Rec Meceived at Lab by: Date: Time: Received at Lab by: Date: Time: Time: Received at Lab by: Date: Time:	Mus 25 Mus 26 Mus 26	35789	A. 23					74	28									
mu 25 // /25 mu 24 // /25 Date: Time: Received by: Date: Time: REMARKS: 1 3-39.00 -7.00	mu 25 //24 mu 26 //24 mu 26 //24 Date: Time: Received by: Date: Time: Remarks: A 32-39.00 7:00 20.00 7:00 Received by: Date: Time: Received at Labby: Date: Time: Act /3-30.00 //2-30.00 //2-30.00 //2-30.00 //2-30.00 //2-30.00	3579c	MWZY					14.	28			-						
Mw 2.6	mw 2.6 U	3579.	M.U 25					4	25			-					7	
Date: Time: Received by: Date: Time: REMARKS: REMARKS:	Date: Time: Received by: Date: Time: REMARKS: 13-29-00	357.42	ACE DE			→	<u>-</u> >	16	26	_						二		\dashv
1 13-76-00 4:00 Dens 120 17-35-00 4:00 Rec - Date: Time: Received at Lab by: Date: Time: Date: 13-30-00 13:30-00 12:30-00 12:50	1 13-75-00 4:00 Received at Labby Date Time: Received at Labby Date Time: Received at Labby 25000 4:00	Relinitation by:	Date:	Time:	Received by	Da	ite:	Time:	R	EMAR	KS.							
Date: Time: Received at Lab by: Date: Til	Date. Time. Received at Lab by: Date. Till	1		00:/5	Jenne ()	Sand	12-28	7	0	Rea	}	2.0	Ç					
20.08.51 general menon 20.05.61 20.05.	Jac. 13-30-00 13:30 Sehman Manhamay 12:30:00	Relinquished by:	Date:	Time:	eived	Lab by/	Date;											
			12. K.	0x / 2/ 00	\		\$ 18.38	3	Ş									

								I	Ì		८	000	5	0		Page		o N
comental technology	939	Far Use On ISO	SOLLENERGY	<u>ج</u>	CORP. Projects Only		9	ς	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	OF-C	STC	√Q.	QN)	NAL	YSIS	REO	OES	۲.
H W	inc 149	4500 vvest vvall Andiand TX 79703 Tel (915) 522-1139 Fax (915) 520-4310	2540 West Manand Hoobs, NM 86242 Tel (505) 397-4882 Fax (505) 397-4701		EOTT ENEKOY CORP. East Business 20 TX 75/02 (915) 681-3400	Midl 2781	sard. and. Tel Fax				ANA) (Circle	YSIS or Spe	S RE	ANALYSIS REQUEST (Circle or Specify Method No.)) [5]			
Project Manager. BETH	70.40	7	EOTT Leak Number	ıber				 		02	_			-		_		-
Say S Name S S			ETG! Project Number	mber.	-	20226				k7/11010								
Project Location	Cow TY	X P	Sampler Signature	Tell free P	3			.:	(A)u	9 5H 98	gri se							
			MATRIX	PRESEF MET	PRESERVATION METHOD	SAME	SAMPLING		Mexico D	CA Cr Ph	רם כניים			25.3				 -
## ##	FIELD CODE	INERS				7) eli zA pA				Elb. 375 and				
(Lab Use Only)		# CONTER	SLUDGE AIR SOIL	NªH2O ⁴ HMO ³ HCF	NONE	₹ ∃TAQ	3MIT	31508 X3TB Nt.8ta H9T	M Z108 HQT D01\$8 HAY	Total Metals	ICLP Metals	TCLP Semi	Semi Volatili	TDS 160.1				
35-193	MW 27	2 V X		χ	X	12-28	8/1/	X										
35-194	A 28					,	1632											
38795				J,	1		1645											
																	-	
																	_	
									_									_
Relinguished by:	Date:	Time:	Received by	Date	ite:	Time.		REMARKS	RKS:		١							
June day	00.56.61	7.00		Janes C	12.2	رک، a <i>د</i>	7	Ý	17ec 1	,	ر							
Relinquished by:	Date:	Time:	Receivéd at Lab b	Lab by:	Date:	Time	ns.											
	00- R.C.	X.E./ 100-		Now.	\ { {	2,08.2	. (23O											
Tonmental Tu	رار Group, Inc		7		o													

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ 0.5 deg. C

Project #: EOT 2022C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 03/14/01 Receiving Date: 03/26/01 Analysis Date: 03/27/01

BENZENE TOLUENE ETHYLBENZENE m,p-XYLENE o-XYLENE FIELD CODE mg/L mg/L mg/L ELT# mg/L mg/L 38449 MW 1 2.72 0.199 0.659 0.200 0.075 < 0.001 <0.001 MW 2 0.001 0.001 <0.001 0.005 0.003 0.003 < 0.001 MW 3 0.004

38450 38451 <0.001 MW 4 < 0.001 38452 800.0 <0.001 0.002 38453 MW 6 0.021 <0.001 0.004 0.001 <0.001 38454 MW 7 0.055 0.002 0.057 0.002 < 0.001 < 0.001 < 0.001 < 0.001 38457 MW 11 0.105 < 0.001 MW 12 0.424 0.013 0.037 0.016 0.004 38458 0.003 < 0.001 < 0.001 38459 MW 13 0.002 < 0.001

108 106 107 99 104 %IA 108 107 109 %EA 98 104 **BLANK** <0.001 <0.001 <0.001 < 0.001 <0.001

METHODS: EPA SW 846-8021B ,5030

Roland K Tuttle

3-29-0/

Date

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704

FAX: 520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ 0.5 deg. C

Project #: EOT 2022C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 03/14/01 Receiving Date: 03/26/01 Analysis Date: 03/28/01

Analysis Date: 03/28/01

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE _mg/L	o-XYLENE mg/L	
22.50		3.50	0.010	4.43	2.000	0.010	
38455	MW 9	2.52	< 0.010	1.12	0.098	0.019	
38456	MW 10	0.011	0.004	0.013	0.002	0.002	
38460	MW 14	3.92	<0.020	G.48 3	0.157	<0.020	
38461	MW 15	0.023	<0.001	0.003	< 0.001	<0.001	
38462	MW 16	0.057	0.036	0.015	0.006	0.002	
38463	MW 17	0.045	0.057	0.023	0.013	0.006	
38464	MW 18	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	
38465	MW 19	0.008	< 0.001	0.002	< 0.001	< 0.001	
38466	MW 20	< 0.001	< 0.001	< 0.001	< 0.001	< 0.001	
38467	MW 21	<0.001	< 0.001	< 0.001	< 0.001	< 0.001	
38468	MW 22	0.008	< 0.001	0.004	< 0.001	< 0.001	
38469	MW 23	0.001	<0.001	<0.001	<0.001	<0.001	
%IA %E/ BLA	1	91 93 <0.001	97 99 <0.001	100 104 <0.001	99 101 <0.001	99 103 <0.001	

METHODS: EPA SW 846-8021B ,5030

Opland K. Tubble

3-29-0

ENVIRONMENTAL LAB OF , INC.

"Don't Treat Your Soil Like Dirt!"

ENVIRONMENTAL TECHNOLOGY GROUP, INC.

ATTN: MR. JESSE TAYLOR

P.O. BOX 4845

MIDLAND, TEXAS 79704 FAX: 520-4310 FAX: 505-397-4701

Sample Type: Water

Sample Condition: Intact/ Iced/ HCI/ 0.5 deg. C

Project #: EOT 2022C Project Name: SPS-11

Project Location: Lea County, N.M.

Sampling Date: 03/14/01 Receiving Date: 03/26/01

Analysis Date: 03/28/01

ELT#	FIELD CODE	BENZENE mg/L	TOLUENE mg/L	ETHYLBENZENE mg/L	m,p-XYLENE mg/L	o-XYLENE mg/L	
38470	MW 24	1.81	0.045	0.019	<0.010	0.012	
38471	MW 25	<0.001	< 0.001	< 0.001	< 0.001	<0.001	
38472	MW 26	0,731	0.267	0,160	0.075	0.031	
38473	MW 27	< 0.001	0.002	< 0.001	< 0.001	<0.001	
38474	MW 28	2.73	0.018	0.212	0.025	0.020	
38475	EB 1	< 0.001	< 0.001	< 0.001	< 0.001	<0.001	

%IA	89	93	97	95	97
%EA	90	89	92	89	90
BLANK	< 0.001	< 0.001	<0.001	< 0.001	< 0.001

METHODS: EPA SW 846-8021B ,5030

Raland K Tuttle

3-29-01

Technology.	Ç	For Use On EOFT	EOTT ENERGY		CORP. Projects Only	hniy		CHAIN-OF-CUSTODY		CUSTODY AN	Z ANG Z	ANALY	AND ANALYSIS REQUEST	~
L Williams	30.	4600 West Wall Midland, TX 79703 74(915) 522-1139	2540 West Mariand Hobbs, NM 88242 Tei (505) 397-4882		EOTT ENER GY CORP. East Business 20 TX 79702	5805 Midland Tal	<u> </u>			ANALY	SIS R	ANALYSIS REQUEST		: ;
A STATE OF THE STA	1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1. 1	Fax (915) 520-4310	Fax (505) 397-4701		(815) 582-278 (815) 582-278	_				Circle or	Specify	(Circle or Specify Method No.)	('6	J
15	ESSE TAYLOR	Y	EOTT Leak Number	nber:					021	<u> </u>				
Project Name SpS-	1		ETGI Project Number:	mber: £07	2822	25			<i>∪</i> 8010					
Project Location:	Es Cours Non	Ę	Sampler Signature	June 1	200			(Aju	9 5H 9S	fu an				
	'		MATRIX	PRESERVATION METHOD	VATION	SAMPLING	· · ·	Mexico o	C Pb	0 10 00		5 5 3		
₩	FIELD CODE					194		ORONORS) s8 sA <u>p</u> A	23	<i>ao</i> :			
(Lab Use Grily)		# CONTA	SOIL SOIL	NªHSO⁴ HNO³ HCF	NONE	atad amit	BTEX 80218	Meron H91	ziaseM istoT	TCLP Wetals	TCLP Semi /	Semi Volatife TDS 160.1		
7 bhh&	mw /	2 V X		X	٧	3-14 1626	χX							
· CN	7 7	-				1436								}
<u>}</u>	A. U. M.					1661								}
	1 -					5160								
	3 m					1240								
	My 7					1,000	-							
38455	6 m					(229								-
	M. 10					8939								
151.38	// mn/					6101								
***	Mw 12					1422					- 			
38459	MW 13					125	/ /							
38460 FE	7/3	→ →		` *	//	11 14 11	/V							}
- \		Time:	Received by:	Date	àsi	Time:	REM	REMARKS	1	1		Harry	OFFICE	Ŋ
Mendages	3-23-01	87018		Samo	3-73-01	0700	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	787		משתנין זי	' (})0 2 U	\mathcal{I}
Relinquished by:	Date:	Time:	Received at	Lab by:	Date:	ı		11811		17/10		\	7)
S	3-26-0	3,00	1.666	len	6.30	161 151.	11/20	WYONCE		1.6011				1
	dial fectionland Group to			<u></u>										

COC # 038 Page 2 of	CHAIN-OF-CUSTODY AND ANALYSIS REQUEST	ANALYSIS REQUEST (Circle or Specify Method No.)	04	7/180k()9 6H BS	CR CL Pb	PH 8015M GROUDRO													REMARKS: 1 HARS! DEFICE	Lesury, 110,505	MAIL KESULS! GOII 0,50	NUOVE: 5077	
	-	5605 Midland, Tel Fax `				SAMPLING	TIME TIME	× ×	1200	12/5/	15.05	1453	11 00	1639	1305	1221	1120	1139	1524		0799		15:00 11	
	CORP. Projects Octy	2-2781		Ø22C	72.4	<u> </u>	HONE STAC	5											→	Time:	3-23-01	Date. Time	Saufot.	
- 1	_	E011 ENEKGY CORP East Business 20 TX 79702 (915) 687 3400 (915) 582:	ن	er EOTZ		PRESERVATION METHOD	CE ASH2O ⁴ HNO ³	×											>	Dafe:	\h.) Jqi		
	OTT ENERGY	2540 West Martand Hobbs, NM 88242 Tel (505) 397-4882 Fax (505) 397-4701	EOTT Leak Number	ETGI Projeci Number	Sampler Signature	MATRIX	HCF STADGE VIB SOIF												->	Received by:		Received at La	alle	\cap
0	For Use On EOT	4500 West Wall Micland, TX 79703 Tel (915) 522-1139 Fax (915) 520-4310					* CONTAINERS * CONTAINERS * ASTAW	2											> >	Time:	BOLD	Time:	3,00	
	3,000	Inc took the	SE TAYLOR	1	County NM	l	FIELD CODE	Mw 15	/ m / 6	Aw 12	Mw 18	Mw 19	MW 20	,2/	22	23	44	25	126	Date:	3-23-01	Date.	D 3.2601	The state of the s
	Jeonmental Technology	ET	Project Manager: Tesse	Project Name 5 PS	Project Location		LAB#	38461	38462 M.	38463 Au		38465 me		38467 Pm	(F 897.88)	38469 Mw	~W 9Lh&8	38471	38,472 MW	Relifquishedby	Elmonladas	Relinquished by:		A Hollonmental Tachnology Group ha

Project Name SPS-// Project Location: AM Court	100	For Use C 4600 West Wall Midland, TX 79703 Tat (915) 522-1139 Fax (915) 520-4310	<u> </u>	TTENERGY 2540 West Metland Hobbs, NM 88242 Introditi 397,4882	ERGY 114end 8242 4882		CORP, Projects Only EOTT ENERGY CORP, East Business 20 TX 79702	Mid	5805 land,		HAIN	-0F-(CHAIN-OF-CUSTODY AND	ОБУ	AND	ANALYSIS	YSIS	REQUEST	JEST
63 / 11	010	4600 West Wall Midland, TK 79703 Tel (815) 522-1139 Fax (915) 520-4316		2540 West Me Hobbs, NM 8 Tol (505) 397	14and 8242 4882	East Bu: TX 79' (915) 68	siness 20 702	Mid	and.										
16-55E	01			Fax (505) 397.4701	-4701 		7-3400 (815) 582-2781		Tei Fax ·				A Q (Circ	ALYS le or Sp	IS RE secify IV	ANALYSIS REQUEST (Circle or Specify Method No.)	5.T lo.)	ļ	}
18/6-11			<u> </u>	EOTT Leak Number.	umber:			·				021							
7/00	1.1		Ξ.	ETG! Project Number:	Number:	EOT	282	20		·····		010BU					·······		
		KW.	Sa	Sampler Signature	ature	J. San	Jag			·····			δH 98						
			\	MATRIX	PR	PRESERVATION METHOD	ATION	SAM	SAMPLING				CA Ct Pb			57.3			
LAB# FIELD	FIELD CODE	* CONTAINERS	A3TAW JIO3	STADGE MB	-ICF	CE ABHRO [†]	NONE	ЭТАС) 	3TEX 8021B/629	ORGAN GROADRO	PAH 8270C (8100 New 1910)	TCLP Metals Ag As Ba	TCLP Semi Volatiles	Semi Voisities 8270C	r.03r 207 ENA.276 znoinA\znoils.0			
8473 MWZ	4	14	+	工	1			3-14	1532	 	 	-			-				
38474 mu 2	00								15.45						-				
38475 66	\	>	Ź		>	->		>	1600	7									
						-						-							
			-			-						-							
												-			-				
						-						-		-	-				
												-							
(
Reinquished by Date:	ate:	Time:	Rei	sceived by:	:hc	Date:		Time:		REN	REMARKS			j	1/2	14885	0	2012	J.
60	16-2	020	<i>U</i>			7	3-23-01	o	0,100	, N		k ///		•	10		`	į	9
Relinquished by: Date:	iei ,	Ē			Milabit ✓	÷ ·	Date.	Ime	į į) w	NUMBER SOTT	1			<i>S</i>	5.	J
Some Story	3-460	3,5	A	S S	3	No.	7												

(DEntironmental Technology Graup Inc

TraceAnalysis, Inc. 6701 Aberdeen Ave., Suite 9 Lubbock, TX 79424-1515

(806) 794-1296

Report Date: June 25, 2001Order Number: A01061809

EOT 2022C SPS-11 Page Number: 1 of 2 Lea County,NM

Summary Report

Ken Dutton

ETGI

2540 W. Marland

Hobbs, NM

Report Date:

June 25, 2001

Order ID Number: A01061809

Project Number: Project Name:

EOT 2022C SPS-11

Project Location: Lea County,NM

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
173437	MW-1	Water	6/6/01	10:10	6/16/01
173438	MW-2	Water	6/6/01	10:40	6/16/01
173439 _	MW-3	Water	6/6/01	11:00	6/16/01
173440	MW-4	Water	6/6/01	14:57	6/16/01
173441	MW-6	Water	6/6/01	11:30	6/16/01
173442	MW-7	Water	6/6/01	14:47	6/16/01
173443	MW-9	Water	6/6/01	12:00	6/16/01
173444	MW-10	Water	6/6/01	14:40	6/16/01
173445	MW-11	Water	6/6/01	15:09	6/16/01
173446	MW-12	Water	6/6/01	13:15	6/16/01
173447	MW-13	Water	6/6/01	13:10	6/16/01
173448	MW-14	Water	6/6/01	13:20	6/16/01
173449	MW-15	Water	6/6/01	13:27	6/16/01
173450	MW-16	Water	6/6/01	13:35	6/16/01
173451	MW-17	Water	6/6/01	16:15	6/16/01
173452	MW-18	Water	6/6/01	14:20	6/16/01
173453	MW-19	Water	6/6/01	14:30	6/16/01
173454	MW-20	Water	6/6/01	14:10	6/16/01
173455	MW-21	Water	6/6/01	13:55	6/16/01
173456	MW-22	Water	6/6/01	13:00	6/16/01
173457	MW-23	Water	6/6/01	12:45	6/16/01
173458	MW-24	Water	6/6/01	12:30	6/16/01
173459	MW-25	Water	6/6/01	12:15	6/16/01
173460	MW-26	Water	6/6/01	15:30	6/16/01
173461	MW-27	Water	6/6/01	15:45	6/16/01
173462	MW-28	Water	6/6/01	16:00	6/16/01
173463	EB-1	Water	6/6/01	16:30	6/16/01

This report consists of a total of 2 page(s) and is intended only as a summary of results for the sample(s) listed above.

	. • BTEX					
	Benzene	Toluene	Ethylbenzene	M,P,O-Xylene	Total BTEX	
Sample - Field Code	(mg/L)	(mg/L)	(mg/L)	(mg/L)	(mg/L)	
173437 - MW-1	3.56	0.155	0.812	0.372	4.9	
173438 - MW-2	0.0072	0.0125	< 0.001	< 0.001	0.0197	
173439 - MW-3	0.0063	< 0.001	< 0.001	< 0.001	0.0063	
173440 - MW-4	0.0195	< 0.001	< 0.001	< 0.001	0.0195	
173441 - MW-6	0.0238	< 0.001	< 0.001	< 0.001	0.0366	
173442 - MW-7	0.0797	< 0.005	0.0785	< 0.005	0.158	

Continued ...

TraceAnalysis, Inc.

6701 Aberdeen Ave., Suite 9

Lubbock, TX 79424-1515

(806) 794-1296

Report Date: June 25, 2001Order Number: A01061809 EOT 2022C

SPS-11

Page Number: 2 of 2 Lea County,NM

Continued ... BTEX M,P,O-Xylene Total BTEX Benzene Toluene Ethylbenzene Sample - Field Code (mg/L) (mg/L) (mg/L) (mg/L) (mg/L) 173443 - MW-9 2.98 < 0.005 1.150.1984.33 173444 - MW-10 0.0218 < 0.001 0.0160.0351 0.0729 0.03510.0729173445 - MW-11 0.0732< 0.001 0.01270.05220.040.524173446 - MW-12 0.4190.0126< 0.001 < 0.001 173447 - MW-13 < 0.001 < 0.001 < 0.001 0.418 6.57173448 - MW-14 5.46< 0.005 0.695173449 - MW-15 0.0207 < 0.001 < 0.001 < 0.001 0.0207 0.01610.01650.0350.111173450 - MW-16 0.04370.0417 0.224173451 - MW-17 0.05810.02820.096< 0.001 0.0055 173452 - MW-18 0.0055 < 0.001 < 0.001 < 0.001 0.0059 < 0.001 173453 - MW-19 0.0059 < 0.001 < 0.001 < 0.001 173454 - MW-20 < 0.001 < 0.001 < 0.001 173455 - MW-21 < 0.005 < 0.005 < 0.005 < 0.005 < 0.005 < 0.001 < 0.001 0.0055 173456 - MW-22 0.0055< 0.001 0.0057 < 0.001 < 0.001 < 0.001 0.0057 173457 - MW-23 < 0.001 < 0.001 0.909173458 - MW-24 0.909< 0.001 < 0.001 < 0.001 0.0066 173459 - MW-25 0.0066< 0.001 173460 - MW-26 1.01 0.2630.1790.2041.66 173461 - MW-27 0.0048 < 0.001 < 0.001 < 0.001 0.0048 0.1210.1822.43 173462 - MW-28 2.06 0.0642< 0.001 < 0.001 < 0.001 173463 - EB-1 < 0.001 < 0.001

6701 Aberdeen Avenue, Suite 9 155 McCutcheon, Suite H

Lubbock, Texas 79424 El Paso, Texas 79932 800 • 378 • 1296 888 • 588 • 3443 806 • 794 • 1296 915 • 585 • 3443 FAX 806 • 794 • 1298 FAX 915 • 585 • 4944

E-Mail: lab@traceanalysis.com

Analytical and Quality Control Report

Ken Dutton

Report Date:

June 25, 2001

ETGI

2540 W. Marland

Hobbs, NM

Order ID Number: A01061809

Project Number: Project Name:

EOT 2022C SPS-11

Project Location: Lea County,NM

Enclosed are the Analytical Results and Quality Control Data Reports for the following samples submitted to Trace-Analysis, Inc.

			Date	Time	Date
Sample	Description	Matrix	Taken	Taken	Received
173437	MW-1	Water	6/6/01	10:10	6/16/01
173438	MW-2	Water	6/6/01	10:40	6/16/01
173439	MW-3	Water	6/6/01	11:00	6/16/01
173440	MW-4	Water	6/6/01	14:57	6/16/01
173441	MW-6	Water	6/6/01	11:30	6/16/01
173442	MW-7	Water	6/6/01	14:47	6/16/01
173443	MW-9	Water	6/6/01	12:00	6/16/01
173444	MW-10	Water	6/6/01	14:40	6/16/01
173445	MW-11	Water	6/6/01	15:09	6/16/01
173446	MW-12	Water	6/6/01	13:15	6/16/01
173447	MW-13	Water	6/6/01	13:10	6/16/01
173448	MW-14	Water	6/6/01	13:20	6/16/01
173449	MW-15	Water	6/6/01	13:27	6/16/01
173450	MW-16	Water	6/6/01	13:35	6/16/01
173451	MW-17	Water	6/6/01	16:15	6/16/01
173452	MW-18	Water	6/6/01	14:20	6/16/01
173453	MW-19	Water	6/6/01	14:30	6/16/01
173454	MW-20	Water	6/6/01	14:10	6/16/01
173455	MW-21	Water	6/6/01	13:55	6/16/01
173456	MW-22	Water	6/6/01	13:00	6/16/01
173457	MW-23	Water	6/6/01	12:45	6/16/01
173458	MW-24	Water	6/6/01	12:30	6/16/01
173459	MW-25	Water	6/6/01	12:15	6/16/01
173460	MW-26	Water	6/6/01	15:30	6/16/01
173461	MW-27	Water	6/6/01	15:45	6/16/01
173462	MW-28	Water	6/6/01	16:00	6/16/01
173463	EB-1	Water	6/6/01	16:30	6/16/01

These results represent only the samples received in the laboratory. The Quality Control Report is generated on a batch basis. All information contained in this report is for the analytical batch(es) in which your sample(s) were analyzed.

This report consists of a total of 17 pages and shall not be reproduced except in its entirety including the chain of custody (COC), without written approval of TraceAnalysis, Inc.

Dr. Blair Leftwich, Director

June 25, 2001 Or

Order Number: A01061809 SPS-11 Page Number: 3 of 17 Lea County, NM

Analytical Report

Sample:

173437 - MW-1

Analysis: Analytical Method: QC Batch: QC12036 Date Analyzed: 6/18/01 BTEX S 8021B PB10306 Date Prepared: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch:

Param	Flag	Result	Units	Dilution	RDL
Benzene		3.56	mg/L	5	0.001
Toluene		0.155	mg/L	5	0.001
Ethylbenzene		0.812	m mg/L	5	0.001
M,P,O-Xylene		0.372	m mg/L	5	0.001
Total BTEX		4.9	m mg/L	5	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.492	m mg/L	5	0.10	98	72 - 128
4-BFB		0.462	m mg/L	5	0.10	92	72 - 128

Sample:

173438 - MW-2

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12036 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: Prep Batch: PB10306 Date Prepared: 6/18/01 E 5030B

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0072	m mg/L	1	0.001
Toluene		0.0125	mg/L	1	0.001
Ethylbenzene		< 0.001	mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		0.0197	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
$\overline{ ext{TFT}}$		0.104	mg/L	1	0.10	104	72 - 128
4-BFB		0.084	${ m mg/L}$	1	0.10	84	72 - 128

Sample:

173439 - MW-3

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0063	mg/L	1	0.001
Toluene		< 0.001	${ m mg/L}$	1	0.001
Ethylbenzene		< 0.001	mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		0.0063	mg/L	1	0.001

Report Date: June 25, 2001

EOT 2022C

Order Number: A01061809

SPS-11

Page Number: 4 of 17 Lea County, NM

6/18/01

6/18/01

0.001

Percent Spike Recovery Surrogate Flag Result Units Dilution Amount Recovery Limits Percent Spike Recovery Recovery Surrogate Flag Result Units Dilution Amount Limits TFT 0.101 mg/L ī 0.10 101 72 - 128 4-BFB 0.0829 0.10 82 72 - 128 mg/L 1

Sample:

173440 - MW-4

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12036 Date Analyzed: Analyst: Prep Batch: PB10306 Date Prepared: CG Preparation Method: E 5030B

0.0195

Param Units Dilution Flag Result RDLBenzene 0.0195 mg/L 1 0.001 1 Toluene < 0.001 mg/L 0.001 1 Ethylbenzene mg/L 0.001 < 0.001 M,P,O-Xylene < 0.001 mg/L 1 0.001 Total BTEX 1

mg/L

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.1	mg/L	1	0.10	100	72 - 128
4-BFB		0.0809	${ m mg/L}$	1	0.10	80	72 - 128

Sample:

173441 - MW-6

Analysis: BTEX QC Batch: QC12036 Date Analyzed: 6/18/01 Analytical Method: S 8021B Analyst: CG Preparation Method: E 5030B Prep Batch: PB10306 Date Prepared: 6/18/01

Param	\mathbf{Flag}	Result	Units	Dilution	RDL
Benzene		0.0238	mg/L	1	0.001
Toluene		< 0.001	mg/L	1	0.001
Ethylbenzene	•	< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		0.0366	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.089	mg/L	1	0.10	89	72 - 128
4-BFB	1	0.0701	mg/L	1	0.10	70	72 - 128

Sample:

173442 - MW-7

Analysis: **BTEX** Analytical Method: S 8021B QC Batch: QC12036 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10306 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL_
Benzene		0.0797	$\mathrm{mg/L}$	5	0.001
Toluene		< 0.005	m mg/L	5	0.001

Continued ...

¹Surrogate recovery outside normal range due to matrix difficulties.

Report Date: June 25, 2001

EOT 2022C

Order Number: A01061809

SPS-11

Page Number: 5 of 17 Lea County,NM

$\dots Continued$	Sample: 173442	Analysis: BTEX			
Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Ethylbenzene		0.0785	mg/L	5	0.001
M,P,O-Xylene		< 0.005	mg/L	5	0.001
Total BTEX		0.158	${ m mg/L}$	5	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
$\overline{ ext{TFT}}$		0.492	mg/L	5	0.10	98	72 - 128
4-BFB		0.396	m mg/L	5	0.10	79	72 - 128

Sample: 173443 - MW-9

Analysis:	BTEX	Analytical Method:	S 8021B	QC Batch:	QC12036	Date Analyzed:	6/18/01
Analyst:	CG	Preparation Method:	$\to 5030B$	Prep Batch:	PB10306	Date Prepared:	6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		2.98	$_{ m mg/L}$	5	0.001
Toluene		< 0.005	m mg/L	5	0.001
Ethylbenzene		1.15	m mg/L	5	0.001
M,P,O-Xylene		0.198	m mg/L	5	0.001
Total BTEX		4.33	m mg/L	5	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
TFT		0.479	m mg/L	5	0.10	95	72 - 128
4-BFB		0.455	mg/L	5	0.10	91	72 - 128

Sample: 173444 - MW-10

Analysis: QC12037 BTEX QC Batch: Date Analyzed: 6/18/01 Analytical Method: S 8021B Analyst: CGPreparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		0.0218	mg/L	1	0.001
Toluene		< 0.001	${ m mg/L}$	1	0.001
Ethylbenzene		0.016	m mg/L	1	0.001
M,P,O-Xylene		0.0351	m mg/L	1	0.001
Total BTEX		0.0729	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
$\overline{ ext{TFT}}$		0.103	mg/L	1	0.10	103	72 - 128
4-BFB		0.0912	mg/L	1	0.10	91	72 - 128

Sample: 173445 - MW-11

Analysis: BTEX Analytical Method: QC Batch: Date Analyzed: 6/18/01 S 8021BQC12037 Analyst: CGPreparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Order Number: A01061809 SPS-11 Page Number: 6 of 17 Lea County,NM

Dilution Param Flag Result Units RDL Benzene 0.0732 mg/L 1 0.001 Toluene < 0.001 mg/L 1 0.001 Ethylbenzene 1 mg/L0.01270.001M,P,O-Xylene 1 0.0351mg/L 0.001 Total BTEX 0.0729mg/L1 0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
$\overline{ ext{TFT}}$		0.108	mg/L	1	0.10	108	72 - 128
4-BFB		0.124	m mg/L	1	0.10	124	72 - 128

Sample: 173446 - MW-12

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.419	mg/L	1	0.001
Toluene		0.0126	m mg/L	1	0.001
Ethylbenzene		0.0522	m mg/L	1	0.001
M,P,O-Xylene		0.04	m mg/L	1	0.001
Total BTEX		0.524	$_{ m mg/L}$	1	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilution	${\bf Amount}$	Recovery	Limits
TFT		0.0965	m mg/L	1	0.10	96	72 - 128
4-BFB		0.0944	m mg/L	1	0.10	94	72 - 128

Sample: 173447 - MW-13

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.001	mg/L	1	0.001
Toluene		< 0.001	mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		< 0.001	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	$\begin{array}{c} {\rm Spike} \\ {\rm Amount} \end{array}$	Percent Recovery	Recovery Limits
TFT		0.0822	$_{ m mg/L}$	1	0.10	82	72 - 128
4-BFB	2	0.0596	$\mathrm{mg/L}$	1	0.10	59	72 - 128

²Surrogate recovery outside normal limits due to matrix difficulties.

