1R - 425 · 0

REPORTS

DATE:

MARCH 24, 200C

122 West Taylor • Hobbs, New Mexico 88240 Phone: (505)393-9174 • Fax: (505) 397-1471

CERTIFIED MAIL RETURN RECIEPT NO. 7005 1820 0001 6804 8132

1R0425

March 27, 2006

Mr. Wayne Price New Mexico Energy, Minerals, & Natural Resources Oil Conservation Division, Environmental Bureau 1220 S. St. Francis Drive Santa Fe, New Mexico 87504

RE: JUNCTION BOX UPGRADE REPORT for 2005

VACUUM SWD SYSTEM Lea County, New Mexico

Mr. Price:

Rice Operating Company (ROC) takes this opportunity to submit the Junction Box Upgrade results for the year 2005. Enclosed is a list of the completed junction boxes and their respective closure/disclosure dates. These boxes are located in the Vacuum Salt Water Disposal (SWD) System.

ROC completed 22 junction box sites in 2005. Vacuum System Partners have decided to abandon the Vacuum SWD System. In 2006, junction boxes will continue to be evaluated with the objective of abandonment of the System.

Enclosed are the 2005 results from the PID/BTEX study described in the NMOCD-approved Revised Junction Box Upgrade Work Plan (July 16, 2003). This comparison study is ongoing and data will continue to be collected in 2006. From the data collected thus far, no definitive conclusions can be drawn from the composite methods analyzed. An analysis of ROC's 2005 chloride field tests compared to chloride laboratory analysis is also enclosed. The study of this data continues to validate the accuracy of the chloride field tests employed by ROC.

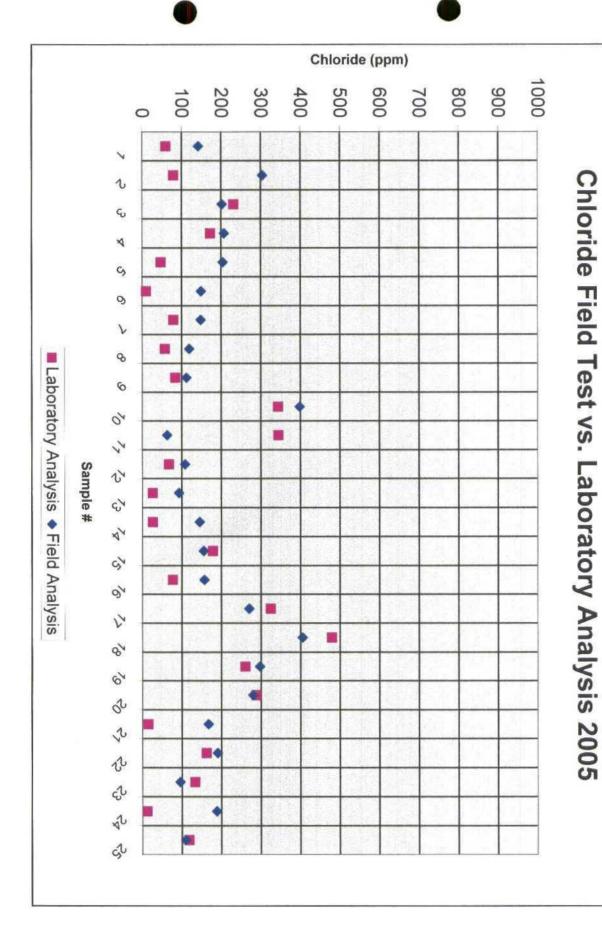
ROC is the service provider (operator) for the Vacuum SWD System and has no ownership of any portion of the pipeline, well, or facility. The System is owned by a consortium of oil

producers, System Partners, who provide all operating capital on a percentage ownership/usage basis. Replacement/closure projects of this magnitude require System Partner AFE approval and work begins as funds are received.

Thank you for your consideration of this Junction Box Upgrade Report for 2005.

RICE OPERATING COMPANY

Knioin Janis Tope


Kristin Farris Pope Project Scientist

enclosures as stated

cc: LBG, CDH, Rob Roy Industries, file,

Mr. Chris Williams NMOCD, District I Office 1625 N. French Drive Hobbs, NM 88240 **RICE** Operating Company
Vacuum SWD SYSTEM Junction Box Upgrade Project 2005 Completed Boxes