Order Number: A01061809 SPS-11

Page Number: 7 of 17 Lea County,NM

Sample:

173448 - MW-14

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		5.46	mg/L	5	0.001
Toluene		< 0.005	m mg/L	5	0.001
Ethylbenzene		0.695	m mg/L	5	0.001
M,P,O-Xylene		0.418	m mg/L	5	0.001
Total BTEX		6.57	$_{ m mg/L}$	5	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.511	$_{ m mg/L}$	1	0.10	102	72 - 128
4-BFB		0.461	${ m mg/L}$	1	0.10	92	72 - 128

Sample:

173449 - MW-15

Date Analyzed: 6/18/01 Analysis: QC Batch: QC12037 BTEX Analytical Method: S 8021B Analyst: Prep Batch: PB10307 Date Prepared: 6/18/01 CG Preparation Method: E 5030B

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0207	mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		0.0207	mg/L	1	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	${\bf Amount}$	Recovery	Limits
TFT		0.1	mg/L	1	0.10	100	72 - 128
4-BFB		0.0811	$\mathrm{mg/L}$	1	0.10	81	72 - 128

Sample:

173450 - MW-16

Param	Flag	Result	\mathbf{Units}	Dilution	RDL
Benzene		0.0437	mg/L	1	0.001
Toluene		0.0161	m mg/L	1	0.001
Ethylbenzene		0.0165	m mg/L	1	0.001
M,P,O-Xylene		0.035	mg/L	1	0.001
Total BTEX		0.111	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.102	mg/L	1	0.10	102	72 - 128
4-BFB		0.0945	$_{ m mg/L}$	1	0.10	94	72 - 128

Order Number: A01061809 SPS-11 Page Number: 8 of 17 Lea County,NM

Sample:

173451 - MW-17

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		0.096	mg/L	1	0.001
Toluene		0.0581	m mg/L	1	0.001
Ethylbenzene		0.0282	m mg/L	1	0.001
M,P,O-Xylene		0.0417	mg/L	1	0.001
Total BTEX		0.224	mg/L	1	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{ ext{TFT}}$		0.108	mg/L	1	0.10	108	72 - 128
4-BFB		0.0953	m mg/L	1	0.10	95	72 - 128

Sample:

173452 - MW-18

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0055	mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		0.0055	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.108	mg/L	1	0.10	108	72 - 128
4-BFB		0.089	m mg/L	1	0.10	89	72 - 128

Sample:

173453 - MW-19

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		0.0059	mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1 .	0.001
Total BTEX		0.0059	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	Recovery Limits
TFT		0.105	mg/L	1	0.10	105	72 - 128
4-BFB		0.0862	${ m mg/L}$	1	0.10	86	72 - 128

Order Number: A01061809

SPS-11

Page Number: 9 of 17 Lea County,NM

Sample:

173454 - MW-20

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.001	mg/L	1	0.001
Toluene		< 0.001	${ m mg/L}$	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		< 0.001	mg/L	1	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	Units	Dilution	Amount	Recovery	Limits
$\overline{\text{TFT}}$		0.0988	mg/L	1	0.10	98	72 - 128
4-BFB		0.0814^{-}	m mg/L	1	0.10	81	72 - 128

Sample:

173455 - MW-21

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene	· · · · · · · · · · · · · · · · · · ·	< 0.005	mg/L	5	0.001
Toluene		< 0.005	m mg/L	5	0.001
Ethylbenzene		< 0.005	m mg/L	5	0.001
M,P,O-Xylene		< 0.005	$_{ m mg/L}$	5	0.001
Total BTEX		< 0.005	m mg/L	5	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.446	m mg/L	1	0.10	89	72 - 128
4-BFB		0.398	m mg/L	1	0.10	79	72 - 128

Sample:

173456 - MW-22

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0055	mg/L	1	0.001
Toluene		< 0.001	mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		0.0055	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.0901	mg/L	1	0.10	90	72 - 128
1-BFB		0.0732	m mg/L	1	0.10	73	72 - 128

Order Number: A01061809 SPS-11 Page Number: 10 of 17 Lea County,NM

Sample: 173457 - MW-23

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0057	mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		0.0057	m mg/L	1	0.001

					Spike	Percent	Recovery
Surrogate	Flag	Result	${f Units}$	Dilution	Amount	Recovery	Limits
TFT		0.0974	m mg/L	1	0.10	97	72 - 128
4-BFB		0.0801	mg/L	1	0.10	80	72 - 128

Sample: 173458 - MW-24

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.909	m mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	${ m mg/L}$	1	0.001
M,P,O-Xylene		< 0.001	$_{ m mg/L}$	1	0.001
Total BTEX		0.909	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.105	m mg/L	1	0.10	105	72 - 128
4-BFB		0.106	$\mathrm{mg/L}$	1	0.10	106	72 - 128

Sample: 173459 - MW-25

Param	Flag	Result	Units	Dilution	RDL
Benzene		0.0066	m mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		0.0066	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	Recovery Limits
TFT		0.0999	mg/L	1	0.10	99	72 - 128
1-BFB		0.0829	m mg/L	1	0.10	82	72 - 128

Order Number: A01061809

SPS-11

Page Number: 11 of 17 Lea County,NM

Sample:

173460 - MW-26

Analysis: BTEX Analytical Method: S 8021B QC Batch: QC12037 Date Analyzed: 6/18/01 Analyst: CG Preparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	Units	Dilution	RDL
Benzene		1.01	${ m mg/L}$	5	0.001
Toluene		0.263	m mg/L	5	0.001
Ethylbenzene		0.179	${ m mg/L}$	5	0.001
M,P,O-Xylene		0.204	mg/L	5	0.001
Total BTEX		1.66	mg/L	5	0.001

					$_{ m Spike}$	Percent	Recovery
Surrogate	Flag	Result	\mathbf{Units}	Dilution	Amount	Recovery	Limits
TFT		0.46	m mg/L	1	0.10	92	72 - 128
4-BFB		0.405	mg/L	1	0.10	81	72 - 128

Sample:

173461 - MW-27

Analysis: **BTEX** Analytical Method: QC Batch: Date Analyzed: S 8021B QC12037 6/18/01 Analyst: CGPreparation Method: E 5030B Prep Batch: PB10307 Date Prepared: 6/18/01

Param	Flag	Result	${f Units}$	Dilution	RDL
Benzene		0.0048	mg/L	1	0.001
Toluene		< 0.001	m mg/L	1	0.001
Ethylbenzene		< 0.001	m mg/L	1	0.001
M,P,O-Xylene		< 0.001	mg/L	1	0.001
Total BTEX		0.0048	mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.0977	m mg/L	1	0.10	97	72 - 128
4-BFB		0.0805	${ m mg/L}$	1	0.10	80	72 - 128

Sample:

173462 - MW-28

Param	Flag	Result	Units	Dilution	\mathtt{RDL}
Benzene		2.06	m mg/L	5	0.001
Toluene		0.0642	m mg/L	5	0.001
Ethylbenzene		0.121	mg/L	5	0.001
M,P,O-Xylene		0.182	m mg/L	5	0.001
Total BTEX		2.43	mg/L	5	0.001

Surrogate	Flag	. Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.45	mg/L	1	0.10	90	72 - 128
4-BFB		0.408	${ m mg/L}$	1	0.10	81	72 - 128

Order Number: A01061809 SPS-11

Page Number: 12 of 17 Lea County,NM

Sample: 173463 - EB-1

Param	Flag	Result	Units	Dilution	RDL
Benzene		< 0.001	mg/L	1	0.001
Toluene		< 0.001	${ m mg/L}$	1	0.001
Ethylbenzene		< 0.001	mg/L	1	0.001
M,P,O-Xylene		< 0.001	m mg/L	1	0.001
Total BTEX		< 0.001	m mg/L	1	0.001

Surrogate	Flag	Result	Units	Dilution	$egin{array}{c} ext{Spike} \ ext{Amount} \end{array}$	Percent Recovery	Recovery Limits
TFT	6	0.113	mg/L	1	0.10	113	72 - 128
4-BFB		0.0933	mg/L	1	0.10	93	72 - 128

Page Number: 13 of 17 Lea County,NM

Quality Control Report Method Blank

Method Blank

QCBatch:

QC12036

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.001	mg/L	0.001
Toluene		< 0.001	${ m mg/L}$	0.001
Ethylbenzene		< 0.001	${ m mg/L}$	0.001
M,P,O-Xylene		< 0.001	${ m mg/L}$	0.001
Total BTEX		< 0.001	mg/L	0.001

					Spike	Percent	Recovery
Surrogate	\mathbf{Flag}	Result	Units	Dilution	${f Amount}$	Recovery	Limits
$\overline{ ext{TFT}}$		0.101	mg/L	1	0.10	101	72 - 128
4-BFB		0.0889	m mg/L	1	0.10	88	72 - 128

Method Blank

QCBatch:

QC12037

				Reporting
Param	Flag	Results	${f Units}$	Limit
Benzene		< 0.001	mg/L	0.001
Toluene		< 0.001	${ m mg/L}$	0.001
Ethylbenzene		< 0.001	${ m mg/L}$	0.001
M,P,O-Xylene		< 0.001	m mg/L	0.001
Total BTEX		< 0.001	$\mathrm{mg/L}$	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
$\overline{ ext{TFT}}$		0.0972	m mg/L	1	0.10	99	72 - 128
4-BFB		0.0752	${ m mg/L}$	1	0.10	81	72 - 128

Method Blank

QCBatch:

QC12053

Param	Flag	Results	Units	Reporting Limit
Benzene		< 0.001	mg/L	0.001
Toluene		< 0.001	m mg/L	0.001
Ethylbenzene		< 0.001	mg/L	0.001
M,P,O-Xylene		< 0.001	m mg/L	0.001
Total BTEX		< 0.001	m mg/L	0.001

Surrogate	Flag	Result	Units	Dilution	Spike Amount	Percent Recovery	Recovery Limits
TFT		0.102	mg/L	1	0.10	102	72 - 128
4-BFB		0.0834	mg/L	1	0.10	83	72 - 128

Order Number: A01061809 SPS-11 Page Number: 14 of 17 Lea County,NM

Quality Control Report Lab Control Spikes and Duplicate Spikes

Laboratory Control Spikes

QCBatch:

QC12036

					Spike					
	LCS	LCSD			Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	\mathbf{Added}	Result	% Rec	RPD	Limit	Limit
MTBE	0.0965	0.0969	mg/L	1	0.10	< 0.001	96	0	80 - 120	20
Benzene	0.104	0.104	mg/L	1	0.10	< 0.001	104	0	80 - 120	20
Toluene	0.1	0.102	mg/L	1	0.10	< 0.001	100	1	80 - 120	20
Ethylbenzene	0.1	0.102	mg/L	1	0.10	< 0.001	100	1	80 - 120	20
M,P,O-Xylene	0.3	0.303	mg/L	1	0.30	< 0.001	100	0	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.101	0.105	mg/L	1	0.10	101	105	72 - 128
4-BFB	0.0943	0.0994	mg/L	1	0.10	94	99	72 - 128

Laboratory Control Spikes

QCBatch:

QC12037

Param	LCS Result	LCSD Result	Units	Dil.	Spike Amount Added	Matrix Result	% Rec	RPD	% Rec Limit	RPD Limit
MTBE	0.0951	0.0953	mg/L	1	0.10	< 0.001	95	0	80 - 120	20
Benzene	0.105	0.104	mg/L	1	0.10	< 0.001	105	0	80 - 120	20
Toluene	0.0995	0.0993	mg/L	1	0.10	< 0.001	99	0	80 - 120	20
Ethylbenzene	0.101	0.101	$_{ m mg/L}$	1	0.10	< 0.001	101	0	80 - 120	20
M,P,O-Xylene	0.3	0.298	mg/L	1	0.30	< 0.001	100	0	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
$\overline{ ext{TFT}}$	0.106	0.104	mg/L	1	0.10	106	104	72 - 128
4-BFB	0.098	0.0973	mg/L	1	0.10	98	97	72 - 128

Laboratory Control Spikes

QCBatch:

QC12053

	LCS	LCSD			Spike Amount	Matrix			% Rec	RPD
Param	Result	Result	Units	Dil.	Added	Result	% Rec	RPD	Limit	Limit
MTBE	0.0924	0.0918	mg/L	1	0.10	< 0.001	92	0	80 - 120	20
Benzene	0.0967	0.0987	mg/L	1	0.10	< 0.001	96	2	80 - 120	20
Toluene	0.0923	0.0949	mg/L	1	0.10	< 0.001	92	2	80 - 120	20
Ethylbenzene	0.0947	0.0975	mg/L	1	0.10	< 0.001	94	2	80 - 120	20
M,P,O-Xylene	0.281	0.288	mg/L	1	0.30	< 0.001	93	2	80 - 120	20

Percent recovery is based on the spike result. RPD is based on the spike and spike duplicate result.

Report Date: June 25, 2001

EOT 2022C

Order Number: A01061809

SPS-11

Page Number: 15 of 17 Lea County,NM

Surrogate	LCS Result	LCSD Result	Units	Dilution	Spike Amount	LCS % Rec	LCSD % Rec	Recovery Limits
TFT	0.0991	0.101	mg/L	1	0.10	99	101	72 - 128
4-BFB	0.0931	0.0945	${ m mg/L}$	1	0.10	93	94	72 - 128

Quality Control Report Continuing Calibration Verification Standards

CCV (1)

QCBatch:

QC12036

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		m mg/L	0.10	0.0938	93	85 - 115	6/18/01
Benzene		$_{ m mg/L}$	0.10	0.1024	102	85 - 115	6/18/01
Toluene		mg/L	0.10	0.0984	98	85 - 115	6/18/01
Ethylbenzene		$_{ m mg/L}$	0.10	0.0986	98	85 - 115	6/18/01
M,P,O-Xylene		m mg/L	0.30	0.2919	97	85 - 115	6/18/01

CCV (2)

QCBatch:

QC12036

			CCVs	CCVs	CCVs	Percent		
			True	Found	Percent	Recovery	Date	
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed	
MTBE		m mg/L	0.10	0.097	97	85 - 115	6/18/01	
Benzene		m mg/L	0.10	0.107	107	85 - 115	6/18/01	
Toluene		$\mathrm{mg/L}$	0.10	0.101	101	85 - 115	6/18/01	
Ethylbenzene		m mg/L	0.10	0.103	103	85 - 115	6/18/01	
M,P,O-Xylene		mg/L	0.30	0.306	102	85 - 115	6/18/01	

ICV (1)

QCBatch:

QC12036

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		m mg/L	0.10	0.101	101	85 - 115	6/18/01
Benzene		mg/L	0.10	0.104	104	85 - 115	6/18/01
Toluene		m mg/L	0.10	0.103	103	85 - 115	6/18/01
Ethylbenzene		m mg/L	0.10	0.103	103	85 - 115	6/18/01
M,P,O-Xylene		mg/L	0.30	0.306	102	85 - 115	6/18/01

CCV (1)

QCBatch:

QC12037

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0964	96	85 - 115	6/18/01
Benzene		mg/L	0.10	0.106	106	85 - 115	6/18/01

Continued ...

Order Number: A01061809 SPS-11 Page Number: 16 of 17 Lea County,NM

$\dots Continued$							
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Toluene		m mg/L	0.10	0.0998	99	85 - 115	6/18/01
Ethylbenzene		$_{ m mg/L}$	0.10	0.101	101	85 - 115	6/18/01
M.P.O-Xvlene		mg/L	0.30	0.301	100	85 - 115	6/18/01

CCV (2)

QCBatch:

QC12037

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	${ m Units}$	Conc.	$\operatorname{Conc.}$	$\operatorname{Recovery}$	Limits	Analyzed
MTBE		mg/L	0.10	0.0964	96	85 - 115	6/18/01
Benzene		m mg/L	0.10	0.1041	104	85 - 115	6/18/01
Toluene		m mg/L	0.10	0.0978	97	85 - 115	6/18/01
Ethylbenzene		${ m mg/L}$	0.10	0.0999	. 99	85 - 115	6/18/01
M,P,O-Xylene		mg/L	0.30	0.2974	99	85 - 115	6/18/01

ICV (1)

QCBatch:

QC12037

			CCVs True	CCVs Found	CCVs Percent	Percent Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.097	97	85 - 115	6/18/01
Benzene		m mg/L	0.10	0.108	108	85 - 115	6/18/01
Toluene		mg/L	0.10	0.102	102	85 - 115	6/18/01
Ethylbenzene		mg/L	0.10	0.104	104	85 - 115	6/18/01
M,P,O-Xylene		$_{ m mg/L}$	0.30	0.306	102	85 - 115	6/18/01

CCV (1)

QCBatch:

QC12053

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.0983	98	85 - 115	6/19/01
Benzene		$\mathrm{mg/L}$	0.10	0.104	104	85 - 115	6/19/01
Toluene		m mg/L	0.10	0.0971	97	85 - 115	6/19/01
Ethylbenzene		m mg/L	0.10	0.0994	99	85 - 115	6/19/01
M,P,O-Xylene		mg/L	0.30	0.297	99	85 - 115	6/19/01

CCV (2)

QCBatch:

QC12053

			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
MTBE		mg/L	0.10	0.0982	98	85 - 115	6/19/01
Benzene		mg/L	0.10	0.1	100	85 - 115	6/19/01

Continued ...

Order Number: A01061809 SPS-11 Page Number: 17 of 17 Lea County,NM

$\dots Continued$							
			CCVs	CCVs	CCVs	Percent	
			True	Found	Percent	Recovery	Date
Param	Flag	Units	Conc.	Conc.	Recovery	Limits	Analyzed
Toluene		mg/L	0.10	0.0944	94	85 - 115	6/19/01
Ethylbenzene		${ m mg/L}$	0.10	0.0962	96	85 - 115	6/19/01
M,P,O-Xylene		mg/L	0.30	0.2844	94	85 - 115	6/19/01

ICV (1)

QCBatch:

QC12053

Param	Flag	Units	CCVs True Conc.	CCVs Found Conc.	CCVs Percent Recovery	Percent Recovery Limits	Date Analyzed
MTBE		mg/L	0.10	0.097	97	85 - 115	6/19/01
Benzene		${ m mg/L}$	0.10	0.1044	104	85 - 115	6/19/01
Toluene		mg/L	0.10	0.1018	101	85 - 115	6/19/01
Ethylbenzene		m mg/L	0.10	0.1045	104	85 - 115	6/19/01
M,P,O-Xylene		${ m mg/L}$	0.30	0.307	102	85 - 115	6/19/01

Turn Around Time if different from standard ö CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Check If Special Reporting Limits Are Needed A01061809 Hq .2ST .008 (Circle or Specify Method No.) Pesticides 8081A/608 **ANALYSIS REQUEST** 75 GC/MS Semi. Vol. 8270C/625 3 CC/W2 AOI: 8560B/624 REMARKS TCLP Pesticides LAB Order ID # TCLP Semi Volatiles TCLP Volatiles LAB USE ONLY TCLP Metals Ag As Ba Cd Cr Pb Se Hg N / ≻ Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Log-in Review, Headspace TPH 418.1/TX1005 Intact Carrier BTEX 8021B/602 Temp. 8021B/602 **BBTM** 100 1457 1345 0/9/ 4: 2 140 130 1477 2002 1490 KB 80 SAMPLING **HIME** 155 McCutcheon, Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 Phone #: (505) 39 7-4882 Fax#: (COC) 362-470, **3TA**0 7%0 **PRESERVATIVE** NONE METHOD ICE Project Name: ORIGINAL COPY **HOBN** Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of 2.0.C. Signature; OS²H Date: Date: 5 TraceAnalysis, Inc. [€]ONH B HCI 6 Sample SCUDGE MATRIX Received at Laboratory by: AIA TIOS **H**3TAW InuomA\amulo\ Received Received # CONTAINERS Address: 25-(Street, City, Zip) 3 Time: Time: Time: Dittor (Could Ty / A) FIELD CODE 20622C 120 If different from above) & C // Date: Date Company Name: \mathcal{Z} $\mathcal{T}_{\mathcal{T}}$ \mathcal{I} MW 12 my G F CIW 12 C to Must 6701 Aberdeen Avenue, Ste. 9 24 Z S Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 MIC Lubbock, Texas 79424 2000 3 Project #: Fo Relinquished by: Contact Person: Project Location: Relinquished by: Relinquished by: 45 (LAB USE) 40 4 3 # 4 47 13437 ₩ 4 Invoice to: LAB #

M Turn Around Time if different from standard ਰੱ CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Pag Check If Special Reporting A01061809 Hq ,2ST ,QOB Limits Are Needed Cec 76 (Circle or Specify Method No. Pesticides 808 t A/608 **ANALYSIS REQUEST** GC/MS Semi. Vol. 8270C/625 CC/W2 A9F 8560B/624 REMARKS RCI TCLP Pesticides LAB Order ID # TCLP Semi Volatiles TCLP Volatiles N / LAB USE ONLY TCLP Metals Ag As Ba Cd Cr Pb Se Hg ν > Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Log-in Review Headspace TPH 418.1/TX1005 Carrier # Intact BTEX 8021B/602 Temp_ 80218/602 38TM Nyo 1530 1410 320 1327 1335 1615 300 530 pys 33 SAMPLING **TIME** Ű, 155 McCutcheon, Suite H Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 El Paso, Texas 79932 Phone #: 805) 393 - 482 ğ 397-470 **3TA**0 33 PRESERVATIVE METHOD NONE Eine: Time: ICE 1-50 ИаОН ORIGINAL COPY Signature: Submittal of samples constitutes agreement to Terms and Conditions listed on reverse side of \dot{c} .O. \dot{c} °OS^zH HOBBS NW PPLUGO (505) Date: TraceAnalysis, Inc. 0 Project Name: [€]ONH HCI Sample SCUDGE MATRIX Received at Laboratory by: ЯІЪ ROIF **MATER** Received by Received by JunomA\amuloV # CONTAINERS Z MARCHUD Time: K Time: Time: OUNTY 20220 FIELD CODE かかるみ My 23 mw 22 111 × 17 171 W/B P1 ~10 M J BB 6220 M W 2 ETGI 71 3 M Date: Date: Mw 13 (Street, City, Zip) KEK 6701 Aberdeen Avenue, Ste. 9 S 3 Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 Lubbock, Texas 79424 (If different from above) 101 Company Name: Project Location: Contact Person: Relinquighed by: Relinquished by: Relinquished by (LAB USE) 73448 32 54 52 49 25 3 3 58 Address: 35 25 Invoice to: LAB # Project #:

рюн Turn Around Time if different from standard CHAIN-OF-CUSTODY AND ANALYSIS REQUEST Check If Special Reporting A0106 1809 BOD, TSS, pH Limits Are Needed (Circle or Specify Method No.) **ANALYSIS REQUEST** Pesticides 8081A/608 75 GC/MS Semi. Vol. 8270C/625 600 CC/WS AOI: 8560B/624 REMARKS BCI TCLP Pesticides LAB Order ID #_ TCLP Semi Volatiles TCLP Volatiles LAB USE ONLY TCLP Metals Ag As Ba Cd Cr Pb Se Hg N > Total Metals Ag As Ba Cd Cr Pb Se Hg 6010B/200.7 Log-in Review Headspace 2001XT\1.814 H9T Carrier # Intact Temp BTEX 8021B/662 MTBE 8021B/602 1530 1630 7554 SAMPLING **TIME** 155 McCutcheon,Suite H El Paso, Texas 79932 Tel (915) 585-3443 Fax (915) 585-4944 1 (888) 588-3443 Phone #:(505)397 - 4882 **BTA** Sos) 397-470 **V**SV 173 PRESERVATIVE METHOD NONE Time: ICE Sace NaOH ORIGINAL COPY Š Submittal of samples constitutes agreement to Terms and Conditions listed of reverse side of C.O.C. Sappler Signatures ⁵OS²H Date: TraceAnalysis, Inc. Project Name: eONHHCI MATRIX SLUDGE Received at Laboratory by AIA. TIOS **A**3TAW Received by Receiyed by JnuomA\amuloV # CONTAINERS 201/ Time: Time: County. FIELD CODE W MARLAND (If different from above) 1/20/ I 51 7 Date: Date: (Street, City, Zip) 6701 Aberdeen Avenue, Ste. Ž, FR Tel (806) 794-1296 Fax (806) 794-1298 1 (800) 378-1296 Lubbock, Texas 79424 40 1 Project Location: Company Name: Relinguished by: Contact Person: Relinquished by: Relinquished by: Address: (LAB USE) 73459 60 67 63 Project #: 6 LAB# nvoice to:

Pag

744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01 Time: 16:31 Time: 13:25 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 **Date Sampled:** 09/28/2001 Report#/Lab ID#: 120071 Sample Matrix: water Sample Name: MW 1 Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone:

ζ	•
NAME OF THE OWNER, OF THE OWNER, OF THE OWNER, OF THE OWNER, OWNE	7
5	÷
×	_
2	7
4	1
C	Ę
Ç	
Ę	
į	_
ì	ĺ
ċ	ď

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec.2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			;		10/17/01	8260b				***	-
Benzene	1280	µg/L	10	<10	10/11/01	8260b		1.3	88.3	84.9	88.1
Ethylbenzene	366	µg/L	10	<10	10/11/01	8260b		0.2	106.5	105.3	103.2
m,p-Xylenes	145	µg/L		~ 1	10/17/01	8260b	:	0	103.7	9.101	8.66
o-Xylene	12.4	µg/L	-	7	10/17/01	8260b		0.2	105.3	102.6	101.8
Toluene	65.1	μg/L	1	<1	10/12/01	8260b		0.8	86.9	80.1	85.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Rehard

Richard Laster

3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers of the relative percent (%) difference between duplicate measurements. than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 44 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 1

Report#/Lab ID#: 120071 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	80.2	80-120	• • •
Toluene-d8	8260b	7.96	88-110	İ

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

44 & 2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01 Time: 16:31 Time: 13:37 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/28/2001 Report#/Lab ID#: 120072 Sample Name: MW 2 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

CAU.	,
Ē	Ė
t	•
Z	•
۲	
*	_
	_
4	J
2	7
7	-
4	1
į	I
Ċ	
•	
E	
c	Y
È	-
Ç	Ĵ
Ć	ì
	•
ľ	r

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSURA	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX					10/10/01	8260b					
Benzene	1.2	µg/L		⊽	10/10/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	7	ug/L		7	10/10/01	8260b	-	6.0	104.5	66	102.1
m,p-Xylenes	^ 1	ug/L	-	٧ ا	10/10/01	8260b	7	6	102.9	5.76	100.9
o-Xylene	7	µg/L		Ÿ	10/10/01	8260b	-	8.1	104	9.86	6.101
Toluene	1.31	µg/L		7	10/10/01	8260b		1.1	88.1	86.8	100.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, لمملاعنا

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 44 & 2209 N. Padre Island Dr., Corpus Christi, T. 840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 2

Report#/Lab ID#: 120072 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	1
Toluene-d8	8260b	92.3	88-110	1

Exceptions Report:

Report #/Lab ID#: 120072 Matrix: water

Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 2

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and A and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Ethylbenzene	J	J See J-flag discussion above.
m,p-Xylenes	ſ	J See J-flag discussion above.
Notes:		

Page#: 3

2209 N. Padre Island Dr., Corpus Christi, TX FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

505 397-4882

Phone:

FAX: 505 397-4701

Nm 88240

Date Received: 10/02/2001 Sample Matrix: water Sample Name: MW 3

Project ID: SPS-11 EOT 2022C

Report#/Lab ID#: 120073

Time: 12:45 Date Sampled: 09/28/2001

Time: 16:31

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA¹	SSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			;		10/110/01	8260b					:
Benzene	1.89	µg/L	-	<	10/10/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	⊽	µg/L	-	7	10/10/01	8260b		6.0	104.5	66	102.1
m,p-Xylenes	1.04	µg/L	-	<u>^</u>	10/10/01	8260b	-	2	102.9	97.5	100.9
o-Xylene	7	µg/L		7	10/10/01	8260b	! !	1.8	104	9.86	101.9
Toluene	1.91	µg/L	1	<u>~</u>	10/10/01	8260b	!	1.1	88.1	8.98	100.7
			-							+	

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M=Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 3

Report#/Lab ID#: 120073 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	1
Toluene-d8	8260b	95.7	88-110	ì

Exceptions Report:

Attn: Ken Dutton Report #/Lab ID#: 120073 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 3

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	
Ethylbenzene	ſ	
Notes:		

Page#: 3

744 & 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 1221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01

Time: 13:00 Time: 16:31

Date Sampled: 09/28/2001 **Date Received:** 10/02/2001

Sample Matrix: water

Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 120074 Sample Name: MW 4 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Client: Attn:

Nm 88240 Hobbs Phone:

FAX: 505 397-4701 505 397-4882

CARL THE TAIL A DAIL							QUALITY ASSURANCE DATA	4SSUR	ANCE DA	Į, Į	
Parameter Result	-	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	_				10/10/01	8260b	-				1
Benzene 12.3	3	µg/L	1	√ 7	10/10/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene 2.9		ng/L	_	Ÿ	10/110/01	8260b	1	6.0	104.5	66	102.1
m,p-Xylenes		µg/L	_	V	10/10/01	8260b		2	102.9	97.5	100.9
o-Xylene <1		µg/L	-	V	10/10/01	8260b		8.1	102	98.6	101.9
Toluene 1.16	<u></u>	µg/L		⊽ ,	10/110/01	8260b		1.1	88.1	8.98	100.7

6

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, IX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 4

Report#/Lab ID#: 120074 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	93.3	88-110	1

Exceptions Report:

Report #/Lab ID#: 120074 Matrix: water Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C

Sample Name: MW 4

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Oualifiers and OC data:

, and a second s		
Parameter	Qualif	Qualif Comment
o-Xylene	J	See J-flag discussion above.
Notes:		

Page#: 3

1744 & 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, T 4221 Freidrich Lane, Suite 190, Austin, I (512) 444-5896

Report Date: 10/12/01 Time: 13:50 Time: 16:31 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/28/2001 Report#/Lab ID#: 120075 Sample Name: MW 6 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Phone: Client: Attn:

5
=
XSI
7
⋖
z
F AN
-
OF
0
~
=
PORT
\mathbf{z}
~

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV ⁴	LCS4
Volatile organics-8260b/BTEX	1		1		10/110/01	8260b	-	i			-
Benzene	26.6	µg/L		7	10/10/01	8260b	1 1	1.5	88.3	6.68	103.5
Ethylbenzene	4.35	µg/L	_	7	10/10/01	8260b	1	6.0	104.5	66	102.1
m,p-Xylenes	1.54	µg/L		~ ,	10/10/01	8260b		7	102.9	97.5	6.001
o-Xylene	7	µg/L		7	10/11/01	8260b		1.8	104	98.6	101.9
Toluene	<1	µg/L	1	</td <td>10/10/01</td> <td>8260b</td> <td>J</td> <td>1.1</td> <td>88.1</td> <td>86.8</td> <td>100.7</td>	10/10/01	8260b	J	1.1	88.1	86.8	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster Richard

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, Tx 744 & 2209 N. Padre Island Dr., Corpus Christi, Tx 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Client:

Ken Dutton Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 6

Report#/Lab ID#: 120075 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	101	80-120	1
Toluene-d8	8260b	95.1	88-110	;

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

Exceptions Report:

Report #/Lab ID#: 120075 Matrix: water
Client: Environmental Tech Group
Project ID: SPS-11 EOT 2022C
Sample Name: MW 6

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Toluene	ŗ	See J-flag discussion above.
Notes:		

Page#: 3

744 & 2209 N. Padre Island Dr., Corpus Christi, IX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01

Environmental Tech Group Client:

Ken Dutton Attn:

Address: 2540 W. Marland

Hobbs

88240

NB

FAX: 505 397-4701 505 397-4882

Phone:

Project ID: SPS-11 EOT 2022C

Sample Name: MW 7

Sample Matrix: water

Report#/Lab ID#: 120076

Time: 16:31 Date Received: 10/02/2001

Time: 13:15 Date Sampled: 09/28/2001 Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4

Method 6 8260b 8260b 8260b 8260b 8260b 8260b

:

OUALITY ASSURANCE DATA¹

103.5

89.9 66

1.5

1

100.9 9.101

97.5 98.6 8.98

102.9 104.5 88.3

~

<u>1</u>8

88.1

100.7

102.1

REPORT OF ANALYSIS

.0/10/01 10/10/01 10/10/01 10/11/01 10/10/01 0/10/01 Date Blank $\vec{\nabla}$ $\overline{\mathsf{v}}$ $\overline{\lor}$ ROL 5 Units µg/L µg/L µg/L hg/L µg/L Result 7.16 2.28 124 99.7 Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene **Toluene**

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

that the Rehand

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 7

Report#/Lab ID#: 120076 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	82.8	80-120	
Foluene-d8	8260b	96.2	88-110	!

2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 10/12/01

Report#/Lab ID#: 120077

8408

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

Nm 88240

FAX: 505 397-4701 505 397-4882

Phone:

Project ID: SPS-11 EOT 2022C Sample Name: MW 9

Sample Matrix: water

Date Received: 10/02/2001

Time: 16:31

Time: 14:50 Date Sampled: 09/28/2001 CS4

103.2

88.1

101.8 8.66

85.3

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA¹	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 L	Prec.2	Recov.3	CCV4	1
Volatile organics-8260b/BTEX	1		1		10/17/01	8260b		1	}	1	
Benzene	2360	hg/L	01	<10 <10	10/11/01	8260b		1.3	88.3	84.9	∞
Ethylbenzene	1000	hg/L	01	<10	10/11/01	8260b	;	0.2	106.5	105.3	\cong
m,p-Xylenes	15	µg/L	7	7	10/12/01	8260b	1	0	103.7	9.101	6
o-Xylene	7	µg/L	7	7	10/17/01	8260b	~,	0.2	105.3	102.6	\cong
Toluene	7	hg/L	2	7	10/17/01	8260b	-,	8.0	6.98	80.1	∞
			_								

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference.

8744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01

Time: 14:50 Time: 16:31

Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/28/2001 Report#/Lab ID#: 120077 Sample Matrix: water Sample Name: MW 9 Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

ξ	ı		١
Þ			
	ı	į	
1	5		
•			
٠			
4	e	1	
۲			
•	Ľ		
1	ŧ	1	
ļ	1	í	
Ć			
ĺ			
7	۰		
2			
Ć			
È	١	_	
É			

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSUR/	NCE DA	TA 1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			-		10/17/01	8260b	-				1
Benzene	2360	µg/L	01	<10 <10	10/11/01	8260b		1.3	88.3	84.9	88.1
Ethylbenzene	1000	ug/L	10	<10	10/11/01	8260b	:	0.2	106.5	105.3	103.2
m,p-Xylenes	15	ug/L	7	7	10/12/01	8260b	t !	0	103.7	9.101	8.66
o-Xylene	7	µg/L	7	7	10/17/01	8260b	-	0.2	105.3	102.6	101.8
Toluene	2	µg/L	7	7	10/17/01	8260b		8.0	6.98	80.1	85.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rebond Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference recovered from a spiked sample.

Except As Report:

Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Report #/Lab ID#: 120077 Sample Name: MW 9

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
o-Xylene	-	J See J-flag discussion above.
Toluene	J	J See J-flag discussion above.
Notes:		

2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 10/12/01 **Time:** 16:00 **Time:** 16:31 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 **Date Sampled:** 09/28/2001 Report#/Lab ID#: 120078 Sample Name: MW 10 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Phone: Client: Attn:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSURA	NCE DA	LTA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			:		10/11/01	8260b	:	1	}		J I I
Benzene	6.62	hg/L	_	₹	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	7.79	µg/L	_	ī	10/11/01	8260b	-	6.0	104.5	66	102.1
m,p-Xylenes	1.04	ng/L		7	10/11/01	8260b	(<u>.</u>	2	102.9	97.5	6.001
o-Xylene	⊽	ng/L		^ 7	10/11/01	8260b	ſ	8.1	104	9.86	6.101
Toluene	⊽	µg/L	7	⊽	10/11/01	8260b	ſ	1.1	88.1	8.98	100.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster Rehard

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 10

Report#/Lab ID#: 120078 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	86.7	80-120	, ,
Toluene-d8	8260b	94	88-110	;

Exceptions Report:

Attn: Ken Dutton Report #/Lab ID#: 120078 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Sample Name: MW 10

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
o-Xylene	J	See J-flag discussion above.
Toluene	ſ	J See J-flag discussion above.
Notes:		

Page#: 3

FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TI 2209 N. Padre Island Dr., Corpus Christi, (512) 444-5896 •

> Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

Nm 88240

505 397-4882

Phone:

FAX: 505 397-4701

Report Date: 10/12/01 Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 120079

Sample Name: MW 11 Sample Matrix: water

Time: 16:31 Date Received: 10/02/2001

Time: 15:50 Date Sampled: 09/28/2001

REPORT OF ANALYSIS	!	!	:	:	!		QUALITY ASSURANCE DATA ¹	SSUR	NCE DA	TA1
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX	-		1		10/11/01	8260b		1		
Benzene	12.6	hg/L	1	7	10/11/01	8260b		1.5	88.3	6.68
Ethylbenzene	10.1	hg/L	~	7	10/11/01	8260b	;	0.0	104.5	66
m,p-Xylenes	7	µg/L		7	10/11/01	8260b	1	7	102.9	97.5
o-Xylene	~	ng/L	_	7	10/11/01	8260b		8.1	191	98.6
Toluene	<	µg/L	1	<1 <1	10/11/01	8260b		1.1	88.1	8.98

100.9 101.9

100.7

103.5 102.1

LCS4

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Relieved faster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte I. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

840408 4221 Freidrich Lane, Suite 190, Austin, TX 2209 N. Padre Island Dr., Corpus Christi, T. (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 11

Report#/Lab ID#: 120079 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound Mei	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	99.1	80-120	;
Toluene-d8 82	8260b	94.3	88-110	

1744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01

Time: 15:00 Time: 16:31

Project ID: SPS-11 EOT 2022C **Date Received:** 10/02/2001 Date Sampled: 09/28/2001 Report#/Lab ID#: 120080 Sample Name: MW 12 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

ζ	ı	2
۰	_	ī
	ı	2
	_	
,		
×		į
4	,	ŕ
	_	4
è	2	
		d
	`	٩
	1	
-		
Ç	-	•
E	_	4
2		i
į	ž	i
(_)
Č	ĭ	4

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	, , ,		-		10/11/01	8260b	;				-
Benzene	62.7	µg/L	1	⊽	10/11/01	8260b	-	1.5	88.3	6'68	103.5
Ethylbenzene	7.95	µg/L	-	7	10/11/01	8260b	-	6.0	104.5	66	102.1
m,p-Xylenes	9	µg/L	—	۷ ا	10/11/01	8260b	!	7	102.9	97.5	100.9
o-Xylene	1.43	µg/L	_	7	10/11/01	8260b	1	1.8	104	9.86	6.101
Toluene	3.99	µg/L	-	7	10/11/01	8260b	1	1.1	88.1	86.8	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

لمحظما

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 12

Report#/Lab ID#: 120080 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

urrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
2-Dichloroethane-d4	8260b	104	80-120	!
oluene-d8	8260b	93.4	88-110	;

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

744 & 78408 2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01 Time: 14:25 Time: 16:31 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120081 Sample Name: MW 13 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

717		
	1	
	4	ı

REPORT OF ANALYSIS				į			OUALITY ASSURANCE DATA	ASSURA	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			:		10/11/01	8260b	1	:		1	1
Benzene	1.78	Hg/L	-	7	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	7	ng/L	- 1	√ 1	10/11/01	8260b	ī	6.0	104.5	66	102.1
m,p-Xylenes	⊽	µg/L		7	10/11/01	8260b	;	7	102.9	5.76	100.9
o-Xylene	7	Hg/L	-	√1	10/11/01	8260b	*	8.1	<u>8</u>	98.6	101.9
Toluene	⊽	µg/L	-	7	10/11/01	8260b	1	1:1	88.1	8.98	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, فمملاما

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limits. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 44 & 2209 N. Padre Island Dr., Corpus Christi, Tx 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 13

Report#/Lab ID#: 120081 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	101	80-120	1
Toluene-d8	8260b	93.8	88-110	!

Attn: Ken Dutton Report #/Lab ID#: 120081 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.

□ Sample received in appropriate container(s). State of sample preservation unknown.

□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Oualifiers and OC data:

Parameter	Qualif	
Ethylbenzene	-	See J-flag discussion above.
Notes:		

144 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TX (512) 444-5896

Report Date: 10/12/01

Time: 14:13 Time: 16:31

Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120082 Sample Name: MW 14 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Phone: Client: Attn:

	Č			,
	١			i
	ì		4	
				٠
	i	•		
	,		۰	
	4	١	į	
	,			
	4			į
į	ţ	١		
	í	•		١
		1	•	
į	C			
	١			
ł	ŀ		1	Ľ
	ı			

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSUR	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	:				10/11/01	8260b					1
Benzene	4890	µg/L	10	<10	10/11/01	8260b	1	1.3	88.3	84.9	88.1
Ethylbenzene	498	µg/L	5	∵	10/11/01	8260b	!	0.2	106.5	105.3	103.2
m,p-Xylenes	297	µg/L	2	\$	10/11/01	8260b	!	0	103.7	9.101	8.66
o-Xylene		µg/L	5	Ф	10/11/01	8260b	-	0.2	105.3	102.6	8.101
Toluene	۵.	µg/L	5	ζ,	10/11/01	8260b	-	8.0	6.98	80.1	85.3

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 14

Report#/Lab ID#: 120082 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	82.7	80-120	
Foluene-d8	8260b	96.2	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

2209 N. Padre Island Dr., Corpus Christi, TX (512) 444-5896 • FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T

Report Date: 10/12/01 **Time: 14:00** Time: 16:31 Project ID: SPS-11 EOT 2022C **Date Received:** 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120083 Sample Name: MW 15 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSURA	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX			1		10/11/01	8260b				1	-
Benzene	8.4	ng/L	-	I>	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	7	ug/L	-	7	10/11/01	8260b	i	0.0	104.5	66	102.1
m,p-Xylenes	7	ng/L		v	10/11/01	8260b		7	102.9	97.5	100.9
o-Xylene	7	ng/L	_	V	10/11/01	8260b	1	8:1	102	98.6	101.9
Toluene	· ~	ng/L		⊽	10/11/01	8260b		1.1	88.1	8.98	100.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rechard

Richard Laster

3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limit. P=Precision higher ypically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers of the relative percent (%) difference between duplicate measurements. than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 15

Report#/Lab ID#: 120083 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	107	80-120	
Toluene-d8	8260b	94.6	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

744 8 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766 1221 Freidrich Lane, Suite 190, Austin, TA (512) 444-5896 •

Report Date: 10/12/01

Project ID: SPS-11 EOT 2022C

Sample Name: MW 16 Sample Matrix: water

Report#/Lab ID#: 120084

Environmental Tech Group Address: 2540 W. Marland Ken Dutton Client: Attn:

Nm 88240 505 397-4882 Hobbs Phone:

FAX: 505 397-4701

OUALITY ASSURANCE DATA¹

Time: 12:30 **Time:** 16:31

Date Received: 10/02/2001 Date Sampled: 09/27/2001

REPORT OF ANALYSIS					:		QUALITY ASSURANCE DATA	ASSUR/	ANCE DA	TAI	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec.2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX	,		1		10/11/01	8260b			!	:	1 1
Benzene	1.44	µg/L		7	10/11/01	8260b	-:	1.5	88.3	6.68	103.5
Ethylbenzene	12.4	µg/L		~	10/11/01	8260b	;	6.0	104.5	66	102.1
m,p-Xylenes	4.56	µg/L	-	<u>^</u>	10/11/01	8260b	1	2	102.9	97.5	6.001
o-Xylene	1.83	µg/L	-	7	10/11/01	8260b	1	1.8	104	9.86	101.9
Toluene	27	µg/L		7	10/11/01	8260b	;	1.1	88.1	8.98	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster Richard

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 16

Report#/Lab ID#: 120084 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	85.1	80-120	1
Foluene-d8	8260b	6.76	88-110	1

8744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01 Time: 16:28 Time: 16:31 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120085 Sample Name: MW 17 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone:

ANA	
C	
г.	
PORT	

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	SSURA	NCE DA	$\overline{\mathrm{TA}^{1}}$	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX			1		10/11/01	8260b				-	1
Benzene	64.3	µg/L		⊽	10/11/01	8260b	:	1.5	88.3	6.68	103.5
Ethylbenzene	49.5	µg/L		7	10/11/01	8260b		6.0	104.5	66	102.1
m,p-Xylenes	28.9	µg/L		< 1	10/11/01	8260b	!	7	102.9	97.5	100.9
o-Xylene	13.5	µg/L		7	10/11/01	8260b	1	8.1	104	9.86	6.101
Toluene	6.68	µg/L	1	⊽	10/11/01	8260b		1.1	88.1	8.98	100.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

heliana

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

14 & 7840408 4221 Freidrich Lane, Suite 190, Austin, TX 2209 N. Padre Island Dr., Corpus Christi, TX (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 17

Report#/Lab ID#: 120085 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	88.3	80-120	1
Toluene-d8	8260b	93.8	88-110	-

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

78408 2209 N. Padre Island Dr., Corpus Christi, Ty FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896 •

Report Date: 10/12/01 **Time:** 16:20 Time: 16:31 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120086 Sample Name: MW 18 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Phone: Client: Attn:

REPORT OF ANALYSIS						:	QUALITY ASSURANCE DATA 1	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS^4
Volatile organics-8260b/BTEX			-		10/11/01	8260b					
Benzene	1.08	µg/L		7	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	7	µg/L	_	۲ <u>۰</u>	10/11/01	8260b	-7	6.0	104.5	66	102.1
m,p-Xylenes	7	µg/L		۷ ا	10/11/01	8260b		7	102.9	5.76	100.9
o-Xylene	7	µg/L		\ !>	10/11/01	8260b	1	8.1	104	98.6	101.9
Toluene	⊽	hg/L	-	7	10/11/01	8260b	;	1.1	88.1	8.98	100.7
		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,									

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

44 & 7840408 4221 Freidrich Lane, Suite 190, Austin, TX 2209 N. Padre Island Dr., Corpus Christi, T. (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 18

Report#/Lab ID#: 120086 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	80.3	80-120	;
Foluene-d8	8260b	97.1	88-110	1

Exceptions Report:

Report #/Lab ID#: 120086 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Attn: Ken Dutton

Sample Name: MW 18

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <=6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.
□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Oualifiers and OC data:

Parameter	Qualif	Qualif Comment
Ethylbenzene	J	See J-flag discussion above.
Notes:		

Page#: 3

FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T. 2209 N. Padre Island Dr., Corpus Christi, (512) 444-5896

744 &

Report Date: 10/12/01 Time: 16:31 Project ID: SPS-11 EOT 2022C **Date Received:** 10/02/2001 Report#/Lab ID#: 120087 Sample Name: MW 19 Sample Matrix: water Nm 88240 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Hobbs Client: Attn:

Time: 16:09

Date Sampled: 09/27/2001

REPORT OF ANAI VCTC

FAX: 505 397-4701

505 397-4882

Phone:

REPORT OF ANALYSIS				!	!		QUALITY ASSURANCE DATA 1	ASSUR	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX					10/11/01	8260b		1	-	1	;
Benzene	1.42	hg/L		⊽	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	1.29	hg/L	-	~	10/11/01	8260b	:	0.9	104.5	66	102.1
m,p-Xylenes	7	ng/L	-	^	10/11/01	8260b		7	102.9	97.5	100.9
o-Xylene	⊽	ng/L		7	10/11/01	8260b		8.1	104	9.86	101.9
Toluene	7	µg/L	-	⊽	10/11/01	8260b	;	1:1	88.1	8.98	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Richard Laster Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 7840408 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Client:

Ken Dutton Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 19

Report#/Lab ID#: 120087 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	6.08	80-120	:
Toluene-d8	8260b	100	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 10/12/01 **Time:** 15:20 **Time:** 16:31 Project ID: SPS-11 EOT 2022C **Date Received:** 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120088 Sample Name: MW 20 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Phone: Client: Attn:

12	
XS	
Ž	
Ŧ	
Q	
Z	
2	
Ξ	

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSURA	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	***		1		10/11/01	8260b					-
Benzene	3.84	µg/L	1	⊽	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	2.89	µg/L	-	⊽	10/11/01	8260b	1	6.0	104.5	66	102.1
m,p-Xylenes	7	µg/L	-	マ	10/11/01	8260b		2	102.9	97.5	100.9
o-Xylene	⊽	µg/L	_	Ÿ	10/11/01	8260b	Í	1.8	102	9.86	101.9
Toluene	7	µg/L	-1	7	10/11/01	8260b	~~~	1.1	88.1	8.98	100.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers 1. Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 20

Report#/Lab ID#: 120088 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	80.2	80-120	1
Toluene-d8	8260b	100	88-110	:

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 1 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

> Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

Nm 88240

505 397-4882 Phone:

FAX: 505 397-4701

Report Date: 10/12/01 Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 120089 Sample Name: MW 21

Sample Matrix: water

Time: 16:31 Date Received: 10/02/2001

Time: 15:10 Date Sampled: 09/27/2001

OUALITY ASSURANCE DATA 1

REPORT OF ANALYSIS

		!	i								
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	1		1		10/11/01	8260b	:	-			}
Benzene	2.69	µg/L	1	⊽	10/11/01	8260b		1.5	88.3	6.68	103.5
Ethylbenzene	2.62	hg/L	-	. ✓	10/11/01	8260b	-	6.0	104.5	66	102.1
m,p-Xylenes	7	µg/L	~	7	10/11/01	8260b	1	7	102.9	97.5	100.9
o-Xylene	7	µg/L		7	10/11/01	8260b		<u>«</u>	101	9.86	101.9
Toluene	∀	µg/L	-	7	10/11/01	8260b	-	1.1	88.1	8.98	100.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

44 & 7840408

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 21

Report#/Lab ID#: 120089 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1			00, 00	
1.2-Dichloroethane-d4	8260b	80.3	80-170	1
	10000	25	88,110	;
Toluene-d8	97978	Ω 1	017-00	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

2209 N. Padre Island Dr., Corpus Christi, T. (512) 444-5896 • FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T

Report Date: 10/12/01 Time: 16:31 Time: 14:37 Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Date Sampled: 09/27/2001 Report#/Lab ID#: 120090 Sample Name: MW 22 Sample Matrix: water Nm 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs Client: Phone: Attn:

S	
S	
XSIS	
-	
ANAL	
7	
ð	
4	
EPORT	
Σ	

REPORT OF ANALYSIS						; ;	QUALITY ASSURANCE DATA ¹	ASSURA	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	1		-		10/11/01	8260b	i	1	;	1	1
Benzene	5.74	hg/L	-	\ 	10/11/01	8260b		1.3	88.3	84.9	88.1
Ethylbenzene	2.81	µg/L	_	7	10/11/01	8260b		0.7	106.5	105.3	103.2
m,p-Xylenes	7	hg/L	_	7	10/11/01	8260b	-,	0	103.7	9.101	8.66
o-Xylene	7	µg/L		7	10/11/01	8260b	:-	0.7	105.3	102.6	8.101
Toluene	</td <td>μg/L</td> <td>-</td> <td><<u>-</u></td> <td>10/11/01</td> <td>8260b</td> <td>:</td> <td>8.0</td> <td>6.98</td> <td>80.1</td> <td>85.3</td>	μg/L	-	< <u>-</u>	10/11/01	8260b	:	8.0	6.98	80.1	85.3

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in ypically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

700 V 545

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 22

Report#/Lab ID#: 120090 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

				· · ·
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	89.1	80-120	;
Toluene-d8	8260b	95.5	88-110	;

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

÷

Exceptions Report:

Report #/Lab ID#: 120090 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Attn: Ken Dutton

Sample Name: MW 22

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	
m.p-Xylenes	ſ	bove.
Notes:		

Page#: 3

744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TA (512) 444-5896

Report Date: 10/12/01

Project ID: SPS-11 EOT 2022C Date Received: 10/02/2001 Report#/Lab ID#: 120091 Sample Name: MW 23 Sample Matrix: water Nm 88240 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Hobbs Client: Attn:

REPORT OF ANALYSIS

505 397-4882

Phone:

FAX: 505 397-4701

Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX					10/11/01	8260b				1 2 7	1
Benzene	7	µg/L	1	₹	10/11/01	8260b	-	1.3	88.3	84.9	88.1
Ethylbenzene	7	ug/L	-	<u>^</u>	10/11/01	8260b		0.2	106.5	105.3	103.2
m,p-Xylenes	7	ug/L	_	^	10/11/01	8260b		0	103.7	9.101	8.66
o-Xylene	⊽	µg/L	_	~	10/11/01	8260b	:	0.2	105.3	102.6	101.8
Toluene	▽	µg/L	-	7	10/11/01	8260b	-	8.0	6.98	80.1	85.3

OUALITY ASSURANCE DATA¹

Time: 15:40 **Time:** 16:31

Date Sampled: 09/28/2001

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client:

Ken Dutton Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 23

Report#/Lab ID#: 120091 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	91.3	80-120	1
Toluene-d8	8260b	97.2	88-110	1
				•

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, T 4221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 10/12/01

Environmental Tech Group Client:

Ken Dutton Attn:

Address: 2540 W. Marland

Hobbs

Nm 88240

FAX: 505 397-4701 505 397-4882 Phone:

Sample Name: MW 24 Sample Matrix: water

Project ID: SPS-11 EOT 2022C

Report#/Lab ID#: 120092

Date Received: 10/02/2001

Time: 16:31

Time: 12:15 Date Sampled: 09/28/2001

OHALITY ASSURANCE DATAL

REPORT OF ANAL VSIS

NELONI OF AMALISIS						!	COALIT ASSONANCE DATA	AND CON	ALL DA	- 44	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	1		1		10/11/01	8260b		;			1
Benzene	1470	µg/L	10	<10	10/17/01	8260b		1.3	88.3	84.9	88.1
Ethylbenzene	15.2	µg/L	_	∵	10/11/01	8260b		0.7	106.5	105.3	103.2
m,p-Xylenes	7.76	µg/L		7	10/11/01	8260b	;	0	103.7	9.101	8.66
o-Xylene	4.81	µg/L		7	10/11/01	8260b	:	0.2	105.3	102.6	101.8
Toluene	24.2	µg/L	_	7	10/11/01	8260b	<u>.</u>	8.0	6.98	80.1	85.3

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, hickory

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. S. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value

14 & 840408 4221 Freidrich Lane, Suite 190, Austin, TX (2209 N. Padre Island Dr., Corpus Christi, T (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 24

Report#/Lab ID#: 120092 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	87.1	80-120	-
Toluene-d8	8260b	8.96	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, T 4221 Freidrich Lane, Suite 190, Austin, TX (512) 444-5896

Report Date: 10/12/01

Project ID: SPS-11 EOT 2022C

Sample Name: MW 25 Sample Matrix: water

Report#/Lab ID#: 120093

44 & 8408

> Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

FAX: 505 397-4701 505 397-4882 Phone:

Nm 88240

QUALITY ASSURANCE DATA¹

Time: 12:00

Time: 16:31

Date Received: 10/02/2001 Date Sampled: 09/28/2001

Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4 0.2 1 0 Method 6 8260b 8260b 8260b 8260b 8260b 8260b 10/12/01 10/17/01 10/12/01 10/12/01 10/12/0 10/12/0 Date Blank $\overline{\mathbf{v}}$ ∇ $\overline{\mathsf{v}}$ ROL⁵ Units hg/L µg/L hg/L hg/L µg/L Result $\overline{\mathsf{v}}$ \vec{v} $\vec{\nabla}$ $\vec{\nabla}$ Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

103.2

105.3 84.9

> 106.5 103.7 105.3

88.3

ł

88.1

8.66

101.6 102.6

101.8

85.3

80.1

86.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Releval Parter

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 4 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 25

Report#/Lab ID#: 120093 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	8.68	80-120	-
Toluene-d8	8260b	96.5	88-110	:

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

44 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TX (512) 444-5896

Report Date: 10/12/01

Project ID: SPS-11 EOT 2022C

Sample Name: MW 26 Sample Matrix: water

Report#/Lab ID#: 120094

Time: 16:47 Time: 16:31

Date Received: 10/02/2001 Date Sampled: 09/28/2001

Nm 88240 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Hobbs Client: Attn:

505 397-4882 Phone:

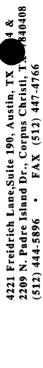
FAX: 505 397-4701

REPORT OF ANALYSIS

LCS4 103.2 101.8 Data Qual 7 Prec. 2 Recov.3 CCV4 105.3 101.6 102.6 80.1 OUALITY ASSURANCE DATA 1 106.5 103.7 105.3 86.9 88.3 0 Method 6 8260b 8260b 8260b 8260b 8260b 8260b 10/12/01 10/17/01 10/12/01 10/17/01 10/17/01 10/17/01 Date Blank ٥<u>۲</u> 01> 012 ROL 10 010010101 Units µg/L hg/L µg/L µg/L Result 1700 201 83.5 469 4 Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

8.66

88.1


85.3

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J ≈ analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) 1. Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 26

Report#/Lab ID#: 120094 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	92.1	80-120	-
Toluene-d8	8260b	94.5	88-110	i t

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

44 & 78408 2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TN (512) 444-5896

> Environmental Tech Group Client: Attn:

Address: 2540 W. Marland Ken Dutton

Hobbs

Nm 88240

505 397-4882 Phone:

FAX: 505 397-4701

Report Date: 10/12/01 Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 120095

Sample Name: MW 27

Sample Matrix: water

Time: 16:40 Time: 16:31 Date Received: 10/02/2001 **Date Sampled:** 09/28/2001 LCS4

OUALITY ASSURANCE DATA1

101.8

85.3

103.2 8.66

88.1

REPORT OF ANALYSIS

Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV ⁴
Volatile organics-8260b/BTEX			1		10/12/01	8260b				
Benzene	1.16	hg/L	-	√	10/17/01	8260b		1.3	88.3	84.9
Ethylbenzene	1.39	hg/L	-	7	10/17/01	8260b	1	0.2	106.5	105.3
m,p-Xylenes	~ 1	ηg/L	-	7	10/17/01	8260b	-	0	103.7	9.101
o-Xylene	~	µg/L	_	ĭ	10/17/01	8260b	-	0.7	105.3	102.6
Toluene	2.43	µg/L		⊽	10/17/01	8260b	-	8.0	86.9	80.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 4 & 2209 N. Padre Island Dr., Corpus Christi, T. 840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 27

Report#/Lab ID#: 120095 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	1
Toluene-d8	8260b	95.5	88-110	:
			-	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#: 120095 Matrix: water

Attn: Ken Dutton

Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Sample Name: MW 27

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <=6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
 ☐ Sample received in appropriate container(s). State of sample preservation unknown.
 ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Keported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
m,p-Xylenes	ъ	
Notes:		

44 & 78408 4221 Freidrich Lane, Suite 190, Austin, TX 2209 N. Padre Island Dr., Corpus Christi, TX FAX (512) 447-4766 (512) 444-5896

Report Date: 10/12/01

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs

Nm 88240

FAX: 505 397-4701 505 397-4882

Project ID: SPS-11 EOT 2022C

Report#/Lab ID#: 120096

Sample Name: MW 28

Sample Matrix: water

Time: 16:31 Date Received: 10/02/2001

Time: 17:00 **Date Sampled:** 09/28/2001

REPORT OF ANALYSIS

Phone:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	11		1		10/17/01	8260b					1
Benzene	2250	ug/L	10	<10	10/12/01	8260b		1.3	88.3	6.48	88.1
Ethylbenzene	94.1	ng/L	10	<10	10/12/01	8260b	-	0.7	106.5	105.3	103.2
m,p-Xylenes	36.8	ug/L	10	<10	10/12/01	8260b	-	0	103.7	101.6	8.66
o-Xylene	19.2	ng/L	10	<10	10/12/01	8260b	:	0.7	105.3	102.6	101.8
Toluene	27.3	hg/L	10	<10	10/17/01	8260b	!	8.0	86.9	80.1	85.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 44 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 28

Report#/Lab ID#: 120096 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.1	80-120	
Toluene-d8	8260b	93.6	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 10/12/01

	ĐΩ	
441	U _A	1
(,	酒	
		J

CHAIN-OF-CUSTODY

and Reports To:	Bill to (if different):		
ompany Name ETGI	Company Name 6070		4221 Freidrich Lane, Suite 190, Austin, 1A 76/44 Phone; (512) 444-5896
ddress 25 40 W MARLAND	Address		Fax: (512) 447-4766
ity 16881 State 1/1 Zip 82240	CityState	Zip	The state of the s
TTN: KEN DUTTON	ATTN:		Analyses Requested (1)
1000 (500) 77- 418 2 Fax (506) 197-470)	Phone Fax		Please attach explanatory information as required
Rush Status (must be confirmed with lab mgr.):		`	

⋖

Comments Lab I.D. # 120072 120076 (Lab only) 120073 120074 120075 120071 120077 120079 120080 120078 Water Waste Sampler: Ana Carry Soil Sampled Sampled Containers No. of 9 Time 1300 100 305/ 0/1/20 1600 9-28-01 1/325 1337 1245 10220 Date Project Name/PO#: 5P5-// Description/Identification Client Sample No. 4 e # B ž 32 MAN ž 25 mw 3 ZZ ¥ 3

(1)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting linits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's option. Specific compound lists must be supplied for all GC procedures. 15m2110

	Sample Relinquished By	d By			Sample Received	By	
Name 1	Affiliation	Date	Time	Name	Affiliation	Date	Time
And laser		10-1-01	1200	Memo	Grussbreit #51	10/0/01	1631
					0		

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

CHAIN-OF-CUSTODY

Send Keports 10:	Company Name FTGI	Address 25 40 W MARLAND	16881 State NM Zip 88240	ATTN: KEN DUTTON	Phone (500) 22 - 418 2 Fax (506) 857-470)
Sena Ke	Company	Address	City / 1885	ATTN:	Phone

:
Ħ
ire
iffe
T
Œ
ţ
311
E

Analyses Requested (1)	Please attach explanatory information as required
1	\

	4
StateZip	

Analys	Please attach ext	//////	
	Fax	i	•

Rush Status (must be confirmed with la Project Name/PO#: 5/2/1/	ed with	lab mgr.):Sampler:	er	Lag	6	2	Trans.						
Client Sample No.	Date	l Ime	S			Lab 1.D. #	1	\	\	\	\	\	(
							\ \ \ ? \	•	`	`	`		

	Comments										
\ \											
\ \											
	22										
	Lab I.D. # (Lab only)	120081 N	120082	120083	120084	120085	120086	120087	120088	120089	120090
	Water Waste										
	Water	حر			_					- (3	
	Soil										
	e No. of led Containers	~									>
	Time Sampled	MAS	1413	aahl	1230	8791	089/	16091	ores/	0/51	1437
222C	Date Time Sampled Sampl	42701 1425									>
60120220	Client Sample No. Description/Identification	MW 13	H1 MM	MW 15	1/ JM	4 / MM	81 mm	Phy 19	MW 20	Mw 21	AU 22

(1)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's option. Specific compound lists must be supplied for all GC procedures.