	Junction		Legal De	escription		Completion	OCD	Report
	Box	Unit	Sec	Т	R	Date	Assessment Score	Status
1	jct. F-30	F	30	17S	35E	7/26/2005	0	Closure
2	Exxon State 'J' EOL	L	19	178	35E	7/26/2005	0	Closure
3	jct. M-25	M	25	17S	34E	7/26/2005	10	Closure
4	jct. G-33	G	33	17S	35E	11/21/2005	10	Closure
5	Southwestern VC EOL	L	36	17S	35E	11/23/2005	10	Closure
6	jct. K-30	K	30	17S	35E	11/23/2005	10	Closure
7	jct. J-26-2	J	26	17S	35E	11/23/2005	10	Closure
8	jct. B-36	В	36	17S	34E	11/23/2005	0	Closure
9	Mobil 'I' CC Unit EOL	L	36	17S	34E	12/2/2005	0	Closure
10	Marathon Warn State 1 EOL	F	31	17S	35E	12/2/2005	0	Closure
11	B-5-1 boot vent	В	5	18S	35E	12/2/2005	10	Closure
12	jct. M-29	M	29	17S	35E	12/13/2005	10	Closure
13	OXY Swigart EOL	I	25	17S	34E	12/19/2005	10	Closure
14	jct. C-36	С	36	17S	34E	12/19/2005	0	Closure
15	K-33 vent	K	33	17S	35E	12/20/2005	10	Closure
16	Chevron 4-27 EOL	J	27	17S	35E	12/20/2005	10	Closure
17	jct. N-30	N	30	17S	35E	12/21/2005	10	Closure
18	Mack Energy EOL	F	7	18S	35E	12/22/2005	10	Closure
19	jct. A-31-1	Α	31	17S	35S	12/23/2005	0	Closure
20	Phillips 'B' Santa Fe EOL	0	30	17S	35E	12/23/2005	0	Closure
21	Conoco Phillips Glorietta (Santa Fe) EOL	N	27	17S	35E	12/23/2005	10	Disclosure
22	jct. H-27	Н	27	17S	35E	12/23/2005	10	Closure

Laboratory vs. Field Chloride Test Results 2005

25	24	23	22	21	20	19	18	17	16	15	14	13	12	11	10	9	8	7	6	5	4	S	2	1	Sample #
Vacuum jct. H-27	EME Conoco St. A-2A EOL	EME jct. P-2	EME jct. P-31	BD jct. P-26-3	BD jct. K-21-1	EME Burleson St. 'A' EOL	EME Amerada St. 'Q' EOL	Vacuum jct. C-36	EME jct. K-4	Vacuum OXY Swigart EOL	Vacuum jct. N-30	Vacuum Phillips 'B' Santa Fe EOL	Vacuum jct. G-33	BD jct. A-35	Vacuum Mack Energy EOL	EME El Paso EOL	EME jct. G-5-1	Vacuum Chevron 4-27 EOL	Vacuum K-33 vent	EME Amerada Mattern EOL	Vacuum jct. F-30	Vacuum Exxon St. 'J' EOL	Vacuum Southwestern VC EOL	Vacuum jct. M-25	Location
7/29/05	11/9/05	11/7/05	11/9/05	10/25/05	6/11/03	2/16/05	11/29/04	3/16/05	10/11/05	9/19/05	9/6/05	9/6/05	9/13/05	10/4/05	8/29/05	6/22/05	6/22/05	7/28/05	9/1/05	6/17/05	7/13/05	7/13/05	8/11/05	7/13/05	Date
vertical @ 7 ft	vertical @ 12 ft	bottom comp @ 12 ft	vertical @ source 12 ft	grab @ 9 ft	vertical @ 12 ft	bottom comp. @ 12 ft	bottom comp. @ 12 ft	vertical @ 9 ft	grab @ 7 ft	vertical @ 3 ft	vertical @ 13 ft	vertical @ source 6 ft	vertical @ source 6 ft	vertical @ 8 ft	bottom comp. @ 12 ft	vertical @ 12 ft	vertical grab @ 12 ft	bottom grab @ 10 ft	bottom grab @ 7 ft	bottom comp. @ 12 ft	grab @ 8 ft	grab @ 9 ft	bottom grab @12 ft	grab @ 8 ft	Location of Sample
118	11.6	133	162	14.6	288	260	479	324	76.8	. 178	26.3	25.7	67.1	344	343	83.7	57.4	78.9	9.63	46.9	172	231	79.2	59.3	LABORATORY analysis (ppm)
110	188	95.5	190	167	280	297	405	270	157	155	145	93	108	63	398	112	119	148	149	204	207	202	304	142	FIELD analysis (ppm)

Revised Junction Box Upgrade Plan (2003)

System: Site:

EME

Amerada St. 'Q' EOL

Date: Sampler:

Joe Gatts 11/29/2004

Laboratory:

of Texas Environmental Lab

		_						
			12 ft BGS	composite at	bottom		Focarion	I ocation
		5	4	3	2	1	Sample	Component
		16.6	172.0	468.0	104.7	102.6	(ppm)	PID reading
0.0201				0.0223			Benzene	
0.243	LAB COMPOSITE			0.280			Toluene	FIELD COMPOSITE
0.811	TE = (mg/kg)			0.806			Ethyl Benzene	ITE (mg/kg)
2.706				3.104			ıyl Benzene Total Xylenes	

Revised Junction Box Upgrade Plan (2003)

of Texas

Environmental Lab

System: Site: jct. A-2-1 **EME** Date: Sampler: Gary Stark (ETGI-Hobbs) 3/2/2004 Laboratory:

Component (ppm) Benzene Toluene Ethyl Be	Iocation	Component	PID reading		FIELD COMPOSITE	ITE (mg/kg)	
1 1424 2 682 3 1910 0.425 1.20 11.90 4 1869 5 842 LAB COMPOSITE (mg/kg) 1.17 1.87 17.7	LUCALIOII	Сошропеш	(ppm)	Benzene	Toluene	Ethyl Benzene	Total Xylenes
2 682 3 1910 0.425 1.20 11.90 4 1869 5 842 LAB COMPOSITE (mg/kg) 1.17 1.87 17.7		1	1424				
3 1910 0.425 1.20 11.90 4 1869 5 842 LAB COMPOSITE (mg/kg) 1.17 1.87 17.7	bottom	2	682				
4 1869 5 842 LAB COMPOSITE (mg/kg) 1.17 1.87 17.7	composite at	3	1910	0.425	1.20	11.90	22.140
LAB COMPOSITE (mg/kg) 1.17	12 ft BGS	4	1869				
1.87 (mg/kg)		5	842				
1.87					LAB COMPOSI)	
1.87							
				1.17	1.87	17.7	28.73

		i	Composic	Composite	4-wall	
						: !
				1402		
0.492				0.122		
1.09	LAB COMPOSITE			0.486		FIELD COMPOSITE
10.4	TE (mg/kg)			4.05		ITE (mg/kg)
13.27				5.958		

Field PID tests < 100 ppm are considered final for BTEX. If PID is > 100 ppm, the components of the BTEX composite sample will be collected individually and will be composited under laboratory conditions to prevent excessive volatilization. A 15-box, 30-sample study will be made to compare field-compositing with lab-compositing BTEX samples. Composite components are collected in a skewed 'W' pattern. Revised Junction Box Upgrade Work Plan (July 16, 2003)

Revised Junction Box Upgrade Plan (2003)

Site: System:

EME

Gilluly 'B' boot

Date: Sampler:

Joe Gatts 9/16/2004

Laboratory:

of Texas Environmental Lab

			12-18 ft BGS	composite at	bottom		Location	I ocation
		5	4	ယ	2		Sample	Component
		34.3	363.0	331.0	150.0	16.9	(ppm)	PID reading
<0.025				< 0.025			Benzene	
<0.025	LAB COMPOSITE			< 0.025			Toluene	FIELD COMPOSITE
0.0626	TE (mg/kg)			0.554	-		Ethyl Benzene	SITE (mg/kg)
0.2368				0.2029			l Benzene Total Xylenes	

Revised Junction Box Upgrade Plan (2003)

Environmental Lab

of Texas

System: Site: Justis D-1 vent Date: Sampler: Joe Gatts 12/7/2004 Laboratory:

			12 ft BGS	composite at	bottom		Location	Togation
		5	4	ယ	2	1	Component	Component
		0.1	0.1	219.0	18.2	1523.0	(ppm)	PID reading
0.0942				0.0435			Benzene	
1.47	LAB COMPOSITE			0.740			Toluene	FIELD COMPOSITE
7.24	$\Gamma E = (mg/kg)$			4.62			Ethyl Benzene Total Xylenes	ITE (mg/kg)
18.56				10.82			Total Xylenes	

		Composite	T-wall	A_w211	
			267.0		
<0.025			0.0181		
0.0981	LAB COMPOSITE		0.181	-	FIELD COMPOSITE
0.579	TE = (mg/kg)		1.59		ITE (mg/kg)
1.555			4.023		

Field PID tests < 100 ppm are considered final for BTEX. If PID is > 100 ppm, the components of the BTEX composite sample will be collected individually and will be composited under laboratory conditions to prevent excessive volatilization. A 15-box, 30-sample study will be made to compare field-compositing with lab-compositing BTEX samples. Composite components are collected in a skewed 'W' pattern. Revised Junction Box Upgrade Work Plan (July 16, 2003)

Revised Junction Box Upgrade Plan (2003)

System: Site: Conoco A-17 EOL Date: Sampler: Roy Rascon 10/21/2004 Laboratory: of Texas Environmental Lab

			13 ft BGS	composite at	bottom		Location	l ocation
		5	4	3	2	1	Component	Component
		4.5	2.4	4.4	55.4	1433.0	(ppm)	PID reading
<0.025				< 0.025			Benzene	
0.150	LAB COMPOSITE			0.286			Toluene	FIELD COMPOSITE
0.352	TE (mg/kg)			0.449			Ethyl Benzene	ITE (mg/kg)
1.326				1.814			Benzene Total Xylenes)

			Sorribosite.	Composite	A_{-329}					
				634.0						
<0.025		<0.025								
0.203	LAB COMPOSITE			0.177			FIELD COMPOSITE			
0.479	TE (mg/kg)			0.338			ITE (mg/kg)			
2.073				1.551)			

Field PID tests < 100 ppm are considered final for BTEX. If PID is > 100 ppm, the components of the BTEX composite sample will be collected individually and will be composited under laboratory conditions to prevent excessive volatilization. A 15-box, 30-sample study will be made to compare field-compositing with lab-compositing BTEX samples. Composite components are collected in a skewed 'W' pattern. Revised Junction Box Upgrade Work Plan (July 16, 2003)