L		Sample Relinquished	ed By			Sample Received By	By	
L_	Name /	Affiliation	Date	Time	Name	Affiliation	Date	Time
\square	ymas lases		10-1-01	1200	Manie	Homohren ASI	10/2/01	1631

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

-CUSI OD Y	0: Bill to (if different):	ETGI Company Name	Address 25 40 W MARLAND Address	City Holls State Nm Zip 88240 City	ATTN: KEN DUTTON ATTN:	Dhone
CHAIN-OF-CUSIODY	Send Reports To:	Company Name FYGI	Address 25%	City 16885	ATTN: KEN	Discool of the Party

		_					_									
4221 FIGURIEN LANG, SOME 190, AUSTRAL PROPERTY (S12) 444-5896	Fax: (512) 447-4766		Analyses Requested (1)	Please attach explanatory information as required				Comments								
				1	K		\									
		d.				200	\ \ '\									
		Zip						\angle	74					\rightarrow		
Corr		State		Fax				Lab I.D. # (Lab only)	120091	120092	120093	120094	120095	120096		
e					0	3		Waste								
Company Name_						7		Water Waste	q					\nearrow		
pany	Address_		Ä	ne	1	12mg										
Con	Add	City_	ATTN:	Phone		ler:		No. of Containers Soil	7					\nearrow		
		290		106h-t	lab mgr.	Sampler		Time Sampled	1540	1215	1200	1647	0491	1200		
	ALAND	Zip 88		505/39	ned with	7	2022C	Date Time Sampled Sample	9-28-01 1540					<u> </u>	•	
Company Name FIGT	Address 25 40 W MARLAND	ity 16881 State Nm Zip 88240	TTN: KEN DUTTON	hond 5ac 372-4182 Fax (506) 1872-470,	Rush Status (must be confirm		Fot	Client Sample No. Description/Identification	MW 23	Mw 24	mw 25	MW 26	MW27	MW 28		

(1)Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

	Sample Relinquished By	ed By			Sample Received By	By	
Name A	Affiliation	Date	Time	Name	Affiliation	Date	Time
Ama lesas		10-1-01	1200	Manie	Gensteren ASI	10/2/01	1631
				,	0		

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austi (512) 444-5896

> 79703 Τχ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

FAX: 915 520-4310 915 522-1139

Phone:

Report Date: 12/07/01 Project ID: SPS 11 EOT 2022C Report#/Lab ID#: 122713 Sample Name: MW 1

Time: 11:10 **Time:** 10:26 Date Received: 11/20/2001 Date Sampled: 11/17/2001

Sample Matrix: water

OUALITY ASSURANCE DATA¹

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4 | LCS4

Method 🏻 8260b

Date

Blank

ROL⁵

Units

11/29/01

90.9

85.9 101.7

86.2 99.4

8260b 8260b 8260b

11/29/01

<100

100 100

µg/L

865

µg/L

1650

Ethylbenzene m,p-Xylenes

Benzene

11/29/01

11/29/01 11/29/01

<100

11/29/01

100

hg/L

87.9

104.6

95

92.3 82.2

95.1

96.4

84.3

102.4

97.6

20.5 1.6 9.0 1.2

8260b 8260b

Result 6880 Volatile organics-8260b/BTEX REPORT OF ANALYSIS Parameter

00T> <100 100 001 µg/L hg/L 204 121 o-Xylene Toluene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference.

4221 Freidrich Lane, Suite 199, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 1

Report#/Lab ID#: 122713
Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94.3	80-120	:
Toluene-d8	8260b	94.9	88-110	}

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery límits.

٠.,;

X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01 Time: 10:26 Time: 11:25 Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122714 Sample Matrix: water Sample Name: MW 2 79703 FAX: 915 520-4310 ĭ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client:

ζ	I.
	Ė
į	1
_	
,	٦,
×	
4	4
	_
4	_
_	d
	٦
Ţ	Ŧ
7	
_	
E	-
Ċ	v
2	ï
ζ	
É	ī
F	-
į.	r.

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA¹	ASSUR/	ANCE DA	TA1
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX	-		1		11/29/01	8260b				1 1 4
Benzene	10.6	ng/L	1	⊽	11/29/01	8260b		20.5	97.6	102.4
Ethylbenzene	3.12	µg/L		7	11/29/01	8260b	1	1.6	96.4	95.1
m,p-Xylenes	2.41	µg/L		٧ ۲	11/29/01	8260b	-	9.0	86.2	85.9
o-Xylene	⊽	µg/L	_	٧ ۲	11/29/01	8260b	-	1.2	99.4	101.7
Toluene	2.31	µg/L	_	7	11/29/01	8260b	: :	9.1	95	104.6

LCS4

92.3 82.2 90.9 87.9

84.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Page#: 1

4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 122714 Sample Matrix: water

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C

Sample Name: MW 2

Recovery 97.9 109 Method 8260b 8260b REPORT OF SURROGATE RECOVERY Surrogate Compound 1,2-Dichloroethane-d4 Toluene-d8

Data Qualifiers

Recovery Limit

80-120 88-110

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Attn: Ann Moore Report #/Lab ID#: 122714 Matrix: water Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C Sample Name: MW 2

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

verified as to the presence and relative ratio of target ions (eg. the material causing the I flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Jualif Comment
o-Xylene	r	See J-flag discussion above.
Notes:		

Page#: 3

78744 & 4221 Freidrich Lane, Suite 190, Austikar, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Report#/Lab ID#: 122715

Time: 10:26 Time: 11:17

Date Received: 11/20/2001 Date Sampled: 11/17/2001

Sample Matrix: water Sample Name: MW 3

79703 Τχ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client:

FAX: 915 520-4310 915 522-1139 Phone:

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSUR	ANCE DA	TA 1
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4	Prec. ²	Recov.3	CCV ⁴ I
Volatile organics-8260b/BTEX	*		1		11/29/01	8260b				
Benzene	5.61	µg/L	1	™	11/29/01	8260b		20.5	97.6	102.4
Ethylbenzene	2.16	µg/L	1	Ÿ	11/29/01	8260b	-	1.6	96.4	95.1
m,p-Xylenes	1.71	µg/L	1	۲ ۲	11/29/01	8260b	:	9.0	86.2	85.9
o-Xylene	V	Hg/L	-	⊽	11/29/01	8260b	:	1.2	99.4	101.7
Toluene	1.49	µg/L	1	7	11/29/01	8260b		9.1	95	104.6

LCS4

92.3 82.2 90.9 87.9

84.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Report Date: 12/07/01

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 3

Report#/Lab ID#: 122715 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	90.3	80-120	-
Toluene-d8	8260b	91.9	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austif (512) 444-5896 •

Report Date: 12/07/01 **Time:** 10:26 Time: 10:45 Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122716 Sample Matrix: water Sample Name: MW 4 79703 FAX: 915 520-4310 Τχ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone:

T.	
=	
U	
SISA	
-	
_	
4	
-	
~	
ANAL	
C	
•	
E	
~	
-	
POR	
-	

REPORT OF ANALYSIS						ļ	QUALITY ASSURANCE DATA	ASSUR	ANCE DA	TA1
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7	Prec.2	Prec.2 Recov.3 CCV4	CCV4
Volatile organics-8260b/BTEX	-		1		11/29/01	8260b	-			
Benzene	1.56	µg/L	1	\sqrt{\sqrt{1}}	11/29/01	8260b	1	20.5	97.6	102.4
Ethylbenzene	7	ug/L	1	<u>.</u>	11/29/01	8260b	1	1.6	96.4	95.1
m,p-Xylenes	7	µg/L	_	v V	11/29/01	8260b	· ·	9.0	86.2	85.9
o-Xylene	7∨	Hg/L	_	v	11/29/01	8260b	}	1.2	99.4	101.7
Toluene	7	µg/L		~ 	11/29/01	8260b		9.1	95	104.6

LCS4

84.3 92.3 82.2

90.9 87.9

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rechard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method biank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limits. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 4

Report#/Lab ID#: 122716 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	86.3	80-120	i
Toluene-d8	8260b	66	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 12/07/01

Report #/Lab ID#: 122716 Matrix: water Client: Environmental Tech Group

Attn: Ann Moore

Project ID: SPS 11 EOT 2022C

Sample Name: MW 4

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.

Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
m.p-Xylenes	ſ	See J-flag discussion above.
Notes:		
The contract of the contract o		

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 6 Sample Matrix: water

Report#/Lab ID#: 122717

Time: 10:30 Time: 10:26

Date Received: 11/20/2001 Date Sampled: 11/17/2001

79703 Ϋ́ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

FAX: 915 520-4310 915 522-1139 Phone:

REPORT OF ANALYSIS

Benzene

Toluene

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4 | LCS4 90.9 92.3 82.2 84.3 101.7 104.6 85.9 95.1 **OUALITY ASSURANCE DATA**¹ 97.6 96.4 86.2 99.4 95 20.5 1.6 9.0 1.2 Method 6 8260b 8260b 8260b 8260b 8260b 11/29/01 11/29/01 11/29/01 11/29/01 11/29/01 11/29/01 Date Blank $\nabla \nabla \nabla \nabla \nabla$ ROL 5 Units µg/L µg/L µg/L hg/L µg/L Result 12.6 2.57 1.34 $\overline{\mathsf{v}}$ Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene

		_		_	
ed by AnalySys, Inc. The enclosed results	of my knowledge, the analytical results	Assurance/Quality Control Program. ©	All rights reserved. No part of this	d in any form or by any means without the	Respectfully Submitted.
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results	have been carefully reviewed and, to the best of my knowledge, the analytical results	are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. ©	Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this	publication may be reproduced or transmitted in any form or by any means without the	express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 122717 Sample Matrix: water

Project ID: SPS 11 EOT 2022C Sample Name: MW 6 Environmental Tech Group Ann Moore Client:

REPORT OF SURROGATE RECOVERY

Attn:

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	68	80-120	1
Toluene-d8	8260b	97.1	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Attn: Ann Moore Report #/Lab ID#: 122717 Matrix: water Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C Sample Name: MW 6

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.
□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Pualif Comment
Toluene	ſ	See J-flag discussion above.
Notes:		

X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Time: 10:26 Time: 11:00

Date Sampled: 11/17/2001

Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 Report#/Lab ID#: 122718 Sample Matrix: water Sample Name: MW 7 79703 ĭ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

REPORT OF ANALYSIS

915 522-1139

Phone:

FAX: 915 520-4310

REPORT OF ANALYSIS					•		QUALITY ASSURANCE DATA	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS^4
Volatile organics-8260b/BTEX	1				11/29/01	8260b			-	;	ž
Benzene	162	µg/L	-	7	11/29/01	8260b		20.5	97.6	102.4	84.3
Ethylbenzene	154	µg/L	_	v	11/29/01	8260b		1.6	96.4	95.1	92.3
m,p-Xylenes	13.7	µg/L	-	٧ ا	11/29/01	8260b	1	9.0	86.2	85.9	82.2
o-Xylene	4.11	µg/L	_	^	11/29/01	8260b	t i i	1.2	99.4	101.7	6.06
Toluene	4.26	hg/L		! >	11/29/01	8260b	-	9.1	95	104.6	67.8

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dibutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 7

Report#/Lab ID#: 122718 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

		4		3.7
Surrogate Compound	Method	Kecovery	Recovery Limit	Data Quanners
1,2-Dichloroethane-d4	8260b	103	80-120	-
Toluene-d8	8260b	90.7	88-110	;

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 9 Sample Matrix: water

Report#/Lab ID#: 122719

Environmental Tech Group Address: 4600 West Wall Ann Moore Client:

79703

ĭ

Midland

FAX: 915 520-4310 915 522-1139 Phone:

OUALITY ASSURANCE DATA¹ Time: 11:30 Date Sampled: 11/17/2001

Time: 10:26

Date Received: 11/20/2001

LCS4

Data Qual 7 Prec. 2 Recov.3 | CCV4

Method 6

8260b

90.9 82.2

> 101.7 104.6

85.9

92.3

97.6 96.4 86.2 99.4

> 1.6 9.0 1.2

> > 8260b 8260b

8260b

11/30/01

 $\overline{\mathbf{v}}$

hg/L hg/L

o-Xylene

Toluene

11/30/01

8260b 8260b 87.9

95

11/30/01 11/30/01 11/30/01 11/30/01 Date Blank $\vec{\mathsf{v}}$ ROL 001 8 Units ug/L µg/L µg/L Result 1820 12.5 2.22 1.92 724 Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter Benzene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this

publication may be reproduced or transmitted in any form or by any means without the Respectfully Submitted,

express written consent of AnalySys, Inc.

bradas

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin) 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ann Moore Attn:

Client:

Project ID: SPS 11 EOT 2022C Sample Name: MW 9

Report#/Lab ID#: 122719 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	601	80-120	-
Coluene-d8	8260b	95.3	88-110	}

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

4221 Freidrich Lane, Suite 190, Austihar X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 10 Sample Matrix: water

Report#/Lab ID#: 122720

Client: Environmental Tech Group
Attn: Ann Moore
Address: 4600 West Wall
Midland Tx 79703

Phone: 915 522-1139 FAX: 915 520-4310

REPORT OF ANALYSIS

Date Sampled: 11/17/2001 Time: 13:10

Time: 10:26

Date Received: 11/20/2001

Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4 **QUALITY ASSURANCE DATA**¹ Method 6 Date Blank ROL⁵ Units Result

8260b 8260b 8260b 8260b 8260b 8260b 11/30/01 11/30/01 11/30/01 11/30/01 11/30/01 11/30/01 ₹ ₹ ⊽ ⊽ µg/L µg/L hg/L µg/L hg/L 14.3 2.1 $\overline{\vee}$ Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

82.2

85.9

1.6

1.2

87.9

95

101.7

92.3

96.4 86.2 99.4

84.3

102.4 95.1

97.6

20.5

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory fimits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 10

Report#/Lab ID#: 122720 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	99.2	80-120	-
Toluene-d8	8260b	92.3	88-110	i

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Attn: Ann Moore Report #/Lab ID#: 122720 Matrix: water Client: Environmental Tech Group

Project ID: SPS 11 EOT 2022C

Sample Name: MW 10

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and A and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☼ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif C	omment
o-Xylene	ſ	See J-flag discussion above.
Notes:		1

Page#: 3

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin,

Report Date: 12/07/01

Time: 10:26 Time: 12:45

Date Sampled: 11/17/2001

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Report#/Lab ID#: 122721 Sample Name: MW 11 Sample Matrix: water 79703 ΤX Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

915 522-1139

Phone:

FAX: 915 520-4310

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSUR	ANCE DA	TA1
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX	1				11/30/01	8260b				
Benzene	32.4	µg/L	1	~	11/30/01	8260b		20.5	97.6	102.4
Ethylbenzene	7.41	µg/L		7	11/30/01	8260b		1.6	96.4	95.1
m,p-Xylenes	⊽	hg/L		~ ~	11/30/01	8260b	}	9.0	86.2	85.9
o-Xylene	⊽	ng/L	1	۲ ۲	11/30/01	8260b	-	1.2	99.4	101.7
Toluene	⊽	hg/L	1	⊽	11/30/01	8260b		9.1	95	104.6

LCS4

82.2 90.9 87.9

84.3 92.3

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) 1. Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference.

4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab ID#: 122721 Sample Matrix: water

Project ID: SPS 11 EOT 2022C Sample Name: MW 11 Environmental Tech Group

REPORT OF SURROGATE RECOVERY

Ann Moore

Client: Attn:

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	102	80-120	
Foluene-d8	8260b	94	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Report Date: 12/07/01 **Time:** 10:26 Time: 12:36 Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122722 Sample Name: MW 12 Sample Matrix: water 79703 FAX: 915 520-4310 Ϋ́ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone: Attn:

er Result Units RQL 5 Blank Date Method 6 rganics-8260b/BTEX 11/29/01 8260b ene 49.7 µg/L 1 11/29/01 8260b ene 6.13 µg/L 1 <1 11/29/01 8260b nes 3.66 µg/L 1 <1 11/29/01 8260b	REPORT OF ANALYSIS							OUALITY ASSURANCE DATA	ASSUR!	ANCE DA	TAT	
rganics-8260b/BTEX 11/29/01 8260b ene 6.13 µg/L 1 <1 11/29/01 8260b 6.13 µg/L 1 <1 11/29/01 8260b 3.66 µg/L 1 <1 11/29/01 8260b	Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS^4
ene 6.13 µg/L 1 <1 11/29/01 8260b 6.13 µg/L 1 <1 11/29/01 8260b 3.66 µg/L 1 <1 11/29/01 8260b	Volatile organics-8260b/BTEX	1		-		11/29/01	8260b	-	1			4
ene 6.13 µg/L 1 <1 11/29/01 8260b nes 3.66 µg/L 1 <1 11/29/01 8260b co.1	Benzene	49.7	µg/L	_	۲	11/29/01	8260b		20.5	97.6	102.4	84.3
nes 3.66 µg/L 1 <1 11/29/01 8260b	Ethylbenzene	6.13	µg/L	-	ī	11/29/01	8260b	!	1.6	96.4	95.1	92.3
10,000,11	m,p-Xylenes	3.66	µg/L	-	<u>~</u>	11/29/01	8260b	3 1 1	9.0	86.2	85.9	82.2
\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	o-Xylene	7	µg/L		₹	11/29/01	8260b	ſ	1.2	99.4	101.7	6.06
1 <1 11/29/01 8260b	Toluene	2.57	µg/L		7	11/29/01	8260b	1	9.1	95	104.6	6.78

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Relieved Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 12

Report#/Lab ID#: 122722 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	92.7	80-120	
Toluene-d8	8260b	94.1	88-110	*

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

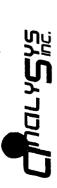
Attn: Ann Moore Report #/Lab ID#: 122722 Matrix: water Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C Sample Name: MW 12

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.
□ Sample received in inappropriate container(s) and/or with unknown state of preservation.


J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	jualif Comment
o-Xylene	ı	See J-flag discussion above.
Notes:		

Page#: 3

78744 & 4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896 •

Report Date: 12/07/01 **Time:** 10:26 Time: 12:25 Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 **Date Sampled:** 11/17/2001 Report#/Lab ID#: 122723 Sample Name: MW 13 Sample Matrix: water 79703 FAX: 915 520-4310 ĭ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR	NCE DA	LTA1
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX	:		1		11/30/01	8260b				
Benzene	1.37	µg/L	-	۷ <u>-</u>	11/30/01	8260b		20.5	97.6	102.4
Ethylbenzene	7	µg/L	1	٧ ۲	11/30/01	8260b	-	1.6	96.4	95.1
m,p-Xylenes	7	ug/L		7	11/30/01	8260b	ſ	9.0	86.2	85.9
o-Xylene	7	µg/L		7	11/30/01	8260b	-	1.2	99.4	101.7
Toluene	₹	hg/L	-	7	11/30/01	8260b	!	9.1	95	104.6
	Lancon and the second	4								1

LCS4

90.9

87.9

92.3 82.2

84.3

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 8744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Project ID: SPS 11 EOT 2022C Sample Name: MW 13 Environmental Tech Group

Report#/Lab ID#: 122723 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Ann Moore

Client: Attn:

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	86.2	80-120	:
Foluene-d8	8260b	100	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Excellons Report:

Report #/Lab ID#: 122723 Matrix: water Client: Environmental Tech Group

Attn: Ann Moore

Project ID: SPS 11 EOT 2022C

Sample Name: MW 13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in inappropriate container(s) and or with unknown state or preservation.

☐ Sample received in the container or with unknown state or preservation.

☐ Sample received in the container or with unknown state or preservation.

☐ Sample received in the container or with unknown state or with u

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
Ethylbenzene	ſ	See J-flag discussion above.
m.p-Xylenes	J	cussion above.
Notes:		

Report #/Lab ID#: 122723 Report Date: 12/7/200

Page#: 3

Client:

Attn:

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 14 Sample Matrix: water

Report#/Lab ID#: 122724

79703 ĭ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland

FAX: 915 520-4310 915 522-1139 Phone:

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSUR	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 L	Prec.2	Recov.3	CCV ⁴	7
Volatile organics-8260b/BTEX			1		11/30/01	8260b	1	:			
Benzene	7140	µg/L	100	<100	11/30/01	8260b		20.5	97.6	102.4	~
Ethylbenzene	427	µg/L	100	<100	11/30/01	8260b	!	1.6	96.4	95.1	Ψ,
m,p-Xylenes	413	ug/L	100	<100	11/30/01	8260b	!	9.0	86.2	85.9	~
o-Xylene	154	µg/L	-	Ÿ	11/30/01	8260b	-	1.2	99.4	101.7	٠,
Toluene	30.1	µg/L	-	7	11/30/01	8260b	:	9.1	95	104.6	~

LCS4

Time: 12:10 **Time:** 10:26

Date Received: 11/20/2001 Date Sampled: 11/17/2001 84.3 92.3 82.2 90.9

87.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 18744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 FAX (512) 447-4766

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 14

Report#/Lab ID#: 122724 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	<i>L</i> 6	80-120	-
Toluene-d8	8260b	97.3	88-110	-

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 15 Sample Matrix: water

Report#/Lab ID#: 122725

79703 Τ̈́ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

FAX: 915 520-4310 915 522-1139

Phone:

QUALITY ASSURANCE DATA¹ Time: 12:00 Date Sampled: 11/17/2001

Time: 10:26

Date Received: 11/20/2001

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSURA	NCE DA	TAI	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			1		11/30/01	8260b		i			= -
Benzene	40.1	µg/L		⊽	11/30/01	8260b		20.5	97.6	102.4	84.3
Ethylbenzene	2.65	µg/L		√	11/30/01	8260b		1.6	96.4	95.1	92.3
m,p-Xylenes	1.37	µg/L	,4	√ 7	11/30/01	8260b		9.0	86.2	85.9	82.2
o-Xylene	7	µg/L		<u>~</u>	11/30/01	8260b		1.2	99.4	101.7	6.06
Toluene	7	µg/L	-	⊽	11/30/01	8260b	-	9.1	95	104.6	87.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster المحطاعا

than advisory limit. M =Matrix interference.

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS)

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christr, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 15

Report#/Lab ID#: 122725 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	85.6	80-120	1
Toluene-d8	8260b	99.2	88-110	i

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896 •

Report Date: 12/07/01

Time: 10:26 Time: 11:40

Date Sampled: 11/17/2001

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Report#/Lab ID#: 122726 Sample Name: MW 16 Sample Matrix: water 79703 Τχ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

REPORT OF ANALYSIS

915 522-1139

Phone:

FAX: 915 520-4310

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA 1	ASSUR	NCE DA	TAI	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 L	Prec.2	Recov.3	CCV ⁴	7
Volatile organics-8260b/BTEX			1		11/30/01	8260b					
Benzene	38.6	µg/L	1	⊽	11/30/01	8260b		20.5	97.6	102.4	~
Ethylbenzene	14.5	µg/L	1	⊽	11/30/01	8260b	;	1.6	96.4	95.1	
m,p-Xylenes	8.49	µg/L	1	7	11/30/01	8260b		9.0	86.2	85.9	
o-Xylene	3.58	µg/L	_	7	11/30/01	8260b	;	1.2	99.4	101.7	
Toluene	25.2	µg/L	1	7	11/30/01	8260b	;	9.1	95	104.6	~

LCS4

84.3 92.3 82.2 90.9 87.9

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 16

Report#/Lab ID#: 122726 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

				The second secon
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	85.4	80-120	-
Toluene-d8	8260b	100	88-110	
				_

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 17 Sample Matrix: water

Report#/Lab ID#: 122727

Time: 10:26 Time: 13:38

Date Received: 11/20/2001 Date Sampled: 11/17/2001

79703 ĭ Environmental Tech Group Address: 4600 West Wall Ann Moore Midland Client: Attn:

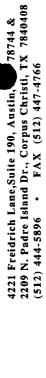
FAX: 915 520-4310 915 522-1139 Phone:

REPORT OF ANALYSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR	ANCE D/	ATA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV4 L	Prec.2	Recov.3	CCV4	1
Volatile organics-8260b/BTEX			1		11/30/01	8260b		ì	-		
Benzene	26	µg/L		⊽	11/30/01	8260b		20.5	97.6	102.4	
Ethylbenzene	23.3	ug/L		⊽	11/30/01	8260b	:	1.6	96.4	95.1	_
m,p-Xylenes	13	µg/L		7	11/30/01	8260b	1	9.0	86.2	85.9	
o-Xylene	6.16	µg/L	_	⊽	11/30/01	8260b	:	1.2	99.4	101.7	
Toluene	41.1	µg/L	-	7	11/30/01	8260b	!	9.1	95	104.6	
											1

LCS4

84.3 92.3 82.2 90.9


87.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 17

Report#/Lab ID#: 122727 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.7	80-120	-
Toluene-d8	8260b	102	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austi (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 18

Report#/Lab ID#: 122728

Environmental Tech Group Client:

Ann Moore Attn:

Address: 4600 West Wall

Midland

FAX: 915 520-4310

79703 ĭ

Sample Matrix: water

Time: 10:26 Time: 13:30 Date Received: 11/20/2001 Date Sampled: 11/17/2001 **QUALITY ASSURANCE DATA!**

CCV4 LCS4

85.6 98.4 92.9

> 6.86 94.7

92.9 93.4

92.3

100.2 87.6

REPORT OF ANALYSIS

915 522-1139

Phone:

					:				
Parameter	Result	Units	RQL 5	Blank	Date	2	Data Qual 7 Prec. 2 Recov. 3	Prec.2	Recov.3
Volatile organics-8260b/BTEX	-		;		11/30/01	8260b			
Benzene	2.79	µg/L	1	₽	11/30/01	8260b	1	8.1	94.9
Ethylbenzene	1.62	µg/L	1	ĭ	11/30/01	8260b	!	1.4	66
m,p-Xylenes	1	µg/L	1	~ ~	11/30/01	8260b	-	5.6	68
o-Xylene	7	µg/L		7	11/30/01	8260b	-	5.8	102
Toluene	7	µg/L	-	⊽	11/30/01	8260b	-	3.4	26

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

فمملامنا

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 18

Report#/Lab ID#: 122728 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

				3:
surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	105	80-120	
Foluene-d8	8260b	92.7	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

Report Date: 12/07/01 **Time:** 10:26 **Time: 13:20** Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 **Date Sampled:** 11/17/2001 Report#/Lab ID#: 122729 Sample Name: MW 19 Sample Matrix: water 79703 FAX: 915 520-4310 ĭ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Attn:

r	,	
ĭ	_	
ζ	1	
475	۶	
ï		
4	4	
7	ž	
4	_	
4		
ľ	Ξ	
(١
	_	•
E		
F	ž	
¢		
٢	١	
ľ	r	١
ć	¥	į
_	_	١

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR/	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV ⁴	LCS^4
Volatile organics-8260b/BTEX	* -		:		11/30/01	8260b		1	1		
Benzene	5.26	µg/L	1	⊽	11/30/01	8260b		8.1	94.9	92.3	92.9
Ethylbenzene	3.11	µg/L	-	۲ ۲	11/30/01	8260b	1	1.4	66	100.2	93.4
m,p-Xylenes	1.18	µg/L	,	۲ ۲	11/30/01	8260b	1	5.6	68	9.78	85.6
o-Xylene	7	µg/L	-	~ 1	11/30/01	8260b	-	5.8	102	6.86	98.4
Toluene	7	µg/L	1	~	11/30/01	8260b		3.4	97	94.7	92.9

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =: Matrix interference.

4221 Freidrich Lane, Suite 190, Austin, Tr. 7840408 2209 N. Padre Island Dr., Corpus Christi, TX. 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group Ann Moore Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 19

Report#/Lab ID#: 122729 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	06	80-120	1
Toluene-d8	8260b	101	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 20 Sample Matrix: water

Report#/Lab ID#: 122730

Time: 10:26 Time: 12:52

Date Received: 11/20/2001 Date Sampled: 11/17/2001

Environmental Tech Group Address: 4600 West Wall Ann Moore Client: Attn:

Midland

79703

FAX: 915 520-4310 915 522-1139

Phone:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4	Prec.2	Recov.3	CCV4	ĭ
Volatile organics-8260b/BTEX	-		-		11/30/01	8260b	-	-			
Benzene	69.9	µg/L	1	7	11/30/01	8260b		8.1	94.9	92.3	6
Ethylbenzene	3.15	ug/L		v V	11/30/01	8260b	1	1.4	66	100.2	9
m,p-Xylenes	1.26	µg/L	_	Ÿ	11/30/01	8260b		2.6	68	87.6	00
o-Xylene	V	µg/L	-	۲ ۲	11/30/01	8260b		5.8	102	6.86	9
Toluene	7	µg/L		~ 	11/30/01	8260b		3.4	26	94.7	9
The second secon											

 CS^4

85.6

98.4 92.9

92.9 93.4

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, المحطاعنا

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte I. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 20

Report#/Lab ID#: 122730 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	98.6	80-120	1 1
Toluene-d8	8260b	94.6	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Report#/Lab ID#: 122731 Sample Name: MW 21 Sample Matrix: water 79703 **FAX:** 915 520-4310 ř Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Phone: Client: Attn:

Time: 13:00 Date Sampled: 11/17/2001

Time: 10:26

LCS⁴ 93.4 85.6 98.4 92.9 Data Qual 7 Prec. 2 Recov. 3 CCV4 100.2 87.6 6.86 94.7 **OUALITY ASSURANCE DATA¹** 89 102 97 66 2.6 1.4 Method 6 8260b 8260b 8260b 8260b 8260b 8260b 11/30/01 11/30/01 11/30/01 11/30/01 11/30/01 11/30/0 Date Blank $\vec{\nu}$ $\vec{\nabla}$ $\overline{\lor}$ ROL Units $\mu g/L$ hg/L µg/L ug/L Result 1.89 5.81 14.2 ⊽ Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this

publication may be reproduced or transmitted in any form or by any means without the

express written consent of AnalySys, Inc.

Respectfully Submitted, Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) . Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 21

Report#/Lab ID#: 122731 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	16	80-120	
Toluene-d8	8260b	101	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report #/Lab ID#: 122731 Matrix: water

Attn: Ann Moore

Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C

Sample Name: MW 21

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment
o-Xylene	J	See J-flag discussion above.
Notes:		

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

> Environmental Tech Group Address: 4600 West Wall Ann Moore Client: Attn:

79703

Midland

FAX: 915 520-4310 915 522-1139 Phone:

Report Date: 12/07/01 Project ID: SPS 11 EOT 2022C Report#/Lab ID#: 122732 Sample Name: MW 22

Sample Matrix: water

Time: 10:26 Time: 12:17 Date Received: 11/20/2001 Date Sampled: 11/17/2001

OUALITY ASSURANCE DATA¹

	I	
SIS		
REPORT OF ANALYSIS		
AN/		
OF	ır	
ORI	Parameter	
REP	Par	ĺ

Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV ⁴	LCS^4
Volatile organics-8260b/BTEX			ì		12/01/01	8260b				-	
Benzene	7.31	µg/L	-	\ 	12/01/01	8260b		8.1	94.9	92.3	92.9
Ethylbenzene	4.2	µg/L	_	ï	12/01/01	8260b	1	1.4	66	100.2	93.4
m,p-Xylenes	1.27	µg/L	-	7	12/01/01	8260b	:	2.6	68	9.78	85.6
o-Xylene	v	µg/L	_	7	12/01/01	8260b	!	5.8	102	6.86	98.4
Toluene	٧ ا	µg/L		< 1	12/01/01	8260b	-,	3.4	62	94.7	92.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Richard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher than advisory limit. M =Matrix interference. expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovered from a spiked sample.

Environmental Tech Group Client:

Ann Moore Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 22

Report#/Lab ID#: 122732 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

urrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
,2-Dichloroethane-d4	8260b	93.8	80-120	-
Johnene-d8	8260b	100	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 12/07/01

Exceptions Report:

Attn: Ann Moore Report #/Lab ID#: 122732 Matrix: water

Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C

Sample Name: MW 22

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state of preservation.

☐ Sample received in inappropriate container(s) and or with unknown state of preservation.

☐ Sample received in the container of the contai

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Toluene	J	See J-flag discussion above.
Notes:		

X 78744 & 4221 Freidrich Lane, Suite 190, Austin, X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 (512) 444-5896

Report Date: 12/07/01

Time: 10:26 Time: 11:52

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122733 Sample Name: MW 23 Sample Matrix: water 79703 **FAX:** 915 520-4310 Ϊχ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone: Attn:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR/	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual Prec. Recov. CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX			1		11/30/01	8260b					
Benzene	3.63	µg/L	-	⊽	11/30/01	8260b	t i	8.1	94.9	92.3	92.9
Ethylbenzene	2.22	ug/L	_	^1	11/30/01	8260b	-	1.4	66	100.2	93.4
m,p-Xylenes	⊽	µg/L		^ 7	11/30/01	8260b	ſ	5.6	68	9.78	85.6
o-Xylene	⊽	µg/L		7	11/30/01	8260b	!	5.8	102	6.86	98.4
Toluene	 	μg/L	1	<1	11/30/01	8260b	-	3.4	26	94.7	92.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Client: Attn:

Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 23

Report#/Lab ID#: 122733 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Onalifiers
1,2-Dichloroethane-d4	8260b	101	80-120	1
Toluene-d8	8260b	100	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Attn: Ann Moore Report #/Lab ID#: 122733 Matrix: water Client: Environmental Tech Group

Project ID: SPS 11 EOT 2022C

Sample Name: MW 23

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding

Sample Bottles & Preservation

temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

☒ Sample received in appropriate container(s) and appear to be appropriately preserved.
 ☒ Sample received in appropriate container(s). State of sample preservation unknown.
 ☒ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Comment	
m.p-Xylenes	J	See J-flag discussion above.	
Notes:			

Page#: 3

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896 •

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122734 Sample Name: MW 24 Sample Matrix: water 79703 FAX: 915 520-4310 Τ̈́ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Phone: Client: Attn:

OHALITY ASSURANCE DATA¹

Time: 10:26 Time: 11:45

REPORT OF ANALYSIS							OUALITY ASSURANCE DATA	ASSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	-		-		12/01/01	8260b				:	1
Benzene	986	µg/L	10	<10	12/01/01	8260b		4	93.4	98.3	97.4
Ethylbenzene	10.6	µg/L	_	7	12/01/01	8260b	1	1.6	94.2	113.3	106.8
m,p-Xylenes	4.07	µg/L	_	۲ ۲	12/01/01	8260b	-	8.0	85.2	100.5	94.7
o-Xylene	1.44	µg/L		7	12/01/01	8260b	:	6.4	102.2	106.6	102.1
Toluene	4.11	ng/L		7	12/01/01	8260b	-	2.5	99.4	101.8	103.7

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehand

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). \$1 =MS and/or MSD recovery exceed advisory limits. \$2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ann Moore

> Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 24

Report#/Lab ID#: 122734 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	
Toluene-d8	8260b	109	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 12/07/01

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Project ID: SPS 11 EOT 2022C

Sample Name: MW 25 Sample Matrix: water

Report#/Lab ID#: 122735

Time: 10:26 Time: 11:35

Date Received: 11/20/2001 Date Sampled: 11/17/2001

79703 ĭ Environmental Tech Group Address: 4600 West Wall

Ann Moore

Attn:

Client:

REPORT OF ANALYSIS

915 522-1139

Phone:

Midland

FAX: 915 520-4310

Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4 85.6 98.4 92.9 93.4 92.9 100.2 9.78 6.86 94.7 **QUALITY ASSURANCE DATA**¹ 102 97 68 5.8 1 1.4 Method 6 8260b 8260b 8260b 8260b 8260b 8260b 12/01/01 12/01/01 12/01/01 12/01/01 12/01/01 12/01/01 Date Blank ₹ ₹ $\overline{\mathsf{v}}$ ⊽ ROL⁵ Units µg/L µg/L μg/L µg/L Result 3.36 $\vec{\mathsf{v}}$ ⊽ Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

المملاعنا

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group

Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 25

Report#/Lab ID#: 122735 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	93.2	80-120	1
Toluene-d8	8260b	100	88-110	1

Data Qualifiers: D=Surrogates diluted and X=Surrogates outside advisory recovery limits.

Exceptions Report:

Attn: Ann Moore Report #/Lab ID#: 122735 Matrix: water

Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C

Sample Name: MW 25

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

M Sample received in appropriate container(s) and appear to be appropriately preserved

☐ Sample received in appropriate container(s). State of sample preservation unknown.

☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
m,p-Xylenes	J	See J-flag discussion above.
Notes:		

Page#: 3

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 12/07/01

Time: 10:26 Time: 14:00

Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122736 Sample Name: MW 26 Sample Matrix: water 79703 FAX: 915 520-4310 Ϋ́ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone: Attn:

REPORT OF ANALYSIS						ļ	QUALITY ASSURANCE DATA	ASSURA	NCE DA	TAI	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS	Prec.2	Recov.3	CCV^4	СС
Volatile organics-8260b/BTEX	•		1		11/30/01	8260b	t !	1			
Benzene	1600	µg/L	100	<100	11/30/01	8260b		8.1	94.9	92.3	92.
Ethylbenzene	417	µg/L	100	<100	11/30/01	8260b	;	1.4	66	100.2	93.
m,p-Xylenes	240	µg/L	100	<100	11/30/01	8260b	-	5.6	68	9.78	85.
o-Xylene	9.08	ug/L		~	11/30/01	8260b	-	5.8	102	6.86	98
Toluene	534	µg/L	100	<100	11/30/01	8260b	!	3.4	26	94.7	92.
					The second secon	The second secon				-	-

SA

6.3

4.8 4.8 9.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P=Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M =Matrix interference. recovered from a spiked sample.

Jnal **45**45

Environmental Tech Group Ann Moore Client: Attn:

Project ID: SPS 11 EOT 2022C Sample Name: MW 26

Report#/Lab ID#: 122736 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	85.7	80-120	-
Toluene-d8	8260b	102	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 12/07/01

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896 •

Report Date: 12/07/01 **Time:** 10:26 Time: 13:50 Project ID: SPS 11 EOT 2022C Date Received: 11/20/2001 **Date Sampled:** 11/17/2001 Report#/Lab ID#: 122737 Sample Name: MW 27 Sample Matrix: water 79703 FAX: 915 520-4310 Τχ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Client: Phone: Attn:

OUALITY ASSURANCE DATA¹

REPORT OF ANALYSIS						l	QUALITY ASSURANCE DATA¹	SSUR	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX			1		11/30/01	8260b		1	;		
Benzene	1.31	µg/L	-	₹	11/30/01	8260b	-	8.1	94.9	92.3	92.9
Ethylbenzene	1.37	µg/L	-	7	11/30/01	8260b	-	1.4	66	100.2	93.4
m,p-Xylenes	7	µg/L	-	۲ ۲	11/30/01	8260b	ī,	5.6	68	9.78	85.6
o-Xylene	V	µg/L		<u>~</u>	11/30/01	8260b		5.8	102	6.86	98.4
Toluene	1.13	μg/L	-	7	11/30/01	8260b	:	3.4	26	94.7	92.9

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Chris X 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 27

Report#/Lab ID#: 122737 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	84.2	80-120	
Toluene-d8	8260b	106	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 12/07/01

Attn: Ann Moore Matrix: water Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C Report #/Lab ID#: 122737 Sample Name: MW 27

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.
□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Farameter	Qualif	Comment
m.p-Xylenes	J	See J-flag discussion above.
Notes:		ll

4221 Freidrich Lane, Suite 190, Austin 2209 N. Padre Island Dr., Corpus Christl, TX 78408 (512) 444-5896 FAX (512) 447-4766

> Environmental Tech Group Ann Moore

> > Client:

Attn:

Address: 4600 West Wall Midland

79703

Ϋ́

Phone:

915 522-1139 **FAX:** 915 520-4310

Report#/Lab ID#: 122738 Report Date: 12/07/01
Project ID: SPS 11 EOT 2022C
Sample Name: MW 28

Sample Matrix: water

Date Received: 11/20/2001 Time: 10:26

Date Sampled: 11/17/2001 Time: 14:10

OUALITY ASSURANCE DATA1

CCV4 LCS4

85.6

87.6 98.9

100.2

92.9 93.4

92.3

92.9

94.7

98.4

REPORT OF ANALYSIS

Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. ²	Prec. ²	Recov.3
Volatile organics-8260b/BTEX			1		10/06/11	8260b			
Benzene	1490	µg/L	100	<100	11/30/01	8260b		8.1	94.9
Ethylbenzene	104	µg/L	-	⊽	11/30/01	8260b	!	1.4	66
m,p-Xylenes	54.5	hg/L		Ÿ	11/30/01	8260b	-	2.6	.68
o-Xylene	22.3	µg/L		⊽	11/30/01	8260b	!	5.8	102
Toluene	34.5	µg/L		7	11/30/01	8260b	-	3.4	26

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laste

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: MW 28

Report#/Lab ID#: 122738
Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	105	80-120	
Toluene-d8	8260b	92.1	88-110	}
				_

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 196, Austin (512) 444-5896 •

Report Date: 12/07/01 Time: 10:26 Time: 14:25 Project ID: SPS 11 EOT 2022C **Date Received:** 11/20/2001 Date Sampled: 11/17/2001 Report#/Lab ID#: 122739 Sample Matrix: water Sample Name: EB 1 79703 FAX: 915 520-4310 ĭ Environmental Tech Group Address: 4600 West Wall 915 522-1139 Ann Moore Midland Phone: Client: Attn:

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4 | LCS4 **OUALITY ASSURANCE DATA**¹ Method 6 Date

REPORT OF ANALYSIS

Blank $\stackrel{\ }{\scriptstyle \sim}$ $\overline{\mathbf{v}}$ $\overline{\mathsf{v}}$ $\overline{\mathsf{v}}$ ⊽ ROL⁵ This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Units hg/L µg/L µg/L µg/L hg/L Result $\vec{\mathsf{v}}$ $\vec{\mathsf{v}}$ ⊽ $\overline{\mathsf{v}}$ Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

85.6 93.4

> 97.8 98.9 94.7

2.6 5.8

8260b 8260b

11/30/01 11/30/01 11/30/01

8260b

8260b 8260b

11/30/01 11/30/01

11/30/01

8260b

100.2

99

1.4 **∞**

98.4 92.9

89 102 97

publication may be reproduced or transmitted in any form or by any means without the Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Parter Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. 4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christl, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

į

Client: Environmental Tech Group
Attn: Ann Moore

Project ID: SPS 11 EOT 2022C Sample Name: EB 1

Report#/Lab ID#: 122739 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

C Comment of the contract	Mothod	Dogogory	December I imit	Data Onalifiers
Surrogate Compound	nomerni	Mecuvery	necovery minn	Data Quantities
1,2-Dichloroethane-d4	8260b	68.3	80-120	×
Toluene-d8	8260b	106	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab ID#: 122739 Matrix: water

Attn: Ann Moore

Client: Environmental Tech Group Project ID: SPS 11 EOT 2022C

Sample Name: EB 1

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Benzene	ſ	See J-flag discussion above.
1,2-Dichloroethane-d4 1,2-Dichloroethane-d4	××	Surrogate recovery outside advisory/acceptance limits. Typically verified by reanalysis or reextraction & reanalysis. In some well known matrices (sample sources with known interferences) and for some conditions, reextraction and/or reanalysis may be at analysts discretion.
W = 4 = =		

Notes:

Page#: 3

:
,

CHAIN-OF-CUSTODY

		P41063
CHAIN-OF-CUSTODY		שומראטאפ
Send Reports To:	Bill to (if different):	ן וווכי
Company Name ETC. I.	Company Name 2011	4221 Freidrich Lane, Suite 190, Austin, TX 78744 —————————————————————————————————
Address 46 00 West 10ALL	Address	Fax: (512) 447-4766
(ily/11/2, dateState_1/ Zip 79703	CityStateZip	7
ATTIN: AMM MOORE.	ATTN:	Analyses Requested (1)
Phon 415/522 1139 Fax (412) 520-4310	Phone Fax	Please attach explanatory information as required
Rush Status (must be confirmed with lab mgr.):		
Project Name/PO# CO. // Sampler	Amon (ask)	

(1) thics specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASFs method of choice and all data will be reported to ASFs normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASF will default to Priority Pollutants or ASFs 11SL list at ASFs option. Specific compound lists must be supplied for all GC procedures.

	Sample Relinquished	ed By			Sample Received By	By	
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
Some asas	3	10-61-11	1230	Wellen	handhren ASI	10/06/11	1026
			,		6		

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

A	A	
	J	
À		

CHAIN-OF-CUSTODY

Pgad 3	ש וטרא ט אפ	4221 Fraideigh I and Suite 190 Austin TX 78744	Phone: (512) 444-5896	Fax: (512) 447-4766		Analyses Requested (1)	Please attach explanatory information as required				Comments									
)		i;	E011		StateZip		Fax		1000	`	Iste (Lab only)	122723 X	122724	122725	122726	122727	122728	122729	122730	122731
		Bill to (if different):	Company Name_	Address	City	ATTN:	/ Phone):	Sampler Land Carter		No. of Containers Soil Water Waste	2 X								
	ODY	,	7,7	LUALL	1 Zip 79705	SAR	x(915) 520-431	inned with lab mgr.	// Samp	SassC	Date Time No. of Sampled Sampled Containers	11-17-4 B35	4181	6pE1	Φh11	1338	133A	1330	1252	1300
	CHAIN-OF-CUSTODY	Send Reports To:	Jompany Name E. 7.G. L	Address 46 00 West 601ALL	Tily Miles State TX Zip 79705	ATTIN: ANIN MODE	110010/2/3/522 1/39 Fax (915) SAB-43,	Rush Status (must be confirmed with lab mgr.):	Project Name/PO#: SPS	ナジテ	Client Sample No. Description/Identification	El WIG	han 14	51 Dun	91 (4) (B	F1 MM	1711 18	P14 19	₩0 00 00 00 00 00 00 00 00 00 00 00 00 0	12000

Innits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's option. Specific compound lists must be supplied for all GC procedures. (1) Unless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to ASPs normal reporting

122732

(2)

	Time	1026	
By	Date	11/20/01	
Sample Received	Affiliation	homohren ASI	0
	Name	Belanie	
	Time	1230	,
ed By	Date	10-51-11	
Sample Relinquished	Affiliation		
	O Name	Simon (aga)	

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

}

CHAIN-OF-CUSTODY

		PA:343
CHAIN-OF-CUSTODY		שויטראטאַ
end Reports To:	Bill to (if different):	4221 Freidrich Lane, Suite 190, Austin, TX 78744
Adress 46 00 West 10ALL	1 1	Fax: (512) 447-4766
Thy Mill day State TX Zip 79703	CityStateZip	
TIN: ANN MODEE	ATTN:	Analyses Requested (1)
hone(415)522 1139 Fax (415) 5210-4310	Phone Fax	Please attach explanatory information as required
Rush Status (must be confirmed with lab mgr.):		
Project Name/PO#: SPS // Samp!	Average Casas	
ノのできり、住立り		

			Water Waste (Lab I.D. # 122733 122734 122734 122735 122735 122736 122738 122739 122739	Vater Wa	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	Containers Soil	11152 1145 1145 1135 144¢ 1435 1435	
		> 00	12273	\Rightarrow		7	1435	7
*	1435	88	12273				14114	
1436	1414	74	12273				1350	
135¢ 141¢	135¢ 141¢	96	12273				1444	
144¢ 135¢ 141¢ 1435 V	144¢ 135¢ 141¢	38	12273				1135	
1135 1444 1354 1414	1135 144¢ 135¢ 141¢	7	12273	-			1145	
1145 1135 1414 1354	1145 1135 125¢ 135¢ 141¢	33 X	1227.	\times		K	1152	11-17-d
11-17-4 1152 2 X 1145 1135 1135 144¢ 135¢	11-17-4 152 2 X 1-17-4 1152 2 X 1135 11444 11354 11354 11444 11435		Lab I.D. #	Vater Wa		No. of Containers S	Time Sampled C	Date Sampled

(1) Intess specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting limits (MDL/PQL). For GC/MS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

	Sample Relinquished By	d By			Sample Received By	By	
Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
Simon Casos	das	12-61-11	1230	Longth	(2) (15)	11/20/01	9601
			,	,	1 ==		

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

8744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

> Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs,

FAX: 505 397-4701

NM 88240

Report Date: 04/16/02 **Project 1D: SPS-11 EOT 2022C** Report#/Lab 1D#: 127606 Sample Name: MW 1

Time: 09:45 Date Received: 04/03/2002 Sample Matrix: water

Time: 10:30 Date Sampled: 03/26/2002 LCS4

Prec. 2 Recov.3 CCV4

Data Qual 7

Method ⁶ 8260b

Date

Blank

ROL⁵

Units

Result

04/03/02 04/04/02 04/04/02 04/03/02

OUALITY ASSURANCE DATA¹

99.4

106.5 103.3 108

94.4

ţ

ŀ

99.1 104 97.6 110.1

100.4 113.8

96.2

1,2

105.5

8260b

04/03/02

04/03/02

103.3

98.4

4.

8260b 8260b 8260b

<100 $\overline{\nabla}$ ∇

 $\mu g/L$

41.6

100 00

hg/L ng/L

1850

361

8260b

REPORT OF ANALYSIS

505 397-4882

Phone:

Volatile organics-8260b/BTEX

Parameter

Ethylbenzene m,p-Xylenes

Benzene

o-Xylene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results ng/L ng/L 7.27 48.9 Toluene

publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster Richard

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B - Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P · Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 :: Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference. recovered from a spiked sample.

X 7840408 4221 Freidrich Lane, Suite 190, Austin, 2209 N. Padre Island Dr., Corpus Christi, (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 1

Report#/Lab 1D#: 127606 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

man sens comboning	lethod	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4 826	3260b	116	80-120	;
Toluene-d8 826	8260b	9.66	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

4221 Freidrich Lane, Suite 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (\$12) 444-5896 FAX (\$12) 447-4766

Report Date: 04/16/02

Client: Environmental Tech Group

Attn: Ken Dutton

Address: 2540 W. Marland

Hobbs,

FAX: 505 397-4701

NM 88240

Project ID: SPS-11 EOT 2022C Sample Name: MW 2

Report#/Lab ID#: 127607

Sample Matrix: water

Date Received: 04/03/2002 Time: 09:45

Date Sampled: 03/26/2002 Time: 11:20

OUALITY ASSURANCE DATA¹

LCS4

99.4 99.1 104

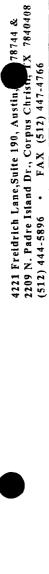
1

REPORT OF ANALYSIS

505 397-4882

Phone:

Parameter	Result	Units	ROL ⁵	Blank	Date	Method 6	Data Qual 7 Prec, 2 Recov. 3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX					04/04/02			:	1	1
Benzene	 	ug/L	-	⊽	04/04/02	8260b	ſ	0.5	94.4	106.5
Ethylbenzene	~	ug/L		7	04/04/02	8260b	i	1.4	98.4	103.3
m,p-Xylenes	~	ug/L		7	04/04/02	8260b	i	2.2	103.3	108
o-Xylene	⊽	ug/L		√	04/04/02	8260b	!	1.2	96.2	100.4
Toluene	7	µg/L	-	⊽	04/04/02	8260b	ſ	0	105.5	113.8


97.6

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent ("6) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P - Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 - Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 2

Report#/Lab 1D#: 127607 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

	-			
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	91.2	80-120	
Toluene-d8	8260b	99.2	88-110	i

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Report #/Lab 1D#: 127607 Matrix: water Client: Environmental Tech Group **Project 1D: SPS-11 EOT 2022C** Sample Name: MW 2

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $<= 6^{\circ} \text{C}$. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

The state of the s		
Parameter	Qualif	Qualif Comment
Benzene	J	See J-flag discussion above,
Toluene	ſ	See J-flag discussion above.
Notes:		

Page#: 3

Environmental Tech Group

Client:

Address: 2540 W. Marland

Hobbs,

Ken Dutton

Attn:

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austii (512) 444-5896

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 127608

Sample Name: MW 3

Sample Matrix: water

NM 88240

FAX: 505 397-4701

Time: 09:45 Date Received: 04/03/2002

Time: 11:10 Date Sampled: 03/26/2002 0v.3 | CCV4 | LCS4

99.4 99.1 104

103.3 106.5

REPORT OF ANALYSIS

505 397-4882

Phone:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR	NCE DA	TA1
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV4
Volatile organics-8260b/BTEX	-		-		04/03/05	8260b	a 11 =			;
Benzene	⊽	µg/L	1	⊽	04/03/02	8260b	ſ	0.5	94.4	106.5
Ethylbenzene	7	ug/L		⊽	04/03/02	8260b	!	1.4	98.4	103.3
m,p-Xylenes	7	ug/L	_	⊽	04/03/02	8260b	-	2.2	103.3	108
o-Xylene	₹	ng/L	_	⊽	04/03/02	8260b	:	1.2	96.2	100.4
Toluene	⊽	ng/L	-	$\overline{\lor}$	04/03/02	8260b	;	0	105.5	113.8

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Pechana

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B : Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6 Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 -Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

110.1

9.76

100.4 113.8

108

8744 & 7840408

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 3

Report#/Lab 1D#: 127608 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound Method Recovery Recovery Limit Data Qualifiers	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	94	80-120	t 9
Toluene-d8	8260b	103	88-110	ì

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Exceptions Report:

Attn: Ken Dutton Report #/Lab 1D#: 127608 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 3

Sample Temperature/Condition <= 6° C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Benzene	ſ	See J-flag discussion above.
Notes:		

Page#: 3

78744 & 2209 N. Padre Island Dr., Corpus Christ, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austi (512) 444-5896

> Environmental Tech Group Client:

Address: 2540 W. Marland Ken Dutton Attn:

Hobbs,

NM 88240

FAX: 505 397-4701

505 397-4882

Phone:

Report Date: 04/16/02 Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127609 Sample Name: MW 4

Sample Matrix: water

Time: 09:45 Date Received: 04/03/2002

Time: 10:05 Date Sampled: 03/26/2002 LCS4

Data Qual 7 Prec. 2 Recov.3 CCV4

Method ⁶ 8260b

04/03/02

Date

Blank

RQL⁵

į

1

1

QUALITY ASSURANCE DATA¹

9.76

100.4 113.8

110.1

105.5

104

103.3 96.2

2.2

98.4 94.4

> 8260b 8260b 8260b 8260b

04/03/02 04/03/02

 $\overline{\mathsf{v}}$ $\overline{\vee}$ $\nabla \nabla$

04/03/02

 $\overline{\vee}$

04/03/02

04/03/02

8260b

99.4

106.5 103.3 108

0.5 4.

99.1

REPORT OF ANALYSIS		
Parameter	Result	Units
Volatile organics-8260b/BTEX		
Benzene		hg/L
Ethylbenzene	₹	µg/L
m,p-Xylenes	⊽	µg/L
o-Xylene	⊽	μg/L
Toluene		μg/L

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent ("", of analyte 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7, Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B · Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits P · Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 Post digestion spike (PDS) 1. Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference recovered from a spiked sample.

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 4

Report#/Lab ID#: 127609 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	103	80-120	1
Toluene-d8	8260b	101	88-110	!

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 04/16/02

4221 Freidrich Lane, Suite 190, Austin 2209 N. Padre Island Dr., Corpus Chris (512) 444-5896 • FAX (512) 447-4766

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 127610 Environmental Tech Group Ken Dutton Client: Attn:

Hobbs, NM 88240

Address: 2540 W. Marland

Phone: 505 397-4882 FAX: 505 397-4701

Date Sampled: 03/26/2002 Time: 12:10

OUALITY ASSURANCE DATA¹

Time: 09:45

Date Received: 04/03/2002

Sample Name: MW 6 Sample Matrix: water

LCS4 9.76 99.4 104 110.1 99.1 Data Qual 7 | Prec. 2 | Recov. 3 | CCV 4 100.4 113.8 106.5 103.3 108 105.5 103.3 96.2 94.4 98.4 į 2.2 1.4 1.2 ; 1 į Method 6 8260b 8260b 8260b 8260b 8260b 8260b 04/04/02 04/04/02 04/04/02 04/04/02 04/04/02 04/04/02 Date Blank $\overline{\nabla}$ $\overline{\forall}$ $\overline{\vee}$ $\overline{\vee}$ $\overline{\vee}$ ROL Units µg/L ng/L µg/L ng/L ng/L Result 12.9 ł $\overline{\vee}$ $\overline{\lor}$ $\overline{\lor}$ Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

liebend father

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B - Analyte detected in recovery exceeds advisory limit. S3 =:MS and/or MSD and PDS recoveries exceed advisory limits. P - Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 -Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

78744 & X 7840408 4221 Freidrich Lane, Suite 199, Austin, 2209 N. Padre Island Dr., Corpus Chris (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 6

Report#/Lab ID#: 127610 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	108	80-120	1
Toluene-d8	8260b	91.5	88-110	i

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 04/16/02

Exceptions Report:

Attn: Ken Dutton Report #/Lab ID#: 127610 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 6

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Ethylbenzene	ĵ	J See J-flag discussion above.
Notes:		

Page#: 3

78744 & [X 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

> Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland Hobbs, 505 397-4882

Phone:

FAX: 505 397-4701

NM 88240

Report Date: 04/16/02 Project ID: SPS-11 EOT 2022C Report#/Lab ID#: 127611

Sample Matrix: water Sample Name: MW 7

Time: 09:45 Time: 10:15 Date Received: 04/03/2002 Date Sampled: 03/26/2002

OUALITY ASSURANCE DATA¹

Prec. 2 Recov. 3 CCV4 LCS4

REPORT OF ANALYSIS

Parameter	Result	Units	RQL5	Blank	Date	Method 6	Data Qual 7
Volatile organics-8260b/BTEX			1		04/03/02	8260b	-
Benzene	40.5	µg/L	_	⊽	04/03/02	8260b	-
Ethylbenzene	35.5	ng/L	_	Ÿ	04/03/02	8260b	:
m,p-Xylenes	2.15	ng/L		7	04/03/02	8260b	1
o-Xylene	⊽	mg/L	~	V	04/03/02	8260b	<u></u>
Toluene	1.12	ng/L	_	7	04/03/02	8260b	1

9.76

100.4 113.8

96.2

1.2

108

103.3

2.2

99.4 99.1 104

103.3 106.5

98.4

4.

94.4

0.5

1

ł

110.1

105.5

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

bradas

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B -Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits P Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation 1 imits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 = Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 7

Report#/Lab ID#: 127611 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	115	80-120	
Toluene-d8	8260b	100	88-110	1

Report #/Lab ID#: 127611 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 7

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler)

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Commence for mining to para Camming and Camming			I
Parameter	Qualif	Qualif Comment	
o-Xylene	J	See J-flag discussion above.	
Notes:			1

4221 Freidrich Lane, Suite 190, Austin 2209 N. Padre Island Dr., Corpus Chris X 78408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Address: 2540 W. Marland

Hobbs,

505 397-4882 FAX

Phone:

FAX: 505 397-4701

NM 88240

| Report#/Lab ID#: 127612 | Report Date: 04/16/02 | Project ID: SPS-11 EOT 2022C |

Sample Name: MW 9

Sample Matrix: water

Date Received: 04/03/2002 Time: 09:45

Date Sampled: 03/26/2002 Time: 12:50

LCS4

Data Qual 7 Prec. 2 Recov.3 CCV4

Method 6

Date

Blank

8260b

04/03/02

OUALITY ASSURANCE DATA!

99.4

94.4 98.4

1

ì

99.1 104

103.3 108

1.4

8260b 8260b

04/03/02 04/03/02

7

04/03/02

8260b

103.3

9.76

100.4

8260b

04/03/02

 $\nabla \nabla$

04/03/02

 $\overline{\vee}$

8260b

110.1

96.2 105.5

REPORT OF ANALYSIS			
Parameter	Result	Units	RQL ⁵
Volatile organics-8260b/BTEX	i		
Benzene	162	Hg/L	I
Ethylbenzene	37.1	µg/L	
m,p-Xylenes	1.25	ug/L	1
o-Xylene	V	ng/L	1
Toluene	V	ng/L	1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc. Respectfully Submitted,

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B :: Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 = MS and/or MSD and PDS recoveries exceed advisory limits P · Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 9

Report#/Lab 1D#: 127612
Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	114	80-120	1
Toluene-d8	8260b	100	88-110	1

Report #/Lab ID#: 127612 Matrix: water Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 9

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved. □ Sample received in appropriate container(s). State of sample preservation unknown. □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination, though leas than the Reported Quantitation Limit (ROL) is greater than the A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Oualifiers and OC data:

Irameter Qualif Comment Iuene J See J-flag discussion above. tes;	Same and the second sec		
J See J-flag discussion above.	Parameter	Qualif	
	Toluene	J	discussion above.
	Notes:		

8744 & 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

> Environmental Tech Group Client:

Address: 2540 W. Marland Ken Dutton Attn:

Hobbs,

NM 88240

FAX: 505 397-4701 505 397-4882

Phone:

Report Date: 04/16/02 Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127613 Sample Name: MW 10

Sample Matrix: water

Time: 09:45 Time: 10:50 **Date Received:** 04/03/2002 Date Sampled: 03/26/2002

OUALITY ASSURANCE DATA¹

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4 | LCS4

REPORT OF ANALYSIS						
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶
Volatile organics-8260b/BTEX			l		04/03/02	8260b
Benzene	20.8	µg/L	-	⊽'	04/03/02	8260b
Ethylbenzene	6.22	µg/L	_	₹	04/03/02	8260b
m,p-Xylenes	7	ug/L		7	04/03/02	8260b
o-Xylene	7	µg/L	-	⊽	04/03/02	8260b
Toluene	⊽	µg/L	1	</td <td>04/03/02</td> <td>8260b</td>	04/03/02	8260b

publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B. Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (FDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P · Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M = Matrix interference. recovered from a spiked sample.

97.6 110.1

100.4 113.8

105.5 96.2

104

103.3

99.4

94.4 98.4

99.1

103.3 108

1.4

Environmental Tech Group Client:

Ken Dutton Attn:

REPORT OF SURROGATE RECOVERY

Surrogate Compound

1,2-Dichloroethane-d4

Toluene-d8

Recovery Limit Data Qualifiers

Recovery

Method

80-120 88-110

6.66

8260b 8260b

Report#/Lab 1D#: 127613 Sample Matrix: water

Project ID: SPS-11 EOT 2022C	Sample Name: MW 10	

-	ery limits.
	our operes diluted and $X=Surrogates$ outside advisory recovery
	tes outside
	X = Surroga
	iluted and
	7
	= Surrogates d
	Data Oualifiers: D= Surrogates d

Exceptions Report:

Report #/Lab ID#: 127613 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 10

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

verified as to the presence and relative ratio of target ions (eg. the material causing the I flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif Comi	Qualif Comment
Toluene	J	See J-flag discussion above.
Notes:		

TX 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Chr 4221 Freidrich Lane, Suite 190, Aust (512) 444-5896

> Environmental Tech Group Client:

Ken Dutton Attn:

Address: 2540 W. Marland

Hobbs,

NM 88240

FAX: 505 397-4701 505 397-4882 Phone:

Report Date: 04/16/02 Project 1D: SPS-11 EOT 2022C Report#/Lab 1D#: 127614

Sample Name: MW 11 Sample Matrix: water

Time: 09:45 Date Received: 04/03/2002

Time: 10:40 Date Sampled: 03/26/2002

REPORT OF ANALYSIS

REPORT OF ANALYSIS					•		QUALITY ASSURANCE DATA	ASSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec. ²	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX	1		;		04/03/02	82606		:	1		;
Benzene	12.8	ug/L	1	\ 	04/03/02	8260b		0.5	94.4	106.5	99.4
Ethylbenzene	3.72	µg/L	~	⊽	04/03/05	82606		1.4	98.4	103.3	99.1
m,p-Xylenes	₹	ng/L		7	04/03/02	8260b	ſ	2.2	103.3	108	104
o-Xylene	⊽	ng/L	_	⊽	04/03/02	8260b	;	1.2	96.2	100.4	9.7.6
Toluene	1.28	µg/L	_	▽	04/03/02	82606	1	0	105.5	113.8	110.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B -Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P "Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method mumbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 · Post digestion spike (P1)S) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M = Matrix interference. recovered from a spiked sample.

744 & 7840408

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 11

Report#/Lab 1D#: 127614
Sample Matrix: water

REPORT OF SURROGATE RECOVERY

			A	
Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	103	80-120	
Toluene-d8	8260b	100	88-110	1

Exceptions Report:

Report #/Lab ID#: 127614 Matrix: water
Client: Environmental Tech Group
Project ID: SPS-11 EOT 2022C
Sample Name: MW 11

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

M Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Community for terming to water Committee and Committee		aura Co aurai
Parameter	Qualif	Qualif Comment
	J	See J-flag discussion above.
Notes:		
The second secon		

8744 & 78408 2209 N. Padre Island Dr., Corpus Christi, 7. (512) 444-5896 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin,

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C

Sample Name: MW 12 Sample Matrix: water

Report#/Lab 1D#: 127615

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs,

FAX: 505 397-4701

NM 88240

REPORT OF ANALYSIS

505 397-4882

Phone:

											ĺ
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec, 2 Recov. 3 CCV4 L	Prec.2	Recov.3	CCV4	
Volatile organics-8260b/BTEX			1		04/03/02	8260b	-			;	
Benzene	2.39	µg/L	1	 	04/03/02	8260b	1	0.5	94.4	106.5	
Ethylbenzene	7	ng/L	-	7	04/03/02	8260b	-	1.4	98.4	103.3	
m,p-Xylenes	⊽	ng/L		⊽	04/03/02	8260b	;	2.2	103.3	108	
o-Xylene	7	ng/L	-	⊽	04/03/02	8260b	1	1.2	96.2	100.4	
Toluene	7	ug/L	-	⊽	04/03/02	8260b	:	0	105.5	113.8	_
											,

LCS4

OUALITY ASSURANCE DATA!

Time: 09:45 **Time: 12:00**

Date Received: 04/03/2002 Date Sampled: 03/26/2002 99.4 99.1 104 97.6 110.1

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Lekana

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B -Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P-Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 - Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Sulte 190, Austin, 78744 & 2209 N. Padre Island Dr., Corpus Chris X 7840408 (512) 444-5896 • FAX (512) 447-4766

Project ID: SPS-11 EOT 2022C Sample Name: MW 12 Environmental Tech Group Ken Dutton Client: Attn:

EOT 2022C 12

Report#/Lab 1D#: 127615
Sample Matrix: water

REPORT OF SURROGATE RECOVERY Surrogate Compound

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	103	80-120	
Toluene-d8	8260b	100	88-110	}

Exceptions Report:

Report #/Lab 1D#: 127615 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

Sample Name: MW 12

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Oualifiers and OC data:

Commercial per tanning to Data Quantities and Co	111111	מוות לכ תמומי
	Qualif	
Ethylbenzene	J	
Notes:		

78744 & **FX 78408** FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Chri 4221 Freidrich Lane, Suite 190, Aust (512) 444-5896 •

Report Date: 04/16/02 Time: 09:45 **Time:** 12:20 Project ID: SPS-11 EOT 2022C Date Received: 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab 1D#: 127616 Sample Name: MW 13 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Phone: Client: Attn:

2	3
DEDODT OF ANALVO	CITALIN
JUL LO	7 7 7
0070	

REPORT OF ANALYSIS				:			OUALITY ASSURANCE DATA	ASSURA	NCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS4
Volatile organics-8260b/BTEX	-				04/03/02	8260b	***	-			
Benzene	~	µg/L	-	⊽	04/03/02	8260b	ſ	0.5	94.4	106.5	99.4
Ethylbenzene	\ \ \	ug/L		⊽	04/03/02	8260b	!	1.4	98.4	103.3	99.1
m,p-Xylenes	√	ng/L	-	⊽	04/03/02	8260b	1	2.2	103.3	108	104
o-Xylene	⊽	ng/L	-	⊽	04/03/02	8260b	:	1.2	96.2	100.4	9.7.6
Toluene	 >	µg/L	1	! >	04/03/02	8260b		0	105.5	113.8	110.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value? dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B -Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 - Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P - Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M = Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client:

Ken Dutton Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 13

Report#/Lab 1D#: 127616 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	105	80-120	1
Toluene-d8	8260b	100	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 04/16/02

Attn: Ken Dutton Report #/Lab ID#: 127616 Matrix: water Client: Environmental Tech Group

Project ID: SPS-11 EOT 2022C

Sample Name: MW 13

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler)

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

ertaining to Da	amers	and QC data:
Parameter	Qualif	Qualif Comment
Вепхепе	J	J See J-flag discussion above.
Notes:		

4221 Freidrich Lane, Suite 190, Austin, F 8744 & 2209 N. Padre Island Dr., Corpus Christi, 78408 (512) 444-5896 • FAX (512) 447-4766

Report Date: 04/16/02

Client: Environmental Tech Group
Attn: Ken Dutton

Address: 2540 W. Marland

Hobbs,

Phone: 505 397-4882 FAX: 505 397-4701

NM 88240

Sample Name: MW 14
Sample Matrix: water

Project 1D: SPS-11 EOT 2022C

Report#/Lab 1D#: 127617

Date Received: 04/03/2002 Time: 09:45

Date Sampled: 03/26/2002 Time: 14:10

LCS4

Data Qual 7 Prec. 2 Recov. 3 CCV4

Method 6

Date

Blank

RQL⁵

04/03/02

OUALITY ASSURANCE DATA

99.4 99.1 104

106.5

98.4

1.4 2.2 1.2

94.4

i

i

ł

97.6

100.4

96.2

108

103.3

8260b 8260b 8260b

8260b

04/03/02 04/03/02 04/03/02 04/03/02

 $\nabla \nabla \nabla \nabla$

200

100

8260b 8260b 110.1

105.5

REPORT OF ANALYSIS		
Parameter	Result	Units
Volatile organics-8260b/BTEX	1	
Benzene	2460	ug/L
Ethylbenzene	186	µg/L
m,p-Xylenes	148	hg/L
o-Xylene	5.24	ng/L
Toluene	⊽	ng/L

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC') is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B -Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P · Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 "Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

7840408 4221 Freidrich Lane, Suite 190, Austin, J. 2209 N. Padre Island Dr., Corpus Christ (512) 444-5896 • FAX (512) 447-4766

> Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 14

Report#/Lab 1D#: 127617 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	109	80-120	
Toluene-d8	8260b	8.66	88-110	i

78744 & TX 78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Chris 4221 Freidrich Lane, Suite 190, Austi (512) 444-5896

Report Date: 04/16/02

Project 1D: SPS-11 EOT 2022C

Sample Name: MW 15 Sample Matrix: water

Report#/Lab 1D#: 127618

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs,

NM 88240

FAX: 505 397-4701 505 397-4882

Phone:

Time: 09:45 **Time:** 14:00

Date Received: 04/03/2002 Date Sampled: 03/26/2002


REPORT OF ANALYSIS							QUALITY ASSURANCE DATA	ASSUR/	INCE DA	TA.	
Parameter	Result	Units	RQL5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3 CCV4 LCS	Prec. ²	Recov.3	CCV4	LCS
Volatile organics-8260b/BTEX			i		04/04/02	8260b	:	i	1	;	1
Benzene	6.32	ng/L	-	⊽	04/04/02	8260b	-	0.5	94.4	106.5	99.4
Ethylbenzene	7	mg/L		7	04/04/02	8260b	ſ	1.4	98.4	103.3	99.1
m,p-Xylenes	7	µg/L		$\overline{\lor}$	04/04/02	8260b	:	2.2	103.3	108	104
o-Xylene	⊽	ng/L		⊽	04/04/02	8260b	,	1.2	96.2	100.4	9.76
Toluene	▽	ng/L	_	⊽	04/04/02	8260b	1	0	105.5	113.8	110.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Lekard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyse . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits P Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). \$1 =MS and/or MSD recovery exceed advisory limits. \$2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Environmental Tech Group Ken Dutton Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 15

Report#/Lab 1D#: 127618 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	65	80-120	1
Toluene-d8	8260b	92.9	88-110	1

Attn: Ken Dutton Report #/Lab 1D#:127618 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 15

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6$ °C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
☐ Sample received in appropriate container(s). State of sample preservation unknown.
☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

	Qualif	. 1
Ethylbenzene	J	See J-flag discussion above.
Notes:		

78744 & FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Chris. 4221 Freidrich Lane, Suite 190, Austi (512) 444-5896

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C

Sample Name: MW 16

Report#/Lab 1D#: 127619

Environmental Tech Group Client:

Address: 2540 W. Marland Ken Dutton Attn:

Hobbs,

FAX: 505 397-4701 505 397-4882 Phone:

NM 88240

Date Received: 04/03/2002 Sample Matrix: water

Time: 09:45

Time: 13:10 Date Sampled: 03/26/2002 LCS4

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4

Method 6 8260b

OUALITY ASSURANCE DATA 1

99.4

106.5 103.3 108 9.76 110.1

100.4 113.8

105.5

104 99.1

> 103.3 96.2

1.4 2.2 1.2 0

8260b 8260b 8260b

04/04/02

 $\overline{\vee}$ $\overline{\lor}$

ng/L

 $\overline{\vee}$

04/04/02

8260b 8260b

> 04/04/02 04/04/02

ng/L μg/L

Ethylbenzene m,p-Xylenes

Benzene

o-Xylene

2.39 4.18

μg/L

20.8

 $\overline{\vee}$ $\overline{\vee}$

04/04/02 04/04/02

Date

Blank

ROL i

Units

98.4

Result i Volatile organics-8260b/BTEX REPORT OF ANALYSIS Parameter

Toluene	4.11	μg/L	1	ļ
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results	ySys, Inc. The	enclosed results	1. Quality	13
house hoor amongs the marriage and to the hoot of me brownladen the analytical manufe	perlodes the one	lucion roughs	of the rela	٠.

publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Later Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte y assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B - Analyte detected in associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers than advisory limit. M = Matrix interference. recovered from a spiked sample.

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 16

Report#/Lab 1D#: 127619 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	118	80-120	,
Toluene-d8	8260b	100	88-110	!

That post 38/3

CHAIN-OF-CUSTODY

City_ State Nm Zip 88240 W MARLAND ATTIN: KEN DUTT ON Company Name **ETGI** Address 25 % Send Reports To: City 14886

Bill to (if different):

Company Name_ Address Analyses Requested (1)

4221 Freidrich Lane, Suite 190, Austin, TX 78744 Phone: (512) 444-5896

Fax: (512) 447-4766

Zip State Fax ATTN: Phone

Please attach explanatory information as required

Rush Status (must be confirmed with lab mgr.): Project Name/PO#: _______Sample

Phone (500) 72-4182 Fax (505) 357-470)

Sampler: Linear

2022C

Lab 1.D. # Water | Waste | (Lab only) Date Time No. of Sampled Sampled Containers Soil Description/Identification Client Sample No.

(Johnments

limits (MI) (PQL). For GCMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody. ASI will default to Proving Pollutanes to Haldess specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASPs method of choice and all data will be reported to ASPs mannal reporting

127634

545,

ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

ASISTISI, list at ASI'S o	AMETIAL HSC at AMES option. Specific compound HSG must oc supprie c	ippined for all GC procedures.	courcs.	TEMM: O.O.C	200		
0	Sample Relinquished	d By)	Sample Received By	By	
Manne 2	Affiliation	Date	Time	Name	Affiliation	Date	Time
Amor laves	ETGI	4-2-02 1200		Milan	Mens Ammont	1 4/3/02	09:45

(Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

Exceptions Report:

Report #/Lab 1D#: 127619 Matrix: water Client: Environmental Tech Group Project 1D: SPS-11 EOT 2022C

Attn: Ken Dutton

Sample Name: MW 16

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the sample (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved.
□ Sample received in appropriate container(s). State of sample preservation unknown.
□ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.)

Comments pertaining to Data Qualifiers and QC data:

Parameter.	Qualif	Qualif Comment
o-Xylene	J	J See J-flag discussion above.
Notes:		

FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

744 &

78408

Report Date: 04/16/02

Environmental Tech Group Client:

Ken Dutton Attn:

Address: 2540 W. Marland Hobbs,

REPORT OF ANALYSIS

Phone:

FAX: 505 397-4701

NM 88240

505 397-4882

Project ID: SPS-11 EOT 2022C Sample Name: MW 17

Report#/Lab 1D#: 127620

Sample Matrix: water

Time: 09:45 Date Received: 04/03/2002

Time: 14:30 Date Sampled: 03/26/2002 LCS4

Data Qual 7 Prec. 2 Recov.3 CCV4

Method ⁶ 8260b

> 04/04/02 04/04/02 04/04/02

Date

Blank

QUALITY ASSURANCE DATA

99.4

99.1 104

103.3 108

4.

97.6 110.1

100.4 113.8

1.2

;

8260b

04/04/02 04/04/02

 $\overline{\vee}$ $\overrightarrow{\nabla}$ $\overline{\vee}$

 $\overline{\vee}$

04/04/02

8260b

8260b 8260b

8260b

103.3 96.2 105.5

Parameter	Result	Units	RQL ⁵	L
Volatile organics-8260b/BTEX	į		}	
Benzene	12	mg/L	-	L .
Ethylbenzene	12.4	µg/L	_	_
m,p-Xylenes	7.61	µg/L	_	
o-Xylene	3.24	µg/L	_	
Toluene	21.8	μg/L	1	
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results	ySys, Inc. The e	nclosed results	I. Quality of the rel	1 ± =

publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Rehand

Richard Laster

dative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte ty assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin 78744 & 2209 N. Padre Island Dr., Corpus Christl, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ken Dutton

Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 17

Report#/Lab ID#: 127620 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	110	80-120	1
Toluene-d8	8260b	93	88-110	{

X 78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austil (512) 444-5896

Report Date: 04/16/02 **Time:** 09:45 Time: 14:20 Project ID: SPS-11 EOT 2022C **Date Received:** 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab ID#: 127621 Sample Name: MW 18 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Client: Phone: Attn:

2	,
0107	ī
-	
-	۱
_	
_	٠
1	_
2	1
7	
2	
1.0	
-	
	Ľ
0	
100	Ĺ
G	
- 12	-

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	SSURA	NCE DA	TA^{1}	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX			:		04/04/02	8260b	i				:
Benzene	4.32	µg/L		⊽	04/04/02	8260b	t :	0.5	94.4	106.5	
Ethylbenzene	1.11	µg/L		⊽	04/04/02	8260b	!	4.1	98.4	103.3	1.66
m,p-Xylenes	⊽	µg/L	_	⊽	04/04/02	8260b	!	2.2	103.3	108	104
o-Xylene	⊽	ng/L	-	⊽	04/04/02	8260b	1	1.2	96.2	100.4	9.7.6
Toluene	$\overline{\vee}$	ηg/L	_		04/04/02	8260b		0	105.5	113.8	110.1

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value recovered from a spiked sample. 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B - Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P. Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 :-Post digestion spike (PDS) . Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 18

Report#/Lab 1D#: 127621 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	9.66	80-120	1
Toluene-d8	8260b	94.8	88-110	1

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 04/16/02

78744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin (512) 444-5896

Report Date: 04/16/02

Project 1D: SPS-11 EOT 2022C

Sample Name: MW 19 Sample Matrix: water

Report#/Lab 1D#: 127622

Environmental Tech Group Client:

Ken Dutton Attn:

Address: 2540 W. Marland

Hobbs,

FAX: 505 397-4701

505 397-4882

Phone:

NM 88240

ASSURANCE DATA! **Time:** 11:00 OUALITY Date Sampled: 03/26/2002

Time: 09:45

Date Received: 04/03/2002

LCS4

Prec, 2 Recov.3 CCV4

Data Qual ⁷

99.4

106.5 103.3 108

:

99.1 104

103.3

2.2 1.4

1.2

98.4 94.4

9.76 110.1

113.8 100.4

105.5 96.2

Method ⁶ 8260b 8260b 8260b 8260b 8260b 8260b 04/04/02 04/04/02 04/04/02 04/04/02 04/04/02 04/04/02 Date Blank $\overline{\vee}$ $\overline{\lor}$ $\overline{\vee}$ ∇ ROL⁵ Units hg/L $\mu g/L$ $\mu g/L$ ng/L - µg/L Result 12.6 4.4 $\overline{\vee}$ $\overline{\vee}$ Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Toluene

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, heliana

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) recovery exceeds advisory limits. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P -Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference. recovered from a spiked sample.

X 7840408

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 19

Report#/Lab ID#: 127622 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	114	80-120	;
Toluene-d8	8260b	101	88-110	}

Exceptions Report:

Attn: Ken Dutton Report #/Lab ID#: 127622 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 19

Sample Temperature/Condition <=6°C

he typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Toluene	J	See J-flag discussion above.
Notes:		

2209 N. Padre Island Dr., Corpus Christi, TX FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, (512) 444-5896

744 &

Environmental Tech Group Client:

Ken Dutton

Address: 2540 W. Marland

Hobbs,

FAX: 505 397-4701

NM 88240

505 397-4882

Phone:

Report Date: 04/16/02 Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127623

Sample Name: MW 20

Sample Matrix: water

Time: 09:45 Date Received: 04/03/2002

Date Sampled: 03/26/2002

ζ	,	2	
ť	,	2	I
•	>		j
7	Ź		
		Ć	
c	,		ı

REPORT OF ANALYSIS							OUALITY ASSURANCE DATA¹	ASSUR	NCE DA	TA1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV ⁴	LCS4
Volatile organics-8260b/BTEX	:		1		04/04/02	8260b	9	:		ï	i
Benzene	2.8	ug/L		\ 	04/04/02	8260b		0.5	94.4	_	99.4
Rhylhenzene	1 66	1/611		~	04/04/02	8260b		4.1	98.4		99.1
m n-Xylenes	₹ ⊽	Leg-L	-	∀	04/04/02	8260b	1	2.2	103.3	108	104
o-Xvlene	· ⊽	ug/L		⊽	04/04/02	8260b	-	1.2	96.2		9.76
Toluene	' ▽	ng/L	_	$\overline{\vee}$	04/04/02	8260b	-	0	105.5		110.1

publication may be reproduced or transmitted in any form or by any means without the flus analytical report is respectfully submitted by AnalySys, Inc. The enclosed results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Later

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TM 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ken Dutton Client:

Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 20

Report#/Lab 1D#: 127623 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	106	80-120	1 1
Toluene-d8	8260b	100	88-110	ŀ

8744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 04/16/02

Report#/Lab 1D#: 127624

NM 88240 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Hobbs, Client:

FAX: 505 397-4701 505 397-4882

REPORT OF ANALYSIS

Phone:

Time: 11:45 Time: 09:45 **Project ID: SPS-11 EOT 2022C** Date Received: 04/03/2002 Date Sampled: 03/26/2002 Sample Name: MW 21 Sample Matrix: water

Blank $\overline{\vee}$ $\overline{\vee}$ $\overline{\vee}$ This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © μg/L hg/L $\mu g/L$ µg/L 2.64 ∇ $\overline{\vee}$ Volatile organics-8260b/BTEX Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene **Foluene**

97.6

100.4 113.8

96.2

105.5

8260b

04/04/02

LCS4

Prec, 2 Recov.3 CCV4

Data Qual 7

Method 6

8260b

04/04/02 04/04/02

Date

RQL⁵

Units

Result

OUALITY ASSURANCE DATA¹

99.4 99.1 104

> 103.3 108

98.4

1.4

8260b 8260b 8260b

04/04/02

04/04/02

04/04/02

8260b

103.3

publication may be reproduced or transmitted in any form or by any means without the Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Puehend Later Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

7840408

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 21

Report#/Lab 1D#: 127624 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	114	80-120	-
Toluene-d8	8260b	100	88-110	

744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C Date Received: 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab 1D#: 127625 Sample Name: MW 22 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Phone: Client:

Time: 12:40 Time: 09:45

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA¹	ASSURA	NCE DA	TA^{1}	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov.3	CCV4	LCS^4
Volatile organics-8260b/BTEX	i		-		04/04/02	8260b					:
Benzene	1.8	µg/L	_	⊽	04/04/02	8260b		1.4	94.1	66	95.8
Ethylbenzene	7	ng/L		7	04/04/05	8260b	5	5.5	95.4	9.76	99.2
m,p-Xylenes	7	ug/L	_	∇	04/04/02	8260b	•	5.5	98.3	101.3	102.7
o-Xylene	√	µg/L	-	⊽	04/04/02	8260b		5.4	93.6	95.1	96.5
Toluene	· >	μg/L	1	<1	04/04/02	8260b		0.2	104.8	106.5	103.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Richard Later Respectfully Submitted,

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 22

Report#/Lab 1D#: 127625 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	101	80-120	[
Toluene-d8	8260b	100	88-110	-

Report #/Lab ID#: 127625 Matrix: water Client: Environmental Tech Group **Project 1D: SPS-11 EOT 2022C** Sample Name: MW 22

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Keported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Ethylbenzene	'n	See J-flag discussion above.
Notes:		

4221 Freidrich Lane, Suite 190, Austin, 7 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report Date: 04/16/02

Project ID: SPS-11 EOT 2022C

Sample Name: MW 23 Sample Matrix: water

Report#/Lab 1D#: 127626

Client: Environmental Tech Group
Attn: Ken Dutton

Address: 2540 W. Marland

Hobbs,

505 397-4882

Phone:

FAX: 505 397-4701

NM 88240

OUALITY ASSURANCE DATA!

Time: 09:45 **Time:** 13:50

Date Received: 04/03/2002 **Date Sampled:** 03/26/2002

LCS4

REPORT OF ANALYSIS

WEI ON OF OND LESIS							COLUMN A AND COLUMN A PARTY OF THE PARTY OF			
Parameter	Result	Units	RQL5	Blank	Date	2	Data Qual 7 Prec. 2 Recov.3 CCV4	Prec.2	Recov.3	CCV ⁴
Volatile organics-8260b/BTEX	:				04/04/05		3 E 3			į
Benzene	2.93	µg/L	I	⊽	04/04/02	8260b		7.1	89.1	8.68
Ethylbenzene	7	µg/L	-	⊽	04/04/02	8260b	ſ	7.2	113.2	109.2
m,p-Xylenes	~	ug/L	_	⊽	04/04/02	8260b	ſ	5.8	118.2	114.4
o-Xylene	7	ug/L	_	₹	04/04/02	8260b	:	0.5	113.7	110.6
Toluene	▽	ng/L		$\overline{\vee}$	04/04/05	8260b	1	3.8	67	100.2
			_							

106.8 1112.5 108.3 100.6

8.06

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this publication may be reproduced or transmitted in any form or by any means without the express written consent of AnalySys, Inc.

Respectfully Submitted,

Richard Laster

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 :: Post digestion spike (PDS) than advisory limit. M=Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 23

Report#/Lab 1D#: 127626 Sample Matrix: water

44 & 7840408

4221 Freidrich Lane, Suite 190, Austin, TX 2209 N. Padre Island Dr., Corpus Christi, Tx (512) 444-5896 • FAX (512) 447-4766

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	9.66	80-120	i
Toluene-d8	8260b	100	88-110	:

Attn: Ken Dutton Report #/Lab 1D#: 127626 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 23

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

M Sample received in appropriate container(s) and appear to be appropriately preserved

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

,		
Parameter	Qualif	Qualif Comment
Ethylbenzene	J	See J-flag discussion above.
m,p-Xylenes	J	See J-flag discussion above.
Notes:		

Report #/Lab ID#: 127626 Report Date: 4/16/200

78408 2209 N. Padre Island Dr., Corpus Christi, TX FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 04/16/02

Environmental Tech Group Client: Attn:

Ken Dutton

Address: 2540 W. Marland

Hobbs,

NM 88240

FAX: 505 397-4701

505 397-4882

Phone:

Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127627

Sample Name: MW 24 Sample Matrix: water Time: 09:45 Date Received: 04/03/2002

Time: 13:40 Date Sampled: 03/26/2002

REPORT OF ANALVSIS

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSURA	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV 4 LCS 4	Prec.2	Recov,3	CCV ⁴	LCS4
Volatile organics-8260b/BTEX					04/04/02	8260b					1
Benzene	839	µg/L	01	01>	04/02/02	8260b		7.1	89.1	8.68	8.06
Ethylbenzene	5.44	mg/L	_	∇	04/04/05	8260b	-	7.2	113.2	109.2	8.901
m,p-Xylenes	1.68	ng/L		∇	04/04/02	8260b	!	5.8	118.2	114.4	112.5
o-Xylene	7	µg/L	_	⊽	04/04/02	8260b	~	0.5	113.7	110.6	108.3
Toluene	1.63	µg/L	-	∇	04/04/02	8260b		3.8	62	100.2	100.6
Toluene	1.63	µg/L	-	⊽	04/04/02	8260b		3.8		97	_

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Celebra Sa

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte I. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 ~Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M = Matrix interference. recovered from a spiked sample.

Environmental Tech Group Client: Attn:

Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 24

Report#/Lab 1D#: 127627 Sample Matrix: water

5840408

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	104	80-120	•
Toluene-d8	8260b	6.66	88-110	i

Matrix: water Client: Environmental Tech Group Project 1D: SPS-11 EOT 2022C Report #/Lab ID#: 127627 Sample Name: MW 24

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
 ☑ Sample received in appropriate container(s). State of sample preservation unknown.
 ☑ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
o-Xylene	J	See J-flag discussion above.
Notes:		

78408 2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

Report Date: 04/16/02

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs,

505 397-4882 Phone:

FAX: 505 397-4701

NM 88240

Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127628

Sample Name: MW 25

Sample Matrix: water

Time: 09:45 Time: 13:25 Date Received: 04/03/2002 Date Sampled: 03/26/2002 LCS4

Data Qual 7 | Prec. 2 | Recov. 3 | CCV4

Method 6

8260b

04/04/02 04/04/02 04/04/02

Date

Blank

ROL:

ł

į

OUALITY ASSURANCE DATA 1

106.8 112.5 108.3 9.001

109.2

113.2

7.2

114.4 110.6

118.2 113.7

5.8 0.5

8260b 8260b

04/04/02

8260b 8260b 100.2

97

3.8

8260b

04/04/02

 $\vec{\vee}$

04/04/02

 $\overline{\vee}$ $\overrightarrow{\vee}$ $\overline{\lor}$

8.06

Units ηg/L hg/L hg/L hg/L Result 4.77 $\overline{\vee}$ $\overline{\vee}$ $\overline{\mathsf{v}}$ Volatile organics-8260b/BTEX REPORT OF ANALYSIS Ethylbenzene m,p-Xylenes Parameter o-Xylene Benzene Foluene

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovered from a spiked sample. 4. Calibration Verification (CCV) and Lahoratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) . Quality assurance data is for the sample batch which included this sample. than advisory limit. M =Matrix interference.

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rebord Letter

Richard Laster

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 25

Report#/Lab 1D#: 127628 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	101	80-120	,
Toluene-d8	8260b	96.4	88-110	;

Report #/Lab ID#: 127628 Matrix: water
Client: Environmental Tech Group
Project ID: SPS-11 EOT 2022C
Sample Name: MW 25

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

M Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Keported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	
Ethylbenzene	ſ	See J-flag discussion above.
Notes:		

78408 2209 N. Padre Island Dr., Corpus Christi, T. FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 04/16/02 Time: 14:45 Time: 09:45 Project ID: SPS-11 EOT 2022C Date Received: 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab 1D#: 127629 Sample Name: MW 26 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Phone: Client: Attn:

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR/	NCE DA	TA1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS ⁴
Volatile organics-8260b/BTEX	;		1		04/02/02	8260b	***		-	:	
Benzene	1690	µg/L	10	<10	04/05/02	8260b		0.3	99.2	95.7	100.7
Ethylbenzene	361	µg/L	10	<10	04/05/02	8260b	:	0.3	97.3	100.8	86
m,p-Xylenes	213	µg/L	10	<10	04/05/02	8260b	-	0.1	1001	104.6	100.8
o-Xylene	86.1	µg/L	10	<10	04/05/02	8260b	1	1.6	95.9	99.1	6.96
Toluene	547	µg/L	10	<10	04/02/02	8260b		0.3	107.8	103.2	111.7

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Rehard

Richard Laster

. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M = Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Environmental Tech Group Ken Dutton

Client: Attn:

Project ID: SPS-11 EOT 2022C Sample Name: MW 26

Report#/Lab ID#: 127629
Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	114	80-120	
Toluene-d8	8260b	97.3	88-110	1

78408 FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

744 &

Environmental Tech Group Ken Dutton Client: Attn:

Address: 2540 W. Marland

Hobbs,

505 397-4882 Phone:

FAX: 505 397-4701

NM 88240

Report Date: 04/16/02 **Project 1D: SPS-11 EOT 2022C** Report#/Lab ID#: 127630

Sample Name: MW 27

Sample Matrix: water

Time: 09:45 Date Received: 04/03/2002

Time: 15:00 Date Sampled: 03/26/2002

REPORT OF ANALYSIS							QUALITY A
Parameter	Result	Units	RQL 5	Blank	Date	Method ⁶	Data Qual ⁷ P
Volatile organics-8260b/BTEX					04/04/02	8260b	
Benzene	4.19	µg/L	-	⊽	04/04/02	8260b	
Ethylbenzene	2	µg/L		⊽	04/04/02	8260b	i
m,p-Xylenes	1.14	µg/L	-	⊽	04/04/02	8260b	1
o-Xylene	7	µg/L	_	7	04/04/02	8260b	
Toluene	2.85	ηg/L	1	<1	04/04/02	8260b	

112.5 108.3

114.4

110.6

0.5 5.8

100.6

100.2

67

106.8

109.2 868

> 113.2 118.2 113.7

89.1

1

į 7.1

8.06

LCS4

Prec. 2 Recov.3 CCV4

ASSURANCE DATA¹

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

Respectfully Submitted, Richard

Richard Laster

. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B =Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). SI =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M = Matrix interference. recovered from a spiked sample.

44 & 7840408

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 27

Report#/Lab ID#: 127630 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	104	80-120	
Foluene-d8	8260b	97.4	88-110	1

Report #/Lab 1D#: 127630 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C Sample Name: MW 27

Attn: Ken Dutton

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved. ☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
o-Xylene	J	J See J-flag discussion above.
Notes:		

2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, TX (512) 444-5896

44 &

Environmental Tech Group Client:

Address: 2540 W. Marland Ken Dutton Attn:

Hobbs,

NM 88240

FAX: 505 397-4701 505 397-4882

Phone:

REPORT OF ANALYSIS

Report Date: 04/16/02 Project ID: SPS-11 EOT 2022C Report#/Lab 1D#: 127631

Sample Name: MW 28 Sample Matrix: water Time: 09:45 Date Received: 04/03/2002

Time: 15:10 Date Sampled: 03/26/2002 Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4

Method 6 8260b 8260b 8260b 8260b 8260b 8260b

04/05/02

Date

Blank

RQL⁵

į

i

QUALITY ASSURANCE DATA¹

Parameter	Result	Units
Volatile organics-8260b/BTEX	į	
Benzene	2130	hg/L
Ethylbenzene	226	µg/L
m,p-Xylenes	118	ng/L
o-Xylene	41.8	ng/L
Toluene	73.4	µg/L
This analytical report is respectfully submitted by AnalySys, Inc. The enclosed resultance been carefully reviewed and, to the best of my knowledge, the analytical results	ySys, Inc. The e	nclosed results

100.8

104.6 100.8

> 1001 95.9

04/05/02 04/05/02

<10 <10 <10

04/05/02

04/05/02

04/05/02

97.3

0.3 0.1 1.6

99.1

100.7

95.7

86

111.7 6'96

103.2

107.8

ed results publication may be reproduced or transmitted in any form or by any means without the results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this express written consent of AnalySys, Inc.

that the Respectfully Submitted, Rehard

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

4221 Freidrich Lane, Suite 190, Austin, TX 4 & 2209 N. Padre Island Dr., Corpus Christi, TX 7840408 (512) 444-5896 • FAX (512) 447-4766

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 28

Report#/Lab ID#: 127631 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit	Data Qualifiers
1,2-Dichloroethane-d4	8260b	111	80-120	+
Toluene-d8	8260b	9.96	88-110	

Data Qualifiers: D= Surrogates diluted and X= Surrogates outside advisory recovery limits.

Report Date: 04/16/02

3744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

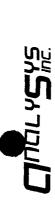
Report Date: 04/16/02

OUALITY ASSURANCE DATA

Time: 09:45 Time: 15:20

Project ID: SPS-11 EOT 2022C Date Received: 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab 1D#: 127632 Sample Name: MW 29 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Client: Phone:

REPORT OF ANALYSIS


Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov.3	Prec.2	Recov.3	CCV4	LCS4
A/BN Extraction-PAH		1	:	1	04/02/02	3520		:	·••	•	
Metals DigHg	ł	ł	ł	i	04/04/02	7470&245.1	ŀ	-	1		;
Metals DigHNO3	ł	1	ŀ	ŧ	04/03/02	3015	1	ţ	;	:	ï
Metals DigHNO3*filtered	-	;	;	!	04/03/02	3005a	;	;			- -
Total dissolved solids	584	mg/L	_	⊽	04/17/02	160.1	i	6.97	-NA-	-NA-	-NA-
Aluminum/ICP	1.37	mg/L	0.2	<0.2	04/05/02	6010 & 200.7	-	11.66	108.49	2.96	84.85
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	1	2.13	106.97	95.24	104.32
Barium/ICP	0.393	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	i	1.19	118.87	100.98	92.88
Beryllium/ICP	<0.004	mg/L	0.004	<0.004	04/05/02	6010 & 200.7	1	5.29	108.11	86	95.62
Boron/ICP	0.154	mg/L	0.02	<0.02	04/02/02	6010 & 200.7	-	69.0	104.15	102.3	101.44
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	04/05/02	6010 & 200.7	1	3.7	103.23	98.94	91.94
Calcium/ICP*filtered	190	mg/L	10	<10	04/21/02	6010 & 200.7	1	1.35	6.98	97.64	98.87
Chromium/ICP	<0.01	mg/L	0.01	<0.01	04/02/02	6010 & 200.7	-	2.19	119.51	95.74	84.11
Cobalt/ICP	<0.02	mg/L	0.02	<0.02	04/02/02	6010 & 200.7	;	2.87	119.24	6.62	8.88
Copper/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	!	2	109	96.72	91.31
Iron/ICP	668.0	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	:	1.4	117.25	99.65	88.29
Lead/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	ļ	1.25	115.56	100.64	86.22
Magnesium/ICP*filtered	19.5	mg/L	5	\$\ \$\	04/05/02	6010 & 200.7	i	0.28	107.04	103.16	82.3
Manganese/ICP	0.204	mg/L	0.01	<0.01	04/05/02	6010 & 200.7		3.72	120.13	95.36	85.36
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	04/05/02	245.1&7470	-	6.0	107.07	85	108
Molybdenum/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	;	1.4	105.45	95.81	92.93
			7								

> publication may be reproduced or transmitted in any form or by any means without the This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc

Richard Laster heliana

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required associated method blank(s). SI =MS and/or MSD recovery exceed advisory fimits. S2 =Post digestion spike (PDS) recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers expressed as the percent (%) recovery of analyte from a known standard or matrix. than advisory limit. M =Matrix interference. recovered from a spiked sample.

Report Date: 04/16/02

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

102.73 112.5 LCS4 91.49 90.14 106.8 108.3 9.001 96.24 82.84 91.73 99.11 -NA-88.91 110 -NA-97.41 85.82 -NA-8.06 49.6 47.2 51.7 54.2 52.4 54.9 51.1 53.2 Report#/Lab 1D#: 127632 Data Qual 7 | Prec. 2 | Recov.3 | CCV4 102.65 102.36 100.72 107.37 99.34 101.6 99.72 109.2 114.4 110.6 96.95 100.2 86.56 -NA--NA-96.5 92.5 -NA-868 95.7 93.5 8.68 8.06 92.8 92.7 94.1 83.3 99.3 88 Sample Matrix: water ASSURANCE DATA 104.99 105.26 107.54 114.26 110.06 111.48 103.77 115.47 119.17 81.65 -NA-113.2 118.2 -NA-113.7 52.9 53.9 46.6 36.8 -NA-55.9 33.7 51.1 51.1 89.1 53.1 6 35.7 2.89 -NA-18.4 11.9 12.9 13.3 14.2 10.6 1.47 4.05 1.87 1.44 29.3 29.7 8.91 OUALITY l | | 6010 & 200.7 6010 & 200.7 6010 & 200.7 6010 & 200.7 6010 & 200.7 375.4&9038 6010 & 200.7 258.1&7610 5010 & 200.7 325.2&9251 272.2&7761 Method 6 SM2320 SM2320 8260b 8260b 8260b 8260b 8260b 8270c 8270c 8270c 8270c 8270c 8260b 8270c 8270c 8270c 8270c 8270c 8270c 04/05/02 04/04/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/08/02 04/08/02 04/04/02 04/04/02 04/11/02 04/04/02 04/05/02 04/04/02 04/04/02 04/04/02 04/04/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 Project ID: SPS-11 EOT 2022C Sample Name: MW 29 Blank <0.002 <0.05 <0.05 <0.05 <0.02 <0.05 <0.05 <0.05 **2**0 <0.01 <0.5 < 0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 <0.05 <0.05 <10 $\overline{\vee}$ ∇ ł $\overline{\lor}$ $\overline{\vee}$ $\overline{\vee}$ RQL 5 0.002 0.05 0.05 0.05 0.02 0.01 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.5 10 ì 10 Units mg/L mg/L mg/L mg/L mg/L mg/L mg/L mg/L hg/L Hg/L mg/L mg/L mg/L mg/L hg/L mg/L ng/L ng/L µg/L ng/L µg/L µg/L ng/L hg/L µg/L ng/L hg/L ng/L µg/L 0.0058 Result < 0.05 < 0.05 <0.02 < 0.05 < 0.05 <0.05 <0.05 < 0.05 79.9 <0.01 0.067 0.052 0.051 < 0.05 < 0.05 <0.05 0.075 1.71 <10 22.6 2340 16.2 1.09 2.19 460 11.1 102 Environmental Tech Group REPORT OF ANALYSIS-cont. Volatile organics-8260b/BTEX Extractable organics-PAH Ken Dutton Benzo[j,k]fluoranthene Potassium/AA*filtered Alkalinity, bicarbonate Dibenz[a,h]anthracene Benzo[b]fluoranthene Benzo[g,h,i]perylene Sodium/ICP*filtered Alkalinity, carbonate Benzo[a]anthracene Benzo[a]pyrene Acenaphthylene Vanadium/ICP Selenium/ICP Strontium/ICP Acenaphthene Silver/GFAA Ethylbenzene Fluoranthene m,p-Xylenes Nickel/ICP Parameter Anthracene Chrysene o-Xylene Zinc/ICP Chloride Benzene Client: Tin/ICP **Foluene** Sulfate Attn:

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 FAX (512) 447-4766

Client: Attn:	Client: Environmental Tech Group Attn: Ken Dutton			Project II Sample N	Project ID: SPS-11 EOT 2022C Sample Name: MW 29	JT 2022C			Report# Sample	Report#/Lab 1D#: 127632 Sample Matrix: water	i: 127632 vater	
REPORT	REPORT OF ANALYSIS-cont.							QUALITY ASSURANCE DATA ¹	ASSURA	NCE DA	$\overline{\mathrm{TA}}^{1}$	
Parameter		Result	Units	RQL ⁵	Blank Date	Date	Method ⁶	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV4	LCS^4
Indeno[1,2,	Indeno[1,2,3-cd]pyrene	<0.05	µg/L	0.05	<0.05	04/11/02	8270c	ſ	11	53.1	91.5	52.1
Naphthalene	9	6.11	ng/L	0.05	<0.05	04/11/02	8270c	1	20.9	21.8	86.5	34.3
Phenanthrene	ne	0.09	ug/L	0.05	<0.05	04/11/02	8270c	t 1	18.3	47.4	95	51.9
Pyrene		<0.05	ng/L	0.05	<0.05	04/11/02	8270c	ſ	13.6	20	9.88	52.7

Client: Environmental Tech Group

Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 29

Report#/Lab 1D#: 127632 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Method Recovery Recovery Limit Data Qualifiers	Data Qualifiers
1,2-Dichloroethane-d4	8260b	104	80-120	•
Toluene-d8	8260b	96.4	88-110	-
2-Fluorobiphenyl	8270c	70.8	43-116	-
Nitrobenzene-d5	8270c	51.4	35-114	;
Terphenyl-d14	8270c	51.2	33-141	1

Report #/Lab 1D#: 127632 Matrix: water

Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Attn: Ken Dutton

Sample Name: MW 29

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is $\leq = 6^{\circ}$ C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

M Sample received in appropriate container(s) and appear to be appropriately preserved.

☐ Sample received in appropriate container(s). State of sample preservation unknown. ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Řeported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Ouglifiers and OC data:

Commence per calming to Data Qualifiers and & Chairs.	271111	and Cousta.
Parameter	Qualif	Qualif Comment
Chromium/ICP	ſ	See J-flag discussion above.
Nickel/ICP	ſ	See J-flag discussion above.
Zinc/ICP	ſ	See J-flag discussion above.
Acenaphthylene	ſ	See J-flag discussion above.
Anthracene	J	See J-flag discussion above.
Benzo[a]anthracene	J	See J-flag discussion above.
Benzo[a]pyrene	ſ	See J-flag discussion above.
Benzo[g,h,i]perylene	ſ	See J-flag discussion above.
Chrysene	J	See J-flag discussion above.
Dibenz[a,h]anthracene	J	See J-flag discussion above.
Fluoranthene	J	See J-flag discussion above.
Indeno[1,2,3-cd]pyrene	J	See J-flag discussion above.
Pyrene	J	See J-flag discussion above.
Notes:		

FAX (512) 447-4766 2209 N. Padre Island Dr., Corpus Christi, 4221 Freidrich Lane, Suite 190, Austin, T (512) 444-5896

744 &

78408

Report Date: 04/16/02

Time: 15:30 Time: 09:45

Date Sampled: 03/26/2002

Project ID: SPS-11 EOT 2022C Date Received: 04/03/2002 Report#/Lab 1D#: 127633 Sample Name: MW 30 Sample Matrix: water NM 88240 Environmental Tech Group Address: 2540 W. Marland Ken Dutton Hobbs, Client:

505 397-4882

Phone:

FAX: 505 397-4701

REPORT OF ANALYSIS							QUALITY ASSURANCE DATA ¹	ASSUR/	ANCE DA	TA^{1}	!
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7 Prec. ²	Prec.2	Recov.3	CCV4	LCS ⁴
A/BN Extraction-PAH			1	į	04/03/02	3520			-		-
Metals DigHg	;	ŀ	;	ı	04/15/02	7470&245.1	!	:	;	i	ŀ
Metals DigHNO3	;	1	i	i	04/03/02	3015	1		;	i	i
Metals DigHNO3*filtered	ł		;	i	04/03/02	3005a	1 2 3	į	;	i	-
Total dissolved solids	473	mg/L		~	04/17/02	160.1	1	6.97	-NA-	-NA-	-NA-
Aluminum/ICP	1.3	mg/L	0.2	<0.2	04/02/02	6010 & 200.7		11.66	108.49	2.96	84.85
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	04/02/02	6010 & 200.7	1 1	2.13	106.97	95.24	104.32
Barium/ICP	0.296	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	:	1.19	118.87	100.98	92.88
Beryllium/ICP	<0.004	mg/L	0.004	<0.004	04/05/02	6010 & 200.7	1	5.29	108.11	86	95.62
Boron/ICP	0.107	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	ļ	69.0	104.15	102.3	101.44
Cadmium/ICP	<0.005	mg/L	0.005	<0.005	04/02/02	6010 & 200.7	1	3.7	103.23	98.94	91.94
Calcium/ICP*filtered	202	mg/L	10	<10	04/21/02	6010 & 200.7	1	1.35	6.98	97.64	78.86
Chromium/ICP	<0.01	mg/L	0.01	<0.01	04/02/02	6010 & 200.7	-	2.19	119.51	95.74	84.11
Cobalt/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	! ! !	2.87	119.24	96.62	8.88
Copper/ICP	<0.02	mg/L	0.02	<0.02	04/02/02	6010 & 200.7		7	109	96.72	91.31
Iron/ICP	0.927	mg/L	0.05	<0.05	04/02/02	6010 & 200.7	!	1.4	117.25	99.65	88.29
Lead/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	~~	1.25	115.56	100.64	86.22
Magnesium/ICP*filtered	18.3	mg/L	5	<>	04/05/02	6010 & 200.7	i	0.28	107.04	103.16	82.3
Manganese/1CP	0.269	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	1	3.72	120.13	95.36	85.36
Mercury/CVAA	0.0002	mg/L	0.0002	<0.0002	04/15/02	245.1&7470	!	4.65	88.89	95	107.33
Molybdenum/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	ſ	1.4	105.45	95.81	92.93

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the have been carefully reviewed and, to the best of my knowledge, the analytical results are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. © Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster heliana

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte . Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P =Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference. recovered from a spiked sample.

Report Date: 04/16/02

4221 Freidrich Lane, Suite 190, Austin, T 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

ດ ທີ່
ואבור ז

102.73 8.90 112.5 108.3 9.00 LCS4 96.24 82.84 91.73 91.49 90.14 99.11 -NA--NA-97.41 85.82 -YV-8.06 49.6 51.8 88.91 47.2 51.7 54.2 52.4 53.2 54.9 47.3 51.1 54 Report#/Lab 1D#: 127633 102.65 102.36 100.72 107.37 Data Qual 7 Prec. 2 Recov.3 | CCV4 101.6 99.72 110.6 99.34 109.2 114.4 100.2 96.95 -NA-86.56 -NA--VY-96.5 92.5 8.68 95.7 93.5 8.68 8.06 92.8 92.7 91.6 83.3 99.3 94.1 88 Sample Matrix: water ASSURANCE DATA 114.26 105.26 104.99 103.77 115.47 119.17 107.54 110.06 81.65 90.63 -NA--NA-113.2 118.2 113.7 -YY-53.9 46.6 36.8 52.9 55.9 33.7 47.1 51.1 51.1 53.1 35.7 89.1 76 52 -NA-11.9 12.9 10.6 2.89 1.44 18.4 13.3 11.5 14.2 1.47 2.65 1.05 1.34 4.05 1.87 8.91 29.3 29.7 5.8 0.5 0 QUALITY i i ; ŀ - i 5010 & 200.7 6010 & 200.7 5010 & 200.7 6010 & 200.7 6010 & 200.7 5010 & 200.7 6010 & 200.7 375.4&9038 272.2&7761 325.2&9251 Method 6 SM2320 SM2320 8270c 8260b 8260b 8260b 8260b 8260b 8260b 8270c 04/02/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/08/02 04/08/02 04/04/02 04/04/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/05/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/11/02 04/04/02 04/11/02 Project ID: SPS-11 EOT 2022C Date Sample Name: MW 30 Blank <0.002 <0.05 <0.05 <0.05 <0.05 <0.02 \$50 <0.01 <0.05 < 0.05 <0.05 <0.05 < 0.05 < 0.05 < 0.05 <0.05 < 0.05 <0.05 <0.05 < 0.05 0 | |-<10 <0.5 7 ∇ $\overline{\vee}$ $\overline{\vee}$ RQL 5 0.002 0.02 0.05 0.05 0.05 0.05 0.02 0.05 0.05 0.05 0.05 0.05 0.05 0.05 0.01 0.05 0.05 0.05 0.05 0.5 10 1 ł Units mg/L mg/L mg/L mg/L mg/L mg/L μg/L ng/L µg/L mg/L mg/L mg/L mg/L mg/L hg/L ng/L hg/L μg/L mg/L mg/L hg/L hg/L hg/L µg/L hg/L ng/L hg/L μg/L µg/L ng/L į 0.0336 <0.002 <0.05 <0.05 Result < 0.02 <0.01 <0.05 <0.05 <0.05 < 0.05 < 0.05 <0.05 < 0.05 < 0.05 < 0.05 < 0.05 1.68 <0.05 <0.05 30.3 2.6 240 <10 74 į i $\overline{\vee}$ $\overline{\vee}$ $\overline{\lor}$ $\overline{\vee}$ $\overline{\vee}$ Environmental Tech Group REPORT OF ANALYSIS-cont. Volatile organics-8260b/BTEX Extractable organics-PAH Ken Dutton Benzo[j,k]fluoranthene Alkalinity, bicarbonate Potassium/AA*filtered Dibenz[a,h]anthracene Benzo[b]fluoranthene Benzo[g,h,i]perylene Sodium/ICP*filtered Alkalinity, carbonate Benzo[a]anthracene Benzo[a]pyrene Acenaphthylene Vanadium/ICP Strontium/ICP Selenium/ICP Acenaphthene Silver/GFAA m,p-Xylenes Fluoranthene Ethylbenzene Nickel/ICP Parameter Anthracene Chrysene o-Xylene Zinc/ICP Chloride Fluorene Tin/ICP Benzene Client: Foluene Sulfate Attn:

4221 Freidrich Lane, Suite 190, Austin, T. 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Report#/Lab 1D#: 127633 Sample Matrix: water Project ID: SPS-11 EOT 2022C Sample Name: MW 30 Environmental Tech Group Ken Dutton Client: (Attn:

REPORT OF ANALYSIS-cont.							QUALITY ASSURANCE DATA	ASSUR.	ANCE DA	TA1	
Parameter	Result	Units	RQL 5	Blank	Date	Method 6	Data Qual 7	Prec.2	Recov.	3 CCV ⁴ LCS ⁴	LCS^4
Indeno[1,2,3-cd]pyrene	<0.05	Hg/L	0.05	<0.05	04/11/02	8270c	1	11	53.1	91.5	52.1
Naphthalene	<0.05	mg/L	0.05	<0.05	04/11/02	8270c	í	20.9	21.8	86.5	34.3
Phenanthrene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	Î	18.3	47.4	95	51.9
Pyrene	<0.05	µg/L	0.05	<0.05	04/11/02	8270c	í	13.6	20	9.88	52.7

7840408

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 30

Report#/Lab 1D#: 127633 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Limit Data Qualifiers	Data Qualifiers
1,2-Dichloroethane-d4	8260b	- 114	80-120	
Toluene-d8	8260b	93.1	88-110	1
2-Fluorobiphenyl	8270c	47.4	43-116	1 1 1
Nitrobenzene-d5	8270c	40.3	35-114	1
Terphenyl-d14	8270c	49.9	33-141	1

Attn: Ken Dutton Report #/Lab 1D#: 127633 Matrix: water Client: Environmental Tech Group Project ID: SPS-11 EOT 2022C

Sample Name: MW 30

Sample Temperature/Condition <=6°C

he typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

☑ Sample received in appropriate container(s) and appear to be appropriately preserved.
 ☐ Sample received in appropriate container(s). State of sample preservation unknown.
 ☐ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Qualifiers and QC data:

Parameter	Qualif	Qualif Comment
Chromium/ICP	ſ	See J-flag discussion above.
Lead/ICP	Г	See J-flag discussion above.
Molybdenum/ICP	ſ	See J-flag discussion above.
Zinc/ICP	ſ	See J-flag discussion above.
Benzene	ſ	See J-flag discussion above.
Ethylbenzene	ſ	See J-flag discussion above.
Tolucne	ſ	See J-flag discussion above.
Notes:		

744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 FAX (512) 447-4766 1221 Freidrich Lane, Suite 190, Austin, T. (512) 444-5896

Report Date: 04/16/02 Time: 09:45 Time: 15:45 Project ID: SPS-11 EOT 2022C **Date Received:** 04/03/2002 Date Sampled: 03/26/2002 Report#/Lab ID#: 127634 Sample Name: MW 31 Sample Matrix: water NM 88240 FAX: 505 397-4701 Environmental Tech Group Address: 2540 W. Marland 505 397-4882 Ken Dutton Hobbs, Client: Attn:

REPORT OF ANALYSIS							OUALITY ASSURANCE DATA ¹	ASSUR	ANCE DA	TA1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method ⁶	Data Qual 7	Prec.2	Recov.3	CCV ⁴	LCS^4
A/BN Extraction-PAH		-		*:	04/02/02	3520		-	1	-	
Metals Dig11g	!	ļ	ŀ	i	04/04/02	7470&245.1	-	!	1	;	1
Metals DigHINO3	:	i	;	1	04/03/02	3015	!	;	1	:	
Metals DigHNO3*filtered	ì	;	;	1	04/03/02	3005a		i	1	:	-
Total dissolved solids	362	mg/L		∇	04/17/02	160.1	;	6.97	-NA-	-NA-	-NA-
Aluminum/ICP	1.45	mg/L	0.2	<0.2	04/02/02	6010 & 200.7	a	11.66	108.49	1.96	84.85
Arsenic/ICP	<0.05	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	1	2.13	106.97	95.24	104.32
Barium/ICP	0.169	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	-	1.19	118.87	100.98	92.88
Berylliun/1CP	<0.004	mg/L	0.004	<0.004	04/05/02	6010 & 200.7	1	5.29	108.11	86	95.62
Boron/ICP	0.152	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	!	69.0	104.15	102.3	101.44
Cadmiun/ICP	<0.005	mg/L	0.005	<0.005	04/05/02	6010 & 200.7	-	3.7	103.23	98.94	91.94
Calcium/ICP*filtered	207	mg/L	10	<10	04/21/02	6010 & 200.7	-	1.35	6.98	97.64	98.87
Chromium/ICP	0.0105	mg/L	0.01	<0.01	04/05/02	6010 & 200.7		2.19	119.51	95.74	84.11
Cobalt/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	1	2.87	119.24	96.62	8.88
Copper/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7		7	109	96.72	91.31
lron/ICP	0.852	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	1	4.1	117.25	29.66	88.29
Lead/ICP	0.16	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	;	1.25	115.56	100.64	86.22
Magnesium/ICP*filtered	16.1	mg/L	2	\$	04/05/02	6010 & 200.7	1	0.28	107.04	103.16	82.3
Manganese/ICP	0.208	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	1	3.72	120.13	95.36	85.36
Mercury/CVAA	<0.0002	mg/L	0.0002	<0.0002	04/05/02	245.1&7470	;	0.0	107.07	85	108
Molybdenum/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7	~	4.1	105.45	95.81	92.93

This analytical report is respectfully submitted by AnalySys, Inc. The enclosed results publication may be reproduced or transmitted in any form or by any means without the are consistent with AnalySys, Inc.'s Quality Assurance/Quality Control Program. @ have been carefully reviewed and, to the best of my knowledge, the analytical results Copyright 2000, AnalySys, Inc., Austin, TX. All rights reserved. No part of this Respectfully Submitted, express written consent of AnalySys, Inc.

Richard Laster

of the relative percent (%) difference between duplicate measurements. 3. Recovery (Recov.) is the percent (%) of analyte 1. Quality assurance data is for the sample batch which included this sample. 2. Precision (PREC) is the absolute value dilutions. 7. Data Qualifiers are J = analyte potentially present between the PQL and the MDL. B = Analyte detected in 4. Calibration Verification (CCV) and Laboratory Control Sample (LCS) results are typically denote USEPA procedures. Less than ("<") values reflect nominal quantitation limits adjusted for any required recovery exceeds advisory limit. S3 =MS and/or MSD and PDS recoveries exceed advisory limits. P = Precision higher expressed as the percent (%) recovery of analyte from a known standard or matrix. 5. Reporting Quantitation Limits (RQL), typically at or above the Practical Quantitation Limit (PQL) of the analytical method. 6. Method numbers associated method blank(s). S1 =MS and/or MSD recovery exceed advisory limits. S2 =Post digestion spike (PDS) than advisory limit. M =Matrix interference recovered from a spiked sample.

Rehard

کالگ آآل
ווכור
Ū

						(512) 4	(512) 444-5896	FAX (FAX (512) 447-4766	766	
Client: Environmental Tech Group			Project ID:		SPS-11 EOT 2022C			Report	Report#/Lab ID#: 127634	1: 127634	
			Sample N	Sample Name: MW 31				Sample	Sample Matrix: water	vater	
REPORT OF ANALYSIS-cont.							QUALITY	ASSUR	ASSURANCE DATA	TA1	
Parameter	Result	Units	RQL ⁵	Blank	Date	Method 6	Data Qual 7	Prec.2	Recov.3	CCV4	LCS^4
Nickel/ICP	<0.02	mg/L	0.02	<0.02	04/02/02	6010 & 200.7	ſ	2.2	111.48	96.5	88.91
Potassium/AA*filtered	1.62	mg/L	0.05	<0.05	04/04/02	258.1&7610	-	1.47	104.99		96.24
Seleniun/ICP	<0.05	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	ļ	2.65	103.77		102.73
Silver/GFAA	<0.002	mg/L	0.007	<0.002	04/02/02	272.2&7761	!	1.05	81.65	92.5	110
Sodium/ICP*filtered	64.1	mg/L	20	<50	04/05/02	6010 & 200.7	!	1.34	115.47	9.101	82.84
Strontium/ICP	1.32	mg/L	0.05	<0.05	04/05/02	6010 & 200.7	;	4.05	90.63	102.36	91.73
Tin/ICP	<0.05	mg/L	0.05	<0.05	04/02/02	6010 & 200.7	•	1.87	114.26	100.72	91.49
Vanadium/ICP	<0.02	mg/L	0.02	<0.02	04/05/02	6010 & 200.7		2.89	119.17	99.72	90.14
Zinc/ICP	0.0131	mg/L	0.01	<0.01	04/05/02	6010 & 200.7	ļ	2.8	105.26	96.95	99.11
Alkalinity, bicarbonate	240	mg/L	10	<10	04/08/02	SM2320	:	0	-NA-	-VN-	-NA-
Alkalinity, carbonate	<10	mg/L	10	<10	04/08/02	SM2320	1	0	-NA-	-NA-	-NA-
Chloride	26.7	mg/L	0.5	<0.5	04/04/02	325.2&9251	1	1.44	107.54	107.37	97.41
Sulfate	38.6	mg/L	2	4	04/04/02	375.4&9038	;	8.91	110.06	86.56	85.82
Extractable organics-PAH		-			04/11/02	8270c	1	-NA-	-VV-	-VV-	-NA-
Volatile organics-8260b/BTEX	ļ		i		04/04/02	8260b	;	-			:
Benzene	1.91	hg/L	1	⊽	04/04/02	8260b	1	7.1	89.1	8.68	8.06
Ethylbenzene	7	Hg/L	_	⊽	04/04/02	8260b	<u></u>	7.2	113.2	109.2	106.8
m,p-Xylenes	~	T/BH		∇	04/04/02	8260b	ſ	5.8	118.2	114.4	112.5
o-Xylene	7	Hg/L		⊽	04/04/02	8260b	!	0.5	113.7	110.6	108.3
Toluene	1.34	µg/L	-	⊽	04/04/02	8260b		3.8	76	100.2	100.6
Acenaphthene	<0.05	µg/L	0.05	<0.05	04/11/02	8270c	1	29.3	35.7	99.3	49.6
Acenaphthylene	<0.05	hg/L	0.05	<0.05	04/11/02	8270c	!	29.7	33.7	95.7	47.2
Anthracene	<0.05	hg/L	0.05	<0.05	04/11/02	8270c	1	18.4	47.1	93.5	51.8
Benzo[a]anthracene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	!	11.9	51.1	8.68	51.7
Benzo[a]pyrene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	!	12.9	52.9	8.06	54.2
Benzo[b]fluoranthene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	1	13.3	51.1	88	51.1
Benzo[g,h,i]perylene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c		11.5	53.9	92.8	52.4
Benzo[j,k]fluoranthene	<0.05	μg/L	0.05	<0.05	04/11/02	8270c	i	14.2	52	92.7	54
Chrysene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	ì	11.5	53.1	91.6	53.2
Dibenz[a,h]anthracene	<0.05	µg/L	0.05	<0.05	04/11/02	8270c		10.6	55.9	94.1	54.9
Fluoranthene	<0.05	ng/L	0.05	<0.05	04/11/02	8270c	;	7.4	46.6	83.3	47.3
Fluorene	<0.05	hg/L	0.05	<0.05	04/11/02	8270c	;	28.6	36.8	98.4	40.1

4221 Freidrich Lane, Suite 190, Austin, TX 744 & 2209 N. Padre Island Dr., Corpus Christi, TX 78408 (512) 444-5896 • FAX (512) 447-4766

Client:	Client: Environmental Tech Group			Project II	Project ID: SPS-11 EOT 2022C	JT 2022C			Report#	Report#/Lab ID#: 127634	: 127634	
Attn:	Ken Dutton		-	Sample N	Sample Name: MW 31				Sample	Sample Matrix: water	/ater	
REPORT	REPORT OF ANALYSIS-cont.							QUALITY ASSURANCE DATA 1	ASSURA	NCE DA	$\overline{\text{TA}}^{1}$	
Parameter	ı.	Result	Units	RQL.5	Blank	Date	Method 6	Data Qual 7 Prec. 2 Recov. 3 CCV4 LCS4	Prec.2	Recov.3	CCV ⁴	LCS^4
Indeno[1,2	Indeno[1,2,3-cd]pyrene	<0.05	mg/L	0.05	<0.05	04/11/02	8270c		=	53.1	91.5 52.1	52.1
Naphthalene	16	<0.05	Hg/L	0.05	<0.05	04/11/02	8270c	!	20.9	21.8	86.5	34.3
Phenanthrene	ne	<0.05	µg/L	0.05	<0.05	04/11/02	8270c		18.3	47.4	95	51.9
Pyrene		<0.05	mg/L	0.05	<0.05	04/11/02	8270c		13.6	50	9.88	52.7

44 & 7840408

Client: Environmental Tech Group
Attn: Ken Dutton

Project ID: SPS-11 EOT 2022C Sample Name: MW 31

Report#/Lab ID#: 127634 Sample Matrix: water

REPORT OF SURROGATE RECOVERY

Surrogate Compound	Method	Recovery	Recovery Recovery Limit Data Qualifiers	Data Qualifiers
1,2-Dichloroethane-d4	8260b	111	80-120	1
Toluene-d8	8260b	99.5	88-110	
2-Fluorobiphenyl	8270c	46.9	43-116	-
Nitrobenzene-d5	8270c	41.1	35-114	!
Terphenyl-d14	8270c	50.9	33-141	

Report #/Lab ID#: 127634 Matrix: water Client: Environmental Tech Group

Attn: Ken Dutton

Project 1D: SPS-11 EOT 2022C

Sample Name: MW 31

Sample Temperature/Condition <=6°C

The typical sample temperature criteria (except for metals by ICP, GFAA and AA and a very few other tests) is <= 6°C. Possible exceptions include samples submitted to laboratory within such a short time after sampling that cooling measures used in the field and during transport had insufficient time to achieve desired temperatures in the samples (see sample collection and sample receipt times) and samples where the temperature could not be measured due to sample submission in a manner precluding temperature measurement without impacting sample integrity (ex. in a bottle with no cooler).

Sample Bottles & Preservation

■ Sample received in appropriate container(s) and appear to be appropriately preserved. □ Sample received in appropriate container(s). State of sample preservation unknown. □ Sample received in inappropriate container(s) and/or with unknown state of preservation.

J flag Discussion

Detection Limit. Because the reported result is below the quantitation limit for this project/sample (or test procedure), GC/MS organics results may or MAY NOT have been verified as to the presence and relative ratio of target ions (eg. the material causing the J flag "hit" in such situations may be nothing more than background ion-fragment noise.) background levels/blanks and other potential sources of sampling and analytical contamination), though less than the Reported Quantitation Limit (RQL) is greater than the A J flag data qualifier indicates (as required under TNRCC-TRRP reporting requirements) that the raw calculated analyte concentration in the sample (uncorrected for

Comments pertaining to Data Oualifiers and OC data:

Comments pertaining to Data Quantities and QC of	41111613	and \checkmark C uata.
Parameter	Jilgug	Qualif Comment
Copper/ICP	ſ	J See J-flag discussion above.
Molybdenum/ICP	-	J See J-flag discussion above.
Nickel/ICP	ŗ	J See J-flag discussion above.
Ethylbenzene	-	See J-flag discussion above.
m,p-Xylenes	~	J See J-flag discussion above.
Notes:		

_
\rightarrow
$\mathbf{\mathcal{L}}$
US,
-
\bar{c}
\neg
(<u> </u>
\sim
ī
Z
1
_
-

1

			<u> </u>		ſ		- 1												
	ことにしている。		4223 Freidrich Lane, Sune 190, Ausun, 1X 78744 Phone: (512) 444-5896	Fax: (512) 447-4766		Analyses Requested (1)	Please attach explanatory information as required			Comments									
			77		State_Zip		Fax	B	200	Lab I.D. #	127606 X	127607	808	127609	127610	611	512	127613	214
i de tra		Bill to (if different):	Company Name		St		H	V	or asal	Water Waste	X 127	127	127608	127	127	127611	127612	127	127614
•		Bill to (i	Compan	Address	City		Phone_	ngr.):	Sampler:	Date Time No. of Sampled Containers Soil	20 2	1/20	11/0	7005	0/	رۍ	20	مى20 /	<u>;</u>
	ODY			MARLAND	State Nm Zip 88290	óN	ax (506) 897-4	firmed with lab n	2622C	Date Time Sampled Sample	3.264 1030	<i>!//</i>	111	0/	12/0	5/0/	1250	50/	0,601
	HAIN-OF-CUSTODY	end Reports To:	ompany Name ETGI	ddress 25 40 W MARLAND	ity Holgs State	1	nond 5 ac 172 418 2 Fax (505) 857-470	dush Status (must be con	roject Name/PO#: 575-1/ Sample	Client Sample No. Description/Identification	/ WILL	mu 2	My 3	4 WIN	MW 6	111 7	9 mm	01 WM	11 mm

Hibbless specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's normal reporting linits (MDL/PQL). For GCMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody or attached to this chain-of-custody, ASI will default to Priority Pollutants or ASI's itst at ASI's option. Specific compound lists must be supplied for all GC procedures.

7	Sample Relinquished	ed By			Sample Received By	By	
/Name	Affiliation	Date	Time	Name	Affiliation	Date	Time
Sman (ase	エソイラ	002/20-2-4	1200	Belone	60/8/6/ 12A 2/02		05.45
					0		

(Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.)

1 0

CHAIN-OF-CUSTODY	λ					!						בו ויטר א כי אַ	795
Send Reports To:			Bill	Bill to (if different):	diffe	rent):					j		INC.
Company Name ETGI			Con	Company Name	Nam	e	GOTT				4221 Frei	4221 Freidrich Lane, Suite 190, Auslin, TX 78744 Phone: (512) 444-5896	.ustin, TX 78744 396
Address 25 40 W MARLAND	CAKLIS		Add	Address								Fax: (512) 447-4766	99
City Hossi State Nm Zip 88240	Zip 88	250	City				State	_ Zip			Į		
17			ATTN:	Ž						Ì	\	Analyses Requested (1)	sted (1)
Phono(5ac) 372 4182 Fax (506) 397-470,	506/189	106h-t.	Phone	ne .			Fax			1	Pleas	Please attach explanatory information as required	nation as required
Rush Status (must be confirmed with lab mgr.):	ed with	lab mgr.):	0		1			\'	(*)	/		
Project Name/PO#: \$15-11	7 6	Samp	7	Lanow (\ I	asa	2		ا الحاج				
(03)	7770X	ن						/	7	\	\	\ \ \	
Client Sample No. Description/Identification	Date Sampled	rime impled	No. of Containers	Soil	Water Waste	N'aste	Lab f.D. # (Lab only)	100				Col	Comments
120 J3	10-92-8	3.26-01 1220	7		X	, ,	127616	X					
MW 14		0/6/					127617						
MW/5		1400					127618						
Mw 16		1,300					127619						
110 /7		1430					127620						
MIW 18		1420					127621						
P/ W/V		0011					127622	<u> </u>					

Unibess specifically requested otherwise on this Chain-of-custody and/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's mound reporting libraries and extractables, unless specific analytical parameter lists are specified on this chain-of-custody attached to this chain-of-custody. ASI will default to Priority Pollutants or TEMP DIOC ASI's HSL list at ASI's option. Specific compound lists must be supplied for all GC procedures.

127625 127624

1740 145

127623

	Time	09:45	
By	Date	4/3/02	-
Sample Received By	Affiliation	Thomas Mile 251	
	Name	Mani	
	Time	1200	
ed By	Date	70-7-4	
Sample Relinquished By	Affiliation	I-917	
7	Manne 1	Smow (asu	

[Tendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

5/8/2 LSQ Jan

1 Freidrich Lane, Suite 190, Austin, TX 787.14

Phone: (512) 444-5896 Fax: (512) 447-4766

ZugraduL

Please attach explanatory information as required

Analyses Requested (1)

CHAIN-OF-CUSTODY

Rush Status (must be confirmed with lab mgr.): Project Name/PO#: 255-/ Sample State Nm Zip Phone (Sad RZ 4182 Fax (505) Address 25 40 W MARLA ATTIN: KEN DUTTON Company Name ETGI Send Reports To: illy 140 885

	Bill to (if different):	Ì	•
	Company Name Eoff	4.22	~
2	Address		
88240	CityStateZip		L
	ATTN:	1	
1064-t581	Phone	1	- 1
		\ \ \ !	•

Sampler: Annow

Comments. Lab I.D. # 127634 Water Wastel (Lab only) 127632 127626 127628 127633 127630 127629 127631 127627 X Soil Sampled Sampled Containers No. of و Q 1340 1570 1350 1545 1325 1445 53% Time S 3/3/ 2012C 3-42-02 Description/Identification Client Sample No. MW 27 MW 25 MW Sid ME ME

limits (MDLPQL). For GCMS volatiles and extractables, unless specific analytical parameter lists are specified on this chain-of-custody to this chain-of-custody, ASI will default to Privary Pollutants or (1) Heless specifically requested other wise on this Chain-of-custody und/or attached documentation, all analyses will be conducted using ASI's method of choice and all data will be reported to ASI's method of choice and all data will be reported to ASI's method of choice and all data will be reported to ASI's method of choice and all data will be reported to Trnd: 0.0 C ASUS HSU list at ASUs option. Specific compound lists must be supplied for all GC procedures.

	Time	09:45	
By	Date	1 4/3/02	
Sample Received By	Affiliation	Mem Armonne Li	
Þ	Name	Mem	
	Time	1200	
d By	Date	4-2-02 1200	
Sample Relinquished By	Affiliation	ETAI	
8	Mume 1	Smor land	

[Vendering of above described samples to AnalySys, Inc. for analytical testing constitutes agreement by buyer/sampler to AnalySys, Inc.'s standard terms.]

APPENDIX C WATER WELL SURVEY

Well Reputes and Downloads

Range: 35E Township: 18S

Sections: 12,13,24

Zone:

 \succeq

NAD27 X:

Search Radius:

Basin:

County:

Number:

Owner Name: (First)

'_`Non-Domestic '_`Domestic (♣'All

Water Column Report Avg Depth to Water Report (Last)

Help

WATERS Menu

Clear Form

Well / Surface Data Report

WELL / SURFACE DATA REPORT 09/27/2002

	(acre	acre it per annum)	(F)	
OB File Nor	Use	Diversion	Owner	
L 09766	PRO	0	MITCHELL ENERGY CORPOR	CORPOR
L 09766 (1)	PRO		YATES PETROLEUM CORPOR	CORPOR

MITCHELL ENERGY CORPORATION YATES PETROLEUM CORPORATION

09766 (1) EXP Well Number 99760

Shallow

Source

Zone (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest
 Tws
 Rng
 Sec
 q
 q

 18S
 35E
 13
 1

 18S
 35E
 13
 1

UTM are in Meters)
UTM Zone Easting b
13 648309 X Y are in Feet

sta Dat 12/

Northing 3624809 3624809

Record Count: 2

http://seowaters.ose.state.nm.us/awdProd/summary.html?email_address=kdutton@etgi.cc&basin=L++&nbr=09766&suffix=+++++

Latitude Longitude 32 45 3.94 103 25 8.63 UTM are in Meters)
UTM Zone Easting Northing
13 648309 3624809 Acres Diversion Consumptive $\frac{3}{3}$ X Y are in Feet From/To 097 T Zone (qtr are 1=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q Shallow 18S 35E 13 1 1 Doc File/Act Status 1 2 3 Trans Desc 72121 12/04/1985 PMT APR CNV CONVERSION L Owner: MITCHELL ENERGY CORPORATION Point of Diversion Documents on File POD Number 99760

Other Location Description

Back

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE

Primary Status: PMT Permit

Total Acres: Total Diversion: 0

DB File Nbr: L 09766

water night Summary

http://seowaters.ose.state.nm.us/awdProd/summary.html?email_address=kdutton@etgi.cc&basin=L++&nbr=09766&suffix=(1)++

Latitude Longitude 32 45 3.94 103 25 8.63 UTM are in Meters)
UTM Zone Easting Northing
13 648309 3624809 Acres Diversion Consumptive X Y are in Feet From/To 097 T Zone (qtr are 1=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q q Tws Rng Sec q q q 188 35E 13 1 1 Doc File/Act Status 1 2 3 Trans Desc 72121 03/13/1986 EXP EXP CNV CONVERSION L File/Act 09766 (1) EXP Point of Diversion

Other Location Description

Back

DB File Nbr: I 09766 (1)
Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: EXP Expired

Owner: YATES PETROLEUM CORPORATION

Documents on File

POD Number L 09766 (1

Total Acres: Total Diversion:

THE TANKING DUMINIONS

Sections: 7,8,17,19,20 Range: 36E Fownship: 18S

ALCH TACHOLIS GIRG DOWNINGERS

NAD27 X:

ξ.

Zone:

Search Radius:

Number:

Suffix:

Owner Name: (First)

(Last)

Basin:

County:

O Non-Domestic Domestic All

WATERS Menu Clear Form Well / Surface Data Report

Water Column Report Avg Depth to Water Report

Heb

WELL / SURFACE DATA REPORT 09/27/2002

	ŝ	Ď	g	_	9	5	0	80	<u>ق</u>	0
	n Meter	Easting	650589	652207	650646	652235	652260	651398	651439	652670
	UTM are in Meters)	UTM Zone	13	13	13	13	13	13	13	13
		Ħ								
	X Y are in Feet	×						•		
	X Y are	Zone								
quarters are 1=NW 2=NE 3=SW 4=SE)	biggest to smallest	Rng Sec q q q	36E 07 4 1 1	36E 08 4 1 1	36E 19 4 1 1	36E 17 4 1 1	36E 20 4 1 1	36E 08 3 1 1	36E 20 1 1 3	36E 20 4 4 1
1=NW 2	bigges	Tws	185	185	185	185	185	185	185	185
rters are	quarters are	Source							Shallow	Shallow
(dng	ento)							2		
		Н						25		
		Well Number	L 01533	L 01534	L 01545	L 03119	L 03120	L 01632 S-2	L 03900	L 07409
	(H	Owner Well Number	WESTERN PUBLIC SERVICE	Ы	L 01545	I 03119	L 03120	 µ	ı	LLING CO.
	ft per annum)	ne r	WESTERN PUBLIC SERVICE	Ы	L 01545	I 03119	L 03120	1801.5 HARVEY AND YVONNE STOTT I 01632 S-	ı	LLING CO.
	(acre it per annum)	ne r	3840 SOUTHWESTERN PUBLIC SERVICE	Ы	L 01545	L 03119	L 03120	1801.5 HARVEY AND YVONNE STOTT I	3 C. W. DUNN	LLING CO.
	(acre ft per annum)	Diversion Owner	IND 3840 SOUTHWESTERN PUBLIC SERVICE		1 01545	T 03119	I 03120	1801.5 HARVEY AND YVONNE STOTT I	DOM 3 C. W. DUNN L	PRO 0 MCVAY DRILLING CO.

Sta Dat

Northing 3625740

3625765

3624167 3622565

3622527

/90

3623150 3622170

3625752

Shallow Shallow

HARVEY AND YVONNE STOTT C. W. DUNN MCVAY DRILLING CO.

Record Count:

http://seowaters.ose.state.nm.us/awdProd/summary.html?email_address=kdutton@etgi.cc&basin=L++&nbr=01533&suffix=+++++

Other Location Description 103 23 36.7 103 22 34.51 103 21 32.72 103 20 30.78 103 18 57.82 103 19 44.2 103 21 32.49 103 21 32.49 103 21 32.49 103 21 32.41 103 23 36.4 103 23 36.8 103 22 34.78 103 22 34.78 Longi tude 34.38 45 29.76 45 30.06 30.51 38.03 38.02 37.6 45.84 53.41 22.05 45.43 Lati tude 45 29.78 30.23 Other Location Description Northing 3625740 3625798 3625829 3625860 3625876 3624240 3624196 3624134 3622527 3622589 3620974 3627373 3627350 3624220 3624167 3622565 3625765 3620947 Plant Location UTM Zone Basting 650589
13 652207
13 652207
13 652427
13 657040
13 657040
13 657040
13 657040
13 657040
13 650618
13 650618
13 650616
13 65207
13 652260
13 652256
13 652288 UTM are in Meters Status Priority X Y are in Feet Use IND Acres Diversion Consumptive (quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest (qtr are 1=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest 36E 09 36E 08 Source ט Tws Rng Sec q q 18s 36E 28 Point of Diversion Place of Use POD Number 01550 01538 01545 031.16 01534 01535 01540 01544 01547 01537 01542 03118 03119 01533 01536 03117

water rugin Summary

Acres Diversion Consumptive

From/To

Status 1 2 3 Trans Desc PMT ET PRC L 01533

APPRO 06/09/1956

File/Act

Documents on File

Contact: DAVID WILKS

Owner: SOUTHWESTERN PUBLIC SERVICE

Total Diversion: 3840

Total Acres: 0

Primary Purpose: IND INDUSTRIAL Primary Status: PMT Permit

DB File Nbr: I 01533

3840

.1
1
1
- -
+
- 11
≥
Œ
3
S
જ્
1
-63
=
Ç
- ∥.
ā
ન્સ્ર
+
-
II.
.5
S
78
23
-3
ರ
- =
ţ
ě
(a)
ĭ
_ 2
표
ㅋ
-×
11
SS
تە
귝
ਚ
ਲ
-
.ध
드
Ð
<u> </u>
Ξ
Ξ
-=
>
둉
H
=
્ય
ਚੇ
ō
~
ᇴ
₹
6
ે
===
ď
Ξ
7.
뫋
\$
S
ě
ő
rs.ose.state.nm.us
H
7
wat
×
ಕ
Ē
~
*
ttp://

Documents on File											
Doc File/Act	Status 123	Trans Desc	From/To	Acres	Acres Diversion	n Consumptive	tive				
COWNE 03/22/2000	CHG PRC PRC	$1.016\overline{3}2$	H	0		0					
CLWPL 03/29/1978	PMT APR ABS	L 01632 A	Ē	-45.7	-137.1	7					
COWNF 11/15/1976	CHG PRC ABS	L 01632	E	0		0					
COWNF 04/24/1974	CHG PRC ABS	L 01632	E	0		0					
LIC 09/07/1972	LIC PRC ABS	L 01632	E	646.2	1938.6	9					
	(qtr are 1=N	(gtr are 1=NW 2=NE 3=SW 4=SE)	SE)								
Point of Diversion	(qtr are bio	(qtr are biggest to smallest		X Y are in Feet		UTM are in	are in Meters)				
POD Number	Source Ty	Tws Rng Sec q q q	d Zone	×	Ħ	UTM Zone	Easting 1	Northing	Lati tude	Longi tude	Other Location Description
L 01632	18	18S 36E 04	l			13	653691	3627491	32 46 9.06	103 22 3.82	
L 01632 s	18	18S 36E 04 4 1	-			13	653786	3627407	32 46 22.3	103 21 32.9	
L 01632 S-2	=======================================	18S 36E 08 3 1	г -і			13	651398	3625752	32 45 29.74	103 23 5.6	
L 01632 s-3	18	18S 36E 04				13	653691	3627491	32 46 9.06	103 22 3.82	NW1/4 LOT 2
	(quarters a	(quarters are 1=NW 2=NE 3=SW 4=SE)	SW 4=SE)								
Place of Use	(quarters a	(quarters are biggest to smallest	nallest								
	Acres	Diversion Consumptive		Priority	ty Status		Other Location Description	Descripti	uo.		
	102.4	307.2	IRR		LIC	Pts.	SE1/4 and	Pts. SW1/	Pts. SE1/4 and Pts. SW1/4 Section 33		
18S 36E 04	498.1	1494.3	IRR	_	TIC	Pts.	Pts. of Section 4	n 4			

Back

DB File Nbr: L 01632
Primary Purpose: IRR IRRIGATION
Primary Status: LIC Licensed
Total Acres: 600.5
Total Diversion: 1801.5
Owner: HARVEY AND YVONNE STOTT

http://seowaters.ose.state.nm.us/awdProd/summary.html?email_address=kdutton@etgi.cc&basin=L++&nbr=03900&suffix=++++

Other Location Description Longitude 103 23 5.45 103 20 3.98 Latitude 32 44 11.75 33 0 23.63 UTM are in Meters)
UTM Zone Easting Northing
13 651439 3623150
13 655690 3653155 Acres Diversion Consumptive X Y are in Feet From/To Zone (qtr are 1=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q q Tws Rng Sec q q q 18S 36E 20 1 1 3 15S 36E 20 1 1 3 Status 123 Trans Desc PMT LOG ABS L 03900 Shallow Shallow 72121 06/23/1958 File/Act Point of Diversion Documents on File 03900 APPRO POD Number 03900

Primary Purpose: DOM 72-12-1 DOMESTIC ONE HOUSEHOLD Primary Status: PMT Permit

DB File Nbr: I 03900

Owner: C. W. DUNN

Total Diversion: 3

Total Acres:

http://seowaters.ose.state.nm.us/awdProd/summary.html?email_address=kdutton@etgi.cc&basin=L++&nbr=07409&suffix=+++++

Other Location Description Latitude Longitude 32 43 32.85 103 22 18.84 UTM zone Easting Northing 13 652670 3622170 Acres Diversion Consumptive X Y are in Feet From/To 074 T Zone (qtr are 1=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q Tws Rng Sec q q q 18S 36E 20 4 4 1 Doc File/Act Status 1 2 3 Trans Desc 72121 07/28/1975 PMT APR CNV CONVERSION L Shallow Point of Diversion Documents on File POD Number 07409

Back

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit

DB File Nbr: L 07409

Owner: MCVAY DRILLING CO.

Total Diversion: 0 Total Acres:

Water ingui Summary

WELL INCHUS ALLU LIVE LIVEUS

Range: 36E Township: 18S

Sections: 18

Zone:

 \succeq

NAD27 X:

Search Radius:

County:

Basin:

Number:

Owner Name: (First)

(Last)

Non-Domestic Domestic O'All

Water Column Report

Avg Depth to Water Report Well / Surface Data Report

Help WATERS Menu Clear Form

WELL / SURFACE DATA REPORT 09/27/2002

SOUTHWESTERN PUBLIC SERVICE MAKIN DRILLING CO. (acre ft per annum)
Use Diversion Owner
IND 3840 SOUTH)
PRO 3 MAKIN DB File Nbr L 01533 L 03669

(quarters are 1=NW 2=NE 3=SW 4=SE) (quarters are biggest to smallest Shallow Source Well Number 01544 03669

 Tws
 Rng
 Sec
 q q q

 18s
 36E
 18
 4
 1

 18s
 36E
 18
 1
 1

Zone

X Y are in Feet

UTM are in Meters)
UTM Zone Rasting Northing
13 650618 3624134
13 649932 3624422

Sta Dat

/60

Record Count: 2

Hx=++++
nbr=01533&suffi
sin=L++&r
etgi.cc&bas
=kdutton@
ail_address
y.html?em
rod/summar
m.us/awdPr
ters.ose.state.nm.us/awdI
http://seowaters

			Other Location Description																				
			Longi tude	103 23 36.7	103 22 34.51	103 21 32.72		103 19 28.79	103 18 57.82	103 19 44.2	103 21 32.49	103 23 36.53		103 21 32.41		103 22 34.78	103 23 36.86	103 20 30.65	103 22 34.38	103 22 34.39	103 22 34.26		
			Lati tude	32 45 29.78	32 45 29.76	32 45 30.06	32 45 30.23	32 45 30.4	32 45 30.51	32 44 38.03	32 44 38.02	32 44 37.6	2 43	43	2 42	32 46 21.98	32 46 22.05	32 44 37.98	32 44 37.9	32 43 45.86	32 42 53.31		nor
			Northing	3625740	3625765	3625798	3625829	3625860	3625876	3624240	3624196	3624134	3622527	3622589	3620974	3627373	3627350	3624220	3624167	3622565	3620947		Location Description Location
ptive 3840		in Meters)	Easting	62028	652207	653815	655427	657040	657846	656865	653846	650618	650646	653873	653901	652176	650560	655456	652235	652260	652288		
Consumptive 3840		UTM are i	UTM Zone	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13	13		is Other Plant
Diversion 3840		Þ	r X																				/ Status PMT
Acres I		in Feet	×																				Priority
From/To T		X Y are in Feet	Zone																			_	3840 IND
Status 1.2 3 Trans Desc PMT ET PRC I 01533	are 1=NW 2=NE	(qtr are biggest to smallest	Source Tws Eng Sec q q q	07 4 1	18S 36E 08 4 1 1		18S 36E 10 4 1 1	185 36E 11 4 1 1	18S 36E 12 3 1 1	18S 36E 14 3 2 2	18S 36E 16 4 1 1	18S 36E 18 4 1 1	18S 36E 19 4 1 1	18S 36E 21 4 1 1	18S 36E 28 4 1 1	18S 36E 05 4 1 1	18S 36E 06 4 1 1	18S 36E 15 4 1 1	18S 36E 17 4 1 1	18S 36E 20 4 1 1	18S 36E 29 4 1 1	are 1=NW 2=N are biggest	Acres Diversion Consumptive 3840 3840
Doc File/Act S APPRO 06/09/1956		Point of Diversion	POD Number	L 01533	L 01534	L 01535	L 01536	L 01537	L 01538	L 01540	L 01542	I 01544	L 01545	L 01547	L 01550	L 03116	L 03117	L 03118	L 03119	I 03120	L 03121	of Us	Tws Rng Sec q q q q 182 36E 28

Contact: DAVID WILKS

DB File Nbr: L 01533
Primary Purpose: IND INDUSTRIAL
Primary Status: PMT Permit
Total Acres: 0
Total Diversion: 3840
Owner: SOUTHWESTERN PUBLIC SERVICE

Documents on File

DB File Nbr: L 03669

Primary Purpose: PRO 72-12-1 PROSPECTING OR DEVELOPMENT OF NATURAL RESOURCE Primary Status: PMT Permit Total Acres:

Total Diversion: 3

Owner: MAKIN DRILLING CO.

Water Might Summary Back

	Other Location Description
	Longitude 103 24 6.52 103 11 44.48
	Latitude 32 44 50.56 32 44 50.54
	Meters) Easting Northing 649932 3624422 669246 3624731
nptive	d H
n Consumptive 3	UTM are i UTM Zone 13
Acres Diversion	×
Acres	X Y are in Feet Zone X
From/To	
Status 1 2 3 Trans Desc PMT LOG ABS I 03669	(qtr are l=NW 2=NE 3=SW 4=SE) (qtr are biggest to smallest Source Tws Rng Sec q q q Shallow 18S 36E 18 1 3 Shallow 18S 38E 18 1 3
Status 1 2 PMT LOG AE	(qtr are 1 (qtr are 1 Source Shallow Shallow
Documents on File Doc File/Act 72121 09/12/1957	Point of Diversion POD Number L 03669 L 03669 APPRO